WO2005091332A1 - Multianode electron multiplier - Google Patents

Multianode electron multiplier Download PDF

Info

Publication number
WO2005091332A1
WO2005091332A1 PCT/JP2004/003860 JP2004003860W WO2005091332A1 WO 2005091332 A1 WO2005091332 A1 WO 2005091332A1 JP 2004003860 W JP2004003860 W JP 2004003860W WO 2005091332 A1 WO2005091332 A1 WO 2005091332A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynode
photocathode
tube
stage
electrode
Prior art date
Application number
PCT/JP2004/003860
Other languages
French (fr)
Japanese (ja)
Inventor
Suenori Kimura
Takayuki Ohmura
Teruhiko Yamaguchi
Masuo Ito
Original Assignee
Hamamatsu Photonics K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K. K. filed Critical Hamamatsu Photonics K. K.
Priority to JP2006511106A priority Critical patent/JP4756604B2/en
Priority to PCT/JP2004/003860 priority patent/WO2005091332A1/en
Publication of WO2005091332A1 publication Critical patent/WO2005091332A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers

Definitions

  • the present invention relates to a multi-anod type photomultiplier tube.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 6-111711 (hereinafter referred to as Patent Document 1) describes a photomultiplier tube having N independent electron multipliers arranged around a central axis. I have. This photomultiplier tube has a symmetrical hermetic container with a long axis, and the photoelectrons are transferred to N electron multipliers according to the positions of photoelectrons generated from the photocathode formed on the ⁇ side surface of the hermetic container. A first stage dynode is provided for separation.
  • the first-stage dynode is cup-shaped with a flat bottom and a side surface extending toward the photocathode, and the axis of symmetry substantially coincides with the long axis of the sealed container.
  • the electron multiplier consists of a sheet type electron multiplier.
  • an electrode having substantially the same potential as that of the photocathode is arranged in a central portion near the bottom of the first-stage dynode.
  • JP-A-7-192686 (hereinafter referred to as Patent Document 2) describes a photomultiplier tube having at least two segment spaces.
  • This photomultiplier tube has a closed container having a photocathode formed on the inside of the front surface, and a portion corresponding to a converging electrode for converging photoelectrons emitted from the photocathode is provided in the closed container. And an electrode including a portion corresponding to a first-stage dynode for multiplying the power by.
  • the part corresponding to the focusing electrode of the electrode and the part corresponding to the first stage dynode Are separated by flat plates.
  • the flat plate has a hole corresponding to each segment space, and a grid is provided in the hole.
  • a central partition wall is provided in a direction including the plane including the central axis of the sealed container and in a direction opposite to the photocathode from the flat plate.
  • the second and subsequent input dynodes are provided near the photovoltaic surface of the central partition wall.
  • a horizontal bar is located in the center of the closed container, including the central axis, parallel to the plate and slightly away from it. The horizontal bar is insulated from the electrode and given a potential equal to or close to that of the photocathode.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-30635 (hereinafter referred to as Patent Document 3) describes a multi-channel electron multiplier.
  • This electron multiplier has a sheet-like dynode, and a control electrode is provided between the sheets of the dynode in order to control the gain of a specific channel.
  • This multi-channel electron multiplier has a closed container having a photocathode on the inner surface, and a cross-shaped convex portion provided with the same potential as the photocathode is provided between each channel.
  • Patent Document 4 Japanese Patent Application Laid-Open No. H11-250583 (hereinafter referred to as Patent Document 4) describes a photomultiplier tube in which the electron focusing space of the photomultiplier tube is divided into a plurality of segments by a partition plate. .
  • a partition plate extends from near a photocathode formed on the inner surface of the sealed container to a direction including a central axis of the sealed container. The partition plate is given the same potential as the photocathode.
  • Each segment has multiple dynodes to multiply electrons. Disclosure of the invention
  • the shape of the first-stage dynode is cup-shaped, and an electrode having substantially the same potential as the photocathode is arranged in the center near the bottom of the first-stage dynode.
  • the electrons emitted from the photocathode and the secondary electrons emitted from the first-stage dynode are made to enter the first-stage dynode and the sheet-type multipliers of the second and subsequent stages.
  • the photomultiplier described in Patent Literature 2 includes an electrode serving also as a focusing electrode and a first-stage dynode, and allows electrons emitted from the photocathode to be incident on the first-stage dynode. Secondary electrons emitted from the dynode are incident on the second and subsequent input dynodes due to the potential difference between the first dynode and the second and subsequent input dynodes and the action of the central partition wall.
  • a partition plate having the same potential as the photocathode is arranged between a plurality of segments, and an electron is incident on the dynode by adjusting an electric field in the photomultiplier tube.
  • the electrons on the photocathode may not efficiently enter the first-stage dynode.
  • photoelectrons emitted from the periphery of the photocathode or secondary electrons emitted from the periphery of the first-stage dynode cannot pass through the first-stage dynode or the second-stage dynode and pass through. May be lost.
  • the effective area of the photocathode is reduced and the substantial detection sensitivity is reduced.
  • the output signal in the photocathode is not uniform, and particularly when used for image processing or the like, there is a problem that a peripheral image cannot be obtained clearly.
  • the present invention made to solve the above-mentioned problems has a glass incident surface plate, and is connected to a surface on one side of the incident surface plate, and extends along a tube axis substantially perpendicular to the incident surface plate.
  • a hollow side tube made of glass extending therethrough; and a photoelectron corresponding to the light incident on the incident surface plate, formed in an area of the one side surface of the incident surface plate located inside the side tube.
  • a photocathode a partition wall extending a predetermined length in the tube axis direction from a boundary between a plurality of regions of the photocathode, and provided inside the side tube corresponding to the plurality of regions of the photocathode;
  • a plurality of electron multipliers for multiplying photoelectrons emitted from the photocathode; and a plurality of electron multipliers provided inside the side tube corresponding to a plurality of regions of the photocathode and emitted from the electron multiplier.
  • a plurality of dynodes that successively multiply and emit secondary electrons, and wherein between the second dynode and the photocathode, the second dynode is disposed with respect to the photocathode.
  • the photocathode emits photoelectrons in response to incident light.
  • the multi-anode type photomultiplier tube has a plurality of electron multipliers.
  • a partition wall is provided over a predetermined length in a tube axis direction of the side tube from a portion corresponding to a boundary between the plurality of electron multipliers on the photocathode.
  • the electron multiplier has a first-stage dynode, a second-stage dynode, and a plurality of dynodes.
  • the first dynode is provided on the side tube side
  • the second dynode is provided on the tube shaft side.
  • a shield electrode for shielding the second dynode from the photocathode is provided.
  • the photocathode, the partition wall, and the shield electrode are given the same potential to adjust the electric field in the side tube so that photoelectrons are efficiently incident on the first-stage dynode irrespective of the location of the photocathode.
  • a flat electrode having an opening for passing electrons toward the first dynode may be provided between the shield electrode and the second dynode.
  • the opening may be provided with a conductive mesh member. It is preferable that the flat electrode can be supplied with a potential equal to or higher than the potential of the first dynode and lower than the potential of the second dynode.
  • the electric field generated between the photocathode and the first-stage dynode is adjusted, and the electrons emitted from the periphery of the photocathode are efficiently incident on the first-stage dynode.
  • an electric field is generated between the first dynode and the second dynode so that the secondary electrons emitted from the first dynode are incident on the second dynode, so that the electrons are efficiently emitted. Can be incident.
  • an opening may be provided in the shield electrode, and the electric field in the side tube may be adjusted in order to reduce a difference in traveling time until the electron emitted from the photocathode reaches the first dynode. Good.
  • the time required to reach the first dynode is uniform, regardless of the position on the photocathode where electrons are generated.
  • FIG. 1 is a cross-sectional view of the multi-anode type photomultiplier tube 1 according to the first embodiment of the present invention, taken along plane AA in FIG.
  • FIG. 2 is a plan view of the multi-anod type photomultiplier tube 1 as viewed from above.
  • FIG. 3 is a cross-sectional view of the multi-anod type photomultiplier tube 1 taken along a plane C-C ′ in FIG. '
  • FIG. 4 is a top view of the vertical focusing electrode 20 of the multi-anode type photomultiplier tube 1.
  • FIG. 5 is a diagram showing the trajectories of electrons when the shield electrode 11 is not provided in the multi-anod type photomultiplier tube 1 provided with the partition walls 9.
  • FIG. 6 is a diagram showing the electron trajectory of the multi-anod type photomultiplier tube 1 provided with the partition wall 9 and the shield electrode 11.
  • FIG. 7 is a diagram showing electron trajectories when the multi-anod type photomultiplier tube 1 has no partition wall 9 and no shield electrode 11.
  • FIG. 8 is a plan view and a schematic sectional view showing a multi-anod type photomultiplier tube 100 according to a second embodiment of the present invention.
  • FIG. 9 is a diagram showing a trajectory of electrons of a multi-anodic photomultiplier tube 100 provided with a partition wall 109 and a shield electrode 110.
  • FIG. 9 is a diagram showing a trajectory of electrons of a multi-anodic photomultiplier tube 100 provided with a partition wall 109 and a shield electrode 110.
  • FIG. 10 is a diagram showing the electron trajectory of the multi-anode type photomultiplier tube 200 provided with the partition wall 109 and the shield electrode 220.
  • the multi-anode type photomultiplier tube 1 is a 2 ⁇ 2 multi-anode type photomultiplier tube.
  • the multi-node photomultiplier tube 1 has a substantially rectangular prism-shaped glass container 5.
  • the glass container 5 is made of transparent glass.
  • the upper surface of the glass container 5 in FIG. 1 is a light incident surface plate 4.
  • the incident surface plate 4 has a photoelectric surface 3 formed inside.
  • the side surface of the glass container 5 extends along a tube axis Z substantially perpendicular to the entrance face plate 4, and forms a hollow side tube 6.
  • Input / output pins 35 are provided on the bottom 7 of the glass container 5.
  • the entrance face plate 4, the side tube 6, and the bottom 7 are integrally formed to seal the inside of the glass container 5.
  • An aluminum thin film 7 is vapor-deposited on the upper inner surface of the side tube 6 of the glass container 5, and is given the same potential as the photoelectric surface 3.
  • the outer surface of the side tube 6 of the glass container 5 is provided with a magnetic shield (not shown) made of a magnetic material such as permalloy, and is covered with an armature tube made of a resin or the like.
  • a partition 9 Inside the glass container 5, there are a partition 9, a shield electrode 11, a plate electrode 13, a mesh 15, a first dynode Dy1, a second dynode Dy2, and a first screen 211, A second screen 22, a flat plate 23, a dynode row 25, an anode 31 and the like are provided.
  • the first-stage dynode Dy1, the second-stage dynode Dy2, the vertical focusing electrode 20, and the dynode array 25 correspond to an electron multiplier.
  • the partition 9 is made of a conductive member and extends from the photocathode 3 in the direction of the tube axis Z.
  • the partition wall 9 is a cross-shaped wall when viewed from above, and divides the electron focusing space in the glass container 5 into four segment spaces 5-1 to 5-4.
  • the lower part is connected to the shield electrode 11.
  • the partition 9 is given the same potential as the photocathode 3.
  • the shield electrode 11 is a conductive plate-like member, and is arranged below the partition 9 inside the glass container 5 so as to shield the second-stage dynode D y 2 from being exposed to the photocathode 3. ing.
  • the periphery of the shield electrode 11 is provided with a rising extending in the direction of the photocathode 3 in the example shown in the figure, thereby reinforcing the strength of the shield electrode 11.
  • the shield electrode 11 is given the same potential as that of the photocathode 3. ,
  • the plate-like electrode 13 has an opening as shown in FIG. 2, and is provided below the shield electrode 11 so as to cover the cross section of the glass container 5.
  • a rising portion extending in the direction of the photocathode 3 is provided around the flat electrode 13.
  • the openings of the flat electrode 13 are provided at four locations around the center axis Z of the glass container 5 in two rows and two columns, and the photoelectric surfaces 3 corresponding to the respective segment spaces 5_1 to 5-4. _ Electrons emitted from 1 to 3-4 pass through.
  • the plate electrode 13 applies the same potential as the first-stage dynode Dy1 or a potential slightly higher than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2.
  • a mesh 15 is provided in each opening of the flat electrode 13.
  • the mesh 15 is a conductive mesh member.
  • the mesh 15 is supplied with the same potential as the first-stage dynode Dy1 or a slightly higher potential than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2.
  • a first-stage dynode Dy1 is provided below each mesh 15. That is, four first-stage dynodes D y1 are provided, one each for each of the segment spaces 5-1 to 5-4 in the glass container 5.
  • the first-stage dynode D y 1 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely.
  • Photocathode 3 corresponding to space 5-1 to 5-4 It is arranged in the vicinity of the side tube 6 inside the glass container 5 so that one to three to four are desired.
  • the first-stage dynode D y1 is given a potential higher than the photocathode 3 and lower than the anode 31.
  • the second-stage dynode D y 2 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely.
  • the first-stage dynode D y1 is arranged near the axis Z inside the glass container 5 as desired. That is, each of the segment spaces 5-1 to 5-4 in the glass container 5 is provided with four second-stage dynodes Dy2, one each.
  • the two second-stage dynodes Dy2 in the segment space 5-1 and the segment space 5-2 have an integrated back side of the vertical portion.
  • two second-stage dynodes Dy2 of segment space 5-3 and segment space 5-4 are integrated on the back side of the vertical part.
  • the second-stage dynode Dy2 is given a potential higher than the first-stage dynode Dyl and lower than the anode 31.
  • a vertical focusing electrode 20 is provided between the first dynode Dy1 and the second dynode Dy2 and the dynode array 25. As shown in FIG. 4, the screen focusing electrode 20 has a first screen 21, a second screen 22, a flat plate 23, and an opening 24.
  • the openings 24 are arranged in two rows and two columns at four positions around the axis Z, where the second-stage dynode Dy2 is desired.
  • a first screen 21 extending in the direction of the photocathode 3 is provided.
  • the first screen 2 1 is arranged in each of the segment spaces 5-1 to 5-4 in the glass container 5, four in total.
  • the first screen 21 preferably extends to the photocathode 3 side from the lower end of the first dynode Dy1.
  • a second screen 22 extending in the direction of the photocathode 3 is provided.
  • the second screen 22 is arranged in each of the segment spaces 5-1 to 5-4 in the glass container 5, one for each, a total of four.
  • the second screen 22 extends above the lower end of the second dynode Dy2.
  • the dynode array 25 is a venetian blind dynode in the multi-anodic photomultiplier 1.
  • Each of the dynodes is composed of a flat plate portion 26 and four dynode portions 27.
  • the four dynodes 27 correspond to the four openings 24, and extend from the first stand 21 of the opening 24 to the side pipe 6 side.
  • Each of the dynode portions 27 of the dynode row 25 is provided with a plurality of electrode elements 28.
  • the electrode element 28 is connected to the tube so that its secondary electron emission surface desires the second-stage dynode. It is arranged at an angle of 45 degrees with respect to the axis Z.
  • the electrode elements 28 of the 4th, 6th and 8th dynodes Dy4, Dy6 and Dy8 are the 3rd, 5th, 7th and 9th dynodes Dy3, Dy5, Dy7 and Dy
  • Nine electrode elements 28 are arranged at an angle of 45 degrees with respect to the tube axis Z in the opposite direction.
  • the flat plate 23 is integrated with the flat plate portion 26 of the third dynode Dy3 such that the flat plate 23 is located above the dynode portion 27.
  • a mesh electrode 29 is integrated with the flat plate portion 26 of the fourth to ninth dynodes Dy4 to Dy9 so as to be positioned above the electrode element 28.
  • the anodes 31 are provided below the ninth dynode Dy9 so as to correspond to the four dynodes.
  • the 10th dynode D yl O is provided below the anode 31, and emits secondary electrons to the anode 31 side when electrons emitted from the ninth dynode Dy 9 are incident. .
  • a Node 31 detects the electron emitted from the 10th dynode Dy10 when it is incident.
  • the multi-anod type photomultiplier tube 1 having the above structure operates as follows.
  • Photocathode 3 Partition wall 9, Shield electrode 11, Plate-on-plate electrode 13, Converging electrode 20, First-stage dynode Dy1, Second-stage dynode Dy2, Dynode row 25, and A predetermined voltage is applied to the node 31 via the input / output pin 35.
  • any of the corresponding photoelectric surfaces 3-1 to 3_4 is reduced by the amount of incident light. Emit a corresponding amount of photoelectrons.
  • the emitted photoelectrons are supplied to the partition wall 9 and shield electrode provided in the corresponding segment space.
  • the light is converged by the plate-like electrode 13 and the like, passes through the corresponding mesh 15 and enters the first-stage dynode Dy1.
  • the first-stage dynode D y 1 emits secondary electrons according to the incident photoelectrons.
  • the secondary electrons are focused by the vertical focusing electrode 20 and are incident on the second-stage dynode Dy2.
  • the position of the equipotential line of the first-stage dynode Dy1 is raised upward,
  • the position of the equipotential line on the second dynode Dy2 is set to a position closer to the horizontal part than the diagonal part of the second dynode Dy2, and most of the vertical part and the diagonal part are the secondary electron emission region. It can be.
  • the electrons emitted from the second-stage dynode Dy2 go to the third-stage dynode Dy3 which is given a higher potential than the second-stage dynode Dy2.
  • the second screen 22 is provided so as to protrude from the lower end position of the second dynode Dy2, and the electric power discharged from the second dynode Dy2 is provided. Can be efficiently guided to the opening 24 of the vertical focusing electrode 20.
  • the electrons passing through the opening 24 enter the third-stage dynode Dy3.
  • the third-stage dynode Dy3 extends to the side tube 6 side from the opening 24, and the electrons passing through the opening 24 can be efficiently incident.
  • the electrons are sequentially multiplied by a multiple in the dynode train 25 and incident on the anode 31.
  • the node 31 generates a signal corresponding to the incident electrons and outputs the signal as an output signal to the outside of the glass container 5 via the input / output pin 35.
  • FIG. 5 is a view showing the trajectories of electrons when the partition wall 9 is provided above the flat plate electrode 13 and the shield electrode 11 is not provided.
  • (A) is a plan view of the multi-anode type photomultiplier tube 1 viewed from above, and (b) is a cross-sectional view taken along line AA ′ of (a).
  • trajectories q and r of electrons emitted from the center of the photocathode 3-4 and the vicinity of the tube axis Z are incident on the first-stage dynode D y1.
  • FIG. 6 is a diagram showing the trajectories of electrons when the partition wall 9 and the shield electrode 11 are provided above the flat plate electrode 13.
  • (A) is a multi-anode
  • FIG. 1B is a plan view of the photomultiplier tube 1 viewed from above
  • FIG. 2B is a cross-sectional view taken along line AA in FIG.
  • the electron trajectories p, q ', and r have all reached the first-stage dynode Dy1. Furthermore, secondary electrons emitted by the electrons incident on the first-stage dynode Dy1 also enter the second-stage dynode Dy2, pass through the opening 24, and enter the dynode array 25. Is possible.
  • FIG. 7 shows, as a comparative example, the trajectories of electrons when the partition wall 9 and the shield electrode 11 were not provided.
  • (A) is a plan view of the multi-anode type photomultiplier tube 1 as viewed from above, and (b) is a cross-sectional view taken along line AA ′ of (a).
  • the trajectory P "of the electrons emitted from the side tube 6 of the photocathode 3-4 is toward the second screen 22 and the trajectories r" and q of the electrons from a position near the tube axis Z side. “” Collides with the electrode 13 on the flat plate, and cannot both enter the first-stage dynode Dy 1.
  • the first-stage dynode Dy1, the second-stage dynode Dy2, the dynode An electron multiplier having columns 25 and the like and an anode 31 are provided. Light incident on the photocathode 3 is multiplied by the electron multiplier and detected by the anode 31.
  • a cross-shaped partition wall 9 extends from the photocathode 3 in the direction of the tube axis Z, and a shield electrode 11 is provided so as to shield the second-stage dynode D y 2, and both have the same potential as the photocathode 3. Is applied.
  • FIGS. 8 to 10 a multi-anode type photomultiplier 100 according to a second embodiment of the present invention will be described with reference to FIGS. 8 to 10.
  • the same components as those of the multi-anod type photomultiplier tube 1 according to the first embodiment are denoted by the same reference numerals.
  • the multi-anod type photomultiplier tube 100 is composed of a multi-anode type photomultiplier tube 1 with a partition wall 9 instead of a partition wall 9 and a shield electrode 11 with a shield electrode 11. 1 1 0 is provided.
  • the partition wall 109 is made of a conductive material and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 8, the partition wall 109 is a cross-shaped wall when viewed from above. Like the partition wall 9, the electron focusing space in the glass container 5 is divided into four segment spaces 5-1 to 5-4. Is divided into As shown in FIG. 8, the lower portion has an opening 108 between itself and the shield electrode 110. The partition wall 109 is given the same potential as the photocathode 3.
  • the shield electrode 110 is a conductive plate-shaped member, and is arranged below the partition wall 109 inside the glass container 5 and above the flat plate electrode 13.
  • the periphery of the shield electrode 110 is provided with a rising edge extending in the direction of the photocathode 3 in the illustrated example, thereby reinforcing the strength of the shield electrode 110.
  • An opening 112 is provided at the center of the shield electrode 110.
  • the opening 1 1 2 is rectangular when viewed from above.
  • the shield electrode 110 is given the same potential as the photocathode 3.
  • FIG. 8 is a multi-anode type photoelectric converter.
  • FIG. 2B is a plan view of the secondary tube 100 viewed from above, and FIG. 2B is a cross-sectional view taken along line AA of FIG.
  • the multi-anode type photomultiplier tube 100 has an opening 1 08 below the partition wall 109 and an opening 1 12 for the shield electrode 110,
  • the electric field strength near the tube axis Z is prevented from lowering. Therefore, the electron trajectories q 2 and r 2 are closer to the first stage dynode D y 1 from the photocathode 3 than the electron trajectories q ′ and r ′ of the multi-anode type photomultiplier tube 1 in FIG.
  • the time difference until the light enters is small.
  • FIG. 9 is a diagram showing electron trajectories of a multi-anod type photomultiplier tube 100 having a partition wall 109 and a shield electrode 110 on the upper electrode 13 on a flat plate.
  • A is a plan view of the multi-anode type photomultiplier tube 100 viewed from above, and (b) is a cross-sectional view taken along line A_A, (a).
  • FIG. 9 shows the trajectories s, t, and u of the electrons in the segment space 5-4 emitted from the photocathode 3-4 near the partition wall 109. As shown in the figure, even if the positions where the electrons are emitted from the photocathode 3 are different, the time difference between the electron trajectories s, t, and u before they enter the first-stage dynode Dy1 is small.
  • the multi-anod type photomultiplier 100 electrons can be efficiently incident on the first-stage dynode D y1 irrespective of the incident position of light on the photocathode 3, and the photocathode It is possible to detect the incident light almost uniformly over the entire surface of 3 and to reduce the time difference until the light enters the first-stage dynode D y 1 irrespective of the incident position on the photocathode 3.
  • the first-stage dynode Dy1 and the second-stage dynode Dy2 are placed in the glass container 5.
  • An electron multiplier having a dynode array 25 and the like and an anode 31 are provided so that light incident on the photocathode 3 can be reflected by the electron multiplier. Multiplied and detected by node 31.
  • a cross-shaped partition wall 109 extends from the photocathode 3 in the direction of the tube axis Z.
  • a shield electrode 110 is provided below the cross-section partition wall 109, and the same potential as that of the photocathode 3 is applied to both.
  • An opening 108 is provided between the partition wall 109 and the shield electrode 110, and an opening 112 is provided in the shield electrode 110.
  • electrons emitted from the photocathode 3 in response to the incident light are converted into electron multipliers such as the first-stage dynode Dy1 and the second-stage dynode Dy2 regardless of the radiation position on the photocathode 3. It is possible to make the light incident on the surface efficiently.
  • the electric field in the segment spaces 5-1 to 5-4 becomes more uniform due to the opening 1108 below the partition wall 109 and the opening 111 of the shield electrode 110, so that the photoelectric surface 3 Regardless of the electron emission position above, the difference in the transit time of electrons from the photocathode 3 to the first stage dynode Dy1 can be reduced. Therefore, when used in an image display device or the like, a clear image can be obtained.
  • the evaporation source (not shown) used for forming the photocathode 3 can be reduced to four segment spaces 5-1 to 5-4. It is only necessary to provide one part in the glass container 5 in common, and the number of parts can be reduced.
  • FIG. 10 shows a multi-anode type photomultiplier tube 200 as a modification of the second embodiment.
  • FIG. 10 is a view showing a configuration of a multi-anode type photomultiplier tube 200 provided with a partition wall 109 and a shield electrode 210 on the upper electrode 13 on a flat plate, and shows a locus of electrons.
  • (A) is a plan view of the multi-anode type photomultiplier tube 200 viewed from above, and (b) is a cross-sectional view taken along line AA ′ of (a).
  • FIG. 100 the seal of the multi-anod type photomultiplier tube 100 is shown.
  • a shield electrode 210 is provided in place of the shield electrode 210.
  • Other configurations are the same as those of the multi-anod type photomultiplier tube 100.
  • the shield electrode 210 is a conductive plate-shaped member, and is disposed below the partition wall 109 inside the glass container 5 and above the flat plate electrode 13.
  • the periphery of the shield electrode 210 is provided with a rising edge extending in the direction of the photocathode 3 in the example shown in the figure, so as to increase the strength of the shield electrode 210.
  • An opening 2 12 is provided at the center of the shield electrode 2 10. When viewed from above, the opening 2 12 has an uneven shape in which the width of a portion near the center of each of the segment spaces 5-1 to 5-4 is wide.
  • the shield electrode 210 is given the same potential as the photocathode 3.
  • FIG. 10 shows the trajectories s ′ and tu ′ of electrons in the segment space 5-4 emitted from the photocathode 3-4 near the partition wall 109.
  • the positions of the electron trajectories s', t, and u, which are incident on the first-stage dynode Dy1 have smaller variations compared to the electron trajectories s, t, and u in FIG.
  • the transit time difference is further reduced than in the multi-anod type photomultiplier tube 100, and the incident position on the first dynode Dy1 is also constant.
  • the segment space 5-1 to the segment space 5-1 to the opening portion 108 below the partition wall 109 and the opening portion 212 of the shield electrode 210 are formed. Since the electric field in 5-4 becomes even more uniform, the transit time difference between the electrons from the photocathode 3 to the first stage dynode D y 1 and the Variation in the incident position on the first-stage dynode D y 1 can be reduced. Therefore, when used in an image display device or the like, a clearer image can be obtained.
  • the edges of the shield electrodes 11, 110, 210 may not have any rising edge. According to this, it is possible to reduce the amount of the material constituting the shield electrodes 11, 110, 210, and to reduce the cost.
  • the number of segment spaces 5-1 to 5-4 is not limited to four, but may be, for example, 3 ⁇ 3 9 spaces.
  • the partition walls 9 are provided in a grid or the like according to the arrangement of the regions.
  • the opening of the flat electrode 13 may not be provided with the mesh 15. Also, the vertical, horizontal, and oblique portions of the first-stage dynode Dyl and the second-stage dynode Dy2 need not be flat, and may have a curved structure.
  • the third-stage dynode Dy3 does not have to extend from the first screen 21 to the side pipe 6 side, but may extend to almost below the first screen 21.
  • the dynode train 25 has the third dynode Dy3 to the tenth dynode Dy10, the dynode train 25 may have a smaller or larger number of dynodes.
  • the venetian blind type dynode array 25 has been described, but a dynode array of other laminated structure such as a fine mesh type or a microphone opening channel plate type may be used. Instead of a stacked type, a box type or line focus type dynode may be provided as a dynode below the third stage dynode.
  • the glass container 5 has a substantially square pillar shape, but is not limited to this, and may be, for example, a cylindrical shape. Industrial potential
  • the multi-anod type photomultiplier according to the present invention can be widely used in various fields such as other radiation detection and other light detection in addition to being usable as a positron CT in the medical field.

