WO2005099120A1 - Reseau d'antennes intelligent en forme de courbe et procede d'optimisation de son parametre de structure - Google Patents

Reseau d'antennes intelligent en forme de courbe et procede d'optimisation de son parametre de structure Download PDF

Info

Publication number
WO2005099120A1
WO2005099120A1 PCT/CN2005/000457 CN2005000457W WO2005099120A1 WO 2005099120 A1 WO2005099120 A1 WO 2005099120A1 CN 2005000457 W CN2005000457 W CN 2005000457W WO 2005099120 A1 WO2005099120 A1 WO 2005099120A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
variance
antenna
parameters
adjustment
Prior art date
Application number
PCT/CN2005/000457
Other languages
English (en)
Chinese (zh)
Inventor
Shihe Li
Shiqiang Suo
Original Assignee
Da Tang Mobile Communications Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Tang Mobile Communications Equipment Co., Ltd. filed Critical Da Tang Mobile Communications Equipment Co., Ltd.
Publication of WO2005099120A1 publication Critical patent/WO2005099120A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path

Definitions

  • a wireless base station is generally equipped with a smart antenna array.
  • This antenna array can transmit and receive signals using at least two shaped beams: one is a fixed shaped beam, such as Directional, banded, or fan-shaped beams.
  • This beam is mainly used to send omnidirectional information, such as broadcast or paging information.
  • the other is a dynamic shaped beam.
  • This beam is mainly used to track users and send information. Data, signaling, etc. that are transmitted to specific users.
  • the power radiation pattern of an antenna array is determined by factors such as the geometric arrangement of multiple antenna elements constituting the antenna array, the characteristics of each antenna element, and the amplitude and phase of each antenna element feed.
  • the base station uses a loop smart antenna array to achieve omnidirectional coverage on the horizontal plane.
  • the shape of the antenna array (a loop antenna array with a pitch of half the wavelength of the antenna elements) has been determined
  • the patented technology proposes to realize an arbitrary antenna array by adjusting the feeding amplitude and feeding phase of the n antenna elements according to the actual situation. Beamforming method.
  • a ( ⁇ ) is the shape parameter of the desired shaped beam, that is, the required coverage range, where ⁇ is the polar coordinate angle of the observation point, and A () is the radiation intensity in the direction at the same distance.
  • N the number of antenna elements constituting the loop smart antenna array
  • D the position parameter of any antenna element n
  • W (n) Is called a beamforming parameter.
  • W (n) The form is the form of real part and imaginary part, that is +
  • R (n) is the real part and I (n) is the imaginary part; the other is the form of amplitude and phase, ie
  • the radiated power at the direction angle ⁇ is P, that is, the actual coverage area is expressed as:
  • the function form is related to the type of the smart antenna array.
  • the minimum variance and variance algorithm can be used to minimize the variance ⁇ in the following formula, so as to obtain the local optimal value in the sense of minimum variance:
  • K is the number of sampling points when the approximation method is used
  • C (i) is a weight, which indicates the degree of approximation to different sampling points.
  • the 60-degree sector 24 that is split is a standard sector, that is, the farthest point A of the sector center 25 to the base station O
  • the distance from station O is the same, both are R.
  • the shaped beam provided by the smart antenna array located at the 0 position is required to meet a certain uniformity, so that the shaped beam gain provided for the farthest point A of the sector center and the furthest points B and C of the sector edge are provided.
  • the gain of the shaped beam is the same, and it is guaranteed that users at the same distance can receive the beam.
  • a uniform linear array cannot meet this requirement at this time.
  • each antenna element that composes the jtb smart antenna array is the same.
  • the transmission power level of each antenna unit is the same.
  • the variables that form different shaped beams simply change the feed phase of each antenna unit.
  • this antenna array is also expected to have a relatively high antenna array gain and a relatively low manufacturing cost. So far, there is no design method that meets the above requirements, let alone such products.
  • a directional single antenna or antenna array is generally used to implement sector coverage. From the perspective of sector coverage, currently mature single directional antenna products can only provide a fixed radiation pattern and cannot provide a dynamic shaped beam. Although a circular smart antenna array can provide sector coverage, it faces a small gain. The problem of serious interference; Although a uniform linear antenna array can provide dynamic shaped beams, it cannot meet the requirements of an ideal smart antenna array. The provided dynamically shaped beam has uneven gain within the sector.
  • An object of the present invention is to design a curved smart antenna array, so that the antenna array has both sector coverage and dynamic beamforming capabilities, and can meet the requirements of an ideal smart antenna array to the greatest extent.
  • Another object of the present invention is to design a method for deciding the structural parameters of a curved smart antenna array. After continuous adjustment, a locally optimal result that is consistent with the required sector coverage beamforming is finally obtained.
  • a curved smart antenna array includes N antenna elements, and the power radiation pattern of each antenna element is directed to divergent or flat coverage; adjacent ones in the antenna array The linear distance between the two antennas of the antenna satisfies the condition of less than the operating wavelength and greater than or equal to 1/2 the operating wavelength1; the radiated power of each antenna unit on the curve meets the effective coverage of the sector and is not affected by other antennas in the antenna array Effective radiation conditions for unit occlusion2.
  • a method for optimizing the structural parameters of a curved smart antenna array comprising: given the number of antenna elements N and determining the geometric arrangement of the N antenna elements, determining the structural parameters of the antenna array;
  • the stepwise approximation method for obtaining the minimum variance is used to obtain the optimal solution of the beamforming parameters and the antenna array structure parameters.
  • the described geometrical arrangement for determining the N antenna elements is to arrange the N antenna elements in a curve.
  • the stepwise approximation method used to obtain the minimum variance to obtain the local optimal solution of the beamforming parameters and the antenna array structure parameters includes:
  • the method finds the structural parameters and the local optimal solution of W (n) ⁇ j, and records the variance between the beamforming graph and the target forming graph;
  • step 3 If the variance satisfies the predetermined requirements, and the antenna array structure parameters obtained meet the conditions 1 and 2, output the antenna array arrangement determined in step 2) and the locally optimal beamforming parameter W (n), otherwise Return to step 1) reset the initial values of the antenna array structure parameters and the beamforming parameters W (n) and / or adjust the accuracy.
  • the step 2) further includes:
  • Beam shaping parameter W (n) According to the preset initial value of the beamforming parameter # 1 W (n) or the adjustment base value of the beamforming parameter W (n) obtained in the subsequent steps, and adjusting the wave of the antenna array in advance .
  • Step 23) Calculate the antenna array's structural parameters and beamforming parameters W (n) according to steps 21) and 22), and calculate the variance of the antenna array, and compare it with the predetermined reference value of variance, if the variance is greater than or equal to Variance reference value, record the number of times that the variance reference value is kept to a minimum. If the number of times exceeds a predetermined threshold, go to step 3), otherwise return Step 21); if the variance is less than the variance reference value, the original variance reference value is replaced by the variance from the new meter fog, and the antenna array structure parameters and beamforming parameters determined in steps 21) and 22) are used.
  • W (n) as the new Adjust the base value, clear the counter for recording the minimum number of times that the reference value of variance is held, and return to step 21).
  • the step 2) further includes:
  • the preset adjustment is used to finely adjust the structure parameter of the antenna array, and ensure that the structure parameter of the antenna array meets the conditions 1 and bar 2;
  • the present invention proposes a curved smart antenna array structure and a method for optimizing the structural parameters of the curved smart antenna array, which uses the adjustment of the local optimal solution of the beamforming parameters in the Chinese patent 00103547.9 to find the minimum variance and gradually approach the target demand.
  • Arcs and polylines, etc. have both sector coverage and dynamic beamforming capabilities, and can meet the requirements of smart antenna arrays to the greatest extent.
  • the radiation pattern of each antenna element in the array is divergent or parallel.
  • the invention adopts the minimum variance approximation method to simultaneously optimize the antenna structure parameters and the beamforming parameters.
  • This method is suitable for an antenna array structure with an arbitrary curve arrangement.
  • the arrangement of all antenna elements may be uniform or non-uniform.
  • the arrangement of all antenna elements may be symmetrical or asymmetric, and the normalization of each antenna element
  • the radiation direction patterns can be the same or different ⁇ .
  • the present invention provides a curvilinear smart antenna array.
  • the antenna units constituting the antenna array are arranged in a curved shape.
  • the shape of this curve, the position of the antenna unit on the curved table, and the feeding parameters of each antenna unit Determine the small t and shape of the coverage area of this smart antenna array, so that under the principle of minimum variance, the structural parameters and shaped beams of the antenna array will be locally inconsistent with the requirements, making the curved smart antenna array both It can achieve fan 1 coverage, and can meet the requirements of the smart antenna array at the maximum degree.
  • the structural parameters of the curved array and the beam assignment parameters are simultaneously used as the parameters adjusted by the minimum variance method, until the set number of adjustments is reached, thus gradually approaching the target demand and finally obtaining a locally optimal antenna array structure parameter And beam shaping parameters.
  • FIG. 1 is a schematic diagram of an arrangement structure of a cellular mobile communication cell
  • FIG. 2 is a schematic diagram of a sector structure when a cell splitting technique is adopted
  • FIG. 3 is a schematic diagram of the structure of the present invention when the antenna units are unevenly arranged on an arc;
  • FIG. 4 is a schematic diagram of a curved smart antenna array of the present invention meeting the requirements of effective radiation conditions;
  • FIG. 5 is a schematic diagram showing the structure of a non-uniform circular solitary smart antenna P with a 120-degree sector coverage according to the present invention
  • FIG. 6 is a schematic diagram of effective radiation conditions of a non-uniform arc-shaped smart antenna P car with a 120-degree sector coverage according to the present invention
  • FIG. 7 is a flow block diagram of determining a parameter of a circular smart antenna array by using a minimum variance approximation method with a fixed step size according to the present invention
  • Figure 8 is the radiation pattern of the smart antenna when 120-degree sector coverage is required
  • Fig. 9 is a radiation pattern of a smart antenna with a 120-degree sector coverage
  • Figure 10 is a beamforming diagram in the 0 degree direction
  • FIG. 11 is a beamforming diagram in a 20-degree direction
  • FIG. 12 is a beamforming diagram in a 40-degree direction
  • FIG. 13 is a beamforming diagram in a 60-degree direction
  • Fig. 14 is a configuration diagram when antenna elements are arranged symmetrically but unevenly on a fold line.
  • the smart antenna array is required to have an ideal radiation pattern. That is, by adjusting the feed amplitude and feed phase of each antenna element in the antenna array, it can provide sector fixing. Beams can also provide directional dynamic beamforming beams, and require dynamic beamforming beams to meet certain uniformity; secondly, in order to make the system efficient At the highest level, it is also required that the radiation direction pattern of each antenna unit constituting the smart antenna array is the same, and that when a fan-shaped fixed beam and a directional dynamic shaped beam are provided, the transmission power level of each antenna unit is the same, that is, in the antenna array structure After the size is determined, different shaped beams can be formed simply by changing the feed phase of each antenna unit.
  • the present invention provides a curved smart antenna array and a method for optimizing the structural parameters of the antenna array.
  • FIG. 3 A curved smart antenna array designed according to the technical solution of the present invention is shown in FIG. 3.
  • the antenna elements 32 on the smart antenna array are arranged unevenly to form a two-dimensional array, where the position of each antenna element 32 can be represented by its coordinate position (x, y).
  • the required antenna coverage is symmetrical, so the antenna elements are symmetrically distributed on a symmetrical curve 31.
  • the antenna element has the structural parameters of its coordinate position (x, y) and the direction of its radiation direction pattern 34, which are represented by angles in the figure. It is generally required that the radiation patterns of the antenna elements in the antenna array are divergent or parallel.
  • 33 is the direction of the incoming wave, which is represented by the angle ⁇ in the figure.
  • the selected antenna unit should have a directional radiation pattern, and the width of the radiation pattern (power radiation) drop by 3dB should not be less than the fixed coverage beam width required by the designed antenna array. Since there are a lot of mature theories and products in the design of antenna units, it is only a selection process. Generally speaking, the radiation pattern of the antenna unit determines the maximum range of the beam scanning. For a linear antenna array, the radiation pattern of each antenna unit points to the same. For a curved antenna array, the radiation pattern of each antenna unit The radiation pattern direction is divergent, so the maximum range of the beam scanning is artificially enlarged, thereby ensuring that the use of a curved antenna array can provide a relatively uniform dynamic beamforming gain.
  • the curved smart antenna array needs to further determine its structural parameters, but generally there is no clear requirement for the shape of the curve. Since the antenna elements are arranged on a curve, compared with a linear array, When the pitch remains unchanged, the aperture of the curved smart antenna array becomes smaller. Therefore, for a curved smart antenna array, in order to ensure the same aperture as a linear antenna array, the spacing between the antenna units needs to be increased, thereby effectively ensuring the forming gain. It is required to meet the following conditions1:
  • the connection between any two antenna elements 42 on the curve 41 (as shown by reference numerals 46 and 47 in FIG. 4) and the center of the sector is required.
  • the optimization method used in the present invention not only adjusts the beamforming parameters W (n) of each antenna unit, but also continuously adjusts the structural parameters of the curved smart antenna array, thereby minimizing While approaching the sector coverage beam requirements under the principle of variance, a locally optimal structural parameter of the curved smart antenna array can be obtained.
  • the reason for continuously adjusting and optimizing the structural parameters of the curved smart antenna array is that for a certain curved antenna array, due to the limitations of the array itself and the shortcomings of the minimum variance approximation method, it is likely that the local optimum cannot be found. Excellent results.
  • the unit should have a directional radiation direction pattern.
  • a half-wave oscillator with omnidirectional radiation plus a conductor plane is selected to form the basic radiating unit.
  • the conductor plane is infinite, and the distance between the half-wave oscillator and the conductor plane is 1/4 wavelength.
  • Matrix its normalized pattern function in the horizontal plane can be expressed as, ⁇ is the direction of the incoming wave.
  • the basic requirement for the circular antenna array is the fan-zone coverage.
  • the required pattern can be represented by the function A ( ⁇ ).
  • Step 708 Adjust the beamforming parameters according to formula (7).
  • step 711 continuously records the currently calculated R and "), and uses ⁇ ., ( ⁇ ), R, and a, (m) as the adjustment base value, and based on it Press the fixed step to increase or decrease the value to adjust the parameters.
  • the spacing is 0.084 meters; each antenna unit is fed with equal amplitude; the feeding phases (radians) of each antenna unit are: 2.5588, 3.2707, 5.6306, 6.2652, 6.2652, 5.6306, 3.2707, 2.5588.
  • the effective radiation condition 2 of ⁇ is specified as follows: for 120-degree sector coverage, ⁇ ⁇ 6 ", for ⁇
  • the curved antenna array provided by the present invention arranges antenna units on a curve, and determines the coverage area of the smart antenna array by adjusting the shape of the curve, the position of the antenna unit on the curve, and the feeding parameters of each antenna unit.
  • the size and shape make it possible to obtain a locally optimal result that meets the requirements under the principle of minimum variance.
  • This device can not only achieve sector coverage, but also meet the requirements of smart antenna technology to the greatest extent.

Abstract

La présente invention concerne une réseau d'antennes intelligent en forme de courbe et un procédé d'optimisation de son paramètre de structure mettant en oeuvre une couverture par secteurs tout en satisfaisant au maximum la condition de technique d'antenne intelligente. L'élément d'antenne est disposé en courbe, la courbe comprend une ligne cambrée et interrompue, ensuite la forme de la courbe et la position de l'élément d'antenne en courbe sont ajustées afin de garder la distance linéaire entre les deux éléments d'antenne adjacents dans le réseau d'antennes satisfaisant la condition 1, et chaque élément d'antenne en courbe satisfait la condition 2 de rayonnement efficace; ensuite le paramètre de structure et le paramètre de formation de faisceau du réseau d'antennes sont ajustés simultanément, pour ajuster la variance minimum, un procédé d'évaluation est utilisé afin de rechercher le paramètre de structure et le paramètre de formation de faisceau du réseau d'antennes et afin d'obtenir une variance; ensuite, la variance satisfait une condition prédéterminée, le paramètre de structure de réseau d'antennes et le paramètre de formation de faisceau obtenus dans l'étape précitée sont produits en sortie, et ensuite, la variance ne satisfait pas la condition prédéterminée, le paramètre de structure de réseau d'antennes en forme de courbe est réajusté et rapproché de manière séquentielle de la solution partiellement optimale du paramètre de formation de faisceau et du paramètre de structure de réseau d'antennes.
PCT/CN2005/000457 2004-04-09 2005-04-07 Reseau d'antennes intelligent en forme de courbe et procede d'optimisation de son parametre de structure WO2005099120A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410033723.8 2004-04-09
CNB2004100337238A CN100399629C (zh) 2004-04-09 2004-04-09 一种曲线形智能天线阵及优化其结构参数的方法

Publications (1)

Publication Number Publication Date
WO2005099120A1 true WO2005099120A1 (fr) 2005-10-20

Family

ID=35067638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000457 WO2005099120A1 (fr) 2004-04-09 2005-04-07 Reseau d'antennes intelligent en forme de courbe et procede d'optimisation de son parametre de structure

Country Status (2)

Country Link
CN (1) CN100399629C (fr)
WO (1) WO2005099120A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783301A (zh) * 2020-07-02 2020-10-16 西北大学 一种抗干扰散射通信系统天线阵的设计方法
CN113517916A (zh) * 2021-07-12 2021-10-19 北京通广龙电子科技有限公司 一种机载相控阵天线的波束赋形方法
CN113553711A (zh) * 2021-07-22 2021-10-26 珠海中科慧智科技有限公司 一种任意曲面共形阵列天线设计方法
CN113872653A (zh) * 2021-09-30 2021-12-31 重庆两江卫星移动通信有限公司 一种基于地球匹配的波束赋形方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047282B (zh) * 2007-04-24 2011-11-30 李晓明 一种紧凑型td-scdma线阵扇区智能天线
CN101783694B (zh) * 2009-01-21 2013-01-23 鼎桥通信技术有限公司 一种优化广播波束的方法
CN101902755B (zh) * 2009-05-27 2012-11-21 电信科学技术研究院 智能天线模拟方法和装置及广播波束权值获取方法和装置
CN102882574B (zh) * 2011-07-15 2014-12-31 华为技术有限公司 天线系统和信号发射设备
US20180261928A1 (en) * 2015-05-14 2018-09-13 The University Of Sydney Optimized Non-Uniform Linear Antenna Arrays
TWI706601B (zh) * 2019-07-24 2020-10-01 台達電子工業股份有限公司 天線陣列

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315756A (zh) * 2000-03-27 2001-10-03 信息产业部电信科学技术研究院 一种改进智能天线阵列覆盖范围的方法
CN1391309A (zh) * 2001-06-12 2003-01-15 莫比斯菲尔有限公司 在智能天线阵列中或与其相关的改进

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605148B1 (fr) * 1986-10-10 1988-12-09 Grossmann Alexandre Antenne electromagnetique emettrice ou receptrice tres directive
JP2807390B2 (ja) * 1993-04-02 1998-10-08 防衛庁技術研究本部長 太田 眞弘 アレイアンテナ
CN2514560Y (zh) * 2001-12-29 2002-10-02 深圳市中兴通讯股份有限公司上海第二研究所 弧形智能天线阵列装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315756A (zh) * 2000-03-27 2001-10-03 信息产业部电信科学技术研究院 一种改进智能天线阵列覆盖范围的方法
CN1391309A (zh) * 2001-06-12 2003-01-15 莫比斯菲尔有限公司 在智能天线阵列中或与其相关的改进

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783301A (zh) * 2020-07-02 2020-10-16 西北大学 一种抗干扰散射通信系统天线阵的设计方法
CN113517916A (zh) * 2021-07-12 2021-10-19 北京通广龙电子科技有限公司 一种机载相控阵天线的波束赋形方法
CN113517916B (zh) * 2021-07-12 2023-09-08 北京通广龙电子科技有限公司 一种机载相控阵天线的波束赋形方法
CN113553711A (zh) * 2021-07-22 2021-10-26 珠海中科慧智科技有限公司 一种任意曲面共形阵列天线设计方法
CN113872653A (zh) * 2021-09-30 2021-12-31 重庆两江卫星移动通信有限公司 一种基于地球匹配的波束赋形方法

Also Published As

Publication number Publication date
CN100399629C (zh) 2008-07-02
CN1681160A (zh) 2005-10-12

Similar Documents

Publication Publication Date Title
WO2005099120A1 (fr) Reseau d'antennes intelligent en forme de courbe et procede d'optimisation de son parametre de structure
US7349701B2 (en) Method and apparatus for creating shape antenna radiation patterns
EP1425817B1 (fr) Antenne a faisceau commute sur un double mode
US20140313080A1 (en) Multi-beam smart antenna for wylan and pico cellular applications
JP4786110B2 (ja) インテリジェントアンテナアレイのカバレッジの改良方法
CN105356062B (zh) 一种宽频阵列天线
JP2003060423A (ja) スマートアンテナアレイ
CN102790284B (zh) 一种具有多重边界的天线装置及其反射板
CN209282410U (zh) 一种高口径效率多极化平面反射型轨道角动量天线
JP2003244060A (ja) Cdma通信システムにおける基地局のアンテナ装置およびアンテナ装置の使用方法
US7006053B2 (en) Adjustable reflector system for fixed dipole antenna
CN103167507A (zh) 一种小区分裂方法、装置及基站设备
JP3625142B2 (ja) 基地局アンテナ装置
JP5814846B2 (ja) アレイアンテナ、及びアンテナシステム
CN108511914A (zh) 介质加载实现宽带基站天线波束收敛的装置及方法
US20190165850A1 (en) Method and apparatus for a metastructure reflector in a wireless communication system
JP2020520185A (ja) ブロードバンドアンテナ
CN208272144U (zh) 介质加载实现宽带基站天线波束收敛的装置
JP3332329B2 (ja) アダプティブアレーアンテナ装置
CN107611597B (zh) 具有赋形波束且可作为阵元的低剖强耦合子阵及设计方法
US20030184497A1 (en) Cylindrical Fresnel zone antenna with reflective ground plate
Alakija et al. A mobile base station phased array antenna
CN109103610B (zh) 一种非均匀子波束覆盖的多波束天线及设计方法
JP6448034B2 (ja) アンテナ装置およびアンテナ設計方法
JPH11330848A (ja) 基地局アンテナ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase