WO2005095612A1 - グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物 - Google Patents

グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物 Download PDF

Info

Publication number
WO2005095612A1
WO2005095612A1 PCT/JP2005/005918 JP2005005918W WO2005095612A1 WO 2005095612 A1 WO2005095612 A1 WO 2005095612A1 JP 2005005918 W JP2005005918 W JP 2005005918W WO 2005095612 A1 WO2005095612 A1 WO 2005095612A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
polynucleotide
present
seq
represented
Prior art date
Application number
PCT/JP2005/005918
Other languages
English (en)
French (fr)
Inventor
Osamu Ohara
Takahiro Nagase
Michio Oishi
Hiroshi Yokota
Osamu Kamida
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Kazusa Dna Research Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co., Ltd., Kazusa Dna Research Institute Foundation filed Critical Daiichi Pharmaceutical Co., Ltd.
Priority to EP05727864A priority Critical patent/EP2112222A4/en
Priority to US10/594,707 priority patent/US7667013B2/en
Priority to JP2006511681A priority patent/JP4746537B2/ja
Publication of WO2005095612A1 publication Critical patent/WO2005095612A1/ja
Priority to US12/651,145 priority patent/US8173778B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit

Definitions

  • the present invention relates to a protein that acts as a guanine nucleotide exchange factor on a Rho family protein, which is a group of low molecular weight GTP-binding proteins, and a polynucleotide encoding the protein. More specifically, a protein that binds to Cdc42, which is a low molecular weight GTP-binding protein of the Rho family, a polynucleotide encoding the protein, a recombinant vector containing the polynucleotide, and a transformant obtained by transforming with the recombinant vector. About the body. Further, the present invention relates to a method for producing the protein, and an antibody against the protein.
  • the present invention relates to a method for identifying a compound that inhibits the function of the protein and the expression of Z or the polynucleotide. Further, the present invention relates to a method for diagnosing a gastric tumor, which comprises measuring the expression level of the polynucleotide. Further, a gastric tumor preventive and / or therapeutic agent comprising the protein function inhibitor and Z or the polynucleotide expression inhibitor as an active ingredient, a protein function inhibitor and Z or the polynucleotide The present invention relates to a method for preventing gastric tumors and a method for treating Z or a cancer, which comprises using an expression inhibitor of stomach. Further, the present invention relates to a reagent kit comprising at least one of the protein, the polynucleotide, the recombinant vector, the transformant, and the antibody. Background art
  • Rho family low molecular weight GTP-binding protein is a protein belonging to one group of low molecular weight GTP-binding proteins (hereinafter simply referred to as low molecular weight G protein).
  • Low-molecular-weight G proteins act as signal amplification factors between cell membrane receptors and effectors involved in intracellular signaling pathways.
  • the low-molecular-weight G protein specifically binds to guanosine ⁇ triphosphate (GTP) or guanosine ⁇ diphosphate (GDP) and has an enzymatic activity to hydrolyze the bound GTP to GDP.
  • Rho family proteins are known as Rho family proteins.
  • Cdc42 regulates the formation of filopodia in fibroblasts.
  • Racl regulates the production of superoxide in leukocytes and macrophages and regulates the formation of ruffling-lamellipodia in cell membranes in fibroblasts.
  • Cdc42 and Racl can activate the c-Jun N-terminal kinase signaling pathway.
  • Rho family proteins are involved in various cell functions through the control of intracellular signal transduction.
  • Known cellular functions involving Rho family proteins include, for example, cytoskeletal rearrangement, cell adhesion, and gene expression. Such actions via Rho family proteins are thought to act on morphogenesis during development, leukocyte and other migration, neurite retraction, and metastasis and invasion of cancer cells.
  • Rho-GEF Rho Guanine nucleotide Exchange Factor
  • Rho-GEF has a function of promoting the GDP ZGTP exchange reaction of Rho family proteins and promoting the activation of Rho family proteins. With this function, Rho-GEF plays an important role in controlling intracellular signaling involved in Rho family proteins.
  • GEF activity the function of promoting the GDPZGTP exchange reaction may be referred to as GEF activity.
  • Rho—GEF has a characteristic domain structure, such as the Dbl homology domain (Dbl Homology).
  • DH domain Domain, hereinafter abbreviated as DH domain
  • PH domain Pleckstrin homology domain
  • the tandem structure of DHZPH is a typical domain structure of Rho-GEF.
  • the tandem structure of the DH domain and the PH domain is referred to as a DH / PH domain.
  • the DHZPH domain contributes to the activation of Rho family proteins by Rho-GEF It is an important domain and is considered to be the active domain of Rho—GEF.
  • Rho-GEF Rho-GEF
  • a protein that has a C-terminal region, including the DHZPH domain, of the amino acid sequence of proto-Dbl, which is a Rho-GEF prototype activates Rho family proteins.
  • Non-Patent Document 1 the proto-Dbl amino acid sequence consisting of 925 amino acid residues in full length, the protein that also has the C-terminal region force generated by deletion of the 1st to 497th amino acid residues from the N-terminal side, is a Rho family.
  • proto-Dbl activation is considered to be an oncogenic activation.
  • oncogenic-Dbl such a protein consisting of the C-terminal region of proto-Dbl is referred to as oncogenic-Dbl.
  • Genes encoding proto-Dbl family proteins include, for example, vav (Non-Patent Documents 3 and 4), ost (Non-Patent Document 5), lbc (Non-Patent Document 6), and the like. These genes are genes involved in cancer.
  • Trio Non-Patent Document 7
  • kalirin Non-Patent Document 8
  • Trio causes skeletal muscle abnormalities during embryo development and brain abnormalities in the knockout mice.
  • kalirin is involved in neurite formation in nerve cells.
  • the cell function involving the protein acting as Rho GEF is unique to each protein, and the Rho family proteins activated by the protein are also different.
  • Non-Patent Document 1 Bi, F. et al., "Molecular and Cellular Biology", 2001, Vol. 21, p. 1463-1474.
  • Non-Patent Document 2 Hart, M. J. et al., "Journal of Biological Chemistry", 1994, Vol. 269, p. 62-65.
  • Non-Patent Document 3 Katzav, S. et al., "EMBO Journal J, 1989, Vol. 8, p. 2283-2290.
  • Non-Patent Document 4 Costello (PS) et al., "Proceedings of the National Proceedings of Tne National Academy of Sciences of the United States of America, 1999, Vol. 96, pp. 3035-3040. Nal Academy of Sciences of the United States of America.
  • Non-Patent Document 5 Horii, Y. et al., "EMBO Journal", 1994, Vol. 13, p. 4776-4786.
  • Non-Patent Document 6 Toksoz, D. et al., "Oncogene”, 1994, Vol. 9, p. 621-628.
  • Non-Patent Document 7 O 'Brien, S.P., et al., "Proceedings of the National Academy of Sciences of the United States.”
  • Non-Patent Document 8 Penzes, P. et al., "Journal of Neuroscience", 2001, Vol. 21, p. 8426-8434.
  • Non-Patent Document 9 Edited by Sambrook et al., "Molecular Clawing, A Laboratory Laboratory-2nd Edition", 1989, Cold Spring Harbor Laboratory.
  • Non-Patent Document 10 Masami Muramatsu ed., “Laboma-Yual Genetic Engineering", 1988, Maruzen Co., Ltd.
  • Non-Patent Document 11 Madin (K.) et al., "Proceedings oi The National Academy of sciences of fhe United States”, “Proceedings of the National Academy of Sciences of the United States”.
  • Non-Patent Document 12 Ulmer, K. M., "Science”, 1983, Vol. 219, p. 666-671.
  • Non-Patent Document 13 Ehrlich, H.A., edited by PCR Technology, Principles and Applications of DNA Amplification, 1989, Stockton Press.
  • Non-Patent Document 14 Saiki, R. K., et al., "Science”, 1985, Vol. 230, p. 1350-1354.
  • Non-Patent Document 15 “Experimental Medicine”, 1994, Vol. 12, No. 6, p. 35—.
  • Non-Patent Document 16 Frohman (MA), et al., "Proceedings of The National Academy of Sciences oi The United States of America", “Proceedings of the National Academy of Sciences of the United States.” 1988, Vol. 85, No. 23, p. 8998—9002
  • Non-Patent Document 17 Sanger, F. et al., "Procedures of the National Academy of Sciences of the United State.” Obermerica (Proceedings of The National Academy of Sciences of Tuneed States of America), 1977, Vol. 74, p. 5463-5467.
  • Non-Patent Document 18 Maxam A. M. et al., "Methods in Enzymology (
  • Non-Patent Document 19 Ohara, O., et al., "DNA Research", 1997, Vol. 4, p. 53-59.
  • An object of the present invention is to provide a novel Rho-GEF and a gene encoding the Rho-GEF. Another object of the present invention is to provide a recombinant vector containing the gene, and a transformant transformed by the recombinant vector. Further objects of the present invention include providing a method for producing the Rho-GEF and an antibody recognizing the Rho-GEF. Another object of the present invention is to provide a method for identifying a compound that inhibits the function of Rho-GEF and the expression of Z or the gene.
  • an object of the present invention is to provide a method for preventing and treating a disease based on an abnormality in the function of Rho-GEF and abnormal expression of Z or the gene, a method for diagnosing the disease, and a method for diagnosing the disease and a reagent kit. Is also included.
  • Rho family protein comprising a partial protein comprising the DH / PH domain of the Rho-GEF. Binding to RhoA, Cdc42 and Rac1, respectively, was clarified experimentally. In addition, it was demonstrated that the protein promotes the activation of Cdc42.
  • the present inventors have found that the tissue expression of the Rho-GEF gene is about 5 times, more than 4.5 times higher than that of normal gastric tissue in a certain case of gastric adenocarcinoid tumor (Adenocarcinoid tumor).
  • the present invention has been achieved based on these findings.
  • the present invention relates to a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the Sequence Listing or a complementary nucleotide sequence thereof, or a protein represented by the amino acid sequence of SEQ ID NO: 2 in the Sequence Listing.
  • the present invention relates to a polynucleotide to be encoded or a polynucleotide represented by a complementary base sequence of the polynucleotide.
  • the present invention also relates to a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 5 in the sequence listing or a complementary nucleotide sequence thereof, or the amino acid sequence of SEQ ID NO: 4 or 6 in the sequence listing.
  • the present invention relates to a polynucleotide encoding a protein or a polynucleotide represented by a complementary base sequence of the polynucleotide.
  • the present invention provides a polynucleotide comprising a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 in the Sequence Listing or a complementary nucleotide sequence thereof, or an amino acid sequence represented by SEQ ID NO: 4 in the Sequence Listing.
  • the present invention relates to a polynucleotide encoding a protein to be expressed or a polynucleotide containing a polynucleotide represented by a nucleotide sequence complementary to the polynucleotide, which encodes a protein that promotes the activation of Cdc42.
  • the present invention relates to a polynucleotide represented by a nucleotide sequence having at least about 70% homology to the nucleotide sequence of the polynucleotide, wherein the polynucleotide encodes a protein that promotes Cdc42 activation. For nucleotides.
  • the present invention also relates to a polynucleotide having a mutation such as deletion, substitution, or addition of one or several nucleotides or an inducible mutation in the base sequence of the polynucleotide, wherein the activity of Cdc42 is reduced.
  • the present invention relates to a polynucleotide encoding a promoting protein.
  • the present invention further relates to a polynucleotide that hybridizes with the polynucleotide under stringent conditions, wherein the polynucleotide encodes a protein that promotes the activation of Cdc42.
  • the present invention still further relates to a recombinant vector containing any one of the polynucleotides described above.
  • the present invention also relates to a transformant obtained by transformation with the recombinant vector.
  • the present invention further relates to a transformant obtained by transformation with the recombinant vector containing the above-mentioned yarn and the recombinant vector and the polynucleotide encoding Cdc42.
  • the present invention relates to a protein represented by the amino acid sequence set forth in SEQ ID NO: 2 in the sequence listing.
  • the present invention also relates to a protein represented by the amino acid sequence of SEQ ID NO: 4 or 6 in the sequence listing.
  • the present invention further relates to a protein encoded by any of the polynucleotides described above.
  • the present invention still further relates to a method for producing any of the above-mentioned proteins, comprising a step of culturing the transformant.
  • the present invention also relates to an antibody that recognizes any one of the above proteins.
  • the present invention further relates to a method for identifying a compound that inhibits the function of any one of the above proteins and the expression of Z or any one of the above polynucleotides. Detecting the presence, absence, or alteration of said function and Z or said expression under conditions that permit the interaction of said compound, thereby inhibiting said protein and function of Z or said polynucleotide.
  • the present invention relates to an identification method characterized by determining whether or not to perform the identification.
  • the present invention still further relates to the above-mentioned identification method, which is a function of binding to Cdc42 and a function of promoting the activation of Z or Cdc42.
  • the present invention also relates to a method for identifying a compound that inhibits the function of any one of the above proteins and the expression of Z or any one of the above polynucleotides, wherein any one of the above proteins, any one of the above polynucleotides, An identification method characterized by using at least one of the recombinant vector, the transformant, and the antibody.
  • the present invention relates to a protein binding function to Cdc42 and Z or Cdc42.
  • the present invention relates to the above-mentioned identification method, which is a function of promoting the activity of E. coli.
  • the present invention is a method for determining whether or not a test tissue derived from a human stomach tissue is a tissue derived from a human stomach tumor, the method comprising:
  • the present invention relates to a determination method characterized by measuring an expression level.
  • the present invention provides a method, wherein the expression level of any one of the polynucleotides in a test tissue is 4.5 times or more the expression level of the polynucleotide in a normal human stomach-derived tissue, which is a control.
  • the present invention relates to the above-mentioned method, wherein the test tissue is determined to be a human gastric tumor-derived tissue.
  • the present invention further provides a compound for inhibiting the function of any one of the above proteins and a gastric tumor preventive agent and Z or a therapeutic agent comprising a compound inhibiting the expression of any one of the polynucleotides as an active ingredient. Agent.
  • the present invention provides a method for preventing a gastric tumor, which comprises using a compound that inhibits the function of any of the aforementioned proteins and a compound that inhibits the expression of Z or the aforementioned polynucleotide. And Z or treatment methods.
  • the present invention also relates to a reagent kit comprising at least one of the above-mentioned protein, the polynucleotide, the recombinant vector, the transformant and the antibody.
  • a novel protein having a function of binding to a Rho family protein, capable of promoting the GDPZGTP exchange reaction and activating the Rho family protein, and a polynucleotide encoding the protein can be provided.
  • This protein binds to Rho family proteins RhoA, Cdc42 and Racl, respectively. Furthermore, this protein promotes the activation of Cdc42.
  • the present proteins and polynucleotides can elucidate and regulate signaling pathways and cellular functions involving Rho family proteins.
  • diagnosis, prevention and Z or treatment of diseases based on abnormal function of the present protein and abnormal expression of Z or the present polynucleotide, for example, gastric tumor can be performed.
  • FIG. L cDNA clone hj03796 or DNA consisting of a partial sequence of the cDNA
  • FIG. 3 is a diagram for explaining detection by the Western blotting method (lanes 1 and 4, respectively).
  • proto-Dbl DHZPH was used as a positive control (lanes 2 and 5).
  • a protein solution obtained by the same treatment from a control cell into which no vector was introduced such a band was not detected (lanes 3 and 6).
  • FIG. 2 DNA consisting of a partial sequence of cDNA clone hj03796 and containing a DHZPH domain coding region, a Racl gene (lane 1), a RhoA gene (lane 2) or a Cdc42 gene (lane 3) )
  • a band showing the binding of the protein encoded by the DNA (hj03796DHZPH) to Racl (lane 1), RhoA (lane 2) and Cdc42 (lane 3).
  • FIG. 9 is a diagram for explaining that detection is performed (upper diagram). The binding was measured by a pull-down method.
  • FIG. 3-A In both cells in which hj03796DHZPH and Rho family protein were co-expressed and in cells in which hjO 3796DHZPH or Rho family protein was expressed, expression of hj03796DH or Rho family protein was almost equivalent.
  • GEF means hj03796DHZPH
  • Rho means Rho family protein.
  • Black arrowheads indicate hj03796DHZPH
  • white arrowheads indicate Rho family proteins.
  • FIG. 3-B A diagram showing that activated Cdc42 binding to PAR-1 increased in cells in which hj03796DHZPH and Cdc42 were co-expressed compared to cells in which only Cdc42 was expressed. Yes (lane 4).
  • GEF means hj03796DHZPH
  • Rho means Rho family protein.
  • the white arrowheads indicate Rho family proteins.
  • isolated full-length DNA and Z or RNA synthetic full-length DNA and Z or RNA
  • isolated DNA oligonucleotides and Z or RNA oligonucleotides isolated DNA oligonucleotides and Z or RNA oligonucleotides
  • polynucleotide is used as a generic term to mean synthetic DNA oligonucleotides and Z or RNA oligonucleotides, where such DNA and Z or RNA have a minimum size of 2 nucleotides .
  • an isolated or synthetic full-length protein As used herein, an isolated or synthetic full-length protein; an isolated or synthetic full-length polypeptide; or an isolated or synthetic full-length oligopeptide.
  • the term “protein” is used as a generic term for a protein, polypeptide or oligopeptide, which has a minimum size of 2 amino acids. Hereinafter, when describing amino acids, they may be represented by one letter or three letters.
  • This polynucleotide was identified from a human brain-derived long-chain cDNA library as a gene having a region encoding the DH / PH domain, a domain characteristic of Rho-GEF.
  • Long-chain cDNA library derived from human brain A cDNA library constructed using conventional methods using commercially available polyA + RNA derived from human brain, fetal brain, and hippocampus hippocampus cDNA fragments by dbEST (database of Expressed Sequence Tags) analysis Is a cDNA library consisting of cDNA clones whose entire nucleotide sequence has been determined by isolating the cDNA library.
  • a specific embodiment of the polynucleotide according to the present invention may be a polynucleotide represented by the base sequence described in SEQ ID NO: 1 in the sequence listing or its complementary base sequence.
  • the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 is a 4977 bp polynucleotide and contains an open reading frame (ORF) encoding 1340 amino acid residues (SEQ ID NO: 2).
  • ORF open reading frame
  • SEQ ID NO: 2 In the region consisting of nucleotides 602 to 1126 in the nucleotide sequence of SEQ ID NO: 1, the region of the amino acid sequence represented by SEQ ID NO: 2 also has a 97th amino acid (Val) force of 271st amino acid.
  • Up to 175 amino acid residues up to aspartic acid (Asp) Encode the DH domain.
  • the region consisting of nucleotides 1202 to 1495 in the nucleotide sequence of SEQ ID NO: 1 corresponds to the leucine (Leu) at positions 297 to 394 in the amino acid sequence of SEQ ID NO: 2.
  • the region having both the 602nd power and the 1495th nucleotide force corresponds to the 97th palin (Val) to the 394th leucine (Leu) of the amino acid sequence shown in SEQ ID NO: 2.
  • DHZPH domain that also has 298 amino acid residues.
  • the scope of the present invention also includes a polynucleotide encoding the protein represented by the amino acid sequence set forth in SEQ ID NO: 2 or a polynucleotide represented by a nucleotide sequence complementary to the polynucleotide.
  • Examples of the polynucleotide according to the present invention include a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 5 or a complementary nucleotide sequence thereof.
  • the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 is a polynucleotide represented by the nucleotide sequence of the nucleotide sequence represented by SEQ ID NO: 1 from the 581st position to the 1675th position.
  • polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 5 has a Kozak consensus sequence (hereinafter abbreviated as Kozak sequence) at the ⁇ terminal of the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3.
  • Kozak sequence a Kozak consensus sequence
  • This is a polynucleotide to which an oligonucleotide consisting of a codon corresponding to methionine (SEQ ID NO: 19) has been added.
  • the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 5 contains a region encoding a DHZPH domain that is an active domain of Rho-GEF.
  • the polynucleotide according to the present invention is preferably a polynucleotide encoding a protein having a function of promoting the activity of a Rho family protein or a polynucleotide represented by a complementary base sequence of the polynucleotide.
  • a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5 or its complementary nucleotide sequence can be preferably exemplified.
  • the polynucleotide represented by SEQ ID NO: 1 has the 581st position with the Kozak sequence and the codon corresponding to methionine at the ⁇ terminus of the polynucleotide represented by the nucleotide sequence up to the 1675th position (SEQ ID NO: 3). (SEQ ID NO: 5) to which an oligonucleotide (SEQ ID NO: 19) is added.
  • methionine is added by a peptide bond to the N-terminal of the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 Protein.
  • the oligonucleotide consisting of the Kozak sequence and a codon corresponding to methionine (SEQ ID NO: 19) is an oligonucleotide added for the purpose of expressing the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3, and the expressed protein Does not significantly affect functionality.
  • the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 does not have an oligonucleotide consisting of a Kozak sequence and a codon corresponding to methionine (SEQ ID NO: 19), but has an activity of Rho family protein. Think of it as encoding a promoting protein.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 includes the protein represented by the amino acid sequence represented by SEQ ID NO: 4.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence described in SEQ ID NO: 5 includes the protein represented by the amino acid sequence represented by SEQ ID NO: 6.
  • a polynucleotide encoding a protein represented by the amino acid sequence of SEQ ID NO: 4 or 6, or a polynucleotide represented by a complementary nucleotide sequence of the polynucleotide is also included in the scope of the present invention.
  • the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 is considered to encode a protein that promotes the activity of the Rho family protein
  • the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 The contained polynucleotide is also believed to encode a protein that promotes activation of Rho family proteins.
  • a polynucleotide containing a polynucleotide encoding the protein represented by the amino acid sequence of SEQ ID NO: 4 It is also believed that the tide encodes a protein that promotes the activity of Rho family proteins.
  • polynucleotide containing the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 examples include the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 1.
  • the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 is also considered to encode a protein that promotes activation of a Rho family protein.
  • a polynucleotide containing the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or a complementary nucleotide sequence thereof, or a protein represented by the amino acid sequence of SEQ ID NO: 4 A polynucleotide containing the polynucleotide to be encoded or a polynucleotide represented by a complementary nucleotide sequence to the polynucleotide is also included.
  • such a polynucleotide is a polynucleotide encoding a protein that promotes the activity of a Rho family protein. More preferably, the polynucleotide is a polynucleotide having a DHZPH domain coding region.
  • Rho family proteins whose activation is promoted by the protein encoded by the polynucleotide of the present invention include, for example, Cdc42, RhoA and Racl, and more preferably Cdc42.
  • the Rho family protein is not limited to these, and may be any Rho family protein as long as the activity is promoted by the protein encoded by the present polynucleotide.
  • the function of the protein encoded by the polynucleotide to promote the activation of the Rh family protein can be measured, for example, by using an effector pull-down method (see Example 4).
  • Cdc42, RhoA and Racl are proteins represented by the amino acid sequences described in SEQ ID NOs: 21, 23 and 25 in the sequence listing, respectively.
  • the Cdc42 gene, RhoA gene and Racl gene are genes represented by the nucleotide sequences of SEQ ID NOs: 20, 22, and 24 in the sequence listing, respectively.
  • Cdc42, RhoA and Racl and their genes are not limited to those represented by the above-mentioned sequences, but may be 1 to several in each of the above sequences as long as they have generally known functions of Cdc42, RhoA and Racl. It can be a protein and a gene having one mutation.
  • mutants having one or several mutations introduced into each of the above sequences can be used for desired purposes such as promoting or deleting these functions.
  • the production of Cdc42, RhoA and Racl This can be carried out, for example, by culturing a transformant obtained by introducing a recombinant vector containing the vector by a per se known genetic engineering method.
  • the polynucleotide according to the present invention is obtained based on the sequence information of the specific example disclosed by the present invention, for example, the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the sequence listing. Thus, it can be easily carried out by a known genetic engineering technique (see Non-Patent Documents 9 and 10).
  • a cDNA library is prepared from an appropriate source in which the expression of the polynucleotide of the present invention has been confirmed according to a conventional method, and a desired clone is also selected by the cDNA library.
  • the present polynucleotide can be obtained.
  • the origin of the cDNA include various cells and tissues in which expression of the present polynucleotide has been confirmed, or cultured cells derived therefrom, such as cells derived from human brain. Isolation of total RNA from these sources, isolation and purification of mRNA, acquisition of cDNA, and cloning of cDNA can all be carried out according to conventional methods.
  • a cDNA library can be constructed and used from commercially available poly A + RNA derived from human brain, fetal brain, and brain hippocampus.
  • the method for selecting a desired clone from the cDNA library is not particularly limited, and a conventional method can be used.
  • a desired clone can be selected using a probe or primer that selectively hybridizes to the present polynucleotide.
  • examples include a plaque hybridization method using a probe that selectively hybridizes to the present polynucleotide, a co-hybridization method, a method combining these methods, and the like. it can.
  • a probe or primer that selectively hybridizes to the present polynucleotide.
  • examples include a plaque hybridization method using a probe that selectively hybridizes to the present polynucleotide, a co-hybridization method, a method combining these methods, and the like. it can.
  • a polynucleotide or the like chemically synthesized based on the sequence information of the present polynucleotide can be generally used.
  • the polynucleotide of the present invention or a polynucleotide represented by a partial base sequence thereof which has already been obtained can also be preferably used.
  • sense primers and antisense primers designed based on the sequence information of the present polynucleotide can also be used as probes that can be used.
  • Selection of a desired clone from the cDNA library is performed, for example, by confirming the expressed protein for each clone using a known protein expression system, and further using the function of the protein as an indicator.
  • the functions of the protein encoded by the polynucleotide include, for example, the function of binding to Rho family proteins such as RhoA, Cdc42 and Racl, and the function of Rh. oFunctions that promote the activation of family proteins.
  • Rho family proteins such as RhoA, Cdc42 and Racl
  • Rh. oFunctions that promote the activation of family proteins.
  • any expression system known per se can be used, but the use of a cell-free protein expression system is simple (Non-Patent Document 11).
  • activation of a Rho family protein means a reaction for exchanging guanosine ⁇ diphosphate (GDP) bound to a Rho family protein with guanosine triphosphate (GTP). This reaction also includes the dissociation reaction of GDP from the Rho family protein and the binding reaction of GTP to the Rho family protein that is not bound to the resulting nucleotide. “Promoting the activity of Rho family proteins” means promoting the dissociation reaction of GDP from Rho family proteins, which is the rate-determining step of this reaction.
  • a DNAZRNA amplification method by polymerase chain reaction (hereinafter abbreviated as PCR, Non-Patent Documents 12 to 14) can be suitably used.
  • PCR polymerase chain reaction
  • Primers used for PCR can be appropriately designed based on the nucleotide sequence information of the polynucleotide, and can be obtained by synthesis according to a conventional method. Isolation and purification of the amplified DNAZRNA fragment can be performed by a conventional method, for example, gel electrophoresis.
  • the nucleotide sequence of the polynucleotide obtained by force is determined by a conventional method, for example, the dideoxy method.
  • Non-Patent Document 17 the Maxam-Gilbert method (Non-Patent Document 18), and the like, and can be easily performed using a commercially available sequence kit or the like.
  • the polynucleotide according to the present invention is not limited to the above-mentioned polynucleotide, and may be a polynucleotide having sequence homology with the above-mentioned polynucleotide and encoding a protein which promotes the activity of a Rho family protein, or the polynucleotide.
  • sequence homology in the DHZPH domain coding region is about 70% or more, preferably about 80% or more, and more preferably about 90% or more.
  • the DHZPH domain also promotes its function, for example, activation of Rho family proteins. It is more preferable to retain the function.
  • the polynucleotide according to the present invention has at least one, for example, 1 to: LOO, preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 100 nucleotides in the nucleotide sequence of the polynucleotide.
  • LOO preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 100 nucleotides in the nucleotide sequence of the polynucleotide.
  • a polynucleotide represented by a nucleotide sequence having a mutation such as deletion, substitution, addition or insertion of LO nucleotides, particularly preferably one to several nucleotides, or a nucleotide sequence complementary thereto is included.
  • the degree of mutation and their positions are not particularly limited as long as the polynucleotide having the mutation is a protein having a function of promoting the activity of a Rho family protein, more preferably a polynucleotide encoding a protein having a DHZPH domain.
  • the polynucleotide having the mutation may be a naturally occurring polynucleotide which has a mutagenic mutation. Alternatively, a polynucleotide obtained by introducing a mutation based on a naturally occurring gene may be used! Methods for introducing a mutation are known per se.
  • site-directed mutagenesis for example, site-directed mutagenesis, homologous recombination, primer extension, PCR, or the like can be used alone or in an appropriate combination.
  • the method can be carried out in accordance with the method described in a compendium (Non-patent Documents 9 and 10) or by modifying those methods, and Ullmer's technology (Non-patent Document 12) can also be used.
  • Examples of the polynucleotide according to the present invention include polynucleotides that hybridize to the above-mentioned polynucleotides under stringent conditions.
  • Hybridization conditions can be according to, for example, the method described in a compendium (Non-Patent Document 9).
  • under stringent conditions refers to, for example, in a solution of 6 ⁇ SSC, 0.5% SDS and 50% honolemamide42. This is the condition of washing at 68 ° C in a solution of 0.1 X SSC, 0.5% SDS after calo-temperature in C.
  • polynucleotides need not be polynucleotides having a complementary sequence as long as they are polynucleotides that hybridize to the present polynucleotides.
  • the encoded protein is a protein having a function of promoting the activation of a Rho family protein, and more preferably a protein having a DHZPH domain.
  • the polynucleotide according to the present invention includes an oligonucleotide represented by a partial base sequence existing in a designated region of the polynucleotide. Oligonuk like this A leotide also has as its minimum unit preferably 5 or more nucleotides continuous in the region, more preferably 10 or more, more preferably 20 or more nucleotides. These oligonucleotides can be produced by designing a desired sequence according to the nucleotide sequence information of the polynucleotide of the present invention, and by a chemical synthesis method known per se. Conveniently, oligonucleotides can be produced using a DNA / RNA automatic synthesizer. These oligonucleotides can be used as primers for amplifying the present gene or the present gene fragment, probes for detecting the present gene or its transcript, and the like.
  • the oligonucleotide represented by the partial base sequence present in the designated region of the polynucleotide according to the present invention the oligonucleotide represented by the base sequence represented by SEQ ID NO: 7, 8, 9 or 10 in the sequence listing Can be preferably exemplified.
  • the polynucleotide according to the present invention is a polynucleotide derived from human, which has sequence homology with the present polynucleotide and encodes a protein that promotes the activity of Rho family proteins, preferably a DHZPH domain.
  • a polynucleotide having a coding region a polynucleotide derived from a mammal, for example, a polynucleotide derived from a mouse, a horse, a hidge, a horse, a dog, a monkey, a cat, a bear, a rat or a heron, etc. Is included.
  • the polynucleotide according to the present invention has a 5, terminal or ⁇ terminal as long as its expression or the function of the protein encoded by it, for example, the function of promoting the activation of Rho family proteins, is not inhibited. It may be a polynucleotide having a desired gene added to its side. Specific examples of the gene that can be added to the polynucleotide include enzymes such as glutathione S transferase (GST), ⁇ -galactosidase (13 Gal), horseradish peroxidase (HRP), and alkaline phosphatase (ALP).
  • GST glutathione S transferase
  • ⁇ -galactosidase 13 Gal
  • HRRP horseradish peroxidase
  • ALP alkaline phosphatase
  • genes such as tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag.
  • tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag.
  • One or more genes selected from these genes can be added to the present polynucleotide in combination. The addition of these genes can be performed by a conventional genetic engineering technique, and is useful for facilitating detection of genes and mRNA.
  • One aspect of the present invention relates to a recombinant vector containing the polynucleotide according to the present invention.
  • the present recombinant vector can be obtained by inserting the present polynucleotide into an appropriate vector DNA.
  • the vector DNA is not particularly limited as long as it can be replicated in the host, and is appropriately selected depending on the type of the host and the purpose of use.
  • the vector DNA may be a vector DNA obtained by extracting a naturally-occurring DNA, or a vector DNA lacking a part of a DNA other than a part necessary for replication.
  • Representative vector DNAs include, for example, vector DNAs derived from plasmids, batteriophages and viruses.
  • the plasmid DNA include a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis, and a plasmid derived from yeast. Batatheriophage DNA includes ⁇ phage and the like.
  • virus-derived vector DNA examples include vectors derived from animal vinoles, such as retrovirus, vaccinia virus, adenovirus, papovavirus, SV40, fowlpox virus, and pseudorabies virus, and vectors derived from insect vinoles, such as baculovirus.
  • animal vinoles such as retrovirus, vaccinia virus, adenovirus, papovavirus, SV40, fowlpox virus, and pseudorabies virus
  • vectors derived from insect vinoles such as baculovirus.
  • Can be Other examples include transposon-derived, insertion element-derived, and yeast chromosome element-derived vector DNA.
  • a vector DNA prepared by combining them for example, a vector DNA (cosmid @ phagemid or the like) prepared by combining genetic elements of a plasmid and a batteriophage can be exemplified.
  • Any vector DNA can be used depending on the purpose, such as an expression vector and a closing vector.
  • the recombinant expression vector containing the polynucleotide according to the present invention is useful for producing a protein encoded by the present polynucleotide.
  • polynucleotide it is necessary to incorporate the polynucleotide into the vector DNA so that the function of the polynucleotide according to the present invention is exhibited, and at least the present polynucleotide and a promoter are constituent elements thereof.
  • a gene sequence carrying information on replication and control can be combined and incorporated into vector DNA by a method known per se. Examples of powerful gene sequences include ribosome binding sequences, terminators, signal sequences, cis elements such as enhancers, splicing signals, and selection markers (dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene, etc.). .
  • One or more genes selected from these The sequence can be integrated into the vector DNA.
  • a method for incorporating the polynucleotide according to the present invention into a vector DNA a method known per se can be applied.
  • a method can be used in which a gene containing the present polynucleotide is treated with an appropriate restriction enzyme, cut at a specific site, then mixed with a similarly treated vector DNA, and religated with ligase.
  • a desired recombinant vector can also be obtained by ligating a suitable linker to the present polynucleotide and inserting it into a multicloning site of a vector suitable for the purpose.
  • One aspect of the present invention relates to a transformant obtained by transforming a host with the recombinant vector of the present invention.
  • a transformant into which the recombinant expression vector containing the polynucleotide according to the present invention has been introduced is useful for producing a protein encoded by the present polynucleotide.
  • One or more types of vector DNAs containing a desired gene other than the present polynucleotide can be further introduced into the present transformant.
  • a vector DNA containing a desired gene other than the present polynucleotide for example, a vector DNA containing a gene encoding a Rho family protein such as RhoA, Racl or Cdc42 can be mentioned.
  • a transformant obtained by transformation with an expression vector containing the present polynucleotide and an expression vector containing a gene encoding a Rho family protein is characterized by the activity of the Rho family protein by the protein encoded by the present polynucleotide. It can be used to identify compounds that inhibit promotion.
  • a transformant is a transformant obtained by transforming the recombinant vector according to the present invention with a recombinant vector containing a polynucleotide encoding Cdc42.
  • Prokaryotic and eukaryotic organisms can also be used as hosts.
  • prokaryotes include genus Escherichia such as Escherichia coli, genus Bacillus such as Bacillus subtilis, genus Pseudomonas such as Pseudomonas putida, and Rhizobium meliloti. And bacteria belonging to the genus Rhizobium.
  • eukaryotes include animal cells such as yeast, insect cells, and mammalian cells. Examples of yeast include Saccharomyces cerevisiae, Schizosaccharomyces pombe, and the like. insect Examples of the cells include Sf9 cells and Sf21 cells.
  • mammalian cells examples include monkey kidney-derived cells (such as COS cells and Vero cells), Chinese nose, Muster ovary cells (CHO cells), mouse L cells, rat GH3 cells, human FL cells, and 293EBNA cells.
  • monkey kidney-derived cells such as COS cells and Vero cells
  • Chinese nose such as COS cells and Vero cells
  • CHO cells Chinese nose
  • Muster ovary cells CHO cells
  • mouse L cells rat GH3 cells
  • human FL cells examples of the mammalian cells
  • 293EBNA cells are used.
  • Non-Patent Document 9 Introduction of vector DNA into host cells can be carried out by a means known per se, for example, by a standard method described in a textbook (Non-Patent Document 9).
  • an integration method into a chromosome can be mentioned in consideration of the stability of the gene, but an autonomous replication system using an extranuclear gene can be used simply.
  • the recombinant vector is capable of autonomous replication in the prokaryote and, at the same time, comprises a promoter, a ribosome binding sequence, the polynucleotide of the present invention, and a transcription termination sequence. Is preferred.
  • a gene that controls a promoter may be included.
  • any promoter can be used as long as it can be expressed in bacteria such as Escherichia coli.
  • promoters derived from O. faecalis such as trp promoter, lac promoter, PL promoter and PR promoter are used.
  • the method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria, and any method can be used.
  • a method using calcium ions, an election port method, or the like can be used.
  • the recombinant vector is capable of autonomous replication in the cell and, at the same time, contains a promoter, a price site, the polynucleotide of the present invention, a polyadenylation site, and a transcription termination sequence. Preferably, it is configured. Further, a replication origin may be included if desired.
  • a promoter an SRa promoter, an SV40 promoter, an LTR promoter, a CMV promoter, or the like may be used.
  • an early gene promoter of cytomegalovirus may be used.
  • Recombination vector for mammalian cells As a method for introducing the tar, preferably, for example, an elect opening method, a calcium phosphate method, a lipofection method or the like can be used. Most preferably, the lipofection method is used.
  • the promoter is not particularly limited as long as it can be expressed in yeast.
  • the method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and preferably, for example, the elect-mouth poration method, spheroplast method, lithium acetate method and the like can be used.
  • the recombinant vector can be preferably introduced by, for example, a calcium phosphate method, a lipofection method, an electoral poration method, or the like.
  • One embodiment of the present invention relates to a protein encoded by the polynucleotide of the present invention.
  • a specific embodiment of the protein according to the present invention includes, for example, a protein encoded by a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1. More specifically, the protein represented by the amino acid sequence of SEQ ID NO: 2 can be exemplified as a powerful protein.
  • the 97th amino acid (Val) force is also the amino acid sequence up to the 271st aspartic acid (Asp) DH domain force
  • the 297th leucine (Leu) force The 394th leucine (Leu) amino acid sequence Has a PH domain.
  • the DHZPH domain exists in the amino acid sequence up to the 394th leucine (Leu) at the 97th norin (Val).
  • the protein according to the present invention also includes a protein encoded by a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or 5. More specifically, the protein represented by the amino acid sequence represented by SEQ ID NO: 4 can be exemplified as the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3. In addition, a protein represented by the amino acid sequence represented by SEQ ID NO: 6 can be exemplified as the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 5.
  • SEQ ID NO: 4 The amino acid sequence corresponds to the amino acid sequence up to the lysine (Lys) at the 90th position in the amino acid sequence described in SEQ ID NO: 2 and up to the 454th leucine (Leu).
  • the amino acid sequence of SEQ ID NO: 6 is an amino acid sequence in which methionine is added to the N-terminus of the amino acid sequence of SEQ ID NO: 4 by peptide bond. That is, the protein represented by each of these amino acid sequences contains a DH / PH domain.
  • the protein according to the present invention is preferably a protein having a function of promoting the activity of Rho family proteins.
  • a protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5 can be preferably exemplified.
  • the protein encoded by the polynucleotide is Binding to the Rho family protein was found by the pull-down method (see Example 3).
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5 binds to the Rho family protein and promotes its activation.
  • methionine has a peptide bond at the N-terminal of the protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3. It is a protein that is added by the combination.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5 has a Kozak sequence at the ⁇ terminus of the polynucleotide for the purpose of expressing the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3.
  • This is a protein obtained by adding an oligonucleotide consisting of a codon corresponding to methionine (SEQ ID NO: 19).
  • the added methionine does not significantly affect the function of the expressed protein. Therefore, it is considered that the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 binds to the N-terminal methionine-free Rho family protein and promotes its activity.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 is the same as the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5.
  • a protein containing the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 also binds to the Rho family protein and promotes its activity.
  • examples of such a protein include a protein encoded by a polynucleotide containing the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3.
  • polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 3 encodes the protein represented by the amino acid sequence represented by SEQ ID NO: 4
  • the protein represented by the amino acid sequence represented by SEQ ID NO: 4 A protein encoded by a polynucleotide containing the encoding polynucleotide can also be exemplified as a powerful protein.
  • the protein encoded by the polynucleotide containing the polynucleotide represented by SEQ ID NO: 3 may be a protein encoded by the polynucleotide represented by the nucleotide sequence represented by SEQ ID NO: 1. Can be exemplified.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 includes the protein represented by the amino acid sequence of SEQ ID NO: 2. It is believed that all of these exemplified proteins bind to the Rho family protein and promote its activity.
  • a polynucleotide containing the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 or a complementary nucleotide sequence thereof, or a protein represented by the amino acid sequence of SEQ ID NO: 4 A polynucleotide comprising the polynucleotide to be encoded or a polynucleotide comprising a polynucleotide represented by a complementary nucleotide sequence to said polynucleotide, wherein the protein is encoded by the polynucleotide encoding a protein that promotes the activity of a Rho family protein. are also included.
  • the protein of the present invention is not limited to the above proteins, and any protein encoded by the polynucleotide of the present invention is included in the scope of the present invention.
  • a protein encoded by the polynucleotide of the present invention which has a function of promoting the activity of a Rho family protein, is desirable.
  • Such proteins include, for example, a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 or a complementary nucleotide sequence thereof, and a polynucleotide encoding the protein represented by the amino acid sequence of SEQ ID NO: 2 Or a polynucleotide represented by the complementary nucleotide sequence of the polynucleotide, the nucleotide sequence represented by SEQ ID NO: 3 or 5, or the polynucleotide represented by the complementary nucleotide sequence thereof, and the amino acid sequence represented by SEQ ID NO: 4 or 6.
  • a protein encoded by a polynucleotide encoding a protein that promotes the activity of the Rho family protein may be mentioned.
  • such a protein according to the present invention has sequence homology to the protein represented by the amino acid sequence set forth in SEQ ID NO: 2, 4 or 6, and activates the Rho family protein.
  • a protein having a function of promoting is exemplified.
  • the sequence homology is usually about 50% or more, preferably about 70% or more, more preferably about 80% or more, and still more preferably about 90% or more of the entire amino acid sequence. Even more preferably, a protein having a DH ZPH domain is desirable.
  • the sequence homology in the DHZPH domain is at least about 70%, preferably at least about 80%, more preferably at least about 90%.
  • the DHZPH domain retains its function, for example, the function of promoting the activation of Rho family proteins.
  • the present protein one or more, for example, 1 to: L00, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 20 in the amino acid sequence of SEQ ID NO: 2, 4 or 6.
  • L00 preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 20 in the amino acid sequence of SEQ ID NO: 2, 4 or 6.
  • the degree of amino acid mutation and the position thereof are not particularly limited as long as the protein having the mutation is a protein having a function of promoting the activity of a Rho family protein, more preferably a protein having a DHZPH domain.
  • the protein having such a mutation may be a protein naturally produced by, for example, mutation or post-translational modification, or may be a protein obtained by introducing a mutation based on a naturally-derived gene. Methods for introducing mutations are known per se, and can be carried out using, for example, known genetic engineering techniques.
  • homologous amino acids polar amino acids, non-polar amino acids, hydrophobic Mutations between hydrophilic amino acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids, and aromatic amino acids
  • the protein according to the present invention further includes a protein represented by a partial sequence of the above protein.
  • a protein represented by a partial sequence of the protein represented by the amino acid sequence of SEQ ID NO: 2, 4, or 6 is also included in the scope of the present invention.
  • Such a protein is represented by a minimum unit of preferably 5 or more, more preferably 8 or more, still more preferably 12 or more, and particularly preferably 15 or more consecutive amino acids.
  • the protein according to the present invention is a human-derived protein, and has a protein having sequence homology to the present protein and having a function of promoting the activity of a Rho family protein, preferably having a DHZPH domain.
  • a protein derived from a mammal for example, a protein derived from a mouse, a horse, a sheep, a horse, a dog, a monkey, a cat, a bear, a rat, a rabbit or the like is also included in the present invention.
  • the protein according to the present invention may be prepared from cells or biological samples in which the gene encoding the protein is expressed by genetic engineering techniques, or may be a cell-free or chemically synthesized product. Alternatively, they may be further purified from these. Further, the present protein may be expressed in a cell containing a gene encoding the present protein. The cell may be a transformant obtained by transfection of a vector containing a gene encoding the present protein.
  • the protein according to the present invention may further include, for example, amino or carboxyl groups constituting the protein. If the function is not significantly changed, such as by amidation modification, the modification can be made. Labeling was performed by adding another protein or the like to the N-terminal side or C-terminal side directly or indirectly via a linker peptide or the like using genetic engineering techniques or the like. May be something. Preferably, labeling such that the basic properties of the present protein are not inhibited is desirable. More preferably, labeling dani such that the function of promoting the activity of the Rho family protein of the present protein is not inhibited is preferred.
  • the substances used for labeling are enzymes such as GS ⁇ , ⁇ -Gal, HRP or ALP, and tags such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag.
  • the labeling substance can be added to the present protein in one kind or in combination of plural kinds. By measuring these labeling substances themselves or their functions, the present protein can be easily detected or purified, and for example, it is possible to detect the binding between the present protein and other proteins and to measure the function of the present protein.
  • the present protein can be obtained, for example, by a general genetic engineering method (see Non-Patent Documents 9, 10, 12, and 13) based on the nucleotide sequence information of the gene encoding the present protein. For example, once the expression of the polynucleotide according to the present invention has been confirmed, a cDNA library is first prepared in accordance with various cells and tissues, or a cultured cell culture method derived therefrom. Next, using a primer that selectively hybridizes to the gene encoding the present protein, the cDNA library is also used to amplify the present polynucleotide. The present protein can be obtained by inducing the expression of the obtained polynucleotide using a known genetic engineering technique.
  • the present protein can be produced by culturing the transformant according to the present invention and then recovering the present protein from the obtained culture.
  • the transformant can be cultured under culture conditions and methods known per se that are optimal for each host.
  • culture Can be carried out using the present protein itself expressed by the transformant or a function of the present protein, for example, a function of promoting the activation of a Rho family protein as an index.
  • subculture or batch cultivation may be performed using the amount of the transformant in the medium, which can be cultured using the present protein itself or the amount of the protein produced in or outside the host as an index.
  • the transformant When the protein of the present invention is expressed in the cells of the transformant or on the cell membrane, the transformant is crushed to extract the present protein.
  • the protein When the protein is secreted outside the transformant, use the culture solution as it is or use a culture solution from which the transformant has been removed by centrifugation or the like.
  • the protein according to the present invention can be separated and / or Z-purified from a culture solution or a transformant in which the transformant has been cultured by various separation procedures utilizing physical properties, chemical properties and the like, if desired. . Separation and Z or purification depend on the function of the protein, for example
  • Rho family proteins can be carried out using the function of promoting the activity of Rho family proteins as an index.
  • a separation operation method for example, ammonium sulfate precipitation, ultrafiltration, gel chromatography, ion exchange chromatography, affinity chromatography, high performance liquid chromatography, dialysis, etc., can be used alone or in an appropriate combination.
  • a method for preparing specific antibodies against them and specifically adsorbing them using the antibodies for example, affinity mouth chromatography using a column to which the antibodies are bound It is recommended to use
  • the protein according to the present invention can also be produced by a general chemical synthesis method.
  • a chemical synthesis method of a protein for example, a solid phase synthesis method, a liquid phase synthesis method and the like are known, and any of them can be used.
  • the powerful protein synthesis method is based on the amino acid sequence information, and the amino acid sequence is used to sequentially bind each amino acid one by one to extend the chain.
  • a fragment condensing method in which a fragment having several amino acids is synthesized in advance, and then each fragment is subjected to a coupling reaction.
  • the synthesis of the present protein can be performed by any of them.
  • the condensation method used in the above protein synthesis method can also be in accordance with a conventional method.
  • condensation method examples include azide method, mixed anhydride method, DCC method, active ester method, oxidation-reduction method, DPPA (diphenyl phosphorylation method). Luzide) method, DCC + supplemented noodles (eg, 1-hydroxybenzotriazole, N-hydroxysuccinamide, N-hydroxy-15-norbornene-1,3-dicarboximide) method, Woodward method, etc. .
  • the present protein obtained by chemical synthesis can be further appropriately purified by various conventional purification methods as described above.
  • the protein represented by the partial sequence of the protein according to the present invention can also be obtained by cleaving the present protein with an appropriate peptidase.
  • the present antibody can be prepared using the present protein as an antigen. Any of the present protein and fragments thereof can be used as the antigen. When a fragment is used, the fragment is composed of at least 8, preferably at least 10, more preferably at least 12, and even more preferably at least 15 amino acids.
  • a region consisting of an amino acid sequence unique to the present protein it is preferable to use a region consisting of an amino acid sequence unique to the present protein as an antigen.
  • the amino acid sequence of this region preferably does not necessarily have to be the same as the amino acid sequence of the protein or a fragment thereof, and preferably has an externally exposed site on its structural structure.
  • the amino acid sequence at the exposed site is discontinuous on the primary structure, the amino acid sequence may be a continuous amino acid sequence at the exposed site.
  • the present antibody is not particularly limited as long as it is an antibody that specifically recognizes the present protein. Recognizing the present protein specifically means recognizing the present protein, for example, binding to the present protein, but not recognizing or weakly recognizing a protein other than the present protein. The presence or absence of recognition can be determined by a known antigen-antibody binding reaction.
  • Antibodies can be produced by a known antibody production method.
  • an antibody can be obtained by administering an antigen alone or in the presence of an adjuvant to an animal, alone or in combination with a carrier, to induce immunity such as a humoral response and a Z or cellular response.
  • a carrier Any known carrier can be used as the carrier, as long as the carrier itself does not show a detrimental effect on the host and enhances antigenicity.
  • Specific examples include cellulose, polymerized amino acids, albumin, and keyhole limpet hemocyanin.
  • Adjuvants include Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), Ribi (MPL), Ribi (TDM), Ribi (MPL + TDM), pertussis vaccine (Bordetella pertussis v accine), muramyl dipeptide (MDP), aluminum adjuvant (ALUM), and combinations thereof.
  • FCA Freund's complete adjuvant
  • FIA Freund's incomplete adjuvant
  • MPL MPL
  • TDM Ribi
  • MPL + TDM Ribi
  • pertussis vaccine Bordetella pertussis v accine
  • MDP muramyl dipeptide
  • ALUM aluminum adjuvant
  • the polyclonal antibody can be obtained from the serum of an animal that has been subjected to immunization by an antibody recovery method known per se.
  • Preferred antibody recovery means includes immunoaffinity chromatography.
  • Monoclonal antibodies are obtained by collecting antibody-producing cells (for example, lymphocytes derived from spleen or lymph node) from an animal to which immunization has been performed, and obtaining perpetually growing cells known per se (for example, the P3-X63-Ag8 , Etc.) by introducing a transformation means into myeloma strains.
  • a hybridoma is prepared by fusing antibody-producing cells and perpetually proliferating cells by a method known per se and cloned. From the various cloned hybridomas, hybridomas that produce an antibody that specifically recognizes the protein of the present invention are selected, and a culture fluid antibody of the hybridoma is recovered.
  • a polyclonal antibody or a monoclonal antibody capable of recognizing or binding to the protein according to the present invention can be used as an antibody for purifying the protein, a reagent, a label marker, or the like.
  • antibodies that inhibit the function of this protein can be used to regulate the function of this protein, and are useful for elucidation, prevention, improvement, and Z or treatment of various diseases caused by abnormal or quantitative abnormalities of this protein. It is.
  • One embodiment of the present invention relates to a method for identifying a compound that inhibits the function of the protein according to the present invention or a compound that inhibits expression of the polynucleotide according to the present invention.
  • the present identification method can be carried out using at least one of the protein, polynucleotide, recombinant vector, transformant and antibody according to the present invention and utilizing a drug screening system known per se.
  • the identification method includes any method performed in vitro or in vivo. By this identification method, selection of antagonists by drug design based on the three-dimensional structure of this protein, selection of inhibitors of gene-level expression using a protein synthesis system, or selection of antibody-recognizing substances using antibodies it can.
  • the method for identifying a compound that inhibits the function of a protein according to the present invention comprises the steps of: In a measurable experimental system, the function of the present protein and the test compound is measured under the conditions that allow the interaction between the present protein and the compound to be examined (test compound), and then the function is measured. The function of the present protein in the presence of the test compound and the function of the present protein in the absence of the test compound are compared, and the presence, absence or change of the function of the present protein, for example, reduction, increase in calories, disappearance, It can be implemented by detecting the appearance.
  • the function of the present protein in the presence of the test compound is reduced or eliminated compared to the function of the present protein in the absence of the test compound, it can be determined that the test compound inhibits the function of the present protein.
  • the measurement of the function can be carried out by directly detecting the function, or by, for example, introducing a signal as an indicator of the function into an experimental system and detecting the signal.
  • the signal is a force that can be exemplified by enzymes such as GST, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag or Xpress-tag, or fluorescent proteins. If the labeling substance is used in the method, the deviation can also be used.
  • Examples of the function of the protein according to the present invention include a function of promoting the activation of a Rho family protein and a function of binding to a Rho family protein.
  • the identification method using the binding function of the protein to the Rho family protein according to the present invention as an index may be, for example, obtained by expressing the present protein by a genetic engineering technique and obtaining the protein in the presence or absence of a test compound.
  • the detection can be carried out by detecting the binding to the Rho family protein in the above.
  • a Rho family protein is expressed as a GST-tag fusion protein by genetic engineering techniques, and then bound to daltathione sepharose, and reacted with the present protein in the presence or absence of a test compound.
  • the present protein By quantifying the present protein that binds to the Rho family protein bound to daltathione sepharose, it is possible to identify compounds that inhibit the function of the present protein to bind to the Rho family protein.
  • the test compound binds to the Rho family protein of the present protein. It can be determined that the function is inhibited.
  • the quantification of the present protein can be carried out, for example, using the antibody according to the present invention.
  • an antibody labeled with an enzyme such as HRP or ALP, a radioisotope, a fluorescent substance, or a labeling substance such as biotin can be used.
  • a labeled secondary antibody may be used.
  • Tag protein as this protein If a peptide-fused protein is used, quantification can be performed using an anti-tag antibody.
  • the present protein may be used by directly labeling it with a labeling substance such as the above enzyme, radioisotope, fluorescent substance, or biotin. In such a case, the present protein can be quantified by measuring the labeling substance.
  • a known two-hybrid method may be used.
  • a plasmid expressing the protein of the present invention and a DNA binding protein as a fusion protein a plasmid expressing a Rho family protein and a transcriptional activator protein as a fusion protein, and a plasmid containing a reporter gene connected to an appropriate promoter gene Is introduced into yeast or eukaryotic cells.
  • a compound that inhibits the binding of the present protein to the Rho family protein is determined. Can be achieved.
  • the test compound is compared with the Rho family protein of the present protein.
  • the reporter gene include a gene having an enzymatic activity such as a luciferase, 13-Gal, or chloramphene-coal acetyltransferase, which can use any of the genes generally used in a reporter assay.
  • the expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity in the case of the reporter gene exemplified above.
  • the method of identifying a compound that inhibits the binding of the protein to the Rho family protein according to the present invention can also be carried out using a surface plasmon resonance sensor such as a BIACORE system.
  • a scintillation proximity assay (SPA) or optical resonance transfer (Fluorescence res This identification method can be performed using a method that applies sonance energy transfer (FRET).
  • the identification method using the activation promoting function of the Rho family protein of the protein according to the present invention as an index can be performed, for example, by allowing the present protein to coexist with a Rho family protein whose activity is promoted by the protein. It can be carried out by measuring the amount of the activated Rho family protein in the presence or absence of the test compound. When the amount of the Rho family protein in the presence of the test compound is reduced as compared with the amount of the activated Rho family protein in the absence of the test compound, the compound is a Rho family protein contained in the present protein. Can be determined to inhibit the activity of promoting the activity.
  • the activated Rho family protein can be quantified using an antibody against the protein or the like.
  • an activated Rho-family protein binds to an activated Rho-family protein, but is activated! / ,,,,,,,, to an effector molecule that binds weakly or not to a Rho-family protein. And can be quantified. Specifically, as shown in Example 4, a protein containing a binding site to an activated Rho family protein of an effector molecule and a GST-tagged protein added to the protein, and an activated Rho family protein Is detected by a pull-down method, and the amount of the activated Rho family protein is measured by an electrophoresis method and a western plot method. The effector molecule that binds to the activated Rho family protein is different.
  • an appropriate effector molecule is selected and used depending on the type of the Rho family protein to be used.
  • activated Cdc42 and activated Racl are known to bind to its effector molecule, PAK-1.
  • Activated RhoA also binds to its effector molecule, Rhotekin.
  • the identification method using an activation promoting function of a Rho family protein possessed by the protein according to the present invention as an index also includes the present protein, a Rho family protein whose activity is promoted by the protein, and a radioisotope.
  • the activated Rho family protein is a radioisotope-labeled GDP-bound Rho family protein. It can be quantified by a decrease in the amount of quality.
  • “Inhibiting the function of promoting the activity of Rho family proteins” means inhibiting the promotion of the activity of Rho family proteins, which is promoted by the protein of the present invention.
  • Rho family protein used in the identification method according to the present invention is a partially deleted protein as long as it does not affect the binding to the protein according to the present invention and the promotion of activation by the present protein. Or a protein to which a labeling substance as described above is added.
  • the method for identifying a compound that inhibits the expression of a polynucleotide according to the present invention enables interaction between the present polynucleotide and a test compound in an experimental system capable of measuring the expression of the present polynucleotide.
  • the expression of the present polynucleotide is measured in the presence of the test compound, and the expression of the present polynucleotide in the absence of the test compound is measured.
  • the present invention can be carried out by comparing the expression of the present polynucleotide and detecting the presence, absence, or change, eg, reduction, increase, disappearance, or appearance of the expression of the polynucleotide.
  • the test compound inhibits the expression of the present polynucleotide. Then it can be determined.
  • the present identification method involves contacting the transformant with a test compound in an experimental system for expressing the present polynucleotide using the transformant according to the present invention. Later, it can be carried out by measuring the expression of the present polynucleotide. The expression can be measured simply using the amount of the expressed protein or the function of the protein, for example, the function of promoting the activation of the Rho family protein as an index.
  • expression can be measured by introducing a signal as an index of expression into an experimental system and detecting the signal.
  • the signal include enzymes such as GST, tag peptides such as His-tag, Myc-tag, HA-tag, FLAG-tag and Xpress-tag, and fluorescent substances. Methods for detecting these signals are well known to those skilled in the art.
  • the method for identifying a compound that inhibits the expression of a polynucleotide according to the present invention may also include, for example, Alternatively, a reporter gene-linked vector is prepared, and a test compound is contacted with a cell into which the vector has been introduced, such as a eukaryotic cell, and the presence, absence, or change in the expression of the reporter gene is measured. it can.
  • the reporter gene is a gene commonly used in reporters such as luciferase, ⁇ -Gal or chloramphene-co-acetylacetyltransferase. .
  • the expression of the reporter gene can be detected by detecting the activity of the gene product, for example, the enzyme activity of the reporter gene exemplified above.
  • the compound obtained by the identification method according to the present invention can be used as a candidate compound such as an inhibitor or an antagonist of the function of the protein of the present invention, for example, the function of promoting the activation of a Rho family protein. Further, it can be used as a candidate for a polynucleotide expression inhibitor according to the present invention.
  • These candidate compounds can be prepared as a medicament by selecting them in consideration of the balance between their usefulness and toxicity. It can be expected to prevent symptoms and Z or cure.
  • the compound according to the present invention is a compound obtained by a method other than the present identification method, and also includes a compound that inhibits the function of the present protein and the expression of Z or the present polynucleotide. .
  • One embodiment of the present invention comprises, as an active ingredient, the protein, polypeptide, recombinant vector, transformant, antibody, or compound according to the present invention, and inhibits the function of the protein and the expression of Z or the polypeptide. It relates to a medicament or a pharmaceutical composition based on antagonism.
  • the medicament according to the present invention does not include a medicament containing at least one of the protein, polynucleotide, recombinant vector, transformant, antibody, or compound according to the present invention as an active ingredient and an effective amount thereof. May be. Usually, it is preferable to produce a pharmaceutical composition using one or more kinds of pharmaceutically acceptable carriers (pharmaceutical carriers).
  • the amount of the active ingredient contained in the pharmaceutical composition according to the present invention is appropriately selected from a wide range. It is. Usually, it is suitably in the range of about 0.0001 to 70% by weight, preferably about 0.0001 to 5% by weight.
  • Pharmaceutical carriers include diluents and excipients such as fillers, extenders, binders, humectants, disintegrants, and lubricants, which are usually used depending on the use form of the pharmaceutical composition. Can be exemplified. These are appropriately selected and used according to the use form of the obtained pharmaceutical composition.
  • water a pharmaceutically acceptable organic solvent
  • collagen a pharmaceutically acceptable organic solvent
  • polybutyl alcohol polybutylpyrrolidone
  • carboxybutyl polymer sodium alginate
  • water-soluble dextran sodium carboxymethyl starch
  • pectin xanthan gum
  • gum arabic examples include zein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, glycerin, paraffin, stearyl alcohol, stearic acid, human serum albumin, mantole, sorbitol, ratatose and the like.
  • zein gelatin, agar, glycerin, propylene glycol, polyethylene glycol, glycerin, paraffin, stearyl alcohol, stearic acid, human serum albumin, mantole, sorbitol, ratatose and the like.
  • a stabilizer for example, a stabilizer, a bactericide, a buffer, a tonicity agent, a chelating agent, a pH adjuster, and a surfactant are appropriately used.
  • a stabilizer for example, a stabilizer, a bactericide, a buffer, a tonicity agent, a chelating agent, a pH adjuster, and a surfactant are appropriately used.
  • the stabilizer examples include human serum albumin, ordinary L amino acids, saccharides, cellulose derivatives and the like, and these can be used alone or in combination with a surfactant or the like. In particular, according to this combination, there are cases where the stability of the active ingredient can be further improved.
  • the L-amino acid may be any one of, for example, glycine, cysteine, glutamic acid and the like, without any particular limitation.
  • the saccharides are not particularly limited, for example, monosaccharides such as glucose, mannose, galactose, and fructose; sugar alcohols such as mannitol, inositol, and xylitol; disaccharides such as sucrose, maltose, and lactose; dextran, hydroxypropyl starch, and chondroitin. Any deviation from polysaccharides such as sulfuric acid and hyaluronic acid and derivatives thereof may be used.
  • Cellulose derivatives are also not particularly limited, such as methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropinoresenololose, hydroxypropinolemethinoresenorelose, canoleboxy methylcellulose sodium, etc. ,.
  • the surfactant is not particularly limited, and any of ionic and nonionic surfactants can be used. This includes, for example, polyoxyethylene glycol sorbitan alkyl ester Examples include tellurates, polyoxyethylene alkyl ethers, sorbitan monoacyl esters, fatty acid glycerides, and the like.
  • Buffers include boric acid, phosphoric acid, acetic acid, citric acid, ⁇ -aminocaproic acid, glutamic acid and ⁇ or a salt thereof (for example, sodium salt, potassium salt, calcium salt, magnesium salt and the like). Alkali metal salts and alkaline earth metal salts).
  • Examples of the tonicity agent include sodium salt, potassium salt, saccharides, glycerin and the like.
  • Examples of the chelating agent include sodium edetate and citric acid.
  • the medicament and the pharmaceutical composition according to the present invention can be used as a solution preparation.
  • it can be used after being freeze-dried to make it storable, dissolved in a buffer solution containing water, a saline solution or the like, and adjusted to an appropriate concentration before use.
  • the medicament and the pharmaceutical composition according to the present invention can be used as an agent for preventing and / or treating a disease based on abnormal function of the protein of the present invention and / or abnormal expression of the present polynucleotide. Further, it can be used for a method for preventing and / or treating the disease.
  • an abnormal symptom associated with excessive expression of the function of the protein of the present invention and / or the expression of the polynucleotide of the present invention for example, the function of the present protein and / or the expression of the present polynucleotide are inhibited.
  • an effective amount of an inhibitor to a subject together with a pharmaceutical carrier, an effect can be obtained that prevents, ameliorates, or treats abnormal symptoms.
  • the same effect can be obtained by inhibiting the expression of the present endogenous polynucleotide using the expression blocking method.
  • Inhibition of the expression of the present polynucleotide can be carried out, for example, by using an oligonucleotide consisting of a partial sequence of the present polynucleotide as an antisense oligonucleotide. Oligonucleotides used as antisense oligonucleotides are useful even if they correspond to untranslated regions other than only the translated regions of the present polynucleotide. In order to specifically inhibit the expression of the present polynucleotide, it is preferable to use a nucleotide sequence of a region unique to the polynucleotide.
  • Tissue expression of the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 in the Sequence Listing is caused by stomach adenocarcinoid tumor, a gastric tumor.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 has a DHZPH domain, which is an active domain of Rho-GEF.
  • an oligonucleotide comprising a Kozak sequence and a codon corresponding to methionine at the ⁇ terminus of the polynucleotide (SEQ ID NO: 3) represented by the nucleotide sequence up to the 1675th nucleotide in the base sequence of SEQ ID NO: 1
  • the polynucleotide (SEQ ID NO: 5) to which (SEQ ID NO: 19) has been added has a DHZPH domain coding region, and binds to the activity of the Rho family protein in an animal cell co-expressed with a gene encoding the Rho family protein. I promoted the dagger.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 5 acts as Rho-GEF.
  • An oligonucleotide (SEQ ID NO: 19) consisting of a Kozak sequence added to the ⁇ terminus of the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 and a codon corresponding to methionine (SEQ ID NO: 19) has a large effect on the function of the expressed protein. Has no effect. Therefore, it is considered that the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3 also acts as Rho-GEF.
  • the protein encoded by the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1 also binds to the Rho family protein.
  • Rh o thought to act as GEF.
  • genes isolated as Rho-GEF genes involved in cancer such as vaV (Non-patent Documents 3 and 4), ost (Non-patent Document 5), and ibc (Non-patent Document 6) are known. I have. These results suggest that high expression of this polynucleotide is associated with gastric tumors. Therefore, the medicament and the pharmaceutical composition according to the present invention are useful as a gastric tumor preventive agent and Z or a therapeutic agent. In addition, it can be used for gastric tumor prevention and Z or treatment methods.
  • the dose range of the medicament and the pharmaceutical composition according to the present invention is not particularly limited, and the efficacy of the contained components, the administration form, the administration route, the type of the disease, the nature of the subject (body weight, age, medical condition, and Is used as appropriate) and the judgment of the attending physician.
  • a suitable dose is, for example, about 0. Ol ⁇ g-lOOmg, preferably about 0: g to lmg per kg of the subject's body weight.
  • the dose can be changed.
  • the above dose can be administered once or several times a day, or may be administered intermittently once every few days or weeks.
  • the medicament or the pharmaceutical composition may be used alone or in combination with other compounds or medicaments necessary for treatment.
  • the administration route can be selected from systemic administration and local administration!
  • an appropriate administration route is selected according to the disease, symptom, and the like.
  • parenteral routes include subcutaneous, intradermal, and intramuscular administrations in addition to ordinary intravenous and intraarterial administrations.
  • it can be administered by the oral route.
  • transmucosal or transdermal administration can be performed.
  • it is preferable to administer it directly to the tumor by injection or the like.
  • Various dosage forms can be selected according to the purpose of treatment, and typical examples thereof include solid dosage forms such as tablets, pills, powders, powders, fine granules, granules, and capsules. And liquid dosage forms such as aqueous solutions, ethanol solutions, suspensions, fat emulsions, ribosome formulations, inclusion bodies such as cyclodextrin, syrups and elixirs. These may further be oral, parenteral (drip, injection), nasal, inhalant, vaginal, suppository, sublingual, eye drops, ear drops, ointment, cream, depending on the route of administration. Agents, transdermal absorbents, transmucosal absorbents, etc., and can be prepared, molded, and prepared according to the usual methods.
  • the protein, polynucleotide, recombinant vector, transformant, antibody or compound according to the present invention can be used per se as a means for diagnosing a disease such as a diagnostic marker or a diagnostic reagent.
  • abnormalities of the polynucleotide or a gene containing the polynucleotide in an individual or various kinds of fibrous tissues can be obtained.
  • the presence or absence of expression can be specifically detected.
  • diagnosis of susceptibility, onset, and Z or prognosis of a disease based on quantitative abnormality and z or functional abnormality of the polynucleotide or a gene containing the polynucleotide can be performed. .
  • the diagnosis of a disease is performed, for example, with respect to a sample to be examined (test sample) by using the poly- mer according to the present invention. This can be done by detecting the presence of the nucleotide, determining its abundance, and identifying Z or a mutation thereof. In comparison with a normal control sample, a change in the presence of the present polynucleotide and a quantitative change thereof can be detected. Alternatively, mutations such as deletion and insertion can be detected by, for example, measuring the size change of an amplification product obtained by amplifying the present polynucleotide by a known method in comparison with a normal genotype.
  • a point mutation can be identified by hybridizing a polynucleotide whose test sample strength has also been amplified with, for example, a labeled present polynucleotide.
  • the above diagnosis can be performed by detecting strong changes and mutations.
  • the present invention can also provide a method for qualitatively or quantitatively measuring the polynucleotide of the present invention in a test sample, or a method for qualitatively or quantitatively measuring a mutation in a specific region of the polynucleotide. .
  • the tissue expression of the polynucleotide represented by the nucleotide sequence set forth in SEQ ID NO: 1 is about 5-fold or 4.5-fold higher than that of normal stomach tissue in gastric adenocarcinoma-like tumor, one of stomach tumors It has been found.
  • high expression of the polynucleotide is considered to be associated with gastric tumors. Therefore, by detecting an increase in the expression level of the polynucleotide in the test sample, a method for determining whether the test sample is a test sample derived from a gastric tumor can be performed. Such a determination method is also included in the scope of the present invention.
  • an increase in the expression level of the polynucleotide can be detected by comparing the test sample with a normal control sample.
  • the test sample preferably includes a test tissue derived from human stomach tissue.
  • a control sample preferably, a tissue derived from a normal human stomach is used.
  • the expression level of the polynucleotide is higher than that of the control sample, preferably about 4.5 times or more, more preferably about 5 times or more, the test sample is human stomach.
  • the sample can be determined to be a tumor-derived sample.
  • This determination method can also be carried out using a polynucleotide according to the present invention excluding the polynucleotide, in place of the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1.
  • a polynucleotide according to the present invention excluding the polynucleotide, in place of the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 1.
  • Examples of a powerful polynucleotide include a polynucleotide represented by the nucleotide sequence of SEQ ID NO: 3.
  • the expression level of the polynucleotide according to the present invention means the level of the transcription product of the polynucleotide.
  • the test sample may be a polynucleotide according to the present invention, a gene or a polynucleotide containing the polynucleotide. Is not particularly limited as long as it contains the nucleic acid of the mutant gene, and examples thereof include living organism samples such as cells, blood, urine, saliva, cerebrospinal fluid, tissue biopsy or autopsy material. Alternatively, if necessary, a nucleic acid sample can be prepared by extracting a nucleic acid from the sample and used. Nucleic acids may be used directly for detection of genomic DNA or may be amplified enzymatically by using PCR or other amplification methods prior to analysis. RNA or cDNA may be used as well.
  • Nucleic acid samples may also be prepared by various methods that facilitate detection of the target sequence, such as denaturation, restriction digestion, electrophoresis or dot blotting.
  • any gene detection method known per se can be used. Specific examples include plaque hybridization, colony hybridization, Southern blotting, Northern blotting, NA SBA, and reverse transcription polymerase chain reaction (RT-PCR).
  • RT-PCR reverse transcription polymerase chain reaction
  • it can be detected by measurement at the cell level using in situ RT-PCR or in situ hybridization.
  • an oligonucleotide having a partial sequence of the present polynucleotide and a probe are used to identify the polynucleotide according to the present invention, a gene containing the polynucleotide or a mutant gene thereof, and perform Z or amplification thereof.
  • Those having the property as a primer or those having the property as a primer are useful.
  • the oligonucleotide having the property as a probe means an oligonucleotide having a unique sequence power capable of specifically hybridizing only to the present polynucleotide.
  • a primer having properties as a primer means a polynucleotide which can specifically amplify only the present polynucleotide and which has a unique sequence power.
  • a probe is prepared and used for a primer having a sequence of a predetermined length including a site having a mutation in the gene.
  • Probes or primers having a base sequence length of generally about 5 to 50 nucleotides are preferred, those having a base sequence length of about 10 to 35 nucleotides are more preferred, and those having a base sequence length of about 15 to 30 nucleotides are more preferred. .
  • a primer for amplifying the polynucleotide of the present invention or a fragment thereof, or a probe for detecting the present polynucleotide specifically, a nucleotide sequence of SEQ ID NO: 7, 8, 9, or 10
  • the oligonucleotides represented are preferably exemplified.
  • a labeled probe is used. , May be unlabeled.
  • detection may be performed by specific binding directly or indirectly to a labeled ligand.
  • Various methods are known for labeling the probe and the ligand, and examples thereof include a method using nick translation, random priming, or a kinase treatment.
  • Suitable labeling substances include radioisotopes, biotin, fluorescent substances, chemiluminescent substances, enzymes, antibodies and the like.
  • PCR is also preferable in terms of sensitivity.
  • the PCR is a method using a primer capable of specifically amplifying the polynucleotide according to the present invention, a gene containing the polynucleotide or a mutant gene thereof, any of conventionally known methods can be used.
  • the power of RT-PCR and various other variations of PCR used in the art can be applied.
  • the DNA of the polynucleotide of the present invention can be quantified by PCR.
  • an analysis method include a competitive quantification method such as the MSSA method, and a PCR-SSCP method known as a mutation detection method using a change in mobility accompanying a change in the higher-order structure of single-stranded DNA.
  • the presence or absence of abnormality in the protein and its function in an individual or various tissues can be specifically detected.
  • detecting abnormalities in the protein and its function according to the present invention susceptibility, onset, and Z or prognosis of a disease based on the quantitative abnormality of the protein and Z or function abnormality can be diagnosed.
  • Diagnosis of a disease by detecting a protein can be performed, for example, by detecting the presence of the protein in a test sample, determining the amount of the protein, and detecting Z or a mutation thereof. That is, the protein of the present invention and Z or a mutant thereof are quantitatively or qualitatively measured. In comparison with a normal control sample, a change in the presence of the present protein and a quantitative change thereof can be detected. In comparison with the normal protein, the mutation can be detected by, for example, determining the amino acid sequence. The above diagnosis can be performed by detecting such changes and mutations.
  • the test sample is not particularly limited as long as it contains the present protein and Z or a mutant thereof, and is derived from living organisms such as blood, serum, urine, and biopsy tissue. Can be exemplified.
  • the protein of the present invention and the protein having a mutation were measured by measuring the protein of the present invention, for example, the protein represented by the amino acid sequence of SEQ ID NO: 2, 4 or 6 in the sequence listing, or the protein of the present invention.
  • the present invention can be carried out using a protein represented by an amino acid sequence in which one or several or a plurality of amino acids are deleted, substituted, inserted or added in the above amino acid sequence, a fragment thereof, or an antibody against the protein or a fragment thereof.
  • Quantitative or qualitative measurement of a protein can be carried out using a protein detection method or a quantification method according to a conventional technique in this field.
  • a mutant protein can be detected by analyzing the amino acid sequence of the present protein.
  • an antibody polyclonal or monoclonal antibody
  • an antibody is used to detect differences in protein sequence or the presence or absence of the protein.
  • the present invention can provide a qualitative or quantitative method for measuring the present protein in a test sample, or a qualitative or quantitative method for measuring a mutation in a specific region of the protein.
  • the above-mentioned detection can be performed by subjecting a test sample to immunoprecipitation using a specific antibody against the present protein, and analyzing the present protein by Western blotting or immunoblotting.
  • the present protein in paraffin or frozen tissue sections can be detected by immunohistochemical techniques using a specific antibody against the present protein.
  • Preferred specific examples of the method for detecting the present protein or a mutant thereof include an enzyme immunoassay (ELISA) and a radioimmunoassay (RIA), including a sandwich method using a monoclonal antibody and a Z or polyclonal antibody. , Immunoradiometric assay (IRMA), and immunoenzymatic assay (IEMA). In addition, it is also possible to use a radioimmunity / competition bond / attachment.
  • ELISA enzyme immunoassay
  • RIA radioimmunoassay
  • IRMA Immunoradiometric assay
  • IEMA immunoenzymatic assay
  • any of the proteins, polynucleotides, recombinant vectors, transformants, and antibodies according to the present invention can be used alone or in combination as a reagent or the like.
  • the reagent may be at least one of the protein, polynucleotide, recombinant vector, transformant, and antibody according to the present invention, as well as substances such as buffers, salts, stabilizers, and / or preservatives. Can be included.
  • a known formulation means may be introduced according to each property.
  • the reagent can be used, for example, in the determination method according to the present invention, the method for identifying a compound, or the method for measuring the present protein or the present polynucleotide. .
  • the reagent is useful for elucidation of intracellular signaling pathways involving the protein or polynucleotide of the present invention, and basic research on diseases or the like caused by abnormalities of the protein or polynucleotide.
  • the present invention also provides a reagent kit comprising at least one of the protein, polynucleotide, recombinant vector, transformant, and antibody according to the present invention.
  • a labeling substance for detecting the protein or polynucleotide according to the present invention a label detecting agent, a reaction diluent, a standard antibody, a buffer, a detergent, a reaction stop solution, etc. It can contain the required materials.
  • the labeling substance include the aforementioned proteins and radioisotopes.
  • the labeling substance may be added in advance to the protein or polynucleotide according to the present invention.
  • the present reagent kit can be used for the determination method according to the present invention, the method for identifying a compound, or the method for measuring the present protein or the present polynucleotide. Further, the present reagent kit can be used as a test agent and a test kit in a test method using the above-mentioned measurement method. Also, the diagnostic method using the above-mentioned measurement method can be used as a diagnostic agent and a diagnostic kit.
  • RNA derived from human brain, fetal brain and hippocampus (Clontech: Catalog Nos. 6516-1, 6525-1 and 6578-1) as a starting material, construct a cDNA library by a conventional method and perform dbEST analysis
  • the cDNA fragment was isolated by PCR and the nucleotide sequence of the cDNA clone was determined.
  • about 50,000 recombinants were randomly selected from the above human brain-derived cDNA library prepared according to the method of Ohara et al. (Non-patent Document 19), and of these, about 30,000 The nucleotide sequences of the 5 'end and 3' end of the cDNA of each clone were determined.
  • about 1,100 clones were selected mainly by in vitro transcription / translation experiments, and their nucleotide sequences were determined according to the method of Ohara et al.
  • ORF was predicted by a general-purpose analysis method using a computer program. Next, a motif domain search is performed for the ORF region, and a region encoding the DHZPH domain, which is the active domain of Rho-GEF, is searched. The cDNA containing the region was identified.
  • the identified cDNA clone hj03796 is a DNA having a novel nucleotide sequence of a total length of 4977 bp (SEQ ID NO: 1) and contains an ORF encoding 1340 amino acids (SEQ ID NO: 2).
  • the DH domain has a power of ninth amino acid (Val) and a power of 175 amino acid residues up to the 271st aspartic acid (Asp) in the amino acid sequence of SEQ ID NO: 2.
  • the PH domain also has 98 amino acid residues from the leucine (Leu) at position 297 to the leucine (Leu) at position 394 of the amino acid sequence shown in SEQ ID NO: 2.
  • the regions encoding the DH domain and PH domain correspond to the nucleotide at position 1495, both at the 602nd position, at the 1126th nucleotide, and at the 1202th position in the nucleotide sequence of SEQ ID NO: 1.
  • the protein encoded by the clone was expressed as a FLAG-tag fusion protein in 293EBNA cells (Invitrogen).
  • a partial sequence of the protein encoded by clone hj03796 and a protein containing a DH / PH domain were expressed using 293EBNA cells. Expression was confirmed by Western blotting.
  • a gene fragment obtained by cutting the amplified gene with HincIlZBamHI, a gene fragment obtained by cutting pBluescriptll—hj03796 with SallZHincII, and a gene fragment obtained by cutting pDsRed2-Nl (Clont ech) with Sall / BamHI were ligated and combined. Introduced to cells. Next, DNA was purified from the transformed E. coli using a purification kit. The hj03796 fragment obtained by cutting the purified DNA with Sall / BamHI was inserted into the SallZBamHI site of pFLAG-CMV5b (manufactured by SIGMA), which is a vector DNA, to obtain an hj03796 expression vector. It was confirmed by sequencing that the nucleotide sequence subjected to the restriction enzyme treatment was correctly inserted. Sequence reaction is DNA Sequencing The kit (ABI) was used for electrophoresis and analysis using ABI PRISM 377.
  • the protein comprising the thickness DHZPH domain protein also partial sequence force of the full-length protein hj03796 clones encoded (hereinafter, referred to as Hj03796DHZPH) a vector for expressing the gateway TM claw - ing technology (Invitrogen (Manufactured by the company).
  • Kozak is located at the ⁇ -end of the region homologous to the DHZPH domain coding region of proto-Dbl (the 581st force in SEQ ID NO: 1 is also equivalent to the 1675th nucleotide)
  • a polynucleotide to which an oligonucleotide consisting of a sequence and a codon corresponding to methionine (SEQ ID NO: 19) was added was amplified. Thereafter, the amplification product was inserted into pENTRZSDZD-TOPO by a reaction using the TOPO closing system to prepare an entry vector.
  • proto-Dbl DHZPH As a control for comparison with hj03796DHZPH, an expression vector thereof was constructed in order to use a DHZPH domain of a known Rho-GEF, proto-Dbl (hereinafter, referred to as proto-Dbl DHZPH).
  • proto-Dbl DHZPH a DHZPH domain of a known Rho-GEF, proto-Dbl (hereinafter, referred to as proto-Dbl DHZPH).
  • the brain first strand DNA of Multiple Tissue cDNA Panels manufactured by Clontech
  • the DH / PH domain coding region of proto-Dbl proto-Dbl From the start ATG codon in the nucleotide sequence, the 1485th to 2429th
  • the amplification product was inserted into the Bglll-Sail site of pFLAG-CMV5a (manufactured by SIGMA) by a ligation reaction to prepare an expression vector for expressing proto-Dbl DHZPH as a FLAG-tag fusion protein.
  • DZP—si (Bglll) (SEQ ID NO: 11) and DZP—asl (Sail) (SEQ ID NO: No. 12) was used.
  • the sequence confirmed that the nucleotide sequence of the DHZPH domain coding region of proto-Dbl was correctly inserted, and revealed that one nucleotide was different from the published sequence. However, the amino acid substitution due to this single base difference was unrecognizable.
  • nucleotide sequence of the DH / PH domain coding region of proto-Dbl inserted into the expression vector was compared with the proto-Dbl public sequence (accession number: X12556), and the start of the public sequence was started.
  • This is a nucleotide sequence in which T (thymine), the 1962th base from the ATG codon, is changed to A (adenine).
  • the nucleotide sequence of the DHZPH domain coding region of proto-Dbl inserted into the expression vector contains ATGGCA at the ⁇ terminal end of the nucleotide sequence from the start ATG codon of the proto-Dbl public sequence up to the 1480th position and the 2433rd position. Base sequence.
  • the 489th base from the start ATG codon is different from the corresponding base in the published sequence.
  • the start of the public sequence The base from the ATG codon to the 1960th position and the 1962th position is GGT, which encodes glycine.
  • GGT The base from the ATG codon to the 1960th position and the 1962th position
  • GGA the base at the 487th position and the 489th position from the start ATG codon of the base sequence of the DHZPH coding region of proto-Dbl inserted into the expression vector. That is, amino acid substitution due to a single base difference was not observed.
  • the published nucleotide sequence of proto-Dbl and the amino acid sequence encoded by the published nucleotide sequence are shown in SEQ ID NOS: 26 and 27, respectively.
  • the nucleotide sequence of proto-Dbl shown in SEQ ID NO: 26 was the nucleotide sequence that was published when the NCBI (National Center for Biotechnology Information) published database was viewed on February 24, 2005.
  • Each expression vector was transfected into 293EBNA cells by the lipofection method. That is, serum-free DMEM supplemented with each expression vector and DMEM supplemented with ribofectamine 2000 (LipofectAMINE2000, manufactured by Invitrogen) were mixed and incubated at room temperature for 20 minutes. The resulting mixture was seeded the day before and 5% CO at 37 ° C.
  • ribofectamine 2000 LipofectAMINE2000, manufactured by Invitrogen
  • the cells were lysed in a lysis buffer containing 1% to prepare a cell lysate.
  • the lysis buffer has the following composition: 25 mM Tris-HCl, pH 7.5; 150 mM NaCl; lmM CaCl; and 1% Triton X-100.
  • Each cell lysate was mixed with an equal amount of SDS-PAGE sample buffer, and heated (100 ° C for 5 minutes) to prepare a sample for electrophoresis.
  • SDS polyacrylamide gel electrophoresis After performing SDS polyacrylamide gel electrophoresis and immersing the electrophoresis gel in a blotting buffer for 5 minutes or more to equilibrate, the protein was transferred onto a PVDF membrane. After the completion of the blotting, the PVDF membrane is blocked by soaking at 4 ° C in a solution (TBS-T + BA) mixed with Block Ace (manufactured by Dainippon Pharmaceutical) at a ratio of 3: 1 in TBS-T. did.
  • TBS-T + BA a solution
  • Block Ace manufactured by Dainippon Pharmaceutical
  • the PVDF membrane was washed once with TBS-T for 10 minutes or more while shaking.
  • the SDS-PAGE sample buffer used above has the following composition: 1.7% Tris; 0.13M HC1; 22% glycerol; 4.6% SDS; and 0.22g ZmL bromophenol blue.
  • the blocking buffer has the following composition: 25 mM Tris; 40 mM ⁇ -amino-n-caproic acid; 20% methanol; and 0.05% SDS.
  • TBS-T consists of the following composition: 1 50 mM NaCl; 10 mM Tris-HC1, pH 7.5; and 0.05% Tween-20.
  • Anti-FLAG M2 monoclonal antibody (manufactured by SIGMA) was diluted 1000-fold with TBS-T + BA, added to a PVDF membrane, and kept at 37 ° C for 1 hour or more. Thereafter, the PVDF membrane was washed three times with TBS-T (shake for 10 minutes or more per wash), and HRP-labeled anti-mouse IgG antibody (Cell Signaling Technology) diluted 1000-fold with TBS-T + BA. The product was kept at 37 ° C for 1 hour or more.
  • FIG. 1 shows the results.
  • Hj03796 expressed as a FLAG-tag fusion protein was detected as a single band between 92.4 KDa and 220 KDa force (lane 1 in FIG. 1).
  • hj03796D HZPH was detected as a single band at about 50 KDa by the anti-FLAG antibody (lane 4 in FIG. 1).
  • hj03796 encoded protein hereinafter referred to as hj03796 protein
  • the predicted molecular weight of 3796DHZPH is about 150 KDa and about 43 KDa, respectively. From this, it was revealed that the single bands were hj03796 and hj03796DHZPH, respectively.
  • proto-Dbl DHZPH was detected as a single band at about 40 KDa by the anti-FLAG antibody (lane 2 and lane 5 in FIG. 1).
  • a protein solution obtained by the same treatment from control cells into which the vector had not been introduced no such band was detected, and no shift was detected (lanes 3 and 6).
  • hj03796DHZPH C-terminal FLAG-tag fusion protein
  • Cdc42, Rho A and Racl were used as Rho family proteins. These proteins
  • An expression vector for expression as an N-terminal GST-tag fusion protein was constructed as described below.
  • the expression vector (C-terminal FLAG-tag fusion protein) used was the expression vector constructed in Example 2.
  • proto-Dbl is a prototype of Rho-GEF, and activation of proto-Dbl is considered to be oncogenic activation.
  • Activation of proto-Dbl is caused by deletion of the N-terminal side of the amino acid sequence (amino acid at position 497). That is, it has been reported that a region containing the DH / PH domain on the C-terminal side of the proto Dbl (oncogenic-Dbl) activates the Rho family protein (Non-Patent Document 1).
  • proto-Dbl DH / PH is a deletion mutant having the 494th to 811th amino acids of proto-Dbl, and is a sequence shorter than oncogenic-DbU.
  • Oncogenic-Dbl binds to Cdc42, RhoA and Racl, but has been reported to have GEF activity for Cdc42 and RhoA, whereas Racl has no GEF activity (Non-Patent Document 2).
  • a GST-tag was added to the N-terminal side.
  • 8-Glucuronidase hereinafter GST- GUS was used as a negative control.
  • Serum-free DMEM supplemented with the hj03796DHZPH expression vector or proto-Dbl DHZPH expression vector and the Rh family protein expression vector and DMEM supplemented with Lipofectamine 2000 were mixed and incubated at room temperature for 20 minutes. The resulting mixture was added to 293EBNA cells. 293EBNA cells were seeded on a 24-well plate with 6.0 X 10 4 Zwell cells the day before gene transfer, and incubated at 37 ° C in the presence of 5% CO.
  • Transgenic cells contain 5% CO at 37 ° C
  • the cells are washed with PBS-EDTA and lysed by lysis with a lysis buffer containing 1% protease inhibitor cocktail (produced by SIGMA) (for composition, see Example 2).
  • a liquid was prepared.
  • each cell lysate the binding between hj03796DHZPH or proto-Dbl DHZPH and the Rho family protein was detected by a pull-down method.
  • Each sample contains MgCl
  • the PVDF membrane is blocked by immersing in TBS-T + BA (see Example 2 for composition) at 4 ° C. did. After the blocking was completed, the PVDF membrane was washed with TBS-T (see Example 2 for the composition) (1 shaking for 10 minutes or more).
  • Anti-FLAG M2 monoclonal antibody (manufactured by SIGMA) was diluted 1000-fold with TBS-T + BA, added to a PVDF membrane, and kept at 37 ° C for 1 hour or more. Thereafter, the PVDF membrane was washed three times with TBS-T (shake for 10 minutes or more per wash), and HRP-labeled anti-mouse IgG antibody (Cell Signaling Technology) diluted 1000-fold with TBS-T + BA. The product was kept at 37 ° C for 1 hour or more.
  • hj03796DHZPH binds to Cdc42, RhoA or Racl. I am clear. Therefore, hj03796 full-length protein including hj03796DHZPH is considered to bind to these Rho family proteins, and may further have a function as Rho-GEF.
  • Each expression vector for expressing Cdc42, RhoA or Racl used in the present example as an N-terminal GST-tag fusion protein was constructed as follows.
  • the expression vector of Cdc42, RhoA or Racl was prepared using Gateway TM Clawing Technology (Invitrogen). First, the gene encoding each Rho family protein (Cdc42, Rho A and Racl) was amplified using pfu turbo using the spleen first strand DNA (Spleen first strand DNA) of Multiple Tissue cDNA Panels (Clontech) as a template. did. The amplification product was inserted into pENTRZD in a reaction using the TOPO cloning system to prepare an entry vector.
  • Cdc42-sl (SEQ ID NO: 13) and Cdc42-asl (SEQ ID NO: 14) for the Cdc42 gene RhoA-si (SEQ ID NO: 15) and RhoA- Ascl (SEQ ID NO: 16) and Racl-si (SEQ ID NO: 17) and Racl-asl (SEQ ID NO: 18) were used for the Racl gene.
  • RhoA-si SEQ ID NO: 15
  • a GST-fused Rho family protein expression plasmid was prepared by a recombination reaction using LR clonase using pDEST27, which is an N-terminal GST-tag fusion protein expression vector.
  • Rhj03796DHZPH C-terminal FLAG-tag fusion protein
  • Cdc42, Rho A and Racl were used as Rho family proteins. All of these Rho family proteins were expressed as N-terminal 3X FLAG-tag fusion proteins.
  • 03796013 ⁇ 47? 11 Ji end? 1 ⁇ ⁇ over & 8 fusion protein
  • the expression vector for the expression of the expression vector and the Izu Re Kano Rho family protein, 293EBNA cells were seeded in 24 ⁇ El plate Introduced. Introduction of the vector into cells was performed using Lipofectamine 2000.
  • a cell prepared by adding only Lipofectamine2000 without introducing each vector into cells was used.
  • the cells were lysed with a lysis buffer containing a protease inhibitor cocktail (1Z100 concentration: manufactured by SIGMA) to prepare a cell lysate.
  • the cell lysate was reacted with an effector bed (UPSTATE) at 4 ° C for 1 hour.
  • UPSTATE effector bed
  • daltathione agarose in which a GST-tagged protein was bound to a domain that binds to an active Rho family protein of PAK-1 or Rhotekin, was used.
  • the reacted effector beads were washed with a lysis buffer, and eluted with an eluate (Tris 'SDS' j8 mercaptoethanol-treated solution: manufactured by Daiichi Kagaku Co., Ltd.).
  • the obtained eluate was subjected to Western blotting by SDS-PAGE, and then detection of FLAG-tag-added protein was performed using an anti-FLAG antibody.
  • the lysis buffer also has the following compositional power: 25 mM HEP ES, pH 7.5; 150 mM NaCl; 10 mM MgCl; lmM EDTA; 2% glycerol
  • hj03796DHZPH has GEF activity against the Rho family protein
  • the hjO 3796DHZPH causes the Rho family protein to transition from an inactive (GDP-bound) to an active (GTP-bound).
  • PAR-1 used as an effector bed is known to bind to active Cdc42 and active Racl.
  • Rhotekin also binds to activated Rh oA. Therefore, if hj03796DHZPH has GEF activity against Rho family proteins, the amount of Rho family proteins bound to the effector bed increases.
  • the anti-FLAG antibody is used to detect the cell strength that also co-expressed hj03796DHZPH and the Rho family protein, and the cell strength that expressed only the Rho family protein was detected, the Rho family protein band was detected more intensely than the sample that obtained the cell power. / PH was determined to have GEF activity.
  • Fig. 3-A shows the expression of Rho family protein and / or hj03796DH / PH contained in each cell lysate, which was detected by anti-FLAG antibody.
  • the results are shown.
  • the expression of each Rho family protein (shown as Rho in the figure) was almost the same in both cells co-expressed with hj037 96DHZPH and cells expressing only the Rho family protein ( Figure 3-A). Lanes 2, 4, 6, 8, 10, and 12! /, Indicated by white arrowheads).
  • Fig. 3—A, lanes 6 and 8 This was considered to be the effect of the protease.
  • hj037 96DHZPH shown as GEF in the figure
  • Fig. 3-A Lanes 3, 4, 7, 8, 11, and 12 are indicated by black arrowheads).
  • Fig. 3-B shows the results of performing the effector pull-down method using each of the above cell lysates.
  • a sample obtained from cells co-expressing Cdc42 and hj03796DHZPH shown as GEF in the figure
  • a sample obtained from cells expressing only Cdc42 Fig. 3-B
  • the band was detected to be deeper. That is, in cells in which Cdc42 and hjO3796DHZPH were co-expressed, the amount of activated Cdc42 binding to PAR-1 increased. This indicated that hj03796DHZPH had GEF activity on Cdc42. Therefore, it is considered that hj03796 full-length protein including hj03796DHZPH also has GEF activity against Cdc42.
  • hj03796 was found to have a function of promoting Cdc42 activation.
  • the protein encoded by the polynucleotide of the present invention bound to the Rho family protein, and further promoted the activity of the Rho family protein.
  • Use of the present protein and polynucleotides will elucidate and regulate signaling pathways and cellular functions involving the Rho family proteins, as well as diagnose, prevent, and prevent disease or gastric tumors based on abnormalities of the present proteins or polynucleotides. Treatment becomes possible. Therefore, the present invention is a useful invention that widely contributes to the field of basic science and pharmaceutical development.
  • SEQ ID NO: 1 A polynucleotide encoding a protein (SEQ ID NO: 2) having a function as a guanine nucleotide exchange factor.
  • SEQ ID NO: 1 (602): (1126) region encoding the Dbl homology domain.
  • SEQ ID NO: 3 The 581st amino acid in SEQ ID NO: 1 is also a partial sequence consisting of nucleotides up to the 1675th nucleotide, and is a polynucleotide containing a region encoding the Dbl homology domain and the pleckstrin homology domain.
  • the polynucleotide encodes the amino acid sequence set forth in SEQ ID NO: 4.
  • SEQ ID NO: 5 A partial sequence consisting of the Kozak consensus sequence and a codon corresponding to methionine at the 5 'end, followed by the 581st amino acid of SEQ ID NO: 1 as well as a partial sequence consisting of nucleotides up to the 1675th amino acid, and a Dbl homology domain And a sequence comprising a region encoding a pleckstrin homology domain, wherein the polynucleotide encodes the amino acid sequence set forth in SEQ ID NO: 6.
  • SEQ ID NO: 5 (1): (4) Kozak consensus sequence.
  • SEQ ID NO: 5 (5): (7) Codon corresponding to methionine.
  • SEQ ID NO: 7 A polynucleotide designed based on the sequence of SEQ ID NO: 1 for primers.
  • SEQ ID NO: 8 polynucleotide designed based on the sequence of SEQ ID NO: 1 for the primer!
  • SEQ ID NO: 9 A polynucleotide designed based on the sequence of SEQ ID NO: 1 for primers.
  • SEQ ID NO: 10 A polynucleotide designed based on the sequence of SEQ ID NO: 1 for the primer!
  • SEQ ID NO: 11 Polynucleotide designed for primer based on sequence of proto-Dbl
  • SEQ ID NO: 12 Designed based on proto-Dbl sequence for primer, polynucleotide
  • SEQ ID NO: 13 Designed polynucleotide based on Cdc42 sequence for primer SEQ ID NO: 14: Designed polynucleotide based on Cdc42 sequence for primer SEQ ID NO: 15: Designed polynucleotide based on RhoA sequence for primer SEQ ID NO: 16: Designed polynucleotide based on Rho A sequence for primer SEQ ID NO: 17: Designed polynucleotide based on Racl sequence for primer SEQ ID NO: 18: Designed polynucleotide based on Racl sequence for primer SEQ ID NO: 19: designed oligonucleotide containing Kozak consensus sequence followed by codons corresponding to methionine.
  • SEQ ID NO: 20 Cdc42 gene.
  • SEQ ID NO: 22 RhoA gene
  • SEQ ID NO: 24 Rac 1 gene
  • SEQ ID NO: 26 proto—gene encoding Dbl (SEQ ID NO: 27).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 低分子量GTP結合蛋白質の1グループであるRhoファミリー蛋白質に対してグアニンヌクレオチド交換因子(GEF)として作用する新規な蛋白質をコードする遺伝子、すなわち配列番号1、3または5に記載の塩基配列で表わされるポリヌクレオチドまたはその相補鎖、該ポリヌクレオチドの相同物、前記ポリヌクレオチドによりコードされる蛋白質、前記ポリヌクレオチドを含むベクター、前記ベクターを含む形質転換体、前記ポリヌクレオチドによりコードされる蛋白質に対する抗体、前記ポリヌクレオチドによりコードされる蛋白質の機能および/または発現を阻害する化合物の同定方法、疾患の判定方法、医薬組成物および試薬キットを提供した。

Description

明 細 書
グァニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物 技術分野
[0001] 本発明は、低分子量 GTP結合蛋白質の 1グループである Rhoファミリー蛋白質に 対してグァニンヌクレオチド交換因子として作用する蛋白質および該蛋白質をコード するポリヌクレオチドに関する。より詳しくは、 Rhoファミリー低分子量 GTP結合蛋白 質である Cdc42と結合する蛋白質、該蛋白質をコードするポリヌクレオチド、該ポリヌ クレオチドを含有する組換えベクター、該組換えベクターにより形質転換されてなる 形質転換体に関する。また、前記蛋白質の製造方法、前記蛋白質に対する抗体に 関する。さらに、前記蛋白質の機能および Zまたは前記ポリヌクレオチドの発現を阻 害する化合物の同定方法に関する。また、前記ポリヌクレオチドの発現量を測定する ことを特徴とする胃腫瘍の診断方法に関する。さらに、前記蛋白質の機能阻害剤お よび Zまたは前記ポリヌクレオチドの発現阻害剤を有効成分として含んでなる胃腫瘍 の防止剤および Zまたは治療剤、前記蛋白質の機能阻害剤および Zまたは前記ポ リヌクレオチドの発現阻害剤を用いることを特徴とする、胃腫瘍の防止方法および Z または治療方法に関する。また、前記蛋白質、前記ポリヌクレオチド、前記組換えべ クタ一、前記形質転換体および前記抗体のうち、少なくともいずれか 1つを含んでな る試薬キットに関する。 背景技術
[0002] Rhoファミリー低分子量 GTP結合蛋白質 (以下、単に Rhoファミリー蛋白質と称する ことがある)は低分子量 GTP結合蛋白質 (以下、単に低分子量 G蛋白質と称する)の 1グループに属する蛋白質である。低分子量 G蛋白質は、細胞膜受容体と細胞内情 報伝達経路に関与する効果器 (エフェクター)との間で、シグナルの増幅因子として 作用する。また、低分子量 G蛋白質は、グアノシン^ 三リン酸 (GTP)またはグアノ シン^ 二リン酸 (GDP)と特異的に結合し、結合した GTPを GDPに加水分解する 酵素活性をもつ。細胞膜受容体に細胞外情報物質が結合すると、そのシグナルが低 分子量 G蛋白質に伝達され、低分子量 G蛋白質に結合している GDPと細胞内に存 在する GTPとの交換反応(以下、 GDPZGTP交換反応と略称する)が起きる。その 結果、活性型 (GTP結合型)低分子量 G蛋白質が生じる。活性型低分子量 G蛋白質 は、エフェクターに作用してシグナルを増幅する。その後、活性型低分子量 G蛋白質 は、その酵素活性により、結合している GTPを GDPに加水分解し、それにより不活 性ィ匕する。このように、低分子量 G蛋白質は、グァニンヌクレオチドの交換により、細 胞内情報伝達経路において分子スィッチとして働く。
[0003] Rhoファミリー蛋白質として、 Cdc42、 Raclおよび RhoA等が知られている。 Cdc4 2は線維芽細胞でフイロポディアの形成を制御している。 Raclは、白血球やマクロフ ァージではスーパーォキシドの産生を、線維芽細胞では細胞膜のラッフリングゃラメリ ポディアの形成を制御している。また、 Cdc42と Raclは c— Jun N末端キナーゼシ グナル伝達経路を活性化し得る。このように、 Rhoファミリー蛋白質は、細胞内情報 伝達の制御を介して様々な細胞機能に関与している。 Rhoファミリー蛋白質が関与 する細胞機能として、例えば細胞骨格の再構成、細胞接着、遺伝子発現等が知られ ている。 Rhoファミリー蛋白質を介するこのような作用は、発生時の形態形成、白血球 等の遊走、神経突起退縮、および癌細胞の転移や浸潤に働くと考えられる。
[0004] Rhoファミリー蛋白質の分子スィッチとしての作用に関与している分子の 1つが Rho グァニンヌクレオチド交換因子 (Rho Guanine nucleotide Exchange Factor 、以下 Rho— GEFと略称する)である。 Rho— GEFは、 Rhoファミリー蛋白質の GDP ZGTP交換反応を促進して Rhoファミリー蛋白質の活性化を促進する機能を有する 。この機能により、 Rho— GEFは、 Rhoファミリー蛋白質が関与する細胞内情報伝達 の制御に重要な役割を担う。以下、 GDPZGTP交換反応を促進する機能を GEF活 性と称することがある。
[0005] Rho— GEFには、特徴的ドメイン構造、例えば Dbl相同ドメイン(Dbl Homology
Domain,以下 DHドメインと略称する)およびプレックストリン相同ドメイン(Pleckst rin Homology Domain,以下 PHドメインと略称する)が存在する。 DHZPHのタ ンデム構造は、 Rho— GEFに典型的なドメイン構造である。以下、 DHドメインおよび PHドメインのタンデム構造を、 DH/PHドメインと呼称する。
[0006] DHZPHドメインは、 Rho— GEFによる Rhoファミリー蛋白質の活性ィ匕に寄与する 重要なドメインであり、 Rho— GEFの活性ドメインであると考えられている。例えば、 R ho— GEFのプロトタィプでぁるproto— Dblのァミノ酸配列のぅち、 DHZPHドメイン を含む C末端側領域力もなる蛋白質が、 Rhoファミリー蛋白質を活性ィ匕することが報 告されている(非特許文献 1)。この報告において、 proto— Dblの全長 925アミノ酸 残基からなるアミノ酸配列のうち N末端側第 1番目から第 497番目のアミノ酸残基の 欠失により生じた C末端側領域力もなる蛋白質は、 Rhoファミリー蛋白質を活性ィ匕し、 その結果、細胞形質転換に関与した。このことから、 proto— Dblの活性ィ匕は腫瘍原 性活性化(oncogenic activation)と考えられて 、る。以下、 proto— Dblの C末端 側領域からなるこのような蛋白質を oncogenic— Dblと呼称する。 oncogenic— Dbl 力 RhoA、 Cdc42および Raclと結合すること、並びに Cdc42および RhoAに対し て GEF活性を有する一方、 Raclには GEF活性を示さないことが報告されている(非 特許文献 2)。
[0007] proto— Dblのファミリー蛋白質をコードする遺伝子として、例えば vav (非特許文献 3および 4)、 ost (非特許文献 5)、 lbc (非特許文献 6)等が知られている。これら遺伝 子は癌に関与する遺伝子である。その他、 Rho— GEFとして作用する蛋白質をコー ドする遺伝子として、 Trio (非特許文献 7)や kalirin (非特許文献 8)等が報告されて いる。 Trioは、そのノックアウトマウスにおいて胎仔発生時の骨格筋の異常および脳 の構成異常を引き起こす。 kalirinは、神経細胞における神経突起形成に関与する。 このように、 Rho GEFとして作用する蛋白質が関与する細胞機能は各蛋白質ごと に固有であり、また、該蛋白質が活性ィ匕する Rhoファミリー蛋白質もそれぞれ異なる。
[0008] 以下に本明細書において引用した文献を列記する。
非特許文献 1 :ビ(Bi, F. )ら、「モレキュラー アンド セルラー バイオロジー(Mole cular and Cellular Biology)」、 2001年、第 21卷、 p. 1463— 1474。
非特許文献 2 :ハート(Hart, M. J. )ら、「ジャーナル ォブ バイオロジカル ケミス トリー(Journal of Biological Chemistry)」、 1994年、第 269卷、 p. 62— 65。 非特許文献 3 :カツアブ(Katzav, S. )ら、「ェンボ ジャーナル(EMBO Journal) J 、 1989年、第 8卷、 p. 2283— 2290。
非特許文献 4 :コステロ(Costello, P. S. )ら、「プロシーディングス ォブ ザ ナショ ナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ ァメ リカ (Proceedings of Tne National Academy of sciences of The Uni ted States of America)」、 1999年、第 96卷、 p. 3035— 3040。
非特許文献 5 :ホリイ(Horii, Y. )ら「ェンボ ジャーナル(EMBO Journal)」、 199 4年、第 13卷、 p. 4776—4786。
非特許文献 6 :トクソズ (Toksoz, D. )ら、「オンコジーン(Oncogene)」、 1994年、第 9卷、 p. 621— 628。
非特許文献 7 :ォブリエン(O ' Brien, S. P. )ら、「プロシーディングス ォブ ザ ナ ショナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ
/'メリ力 (Proceedings of The National Academy of sciences of Tne
United States of America)」、 2000年、第 97卷、 p. 12074—12078。
非特許文献 8 :ペンゼス(Penzes, P. )ら、「ジャーナル ォブ ニューロサイエンス (J ounal of Neuroscience)」、 2001年、第 21卷、 p. 8426— 8434。
非特許文献 9 :サムブルック(Sambrook)ら編、「モレキュラークローユング,ァ ラボ ラトリーマ-ユアル 第 2版」、 1989年、コールドスプリングハーバーラボラトリー。 非特許文献 10 :村松正實編、「ラボマ-ユアル遺伝子工学」、 1988年、丸善株式会 社。
非特許文献 11 :マディン(Madin, K. )ら、「プロシーディングス ォブ ザ ナショナ ル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ アメリカ (Proceedings oi The National Academy of sciences of fhe United
States of America)」、 2000年、第 97卷、 p. 559— 564。
非特許文献 12 :ウルマー(Ulmer, K. M. )、 「サイエンス(Science)」、 1983年、第 219卷、 p. 666— 671。
非特許文献 13 :エールリツヒ(Ehrlich, H. A. )編、「PCRテクノロジー, DNA増幅 の原理と応用」、 1989年、ストックトンプレス。
非特許文献 14 :サイキ(Saiki, R. K. )ら、「サイエンス(Science)」、 1985年、第 23 0卷、 p. 1350—1354。
非特許文献 15 :「実験医学」、 1994年、第 12卷、第 6号、 p. 35—。 非特許文献 16 :フローマン(Frohman, M. A. )ら、「プロシーディングス ォブ ザ ナショナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ 7メリ力 (Proceedings of The National Academy of Sciences oi The United States of America)」、 1988年、第 85卷、第 23号、 p. 8998— 9002 非特許文献 17 :サンガー(Sanger, F. )ら、「プロシーディンダス ォブ ザ ナショ ナル アカデミー ォブ サイェンシズ ォブ ザ ユナイテッド ステーッ ォブ ァメ リカ (Proceedings of The National Academy of sciences of Tne Uni ted States of America)」、 1977年、第 74卷、 p. 5463— 5467。
非特許文献 18 :マキサム(Maxam A. M. )ら、「メソッズ イン ェンザィモロジ一(
Methods in Enzymology)」、 1980年、第 65卷、 p. 499— 560。
非特許文献 19 :オハラ(Ohara, O. )ら、「ディーェヌエー リサーチ(DNA Resear ch)」、 1997年、第 4卷、 p. 53— 59。
発明の開示
発明が解決しょうとする課題
[0009] 本発明の課題は、新規な Rho— GEFおよび該 Rho— GEFをコードする遺伝子を 提供することである。また本発明の課題には、該遺伝子を含有する組換えベクター、 該組換えベクターにより形質転換されてなる形質転換体を提供することも含まれる。 さらに本発明の課題には、該 Rho— GEFの製造方法および該 Rho— GEFを認識す る抗体を提供することも含まれる。また本発明の課題には、該 Rho— GEFの機能お よび Zまたは該遺伝子の発現を阻害する化合物の同定方法を提供することも含まれ る。さらに本発明の課題には、該 Rho— GEFの機能の異常および Zまたは該遺伝子 の発現の異常に基づく疾患の防止方法および Zまたは治療方法、並びに該疾患の 診断方法、試薬キットを提供することも含まれる。
課題を解決するための手段
[0010] 本発明者らは上記課題解決のために鋭意努力し、新規 Rho— GEFをコードする遺 伝子を見出し、該遺伝子を用いて新規 Rho— GEFを取得することに成功した。そし て、該 Rho— GEFの DH/PHドメインを含む部分蛋白質力 Rhoファミリー蛋白質 である RhoA、 Cdc42および Rac 1とそれぞれ結合することを実験的に明らカにした。 また、該蛋白質が Cdc42の活性ィ匕を促進することを実証した。さらに該 Rho— GEF 遺伝子の組織発現が、ある胃腺癌様腫瘍 (Adenocarcinoid tumor)例にお!/、て 正常な胃組織の約 5倍、 4. 5倍以上であることを見出した。本発明はこれらの知見に 基づいて達成した。
[0011] すなわち、本発明は、配列表の配列番号 1に記載の塩基配列若しくはその相補的 塩基配列で表わされるポリヌクレオチド、または配列表の配列番号 2に記載のァミノ 酸配列で表わされる蛋白質をコードするポリヌクレオチド若しくは該ポリヌクレオチドの 相補的塩基配列で表わされるポリヌクレオチドに関する。
[0012] また本発明は、配列表の配列番号 3若しくは 5に記載の塩基配列またはその相補 的塩基配列で表わされるポリヌクレオチド、または配列表の配列番号 4若しくは 6に記 載のアミノ酸配列で表わされる蛋白質をコードするポリヌクレオチドまたは該ポリヌクレ ォチドの相補的塩基配列で表わされるポリヌクレオチドに関する。
[0013] さらに本発明は、配列表の配列番号 3に記載の塩基配列若しくはその相補的塩基 配列で表わされるポリヌクレオチドを含有するポリヌクレオチド、または配列表の配列 番号 4に記載のアミノ酸配列で表わされる蛋白質をコードするポリヌクレオチド若しく は該ポリヌクレオチドの相補的塩基配列で表わされるポリヌクレオチドを含有するポリ ヌクレオチドであって、 Cdc42の活性ィ匕を促進する蛋白質をコードするポリヌクレオチ ドに関する。
[0014] さらにまた本発明は、前記ポリヌクレオチドの塩基配列と少なくとも約 70%の相同性 を有する塩基配列で表わされるポリヌクレオチドであって、 Cdc42の活性ィ匕を促進す る蛋白質をコードするポリヌクレオチドに関する。
[0015] また本発明は、前記ポリヌクレオチドの塩基配列において、 1乃至数個のヌクレオチ ドの欠失、置換、付加などの変異あるいは誘発変異を有するポリヌクレオチドであつ て、 Cdc42の活性ィ匕を促進する蛋白質をコードするポリヌクレオチドに関する。
[0016] さらに本発明は、前記ポリヌクレオチドとストリンジェントな条件下でハイブリダィゼー シヨンするポリヌクレオチドであって、 Cdc42の活性ィ匕を促進する蛋白質をコードする ポリヌクレオチドに関する。 [0017] さらにまた本発明は、前記いずれかのポリヌクレオチドを含有する組換えベクターに 関する。
[0018] また本発明は、前記組換えベクターにより形質転換されてなる形質転換体に関する
[0019] さらに本発明は、前記糸且換えベクターおよび Cdc42をコードするポリヌクレオチドを 含有する組換えベクターにより形質転換されてなる形質転換体に関する。
[0020] さらにまた本発明は、配列表の配列番号 2に記載のアミノ酸配列で表わされる蛋白 質に関する。
[0021] また本発明は、配列表の配列番号 4または 6に記載のアミノ酸配列で表わされる蛋 白質に関する。
[0022] さらに本発明は、前記いずれかのポリヌクレオチドによりコードされる蛋白質に関す る。
[0023] さらにまた本発明は、前記形質転換体を培養する工程を含む、前記いずれかの蛋 白質の製造方法に関する。
[0024] また本発明は、前記いずれかの蛋白質を認識する抗体に関する。
[0025] さらに本発明は、前記いずれかの蛋白質の機能および Zまたは前記いずれかのポ リヌクレオチドの発現を阻害する化合物の同定方法であって、ある化合物と該蛋白質 および Zまたは該ポリヌクレオチドとの相互作用を可能にする条件下で、該機能およ び Zまたは該発現の存在、不存在または変化を検出することにより、該化合物が該 蛋白質の機能および Zまたは該ポリヌクレオチドの発現を阻害するか否かを判定す ることを特徴とする同定方法に関する。
[0026] さらにまた本発明は、蛋白質の機能力 Cdc42と結合する機能および Zまたは Cd c42の活性ィ匕を促進する機能である前記同定方法に関する。
[0027] また本発明は、前記いずれかの蛋白質の機能および Zまたは前記いずれかのポリ ヌクレオチドの発現を阻害する化合物の同定方法であって、前記いずれかの蛋白質 、前記いずれかのポリヌクレオチド、前記組換えベクター、前記形質転換体および前 記抗体のうち少なくともいずれか 1つを用いることを特徴とする同定方法に関する。
[0028] さらに本発明は、蛋白質の機能力 Cdc42と結合する機能および Zまたは Cdc42 の活性ィヒを促進する機能である前記同定方法に関する。
[0029] さらにまた本発明は、ヒト胃組織由来の被検組織が、ヒト胃腫瘍由来組織であるか 否かを判定する方法であって、該被検組織における前記 、ずれかのポリヌクレオチド の発現量を測定することを特徴とする判定方法に関する。
[0030] また本発明は、被検組織における前記いずれかのポリヌクレオチドの発現量力 対 照であるヒト正常胃由来組織における該ポリヌクレオチドの発現量の 4. 5倍以上であ る場合に、被検組織がヒト胃腫瘍由来組織であると判定することを特徴とする、前記 判定方法に関する。
[0031] さらに本発明は、前記いずれかの蛋白質の機能を阻害する化合物および Zまたは 前記いずれかのポリヌクレオチドの発現を阻害する化合物を有効成分として含んで なる胃腫瘍の防止剤および Zまたは治療剤に関する。
[0032] さらにまた本発明は、前記いずれかの蛋白質の機能を阻害する化合物および Zま たは前記 、ずれかのポリヌクレオチドの発現を阻害する化合物を用いることを特徴と する胃腫瘍の防止方法および Zまたは治療方法に関する。
[0033] また本発明は、前記いずれかの蛋白質、前記いずれかのポリヌクレオチド、前記組 換えベクター、前記形質転換体および前記抗体のうち少なくとも 、ずれか 1つを含ん でなる試薬キットに関する。
発明の効果
[0034] 本発明においては、 Rhoファミリー蛋白質に結合する機能を有し、 GDPZGTP交 換反応を促進して Rhoファミリー蛋白質を活性化し得る新規蛋白質および該蛋白質 をコードするポリヌクレオチドを提供できる。本蛋白質は、 Rhoファミリー蛋白質である RhoA、 Cdc42および Raclとそれぞれ結合する。さらに本蛋白質は、 Cdc42の活性 化を促進する。本蛋白質およびポリヌクレオチドにより、 Rhoファミリー蛋白質が関与 する情報伝達経路および細胞機能の解明とその調節が実施できる。さらに、本蛋白 質の機能の異常および Zまたは本ポリヌクレオチド発現の異常に基づく疾患、例え ば胃腫瘍の診断、防止および Zまたは治療が実施できる。
図面の簡単な説明
[0035] [図 l]cDNAクローン hj03796または該 cDNAの部分配列からなる DNAであって D H/PHドメインコード領域を含む DNAを用いて構築したベクターを導入した細胞の 細胞溶解液において、 hj03796がコードする蛋白質または該蛋白質の DHZPHドメ インを含む蛋白質断片 (hj03796DH/PH)を示すバンド力 ウェスタンブロッテイン グ法により検出されたこと (それぞれレーン 1および 4)を説明する図である。 proto- Dbl DHZPHは陽性コントロールとして用いた(レーン 2および 5)。ベクターを導入 しなかったコントロール細胞から同様の処理により得た蛋白質溶液では、かかるバン ドは検出されな力つた(レーン 3および 6)。(実施例 2)
[0036] [図 2]cDNAクローン hj03796の部分配列からなる DNAであって DHZPHドメインコ ード領域を含む DNAと、 Racl遺伝子(レーン 1)、 RhoA遺伝子(レーン 2)または Cd c42遺伝子(レーン 3)とを共発現させた細胞の細胞溶解液において、該 DNAがコー ドする蛋白質(hj03796DHZPH)と Racl (レーン 1)、 RhoA (レーン 2)および Cdc 42 (レーン 3)との結合を示すバンドが検出されたことを説明する図である(上図)。結 合の測定はプルダウン法により行った。陰性コントロールとして Rhoファミリー蛋白質 の代わりに GST— tag融合 j8—ダルク口-ダーゼを用いたとき、あるいは Rhoファミリ 一蛋白質遺伝子を発現させな力つたときには力かるバンドは認められな力つた (それ ぞれレーン 4および 5)。 proto— Dbl DHZPHは陽性コントロールとして用いた。各 細胞溶解液において、 hj03796DHZPHまたは proto— Dbl DHZPHの発現量 はほぼ同等であった (下図)。(実施例 3)
[0037] [図 3-A]hj03796DHZPHと Rhoファミリー蛋白質を共発現させた細胞、および hjO 3796DHZPHまたは Rhoファミリー蛋白質を発現させた細胞のいずれにおいても、 hj03796DHまたは Rhoファミリー蛋白質の発現がほぼ同等であったことを示す図で ある。図中 GEFとは hj03796DHZPHを意味し、 Rhoとは Rhoファミリー蛋白質を意 味する。また、黒矢頭は hj03796DHZPHを、白矢頭は Rhoファミリー蛋白質を示 す。(実施例 4)
[0038] [図 3-B]hj03796DHZPHと Cdc42を共発現させた細胞で、 Cdc42のみを発現さ せた細胞と比較して、 PAR— 1に結合する活性型 Cdc42が増加したことを示す図で ある(レーン 4)。図中 GEFとは hj03796DHZPHを意味し、 Rhoとは Rhoファミリー 蛋白質を意味する。また、白矢頭は Rhoファミリー蛋白質を示す。(実施例 4) 発明を実施するための最良の形態
[0039] 以下、本発明について発明の実施の態様をさらに詳しく説明する。
本明細書にぉ 、ては、単離された完全長 DNAおよび Zまたは RNA;合成完全長 DNAおよび Zまたは RNA;単離された DNAオリゴヌクレオチド類および Zまたは R NAオリゴヌクレオチド類;ある 、は合成 DNAオリゴヌクレオチド類および Zまたは R NAオリゴヌクレオチド類を意味する総称的用語として「ポリヌクレオチド」 t 、う用語を 使用し、ここでそのような DNAおよび Zまたは RNAは最小サイズが 2ヌクレオチドで ある。
[0040] 本明細書においては、単離された若しくは合成の完全長蛋白質;単離された若しく は合成の完全長ポリペプチド;または単離された若しくは合成の完全長オリゴぺプチ ドを意味する総称的用語として「蛋白質」という用語を使用し、ここで蛋白質、ポリぺプ チド若しくはオリゴペプチドは最小サイズが 2アミノ酸である。以降、アミノ酸を表記す る場合、 1文字または 3文字にて表記することがある。
[0041] (ポリヌクレオチド)
本発明の一態様は新規ポリヌクレオチドに関する。本ポリヌクレオチドは、ヒト脳由来 長鎖 cDNAライブラリーから、 Rho— GEFに特徴的なドメインである DH/PHドメイ ンをコードする領域を有する遺伝子として同定した。ヒト脳由来長鎖 cDNAライブラリ 一は、市販のヒト脳、胎児脳および脳海馬由来の polyA+RNAを出発原料として常 法により構築した cDNAライブラリーについて dbEST(database of Expressed Sequence Tags)分析により cDNA断片を単離して全塩基配列を決定した cDNA クローンからなる cDNAライブラリーである。
[0042] 本発明に係るポリヌクレオチドの具体的態様は、配列表の配列番号 1に記載の塩 基配列またはその相補的塩基配列で表わされるポリヌクレオチドであり得る。配列番 号 1に記載の塩基配列で表わされるポリヌクレオチドは、 4977bpのポリヌクレオチド であり、 1340アミノ酸残基 (配列番号 2)をコードするオープンリーディングフレーム( ORF)を含む。配列番号 1に記載の塩基配列にぉ 、て第 602番目から第 1126番目 までのヌクレオチドからなる領域は、配列番号 2に記載のアミノ酸配列の第 97番目の ノ リン (Val)力も第 271番目のァスパラギン酸 (Asp)までの 175アミノ酸残基力もなる DHドメインをコードする。配列番号 1に記載の塩基配列において第 1202番目から 第 1495番目までのヌクレオチドからなる領域は、配列番号 2に記載のアミノ酸配列の 第 297番目のロイシン(Leu)から第 394番目のロイシン(Leu)までの 98アミノ酸残基 力 なる PHドメインをコードする。配列番号 1に記載の塩基配列において第 602番目 力も第 1495番目までのヌクレオチド力もなる領域は、配列番号 2に記載のアミノ酸配 列の第 97番目のパリン (Val)から第 394番目のロイシン(Leu)までの 298アミノ酸残 基力もなる DHZPHドメインをコードする。本発明の範囲には、配列番号 2に記載の アミノ酸配列で表わされる蛋白質をコードするポリヌクレオチドまたは該ポリヌクレオチ ドの相補的塩基配列で表わされるポリヌクレオチドも包含される。
[0043] 本発明に係るポリヌクレオチドとしてまた、配列番号 3若しくは 5に記載の塩基配列 またはその相補的塩基配列で表わされるポリヌクレオチドが例示できる。配列番号 3 に記載の塩基配列で表わされるポリヌクレオチドは、配列番号 1に記載の塩基配列の 第 581番目力も第 1675番目までの塩基配列で表わされるポリヌクレオチドである。ま た、配列番号 5に記載の塩基配列で表わされるポリヌクレオチドは、配列番号 3に記 載の塩基配列で表わされるポリヌクレオチドの^末端にコザックコンセンサス配列(以 下、コザックシークェンスと略称する)とメチォニンに対応するコドンとからなるオリゴヌ クレオチド (配列番号 19)が付加されたポリヌクレオチドである。配列番号 3または 5に 記載の塩基配列で表わされるポリヌクレオチドは、 Rho— GEFの活性ドメインである DHZPHドメインをコードする領域を含む。
[0044] 本発明に係るポリヌクレオチドは、好ましくは、 Rhoファミリー蛋白質の活性ィ匕を促 進する機能を有する蛋白質をコードするポリヌクレオチドまたは該ポリヌクレオチドの 相補的塩基配列で表わされるポリヌクレオチドである。かかるポリヌクレオチドとして、 配列番号 5に記載の塩基配列またはその相補的塩基配列で表わされるポリヌクレオ チドを好ましく例示できる。配列番号 5に記載の塩基配列で表わされるポリヌクレオチ ドと Rhoファミリー蛋白質をコードする遺伝子とを共に発現させた動物細胞において、 Rhoファミリー蛋白質の活性ィ匕が促進された (実施例 4参照)。すなわち、配列番号 5 に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋白質は、 Rhoフ アミリー蛋白質の活性ィ匕を促進すると考える。配列番号 5に記載の塩基配列で表わさ れるポリヌクレオチドは、配列番号 1に記載の塩基配列の第 581番目力も第 1675番 目までの塩基配列で表わされるポリヌクレオチド (配列番号 3)の^末端にコザックシ ークエンスとメチォニンに対応するコドンとからなるオリゴヌクレオチド (配列番号 19) が付加されたポリヌクレオチド (配列番号 5)である。配列番号 5に記載の塩基配列で 表わされるポリヌクレオチドによりコードされる蛋白質は、配列番号 3に記載の塩基配 列で表わされるポリヌクレオチドによりコードされる蛋白質の N末端にメチォニンがぺ プチド結合により付加された蛋白質である。コザックシークェンスとメチォニンに対応 するコドンとからなるオリゴヌクレオチド (配列番号 19)は、配列番号 3に記載の塩基 配列で表わされるポリヌクレオチドの発現を目的として付加したオリゴヌクレオチドで あり、発現された蛋白質の機能に大きな影響を与えない。したがって、配列番号 3に 記載の塩基配列で表わされるポリヌクレオチドは、コザックシークェンスとメチォニン に対応するコドンとからなるオリゴヌクレオチド (配列番号 19)が付加されていないが、 Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質をコードすると考える。
[0045] 配列番号 3に記載の塩基配列で表わされるポリヌクレオチドがコードする蛋白質お よび配列番号 5に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋 白質はいずれも、上記のように、 Rhoファミリー蛋白質の活性ィ匕を促進する。配列番 号 3に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋白質として 配列番号 4に記載のアミノ酸配列で表わされる蛋白質が挙げられる。配列番号 5に記 載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋白質として配列番号 6に記載のアミノ酸配列で表わされる蛋白質が挙げられる。配列番号 4若しくは 6に記 載のアミノ酸配列で表わされる蛋白質をコードするポリヌクレオチドまたは該ポリヌクレ ォチドの相補的塩基配列で表わされるポリヌクレオチドも本発明の範囲に包含される
[0046] 配列番号 3に記載の塩基配列で表わされるポリヌクレオチドが Rhoファミリー蛋白質 の活性ィ匕を促進する蛋白質をコードすると考えられることから、配列番号 3に記載の 塩基配列で表わされるポリヌクレオチドを含有するポリヌクレオチドも、 Rhoファミリー 蛋白質の活性化を促進する蛋白質をコードすると考える。また、配列番号 4に記載の アミノ酸配列で表わされる蛋白質をコードするポリヌクレオチドを含有するポリヌクレオ チドも、 Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質をコードすると考える。配列 番号 3に記載の塩基配列で表わされるポリヌクレオチドを含有するポリヌクレオチドと して例えば、配列番号 1に記載の塩基配列で表わされるポリヌクレオチドが挙げられ る。配列番号 1に記載の塩基配列で表わされるポリヌクレオチドも、 Rhoファミリー蛋 白質の活性化を促進する蛋白質をコードすると考える。
[0047] 本発明の範囲には、配列番号 3に記載の塩基配列若しくはその相補的塩基配列で 表わされるポリヌクレオチドを含有するポリヌクレオチドまたは配列番号 4に記載のアミ ノ酸配列で表わされる蛋白質をコードするポリヌクレオチド若しくは該ポリヌクレオチド の相補的塩基配列で表わされるポリヌクレオチドを含有するポリヌクレオチドも包含さ れる。好ましくは、このようなポリヌクレオチドであって、 Rhoファミリー蛋白質の活性ィ匕 を促進する蛋白質をコードするポリヌクレオチドである。さらに好ましくは、該ポリヌクレ ォチドであって、 DHZPHドメインコード領域を有するポリヌクレオチドである。
[0048] 本発明に係るポリヌクレオチドによりコードされる蛋白質によって活性ィ匕が促進され る Rhoファミリー蛋白質として、例えば Cdc42、 RhoAおよび Racl等、より好ましくは Cdc42が例示できる。 Rhoファミリー蛋白質はこれらに限定されず、本ポリヌクレオチ ドによりコードされる蛋白質によって活性ィ匕が促進される限りにお 、て 、ずれの Rho ファミリー蛋白質であってもよい。本ポリヌクレオチドによりコードされる蛋白質の、 Rh oファミリー蛋白質の活性ィ匕に対する促進機能は、例えばエフェクタープルダウン法 を使用して測定できる(実施例 4参照)。
[0049] Cdc42、 RhoAおよび Raclは、それぞれ配列表の配列番号 21、 23および 25に記 載のアミノ酸配列で表わされる蛋白質である。 Cdc42遺伝子、 RhoA遺伝子および R acl遺伝子は、それぞれ配列表の配列番号 20、 22および 24に記載の塩基配列で 表わされる遺伝子である。 Cdc42、 RhoAおよび Racl並びにこれらの遺伝子は、上 記各配列で表わされるものに限らず、一般的に知られている Cdc42、 RhoAおよび R aclの機能を有する限りにおいて、上記各配列において 1乃至数個の変異を有する 蛋白質および遺伝子であることができる。また、これらの機能を促進するあるいは欠 失させるといった所望の目的のために上記各配列に 1乃至数個の変異を導入した変 異体を用いることもできる。 Cdc42、 RhoAおよび Raclの製造は、例えばその遺伝 子を含有する組換えベクターを自体公知の遺伝子工学的方法により導入してなる形 質転換体を培養すること等により実施できる。
[0050] 本発明に係るポリヌクレオチドの取得は、本発明により開示されたその具体例、例え ば配列表の配列番号 1に記載の塩基配列で表わされるポリヌクレオチドにつ 、ての 配列情報に基づいて、公知の遺伝子工学的手法 (非特許文献 9および 10等を参照) により容易に実施できる。
[0051] 具体的には、本発明に係るポリヌクレオチドの発現が確認されている適当な起源か ら、常法に従って cDNAライブラリーを調製し、該 cDNAライブラリ一力も所望のクロ ーンを選択することにより本ポリヌクレオチドを取得できる。 cDNAの起源として、本ポ リヌクレオチドの発現が確認されている各種の細胞や組織、またはこれらに由来する 培養細胞、例えばヒトの脳由来の細胞等が例示できる。これら起源からの全 RNAの 分離、 mRNAの分離や精製、 cDNAの取得とそのクローニング等はいずれも常法に 従って実施できる。また、ヒトの脳、胎児脳および脳海馬由来の市販されている poly A+RNAから cDNAライブラリーを構築して用いることもできる。 cDNAライブラリーか ら所望のクローンを選択する方法も特に制限されず、慣用の方法を利用できる。例え ば、本ポリヌクレオチドに選択的にハイブリダィゼーシヨンするプローブやプライマー 等を用いて所望のクローンを選択できる。具体的には、本ポリヌクレオチドに選択的 にハイブリダィゼーシヨンするプローブを用いたプラークハイブリダィゼーシヨン法、コ 口-一ハイブリダィゼーシヨン法等やこれらを組合せた方法等を例示できる。ここで用
V、るプローブとして、本ポリヌクレオチドの配列情報に基づ 、て化学合成したポリヌク レオチド等が一般的に使用できる。また、既に取得された本ポリヌクレオチドやその部 分塩基配列で表わされるポリヌクレオチドも好ましく使用できる。さらに、本ポリヌクレ ォチドの配列情報に基づき設計したセンスプライマー、アンチセンスプライマーをか 力るプローブとして用いることもできる。
[0052] cDNAライブラリーからの所望のクローンの選択は、例えば公知の蛋白質発現系を 利用して各クローンにつ 、て発現蛋白質の確認を行!、、さらに該蛋白質の機能を指 標にして実施できる。本ポリヌクレオチドによりコードされる蛋白質の機能として、例え ば、 RhoA、 Cdc42および Racl等の Rhoファミリー蛋白質と結合する機能および Rh oファミリー蛋白質の活性化を促進する機能が挙げられる。蛋白質発現系として、自 体公知の発現系がいずれも利用できるが、無細胞蛋白質発現系の利用が簡便であ る (非特許文献 11)。
[0053] ここで、「Rhoファミリー蛋白質の活性化」とは、 Rhoファミリー蛋白質に結合したグァ ノシン^ 二リン酸 (GDP)をグアノシン 三リン酸 (GTP)に交換する反応を意味 する。本反応は、 Rhoファミリー蛋白質からの GDPの解離反応と、その結果生成した ヌクレオチドに結合していない Rhoファミリー蛋白質への GTPの結合反応力もなる。「 Rhoファミリー蛋白質の活性ィ匕の促進」とは、本反応の律速段階である Rhoファミリー 蛋白質からの GDPの解離反応を促進することを意味する。
[0054] 本発明に係るポリヌクレオチドの取得にはその他、ポリメラーゼ連鎖反応(以下、 PC Rと略称する、非特許文献 12— 14)による DNAZRNA増幅法が好適に利用できる 。 cDNAライブラリ一力も全長の cDNAが得られ難いような場合には、 RACE法 (非 特許文献 15)、特に^ RACE法 (非特許文献 16)等の採用が好適である。 PCR に使用するプライマーは、ポリヌクレオチドの塩基配列情報に基づ 、て適宜設計でき 、常法に従って合成により取得できる。増幅させた DNAZRNA断片の単離精製は 、常法、例えばゲル電気泳動法等により実施できる。
[0055] 力べして得られるポリヌクレオチドの塩基配列の決定は、常法、例えばジデォキシ法
(非特許文献 17)やマキサム ギルバート法 (非特許文献 18)等により、また簡便に は市販のシーケンスキット等を用いて実施できる。
[0056] 本発明に係るポリヌクレオチドは上記ポリヌクレオチドに限定されず、上記ポリヌクレ ォチドと配列相同性を有し、かつ Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質を コードするポリヌクレオチドまたは該ポリヌクレオチドの相補的塩基配列で表わされる ポリヌクレオチドを包含する。配列相同性は、通常、塩基配列の全体で約 50%以上、 好ましくは約 70%以上、より好ましくは約 80%以上、さらに好ましくは約 90%以上で あることが適当である。さらにより好ましくは、 DHZPHドメインコード領域を有するポ リヌクレオチドが望ましい。 DHZPHドメインコード領域における配列相同性は約 70 %以上、好ましくは約 80%以上、より好ましくは約 90%以上であることが適当である 。また DHZPHドメインがその機能、例えば Rhoファミリー蛋白質の活性ィ匕を促進す る機能を保持して 、ることがさらに好ま 、。
[0057] 本発明に係るポリヌクレオチドには、上記ポリヌクレオチドの塩基配列において 1個 以上、例えば 1〜: LOO個、好ましくは 1〜30個、より好ましくは 1〜20個、さらに好まし くは 1〜: LO個、特に好ましくは 1個乃至数個のヌクレオチドの欠失、置換、付加または 挿入といった変異が存する塩基配列またはその相補的塩基配列で表わされるポリヌ クレオチドが包含される。変異の程度およびそれらの位置等は、該変異を有するポリ ヌクレオチドが Rhoファミリー蛋白質の活性ィ匕を促進する機能を有する蛋白質、より 好ましくは DHZPHドメインを有する蛋白質をコードするポリヌクレオチドである限り 特に制限されない。変異を有するポリヌクレオチドは、天然に存在するポリヌクレオチ ドであってよぐ誘発変異を有するポリヌクレオチドであってよい。また、天然由来の遺 伝子に基づ 、て変異を導入して得たポリヌクレオチドであってもよ!/、。変異を導入す る方法は自体公知であり、例えば、部位特異的変異導入法、遺伝子相同組換え法、 プライマー伸長法または PCR等を、単独でまたは適宜組合せて用いることができる。 例えば成書に記載の方法 (非特許文献 9よび 10)に準じて、あるいはそれらの方法を 改変して実施することができ、ウルマーの技術 (非特許文献 12)を利用することもでき る。
[0058] 本発明に係るポリヌクレオチドとしてはまた、上記ポリヌクレオチドにストリンジェント な条件下でハイブリダィゼーシヨンするポリヌクレオチドを例示できる。ハイブリダィゼ ーシヨンの条件は、例えば成書に記載の方法 (非特許文献 9)等に従うことができる。 具体的には、「ストリンジェントな条件下」とは、例えば、 6 X SSC、 0. 5% SDSおよ び 50% ホノレムアミドの溶液中で 42。Cにてカロ温した後、 0. 1 X SSC、 0. 5% SDS の溶液中で 68°Cにて洗浄する条件をいう。これらポリヌクレオチドは本ポリヌクレオチ ドにハイブリダィゼーシヨンするポリヌクレオチドであれば相補的配列を有するポリヌク レオチドでなくてもよい。好ましくは、コードする蛋白質が Rhoファミリー蛋白質の活性 化を促進する機能を有する蛋白質であり、より好ましくは DHZPHドメインを有する蛋 白質であることが望ましい。
[0059] 本発明に係るポリヌクレオチドには、上記ポリヌクレオチドの指定された領域に存在 する部分塩基配列で表わされるオリゴヌクレオチドが包含される。このようなオリゴヌク レオチドは、その最小単位として好ましくは該領域において連続する 5個以上のヌク レオチド、より好ましくは 10個以上、より好ましくは 20個以上のヌクレオチド力もなる。 これらオリゴヌクレオチドは、本発明に係るポリヌクレオチドの塩基配列情報に従って 、所望の配列を設計し、自体公知の化学合成法により製造できる。簡便には、 DNA /RNA自動合成装置を用いてオリゴヌクレオチドを製造できる。これらオリゴヌクレオ チドは、本遺伝子または本遺伝子断片を増幅するためのプライマー、本遺伝子また はその転写産物を検出するためのプローブ等として用いることができる。
[0060] 本発明に係るポリヌクレオチドの指定された領域に存在する部分塩基配列で表わさ れるオリゴヌクレオチドとして、配列表の配列番号 7、 8、 9または 10に記載の塩基配 列で表わされるオリゴヌクレオチドを好ましく例示できる。
[0061] 本発明に係るポリヌクレオチドはヒト由来のポリヌクレオチドである力 本ポリヌクレオ チドと配列相同性を有し、 Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質をコード するポリヌクレオチド、好ましくは DHZPHドメインコード領域を有するポリヌクレオチ ドである限りにおいて、哺乳動物由来のポリヌクレオチド、例えばマウス、ゥマ、ヒッジ 、ゥシ、ィヌ、サル、ネコ、クマ、ラットまたはゥサギ等由来のポリヌクレオチドも本発明 に包含される。
[0062] 本発明に係るポリヌクレオチドは、その発現あるいはそれがコードする蛋白質の機 能、例えば Rhoファミリー蛋白質の活性ィ匕を促進する機能が阻害されない限りにお いて、 5,末端側や ^末端側に所望の遺伝子が付加されたポリヌクレオチドであって よい。本ポリヌクレオチドに付加することのできる遺伝子は、具体的には例えばグルタ チオン S トランスフェラーゼ(GST)、 β ガラクトシダーゼ( 13 Gal)、ホースラデ イツシュパーォキシダーゼ(HRP)またはアルカリホスファターゼ (ALP)等の酵素類、 あるいは His— tag、 Myc— tag、 HA -tag, FLAG— tagまたは Xpress— tag等の タグペプチド類等の遺伝子を例示できる。これら遺伝子から選択した 1種類または複 数種類の遺伝子を組合せて本ポリヌクレオチドに付加できる。これら遺伝子の付加は 、慣用の遺伝子工学的手法により行うことができ、遺伝子や mRNAの検出を容易に するために有用である。
[0063] (ベクター) 本発明の一態様は、本発明に係るポリヌクレオチドを含有する組換えベクターに関 する。本組換えベクターは、本ポリヌクレオチドを適当なベクター DNAに挿入するこ とにより取得できる。
[0064] ベクター DNAは宿主中で複製可能なものであれば特に限定されず、宿主の種類 および使用目的により適宜選択される。ベクター DNAは、天然に存在する DNAを 抽出して得られたベクター DNAの他、複製に必要な部分以外の DNAの部分が一 部欠落しているベクター DNAでもよい。代表的なベクター DNAとして例えば、プラス ミド、バタテリオファージおよびウィルス由来のベクター DNAを挙げられる。プラスミド DNAとして、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミ ド等を例示できる。バタテリオファージ DNAとして、 λファージ等が挙げられる。ウイ ルス由来のベクター DNAとして例えば、レトロウイルス、ワクシニアウィルス、アデノウ ィルス、パポバウィルス、 SV40、鶏痘ウィルス、および仮性狂犬病ウィルス等の動物 ウイノレス由来のベクター、あるいはバキュロウイノレス等の昆虫ウイノレス由来のベクター が挙げられる。その他、トランスポゾン由来、挿入エレメント由来、酵母染色体エレメン ト由来のベクター DNA等を例示できる。あるいは、これらを組合せて作成したベクタ 一 DNA、例えばプラスミドおよびバタテリオファージの遺伝学的エレメントを組合せて 作成したベクター DNA (コスミドゃファージミド等)を例示できる。
[0065] ベクター DNAは、発現ベクターやクローユングベクター等、 目的に応じていずれも 用いることができる。本発明に係るポリヌクレオチドを含有する組換え発現ベクターは 、本ポリヌクレオチドによりコードされる蛋白質の製造に有用である。
[0066] ベクター DNAには、本発明に係るポリヌクレオチドの機能が発揮されるように該ポリ ヌクレオチドを組込むことが必要であり、少なくとも本ポリヌクレオチドとプロモーターと をその構成要素とする。これら要素に加えて、所望によりさらに、複製そして制御に関 する情報を担持した遺伝子配列を組合せて自体公知の方法によりベクター DNAに 組込むことができる。力かる遺伝子配列として、リボソーム結合配列、ターミネータ一、 シグナル配列、ェンハンサ一等のシスエレメント、スプライシングシグナル、および選 択マーカー(ジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン 耐性遺伝子等)等を例示できる。これらから選択した 1種類または複数種類の遺伝子 配列をベクター DNAに組込むことができる。
[0067] ベクター DNAに本発明に係るポリヌクレオチドを組込む方法は、自体公知の方法 を適用できる。例えば、本ポリヌクレオチドを含む遺伝子を適当な制限酵素により処 理して特定部位で切断し、次いで同様に処理したベクター DNAと混合し、リガーゼ により再結合する方法が利用できる。あるいは、本ポリヌクレオチドに適当なリンカ一 をライゲーシヨンし、これを目的に適したベクターのマルチクローユングサイトへ挿入 することによつても、所望の組換えベクターが取得できる。
[0068] (形質転換体)
本発明の一態様は、本発明に係る組換えベクターにより、宿主を形質転換して得ら れる形質転換体に関する。本発明に係るポリヌクレオチドを含有する組換え発現べク ターを導入した形質転換体は、本ポリヌクレオチドによりコードされる蛋白質の製造に 有用である。本形質転換体には、本ポリヌクレオチド以外の所望の遺伝子を含有する ベクター DNAの 1種類または複数種類をさらに導入できる。本ポリヌクレオチド以外 の所望の遺伝子を含有するベクター DNAとして、例えば、 RhoA、 Raclまたは Cdc 42等の Rhoファミリー蛋白質をコードする遺伝子を含有するベクター DNAが挙げら れる。本ポリヌクレオチドを含有する発現ベクターと Rhoファミリー蛋白質をコードする 遺伝子を含有する発現ベクターとにより形質転換して得られる形質転換体は、本ポリ ヌクレオチドによりコードされる蛋白質による Rhoファミリー蛋白質の活性ィ匕促進を阻 害する化合物の同定方法に使用できる。このような形質転換として好ましくは、本発 明に係る組換えベクターと Cdc42をコードするポリヌクレオチドを含有する組換えべク ターとにより形質転換して得られる形質転換体が挙げられる。
[0069] 宿主として、原核生物および真核生物の!/、ずれも用いることができる。原核生物とし て、例えば大腸菌(ェシエリヒアコリ(Escherichia coli) )等のェシエリヒア属、枯草 菌等のバシラス属、シユードモナスプチダ(Pseudomonas putida)等のシユードモ ナス属、リゾビゥムメリロティ(Rhizobium meliloti)等のリゾビゥム属に属する細菌 が挙げられる。真核生物として、酵母、昆虫細胞および哺乳動物細胞等の動物細胞 を例示できる。酵母は、サッカロミセス ·セレビシェ (Saccharomyces cerevisiae)、 シゾサッカロミセスボンべ(Schizosaccharomyces pombe)等が挙げられる。昆虫 細胞は、 Sf 9細胞や Sf 21細胞等を例示できる。哺乳動物細胞は、サル腎由来細胞( COS細胞、 Vero細胞等)、チャイニーズノ、ムスター卵巣細胞(CHO細胞)、マウス L 細胞、ラット GH3細胞、ヒト FL細胞や 293EBNA細胞等が例示できる。好ましくは哺 乳動物細胞を用いる。最も好ましくは、 293EBNA細胞を用いる。
[0070] ベクター DNAの宿主細胞への導入は、自体公知の手段が応用され、例えば成書 に記載されている標準的な方法 (非特許文献 9)により実施できる。より好ましい方法 として、遺伝子の安定性を考慮するならば染色体内へのインテグレート法が挙げられ るが、簡便には核外遺伝子を利用した自律複製系を使用できる。具体的には、リン酸 カルシウムトランスフエクシヨン、 DEAE—デキストラン媒介トランスフエクシヨン、マイク 口インジェクション、陽イオン脂質媒介トランスフエクシヨン、エレクト口ポレーシヨン、形 質導入、スクレープ負荷(scrape loading)、バリスティック導入(ballistic introdu ction)および感染等が挙げられる。
[0071] 原核生物を宿主とする場合、組換えベクターが該原核生物中で自律複製可能であ ると同時に、プロモーター、リボゾーム結合配列、本発明に係るポリヌクレオチド、転 写終結配列により構成されていることが好ましい。また、プロモーターを制御する遺伝 子が含まれていてもよい。細菌を宿主とする場合、プロモーターは大腸菌等の細菌 中で発現できるプロモーターであればいずれも利用可能である。例えば、 trpプロモ 一ター、 lacプロモーター、 PLプロモーター、 PRプロモーター等の、大月昜菌ゃファー ジに由来するプロモーターが用いられる。 tacプロモーター等の人為的に設計改変さ れたプロモーターを用いてもよい。細菌への糸且換えベクターの導入方法は、細菌に D NAを導入する方法であれば特に限定されず、いずれも利用可能である。好ましくは 例えば、カルシウムイオンを用いる方法、エレクト口ポレーシヨン法等を利用できる。
[0072] 哺乳動物細胞を宿主とする場合、組換えベクターが該細胞中で自律複製可能であ ると同時に、プロモーター、 プライス部位、本発明に係るポリヌクレオチド、ポリ アデニル化部位、転写終結配列により構成されていることが好ましい。また、所望によ り複製起点が含まれていてもよい。プロモーターは、 SR aプロモーター、 SV40プロ モーター、 LTRプロモーター、 CMVプロモーター等が用いられ、また、サイトメガロウ ィルスの初期遺伝子プロモーター等を用いてもよ ヽ。哺乳動物細胞への組換えべク ターの導入方法は、好ましくは例えば、エレクト口ポレーシヨン法、リン酸カルシウム法 、リポフエクシヨン法等が利用できる。最も好ましくは、リポフエクシヨン法が用いられる
[0073] 酵母を宿主とする場合、プロモーターは、酵母中で発現できるプロモーターであれ ば特に限定されず、例えば、 gallプロモーター、 gallOプロモーター、ヒートショック 蛋白質プロモーター、 MF a 1プロモーター、 PH05プロモーター、 PGKプロモータ 一、 GAPプロモーター、 ADHプロモーター、 AOX1プロモーター等が挙げられる。 酵母への組換えベクターの導入方法は、酵母に DNAを導入する方法であれば特に 限定されず、好ましくは例えば、エレクト口ポレーシヨン法、スフエロプラスト法、酢酸リ チウム法等が利用できる。
[0074] 昆虫細胞を宿主とする場合、組換えベクターの導入方法は、好ましくは例えば、リン 酸カルシウム法、リポフエクシヨン法、エレクト口ポレーシヨン法等が利用できる。
[0075] (蛋白質)
本発明の一態様は、本発明に係るポリヌクレオチドによりコードされる蛋白質に関す る。
[0076] 本発明に係る蛋白質の具体的態様として、例えば配列番号 1に記載の塩基配列で 表わされるポリヌクレオチドによりコードされる蛋白質が挙げられる。より具体的には、 力かる蛋白質として配列番号 2に記載のアミノ酸配列で表わされる蛋白質を例示でき る。本蛋白質において、その第 97番目ノ リン (Val)力も第 271番目ァスパラギン酸( Asp)までのアミノ酸配列に DHドメイン力 第 297番目ロイシン(Leu)力 第 394番 目ロイシン (Leu)までのアミノ酸配列に PHドメインが存在する。第 97番目ノ リン (Val )力も第 394番目ロイシン (Leu)までのアミノ酸配列に DHZPHドメインが存在する。
[0077] 本発明に係る蛋白質としてまた、配列番号 3または 5に記載の塩基配列で表わされ るポリヌクレオチドによりコードされる蛋白質が挙げられる。より具体的には、配列番号 3に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋白質として配 列番号 4に記載のアミノ酸配列で表わされる蛋白質を例示できる。また、配列番号 5 に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋白質として配列 番号 6に記載のアミノ酸配列で表わされる蛋白質を例示できる。配列番号 4に記載の アミノ酸配列は、配列番号 2に記載のアミノ酸配列の第 90番目のリジン (Lys)力 第 454番目のロイシン (Leu)までのアミノ酸配列に相当する。また、配列番号 6に記載 のアミノ酸配列は、配列番号 4に記載のアミノ酸配列の N末端にメチォニンがぺプチ ド結合により付加されたアミノ酸配列である。すなわち、これら各アミノ酸配列で表わ される蛋白質は、 DH/PHドメインを含んでいる。
[0078] 本発明に係る蛋白質は、好ましくは Rhoファミリー蛋白質の活性ィ匕を促進する機能 を有する蛋白質である。かかる蛋白質として、配列番号 5に記載の塩基配列で表わさ れるポリヌクレオチドによりコードされる蛋白質を好ましく例示できる。配列番号 5に記 載の塩基配列で表わされるポリヌクレオチドと、 RhoA、 Cdc42および Raclといった 各 Rhoファミリー蛋白質をコードする遺伝子とを共に発現させた動物細胞において、 該ポリヌクレオチドによりコードされる蛋白質は各 Rhoファミリー蛋白質と結合すること がプルダウン法により判明した (実施例 3参照)。また、当該動物細胞において、 Cdc 42の活性化が促進された (実施例 4参照)。これらから、配列番号 5に記載の塩基配 列で表わされるポリヌクレオチドによりコードされる蛋白質は、 Rhoファミリー蛋白質と 結合してその活性化を促進すると考える。配列番号 5に記載の塩基配列で表わされ るポリヌクレオチドによりコードされる蛋白質は、配列番号 3に記載の塩基配列で表わ されるポリヌクレオチドによりコードされる蛋白質の N末端にメチォニンがペプチド結 合により付加された蛋白質である。配列番号 5に記載の塩基配列で表わされるポリヌ クレオチドによりコードされる蛋白質は、配列番号 3に記載の塩基配列で表わされる ポリヌクレオチドの発現を目的として該ポリヌクレオチドの^末端にコザックシークェン スとメチォニンに対応するコドンとからなるオリゴヌクレオチド (配列番号 19)を付加し た結果、得られた蛋白質である。付加されたメチォニンは、発現された蛋白質の機能 に大きな影響を与えない。したがって、配列番号 3に記載の塩基配列で表わされるポ リヌクレオチドによりコードされる蛋白質は、 N末端のメチォニンが付加されていない 力 Rhoファミリー蛋白質と結合してその活性ィ匕を促進すると考える。
[0079] 配列番号 3に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋白 質は、上記のように、配列番号 5に記載の塩基配列で表わされるポリヌクレオチドによ りコードされる蛋白質と同様、 Rhoファミリー蛋白質と結合してその活性ィ匕を促進する と考えられる。また、これら蛋白質に含まれる DHZPHドメインは、 Rhoファミリー蛋白 質の活性ィ匕に寄与する重要なドメインであることが知られている。
[0080] これらから、配列番号 3に記載の塩基配列で表わされるポリヌクレオチドによりコード される蛋白質を含有する蛋白質も Rhoファミリー蛋白質と結合してその活性ィ匕を促進 すると考える。かかる蛋白質として、配列番号 3に記載の塩基配列で表わされるポリヌ クレオチドを含有するポリヌクレオチドによりコードされる蛋白質が挙げられる。また、 配列番号 3に記載の塩基配列で表わされるポリヌクレオチドが配列番号 4に記載のァ ミノ酸配列で表わされる蛋白質をコードすることから、配列番号 4に記載のアミノ酸配 列で表わされる蛋白質をコードするポリヌクレオチドを含有するポリヌクレオチドにより コードされる蛋白質が同様に力かる蛋白質として例示できる。具体的には、配列番号 3に記載の塩基配列で表わされるポリヌクレオチドを含有するポリヌクレオチドによりコ ードされる蛋白質として、配列番号 1に記載の塩基配列で表わされるポリヌクレオチド によりコードされる蛋白質が例示できる。配列番号 1に記載の塩基配列で表わされる ポリヌクレオチドによりコードされる蛋白質として、配列番号 2に記載のアミノ酸配列で 表わされる蛋白質が挙げられる。これら例示した蛋白質はいずれも、 Rhoファミリー蛋 白質と結合してその活性ィ匕を促進すると考える。
[0081] 本発明の範囲には、配列番号 3に記載の塩基配列若しくはその相補的塩基配列で 表わされるポリヌクレオチドを含有するポリヌクレオチドまたは配列番号 4に記載のアミ ノ酸配列で表わされる蛋白質をコードするポリヌクレオチド若しくは該ポリヌクレオチド の相補的塩基配列で表わされるポリヌクレオチドを含有するポリヌクレオチドであって 、 Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質をコードするポリヌクレオチドによ りコードされる蛋白質も包含される。
[0082] 本発明に係る蛋白質は上記蛋白質に限定されず、本発明に係るポリヌクレオチドに よりコードされる蛋白質であればいずれも本発明の範囲に包含される。好ましくは、本 発明に係るポリヌクレオチドによりコードされる蛋白質であって、 Rhoファミリー蛋白質 の活性ィ匕を促進する機能を有する蛋白質が望ましい。かかる蛋白質として、例えば、 配列番号 1に記載の塩基配列またはその相補的塩基配列で表わされるポリヌクレオ チド、配列番号 2に記載のアミノ酸配列で表わされる蛋白質をコードするポリヌクレオ チドまたは該ポリヌクレオチドの相補的塩基配列で表わされるポリヌクレオチド、配列 番号 3若しくは 5に記載の塩基配列またはその相補的塩基配列で表わされるポリヌク レオチド、および配列番号 4若しくは 6に記載のアミノ酸配列で表わされる蛋白質をコ ードするポリヌクレオチドまたは該ポリヌクレオチドの相補的塩基配列で表わされるポ リヌクレオチド力 なる群より選ばれるいずれか 1のポリヌクレオチドの塩基配列と少な くとも 70%の相同性を有する塩基配列で表わされるポリヌクレオチドであって、 Rhoフ アミリー蛋白質の活性ィ匕を促進する蛋白質をコードするポリヌクレオチドによりコードさ れる蛋白質が挙げられる。また、例えば、上記ポリヌクレオチド群より選ばれるいずれ 力 1のポリヌクレオチドの塩基配列において 1乃至数個のヌクレオチドの欠失、置換、 付加等の変異あるいは誘発変異を有する塩基配列で表わされるポリヌクレオチドで あって、 Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質をコードするポリヌクレオチ ドによりコードされる蛋白質が挙げられる。さらに、上記ポリヌクレオチド群より選ばれ るいずれ力 1のポリヌクレオチドとストリンジェントな条件下でハイブリダィゼーシヨンす るポリヌクレオチドであって、 Rhoファミリー蛋白質の活性ィ匕を促進する蛋白質をコー ドするポリヌクレオチドによりコードされる蛋白質であってもよい。
本発明に係るこのような蛋白質として、より具体的には、配列番号 2、 4または 6に記 載のアミノ酸配列で表わされる蛋白質と配列相同性を有し、かつ Rhoファミリー蛋白 質の活性化を促進する機能を有する蛋白質が例示できる。配列相同性は、通常、ァ ミノ酸配列の全体で約 50%以上、好ましくは約 70%以上、より好ましくは約 80%以 上、さらに好ましくは約 90%以上であることが適当である。さらにより好ましくは、 DH ZPHドメインを有する蛋白質が望ましい。 DHZPHドメインにおける配列相同性は 約 70%以上、好ましくは約 80%以上、より好ましくは約 90%以上であることが適当で ある。また DHZPHドメインがその機能、例えば Rhoファミリー蛋白質の活性ィ匕を促 進する機能を保持していることがさらに好ましい。また、本蛋白質として、配列番号 2、 4または 6に記載のアミノ酸配列において 1個以上、例えば 1〜: L00個、好ましくは 1 〜30個、より好ましくは 1〜20個、さらに好ましくは 1〜: L0個、特に好ましくは 1個乃 至数個のアミノ酸の欠失、置換、付加または挿入といった変異を有するアミノ酸配列 で表わされ、かつ Rhoファミリー蛋白質の活性化を促進する機能を有する蛋白質が 例示できる。アミノ酸の変異の程度およびそれらの位置等は、該変異を有する蛋白 質が、 Rhoファミリー蛋白質の活性ィ匕を促進する機能を有する蛋白質、より好ましくは DHZPHドメインを有する蛋白質である限り特に制限されない。かかる変異を有する 蛋白質は、天然において例えば突然変異や翻訳後の修飾等により生じたものであつ てよぐまた天然由来の遺伝子に基づいて変異を導入して得たものであってもよい。 変異を導入する方法は自体公知であり、例えば、公知の遺伝子工学的技術を利用し て実施できる。変異の導入において、当該蛋白質の基本的な性質 (物性、機能、生 理活性または免疫学的活性等)を変化させないという観点からは、例えば、同族アミ ノ酸 (極性アミノ酸、非極性アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽性荷電アミノ 酸、陰性荷電アミノ酸および芳香族アミノ酸等)の間での相互の置換は容易に想定さ れる。
[0084] 本発明に係る蛋白質にはさらに、上記蛋白質の部分配列で表わされる蛋白質が包 含される。例えば、配列番号 2、 4または 6に記載のアミノ酸配列で表わされる蛋白質 の部分配列で表わされる蛋白質も本発明の範囲に包含される。かかる蛋白質は、そ の最小単位として好ましくは 5個以上、より好ましくは 8個以上、さらに好ましくは 12個 以上、特に好ましくは 15個以上の連続するアミノ酸で表わされる。
[0085] 本発明に係る蛋白質はヒト由来の蛋白質であるが、本蛋白質と配列相同性を有し、 かつ Rhoファミリー蛋白質の活性ィ匕を促進する機能を有する蛋白質、好ましくは DH ZPHドメインを有する蛋白質である限りにおいて、哺乳動物由来の蛋白質、例えば マウス、ゥマ、ヒッジ、ゥシ、ィヌ、サル、ネコ、クマ、ラットまたはゥサギ等由来の蛋白 質も本発明に包含される。
[0086] 本発明に係る蛋白質は、本蛋白質をコードする遺伝子を遺伝子工学的手法で発 現させた細胞や生体試料から調製したもの、無細胞系合成産物または化学合成産 物であってよぐあるいはこれらからさらに精製されたものであってもよい。また、本蛋 白質は、本蛋白質をコードする遺伝子を含む細胞において発現しているものであり 得る。該細胞は、本蛋白質をコードする遺伝子を含むベクターをトランスフエクシヨン して得られた形質転換体であり得る。
[0087] 本発明に係る蛋白質はさらに、その構成アミノ基またはカルボキシル基等を、例え ばアミド化修飾する等、機能の著し 、変更を伴わない限りにお 、て改変が可能であ る。また、 N末端側や C末端側に別の蛋白質等を、直接的に、またはリンカ一べプチ ド等を介して間接的に、遺伝子工学的手法等を用いて付加することにより標識ィ匕した ものであってよい。好ましくは、本蛋白質の基本的な性質が阻害されないような標識 化が望ましい。さらに好ましくは、本蛋白質の Rhoファミリー蛋白質の活性ィ匕促進機 能が阻害されないような標識ィ匕が好ましい。標識ィ匕に用いる物質 (標識物質)は、 GS Τ、 β— Gal、 HRPまたは ALP等の酵素類、 His— tag、 Myc— tag、 HA— tag、 FL AG— tagまたは Xpress— tag等のタグペプチド類、フルォレセインイソチオシァネー ト (fluorescein isothiocyanate)またはフィコエリスリン (phycoerythrin)等の: ¾: 光物質類、マルトース結合蛋白質、免疫グロブリンの Fc断片あるいはピオチン等が 例示できるが、これらに限定されない。また、放射性同位元素による標識化も可能で ある。標識物質は、 1種類または複数種類を組合せて本蛋白質に付加できる。これら 標識物質自体またはその機能の測定により、本蛋白質を容易に検出または精製可 能であり、また、例えば本蛋白質と他の蛋白質との結合の検出や本蛋白質の機能の 測定が可能である。
[0088] (蛋白質の製造方法)
本発明の一態様は、本発明に係る蛋白質の製造方法に関する。本蛋白質は、例え ば本蛋白質をコードする遺伝子の塩基配列情報に基づいて一般的遺伝子工学的手 法 (非特許文献 9、 10、 12および 13等を参照)により取得可能である。例えば、本発 明に係るポリヌクレオチドの発現が確認されて 、る各種の細胞や組織、またはこれら に由来する培養細胞力 常法に従って cDNAライブラリーをまず調製する。次いで、 本蛋白質をコードする遺伝子に選択的にハイブリダィゼーシヨンするプライマーを用 いて、該 cDNAライブラリ一力も本ポリヌクレオチドを増幅する。得られたポリヌクレオ チドの発現誘導を公知の遺伝子工学的手法を利用して行うことにより、本蛋白質を取 得できる。
[0089] 具体的には例えば、本発明に係る形質転換体を培養し、次いで得られた培養物か ら本蛋白質を回収することにより、本蛋白質を製造できる。本形質転換体の培養は、 各々の宿主に最適な自体公知の培養条件および培養方法で行うことができる。培養 は、形質転換体により発現される本蛋白質自体または本蛋白質の機能、例えば Rho ファミリー蛋白質の活性ィ匕を促進する機能を指標にして実施できる。あるいは、宿主 中または宿主外に産生された本蛋白質自体またはその蛋白質量を指標にして培養 してもよぐ培地中の形質転換体量を指標にして継代培養またはバッチ培養を行って ちょい。
[0090] 本発明に係る蛋白質が形質転換体の細胞内あるいは細胞膜上に発現する場合に は、形質転換体を破砕して本蛋白質を抽出する。また、本蛋白質が形質転換体外に 分泌される場合には、培養液をそのまま使用するか、遠心分離処理等により形質転 換体を除去した培養液を用いる。
[0091] 本発明に係る蛋白質は、所望により、形質転換体を培養した培養液または形質転 換体から、その物理的性質、化学的性質等を利用した各種分離操作方法により分離 および Zまたは精製できる。分離および Zまたは精製は、本蛋白質の機能、例えば
Rhoファミリー蛋白質の活性ィ匕を促進する機能を指標にして実施できる。分離操作 方法として、例えば硫酸アンモニゥム沈殿、限外ろ過、ゲルクロマトグラフィー、イオン 交換クロマトグラフィー、ァフィ-ティークロマトグラフィー、高速液体クロマトグラフィー 、透析法等を単独でまたは適宜組合せて用いることができる。好ましくは、本蛋白質 のアミノ酸配列情報に基づき、これらに対する特異的抗体を作製し、該抗体を用いて 特異的に吸着する方法、例えば該抗体を結合させたカラムを利用するァフィ二テイク 口マトグラフィーを用いることが推奨される。
[0092] 本発明に係る蛋白質はまた、一般的な化学合成法により製造できる。蛋白質の化 学合成方法として、例えば、固相合成方法、液相合成方法等が知られているがいず れも利用可能である。力かる蛋白質合成法は、より詳しくは、アミノ酸配列情報に基づ V、て、各アミノ酸を 1個ずつ逐次結合させて鎖を延長させて 、く 、わゆるステップワイ ズェロンゲーシヨン法と、アミノ酸数個力もなるフラグメントを予め合成し、次いで各フ ラグメントをカップリング反応させるフラグメントコンデンセーシヨン法とを包含する。本 蛋白質の合成は、そのいずれによっても行うことができる。上記蛋白質合成法におい て利用される縮合法も常法に従うことができる。縮合法として、例えば、アジド法、混 合酸無水物法、 DCC法、活性エステル法、酸化還元法、 DPPA (ジフヱニルホスホリ ルアジド)法、 DCC +添カ卩物(1—ヒドロキシベンゾトリァゾール、 N—ヒドロキシサクシ ンアミド、 N—ヒドロキシ一 5—ノルボルネン一 2, 3—ジカルボキシイミド等)法、ウッド ワード法等が例示できる。化学合成により得られる本蛋白質はさらに、上記のような慣 用の各種精製方法により適宜精製を行うことができる。
[0093] 本発明に係る蛋白質の部分配列で表わされる蛋白質は、本蛋白質を適当なぺプ チダーゼにより切断することによつても得ることができる。
[0094] (抗体)
本発明の一態様は、本発明に係る蛋白質を認識する抗体に関する。本抗体は、本 蛋白質を抗原として用いて作製できる。抗原として、本蛋白質およびその断片のいず れを用いることもできる。断片を用いるときは、該断片は少なくとも 8個、好ましくは少 なくとも 10個、より好ましくは少なくとも 12個、さらに好ましくは 15個以上のアミノ酸で 構成される。本蛋白質に特異的な抗体を作成するためには、本蛋白質に固有なアミ ノ酸配列からなる領域を抗原として用いることが好まし 、。この領域のアミノ酸配列は 、必ずしも該蛋白質またはその断片のアミノ酸配列と同一である必要はなぐその立 体構造上の外部への露出部位が好ま 、。露出部位のアミノ酸配列が一次構造上 で不連続であっても、該露出部位について連続的なアミノ酸配列であればよい。本 抗体は本蛋白質を特異的に認識する抗体であればいずれであってもよぐ特に限定 されない。本蛋白質を特異的に認識するとは、本蛋白質を認識する、例えば本蛋白 質に結合するが、本蛋白質以外の蛋白質は認識しないか、弱く認識することを意味 する。認識の有無は、公知の抗原抗体結合反応により決定できる。
[0095] 抗体の産生には、自体公知の抗体作製法を利用できる。例えば、抗原をアジュバ ントの存在下または非存在下で、単独でまたは担体に結合して動物に投与し、体液 性応答および Zまたは細胞性応答等の免疫誘導を行うことにより抗体が得られる。担 体は、それ自体が宿主に対して有害作用を示さずかつ抗原性を増強せしめる限りに おいて、公知の担体をいずれも使用できる。具体的には、セルロース、重合アミノ酸、 アルブミンおよびキーホールリンペットへモシァニン等を例示できる。アジュバントは、 フロイント完全アジュバント(FCA)、フロイント不完全アジュバント(FIA)、 Ribi (MPL )、 Ribi (TDM)、 Ribi (MPL + TDM)、百日咳ワクチン(Bordetella pertussis v accine)、ムラミルジペプチド(MDP)、アルミニウムアジュバント(ALUM)、およびこ れらの組み合わせを例示できる。免疫される動物は、マウス、ラット、ゥサギ、ャギ、ゥ マ等が好適に用いられる。
[0096] ポリクローナル抗体は、免疫手段を施された動物の血清から自体公知の抗体回収 法により取得できる。好ましい抗体回収手段として免疫ァフィ二ティクロマトグラフィー 法が挙げられる。
[0097] モノクローナル抗体は、免疫手段が施された動物から抗体産生細胞 (例えば、脾臓 またはリンパ節由来のリンパ球)を回収し、自体公知の永久増殖性細胞 (例えば、 P3 —X63—Ag8株等のミエローマ株)への形質転換手段を導入することにより生産でき る。例えば、抗体産生細胞と永久増殖性細胞とを自体公知の方法で融合させてハイ ブリドーマを作成してこれをクローン化する。クローン化した種々のハイブリドーマから 、本発明に係る蛋白質を特異的に認識する抗体を産生するハイブリドーマを選別し、 該ハイブリドーマの培養液力 抗体を回収する。
[0098] 本発明に係る蛋白質を認識または結合し得るポリクローナル抗体またはモノクロ一 ナル抗体は、該蛋白質の精製用抗体、試薬または標識マーカー等として利用できる 。特に本蛋白質の機能を阻害する抗体は、本蛋白質の機能調節に使用でき、本蛋 白質の機能異常や量的異常に起因する各種疾患の解明、防止、改善および Zまた は治療のために有用である。
[0099] (化合物の同定方法)
本発明の一態様は、本発明に係る蛋白質の機能を阻害する化合物、あるいは本発 明に係るポリヌクレオチドの発現を阻害する化合物の同定方法に関する。本同定方 法は、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体または 抗体のうち少なくともいずれか 1種類を用いて、自体公知の医薬品スクリーニングシス テムを利用して実施できる。本同定方法は、インビトロまたはインビボで実施されるい ずれの方法も包含する。本同定方法により、本蛋白質の立体構造に基づくドラッグデ ザインによる拮抗剤の選別、蛋白質合成系を利用した遺伝子レベルでの発現の阻害 剤の選別、または抗体を利用した抗体認識物質の選別等が実施できる。
[0100] 本発明に係る蛋白質の機能を阻害する化合物の同定方法は、本蛋白質の機能を 測定し得る実験系において、本蛋白質と調べようとする化合物 (被検化合物)の相互 作用を可能にする条件下で、本蛋白質と被検化合物とを共存させてその機能を測定 し、次いで、被検化合物の存在下における本蛋白質の機能と、被検化合物の非存在 下における本蛋白質の機能とを比較し、本蛋白質の機能の存在、不存在または変化 、例えば低減、増カロ、消失、出現を検出することにより実施可能である。被検化合物 の非存在下における本蛋白質の機能と比較して、被検化合物の存在下における本 蛋白質の機能が低減または消失する場合、該被検化合物は本蛋白質の機能を阻害 すると判定できる。機能の測定は、該機能の直接的な検出により、または例えば機能 の指標となるシグナルを実験系に導入して該シグナルを検出することにより実施でき る。シグナルは、 GST等の酵素類、 His— tag、 Myc— tag、 HA— tag、 FLAG— ta gまたは Xpress— tag等のタグペプチド類、または蛍光蛋白質等が例示できる力 一 般的に化合物の同定方法に用いられて 、る標識物質であれば 、ずれも利用できる。
[0101] 本発明に係る蛋白質の機能として、例えば Rhoファミリー蛋白質の活性ィ匕を促進す る機能および Rhoファミリー蛋白質と結合する機能が挙げられる。
[0102] 本発明に係る蛋白質の Rhoファミリー蛋白質との結合機能を指標にした同定方法 は、例えば、本蛋白質を遺伝子工学的手法により発現させて取得し、被検化合物の 存在下または非存在下における Rhoファミリー蛋白質との結合の検出を行うことによ り実施できる。具体的には、例えば Rhoファミリー蛋白質を遺伝子工学的手法により GST— tag融合蛋白質として発現させ、その後ダルタチオンセファロースに結合させ 、被検化合物の存在下または非存在下で、本蛋白質と反応させる。ダルタチオンセ ファロースに結合させた Rhoファミリー蛋白質に結合する本蛋白質を定量することに より、本蛋白質の Rhoファミリー蛋白質との結合機能を阻害する化合物の同定が可能 である。被検化合物の非存在下における両蛋白質の結合と比較して、被検化合物の 存在下における両蛋白質の結合が低減または消失する場合、該被検化合物は本蛋 白質の Rhoファミリー蛋白質との結合機能を阻害すると判定できる。本蛋白質の定量 は、例えば、本発明に係る抗体を用いて実施できる。抗体は、 HRPや ALP等の酵素 、放射性同位元素、蛍光物質またはピオチン等の標識物質で標識した抗体を用いる ことができる。あるいは、標識した二次抗体を用いてもよい。本蛋白質として、タグべ プチドを融合した蛋白質を用いれば、抗タグ抗体を用いて定量を実施できる。または 、本蛋白質を上記酵素、放射性同位元素、蛍光物質、ピオチン等の標識物質で直 接標識して用いてもよい。このような場合、標識物質を測定することにより、本蛋白質 の定量を実施できる。
[0103] より具体的には、本発明に係る蛋白質をコードするポリヌクレオチドと Rhoファミリー 蛋白質をコードするポリヌクレオチドとを共発現させた適当な細胞を用い、両蛋白質 の結合をプルダウン法により検出する実験系(実施例 3参照)を用いて、該結合を阻 害する化合物を同定できる。
[0104] 本発明に係る同定方法に、公知のツーハイブリッド (two— hybrid)法を用いること もできる。例えば、本発明に係る蛋白質と DNA結合蛋白質を融合蛋白質として発現 するプラスミド、 Rhoファミリー蛋白質と転写活性化蛋白質を融合蛋白として発現する プラスミド、および適切なプロモーター遺伝子に接続したレポーター遺伝子を含有す るプラスミドを、酵母または真核細胞等に導入する。次いで、被検化合物の存在下に おけるレポーター遺伝子の発現量と、被検化合物の非存在下におけるレポーター遺 伝子の発現量との比較により、本蛋白質と Rhoファミリー蛋白質との結合を阻害する 化合物の同定を達成できる。被検化合物の非存在下におけるレポーター遺伝子の 発現量と比較して、被検化合物の存在下におけるレポーター遺伝子の発現量が減 少または消失する場合、該被検化合物は本蛋白質の Rhoファミリー蛋白質との結合 機能を阻害すると判定できる。レポーター遺伝子は、レポーターアツセィで一般的に 用いられている遺伝子をいずれも用いることができる力 ルシフェラーゼ、 13—Galま たはクロラムフエ-コールァセチルトランスフェラーゼ等の酵素活性を有する遺伝子 を例示できる。レポーター遺伝子の発現の検出は、その遺伝子産物の活性、例えば 、上記例示したレポーター遺伝子の場合は酵素活性を検出することにより実施できる
[0105] 本発明に係る蛋白質と Rhoファミリー蛋白質との結合を阻害する化合物の同定方 法はまた、ビアコアシステム(BIACORE system)等の表面プラズモン共鳴センサ 一を用いて実施できる。あるいは、シンチレーシヨンプロキシミティアツセィ法(Scintil lation proximity assay ^ SPA)や 光共鳴ェ不ルキー 移 (Fluorescence re sonance energy transfer、 FRET)を応用した方法を用いて、本同定方法を実 施できる。
[0106] 本発明に係る蛋白質が有する Rhoファミリー蛋白質の活性化促進機能を指標にし た同定方法は、例えば、本蛋白質と該蛋白質により活性ィ匕が促進される Rhoファミリ 一蛋白質とを共存させ、活性化された Rhoファミリー蛋白質の量を、被検化合物の存 在下または非存在下において測定することにより実施できる。被検化合物の非存在 下における活性ィ匕された Rhoファミリー蛋白質の量と比較し、被検化合物の存在下 における該蛋白質の量が減少する場合、該化合物は、本蛋白質が有する Rhoフアミ リー蛋白質の活性ィ匕促進機能を阻害すると判定できる。活性化された Rhoファミリー 蛋白質は、該蛋白質に対する抗体等を用いて定量され得る。例えば、活性化された Rhoファミリー蛋白質は、活性ィ匕された Rhoファミリー蛋白質には結合するが、活性 化されて!/、な 、Rhoファミリー蛋白質には結合しな 、か弱く結合するエフェクター分 子を用いて定量され得る。具体的には、実施例 4に示すように、エフェクター分子の 活性ィ匕された Rhoファミリー蛋白質との結合部位を含む蛋白質に GST— tagを付カロ した蛋白質と、活性ィ匕された Rhoファミリー蛋白質との結合をプルダウン法により検出 し、さらに活性ィ匕された Rhoファミリー蛋白質の量を電気泳動法およびウェスタンプロ ット法により測定する。 Rhoファミリー蛋白質によって、活性化された該蛋白質と結合 するエフェクター分子は異なる。したがって、用いる Rhoファミリー蛋白質の種類によ り適当なエフェクター分子を選択して用いる。例えば、活性ィ匕された Cdc42および活 性化された Raclは、そのエフェクター分子である PAK— 1に結合することが知られ ている。また、活性化された RhoAは、そのエフェクター分子である Rhotekinに結合 する。
[0107] 本発明に係る蛋白質が有する Rhoファミリー蛋白質の活性化促進機能を指標にし た同定方法はまた、本蛋白質、該蛋白質により活性ィ匕が促進される Rhoファミリー蛋 白質であって放射性同位元素で標識した GDPと結合している Rhoファミリー蛋白質 および GTPを共存させ、活性ィ匕された Rhoファミリー蛋白質の量を被検化合物の存 在下または非存在下において測定することにより実施できる。活性ィ匕された Rhoファ ミリ一蛋白質は、放射性同位元素で標識した GDPと結合している Rhoファミリー蛋白 質の量の減少により定量され得る。
[0108] 「Rhoファミリー蛋白質の活性ィ匕促進機能を阻害する」とは、本発明に係る蛋白質 により促進される、 Rhoファミリー蛋白質の活性ィ匕において、該促進を阻害することを 意味する。
[0109] 本発明に係る同定方法において用いる Rhoファミリー蛋白質は、本発明に係る蛋 白質との結合および本蛋白質による活性ィ匕の促進に影響がない限りにおいて、一部 を欠損した蛋白質であってよぐあるいは上記のような標識物質が付加された蛋白質 であってよい。
[0110] 本発明に係るポリヌクレオチドの発現を阻害する化合物の同定方法は、本ポリヌク レオチドの発現を測定し得る実験系にお 、て、本ポリヌクレオチドと被検化合物の相 互作用を可能にする条件下で、本ポリヌクレオチドと被検化合物とを共存させてその 発現を測定し、次いで、被検化合物の存在下における本ポリヌクレオチドの発現と、 被検化合物の非存在下における本ポリヌクレオチドの発現とを比較し、本ポリヌクレオ チドの発現の存在、不存在または変化、例えば低減、増加、消失、出現を検出するこ とにより実施できる。被検化合物の非存在下における本ポリヌクレオチドの発現と比 較して、被検化合物の存在下における本ポリヌクレオチドの発現が減少または消失 する場合、該被検化合物は本ポリヌクレオチドの発現を阻害すると判定できる。具体 的には例えば、本同定方法は、本発明に係る形質転換体を用いて本ポリヌクレオチ ドを発現させる実験系にお!/ヽて、該形質転換体と被検化合物とを接触させた後に、 本ポリヌクレオチドの発現を測定することにより実施できる。発現の測定は、簡便には 発現される蛋白質の量、あるいは該蛋白質の機能、例えば Rhoファミリー蛋白質の活 性ィ匕を促進する機能を指標にして実施できる。また、例えば発現の指標となるシグナ ルを実験系に導入して該シグナルを検出することにより、発現の測定を実施できる。 シグナルは、 GST等の酵素類、 His— tag、 Myc— tag、 HA -tag, FLAG— tagま たは Xpress— tag等のタグペプチド類、または蛍光物質等が例示できる。これらシグ ナルの検出方法は当業者には周知である。
[0111] 本発明に係るポリヌクレオチドの発現を阻害する化合物の同定方法はまた、例えば 本ポリヌクレオチドを含む遺伝子のプロモーター領域の下流に、該ポリヌクレオチドの 代わりにレポーター遺伝子を連結したベクターを作成し、該ベクターを導入した細胞 、例えば真核細胞等と被検化合物とを接触させ、レポーター遺伝子の発現の存在、 不存在または変化を測定することにより実施できる。レポーター遺伝子は、レポータ 一アツセィで一般的に用いられて 、る遺伝子を!、ずれも用いることができる力 ルシ フェラーゼ、 β—Galまたはクロラムフエ-コールァセチルトランスフェラーゼ等の酵素 活性を有する遺伝子を例示できる。レポーター遺伝子の発現の検出は、その遺伝子 産物の活性、例えば、上記に例示したレポーター遺伝子の場合は酵素活性を検出 すること〖こより実施できる。
[0112] (化合物)
本発明に係る同定方法により得られた化合物は、本発明に係る蛋白質の機能、例 えば Rhoファミリー蛋白質の活性化を促進する機能の阻害剤や拮抗剤等の候補ィ匕 合物として利用できる。また、本発明に係るポリヌクレオチドの発現阻害剤の候補ィ匕 合物として利用できる。これら候補化合物は、その有用性と毒性のバランスを考慮し て選別することにより医薬として調製でき、ゆえに本蛋白質の機能の異常および Zま たは本ポリヌクレオチドの発現の異常に起因する各種病的症状の防止効果および Z または治療効果を期待できる。また、本発明に係る化合物は、本同定方法以外の方 法により得られたィ匕合物であって、本蛋白質の機能を阻害するおよび Zまたは本ポリ ヌクレオチドの発現を阻害する化合物も含まれる。
[0113] (医薬組成物)
本発明の一態様は、本発明に係る蛋白質、ポリペプチド、組換えベクター、形質転 換体、抗体、または化合物を有効成分として含み、本蛋白質の機能および Zまたは 本ポリペプチドの発現を阻害するまたは拮抗することに基づく医薬または医薬組成 物に関する。
[0114] 本発明に係る医薬は、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形 質転換体、抗体、または化合物のうち少なくともいずれ力 1つを有効成分としてその 有効量含む医薬となしてもよい。通常は、 1種類または 2種類以上の医薬用に許容さ れる担体 (医薬用担体)を用いて医薬組成物を製造することが好ま ヽ。
[0115] 本発明に係る医薬組成物中に含まれる有効成分の量は、広範囲から適宜選択さ れる。通常約 0. 00001〜70重量%、好ましくは 0. 0001〜5重量%程度の範囲と するのが適当である。
[0116] 医薬用担体は、医薬組成物の使用形態に応じて通常使用される、充填剤、増量剤 、結合剤、付湿剤、崩壊剤、滑沢剤等の希釈剤や賦形剤等が例示できる。これらは 得られる医薬組成物の使用形態に応じて適宜選択して使用される。
[0117] 例えば水、医薬的に許容される有機溶剤、コラーゲン、ポリビュルアルコール、ポリ ビュルピロリドン、カルボキシビュルポリマー、アルギン酸ナトリウム、水溶性デキストラ ン、カルボキシメチルスターチナトリウム、ぺクチン、キサンタンガム、アラビアゴム、力 ゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ヮ セリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マン-ト ール、ソルビトール、ラタトース等が挙げられる。これらは、本発明に係る医薬組成物 の使用形態に応じて適宜 1種類または 2種類以上を組合せて使用される。
[0118] 所望により、通常の蛋白質製剤に使用され得る各種の成分、例えば安定化剤、殺 菌剤、緩衝剤、等張化剤、キレート剤、 pH調整剤、界面活性剤等を適宜使用して医 薬組成物を調製することもできる。
[0119] 安定化剤は、ヒト血清アルブミンや通常の L アミノ酸、糖類、セルロース誘導体等 が例示でき、これらは単独でまたは界面活性剤等と組合せて使用できる。特にこの組 合せによれば、有効成分の安定性をより向上させ得る場合がある。上記 L—アミノ酸 は、特に限定はなぐ例えばグリシン、システィン、グルタミン酸等のいずれでもよい。 糖類も特に限定はなぐ例えばグルコース、マンノース、ガラクトース、果糖等の単糖 類、マン-トール、イノシトール、キシリトール等の糖アルコール、ショ糖、マルトース、 乳糖等の二糖類、デキストラン、ヒドロキシプロピルスターチ、コンドロイチン硫酸、ヒア ルロン酸等の多糖類等およびそれらの誘導体等の 、ずれでもよ 、。セルロース誘導 体も特に限定はなぐメチルセルロース、ェチルセルロース、ヒドロキシェチルセル口 ース、ヒドロキシプロピノレセノレロース、ヒドロキシプロピノレメチノレセノレロース、カノレボキ シメチルセルロースナトリウム等の!/、ずれでもよ!/、。
[0120] 界面活性剤も特に限定はなぐイオン性および非イオン性界面活性剤のいずれも 使用できる。これには、例えばポリオキシエチレングリコールソルビタンアルキルエス テル系、ポリオキシエチレンアルキルエーテル系、ソルビタンモノァシルエステル系、 脂肪酸グリセリド系等が包含される。
[0121] 緩衝剤は、ホウ酸、リン酸、酢酸、クェン酸、 ε アミノカプロン酸、グルタミン酸およ び Ζまたはそれらに対応する塩 (例えばそれらのナトリウム塩、カリウム塩、カルシウム 塩、マグネシウム塩等のアルカリ金属塩やアルカリ土類金属塩)等が例示できる。
[0122] 等張化剤は、塩ィ匕ナトリウム、塩ィ匕カリウム、糖類、グリセリン等が例示できる。
[0123] キレート剤は、ェデト酸ナトリウム、クェン酸等が例示できる。
[0124] 本発明に係る医薬および医薬組成物は、溶液製剤として使用できる。その他、これ を凍結乾燥化し保存し得る状態にした後、用時、水や生埋的食塩水等を含む緩衝 液等で溶解して適当な濃度に調製した後に使用することもできる。
[0125] 本発明に係る医薬および医薬組成物は、本発明に係る蛋白質の機能の異常およ び Ζまたは本ポリヌクレオチドの発現の異常に基づく疾患の防止剤および Ζまたは 治療剤として使用できる。また、当該疾患の防止方法および Ζまたは治療方法に使 用できる。
[0126] 本発明に係る蛋白質の機能および Ζまたは本発明に係るポリヌクレオチドの発現 の過剰に関連する異常な症状に対しては、例えば本蛋白質の機能および Ζまたは 本ポリヌクレオチドの発現を阻害する有効量の阻害剤を医薬用担体とともに対象に 投与することにより、異常な症状を防止、改善または治療するといつた効果を得ること ができる。あるいは、内在性の本ポリヌクレオチドの発現を発現ブロック法を用いて阻 害することにより同様の効果が得られる。本ポリヌクレオチドの発現の阻害は、例えば 本ポリヌクレオチドの部分配列からなるオリゴヌクレオチドをアンチセンスオリゴヌタレ ォチドとして用いることにより実施できる。アンチセンスオリゴヌクレオチォドとして用 、 るオリゴヌクレオチォドは、本ポリヌクレオチドの翻訳領域のみでなぐ非翻訳領域に 対応するものであっても有用である。本ポリヌクレオチドの発現を特異的に阻害する ためには、該ポリヌクレオチドに固有な領域の塩基配列を用いることが好ましい。
[0127] 本発明に係るポリヌクレオチドの一態様である配列表の配列番号 1に記載の塩基 配列で表わされるポリヌクレオチドの組織発現は、胃腫瘍の 1つである胃腺癌様腫瘍 (stomach adenocarcinoid tumor)で正常胃組織と比較して約 5倍、 4. 5倍以上 高!、ことが判明した。配列番号 1に記載の塩基配列で表わされるポリヌクレオチドによ りコードされる蛋白質には Rho— GEFの活性ドメインである DHZPHドメインが存在 する。一方、配列番号 1に記載の塩基配列の第 581番目力も第 1675番目までの塩 基配列で表わされるポリヌクレオチド (配列番号 3)の^末端にコザックシークェンスと メチォニンに対応するコドンとからなるオリゴヌクレオチド (配列番号 19)が付加された ポリヌクレオチド(配列番号 5)は、 DHZPHドメインコード領域を有し、 Rhoファミリー 蛋白質をコードする遺伝子と共発現させた動物細胞において、 Rhoファミリー蛋白質 と結合しその活性ィ匕を促進した。このことから、配列番号 5に記載の塩基配列で表わ されるポリヌクレオチドによりコードされる蛋白質は、 Rho— GEFとして作用すると考 えられる。配列番号 3に記載の塩基配列で表わされるポリヌクレオチドの^末端に付 加されたコザックシークェンスとメチォニンに対応するコドンとからなるオリゴヌクレオ チド (配列番号 19)は、発現された蛋白質の機能に大きな影響を与えない。したがつ て、配列番号 3に記載の塩基配列で表わされるポリヌクレオチドによりコードされる蛋 白質も、 Rho— GEFとして作用すると考える。また、配列番号 1に記載の塩基配列は 配列番号 3に記載の塩基配列を含むため、配列番号 1に記載の塩基配列で表わさ れるポリヌクレオチドによりコードされる蛋白質も、 Rhoファミリー蛋白質と結合して Rh o— GEFとして作用すると考えられる。 Rho— GEFとして単離された遺伝子には、 va V (非特許文献 3および 4)、 ost (非特許文献 5)、 ibc (非特許文献 6)等の癌に関与す る遺伝子が知られている。これらから、本ポリヌクレオチドの高発現は胃腫瘍に関連 すると考える。したがって、本発明に係る医薬および医薬組成物は、胃腫瘍の防止 剤および Zまたは治療剤として有用である。さらに、胃腫瘍の防止方法および Zまた は治療方法に使用できる。
本発明に係る医薬および医薬組成物の用量範囲は特に限定されず、含有される 成分の有効性、投与形態、投与経路、疾患の種類、対象の性質 (体重、年齢、病状 および他の医薬の使用の有無等)、および担当医師の判断等に応じて適宜選択され る。一般的には適当な用量は、例えば対象の体重 lkgあたり約 0. Ol ^ g-lOOmg 程度、好ましくは約 0.: g〜lmg程度の範囲であることが好ましい。し力しながら、 当該分野においてよく知られた最適化のための一般的な常套的実験を用いてこれら の用量の変更を行うことができる。上記投与量は 1日 1〜数回に分けて投与すること ができ、数日または数週間に 1回の割合で間欠的に投与してもよい。
[0129] 本発明に係る医薬または医薬組成物を投与するときは、該医薬または医薬組成物 を単独で使用してよぐあるいは治療に必要な他の化合物または医薬と共に使用し てもよい。
[0130] 投与経路は、全身投与または局所投与の!/ヽずれも選択できる。この場合、疾患、症 状等に応じた適当な投与経路を選択する。例えば、非経口経路として、通常の静脈 内投与、動脈内投与のほか、皮下、皮内、筋肉内等への投与が挙げられる。あるい は経口経路で投与できる。さらに、経粘膜投与または経皮投与も実施できる。癌疾患 に用いる場合は、腫瘍に注射等により直接投与することが好まし 、。
[0131] 投与形態は、各種の形態が治療目的に応じて選択でき、その代表的な例として、 錠剤、丸剤、散剤、粉末剤、細粒剤、顆粒剤、カプセル剤等の固体投与形態や、水 溶液製剤、エタノール溶液製剤、懸濁剤、脂肪乳剤、リボソーム製剤、シクロデキスト リン等の包接体、シロップ、エリキシル等の液剤投与形態が含まれる。これらは更に 投与経路に応じて経口剤、非経口剤(点滴剤、注射剤)、経鼻剤、吸入剤、経膣剤、 坐剤、舌下剤、点眼剤、点耳剤、軟膏剤、クリーム剤、経皮吸収剤、経粘膜吸収剤等 に分類され、それぞれ通常の方法に従い、調合、成形、調製することができる。
[0132] (診断方法)
本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体、抗体または 化合物は、それ自体を、診断マーカーや診断試薬等の疾患診断手段として使用でき る。
[0133] 本発明によれば、例えば本発明に係るポリヌクレオチドの一部または全部のポリヌク レオチドを利用することにより、個体または各種糸且織における該ポリヌクレオチドまた は該ポリヌクレオチドを含む遺伝子の異常の有無あるいは発現の有無を特異的に検 出できる。本発明に係るポリヌクレオチドの検出により、該ポリヌクレオチドまたは該ポ リヌクレオチドを含む遺伝子の量的異常および zまたは機能異常等に基づく疾患の 易罹患性、発症、および Zまたは予後の診断が実施できる。
[0134] 疾患の診断は、例えば調べようとする試料 (被検試料)について、本発明に係るポリ ヌクレオチドの存在を検出すること、その存在量を決定すること、および Zまたはその 変異を同定することにより実施できる。正常な対照試料との比較において、本ポリヌク レオチドの存在の変化、その量的変化を検出できる。あるいは、正常遺伝子型との比 較において本ポリヌクレオチドを公知の手法により増幅した増幅生成物について、例 えばサイズ変化を測定することにより、欠失や挿入といった変異を検出できる。また、 被検試料力も増幅したポリヌクレオチドを、例えば標識した本ポリヌクレオチドとハイブ リダィゼーシヨンさせることにより点突然変異を同定できる。力かる変化および変異の 検出により、上記診断を実施できる。
[0135] 本発明は、被検試料中の本発明に係るポリヌクレオチドの定性的または定量的な 測定方法、または該ポリヌクレオチドの特定領域における変異の定性的または定量 的な測定方法をも提供できる。
[0136] 配列番号 1に記載の塩基配列で表わされるポリヌクレオチドの組織発現は、胃腫瘍 の 1つである胃腺癌様腫瘍で正常胃組織と比較して約 5倍、 4. 5倍以上高いことが 判明した。また、上述したように、該ポリヌクレオチドの高発現は胃腫瘍に関連すると 考えられる。したがって、被検試料中の該ポリヌクレオチドの発現量の増加を検出す ることにより、該被検試料が胃腫瘍由来の被検試料であるカゝ否かを判定する方法を 実施できる。このような判定方法も本発明の範囲に包含される。本判定方法において 該ポリヌクレオチドの発現量の増加は、被検試料と正常な対照試料とを比較すること により検出できる。被検試料として、好ましくはヒト胃組織由来の被検組織が挙げられ る。対照試料として、好ましくはヒト正常胃由来組織が挙げられる。該ポリヌクレオチド の発現量が対照試料と比較して増加している場合、好ましくは約 4. 5倍以上、より好 ましくは約 5倍以上に増加している場合、被検試料がヒト胃腫瘍由来試料であると判 定できる。本判定方法はまた、配列番号 1に記載の塩基配列で表わされるポリヌクレ ォチドの代わりに、該ポリヌクレオチドを除く本発明に係るポリヌクレオチドを用いて実 施できる。力かるポリヌクレオチドとして例えば、配列番号 3に記載の塩基配列で表わ されるポリヌクレオチドが挙げられる。本発明に係るポリヌクレオチドの発現量とは、該 ポリヌクレオチドの転写産物の量を意味する。
[0137] 被検試料は、本発明に係るポリヌクレオチド、該ポリヌクレオチドを含む遺伝子また はその変異遺伝子の核酸を含む限りにおいて特に制限されず、例えば、細胞、血液 、尿、唾液、髄液、組織生検または剖検材料等の生体生物由来の試料を例示できる 。あるいは所望により試料カゝら核酸を抽出して核酸試料を調製して用いることもできる 。核酸は、ゲノム DNAを検出に直接使用してもよぐあるいは分析前に PCRまたはそ の他の増幅法を用いることにより酵素的に増幅してもよい。 RNAまたは cDNAを同 様に用いてもよい。核酸試料は、また、標的配列の検出を容易にする種々の方法、 例えば変性、制限消化、電気泳動またはドットブロッテイング等により調製してもよい。 本発明に係るポリヌクレオチドまたは該ポリヌクレオチドを含む遺伝子の検出には、 自体公知の遺伝子検出法がいずれも使用できる。具体的には、プラークハイブリダィ ゼーシヨン、コロニーハイブリダィゼーシヨン、サザンブロット法、ノザンブロット法、 NA SBA法、または逆転写ポリメラーゼ連鎖反応 (RT—PCR)等が例示できる。また、 in situ RT— PCRや in situ ハイブリダィゼーシヨン等を利用した細胞レベルでの 測定により検出できる。このような遺伝子検出法において、本発明に係るポリヌクレオ チド、該ポリヌクレオチドを含む遺伝子またはその変異遺伝子の同定および Zまたは その増幅の実施に、本ポリヌクレオチドの部分配列力 なるオリゴヌクレオチドであつ てプローブとしての性質を有するものまたはプライマーとしての性質を有するものが 有用である。プローブとしての性質を有するオリゴヌクレオチドとは、本ポリヌクレオチ ドのみに特異的にハイブリダィゼーシヨンできる該ポリヌクレオチド特有の配列力 な るものを意味する。プライマーとしての性質を有するものとは本ポリヌクレオチドのみを 特異的に増幅できる該ポリヌクレオチド特有の配列力もなるものを意味する。また、増 幅できる変異遺伝子を検出する場合には、遺伝子内の変異を有する箇所を含む所 定の長さの配列を持つプライマーある 、はプローブを作成して用いる。プローブまた はプライマーとして、塩基配列長が一般的に 5乃至 50ヌクレオチド程度であるものが 好ましぐ 10乃至 35ヌクレオチド程度であるものがより好ましぐ 15乃至 30ヌクレオチ ド程度であるものがさらに好ましい。本発明に係るポリヌクレオチドまたはその断片を 増幅するためのプライマー、あるいは本ポリヌクレオチドを検出するためのプローブと して、具体的には、配列番号 7、 8、 9または 10に記載の塩基配列で表わされるオリゴ ヌクレオチドを好ましく例示できる。プローブは、通常は標識したプローブを用いるが 、非標識であってもよい。また、直接的または間接的に標識したリガンドとの特異的結 合により検出してもよい。プローブおよびリガンドを標識する方法は、種々の方法が知 られており、例えばニックトランスレーション、ランダムプライミングまたはキナーゼ処理 を利用する方法等を例示できる。適当な標識物質として、放射性同位体、ピオチン、 蛍光物質、化学発光物質、酵素、抗体等が挙げられる。
[0139] 遺伝子検出法は、 PCRが感度の点力も好ましい。 PCRは、本発明に係るポリヌクレ ォチド、該ポリヌクレオチドを含む遺伝子またはその変異遺伝子を特異的に増幅でき るプライマーを用いる方法である限り、従来公知の方法のいずれも使用できる。例え ば RT— PCRが挙げられる力 その他、当該分野で用いられる種々の PCRの変法を 適応できる。
[0140] PCRにより、遺伝子の検出の他に、本発明に係るポリヌクレオチド、該ポリヌクレオ チドを含む遺伝子またはその変異遺伝子の DNAの定量も実施できる。かかる分析 方法として、 MSSA法等の競合的定量法、または一本鎖 DNAの高次構造の変化に 伴う移動度の変化を利用した突然変異検出法として知られる PCR— SSCP法を例示 できる。
[0141] 本発明によればまた、例えば本発明に係る蛋白質を利用することにより、個体若し くは各種組織における該蛋白質およびその機能の異常の有無を特異的に検出でき る。本発明に係る蛋白質およびその機能の異常の検出により、該蛋白質の量的異常 および Zまたは機能の異常に基づく疾患の易罹患性、発症、および Zまたは予後の 診断を実施できる。
[0142] 蛋白質の検出による疾患の診断は、例えば被検試料について、該蛋白質の存在を 検出すること、その存在量を決定すること、および Zまたはその変異を検出することに より実施できる。すなわち、本発明に係る蛋白質および Zまたはその変異体を定量 的あるいは定性的に測定する。正常な対照試料との比較において、本蛋白質の存 在の変化、その量的変化を検出できる。正常蛋白質との比較において、例えばァミノ 酸配列を決定することによりその変異を検出できる。かかる変化および変異の検出に より、上記診断を実施できる。被検試料は、本蛋白質および Zまたはその変異体を 含むものである限り特に制限されず、血液、血清、尿、生検組織等の生体生物由来 の生物学的試料が例示できる。
[0143] 本発明に係る蛋白質および変異を有する該蛋白質の測定は、本発明に係る蛋白 質、例えば配列表の配列番号 2、 4または 6に記載のアミノ酸配列で表わされる蛋白 質、または該蛋白質のアミノ酸配列において 1若しくは数個乃至複数のアミノ酸が欠 失、置換、挿入または付加されたアミノ酸配列で表わされる蛋白質、これらの断片、ま たは該蛋白質やその断片に対する抗体を用いて実施できる。
[0144] 蛋白質の定量的あるいは定性的な測定は、この分野における慣用技術による蛋白 質検出法あるいは定量法を用いて実施できる。例えば、本蛋白質のアミノ酸配列分 析により変異蛋白質を検出できる。さらに好ましくは、抗体 (ポリクローナルまたはモノ クローナル抗体)を用いて、蛋白質の配列の相違、または蛋白質の有無を検出する。
[0145] 本発明は、被検試料中の本蛋白質の定性的または定量的な測定方法、または該 蛋白質の特定領域の変異の定性的または定量的な測定方法を提供できる。
[0146] 具体的には、被検試料について、本蛋白質に対する特異抗体を用いて免疫沈降 を行い、ウェスタンブロット法またはィムノブロット法で本蛋白質の解析を行うことにより 、上記検出を実施できる。また、本蛋白質に対する特異抗体を用いて免疫組織化学 的技術によりパラフィンまたは凍結組織切片中の本蛋白質を検出できる。
[0147] 本蛋白質またはその変異体を検出する方法の好ましい具体例として、モノクローナ ル抗体および Zまたはポリクローナル抗体を用いるサンドイッチ法を含む、酵素免疫 測定法 (ELISA)、放射線免疫検定法 (RIA)、免疫放射線検定法 (IRMA)、および 免疫酵素法 (IEMA)等が挙げられる。その他、ラジオィムノアツセィゃ競争結合アツ セィ等を利用することもできる。
[0148] 本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体、および抗体 はいずれも、それ自体を単独であるいは組合わせて、試薬等として使用できる。試薬 は、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換体、および抗 体のうちの少なくとも 1種類の他に、緩衝液、塩、安定化剤、および,または防腐剤 等の物質を含むことができる。なお、製剤化にあたっては、各性質に応じた自体公知 の製剤化手段を導入すればよい。該試薬は、例えば、本発明に係る判定方法、化合 物の同定方法、あるいは本蛋白質または本ポリヌクレオチドの測定方法に使用できる 。該試薬はその他、本発明に係る蛋白質またはポリヌクレオチドが関与する細胞内情 報伝達経路の解明、および該蛋白質またはポリヌクレオチドの異常に基づく疾患等 に関する基礎的研究等に有用である。
[0149] 本発明はまた、本発明に係る蛋白質、ポリヌクレオチド、組換えベクター、形質転換 体、および抗体のうちの少なくとも 、ずれか 1つを含んでなる試薬キットを提供する。 試薬キットにはその他、本発明に係る蛋白質やポリヌクレオチドを検出するための標 識物質、標識の検出剤、反応希釈液、標準抗体、緩衝液、洗浄剤および反応停止 液等、測定の実施に必要とされる物質を含むことができる。標識物質として、上述の 蛋白質や放射性同位元素等が挙げられる。標識物質は、予め本発明に係る蛋白質 あるいはポリヌクレオチドに付加されていてもよい。本試薬キットは、本発明に係る判 定方法、化合物の同定方法、あるいは本蛋白質または本ポリヌクレオチドの測定方 法に使用できる。さらに、本試薬キットは、前記測定方法を用いる検査方法に、検査 剤並びに検査用キットとして使用できる。また、前記測定方法を用いる診断方法にも 、診断剤並びに診断用キットとして使用できる。
[0150] 以下、本発明を実施例に基づき具体的に説明する。
実施例 1
[0151] (ヒト脳由来 cDNAライブラリーの構築と遺伝子の分取)
ヒトの脳、胎児脳および脳海馬由来の polyA+RNA (Clontech社製:カタログ No. 6516— 1、 6525— 1および 6578— 1)を出発原料として常法により cDNAライブラリ 一を構築し、 dbEST分析により cDNA断片を単離して cDNAクローンの塩基配列を 決定した。具体的には、小原らの方法 (非特許文献 19)に従って調製した上記ヒト脳 由来の cDNAライブラリーから、約 50, 000個の組換え体をランダムに選択し、このう ち約 30, 000個のクローンの cDNAについて、その 5' 末端および 3' 末端の塩基 配列を決定した。さらに約 1, 100個のクローンを主にインビトロの転写翻訳実験によ り選択し、それら cDNAの塩基配列を小原らの方法に従って決定した。
[0152] 全塩基配列の決定を行った cDNAクローンについて、コンピュータプログラムを用 いた汎用解析方法により ORFを予想した。次いで、 ORF領域についてモチーフドメ イン検索を行い、 Rho— GEFの活性ドメインである DHZPHドメインをコードする領 域を含む cDNAを同定した。
[0153] 同定した cDNAクローン hj03796は、全長 4977bpの新規な塩基配列を有する D NA (配列番号 1)であり、 1340アミノ酸(配列番号 2)をコードする ORFを含む。 DH ドメインは配列番号 2に記載のアミノ酸配列の第 97番目のノ リン (Val)力も第 271番 目のァスパラギン酸 (Asp)までの 175アミノ酸残基力もなる。 PHドメインは配列番号 2に記載のアミノ酸配列の第 297番目のロイシン (Leu)から第 394番目のロイシン (L eu)までの 98アミノ酸残基力もなる。 DHドメインおよび PHドメインをコードする領域 はそれぞれ、配列番号 1に記載の塩基配列の第 602番目力も第 1126番目のヌクレ ォチドおよび第 1202番目力も第 1495番目のヌクレオチドに相当する。
実施例 2
[0154] (DNAの発現と精製)
実施例 1で同定したクローン hj03796を用いて、該クローンがコードする蛋白質を F LAG— tag融合蛋白質として 293EBNA細胞(Invitrogen社製)で発現させた。ま た、クローン hj03796がコードする蛋白質の部分配列力 なり DH/PHドメインを含 む蛋白質を 293EBNA細胞を用いて発現させた。発現の確認はウェスタンブロット 法により行った。
[0155] まず、 hj03796遺伝子を含む発現ベクターを構築した。テンプレートとして pBlues cript II— hj03796 (hj03796は pBluescript II SK+の Sail— Notlサイトに挿入 されて ヽる:かずさ DNA研究所製)、プライマーとして K0599s3 (配列番号 7)および asBaml (配列番号 8)を用いて pfu turbo (Stratagene社製)にて遺伝子を増幅し た。増幅した遺伝子を HincIlZBamHIで切断して得た遺伝子断片、 pBluescriptll —hj03796を SallZHincIIで切断した遺伝子断片、および pDsRed2—Nl (Clont ech社製)を Sall/BamHIで切断した遺伝子断片をライゲーシヨンし、コンビテントセ ルに導入した。次いで、形質転換した大腸菌から精製キットを用いて DNAを精製し た。精製 DNAを Sall/BamHIで切断して得られた hj03796フラグメントを、ベクタ 一 DNAである pFLAG— CMV5b (SIGMA社製)の SallZBamHIサイトに挿入し、 hj03796発現ベクターを得た。制限酵素処理を行った塩基配列が正しく挿入されて いることは、シーケンスを行なって確認した。シーケンス反応は DNA Sequencing Kit (ABI社製)を、泳動および解析は ABI PRISM 377を用いて行なった。
[0156] 次に、 hj03796クローンがコードする全長蛋白質の部分配列力もなる蛋白質であつ て DHZPHドメインを含む蛋白質(以下、 hj03796DHZPHと称する)を発現させる ためのベクターを、ゲートウェイ TMクロー-ングテクノロジー(Invitrogen社製)を用い て構築した。 pBluescriptll— hj03796をテンプレートとし、 pfu turboを用いて、 pr oto— Dblの DHZPHドメインコード領域と相同性のある領域(配列番号 1の第 581 番目力も第 1675番目のヌクレオチドに相当)の^末端にコザックシークェンスとメチ ォニンに対応するコドンとからなるオリゴヌクレオチド (配列番号 19)が付加されたポリ ヌクレオチドを増幅した。その後、増幅産物を TOPOクローユングシステムを用いた 反応にて pENTRZSDZD— TOPOに挿入し、エントリーベクターを作製した。増幅 反応にはプライマーとして、 03796DZP— F1 (配列番号 9)および 03796DZP— R3 (配列番号 10)を使用した。次いで、上記エントリーベクターと C末端 FLAG— tag (3 X )融合蛋白質発現ベクターを用いて、 LRクロナーゼによる組換え反応により、 hj 03796DHZPHを FLAG— tag (3 X )融合蛋白質として発現させるための発現べク ターを作製した。 hj03796の DHZPHドメインコード領域の塩基配列が正しく挿入さ れていることは、シーケンスを行って確認した。シーケンス反応は DYEnamic ET Terminator Cycle Sequencing Kit (.Amersham Biosciences社製)を、泳 動および解析は ABI PRISM 377を用いて行なった。
[0157] hj03796DHZPHの比較対照として、既知 Rho— GEFである proto— Dblの DH ZPHドメイン(以下、 proto— Dbl DHZPHと称する)を用いるためにその発現べク ターを構築した。マルチプルティシュー cDNAパネルズ(Multiple Tissue cDNA Panels、 Clontech社製)のブレインファーストストランド DNA(brain first stran d DNA)をテンプレートとし、 pfu turboを用いて proto— Dblの DH/PHドメイン コード領域 (proto— Dblの塩基配列中の開始 ATGコドンより第 1485番目から第 24 29番目)を増幅した。その後、増幅産物をライゲーシヨン反応にて pFLAG— CMV5 a (SIGMA社製)の Bglll - Sailサイトに挿入し、 proto - Dbl DHZPHを FLAG - tag融合蛋白質として発現させるための発現ベクターを作製した。増幅反応にはブラ イマ一として、 DZP— si (Bglll) (配列番号 11)および DZP— asl (Sail) (配列番 号 12)を使用した。 proto— Dblの DHZPHドメインコード領域の塩基配列が正しく 挿入されていることをシーケンスにより確認したところ、 1塩基が公開配列と異なること が明らかになった。しかし、この 1塩基の差異によるアミノ酸置換は認められな力つた 。具体的には、発現ベクターに挿入された proto— Dblの DH/PHドメインコード領 域の塩基配列は、 proto— Dblの公開配列(ァクセッション番号: X12556)と比較し、 その公開配列の開始 ATGコドンより第 1962番目の塩基である T (チミン)が A (アデ ニン)となった塩基配列である。発現ベクターに挿入された proto— Dblの DHZPH ドメインコード領域の塩基配列は、 proto— Dblの公開配列の開始 ATGコドンより第 1480番目力も第 2433番目までの塩基配列の^末端に ATGGCAが付加されてい る塩基配列である。したがって、発現ベクターに挿入された proto— Dblの DHZPH コード領域において、その開始 ATGコドンより第 489番目の塩基が公開配列の対応 する塩基と異なっている。公開配列の開始 ATGコドンより第 1960番目力も第 1962 番目までの塩基は GGTであり、グリシンをコードしている。一方、発現ベクターに揷 入された proto— Dblの DHZPHコード領域の塩基配列の開始 ATGコドンより第 48 7番目力も第 489番目までの塩基は GGAであり、同様にグリシンをコードしている。 すなわち、 1塩基の差異によるアミノ酸置換は認められな力つた。 proto— Dblの公開 塩基配列および該公開塩基配列にコードされるアミノ酸配列をそれぞれ配列番号 26 および 27に示す。配列番号 26に示した proto— Dblの塩基配列は、 2005年 2月 24 日に NCBI (National Center for Biotechnology Information)公開ァータ ベースを閲覧したときに公開されていた塩基配列である。
各発現ベクターは、 293EBNA細胞にリポフエクシヨン法によりトランスフエクシヨンし た。すなわち、各発現ベクターを添カ卩した無血清の DMEMとリボフヱクトァミン 2000 (LipofectAMINE2000、 Invitrogen社製)を添カ卩した DMEMとを混合し、室温で 20分間インキュベーションした。得られた混合液を、前日播種して 37°Cにて 5%CO
2 存在下で培養した 293EBNA細胞に添加した。遺伝子導入処理した細胞は 37°Cに て 5%CO存在下で 2日間インキュベーションした。培養終了後、エチレンジァミン四
2
酢酸を含むリン酸緩衝生理食塩水(PBS—EDTA)にて細胞を洗浄し、プロテア一 ゼインヒビターカクテル(protease inhibitor cocktail、 1/100濃度、 SIGMA社 製) 1%を含む溶解バッファー (Lysis buffer)にて細胞を溶解して細胞溶解液を調 製した。溶解バッファ一は、次の組成からなる: 25mM Tris— HC1、 pH7. 5 ; 150 mM NaCl; lmM CaCl;および 1% Triton X— 100。
2
[0159] 各細胞溶解液は、等量の SDS— PAGEサンプルバッファーと混合し、加熱処理(1 00°Cで 5分間)して電気泳動用サンプルを調製した。 SDSポリアクリルアミドゲル電 気泳動を行い、泳動ゲルをブロッテイングバッファーに 5分間以上浸して平衡ィ匕した 後、 PVDF膜上に蛋白質をトランスファーした。ブロッテイング終了後の PVDF膜は、 TBS— Tにブロックエース (大日本製薬株式会社製)を 3: 1の割合で混合した溶液 ( TBS-T+BA)に 4°Cでー晚浸してブロッキングした。ブロッキング終了後に、 PVD F膜を TBS— Tにて 10分以上振とうしながら 1回洗浄した。上記で用 ヽた SDS— PA GEサンプルバッファ一は、次の組成からなる: 1. 7% Tris ;0. 13M HC1; 22% グリセロール; 4. 6% SDS ;および 0. 22gZmL ブロモフエノールブルー。ブロッ ティングバッファ一は、次の組成からなる: 25mM Tris ;40mM ε —アミノー n—力 プロン酸; 20%メタノール;および 0. 05% SDS。 TBS—Tは、次の組成からなる: 1 50mM NaCl; 10mM Tris— HC1、 pH7. 5 ;および 0. 05% Tween— 20。
[0160] 抗 FLAG M2モノクローナル抗体(SIGMA社製)を TBS— T+BAで 1000倍希 釈して PVDF膜に添カ卩し、 37°Cで 1時間以上保温した。その後、 PVDF膜を TBS— Tにて 3回洗浄し(1回の洗浄に付き 10分以上の振とう)、 TBS— T+BAで 1000倍 に希釈した HRP標識抗マウス IgG抗体(Cell Signaling Technology社製)を添 カロして、 37°Cで 1時間以上保温した。最終的に、 PVDF膜を TBS— Tにて 3回洗浄 した後(1回の洗浄に付き 10分以上の振とう)、 ECLプラスウェスタンブロッテイングデ ィテクシヨンシステム(Amer sham Biosciences社製)〖こより、抗 FLAG抗体に反応 する発現蛋白質を検出した。化学発光シグナルは検出装置 (Lumino Imaging A nalyzer,東洋紡績株式会社製)にて可視化した。
[0161] 結果を図 1に示す。 FLAG— tag融合蛋白質として発現させた hj03796は、 220K Da力ら 97. 4KDaの間に単一バンドとして検出された(図 1内レーン 1)。 hj03796D HZPHは、抗 FLAG抗体により約 50KDaに単一バンドとして検出された(図 1内レ ーン 4)。 hj03796がコードする蛋白質 (以下、 hj03796蛋白質と称する)および hjO 3796DHZPHの予想分子量はそれぞれ約 150KDaおよび約 43KDaである。この こと力ら、上記単一バンドは、それぞれ hj03796および hj03796DHZPHであること が明らかになった。また、 proto— Dbl DHZPHは、抗 FLAG抗体により約 40KDa に単一バンドとして検出された(図 1内レーン 2およびレーン 5)。ベクターを導入しな 力つたコントロール細胞から同様の処理により得た蛋白質溶液では、かかるバンドは V、ずれも検出されなかった(レーン 3および 6)。
[0162] 力くして、 hj03796蛋白質、 hj03796DHZPH、および proto— Dbl DHZPHを 得ることができた。
実施例 3
[0163] (Rhoファミリー蛋白質との結合の検出)
実施例 2で構築した hj03796DHZPH (C末端 FLAG— tag融合蛋白質)発現べ クタ一を用いて、 hj03796DHZPHと Rhoファミリー蛋白質との結合について、プル ダウン法により検討した。
[0164] Rhoファミリー蛋白質として、 Cdc42、 Rho Aおよび Raclを用いた。これら蛋白質を
N末端 GST— tag融合蛋白質として発現させるための発現ベクターは後述するように 構築した。
[0165] 陽性コントロールとして proto— Dbl DHZPHを用いた。 proto— Dbl DH/PH
(C末端 FLAG— tag融合蛋白質)発現ベクターは実施例 2で構築した発現ベクター を用いた。 proto— Dblは Rho— GEFのプロトタイプであり、 proto— Dblの活性化は oncogenic activationと考えられている。 proto— Dblの活性化は、そのアミノ酸配 列の N末端側 (第 1番目力 第 497番目のアミノ酸)の欠失により起こる。すなわち、 p roto Dblの C末端側の DH/PHドメインを含む領域(oncogenic— Dbl)が Rhoフ アミリー蛋白質を活性ィ匕することが報告されている (非特許文献 1)。本実施例におい て用 、た proto - Dbl DH/PHは proto - Dblの第 494番目から第 811番目まで のアミノ酸を有する欠失変異体であり、 oncogenic— DbUり短い配列である。 oncog enic— Dblは、 Cdc42、 RhoAおよび Raclと結合するが、 Cdc42および RhoAに対 して GEF活性を有する一方、 Raclには GEF活性を持たないことが報告されている( 非特許文献 2)。 [0166] hj03796DHZPHまたは proto— Dbl DHZPHに結合する Rhoファミリー蛋白 質の特異性を確認するため、 N末端側に GST— tagを付加した |8—ダルク口ニダ一 ゼ(Glucuronidase) (以下、 GST— GUSと略称する)を陰性コントロールとして用い た。
[0167] hj03796DHZPH発現ベクターまたは proto— Dbl DHZPH発現ベクターと Rh oファミリー蛋白質発現ベクターとを添カ卩した無血清の DMEMと Lipofectamine20 00を添カ卩した DMEMを混合し、室温で 20分間インキュベーションした。得られた混 合液を 293EBNA細胞に添カ卩した。 293EBNA細胞は、遺伝子導入の前日に細胞 数 6. 0 X 104Zwellを 24ゥエルプレートへ播種し、 37°Cにて 5%CO存在下でー晚
2
培養した後に本実施例で用いた。遺伝子導入処理した細胞は 37°Cにて 5%CO存
2 在下で 2日間インキュベーションした。培養終了後、 PBS— EDTAにて細胞を洗浄し 、プロテアーゼインヒビターカクテル(protease inhibitor cocktail、 SIGMA社製 ) 1%を含む溶解バッファー (組成は実施例 2を参照)にて細胞を溶解して細胞溶解 液を調製した。
[0168] 各細胞溶解液について、 hj03796DHZPHまたは proto— Dbl DHZPHと Rho ファミリー蛋白質との結合をプルダウン法により検出した。各細胞溶解液 300 L、溶 解バッファーにけん濁した 20 μ Lのグルタチオンセファロース 4Β (Glutathione se pharose 4B)および溶解バッファー 100 μ Lを混合した。各サンプルは、 MgClお
2 よびジチオスレィトール (DTT)がそれぞれ最終濃度 ImMとなるように調製した。回 転盤にて回転させながら 4°Cで 1時間反応させた後に、 lmLの冷却した溶解バッファ 一(MgClの最終濃度は ImM)を用いて遠心処理(1, OOOrpmで 4°Cにて 15秒間)
2
により 3回洗浄した。洗浄後、上清を除去した Glutathione sepharose 4Bに、溶 解バッファーと等量の SDS— PAGEサンプルバッファー(組成は実施例 2を参照)と を混合した溶液を 40 L添加してミキサーにて撹拌後、加熱処理(100°Cにて 5分間 )して電気泳動用サンプルを調製した。 SDSポリアクリルアミドゲル電気泳動を行い、 ブロッテイングバッファー (組成は実施例 2を参照)に 5分間以上浸して平衡ィ匕した泳 動ゲルから、 PVDF膜上に蛋白質をトランスファーした。ブロッテイング終了後の PV DF膜は、 TBS—T+BA (組成は実施例 2を参照)に 4°Cでー晚浸してブロッキング した。ブロッキング終了後に、 PVDF膜を TBS— T (組成は実施例 2を参照)にて洗 浄した(10分以上の振とうを 1回)。
[0169] 抗 FLAG M2モノクローナル抗体(SIGMA社製)を TBS— T+BAで 1000倍希 釈して PVDF膜に添カ卩し、 37°Cで 1時間以上保温した。その後、 PVDF膜を TBS— Tにて 3回洗浄し(1回の洗浄に付き 10分以上の振とう)、 TBS— T+BAで 1000倍 に希釈した HRP標識抗マウス IgG抗体(Cell Signaling Technology社製)を添 カロして、 37°Cで 1時間以上保温した。最終的に、 PVDF膜を TBS— Tにて 3回洗浄 した後(1回の洗浄に付き 10分以上の振とう)、 ECLプラスウェスタンブロッテイングデ ィテクシヨンシステム(Amer sham Biosciences社製)〖こより、抗 FLAG抗体に反応 する発現蛋白質を検出した。化学発光シグナルは検出装置にて可視化した。
[0170] 抗 FLAG抗体にて予想分子量にバンドが検出された場合、 hj03796DHZPHま たは proto— Dbl DHZPHは Rhoファミリー蛋白質と結合すると判定した。図 2に示 したように、 hj03796DHZPHと Rhoファミリー蛋白質 (Racl、 RhoAまたは Cdc42) とを共発現させた細胞カゝら調製した試料ではそれぞれ約 50KDaに hj03796DHZ PHに相当するバンドが検出された(図 2の上図、 hj03796DHZPHのレーン 1、 2お よび 3)。一方、 proto— Dbl DHZPHと RhoAまたは Cdc42とを共発現させた細胞 力 調製した試料では、 proto— Dbl DHZPHに相当する約 40KDa付近にバンド が検出された(図 2の上図、 proto— Dbl DHZPHのレーン 2および 3)力 proto - Dbl DHZPHと Raclとを共発現させた細胞力 調製した試料では力かるバンドは 検出されなかった(図 2の上図、 proto -Dbl DHZPHのレーン 1)。 hj03796DH ZPHおよび proto— Dbl 01¾7?1¾と03丁ー &8融合|8—グルクロ-ダーゼとを共 発現させた細胞力も調製した試料では、かかるバンドは検出されな力つた(図 2の上 図、レーン 4)。すなわち、 hj03796DH/PH*5j t^proto-Dbl DH/PHは、 GS T—GUSとは結合しな力つた、また、 Rhoファミリー蛋白質遺伝子を発現させなかつ たときには力かるバンドは認められなかった(レーン 5)。各細胞における hj03796D HZPHおよび proto— Dbl DHZPHの発現量を細胞溶解液を用いて比較したとこ ろ、ほぼ同量であった(図 2の下図)。
[0171] これらから、 hj03796DHZPH力Cdc42、 RhoAまたは Raclと結合することが判 明した。したがって、 hj03796DHZPHを含む hj03796全長蛋白質は、これら Rho ファミリー蛋白質と結合すると考えられ、さらに Rho— GEFとしての機能を有する可能 '性がある。
[0172] 本実施例で用いた Cdc42、 Rho Aまたは Raclを N末端 GST— tag融合蛋白質とし て発現させるための各発現ベクターは以下のように構築した。
Cdc42、RhoAまたは Raclの発現ベクターはゲートウェイ TMクローユングテクノロジ 一(Invitrogen社製)を用いて作製した。まず、 Multiple Tissue cDNA Panels (Clontech社製)のスプリーンファーストストランド DNA (spleen first strand DN A)をテンプレートとして、 pfu turboを用いて各 Rhoファミリー蛋白質(Cdc42、 Rho Aおよび Racl)をコードする遺伝子を増幅した。増幅産物を、 TOPO cloning sys temを用 、た反応にて pENTRZDに挿入してエントリ一ベクターを作製した。増幅 反応にはプライマーとして、 Cdc42遺伝子に対しては Cdc42— sl (配列番号 13)お よび Cdc42— asl (配列番号 14)、 RhoA遺伝子に対しては RhoA— si (配列番号 1 5)および RhoA— as 1 (配列番号 16)、 Racl遺伝子に対しては Racl— si (配列番 号 17)および Racl— asl (配列番号 18)を使用した。次に、構築したエントリーベクタ 一について、 N末端 GST— tag融合蛋白質発現ベクターである pDEST27を用いて LRクロナーゼによる組換え反応より GST融合 Rhoファミリー蛋白質発現プラスミドを 作製した。各遺伝子のコード領域の塩基配列が正しく挿入されて ヽることをシーケン スを行って確認した。シーケンス反応は DYEnamic ET Terminator Cycle Se quencing Kit (Amersham Biosciences社製)を、泳動および解析は ABI PRI SM 377を用いて行なった。
実施例 4
[0173] (hj03796DHZPHによる Cdc42の活性化促進)
hj03796DHZPHの Rhoファミリー蛋白質に対する GEF活性を、実施例 2で構築 した hj03796DHZPH (C末端 FLAG— tag融合蛋白質)発現ベクターを用いて、 エフェクタープルダウン法により検討した。 Rhoファミリー蛋白質として、 Cdc42、 Rho Aおよび Raclを用いた。これら Rhoファミリー蛋白質はいずれも N末端 3 X FLAG— tag融合蛋白質として発現させた。 [0174] 0379601¾7?11 (じ末端?1^^ー &8融合蛋白質)発現べクターと上記ぃずれ かの Rhoファミリー蛋白質を発現させるための発現ベクターとを、 24ゥエルプレートに 播種した 293EBNA細胞に導入した。ベクターの細胞への導入は、 Lipofectamine 2000を用いて行った。陰性コントロールとして、細胞に各ベクターを導入せずに、 Li pofectamine2000のみを添カ卩したものを用いた。遺伝子導入 1日後、プロテアーゼ インヒビターカクテル(1Z100濃度: SIGMA社製)を含む溶解バッファーで細胞を 溶解して細胞溶解液を調製した。次いで、細胞溶解液をエフェクターベッド (UPST ATE社製)と 4°Cで 1時間反応させた。エフェクターベッドとして、 PAK—1または Rh otekinの、活性型 Rhoファミリー蛋白質に結合するドメインに GST— tagを付カ卩した 蛋白質が結合しているダルタチオンァガロースを用いた。反応させたエフェクターべ ッドは、溶解バッファーで洗浄し、溶出液(トリス ' SDS ' j8メルカプトエタノール処理液 :株式会社第一化学社製)で溶出操作を行った。得られた溶出液は、 SDS - PAGE によりウェスタンブロッテイングに付し、その後、抗 FLAG抗体を用いて FLAG— tag 付加蛋白質の検出を実施した。溶解バッファ一は次の組成力もなる: 25mM HEP ES、 pH7. 5 ; 150mM NaCl ; 10mM MgCl ; lmM EDTA ; 2% グリセローノレ
2
; 1 % Triton X— 100。
[0175] hj03796DHZPHが Rhoファミリー蛋白質に対して GEF活性を有するならば、 hjO 3796DHZPHにより Rhoファミリー蛋白質は不活性型 (GDP結合型)から活性型 ( GTP結合型)に移行する。エフェクターベッドとして使用した PAR— 1は活性型 Cdc 42および活性型 Rac lと結合することが知られている。また、 Rhotekinは活性型 Rh oAと結合する。したがって、 hj03796DHZPHが Rhoファミリー蛋白質に対して GE F活性を有するならば、エフェクターベッドに結合する Rhoファミリー蛋白質量が増加 する。抗 FLAG抗体により、 hj03796DHZPHおよび Rhoファミリー蛋白質を共発 現させた細胞力も得た試料力 Rhoファミリー蛋白質のみを発現させた細胞力も得た 試料よりも Rhoファミリー蛋白質のバンドが濃く検出される場合、 hj03796DH/PH は GEF活性を有すると判定した。
[0176] 結果を図 3—Aおよび図 3— Bに示す。図 3—Aは、各細胞溶解液に含まれる Rho ファミリー蛋白質および/または hj03796DH/PHの発現を抗 FLAG抗体により検 出した結果を示す。各 Rhoファミリー蛋白質(図中では Rhoと示す)の発現は、 hj037 96DHZPHと共発現させた細胞および Rhoファミリー蛋白質のみを発現させた細胞 のいずれにおいても、ほぼ同等であった(図 3— Aのレーン 2、 4、 6、 8、 10および 12 にお!/、て白矢頭で示す)。 RhoAにつ!/、ては複数のバンドが確認された(図 3— Aの レーン 6および 8)。これは、蛋白質分解酵素による影響であると考えた。また、 hj037 96DHZPH (図中では GEFと示す)の発現は、 hj03796DHZPHのみを発現させ た細胞および各 Rhoファミリー蛋白質と共発現させた細胞のいずれにおいても、ほぼ 同等であった(図 3— Aのレーン 3、 4、 7、 8、 11および 12において黒矢頭で示す)。
[0177] 図 3— Bは、上記各細胞溶解液を用いてエフェクタープルダウン法を実施した結果 を示す。 Cdc42と hj03796DHZPH (図中では GEFと示す)を共発現させた細胞か ら得た試料(図 3— Bのレーン 4)において、 Cdc42のみを発現させた細胞から得た試 料(図 3— Bのレーン 2)と比較して、バンドが濃く検出された。すなわち、 Cdc42と hjO 3796DHZPHを共発現させた細胞では、 PAR— 1に結合する活性型 Cdc42が増 カロした。このことから、 hj03796DHZPHは、 Cdc42に対して GEF活性を有すること が明らかになった。よって、 hj03796DHZPHを含む hj03796全長蛋白質も Cdc4 2に対して GEF活性を有すると考える。このように、 hj03796は、 Cdc42の活性化を 促進する機能を有することが判明した。
産業上の利用可能性
[0178] 本発明に係るポリヌクレオチドによりコードされる蛋白質は Rhoファミリー蛋白質と結 合し、さらに Rhoファミリー蛋白質の活性ィ匕を促進した。本蛋白質およびポリヌクレオ チドの利用により、 Rhoファミリー蛋白質が関与する情報伝達経路および細胞機能の 解明とその調節、並びに本蛋白質またはポリヌクレオチドの異常に基づく疾患、例え ば胃腫瘍の診断、防止および Zまたは治療が可能になる。したがって、本発明は基 礎科学分野力 医薬開発分野まで広く寄与する有用な発明である。
配列表フリーテキスト
[0179] 配列番号 1 :グァニンヌクレオチド交換因子としての機能を有する蛋白質 (配列番号 2 )をコードするポリヌクレオチド。
配列番号 1 : (602): (1126) Dbl相同ドメインをコードする領域。 配列番号 1 : (1202): (1495)プレックストリン相同ドメインをコードする領域。
配列番号 3:配列番号 1の第 581番目力も第 1675番目までのヌクレオチドからなる部 分配列であって、 Dbl相同ドメインおよびプレックストリン相同ドメインをコードする領 域を含むポリヌクレオチドであり、ここで該ポリヌクレオチドは配列番号 4に記載のアミ ノ酸配列をコードする。
配列番号 5: 5'末端にコザックコンセンサス配列とメチォニンに対応するコドンとを有 し、それに続いて、配列番号 1の第 581番目力も第 1675番目までのヌクレオチドから なる部分配列であって Dbl相同ドメインおよびプレックストリン相同ドメインをコードす る領域を含む配列を有するポリヌクレオチドであり、ここで該ポリヌクレオチドは配列番 号 6に記載のアミノ酸配列をコードする。
配列番号 5 : (1): (4)コザックコンセンサス配列。
配列番号 5 : (5): (7)メチォニンに対応するコドン。
配列番号 7:プライマー用に配列番号 1の配列に基づ!/、て設計されたポリヌクレオチ ド。
配列番号 8:プライマー用に配列番号 1の配列に基づ!/、て設計されたポリヌクレオチ ド。
配列番号 9:プライマー用に配列番号 1の配列に基づ!/、て設計されたポリヌクレオチ ド。
配列番号 10:プライマー用に配列番号 1の配列に基づ!/、て設計されたポリヌクレオチ ド。
配列番号 11:プライマー用に proto— Dblの配列に基づ 、て設計されたポリヌクレオ チド。
配列番号 12:プライマー用に proto— Dblの配列に基づ 、て設計されたポリヌクレオ チド。
配列番号 13:プライマー用に Cdc42の配列に基づ 、て設計されたポリヌクレオチド。 配列番号 14:プライマー用に Cdc42の配列に基づ 、て設計されたポリヌクレオチド。 配列番号 15:プライマー用に RhoAの配列に基づ 、て設計されたポリヌクレオチド。 配列番号 16:プライマー用に Rho Aの配列に基づ 、て設計されたポリヌクレオチド。 配列番号 17:プライマー用に Raclの配列に基づ 、て設計されたポリヌクレオチド。 配列番号 18:プライマー用に Raclの配列に基づ 、て設計されたポリヌクレオチド。 配列番号 19 :コザックコンセンサス配列とそれに続くメチォニンに対応するコドンを含 む設計されたオリゴヌクレオチド。
配列番号 20: Cdc42遺伝子。
配列番号 21 : Cdc42
配列番号 22: RhoA遺伝子
配列番号 23 :RhoA
配列番号 24: Rac 1遺伝子
配列番号 25 :Racl
配列番号 26 : proto— Dbl (配列番号 27)をコードする遺伝子。

Claims

請求の範囲
[1] 配列表の配列番号 1に記載の塩基配列若しくはその相補的塩基配列で表わされる ポリヌクレオチド、または配列表の配列番号 2に記載のアミノ酸配列で表わされる蛋 白質をコードするポリヌクレオチド若しくは該ポリヌクレオチドの相補的塩基配列で表 わされるポリヌクレオチド。
[2] 配列表の配列番号 3若しくは 5に記載の塩基配列またはその相補的塩基配列で表わ されるポリヌクレオチド、または配列表の配列番号 4若しくは 6に記載のアミノ酸配列 で表わされる蛋白質をコードするポリヌクレオチドまたは該ポリヌクレオチドの相補的 塩基配列で表わされるポリヌクレオチド。
[3] 配列表の配列番号 3に記載の塩基配列若しくはその相補的塩基配列で表わされる ポリヌクレオチドを含有するポリヌクレオチド、または配列表の配列番号 4に記載のァ ミノ酸配列で表わされる蛋白質をコードするポリヌクレオチド若しくは該ポリヌクレオチ ドの相補的塩基配列で表わされるポリヌクレオチドを含有するポリヌクレオチドであつ て、 Cdc42の活性ィ匕を促進する蛋白質をコードするポリヌクレオチド。
[4] 請求項 1または 2に記載のポリヌクレオチドの塩基配列と少なくとも約 70%の相同性 を有する塩基配列で表わされるポリヌクレオチドであって、 Cdc42の活性ィ匕を促進す る蛋白質をコードするポリヌクレオチド。
[5] 請求項 1または 2に記載のポリヌクレオチドの塩基配列において、 1乃至数個のヌクレ ォチドの欠失、置換、付加などの変異あるいは誘発変異を有するポリヌクレオチドで あって、 Cdc42の活性ィ匕を促進する蛋白質をコードするポリヌクレオチド。
[6] 請求項 1または 2に記載のポリヌクレオチドとストリンジェントな条件下でノ、イブリダィゼ ーシヨンするポリヌクレオチドであって、 Cdc42の活性化を促進する蛋白質をコード するポリヌクレオチド。
[7] 請求項 1から 6のいずれか 1項に記載のポリヌクレオチドを含有する組換えベクター。
[8] 請求項 7に記載の組換えベクターにより形質転換されてなる形質転換体。
[9] 請求項 7に記載の組換えベクターおよび Cdc42をコードするポリヌクレオチドを含有 する組換えベクターにより形質転換されてなる形質転換体。
[10] 配列表の配列番号 2に記載のアミノ酸配列で表わされる蛋白質。
[11] 配列表の配列番号 4または 6に記載のアミノ酸配列で表わされる蛋白質。
[12] 請求項 3から 6のいずれか 1項に記載のポリヌクレオチドによりコードされる蛋白質。
[13] 請求項 8または 9に記載の形質転換体を培養する工程を含む、請求項 10から 12の いずれか 1項に記載の蛋白質の製造方法。
[14] 請求項 10から 12のいずれ力 1項に記載の蛋白質を認識する抗体。
[15] 請求項 10から 12のいずれ力 1項に記載の蛋白質の機能および Zまたは請求項 1か ら 6のいずれか 1項に記載のポリヌクレオチドの発現を阻害する化合物の同定方法で あって、ある化合物と該蛋白質および Zまたは該ポリヌクレオチドとの相互作用を可 能にする条件下で、該機能および Zまたは該発現の存在、不存在または変化を検 出することにより、該化合物が該蛋白質の機能および Zまたは該ポリヌクレオチドの 発現を阻害する力否かを判定することを特徴とする同定方法。
[16] 蛋白質の機能が、 Cdc42と結合する機能および Zまたは Cdc42の活性ィ匕を促進す る機能である請求項 15に記載の同定方法。
[17] 請求項 10から 12のいずれ力 1項に記載の蛋白質の機能および Zまたは請求項 1か ら 6のいずれか 1項に記載のポリヌクレオチドの発現を阻害する化合物の同定方法で あって、請求項 10から 12のいずれ力 1項に記載の蛋白質、請求項 1から 6のいずれ 力 1項に記載のポリヌクレオチド、請求項 7に記載の組換えベクター、請求項 8または 9に記載の形質転換体および請求項 14に記載の抗体のうち少なくともいずれか 1つ を用いることを特徴とする同定方法。
[18] 蛋白質の機能が、 Cdc42と結合する機能および Zまたは Cdc42の活性ィ匕を促進す る機能である請求項 17に記載の同定方法。
[19] ヒト胃組織由来の被検組織がヒト胃腫瘍由来組織であるカゝ否かを判定する方法であ つて、該被検組織における請求項 1から 6のいずれか 1項に記載のポリヌクレオチドの 発現量を測定することを特徴とする判定方法。
[20] 被検組織における請求項 1から 6のいずれか 1項に記載のポリヌクレオチドの発現量 力 対照であるヒト正常胃由来組織における該ポリヌクレオチドの発現量の 4. 5倍以 上である場合に、被検組織がヒト胃腫瘍由来組織であると判定することを特徴とする 、請求項 19に記載の判定方法。
[21] 請求項 10から 12のいずれ力 1項に記載の蛋白質の機能を阻害する化合物および Z または請求項 1から 6のいずれか 1項に記載のポリヌクレオチドの発現を阻害するィ匕 合物を有効成分として含んでなる胃腫瘍の防止剤および Zまたは治療剤。
[22] 請求項 10から 12のいずれ力 1項に記載の蛋白質の機能を阻害する化合物および Z または請求項 1から 6のいずれか 1項に記載のポリヌクレオチドの発現を阻害するィ匕 合物を用いることを特徴とする胃腫瘍の防止方法および Zまたは治療方法。
[23] 請求項 10から 12のいずれ力 1項に記載の蛋白質、請求項 1から 6のいずれ力 1項に 記載のポリヌクレオチド、請求項 7に記載の組換えベクター、請求項 8または 9に記載 の形質転換体および請求項 14に記載の抗体のうち少なくともいずれか 1つを含んで なる試薬キット。
PCT/JP2005/005918 2004-03-31 2005-03-29 グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物 WO2005095612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05727864A EP2112222A4 (en) 2004-03-31 2005-03-29 FOR GUANINNUCLEOTIDE EXCHANGE FACTOR-CODING GENE AND ITS GENE-PRODUCT
US10/594,707 US7667013B2 (en) 2004-03-31 2005-03-29 Gene encoding a guanine nucleotide exchange factor and the gene product thereof
JP2006511681A JP4746537B2 (ja) 2004-03-31 2005-03-29 グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物
US12/651,145 US8173778B2 (en) 2004-03-31 2009-12-31 Antibody to a guanine nucleotide exchange factor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-106268 2004-03-31
JP2004106268 2004-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/594,707 A-371-Of-International US7667013B2 (en) 2004-03-31 2005-03-29 Gene encoding a guanine nucleotide exchange factor and the gene product thereof
US12/651,145 Division US8173778B2 (en) 2004-03-31 2009-12-31 Antibody to a guanine nucleotide exchange factor

Publications (1)

Publication Number Publication Date
WO2005095612A1 true WO2005095612A1 (ja) 2005-10-13

Family

ID=35063788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005918 WO2005095612A1 (ja) 2004-03-31 2005-03-29 グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物

Country Status (4)

Country Link
US (2) US7667013B2 (ja)
EP (1) EP2112222A4 (ja)
JP (1) JP4746537B2 (ja)
WO (1) WO2005095612A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906566A (zh) * 2010-02-03 2013-01-30 株式会社棱镜生物实验室 与天然变性蛋白质结合的化合物及其筛选方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012058532A2 (en) * 2010-10-28 2012-05-03 Yale University Methods and compositions for assessing and treating cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520565A (ja) * 1998-09-02 2003-07-08 インサイト・ファーマスーティカルズ・インコーポレイテッド ヒト膜チャネルタンパク質

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340575B1 (en) 1997-06-17 2002-01-22 Onyx Pharmaceuticals, Inc. Methods and compositions for treating abnormal cell growth related to unwanted guanine nucleotide exchange factor activity
WO2000012711A2 (en) 1998-09-02 2000-03-09 Incyte Pharmaceuticals, Inc. Human membrane channel proteins
WO2002068579A2 (en) * 2001-01-10 2002-09-06 Pe Corporation (Ny) Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520565A (ja) * 1998-09-02 2003-07-08 インサイト・ファーマスーティカルズ・インコーポレイテッド ヒト膜チャネルタンパク質

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BI F. ET AL: "Autoinhibition Mechanisum of Proto-Dbl.", MOL.CELL.BIOL., vol. 21, no. 5, 2001, pages 1463 - 1474, XP002989461 *
HART M.J. ET AL: "Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product.", J.BIOL.CHEM., vol. 269, no. 1, 1994, pages 62 - 65, XP002057778 *
See also references of EP2112222A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906566A (zh) * 2010-02-03 2013-01-30 株式会社棱镜生物实验室 与天然变性蛋白质结合的化合物及其筛选方法

Also Published As

Publication number Publication date
US20070196377A1 (en) 2007-08-23
EP2112222A1 (en) 2009-10-28
US7667013B2 (en) 2010-02-23
US20100125131A1 (en) 2010-05-20
US8173778B2 (en) 2012-05-08
JPWO2005095612A1 (ja) 2008-02-21
EP2112222A4 (en) 2009-10-28
JP4746537B2 (ja) 2011-08-10

Similar Documents

Publication Publication Date Title
EP1290160B1 (en) Human pellino polypeptides
US6716964B1 (en) CtIP, a novel protein that interacts with CtBP and uses therefor
AU746135B2 (en) PARG, a GTPase activating protein which interacts with PTPL1
US7070940B2 (en) Method for determining the ability of a compound to modify the interaction between parkin and the p38 protein
CA2508848A1 (en) Human pellino polypeptides
WO2005095612A1 (ja) グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物
WO2005103257A1 (ja) RhoAと結合するグアニンヌクレオチド交換因子をコードする遺伝子
JP4201712B2 (ja) Gip、グッドパスチャー抗原結合タンパク質と相互作用する転写因子活性を備えたポリペプチドのファミリー
JP2009183291A (ja) 転写調節因子
JP4638354B2 (ja) G蛋白質共役型受容体をコードする遺伝子およびその遺伝子産物
US5948883A (en) Human CRM1 Protein
JP3811733B2 (ja) Dnアーゼ活性を有する蛋白質
JP2006122048A (ja) ミツグミン29遺伝子
US6667388B2 (en) Peptide inhibitor of MMP activity and angiogenesis
WO2005100567A1 (ja) グアニンヌクレオチド交換因子をコードする遺伝子およびその遺伝子産物
JP4232423B2 (ja) 新規ユビキチン特異プロテアーゼ
WO2005103256A1 (ja) Gtpアーゼ活性化蛋白質をコードする遺伝子およびその遺伝子産物
JP2005192567A (ja) チロシンキナーゼ遺伝子およびその遺伝子産物
EP1466975A1 (en) Postsynaptic proteins
KR100802687B1 (ko) 에프이65의 피티비1 도메인의 파트너, 이의 제조방법 및용도
JPWO2005118631A1 (ja) 新規タンパク質複合体およびその用途
WO2001019864A1 (fr) Polynucleotides codant pour des nouvelles proteines humaines du recepteur de l'angiotensine ii-1, leur procede de preparation et leur utilisation
EP1357181A1 (en) Novel atopic dermatitis-associated gene and proteins
JPH10234378A (ja) ミオシン軽鎖結合サブユニット類縁タンパク質およびその遺伝子
JPH11239494A (ja) カスパ―ゼ活性化dnア―ゼ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005727864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006511681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 10594707

Country of ref document: US

Ref document number: 2007196377

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594707

Country of ref document: US