Abstract

A multianode electron multiplier has a glass container (5) containing a partition wall (9), a shield electrode (11), a first stage dynode (Dy1), a second stage dynode (Dy2), a dynode array (25) and an anode (31), wherein a photoelectric surface (3) is formed on the inside of an incident surface plate (4). The partition wall (9) has a cross shape and divides an electron convergence space into four segments. The shield electrode (11) is disposed to shield the second stage dynode (Dy2) from the photoelectric surface (3). The photoelectric surface, the partition wall and the shield electrode are applied with an identical potential. Electrons being emitted depending on the light impinging on the photoelectric surface enter the dynode efficiently regardless of the emission place and then they are multiplied and detected by means of the anode.

Description

明 細 書 マルチアノ一ド型光電子増倍管 技術分野  Description Multi-anode photomultiplier tube Technical field
本発明はマルチアノ一ド型光電子増倍管に関する。 背景技術  The present invention relates to a multi-anod type photomultiplier tube. Background art
'特開平 6— 1 1 1 7 5 7号 (以下特許文献 1 という) には、 中心軸の 回りに配置された N個の独立した電子増倍部を有する光電子增倍管が記 載されている。 この光電子増倍管は、 長軸を有する対称構造の密閉容器 を備え、 密閉容器の內側面に形成された光電面から発生する光電子の位 置に応じて光電子を N個の電子増倍部に分けるために、 第 1段ダイノー ドが設けられている。  'Japanese Unexamined Patent Application Publication No. 6-111711 (hereinafter referred to as Patent Document 1) describes a photomultiplier tube having N independent electron multipliers arranged around a central axis. I have. This photomultiplier tube has a symmetrical hermetic container with a long axis, and the photoelectrons are transferred to N electron multipliers according to the positions of photoelectrons generated from the photocathode formed on the 內 side surface of the hermetic container. A first stage dynode is provided for separation.
第 1段ダイノードは、 平坦な底部および光電面の方へと延在する側面 を有するカップ状で、 対称軸が密閉容器の長軸とほぼ一致している。' 電 子増倍部は、 シートタイプの電子増倍器により構成されている。 また、 第 1段ダイノードの底部付近の中央部に、 光電面とほぼ同電位を与えら れた電極が配置されている。  The first-stage dynode is cup-shaped with a flat bottom and a side surface extending toward the photocathode, and the axis of symmetry substantially coincides with the long axis of the sealed container. '' The electron multiplier consists of a sheet type electron multiplier. In addition, an electrode having substantially the same potential as that of the photocathode is arranged in a central portion near the bottom of the first-stage dynode.
特開平 7— 1 9 2 6 8 6号 (以下、 特許文献 2という;) には、 少なく とも 2つのセグメント空間を有する光電子増倍管が記載されている。 こ の光電子増倍管は、 前面内側に光電面が形成された密閉容器を有し、 密 閉容器内に、 光電面から放出される光電子を収束する収束電極に相当す る部分と、 1次の增倍を行なう第 1段ダイノードに相当する部分とを含 む電極が備えられている。  JP-A-7-192686 (hereinafter referred to as Patent Document 2) describes a photomultiplier tube having at least two segment spaces. This photomultiplier tube has a closed container having a photocathode formed on the inside of the front surface, and a portion corresponding to a converging electrode for converging photoelectrons emitted from the photocathode is provided in the closed container. And an electrode including a portion corresponding to a first-stage dynode for multiplying the power by.
電極の収束電極に相当する部分と第 1段ダイノードに相当する部分と は、 平板によって分けられている。 平板は、 各セグメント空間に対応し た孔部を有し、 孔部にはグリッドが設けられている。 密閉容器の中心軸 を含む平面を含み、 平板から光電面と逆の方向に、 中央隔壁が設けられ ている。 中央隔壁の光電面と逆側近傍に第 2段以降の入力ダイノード設 けられている。 密閉容器の中心軸を含む中央部分には、 平板と平行に、 かつ僅かに離れて横棒が位置する。 横棒は、 電極とは絶縁され、 光電面 と等しいかそれに近い電位を与えられている。 The part corresponding to the focusing electrode of the electrode and the part corresponding to the first stage dynode Are separated by flat plates. The flat plate has a hole corresponding to each segment space, and a grid is provided in the hole. A central partition wall is provided in a direction including the plane including the central axis of the sealed container and in a direction opposite to the photocathode from the flat plate. The second and subsequent input dynodes are provided near the photovoltaic surface of the central partition wall. A horizontal bar is located in the center of the closed container, including the central axis, parallel to the plate and slightly away from it. The horizontal bar is insulated from the electrode and given a potential equal to or close to that of the photocathode.
特開平 8— 3 0 6 3 3 5号 (以下、 特許文献 3という) には、 マルチ チャンネル電子増倍管が記載されている。 この電子増倍管は、 シート状 のダイノードを有し、 特定のチャンネルの利得を制御するために、 ダイ ノ一ドのシ一ト間に制御電極を設けている。  Japanese Patent Application Laid-Open No. 8-30635 (hereinafter referred to as Patent Document 3) describes a multi-channel electron multiplier. This electron multiplier has a sheet-like dynode, and a control electrode is provided between the sheets of the dynode in order to control the gain of a specific channel.
このマルチチャンネル電子增倍管は内面に光電面を備えた密閉容器を 有し、 各チャンネル間には、 光電面と同電位を与えられた十字型の凸部 が備えられている。  This multi-channel electron multiplier has a closed container having a photocathode on the inner surface, and a cross-shaped convex portion provided with the same potential as the photocathode is provided between each channel.
特開平 1 1— 2 5 0 8 5 3号 (以下特許文献 4という) には、 仕切り 板により光電子増倍管の電子収束空間を複数のセグメントに分割した光 電子増倍管が記載されている。 この光電子増倍管においては、 密閉容器 内面に形成された光電面近くから密閉容器の中心軸を含む面の方向に仕 切り板が延在している。仕切り板は、光電面と同電位を与えられている。 複数のセグメントには夫々複数のダイノードが備えられ、 電子を増倍す る。 発明の開示  Japanese Patent Application Laid-Open No. H11-250583 (hereinafter referred to as Patent Document 4) describes a photomultiplier tube in which the electron focusing space of the photomultiplier tube is divided into a plurality of segments by a partition plate. . In this photomultiplier tube, a partition plate extends from near a photocathode formed on the inner surface of the sealed container to a direction including a central axis of the sealed container. The partition plate is given the same potential as the photocathode. Each segment has multiple dynodes to multiply electrons. Disclosure of the invention
特許文献 1に記載の光電子增倍管においては、 第 1段ダイノードの形 状をカップ形状とし、 第 1段ダイノードの底部付近の中央部に光電面と ほぼ同電位を与えられた電極を配置して光電子増倍管内の電界を調整し、 光電面から放出された電子および第 1段ダイノードから放出された二次 電子が、 第 1段ダイノードおよび第 2段以降のシートタイプの増倍器に 入射するようにしている。 In the photomultiplier tube described in Patent Document 1, the shape of the first-stage dynode is cup-shaped, and an electrode having substantially the same potential as the photocathode is arranged in the center near the bottom of the first-stage dynode. To adjust the electric field inside the photomultiplier tube, The electrons emitted from the photocathode and the secondary electrons emitted from the first-stage dynode are made to enter the first-stage dynode and the sheet-type multipliers of the second and subsequent stages.
特許文献 2に記載の光電子増倍管においては、 収束電極と第 1段ダイ ノードとを兼ねた電極を備えて、 光電面から放出された電子を第 1段ダ ィノードに入射させ、 第 1段ダイノードから放出された二次電子は、 第 1段ダイノードと第 2段以降の入力ダイノードとの電位差と中央隔壁の 作用により、 第 2段以降の入力ダイノードに入射させている。  The photomultiplier described in Patent Literature 2 includes an electrode serving also as a focusing electrode and a first-stage dynode, and allows electrons emitted from the photocathode to be incident on the first-stage dynode. Secondary electrons emitted from the dynode are incident on the second and subsequent input dynodes due to the potential difference between the first dynode and the second and subsequent input dynodes and the action of the central partition wall.
特許文献 3に記載の光電子增倍管においては、 シート状ダイノードの 特定チャンネルの利得を制御するために、 ダイノードのシート間に制御 電極を設け、 各チャンネル間には、 光電面と同電位を与えられた十字型 の凸部を備えて電子をダイノ一ドに入射させている。  In the photomultiplier described in Patent Document 3, in order to control the gain of a specific channel of the sheet-like dynode, a control electrode is provided between the sheets of the dynode, and the same potential as that of the photocathode is applied between the channels. With the cross-shaped projection, electrons are incident on the dynode.
特許文献 4に記載の光電子増倍管においては、 複数のセグメント間に 光電面と同電位を与えた仕切り板が配置され、 光電子増倍管内の電界を 調整して電子をダイノードに入射させている。  In the photomultiplier tube described in Patent Document 4, a partition plate having the same potential as the photocathode is arranged between a plurality of segments, and an electron is incident on the dynode by adjusting an electric field in the photomultiplier tube. .
しかしながら、 上記のような光電子增倍管では、 光電面の電子が放出 される場所によっては、 第 1段ダイノードに効率よく入射しない場合が ある。 特に光電面の周縁部分から放出された光電子、 あるいは第 1段ダ イノードの周縁部から放出された二次電子は、 第 1段のダイノードまた は第 2段以降のダイノードに入射できずにすり抜けてしまう場合がある。 このような場合には、 光電面の有効面積が縮小され、 実質的な検出感 度が低下してしまうという問題が生ずる。 また、 光電面内での出力信号 が均一にならず、 特に画像処理などに用いる場合には、 周辺部の画像が 鮮明に得られないなどの問題が生ずる。  However, in the above-described photomultiplier, depending on where the electrons on the photocathode emit electrons, the electrons may not efficiently enter the first-stage dynode. In particular, photoelectrons emitted from the periphery of the photocathode or secondary electrons emitted from the periphery of the first-stage dynode cannot pass through the first-stage dynode or the second-stage dynode and pass through. May be lost. In such a case, there arises a problem that the effective area of the photocathode is reduced and the substantial detection sensitivity is reduced. In addition, the output signal in the photocathode is not uniform, and particularly when used for image processing or the like, there is a problem that a peripheral image cannot be obtained clearly.
上記課題を解決するためになされた本発明は、ガラス製の入射面板と、 該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に沿 つて延びるガラス製の中空の側管と、 該入射面板の該一つの側の面のう ち該側管の内側に位置した領域に形成され、 該入射面板に入射した光に 応じた光電子を放出する光電面と、 該光電面の複数の領域間の境界部分 から該管軸方向に所定の長さに延びる隔壁と、 該光電面の複数の領域に 対応して該側管内部に設けられ、 該光電面から放出された光電子を增倍 する複数の電子増倍部と、 該光電面の複数の領域に対応して該側管の内 側に設けられ、 該電子増倍部から放出される電子を受ける複数のァノー ド電極と、 を備え、 該電子增倍部は、 該側管の内側の該側管側に設けら れ、 該光電面から放出された光電子が入射すると増倍して二次電子を放 出する第 1段ダイノードと、 該側管の内側の該管軸側に設けられ、 該第 1段ダイノードから放出された二次電子が入射するとさらに増倍して二 次電子を放出する第 2段ダイノードと、 該側管の内側に設けられ、 該第 2段ダイノードから放出された二次電子が入射すると次々に増倍して二 次電子を放出する複数段のダイノードと、 を有し、 該第 2段ダイノード と該光電面との間には、 該第 2段ダイノードを該光電面に対して遮蔽す るシールド電極が設けられ、 該光電面、 該隔壁および該シールド電極は 同電位を与えられることを特徴とするマルチアノ一ド型光電子增倍管で ある。 Means for Solving the Problems The present invention made to solve the above-mentioned problems has a glass incident surface plate, and is connected to a surface on one side of the incident surface plate, and extends along a tube axis substantially perpendicular to the incident surface plate. A hollow side tube made of glass extending therethrough; and a photoelectron corresponding to the light incident on the incident surface plate, formed in an area of the one side surface of the incident surface plate located inside the side tube. A photocathode, a partition wall extending a predetermined length in the tube axis direction from a boundary between a plurality of regions of the photocathode, and provided inside the side tube corresponding to the plurality of regions of the photocathode; A plurality of electron multipliers for multiplying photoelectrons emitted from the photocathode; and a plurality of electron multipliers provided inside the side tube corresponding to a plurality of regions of the photocathode and emitted from the electron multiplier. A plurality of anode electrodes for receiving electrons, wherein the electron multiplier is provided on the side tube side inside the side tube, and multiplies when photoelectrons emitted from the photoelectric surface enter. A first-stage dynode that emits secondary electrons; and a first-stage dynode that is provided inside the side tube on the tube shaft side. A second-stage dynode that further multiplies secondary electrons emitted from the second-stage dynode to emit secondary electrons, and is provided inside the side tube, and receives secondary electrons emitted from the second-stage dynode. And a plurality of dynodes that successively multiply and emit secondary electrons, and wherein between the second dynode and the photocathode, the second dynode is disposed with respect to the photocathode. A multi-anode type photomultiplier tube, wherein a shield electrode for shielding is provided, and the photoelectric surface, the partition wall, and the shield electrode are given the same potential.
上記マルチアノ一ド型光電子增倍管においては、 光電面は入射光に応 じて光電子を放出する。 マルチアノード型光電子増倍管内には複数の電 子增倍部が備えられている。 光電面の複数の電子增倍部の境界に対応す る部分から、 側管の管軸方向に所定の長さに亘つて隔壁が設けられてい る。 電子增倍部は、 第 1段ダイノード、 第 2段ダイノード、 および複数 段のダイノードを有している。 第 1段ダイノードは側管側に設けられ、 第 2段ダイノードは管軸側に設けられる。 第 2段ダイノードと光電面と の間には、 第 2段ダイノ一ドを光電面に対して遮蔽するシールド電極が 設けられる。 光電面、 隔壁およびシールド電極は同電位を与えられ、 側 管内の電界を調整して、光電面における発生箇所にかかわらず光電子を、 第 1段ダイノードに効率よく入射させる。 In the above multi-anod type photomultiplier, the photocathode emits photoelectrons in response to incident light. The multi-anode type photomultiplier tube has a plurality of electron multipliers. A partition wall is provided over a predetermined length in a tube axis direction of the side tube from a portion corresponding to a boundary between the plurality of electron multipliers on the photocathode. The electron multiplier has a first-stage dynode, a second-stage dynode, and a plurality of dynodes. The first dynode is provided on the side tube side, and the second dynode is provided on the tube shaft side. Between the second dynode and the photocathode, a shield electrode for shielding the second dynode from the photocathode is provided. Provided. The photocathode, the partition wall, and the shield electrode are given the same potential to adjust the electric field in the side tube so that photoelectrons are efficiently incident on the first-stage dynode irrespective of the location of the photocathode.
シールド電極と第 2段ダイノ ドとの間には、 第 1段ダイノードに向 かう電子を通過させる開口部を有する平板状電極を備えるようにしても よい。 開口部には、 導電性の網状部材を備えることができる。 平板状電 極は、 第 1段ダイノードの電位以上で、 該第 2段ダイノードの電位未満 の電位を与えられることが好ましい。  A flat electrode having an opening for passing electrons toward the first dynode may be provided between the shield electrode and the second dynode. The opening may be provided with a conductive mesh member. It is preferable that the flat electrode can be supplied with a potential equal to or higher than the potential of the first dynode and lower than the potential of the second dynode.
上記構成によれば、 光電面と第 1段ダイノードとの間に生じる電界が 調整され、 光電面の周辺部から放出された電子が効率よく第 1段ダイノ 一ドに入射する。 ·  According to the above configuration, the electric field generated between the photocathode and the first-stage dynode is adjusted, and the electrons emitted from the periphery of the photocathode are efficiently incident on the first-stage dynode. ·
また、 第 1段ダイノードと第 2段ダイノードとの間に、 第 1段ダイノ 一ドから放出された二次電子を第 2段ダイノ一ドに入射させるための電 界が生じるので、 効率よく電子を入射させることができる。  Also, an electric field is generated between the first dynode and the second dynode so that the secondary electrons emitted from the first dynode are incident on the second dynode, so that the electrons are efficiently emitted. Can be incident.
さらに、 シールド電極に開口部を設けて、 該光電面から放出された電 子が該第 1段ダイノードに到達するまでの走行時間差を減らすために、 該側管内の電界を調整するようにしてもよい。  Further, an opening may be provided in the shield electrode, and the electric field in the side tube may be adjusted in order to reduce a difference in traveling time until the electron emitted from the photocathode reaches the first dynode. Good.
上記構成により、 電子が発生する光電面上の位置にかかわらず、 第 1 段ダイノードに到達する間での時間が均一になる。  With the above configuration, the time required to reach the first dynode is uniform, regardless of the position on the photocathode where electrons are generated.
よって、 マルチアノード型光電子増倍管の光電面の周辺部においても 中心部と均一な感度で時間差なく電子を検出することができ、 画像処理 などに応用する際に鮮明な画像を得ることが可能になる。 図面の簡単な説明  Therefore, even at the periphery of the photocathode of the multi-anode type photomultiplier, electrons can be detected with a uniform sensitivity from the center without a time difference, and a clear image can be obtained when applied to image processing etc. become. Brief Description of Drawings
第 1図は、 本発明の第 1の実施の形態にかかるマルチアノード型光電 子増倍管 1の第 2図の A— A, 面における断面図である。 第 2図は、 マルチアノ一ド型光電子増倍管 1を上方から見た平面図で ある。 FIG. 1 is a cross-sectional view of the multi-anode type photomultiplier tube 1 according to the first embodiment of the present invention, taken along plane AA in FIG. FIG. 2 is a plan view of the multi-anod type photomultiplier tube 1 as viewed from above.
第 3図は、 マルチアノ一ド型光電子増倍管 1の第 2図の C一 C '面にお ける断面図である。 '  FIG. 3 is a cross-sectional view of the multi-anod type photomultiplier tube 1 taken along a plane C-C ′ in FIG. '
第 4図は、 マルチアノー ド型光電子増倍管 1 のつい立収束電極 2 0の 上面図である。  FIG. 4 is a top view of the vertical focusing electrode 20 of the multi-anode type photomultiplier tube 1.
第 5図は、 隔壁 9を設けたマルチアノ一ド型光電子增倍管 1にシール ド電極 1 1がない場合の電子の軌跡を示す図である。  FIG. 5 is a diagram showing the trajectories of electrons when the shield electrode 11 is not provided in the multi-anod type photomultiplier tube 1 provided with the partition walls 9.
第 6図は、 隔壁 9およびシールド電極 1 1を設けたマルチアノ一ド型 光電子増倍管 1の電子の軌跡を示す図である。  FIG. 6 is a diagram showing the electron trajectory of the multi-anod type photomultiplier tube 1 provided with the partition wall 9 and the shield electrode 11.
第 7図は、 マルチアノ一ド型光電子増倍管 1に隔壁 9およびシールド 電極 1 1がない場合の電子の軌跡を示す図である。  FIG. 7 is a diagram showing electron trajectories when the multi-anod type photomultiplier tube 1 has no partition wall 9 and no shield electrode 11.
第 8図は、 本発明の第 2の実施の形態にかかるマルチアノ一ド型光電 子增倍管 1 0 0を示す平面図おょぴ概略断面図である。  FIG. 8 is a plan view and a schematic sectional view showing a multi-anod type photomultiplier tube 100 according to a second embodiment of the present invention.
第 9図は、 隔壁 1 0 9およびシールド電極 1 1 0を設けたマルチアノ 一ド型光電子増倍管 1 0 0の電子の軌跡を示す図である。  FIG. 9 is a diagram showing a trajectory of electrons of a multi-anodic photomultiplier tube 100 provided with a partition wall 109 and a shield electrode 110. FIG.
第 1 0図は、 隔壁 1 0 9およびシールド電極 2 2 0を設けたマルチア ノード型光電子增倍管 2 0 0の電子の軌跡を示す図である。 発明を実施するための最良の形態  FIG. 10 is a diagram showing the electron trajectory of the multi-anode type photomultiplier tube 200 provided with the partition wall 109 and the shield electrode 220. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施の形態にかかるマルチアノ一ド型光電子増倍管を、 図面を参照しながら説明する。  A multi-anod type photomultiplier according to a first embodiment of the present invention will be described with reference to the drawings.
まず、 マルチアノード型光電子增倍管 1の構成を、 第 1図乃至第 4図 に基づき説明する。 第 1図に示すように、 マルチアノー ド型光電子增倍 管 1は、 2 X 2のマルチアノードタイプの光電子増倍管である。 マルチ ァノード型光電子増倍管 1は、 略四角柱形状のガラス容器 5を有してい る。 ガラス容器 5は、 透明ガラス製である。 ガラス容器 5の第 1図にお ける上面は、 光の入射面板 4となっている。 First, the configuration of the multi-anode type photomultiplier 1 will be described with reference to FIGS. 1 to 4. FIG. As shown in FIG. 1, the multi-anode type photomultiplier tube 1 is a 2 × 2 multi-anode type photomultiplier tube. The multi-node photomultiplier tube 1 has a substantially rectangular prism-shaped glass container 5. The The glass container 5 is made of transparent glass. The upper surface of the glass container 5 in FIG. 1 is a light incident surface plate 4.
入射面板 4には、 内側に光電面 3が形成されている。 ガラス容器 5の 側面は、 入射面板 4に略垂直な管軸 Zに沿って延びており、 中空の側管 6をなしている。 ガラス容器 5の底部 7には、 入出力ピン 3 5が設けら れている。 入射面板 4、 側管 6、 底部 7とは一体に形成され、 ガラス容 器 5の内部を密閉している。  The incident surface plate 4 has a photoelectric surface 3 formed inside. The side surface of the glass container 5 extends along a tube axis Z substantially perpendicular to the entrance face plate 4, and forms a hollow side tube 6. Input / output pins 35 are provided on the bottom 7 of the glass container 5. The entrance face plate 4, the side tube 6, and the bottom 7 are integrally formed to seal the inside of the glass container 5.
ガラス容器 5の側管 6上部内面に、 アルミニウム薄膜 7が蒸着され、 光電面 3と同電位を与えられている。 ガラス容器 5の側管 6外面には、 パーマロイなどの磁性材料からなる磁気シールド (図示せず) が備えら れ、 さらに樹脂などからなる被子チューブで覆われている。  An aluminum thin film 7 is vapor-deposited on the upper inner surface of the side tube 6 of the glass container 5, and is given the same potential as the photoelectric surface 3. The outer surface of the side tube 6 of the glass container 5 is provided with a magnetic shield (not shown) made of a magnetic material such as permalloy, and is covered with an armature tube made of a resin or the like.
ガラス容器 5内部には、隔壁 9、シールド電極 1 1、平板状電極 1 3、 メ ッシュ 1 5、 第 1段ダイノード D y 1、 第 2段ダイノード D y 2、 第 1のつい立 2 1、 第 2のつい立 2 2、 平板 2 3、 ダイノード列 2 5、 ァ ノード 3 1等が備えられている。 第 1段ダイノード D y 1、 第 2段ダイ ノード D y 2、 つい立収束電極 2 0、 ダイノード列 2 5は、 電子増倍部 に相当する。  Inside the glass container 5, there are a partition 9, a shield electrode 11, a plate electrode 13, a mesh 15, a first dynode Dy1, a second dynode Dy2, and a first screen 211, A second screen 22, a flat plate 23, a dynode row 25, an anode 31 and the like are provided. The first-stage dynode Dy1, the second-stage dynode Dy2, the vertical focusing electrode 20, and the dynode array 25 correspond to an electron multiplier.
ガラス容器 5内部の光電面 3、 シールド電極 1 1、 平板状電極 1 3、 第 1段ダイノード D y 1、第 2段ダイノード D y 2、ダイノ一ド列 2 5、 アノード 3 1等は、 入出力ピン 3 5と図示しない配線にて接続され所定 の電位を与えられている。  The photocathode 3 inside the glass container 5, the shield electrode 11, the flat electrode 13, the first dynode Dy1, the second dynode Dy2, the dynode row 25, the anode 31, etc. It is connected to the output pin 35 by a wiring (not shown) and given a predetermined potential.
隔壁 9は、 導電性部材からなり、 光電面 3から管軸 Zの方向に延びて いる。 第 2図に示すように、 隔壁 9は上方から見ると十文字形状の壁で あり、 ガラス容器 5内の電子収束空間を 4つのセグメント空間 5— 1乃 至 5— 4に分割している。 第 1図に示すように、 下部はシールド電極 1 1 と接続している。 隔壁 9は、 光電面 3と同電位を与えられる。 シールド電極 1 1は導電性の板状部材であり、 ガラス容器 5内部の隔 壁 9の下部に、 第 2段ダイノード D y 2が光電面 3に対し露出されるの を遮蔽するように配置されている。 シールド電極 1 1の周縁部は、 図示 の例では光電面 3の方向に延びる立ち上がりが設けられ、 シールド電極 1 1の強度を補強している。 シールド電極 1 1は、 光電面 3と同電位'を 与えられる。 , The partition 9 is made of a conductive member and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 2, the partition wall 9 is a cross-shaped wall when viewed from above, and divides the electron focusing space in the glass container 5 into four segment spaces 5-1 to 5-4. As shown in FIG. 1, the lower part is connected to the shield electrode 11. The partition 9 is given the same potential as the photocathode 3. The shield electrode 11 is a conductive plate-like member, and is arranged below the partition 9 inside the glass container 5 so as to shield the second-stage dynode D y 2 from being exposed to the photocathode 3. ing. The periphery of the shield electrode 11 is provided with a rising extending in the direction of the photocathode 3 in the example shown in the figure, thereby reinforcing the strength of the shield electrode 11. The shield electrode 11 is given the same potential as that of the photocathode 3. ,
平板状電極 1 3は、 第 2図に示すように開口を有し、 シールド電極 1 1の下部にガラス容器 5の断面を覆うように設けられている。 平板上電 極 1 3の周辺部には、 光電面 3の方向に延びる立ち上がりが設けられて いる。 図示の例では、 平板状電極 1 3の開口はガラス容器 5の中心軸 Z の周囲に 4箇所 2行 2列に設けられ、 それぞれのセグメント空間 5 _ 1 乃至 5— 4に対応する光電面 3 _ 1乃至 3— 4から放出された電子が通 過する。  The plate-like electrode 13 has an opening as shown in FIG. 2, and is provided below the shield electrode 11 so as to cover the cross section of the glass container 5. A rising portion extending in the direction of the photocathode 3 is provided around the flat electrode 13. In the illustrated example, the openings of the flat electrode 13 are provided at four locations around the center axis Z of the glass container 5 in two rows and two columns, and the photoelectric surfaces 3 corresponding to the respective segment spaces 5_1 to 5-4. _ Electrons emitted from 1 to 3-4 pass through.
平板状電極 1 3は、 第 1段ダイノード D y 1 と同電位か、 第 2段ダイ ノード D y 2の電位を越えない範囲で第 1段ダイノード D y 1の電位よ り少し高い電位を与えられる。  The plate electrode 13 applies the same potential as the first-stage dynode Dy1 or a potential slightly higher than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2. Can be
平板状電極 1 3の各開口には、 メッシュ 1 5が設けられている。 メ ッ シュ 1 5は、 導電性の網状部材である。 メ ッシュ 1 5には、 第 1段ダイ ノード D y 1 と同電位か、 第 2段ダイノード D y 2の電位を越えない範 囲で第 1段ダイノード D y 1の電位より少し高い電位が与えられる。 各メッシュ 1 5に対応して、 その下部に第 1段ダイノード D y 1が設 けられる。 すなわちガラス容器 5内の各セグメント空間 5— 1乃至 5— 4に各 1つ、 合計に 4つの第 1段ダイノード D y 1が設けられている。 第 1段ダイノード D y 1は、 水平に平らに延びる水平部と、 軸方向に 平らに延びる垂直部と、 水平部と垂直部とを接続し斜め方向に延びる斜 め部とを備え、 各セグメント空間 5— 1乃至 5— 4に対応する光電面 3 一 1乃至 3— 4を望むようにガラス容器 5内部の側管 6近傍に配置され ている。 第 1段ダイノード D y 1は、 光電面 3よりも高くアノード 3 1 よりも低い電位を与えられている。 A mesh 15 is provided in each opening of the flat electrode 13. The mesh 15 is a conductive mesh member. The mesh 15 is supplied with the same potential as the first-stage dynode Dy1 or a slightly higher potential than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2. Can be A first-stage dynode Dy1 is provided below each mesh 15. That is, four first-stage dynodes D y1 are provided, one each for each of the segment spaces 5-1 to 5-4 in the glass container 5. The first-stage dynode D y 1 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely. Photocathode 3 corresponding to space 5-1 to 5-4 It is arranged in the vicinity of the side tube 6 inside the glass container 5 so that one to three to four are desired. The first-stage dynode D y1 is given a potential higher than the photocathode 3 and lower than the anode 31.
第 2段ダイノード D y 2は、 水平に平らに延びる水平部と、 軸方向に 平らに延びる垂直部と、 水平部と垂直部とを接続し斜め方向に延びる斜 め部とを備え、 対応する第 1段ダイノード D y 1を望むようにガラス容 器 5内部の軸 Z近傍に配置されている。 すなわちガラス容器 5内の各セ グメント空間 5— 1乃至 5— 4に各 1つ、 合計 4つの第 2段ダイノード D y 2が設けられている。  The second-stage dynode D y 2 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely. The first-stage dynode D y1 is arranged near the axis Z inside the glass container 5 as desired. That is, each of the segment spaces 5-1 to 5-4 in the glass container 5 is provided with four second-stage dynodes Dy2, one each.
4つの第 2段ダイノード D y 2のうち、 セグメント空間 5— 1 とセグ メント空間 5— 2の 2つの第 2段ダイノード D y 2は、 垂直部の裏側が 一体化されている。 同様に、 セグメント空間 5— 3とセグメント空間 5 —4の 2つの第 2段ダイノード D y 2は、 垂直部の裏側が一体化されて いる。 第 2段ダイノード D y 2は、 第 1段ダイノード D y lよりも高く アノード 3 1 よりも低い電位を与えられている。  Of the four second-stage dynodes Dy2, the two second-stage dynodes Dy2 in the segment space 5-1 and the segment space 5-2 have an integrated back side of the vertical portion. Similarly, two second-stage dynodes Dy2 of segment space 5-3 and segment space 5-4 are integrated on the back side of the vertical part. The second-stage dynode Dy2 is given a potential higher than the first-stage dynode Dyl and lower than the anode 31.
第 1段ダイノード D y 1および第 2段ダイノード D y 2と、 ダイノー ド列 2 5との間に、 つい立収束電極 2 0が設けられている。 第 4図に示 すようについ立収束電極 2 0は、第 1のつい立 2 1、第 2のつい立 2 2、 平板 2 3、 開口部 2 4を有している。  A vertical focusing electrode 20 is provided between the first dynode Dy1 and the second dynode Dy2 and the dynode array 25. As shown in FIG. 4, the screen focusing electrode 20 has a first screen 21, a second screen 22, a flat plate 23, and an opening 24.
開口部 2 4は、 軸 Zの周囲に 4箇所、 第 2段ダイノード D y 2を望む 位置に 2行 2列に配置されている。 開口部 2 4の第 1段ダイノード D y 1側端部に、 光電面 3の方向に延びる第 1のつい立 2 1が備えられてい る。 第 1のつい立 2 1は、 ガラス容器 5内の各セグメント空間 5— 1乃 至 5— 4に各 1つ、 合計 4つ配置される。 第 1のつい立 2 1は、 第 1段 ダイノード D y 1の下端部よりも光電面 3側まで延びていることが好ま しい。 開口部 24の第 2段ダイノード D y 2側端部に、 光電面 3の方向に延 びる第 2のつい立 2 2が備えられている。 第 2のつい立 2 2は、 ガラス 容器 5内の各セグメント空間 5— 1乃至 5— 4に各 1つ、 合計 4つ配置 される。 第 2のつい立 2 2は、 第 2段ダイノード D y 2の下端部の上ま で延びている。 The openings 24 are arranged in two rows and two columns at four positions around the axis Z, where the second-stage dynode Dy2 is desired. At the end of the opening 24 on the first dynode Dy1 side, a first screen 21 extending in the direction of the photocathode 3 is provided. The first screen 2 1 is arranged in each of the segment spaces 5-1 to 5-4 in the glass container 5, four in total. The first screen 21 preferably extends to the photocathode 3 side from the lower end of the first dynode Dy1. At the end of the opening 24 on the second dynode Dy2 side, a second screen 22 extending in the direction of the photocathode 3 is provided. The second screen 22 is arranged in each of the segment spaces 5-1 to 5-4 in the glass container 5, one for each, a total of four. The second screen 22 extends above the lower end of the second dynode Dy2.
ダイノ一ド列 2 5は、 マルチアノ一ド型光電子增倍管 1においてはべ ネシャンブラインド型ダイノードである。 各段のダイノードは、 平板部 26 と 4つのダイノード部 2 7とからなっている。 4つのダイノ一ド部 2 7は、 4つの開口部 24に対応しており、 当該開口部 24の第 1つい 立 2 1より側管 6側まで延びている。  The dynode array 25 is a venetian blind dynode in the multi-anodic photomultiplier 1. Each of the dynodes is composed of a flat plate portion 26 and four dynode portions 27. The four dynodes 27 correspond to the four openings 24, and extend from the first stand 21 of the opening 24 to the side pipe 6 side.
ダイノ一ド列 2 5の各ダイノ一ド部 2 7には夫々複数の電極エレメン ト 2 8が備えられている。 第 3、 5、 7、 9段ダイノード D y 3、 D y 5、 D y 7、 D y 9においては、 電極エレメント 2 8はその二次電子放 出面が第 2段ダイノードを望むように、 管軸 Zに対して 4 5度傾斜して 配置されている。 第 4、 6、 8段ダイノード D y 4、 D y 6、 D y 8の 電極ェレメント 2 8は、 第 3、 5、 7、 9段ダイノード D y 3、 D y 5、 D y 7、 D y 9の電極エレメント 2 8とは逆方向に管軸 Zに対して 4 5 度傾斜して配置されている。  Each of the dynode portions 27 of the dynode row 25 is provided with a plurality of electrode elements 28. In the third, fifth, seventh and ninth-stage dynodes Dy3, Dy5, Dy7 and Dy9, the electrode element 28 is connected to the tube so that its secondary electron emission surface desires the second-stage dynode. It is arranged at an angle of 45 degrees with respect to the axis Z. The electrode elements 28 of the 4th, 6th and 8th dynodes Dy4, Dy6 and Dy8 are the 3rd, 5th, 7th and 9th dynodes Dy3, Dy5, Dy7 and Dy Nine electrode elements 28 are arranged at an angle of 45 degrees with respect to the tube axis Z in the opposite direction.
第 3段ダイノード D y 3の平板部 2 6には、 平板 2 3がダイノ一ド部 2 7の上部に位置するように一体化されている。 第 4段から第 9段のダ ィノード D y 4乃至 D y 9の平板部 2 6には、 メッシュ電極 2 9が電極 エレメント 2 8の上部に位置するように一体化されている。  The flat plate 23 is integrated with the flat plate portion 26 of the third dynode Dy3 such that the flat plate 23 is located above the dynode portion 27. A mesh electrode 29 is integrated with the flat plate portion 26 of the fourth to ninth dynodes Dy4 to Dy9 so as to be positioned above the electrode element 28.
アノード 3 1は、 第 9段ダイノード D y 9の下部に 4つのダイノード 部に対応して設けられている。 第 1 0段ダイノード D y l Oは、 ァノー ド 3 1の下部に位置するように設けられ、 第 9段ダイノード D y 9から 放出された電子が入射するとアノード 3 1側に二次電子を放出する。 ァ ノード 3 1は、 第 1 0段ダイノード D y 1 0から放出された電子が入射 するとそれを検出する。 The anodes 31 are provided below the ninth dynode Dy9 so as to correspond to the four dynodes. The 10th dynode D yl O is provided below the anode 31, and emits secondary electrons to the anode 31 side when electrons emitted from the ninth dynode Dy 9 are incident. . A Node 31 detects the electron emitted from the 10th dynode Dy10 when it is incident.
上記構造を備えるマルチアノ一ド型光電子増倍管 1は、 以下のように 動作する。  The multi-anod type photomultiplier tube 1 having the above structure operates as follows.
光電面 3、 隔壁 9、 シールド電極 1 1、 平板上電極 1 3、 つい立収束 電極 2 0、 第 1段ダイノード D y 1、 第 2段ダイノード D y 2、 ダイノ 一ド列 2 5、 およぴァノード 3 1は、 入出力ピン 3 5を介して所定の電 圧を印加される。  Photocathode 3, Partition wall 9, Shield electrode 11, Plate-on-plate electrode 13, Converging electrode 20, First-stage dynode Dy1, Second-stage dynode Dy2, Dynode row 25, and A predetermined voltage is applied to the node 31 via the input / output pin 35.
入射面板 4の内、 1つのセグメント空間 5— 1乃至 5— 4のいずれか に対応する領域に光が入射すると、 対応する光電面 3 — 1乃至 3 _ 4の いずれかは、 入射した光量に応じた量の光電子を放出する。 放出された 光電子は、 対応するセグメント空間に備えられた隔壁 9、 シールド電極 When light enters the area corresponding to any one of the segment spaces 5-1 to 5-4 of the incident surface plate 4, any of the corresponding photoelectric surfaces 3-1 to 3_4 is reduced by the amount of incident light. Emit a corresponding amount of photoelectrons. The emitted photoelectrons are supplied to the partition wall 9 and shield electrode provided in the corresponding segment space.
1 1、 平板状電極 1 3等により収束され、 対応するメッシュ 1 5を通過 して第 1段ダイノード D y 1に入射する。 11. The light is converged by the plate-like electrode 13 and the like, passes through the corresponding mesh 15 and enters the first-stage dynode Dy1.
第 1段ダイノード D y 1は、 入射した光電子に応じて二次電子を放出 する。 この二次電子は、 つい立収束電極 2 0により収束されて、 第 2段 ダイノ一ド D y 2に入射する。  The first-stage dynode D y 1 emits secondary electrons according to the incident photoelectrons. The secondary electrons are focused by the vertical focusing electrode 20 and are incident on the second-stage dynode Dy2.
このとき、 第 1のつい立 2 1が、 第 1段ダイノード D y 1の下端位置 より上側に延びているため、 第 1段ダイノード D y 1の等電位線の位置 が上方向に引き上げられ、 当該等電位線の第 2段ダイノード D y 2上の 位置を、第 2段ダイノード D y 2の斜め部よりも水平部に近い位置とし、 垂直部と斜め部の大部分を二次電子放出領域とすることができる。  At this time, since the first screen 21 extends above the lower end position of the first-stage dynode Dy1, the position of the equipotential line of the first-stage dynode Dy1 is raised upward, The position of the equipotential line on the second dynode Dy2 is set to a position closer to the horizontal part than the diagonal part of the second dynode Dy2, and most of the vertical part and the diagonal part are the secondary electron emission region. It can be.
第 2段ダイノード D y 2から放出された電子は、 第 2段ダイノード D y 2より高い電位を与えられた第 3段ダイノード D y 3に向かう。 この とき、 第 2のつい立 2 2が第 2段ダイノード D y 2下端位置より上部ま で突出して備えられており、 第 2段ダイノード D y 2から放出された電 子を効率よくつい立収束電極 2 0の開口部 2 4に導く ことができる。 開口部 2 4を通過した電子は、 第 3段ダイノード D y 3に入射する。 第 3段ダイノード D y 3は、開口部 2 4よりも側管 6側まで延ぴており、 開口部 2 4を通過した電子を効率よく入射させることができる。 電子は ダイノード列 2 5において順次多段增倍され、ァノード 3 1に入射する。 ァノード 3 1は、 入射した電子に応じた信号を発生し、 入出力ピン 3 5を介してガラス容器 5外部に出力信号として出力する。 The electrons emitted from the second-stage dynode Dy2 go to the third-stage dynode Dy3 which is given a higher potential than the second-stage dynode Dy2. At this time, the second screen 22 is provided so as to protrude from the lower end position of the second dynode Dy2, and the electric power discharged from the second dynode Dy2 is provided. Can be efficiently guided to the opening 24 of the vertical focusing electrode 20. The electrons passing through the opening 24 enter the third-stage dynode Dy3. The third-stage dynode Dy3 extends to the side tube 6 side from the opening 24, and the electrons passing through the opening 24 can be efficiently incident. The electrons are sequentially multiplied by a multiple in the dynode train 25 and incident on the anode 31. The node 31 generates a signal corresponding to the incident electrons and outputs the signal as an output signal to the outside of the glass container 5 via the input / output pin 35.
マルチアノード型光電子増倍管 1においては、 シールド電極 1 1、 平 板上電極 1 3、 つい立収束電極 2 0、 第 1段ダイノード D y 1、 第 2段 ダイノード D y 2、 ダイノード列 2 5、 およびアノード 3 1がガラス容 器 5内部に配置され、 外周に磁気シールドが設けられている。 よって、 光電子の収束およぴ增倍を、 外部磁界の影響を受けることなく正確に行 なうことができる。  In the multi-anode type photomultiplier tube 1, the shield electrode 11, the flat plate electrode 13, the vertical focusing electrode 20, the first dynode Dy1, the second dynode Dy2, and the dynode row 25 , And the anode 31 are disposed inside the glass container 5, and a magnetic shield is provided on the outer periphery. Therefore, the convergence and multiplication of photoelectrons can be accurately performed without being affected by an external magnetic field.
次に、 第 5図乃至 7を参照しながら、 隔壁 9、 シールド電極 1 1の効 果について説明する。  Next, the effects of the partition 9 and the shield electrode 11 will be described with reference to FIGS.
第 5図は、 平板上電極 1 3の上部に隔壁 9を備え、 シールド電極 1 1 がない場合の電子の軌跡を示す図である。 (a ) はマルチアノード型光 電子增倍管 1を上方から見た平面図、 (b ) は、 (a ) の A— A ' にお け.る断面図である。 第 5図において、 光電面 3— 4の中心部および管軸 Z近傍から放出された電子の軌跡 q、 rは、 第 1段ダイノード D y 1に 入射している。 ところが電子の軌跡 pに注目すると、 光電面 3— 4の側 管 6側周縁部から放出された電子ほ、 第 1段ダイノード D y 1に入射せ ず、 第 1のつい立 2 1の方に逸れてしまっている。 この場合、 光電面 3 一 4の側管 6側周縁部に相当する部分の光が効率よく検出できない。 第 6図は、 平板上電極 1 3の上部に隔壁 9およびシールド電極 1 1を 備えている場合の電子の軌跡を示す図である。 (a ) はマルチアノード 型光電子増倍管 1を上方から見た平面図、 (b ) は、 (a ) の A— A, における断面図である。 第 6図においては、 電子の軌跡 p,、 q '、 r,は 全て第 1段ダイノード D y 1に到達している。 さらに、 第 1段ダイノー ド D y 1に入射した電子により放出された二次電子も第 2段ダイノード D y 2に入射し、 開口部 2 4を通過してダイノード列 2 5に入射するこ とが可能となっている。 FIG. 5 is a view showing the trajectories of electrons when the partition wall 9 is provided above the flat plate electrode 13 and the shield electrode 11 is not provided. (A) is a plan view of the multi-anode type photomultiplier tube 1 viewed from above, and (b) is a cross-sectional view taken along line AA ′ of (a). In FIG. 5, trajectories q and r of electrons emitted from the center of the photocathode 3-4 and the vicinity of the tube axis Z are incident on the first-stage dynode D y1. However, paying attention to the electron trajectory p, the electrons emitted from the peripheral edge of the side tube 6 of the photocathode 3-4 do not enter the first-stage dynode D y 1 but move toward the first screen 21. It has deviated. In this case, light at a portion corresponding to the peripheral portion on the side tube 6 side of the photocathode 314 cannot be detected efficiently. FIG. 6 is a diagram showing the trajectories of electrons when the partition wall 9 and the shield electrode 11 are provided above the flat plate electrode 13. (A) is a multi-anode FIG. 1B is a plan view of the photomultiplier tube 1 viewed from above, and FIG. 2B is a cross-sectional view taken along line AA in FIG. In FIG. 6, the electron trajectories p, q ', and r have all reached the first-stage dynode Dy1. Furthermore, secondary electrons emitted by the electrons incident on the first-stage dynode Dy1 also enter the second-stage dynode Dy2, pass through the opening 24, and enter the dynode array 25. Is possible.
よってこの場合には、 光電面 3— 4への光の入射箇所にかかわらず、 電子を効率よく第 1段ダイノード D y 1に入射させることができ、 光電 面 3の全面に亘りほぼ均一に入射光を検出することが可能になる。  Therefore, in this case, electrons can be efficiently incident on the first-stage dynode D y 1 irrespective of the incident position of light on the photocathode 3-4, and the electrons are incident almost uniformly over the entire surface of the photocathode 3 Light can be detected.
第 7図は、 比較例として隔壁 9およびシールド電極 1 1を備えていな い場合の電子の軌跡を示している。 (a ) はマルチアノード型光電子増 倍管 1を上方から見た平面図、 (b ) は、 ( a ) の A— A ' における断 面図である。光電面 3— 4の側管 6側から放出された電子の軌跡 P "は第 2のつい立 2 2の方に向かっており、 管軸 Z側に近い位置からの電子の 軌跡 r "、 q "は'、 平板上電極 1 3に衝突してしまい、 共に第 1段ダイノ ード D y 1に入射することができない。  FIG. 7 shows, as a comparative example, the trajectories of electrons when the partition wall 9 and the shield electrode 11 were not provided. (A) is a plan view of the multi-anode type photomultiplier tube 1 as viewed from above, and (b) is a cross-sectional view taken along line AA ′ of (a). The trajectory P "of the electrons emitted from the side tube 6 of the photocathode 3-4 is toward the second screen 22 and the trajectories r" and q of the electrons from a position near the tube axis Z side. “” Collides with the electrode 13 on the flat plate, and cannot both enter the first-stage dynode Dy 1.
以上説明したように、 第 1の実施の形態にかかるマルチアノ一ド型光 電子増倍管 1においては、ガラス容器 5内に、第 1段ダイノード D y 1、 第 2段ダイノード D y 2、 ダイノード列 2 5等を有する電子増倍部およ びアノード 3 1等を設け、光電面 3に入射した光を電子増倍部で增倍し、 アノード 3 1により検出する。 光電面 3から管軸 Zの方向には、 十文字 形状の隔壁 9が延びており、'第 2段ダイノード D y 2を遮蔽するように シールド電極 1 1が設けられ、共に光電面 3と同電位を印加されている。 上記構成により、 光電面 3に入射した光に応じて放出される電子を、 光電面 3における放射位置にかかわらず第 1段ダイノード D y 1、 第 2 段ダイノード D y 2などの電子増倍部に効率よく入射させることが可能 となる。 このように光電面 3に入射した光は入射箇所にかかわらずほぼ 均一に検出されるので、 画像表示装置等に用いられる際に、 鮮明な画像 を得ることが可能になる。 As described above, in the multi-anodic photomultiplier tube 1 according to the first embodiment, the first-stage dynode Dy1, the second-stage dynode Dy2, the dynode An electron multiplier having columns 25 and the like and an anode 31 are provided. Light incident on the photocathode 3 is multiplied by the electron multiplier and detected by the anode 31. A cross-shaped partition wall 9 extends from the photocathode 3 in the direction of the tube axis Z, and a shield electrode 11 is provided so as to shield the second-stage dynode D y 2, and both have the same potential as the photocathode 3. Is applied. With the above configuration, electrons emitted in response to the light incident on the photocathode 3 are converted into electron multipliers such as the first-stage dynode Dy1 and the second-stage dynode Dy2 regardless of the radiation position on the photocathode 3. Can be efficiently incident on It becomes. As described above, since the light incident on the photocathode 3 is detected almost uniformly regardless of the incident position, it is possible to obtain a clear image when used in an image display device or the like.
次に、 第 8図乃至第 1 0図を参照しながら、 本発明の第 2の実施の形 態にかかるマルチアノード型光電子增倍管 1 0 0について説明する。 第 1の実施の形態にかかるマルチアノ一ド型光電子増倍管 1 と同様の構成 については、 同一の符号を付す。  Next, a multi-anode type photomultiplier 100 according to a second embodiment of the present invention will be described with reference to FIGS. 8 to 10. The same components as those of the multi-anod type photomultiplier tube 1 according to the first embodiment are denoted by the same reference numerals.
第 8図に示すようにマルチアノ一ド型光電子増倍管 1 0 0は、 マルチ アノード型光電子増倍管 1 の隔壁 9に替えて隔壁 1 0 9を、 シールド電 極 1 1に替えてシールド電極 1 1 0を備えている。  As shown in FIG. 8, the multi-anod type photomultiplier tube 100 is composed of a multi-anode type photomultiplier tube 1 with a partition wall 9 instead of a partition wall 9 and a shield electrode 11 with a shield electrode 11. 1 1 0 is provided.
隔壁 1 0 9は、 導電性部材からなり、 光電面 3から管軸 Zの方向に延 びている。 第 8図に示すように、 隔壁 1 0 9は上方から見ると十文字形 状の壁であり、 隔壁 9と同様ガラス容器 5内の電子収束空間を 4つのセ グメント空間 5— 1乃至 5— 4に分割している。 第 8図に示すように、 下部はシールド電極 1 1 0との間に開口部 1 0 8を有している。 隔壁 1 0 9は、 光電面 3と同電位を与えられる。  The partition wall 109 is made of a conductive material and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 8, the partition wall 109 is a cross-shaped wall when viewed from above. Like the partition wall 9, the electron focusing space in the glass container 5 is divided into four segment spaces 5-1 to 5-4. Is divided into As shown in FIG. 8, the lower portion has an opening 108 between itself and the shield electrode 110. The partition wall 109 is given the same potential as the photocathode 3.
シールド電極 1 1 0は導電性の板状部材であり、 ガラス容器 5内部の 隔壁 1 0 9の下方、 平板上電極 1 3の上部に配置されている。 シールド 電極 1 1 0の周縁部は、 図示の例では光電面 3の方向に延びる立ち上が りが設けられ、 シールド電極 1 1 0の強度を補強している。 シールド電 極 1 1 0の中央部には、 開口 1 1 2が備えられている。 開口 1 1 2は上 方から見ると長方形である。 シールド電極 1 1 0は、 光電面 3と同電位 を与えられる。  The shield electrode 110 is a conductive plate-shaped member, and is arranged below the partition wall 109 inside the glass container 5 and above the flat plate electrode 13. The periphery of the shield electrode 110 is provided with a rising edge extending in the direction of the photocathode 3 in the illustrated example, thereby reinforcing the strength of the shield electrode 110. An opening 112 is provided at the center of the shield electrode 110. The opening 1 1 2 is rectangular when viewed from above. The shield electrode 110 is given the same potential as the photocathode 3.
他の構成および動作はマルチアノ一ド型光電子增倍管 1 と同様である。 次に、 第 8図、 第 9図を参照しながら、 隔壁 1 0 9、 シールド電極 1 1 0の効果について説明する。 第 8図の (a ) はマルチアノード型光電 子增倍管 1 0 0を上方から見た平面図、 (b ) は、 (a ) の A— A, に おける断面図である。 Other configurations and operations are the same as those of the multi-anod type photomultiplier 1. Next, the effects of the partition wall 109 and the shield electrode 110 will be described with reference to FIG. 8 and FIG. (A) in Fig. 8 is a multi-anode type photoelectric converter. FIG. 2B is a plan view of the secondary tube 100 viewed from above, and FIG. 2B is a cross-sectional view taken along line AA of FIG.
第 8図に示すように、 マルチアノード型光電子増倍管 1 0 0において は隔壁 1 0 9の下方の開口部 1 0 8およびシールド電極 1 1 0の開口部 1 1 2が備えられており、 管軸 Z近傍の電界強度が低くなるのを防止し ている。 よって、 電子の軌跡 q 2、 r 2は、 第 6図のマルチアノード型 光電子増倍管 1の電子の軌跡 q '、 r 'に比べて、光電面 3から第 1段ダイ ノード D y 1に入射するまでの時間差が小さくなっている。  As shown in FIG. 8, the multi-anode type photomultiplier tube 100 has an opening 1 08 below the partition wall 109 and an opening 1 12 for the shield electrode 110, The electric field strength near the tube axis Z is prevented from lowering. Therefore, the electron trajectories q 2 and r 2 are closer to the first stage dynode D y 1 from the photocathode 3 than the electron trajectories q ′ and r ′ of the multi-anode type photomultiplier tube 1 in FIG. The time difference until the light enters is small.
第 9図は、 平板上電極 1 3の上部に隔壁 1 0 9およびシールド電極 1 1 0を備えたマルチアノ一ド型光電子増倍管 1 0 0の電子の軌跡を示す 図である。 (a ) はマルチアノード型光電子增倍管 1 0 0を上方から見 た平面図、 (b ) は、 (a ) の A _ A, における断面図である。  FIG. 9 is a diagram showing electron trajectories of a multi-anod type photomultiplier tube 100 having a partition wall 109 and a shield electrode 110 on the upper electrode 13 on a flat plate. (A) is a plan view of the multi-anode type photomultiplier tube 100 viewed from above, and (b) is a cross-sectional view taken along line A_A, (a).
第 9図には、 隔壁 1 0 9近傍の光電面 3— 4から放出されたセグメン ト空間 5 — 4における電子の軌跡 s、 t、 uが示されている。 図示のよ うに、 光電面 3から電子が放出された位置は異なっていても、 電子の軌 跡 s、 t、 uの第 1段ダイノード D y 1に入射するまでの時間差は小さ い。  FIG. 9 shows the trajectories s, t, and u of the electrons in the segment space 5-4 emitted from the photocathode 3-4 near the partition wall 109. As shown in the figure, even if the positions where the electrons are emitted from the photocathode 3 are different, the time difference between the electron trajectories s, t, and u before they enter the first-stage dynode Dy1 is small.
よって、 マルチアノ一ド型光電子増倍管 1 0 0によれば、 光電面 3へ の光の入射箇所にかかわらず、 電子を効率よく第 1段ダイノード D y 1 に入射させることができ、 光電面 3の全面に苴りほぼ均一に入射光を検 出することが可能であると共に、 光電面 3への入射箇所にかかわらず、 第 1段ダイノード D y 1に入射するまでの時間差を縮小できる。  Therefore, according to the multi-anod type photomultiplier 100, electrons can be efficiently incident on the first-stage dynode D y1 irrespective of the incident position of light on the photocathode 3, and the photocathode It is possible to detect the incident light almost uniformly over the entire surface of 3 and to reduce the time difference until the light enters the first-stage dynode D y 1 irrespective of the incident position on the photocathode 3.
以上説明したように、 第 2の実施の形態にかかるマルチアノ一ド型光 電子增倍管 1 0 0においては、 ガラス容器 5内に、 第 1段ダイノード D y 1、 第 2段ダイノード D y 2、 ダイノード列 2 5等を有する電子増倍 部およびアノード 3 1等を設け、 光電面 3に入射した光を電子增倍部で 増倍し、ァノード 3 1により検出する。光電面 3から管軸 Zの方向には、 十文字形状の隔壁 1 0 9が延びており、 その下方にシールド電極 1 1 0 が設けられ、 共に光電面 3と同電位を印加されている。 隔壁 1 0 9とシ 一ルド電極 1 1 0との間には、 開口 1 0 8が設けられ、 シールド電極 1 1 0には開口 1 1 2が設けられている。 As described above, in the multi-anod type photomultiplier tube 100 according to the second embodiment, the first-stage dynode Dy1 and the second-stage dynode Dy2 are placed in the glass container 5. An electron multiplier having a dynode array 25 and the like and an anode 31 are provided so that light incident on the photocathode 3 can be reflected by the electron multiplier. Multiplied and detected by node 31. A cross-shaped partition wall 109 extends from the photocathode 3 in the direction of the tube axis Z. A shield electrode 110 is provided below the cross-section partition wall 109, and the same potential as that of the photocathode 3 is applied to both. An opening 108 is provided between the partition wall 109 and the shield electrode 110, and an opening 112 is provided in the shield electrode 110.
上記構成により、入射した光に応じて光電面 3から放出される電子を、 光電面 3における放射位置にかかわらず第 1段ダイノード D y 1、 第 2 段ダイノード D y 2などの電子増倍部に効率よく入射させることが可能 である。 .  With the above configuration, electrons emitted from the photocathode 3 in response to the incident light are converted into electron multipliers such as the first-stage dynode Dy1 and the second-stage dynode Dy2 regardless of the radiation position on the photocathode 3. It is possible to make the light incident on the surface efficiently. .
また、 隔壁 1 0 9の下方の開口部 1 0 8およびシールド電極 1 1 0の 開口部 1 1 2により、 セグメント空間 5— 1乃至 5 - 4内の電界がより 均一になるので、 光電面 3上の電子の放出位置にかかわらず、 光電面 3 から第 1段ダイノード D y 1に入射するまでの電子の走行時間差を小さ くすることができる。 そのため、 画像表示装置等に用いられる際に、 鮮 明な画像を得ることが可能になる。  In addition, the electric field in the segment spaces 5-1 to 5-4 becomes more uniform due to the opening 1108 below the partition wall 109 and the opening 111 of the shield electrode 110, so that the photoelectric surface 3 Regardless of the electron emission position above, the difference in the transit time of electrons from the photocathode 3 to the first stage dynode Dy1 can be reduced. Therefore, when used in an image display device or the like, a clear image can be obtained.
さらに、 隔壁 1 0 9の下方に開口 1 0 8を設けたことにより、 光電面 3を形成する際に用いられる蒸着源 (図示せず) を 4つのセグメント空 間 5— 1乃至 5— 4に共通してガラス容器 5内 1箇所設ければよく、 部 品点数を少なくすることが可能となる。  Further, by providing the opening 108 below the partition wall 109, the evaporation source (not shown) used for forming the photocathode 3 can be reduced to four segment spaces 5-1 to 5-4. It is only necessary to provide one part in the glass container 5 in common, and the number of parts can be reduced.
第 2の実施の形態の変形例として、 第 1 0図にマルチアノード型光電 子増倍管 2 0 0を示す。 第 1 0図は、 平板上電極 1 3の上部に隔壁 1 0 9およびシールド電極 2 1 0を備えたマルチアノード型光電子増倍管 2 0 0の構成おょぴ電子の軌跡を示す図である。 (a ) はマルチアノード 型光電子増倍管 2 0 0を上方から見た平面図、 (b ) は、 (a ) の A— A ' における断面図である。  FIG. 10 shows a multi-anode type photomultiplier tube 200 as a modification of the second embodiment. FIG. 10 is a view showing a configuration of a multi-anode type photomultiplier tube 200 provided with a partition wall 109 and a shield electrode 210 on the upper electrode 13 on a flat plate, and shows a locus of electrons. . (A) is a plan view of the multi-anode type photomultiplier tube 200 viewed from above, and (b) is a cross-sectional view taken along line AA ′ of (a).
第 1 0図においては、 マルチアノ一ド型光電子增倍管 1 0 0のシール ド電極 1 1 0に替えてシールド電極 2 1 0を備えている。 他の構成は、 マルチアノ一ド型光電子增倍管 1 0 0 と同様である。 In FIG. 100, the seal of the multi-anod type photomultiplier tube 100 is shown. A shield electrode 210 is provided in place of the shield electrode 210. Other configurations are the same as those of the multi-anod type photomultiplier tube 100.
シールド電極 2 1 0は導電性の板状部材であり、 ガラス容器 5内部の 隔壁 1 0 9の下方、 平板上電極 1 3の上部に配置されている。 シールド 電極 2 1 0の周縁部は、 図示の例では光電面 3の方向に延びる立ち上が りが設けられ、 シールド電極 2 1 0の強度を捕強している。 シールド電 極 2 1 0の中央部には、 開口 2 1 2が備えられている。 開口 2 1 2は上 方から見ると、 各セグメント空間 5— 1乃至 5 - 4の中央部に近い部分 の幅が広くなっている、凹凸のある形状である。シールド電極 2 1 0は、 光電面 3と同電位を与えられる。  The shield electrode 210 is a conductive plate-shaped member, and is disposed below the partition wall 109 inside the glass container 5 and above the flat plate electrode 13. The periphery of the shield electrode 210 is provided with a rising edge extending in the direction of the photocathode 3 in the example shown in the figure, so as to increase the strength of the shield electrode 210. An opening 2 12 is provided at the center of the shield electrode 2 10. When viewed from above, the opening 2 12 has an uneven shape in which the width of a portion near the center of each of the segment spaces 5-1 to 5-4 is wide. The shield electrode 210 is given the same potential as the photocathode 3.
第 1 0図には、 隔壁 1 0 9近傍の光電面 3— 4から放出されたセグメ ント空間 5— 4における電子の軌跡 s '、 t u 'が示されている。 図示 のように、 電子の軌跡 s '、 t,、 u,の第 1段ダイノード D y 1に入射す る位置は、第 9図の電子の軌跡 s、 t、 uと比較してバラツキが小さく、 マルチアノ一ド型光電子增倍管 1 0 0におけるよりもさらに走行時間差 が短縮され、第 1段ダイノード D y 1への入射位置も一定となっている。 よって、 マルチアノ一ド型光電子增倍管 2 0 0によれば、 隔壁 1 0 9 の下方の開口部 1 0 8およぴシールド電極 2 1 0の開口部 2 1 2により セグメント空間 5— 1乃至 5— 4内の電界がさらに均一になるので、 光 電面 3上の電子の放出位置にかかわらず、 光電面 3から第 1段ダイノー ド D y 1に入射するまでの電子の走行時間差および第 1段ダイノード D y 1への入射位置のバラツキを小さくすることができる。 そのため、 画 像表示装置等に用いられる際に、 さらに鮮明な画像を得ることが可能に なる。  FIG. 10 shows the trajectories s ′ and tu ′ of electrons in the segment space 5-4 emitted from the photocathode 3-4 near the partition wall 109. As shown in the figure, the positions of the electron trajectories s', t, and u, which are incident on the first-stage dynode Dy1, have smaller variations compared to the electron trajectories s, t, and u in FIG. However, the transit time difference is further reduced than in the multi-anod type photomultiplier tube 100, and the incident position on the first dynode Dy1 is also constant. Therefore, according to the multi-anod type photomultiplier tube 200, the segment space 5-1 to the segment space 5-1 to the opening portion 108 below the partition wall 109 and the opening portion 212 of the shield electrode 210 are formed. Since the electric field in 5-4 becomes even more uniform, the transit time difference between the electrons from the photocathode 3 to the first stage dynode D y 1 and the Variation in the incident position on the first-stage dynode D y 1 can be reduced. Therefore, when used in an image display device or the like, a clearer image can be obtained.
以上、 添付図面を参照しながら本発明によるマルチアノード型光電子 增倍管の好適な実施形態について説明したが、 本発明は上述した実施の 形態に限定されない。 当業者であれば、 特許請求の範囲に記載された技 術的思想の範疇内において各種の変形や改良が可能である。 As described above, the preferred embodiment of the multi-anode type photomultiplier according to the present invention has been described with reference to the accompanying drawings. It is not limited to the form. Those skilled in the art can make various modifications and improvements within the scope of the technical idea described in the claims.
例えば、 シールド電極 1 1、 1 1 0、 2 1 0の周縁部は、 立ち上がり がなくてもよレヽ。 これによれば、 シールド電極 1 1、 1 1 0、 2 1 0を 構成する材料の量を少なくすることができ、コストの削減が可能である。 セグメント空間 5— 1乃至 5— 4は 4つに限定されず、 例えば 3 X 3 の 9空間等でもよい。 そのとき隔壁 9は、 領域の配置に応じて格子状等 に設けられる。  For example, the edges of the shield electrodes 11, 110, 210 may not have any rising edge. According to this, it is possible to reduce the amount of the material constituting the shield electrodes 11, 110, 210, and to reduce the cost. The number of segment spaces 5-1 to 5-4 is not limited to four, but may be, for example, 3 × 3 9 spaces. At that time, the partition walls 9 are provided in a grid or the like according to the arrangement of the regions.
平板状電極 1 3の開口には、メッシュ 1 5を備えなくてもよい。また、 第 1段ダイノード D y l、 第 2段ダイノード D y 2における垂直部、 水 平部、 斜め部は平らでなくてもよく、 湾曲した構造でもよい。  The opening of the flat electrode 13 may not be provided with the mesh 15. Also, the vertical, horizontal, and oblique portions of the first-stage dynode Dyl and the second-stage dynode Dy2 need not be flat, and may have a curved structure.
つい立収束電極 2 0は、 必ずしも備える必要はない。 また、 第 1のつ い立 2 1、 第 2のつい立 2 2がない平板状のつい立収束電極を備えるよ うにしてもよい。  It is not always necessary to provide the vertical focusing electrode 20. In addition, a flat screen focusing electrode without the first screen 21 and the second screen 22 may be provided.
第 3段ダイノード D y 3は、 第 1のつい立 2 1より側管 6側に延びて いなくてもよく、 第 1のつい立 2 1の略下側まで延びていればよい。 ダイノ一ド列 2 5は、 第 3段ダイノード D y 3から第 1 0段ダイノ一 ド D y 1 0を有するとしたが、 これより少ないかまたは多い段数のダイ ノ一ド列でもよい。  The third-stage dynode Dy3 does not have to extend from the first screen 21 to the side pipe 6 side, but may extend to almost below the first screen 21. Although the dynode train 25 has the third dynode Dy3 to the tenth dynode Dy10, the dynode train 25 may have a smaller or larger number of dynodes.
また、 ダイノード列 2 5としてベネシャンブラインド型のものについ て説明したが、フアインメッシュ型、マイク口チャンネルプレート型等、 他の積層構造のダイノード列でもよい。 また、 積層型でなく、 ボックス 型やラインフォーカス型のダイノードを第 3段ダイノード以下のダイノ ードとして設けるようにしてもよい。  Also, the venetian blind type dynode array 25 has been described, but a dynode array of other laminated structure such as a fine mesh type or a microphone opening channel plate type may be used. Instead of a stacked type, a box type or line focus type dynode may be provided as a dynode below the third stage dynode.
ガラス容器 5は、 略四角柱型としたがこれに限定されず、 例えば円柱 型などでもよい。 産業上の利用の可能性 The glass container 5 has a substantially square pillar shape, but is not limited to this, and may be, for example, a cylindrical shape. Industrial potential
本発明のマルチアノ一ド型光電子增倍管は、 ポジトロン C Tとして医 療分野で利用できる他、 他の放射線検出や他の光検出等、 様々な分野で 広く利用することができる。  The multi-anod type photomultiplier according to the present invention can be widely used in various fields such as other radiation detection and other light detection in addition to being usable as a positron CT in the medical field.

Claims

請 求 の 範 囲 The scope of the claims
1 . ガラス製の入射面板と、  1. Glass entrance face plate,
該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に 沿って延びるガラス製の中空の側管と、  A hollow glass side tube connected to a surface on one side of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate;
該入射面板の該一つの側の面のうち該側管の内側に位置した領域に形 成され、 該入射面板に入射した光に応じた光電子を放出する光電面と、 該光電面の複数の領域間の境界部分から該管軸方向に所定の長さに延 びる隔壁と、  A photocathode formed in an area of the one side surface of the incident face plate located inside the side tube, for emitting photoelectrons according to light incident on the incident face plate; A partition extending from the boundary between the regions to a predetermined length in the pipe axis direction;
該光電面の複数の領域に対応して該側管内部に設けられ、 該光電面か ら放出された光電子を増倍する複数の電子増倍部と、  A plurality of electron multipliers provided inside the side tube corresponding to the plurality of regions of the photocathode, for multiplying photoelectrons emitted from the photocathode;
該光電面の複数の領域に対応して該側管の内側に設けられ、 該電子增 倍部から放出される電子を受ける複数のァノ一ド電極と、  A plurality of anode electrodes provided inside the side tube corresponding to the plurality of regions of the photocathode and receiving electrons emitted from the electron multiplier;
を備え、  With
該電子增倍部は、  The electron multiplier is
該側管の内側の該側管側に設けられ、 該光電面から放出された光電子 が入射すると増倍して二次電子を放出する第 1段ダイノードと、  A first-stage dynode that is provided on the side tube side inside the side tube and that multiplies and emits secondary electrons when photoelectrons emitted from the photoelectric surface enter;
該側管の内側の該管軸側に設けられ、 該第 1段ダイノ一ドから放出さ れた二次電子が入射するとさらに增倍して二次電子を放出する第 2段ダ ィノードと、  A second-stage dynode that is provided inside the side tube on the side of the tube axis and that, when secondary electrons emitted from the first-stage node enter, are further multiplied by two to emit secondary electrons;
該側管の内側に設けられ、 該第 2段ダイノードから放出された二次電 子が入射すると次々に增倍して二次電子を放出する複数段のダイノード と、  A plurality of dynodes that are provided inside the side tube and that multiply 次 by one after another when secondary electrons emitted from the second-stage dynode enter to emit secondary electrons;
を有し、 Has,
該第 2段ダイノードと該光電面との間には、 該第 2段ダイノードを該 光電面に対して遮蔽するシールド電極が設けられ、  A shield electrode is provided between the second dynode and the photocathode to shield the second dynode from the photocathode;
該光電面、 該隔壁おょぴ該シールド電極は同電位を与えられることを 特徴とするマルチアノ一ド型光電子増倍管。 The photoelectric surface, the partition wall and the shield electrode are provided with the same potential. Features a multi-anod type photomultiplier tube.
2 . 該シールド電極と該第 2段ダイノードとの間には、 該第 1段ダイ ノードに向かう電子を通過させる開口部を有する平板状電極が備えられ ることを特徴とする請求項 1に記載のマルチアノ一ド型光電子増倍管。  2. The flat electrode having an opening for passing electrons toward the first dynode is provided between the shield electrode and the second dynode. Multi-anod type photomultiplier tube.
3 . 該平板状電極の該開口部には、 導電性の網状部材が備えられるこ とを特徴とする請求項 2に記載のマルチアノ一ド型光電子増倍管。  3. The multi-anod photomultiplier according to claim 2, wherein a conductive mesh member is provided in the opening of the flat electrode.
4 . 該平板状電極は、 該第 1段ダイノードの電位以上で、 該第 2段ダ イノードの電位未満の電位を与えられることを特徴とする請求項 2また は 3のいずれかに記載のマルチアノ一ド型光電子增倍管。  4. The multi-anode according to claim 2, wherein the flat electrode is supplied with a potential higher than the potential of the first-stage dynode and lower than the potential of the second-stage dynode. A single-type photomultiplier tube.
5 . 該シールド電極は、 該光電面から放出された電子が該第 1段ダイ ノ一ドに到達するまでの走行時間差を減らすため、 該側管内の電界を調 整するための開口部を有することを特徴とする請求項 1乃至 4のいずれ かに記載のマルチアノ一ド型光電子増倍管。  5. The shield electrode has an opening for adjusting an electric field in the side tube in order to reduce a difference in traveling time until electrons emitted from the photocathode reach the first stage diode. The multi-anod type photomultiplier according to any one of claims 1 to 4, characterized in that:
PCT/JP2004/003860 2004-03-22 2004-03-22 Multianode electron multiplier WO2005091332A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006511106A JP4756604B2 (en) 2004-03-22 2004-03-22 Multi-anode type photomultiplier tube
PCT/JP2004/003860 WO2005091332A1 (en) 2004-03-22 2004-03-22 Multianode electron multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003860 WO2005091332A1 (en) 2004-03-22 2004-03-22 Multianode electron multiplier

Publications (1)

Publication Number Publication Date
WO2005091332A1 true WO2005091332A1 (en) 2005-09-29

Family

ID=34993958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003860 WO2005091332A1 (en) 2004-03-22 2004-03-22 Multianode electron multiplier

Country Status (2)

Country Link
JP (1) JP4756604B2 (en)
WO (1) WO2005091332A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914789A2 (en) * 2006-10-16 2008-04-23 Hamamatsu Photonics Kabushiki Kaisha Photomultiplier
JP2008530746A (en) * 2005-02-09 2008-08-07 フォトニス Photomultiplier tube with reduced transition time.
US7449834B2 (en) 2006-10-16 2008-11-11 Hamamatsu Photonics K.K. Photomultiplier having multiple dynode arrays with corresponding insulating support member
EP2093788A2 (en) 2008-02-21 2009-08-26 Hamamatsu Photonics K.K. Photomultiplier
US7659666B2 (en) 2006-10-16 2010-02-09 Hamamatsu Photonics K.K. Photomultiplier
US7821203B2 (en) 2006-10-16 2010-10-26 Hamamatsu Photonics K.K. Photomultiplier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539171A (en) * 1978-09-13 1980-03-18 Hamamatsu Tv Kk Photomultiplier
JPS57194445A (en) * 1981-05-26 1982-11-30 Agency Of Ind Science & Technol Photomultiplier tube
JPS63261664A (en) * 1987-04-18 1988-10-28 Hamamatsu Photonics Kk Photomultiplier
JPH0536372A (en) * 1990-11-19 1993-02-12 Burle Technol Inc Photomultiplier tube
JPH06150876A (en) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk Photomultiplier and electron multiplier
JPH07192686A (en) * 1993-11-09 1995-07-28 Philips Electron Nv Photoelectron multiplier
JPH07245078A (en) * 1994-03-07 1995-09-19 Hamamatsu Photonics Kk Photomultiplier
JPH08306335A (en) * 1995-04-26 1996-11-22 Philips Electron Nv Multichannel electron multiplication equipment
JPH11250853A (en) * 1998-03-02 1999-09-17 Hamamatsu Photonics Kk Photomultiplier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539171A (en) * 1978-09-13 1980-03-18 Hamamatsu Tv Kk Photomultiplier
JPS57194445A (en) * 1981-05-26 1982-11-30 Agency Of Ind Science & Technol Photomultiplier tube
JPS63261664A (en) * 1987-04-18 1988-10-28 Hamamatsu Photonics Kk Photomultiplier
JPH0536372A (en) * 1990-11-19 1993-02-12 Burle Technol Inc Photomultiplier tube
JPH06150876A (en) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk Photomultiplier and electron multiplier
JPH07192686A (en) * 1993-11-09 1995-07-28 Philips Electron Nv Photoelectron multiplier
JPH07245078A (en) * 1994-03-07 1995-09-19 Hamamatsu Photonics Kk Photomultiplier
JPH08306335A (en) * 1995-04-26 1996-11-22 Philips Electron Nv Multichannel electron multiplication equipment
JPH11250853A (en) * 1998-03-02 1999-09-17 Hamamatsu Photonics Kk Photomultiplier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530746A (en) * 2005-02-09 2008-08-07 フォトニス Photomultiplier tube with reduced transition time.
EP1914789A2 (en) * 2006-10-16 2008-04-23 Hamamatsu Photonics Kabushiki Kaisha Photomultiplier
US7449834B2 (en) 2006-10-16 2008-11-11 Hamamatsu Photonics K.K. Photomultiplier having multiple dynode arrays with corresponding insulating support member
US7659666B2 (en) 2006-10-16 2010-02-09 Hamamatsu Photonics K.K. Photomultiplier
EP1914789A3 (en) * 2006-10-16 2010-10-13 Hamamatsu Photonics Kabushiki Kaisha Photomultiplier
US7821203B2 (en) 2006-10-16 2010-10-26 Hamamatsu Photonics K.K. Photomultiplier
US7990064B2 (en) 2006-10-16 2011-08-02 Hamamatsu Photonics K.K. Photomultiplier
EP2093788A2 (en) 2008-02-21 2009-08-26 Hamamatsu Photonics K.K. Photomultiplier
US8330364B2 (en) 2008-02-21 2012-12-11 Hamamatsu Photonics K.K. Photomultiplier
EP2093788A3 (en) * 2008-02-21 2013-01-16 Hamamatsu Photonics K.K. Photomultiplier

Also Published As

Publication number Publication date
JP4756604B2 (en) 2011-08-24
JPWO2005091332A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US5936348A (en) Photomultiplier tube with focusing electrode plate
JP3466712B2 (en) Electron tube
US4825118A (en) Electron multiplier device
US20100213838A1 (en) Photomultiplier tube
US5410211A (en) Electron tube with an electron multiplier having a plurality of stages of dynodes
EP0597667A1 (en) Photomultiplier and electron multiplier
EP0713243A1 (en) Electron multiplier
WO2006080104A2 (en) Electron multiplier unit and photomultiplier including the same
JP2925020B2 (en) Photomultiplier tube
JP3640464B2 (en) Electron multiplier and photomultiplier tube
WO2007099958A1 (en) Photomultiplier, radiation sensor, and photomultiplier fabricating method
WO1999066534A1 (en) Electron tube
US7064485B2 (en) Photomultiplier tube having focusing electrodes with apertures and screens
WO2005091332A1 (en) Multianode electron multiplier
US4306171A (en) Focusing structure for photomultiplier tubes
US4980604A (en) Sheet-type dynode electron multiplier and photomultiplier tube comprising such dynodes
WO2005091333A1 (en) Photomultiplier
US7489077B2 (en) Multi-anode type photomultiplier tube
JP4473585B2 (en) Photomultiplier tube
JP4402478B2 (en) Photomultiplier tube
US5210403A (en) Radiation detecting device with a photocathode being inclined to a light incident surface
JPS59108254A (en) Photomultiplier tube
WO1998057353A1 (en) Electron multiplier and photomultiplier
WO2003098658A1 (en) Photomultiplier tube and its using method
JPS5923609B2 (en) Secondary electron multiplier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511106

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase