WO2005091333A1 - Photomultiplier - Google Patents

Photomultiplier Download PDF

Info

Publication number
WO2005091333A1
WO2005091333A1 PCT/JP2004/003855 JP2004003855W WO2005091333A1 WO 2005091333 A1 WO2005091333 A1 WO 2005091333A1 JP 2004003855 W JP2004003855 W JP 2004003855W WO 2005091333 A1 WO2005091333 A1 WO 2005091333A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynode
stage
stage dynode
photocathode
tube
Prior art date
Application number
PCT/JP2004/003855
Other languages
French (fr)
Japanese (ja)
Inventor
Suenori Kimura
Takayuki Ohmura
Teruhiko Yamaguchi
Masuo Ito
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to PCT/JP2004/003855 priority Critical patent/WO2005091333A1/en
Priority to JP2006511105A priority patent/JPWO2005091333A1/en
Publication of WO2005091333A1 publication Critical patent/WO2005091333A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements

Definitions

  • the present invention relates to a photomultiplier tube.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-111757 (hereinafter referred to as Patent Document 1) describes a photomultiplier tube having N independent electron multipliers arranged around a central axis. .
  • This photomultiplier tube has a closed container with a symmetrical structure having a long axis, and the photoelectrons are transferred to N electron multipliers according to the positions of the photoelectrons generated from the photocathode formed on the inner surface of the closed container.
  • a first stage dynode is provided for separation.
  • the first stage dynode is cup-shaped with a flat bottom and a side surface extending toward the photocathode, with the axis of symmetry approximately coinciding with the long axis of the enclosure.
  • the electron multiplier is composed of a sheet type electron multiplier.
  • an electrode having substantially the same potential as that of the photocathode is arranged in a central portion near the bottom of the first-stage dynode.
  • JP-A-7-192686 (hereinafter referred to as Patent Document 2) describes a photomultiplier tube having at least two segment spaces.
  • This photomultiplier tube has a closed container having a photocathode formed on the inside of the front surface, and a portion corresponding to a converging electrode for converging photoelectrons emitted from the photocathode is provided in the closed container. And a portion corresponding to a first-stage dynode for multiplying the power.
  • the portion corresponding to the focusing electrode of the electrode and the portion corresponding to the first stage dynode are separated by a flat plate.
  • the flat plate corresponds to each segment space And a grid is provided in the hole.
  • a central partition wall is provided in a direction including the plane including the central axis of the sealed container and in a direction opposite to the photocathode from the flat plate.
  • the second and subsequent input dynodes are provided near the photovoltaic surface of the central partition wall.
  • a horizontal bar is located in the center of the closed container, including the central axis, parallel to the plate and slightly away from it. The horizontal bar is insulated from the electrode and given a potential equal to or close to that of the photocathode.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-30635 (hereinafter referred to as Patent Document 3) describes a multi-channel electron multiplier.
  • This electron multiplier has a sheet-like dynode, and a control electrode is provided between the sheets of the dynode in order to control the gain of a specific channel.
  • This multi-channel electron multiplier has a closed container provided with a photocathode on the inner surface, and a cross-shaped ⁇ portion provided with the same potential as the photocathode is provided between each channel.
  • Patent Document 4 Japanese Patent Application Laid-Open No. H11-250853 (hereinafter referred to as Patent Document 4) describes a photomultiplier in which the electron focusing space of a photomultiplier is divided into a plurality of segments by a partition plate. .
  • a partition plate extends from near a photocathode formed on the inner surface of the sealed container to a direction including a central axis of the sealed container. The partition plate is given the same potential as the photocathode.
  • Each segment has multiple dynodes to multiply electrons. Disclosure of the invention
  • the shape of the first-stage dynode is cup-shaped, and an electrode having substantially the same potential as the photocathode is provided at the center near the bottom of the first-stage dynode.
  • an electrode having substantially the same potential as the photocathode is provided at the center near the bottom of the first-stage dynode.
  • the photomultiplier described in Patent Literature 2 includes an electrode serving also as a focusing electrode and a first-stage dynode, and allows electrons emitted from the photocathode to be incident on the first-stage dynode. Secondary electrons emitted from the dynode are incident on the second and subsequent input dynodes due to the potential difference between the first dynode and the second and subsequent input dynodes and the action of the central partition.
  • a control electrode is provided between dynode sheets, and a photocathode is provided between each channel. Electrons are made incident on the dynode with a cross-shaped projection provided with the same potential.
  • a partition plate having the same potential as the photocathode is arranged between a plurality of segments, and an electron is incident on the dynode by adjusting an electric field in the photomultiplier tube.
  • the photomultiplier tube as described above, there are cases where electrons are not efficiently incident on the first-stage dynode depending on the place where electrons are emitted from the photocathode.
  • photoelectrons emitted from the periphery of the photocathode or secondary electrons emitted from the periphery of the first-stage dynode cannot enter the first-stage dynode or the second- and subsequent-stage dynodes.
  • the effective area of the photocathode is reduced, and the actual detection sensitivity is reduced.
  • the output signal in the photocathode is not uniform, and particularly when used for image processing or the like, there is a problem that a peripheral image cannot be obtained clearly.
  • the present invention made in order to solve the above-mentioned problem has a glass incident surface plate, and a glass incident surface plate connected to one surface of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate.
  • a hollow side tube; and a surface on the one side of the entrance face plate A photocathode formed in a region located inside the side tube and emitting photoelectrons according to light incident on the incident face plate; an electron multiplier for multiplying photoelectrons emitted from the photocathode; An anode electrode provided inside the side tube corresponding to the photocathode and receiving an electron emitted from the electron multiplier section; and the electron multiplier section provided inside the side tube.
  • the second stage dynode is provided at a lower portion in the pipe axis direction, and When secondary electrons emitted from the two-stage dynode are incident, they are multiplied one after another to emit secondary electrons.
  • a flat plate having an opening desired by the two-stage dynode and provided between the second-stage dynode and the third-stage dynode; and the opening extending toward the photocathode side from a lower end of the first-stage dynode.
  • a first screen provided on the first dynode side of the second dynode, and a first screen provided on the second dynode side of the opening so that a tip is located above a lower end of the second dynode.
  • a converging electrode having a second screen extending to the photocathode side; and a photomultiplier tube comprising:
  • the photocathode emits photoelectrons in response to incident light.
  • the electron multiplier has a first stage dynode, a second stage dynode, a plurality of stages of dynodes below the third stage dynode, and a focusing electrode.
  • the electrons emitted from the photocathode are incident on the first stage, secondary electrons are emitted.
  • the second dynode multiplies and emits secondary electrons.
  • the focusing electrode has a flat plate with an opening through which electrons from the second stage dynode pass, A first screen is provided on the first dynode side, and a second screen is provided on the second dynode side of the opening.
  • the focusing electrode adjusts the potential near the first-stage dynode and the second-stage dynode, and the potential between the second-stage dynode and the third-stage dynode to efficiently transfer electrons to each stage dynode. It is made to be incident on.
  • the present invention provides a glass incident surface plate, a glass hollow side tube connected to a surface on one side of the incident surface plate, and extending along a tube axis substantially perpendicular to the incident surface plate.
  • a photoelectric surface which is formed in an area of the one side surface of the face plate located inside the side tube and emits photoelectrons in accordance with light incident on the incident surface plate; and a photoelectron emitted from the photoelectric surface.
  • an anode electrode provided inside the side tube corresponding to the photocathode and receiving electrons emitted from the electron multiplier.
  • a first stage dynode provided inside the side tube, for multiplying and emitting secondary electrons when photoelectrons emitted from the photocathode enter, and a first dynode inside the side tube;
  • a secondary dynode disposed at substantially the same position as the stage dynode in the axial direction and emitted from the first stage dynode
  • a second-stage dynode that further multiplies when electrons enter and emits secondary electrons; and a first dynode and a second-stage dynode at the lower part in the tube axis direction inside the side tube.
  • a plurality of dynodes including a third dynode and a third dynode, which sequentially multiply and emit secondary electrons when secondary electrons emitted from the second dynode are incident; and the first dynode.
  • a first screen extending from the lower end of the first dynode to the photocathode side than a lower end of the first dynode, and a notch for making the third dynode desired by the second dynode.
  • a flat plate, and a second screen provided at the lower end of the second dynode of the cut portion and extending toward the photocathode side from the lower end of the second dynode.
  • the first stage die is fixed by being fixed between the third stage die node. Over de and the third-stage dynode And a focusing electrode forming an opening extending to between the photomultiplier and a photomultiplier tube.
  • a focusing electrode composed of a first screen and a second screen plate, an opening force S formed by fixing the focusing electrode, The potential is adjusted so that electrons can efficiently enter the dynodes in each stage.
  • the present invention provides a glass incident surface plate, a glass hollow side tube connected to a surface on one side of the incident surface plate, and extending along a tube axis substantially perpendicular to the incident surface plate.
  • a photoelectric surface which is formed in an area of the one side surface of the face plate located inside the side tube and emits photoelectrons in accordance with light incident on the incident surface plate; and a photoelectron emitted from the photoelectric surface.
  • an anode electrode provided inside the side tube corresponding to the photocathode and receiving electrons emitted from the electron multiplier.
  • a first stage dynode provided inside the side tube, for multiplying and emitting secondary electrons when photoelectrons emitted from the photocathode enter, and a first dynode inside the side tube;
  • the secondary die released from the first stage die is disposed at substantially the same position in the axial direction as the stage die node. When the electron enters, it multiplies further and emits secondary electrons.
  • a second-stage dynode, and a secondary electron emitted from the second-stage dynode is provided inside the side tube below the first-stage dynode and the second-stage dynode in the tube axis direction.
  • a plurality of dynodes below the third dynode, which multiply one after another to emit secondary electrons, and the photocathode provided at the lower end of the first dynode more than the lower end of the first dynode A first screen extending to the side, a first opening for making the third stage dynode desired to the second stage dynode, and a first opening between the first stage dynode and the third stage dynode.
  • a flat plate provided between the second-stage dynode and the third-stage dynode, and a flat plate provided at a lower end side of the second-stage dynode of the first opening.
  • a focusing electrode having a second screen extending from the lower end of the second dynode to the photocathode side.
  • a focusing electrode comprising a first screen and a second screen flat plate and having a first opening and a second opening is provided by an electron multiplier.
  • the potential of the section is adjusted so that electrons can efficiently enter the dynodes of each stage.
  • the focusing electrode is preferably provided with a potential higher than the second-stage dynode and equal to or lower than the third-stage dynode.
  • the present invention further provides a glass entrance face plate, a glass hollow side tube connected to a surface on one side of the entrance face plate, and extending along a tube axis substantially perpendicular to the entrance face plate.
  • a photoelectron surface which is formed in an area of the one side surface of the face plate located inside the side tube and emits photoelectrons according to light incident on the incident face plate; and a photoelectron emitted from the photocathode.
  • an anode electrode provided inside the side tube corresponding to the photoelectric surface and receiving electrons emitted from the electron multiplier.
  • a first dynode that is provided inside the side tube and that multiplies and emits secondary electrons when photoelectrons emitted from the photocathode are incident; and a first stage dynode inside the side tube.
  • the dynode is disposed at substantially the same position in the axial direction as the A second-stage dynode that emits secondary electrons by multiplying by a factor of two when the next electron is incident; and a first dynode and a second-stage dynode provided inside the side tube below the tube axis.
  • the electron multiplied by the second stage dynode passes through the space between the first focusing electrode and the second focusing electrode.
  • a photomultiplier tube characterized by being incident on a dynode.
  • the first focusing electrode and the second focusing electrode adjust the potential of the electron multiplier, and electrons from the second-stage dynode communicate with the first focusing electrode. Electrons are efficiently incident on the dynodes of each stage by passing through the space between the second focusing electrode and entering the third dynode.
  • the first focusing electrode and the second focusing electrode may be formed of the same member.
  • FIG. 1 is a schematic cross-sectional view of the multi-anod type photomultiplier tube 1 according to the first embodiment of the present invention, taken along plane AA ′ of FIG.
  • FIG. 2 is a plan view of the multi-anod type photomultiplier tube 1 as viewed from above.
  • FIG. 3 is a cross-sectional view of the multi-anod type photomultiplier tube 1 taken along a plane C-C ′ in FIG.
  • FIG. 4 is a top view of the vertical focusing electrode 20 of the multi-anod type photomultiplier tube 1.
  • FIG. 5 is a diagram showing a trajectory of electrons in the multi-anod type photomultiplier tube 1.
  • FIG. 2 is a view showing a trajectory of electrons of a multi-anode type photomultiplier tube 1;
  • FIG. 7 is a diagram showing the electron trajectory when the mesh 24 is provided in the multi-node anode photomultiplier tube 1 without the first screen 21 and the second screen 22.
  • FIG. 7 is a diagram showing the electron trajectory when the mesh 24 is provided in the multi-node anode photomultiplier tube 1 without the first screen 21 and the second screen 22.
  • FIG. 8 is a diagram showing the electron trajectory of the multi-anode type photomultiplier tube 1 when the second screen 22 is not provided.
  • FIG. 9 is a cross-sectional view taken along line AA ′ of FIG. 10 of the multi-anod type photomultiplier tube 100 according to the second embodiment of the present invention.
  • FIG. 10 is a plan view of the multi-anod type photomultiplier tube 100 viewed from above.
  • FIG. 11 is a cross-sectional view of the multi-anod type photomultiplier tube 100 taken along the line C-C 'in FIG.
  • FIG. 12 is a top view of the focusing electrode 120 of the multi-anod type photomultiplier tube 100.
  • FIG. 13 is a view showing a trajectory of electrons in the multi-anode type photomultiplier tube 100.
  • FIG. 14 is a top view of the screen electrode 220 of the multi-anod type photomultiplier tube 100.
  • a multi-node photomultiplier tube 1 As an example of a photomultiplier tube of the present invention, a multi-node photomultiplier tube 1 according to a first embodiment will be described with reference to the drawings.
  • the multi-anode type photomultiplier tube 1 is a 2 ⁇ 2 multi-anode type photomultiplier tube.
  • the multi-node photomultiplier tube 1 has a substantially rectangular prism-shaped glass container 5.
  • the glass container 5 is made of transparent glass.
  • the upper surface of the glass container 5 in FIG. 1 is a light incident surface plate 4.
  • the incident surface plate 4 has a photoelectric surface 3 formed inside.
  • the side surface of the glass container 5 extends along a tube axis Z substantially perpendicular to the entrance face plate 4, and forms a hollow side tube 6.
  • Input / output pins 35 are provided on the bottom 7 of the glass container 5.
  • the entrance face plate 4, the side tube 6, and the bottom 7 are integrally formed to seal the inside of the glass container 5.
  • An aluminum-thin film 7 is deposited on the inner surface of the upper part of the side tube 6 of the glass container 5, and is given the same potential as the photoelectric surface 3.
  • the outer surface of the side tube 6 of the glass container 5 is provided with a magnetic shield (not shown) made of a magnetic material such as permalloy, and is covered with a tube made of a resin or the like.
  • a partition 9 Inside the glass container 5, there are a partition 9, a shield electrode 11, a plate electrode 13, a mesh 15, a first-stage dynode Dyl, a second-stage dynode Dy2, a vertical focusing electrode 20, and a dynode array. 25, anode 31 and so on.
  • the first-stage dynode Dyl, the second-stage dynode Dy2, the convergence electrode 20 and the dynode array 25 correspond to an electron multiplier.
  • the partition 9 is made of a conductive member and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 2, the partition wall 9 is a cross-shaped wall when viewed from above, and divides the electron focusing space in the glass container 5 into four segment spaces 5-1 to 5-4. As shown in FIG. 1, the lower part is connected to the shield electrode 11. The partition 9 is given the same potential as the photocathode 3.
  • the shield electrode 11 is a conductive plate-like member, A second dynode D y 2 is arranged below the wall 9 to shield the second dynode D y 2 from being exposed to the photocathode 3.
  • the periphery of the shield electrode 11 is provided with a rising extending in the direction of the photocathode 3 in the example shown in the figure, thereby reinforcing the strength of the shield electrode 11.
  • the shield electrode 11 is given the same potential as the photocathode 3.
  • the plate-like electrode 13 has an opening as shown in FIG. 2, and is provided below the shield electrode 11 so as to cover the cross section of the glass container 5.
  • a rising portion extending in the direction of the photocathode 3 is provided around the flat electrode 13.
  • the opening of the plate-like electrodes 1 3 provided in two rows and two columns four positions around the central axis Z of the glass container 5, each segment space 5 1 to 5 - the photocathode 3 corresponding to the 4 — Electrons emitted from 1 to 3_4 pass through.
  • the plate electrode 13 has the same potential as the first-stage dynode Dy1 or a potential slightly higher than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2. Is given.
  • a mesh 15 is provided in each opening of the flat electrode 13.
  • the mesh 15 is a conductive mesh member.
  • the mesh 15 has the same potential as the first-stage dynode Dy1 or a potential slightly higher than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2.
  • a first-stage dynode Dy1 is provided below each mesh 15. That is, four first-stage dynodes Dy1 are provided, one each in each of the segment spaces 5-1 to 5_4 in the glass container 5.
  • the first-stage dynode D y 1 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely.
  • the photocathode 31 corresponding to the spaces 5-1 to 5-4 is disposed near the side tube 6 inside the glass container 5 so as to desire the photocathode 3 1 to 3-4. ing.
  • the first dynode D y1 is given a potential higher than the photocathode 3 and lower than the anode 31.
  • the second-stage dynode D y 2 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely.
  • the first-stage dynode D y1 is arranged near the axis Z inside the glass container 5 as desired. That is, each of the segment spaces 5-1 to 5-4 in the glass container 5 is provided with four second-stage dynodes Dy2, one each.
  • the two second-stage dynodes Dy2 in the segment space 5-1 and the segment space 5-2 are integrated on the back side of the vertical part.
  • the two second-stage dynodes Dy2 of segment space 5-3 and segment space 5-4 are integrated on the back side of the vertical part.
  • the second-stage dynode Dy2 is given a potential higher than the first-stage dynode Dyl and lower than the anode 31.
  • a vertical focusing electrode 20 is provided between the first-stage dynode Dy1 and the second-stage dynode Dy2 and the dynode array 25.
  • the convergence electrode 20 is provided with a potential higher than the second-stage dynode Dy2 and equal to or lower than the third-stage dynode Dy3, preferably the same potential as the third-stage dynode Dy3.
  • the screen focusing electrode 20 has a first screen 21, a second screen 22, a flat plate 23, an opening 24, and the like.
  • the openings 24 are arranged in two rows and two columns at four positions around the axis Z, where the second-stage dynode Dy2 is desired.
  • a first screen 21 extending in the direction of the photocathode 3 is provided.
  • the first screen 2 1 is disposed in each of the segment spaces 5-1 to 5-4 in the glass container 5, one in each of the four spaces.
  • the first screen 21 preferably extends to the photocathode 3 side from the lower end of the first dynode Dy1. That's right.
  • a second screen 22 extending in the direction of the photocathode 3 is provided.
  • the second screen 22 is arranged in each of the segment spaces 5-1 to 5-4 in the glass container 5, one for each, a total of four.
  • the second screen 22 extends above the lower end of the second dynode Dy2.
  • the dynode array 25 is a venetian blind dynode in the multi-anodic photomultiplier tube 1.
  • the dynodes at each stage include a flat plate portion 26 and four dynode portions 27.
  • the four dynode portions 27 correspond to the four openings 24, and extend from the first stand 21 of the openings 24 to the side pipe 6 side.
  • Each of the dynode portions 27 of the dynode row 25 is provided with a plurality of electrode elements 28.
  • the electrode element 28 is connected to the tube so that its secondary electron emission surface desires the second-stage dynode. It is arranged at an angle of 45 degrees with respect to the axis Z.
  • the electrode elements 28 of the 4th, 6th and 8th dynodes Dy4, Dy6 and Dy8 are the 3rd, 5th, 7th and 9th dynodes Dy3, Dy5, Dy7 and Dy
  • Nine electrode elements 28 are arranged at an angle of 45 degrees with respect to the tube axis Z in the opposite direction.
  • the flat plate 23 of the vertical focusing electrode 20 is integrated with the flat plate 26 of the third dynode Dy3 so as to be located above the dynode 27.
  • the mesh electrode 29 is integrated with the flat plate portion 26 of the fourth to ninth dynodes Dy4 to Dy9 so as to be located above the electrode element 28.
  • the anodes 31 are provided below the ninth dynode Dy9 so as to correspond to the four dynodes.
  • the 10th stage dynode D y 10 is When the electrons emitted from the ninth-stage dynode Dy9 are incident, secondary electrons are emitted to the anode 31 side. Node 31 detects when an electron emitted from the 10th dynode Dy10 is incident.
  • the multi-anode type photomultiplier 1 having the above structure operates as follows.
  • Photocathode 3 Partition wall 9, Shield electrode 11, Plate electrode 13, Standing focus electrode 20, First stage dynode Dyl, Second stage dynode Dy2, Dinode row 25, etc.
  • a predetermined voltage is applied to the transfer node 31 via the input / output pin 35.
  • any of the corresponding photoelectric surfaces 3-1 to 3-4 becomes smaller than the amount of incident light. Emit a corresponding amount of photoelectrons.
  • the emitted photoelectrons are converged by the partition wall 9, shield electrode 11 and plate electrode 13 provided in the corresponding segment space, pass through the corresponding mesh 15 and enter the first stage dynode D yl .
  • the first-stage dynode D y 1 emits secondary electrons according to the incident photoelectrons.
  • the secondary electrons are focused by the vertical focusing electrode 20 and are incident on the second dynode Dy2.
  • the position of the equipotential line of the first-stage dynode Dy1 is raised upward,
  • the position of the equipotential line on the second dynode Dy2 is set to a position closer to the horizontal part than the diagonal part of the second dynode Dy2, and most of the vertical part and the diagonal part are the secondary electron emission region. It can be.
  • the electrons emitted from the second-stage dynode Dy2 go to the third-stage dynode Dy3 which is given a higher potential than the second-stage dynode DV2.
  • the second screen 22 is provided so as to protrude above the lower end position of the second dynode Dy2, so that electrons emitted from the second dynode Dy2 can be efficiently focused on the vertical focusing electrode 20. Can be led to the opening 24.
  • the electrons passing through the opening 24 enter the third-stage dynode Dy3.
  • the third-stage dynode Dy3 extends to the side tube 6 side from the opening 24, and the electrons passing through the opening 24 can be efficiently incident.
  • the electrons are sequentially multiplied by multiple stages in the dynode train 25 and incident on the anode 31.
  • the anode 31 generates a signal corresponding to the incident electrons and outputs the signal as an output signal to the outside of the glass container 5 via the input / output pin 35.
  • FIG. 5 is a diagram showing a trajectory of electrons in the multi-anod type photomultiplier tube 1.
  • the first screen 2 1 and the second screen 2 2 are higher than the second stage dynode D y 2 together with the flat plate 23, and the third screen dynode D y 3 or less.
  • Potential preferably the same potential as the third stage dynode Dy3, the first stage dynode Dy1 to the second stage dynode Dy2, and the second stage dynode Dy2 to the third stage It controls the trajectory of electrons to dynode D y 3.
  • the electron trajectories p 0, q 0, r 0, and s 0 are incident on the respective trajectories without deviating from the first-stage dynode Dy 1 and the second-stage dynode Dy 2 as shown.
  • the electron trajectory r O collides with the first screen 21 after being emitted from the second-stage dynode D y 2 are doing. That is, the light that has entered the position of the electron trajectory r O is not detected by the anode 31.
  • the electron trajectories p 0, q 0, and s 0 are incident on the third-stage dynode D y 3 and further incident on the fourth-stage dynode D y 4.
  • the detection efficiency of the light incident on the periphery of the photocathode is slightly reduced, but the detection of the incident light can be generally performed satisfactorily.
  • FIG. 6 shows the trajectories of electrons in the case where the first screen 21 and the second screen are not provided.
  • the electron trajectories p 1, q 1, r 1, and s 1 are due to the light that has entered the electron trajectories p 0, q 0, r 0, and s 0 at almost the same position as the photocathode 3-1. It is a trajectory of emitted electrons.
  • the electron trajectories pl, ql, rl, and si are the electron trajectories p 0, q 0, r 0,
  • the position of incidence on the second-stage dynode Dy2 is shifted toward the photocathode as compared to s0.
  • the electric field from the third dynode Dy3 is weak, the negative potential of the first dynode Dy1 on the second dynode Dy2 is strong, and the electron trajectories p1, q1
  • FIG. 7 does not have the first screen 21 and the second screen, the opening 24 of the flat plate 23, the first dynode Dy1, and the third dynode.
  • the trajectory of electrons when a mesh 34 is provided in the portion corresponding to D y 3 is shown.
  • the electron trajectories p 2, q 2, r 2, and s 2 correspond to the electron trajectories p 0, q 0, r 0, s O and the photocathode 3-1. It is a trajectory of an electron emitted by light incident on the same position.
  • the first screen 21 and the second screen 22 are formed and the trajectories p2, q2, r2, and s2 of the electrons are the trajectories p1, q of the electrons. Similar to 1, r 1 and s 1, the position of incidence on the second dynode D y 2 moves toward the photocathode as compared to the electron trajectories p 0, q 0, r 0 and s 0. Also, since the electric field from the third-stage dynode Dy3 is weak, the negative potential of the first-stage dynode Dy1 on the second-stage dynode Dy2 is strong, as shown by the electron trajectories p2 and q2. Therefore, there are many secondary electrons that cannot escape from the second-stage dynode Dy2.
  • the mesh 3 4 is attached to the third dynode Dy3, the secondary electrons emitted from the third dynode Dy3 are not affected by the negative potential of the first dynode Dy1, The electron trajectories r 2 and s 2 no longer enter the fourth-stage dynode D y 4. Therefore, the light incident on the photocathode 3 can hardly be detected.
  • FIG. 8 shows an electron trajectory without the second screen 22.
  • the electron trajectories p3, q3, r3, and s3 are emitted by light incident on the photocathode 3-1 at approximately the same position as the electron trajectories p0, q0, r0, and s0.
  • FIG. 8 shows an electron trajectory without the second screen 22.
  • the electron trajectories p3, q3, r3, and s3 are emitted by light incident on the photocathode 3-1 at approximately the same position as the electron trajectories p0, q0, r0, and s0.
  • the electron trajectories p 3, q 3, r 3, and s 3 also show the position of incidence on the second-stage dynode D y 2 even when there is no second screen 22. It is almost the same position as the traces p 0, q 0, r 0, s 0. However, secondary electrons emitted from the second-stage dynode D y 2 are attracted to the plate 23 below the first screen 21 and the first-stage dynode D y 1, and the electron trajectory q 3, As in r 3 and s 3, it collides with the first screen 2 1. Therefore, the number of electrons incident on the third dynode Dy3 decreases, so that light incident on the photocathode 3 cannot be detected efficiently.
  • the first-stage dynode Dy1 As described above, in the multi-anodic photomultiplier tube 1 according to the first embodiment, the first-stage dynode Dy1, the second-stage dynode Dy2, the dynode An electron multiplier having columns 25 and the like and an anode 31 are provided. Light incident on the photocathode 3 is multiplied by the electron multiplier and detected by the anode 31.
  • an opening 24 for making the third dynode Dy3 desired by the second dynode is provided, and a flat plate 23 provided between the second dynode Dy2 and the third dynode Dy3 is provided.
  • a first screen 21 provided on the first dynode Dy1 side of the opening 24 and extending toward the photocathode 3 side from the lower end of the first dynode Dy1;
  • a second screen provided on the second-stage dynode Dy2 side, the second screen extending to the photocathode 3 side such that the tip is located above the lower end of the second-stage dynode Dy2;
  • a focusing electrode 20 is provided to give an electric potential higher than the second-stage dynode Dy2 and equal to or lower than the third-stage dynode Dy3.
  • the electrons emitted in response to the light incident on the photocathode 3 are converted into the first dynode Dy1, the second dynode Dy2, and the third dynode D regardless of the radiation position on the photocathode 3. It is possible to efficiently enter the electron multiplier such as y3. As described above, since the light incident on the photocathode 3 is detected almost uniformly regardless of the incident position, a clear image can be obtained when used in an image display device or the like.
  • FIG. 9 The same components as those of the multi-anod type photomultiplier 1 according to the first embodiment are denoted by the same reference numerals.
  • the multi-anode type photomultiplier tube 100 is a partition wall 10 instead of the partition wall 9 of the multi-anod type photomultiplier tube 1. Is replaced by a vertical focusing electrode 20, and a vertical focusing electrode 120 is provided. A shield electrode 11 is replaced by a shield electrode 110.
  • the partition wall 109 is made of a conductive material and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 10, the partition wall 109 is a cross-shaped wall when viewed from above. Like the partition wall 9, the electron converging space in the glass container 5 is divided into four segment spaces 5-1 to 5-4. Divided. The lower part of the partition wall 109 forms an opening 108 with the shield electrode 110. The partition wall 109 is given the same potential as the photocathode 3.
  • the shield electrode 110 is a conductive plate-shaped member, and is disposed below the partition wall 109 inside the glass container 5 and above the flat plate electrode 13. .
  • the periphery of the shield electrode 110 is provided with a rise extending in the direction of the photocathode 3 in the illustrated example, and the strength of the shield electrode 110 is enhanced.
  • An opening 112 is provided at the center of the shield electrode 110.
  • the shape of the opening 1 1 2 when viewed from above is rectangular.
  • the shield electrode 110 is given the same potential as the photocathode 3.
  • the screen focusing electrode 120 has a first screen 21, a second screen 22, and a flat plate 123 as shown in FIG.
  • the first-stage dynode Dy1 and the third An opening 144 is formed extending to between the step dynode Dy3. That is, the back surface of the first-stage dynode Dy1 faces the electron incident surface of the third-stage dynode Dy3.
  • the first screen 21 and the second screen 22 have the same configuration as the multi-anod type photomultiplier tube 1.
  • the standing focus electrode 1 20 is higher than the second-stage dynode Dy2, is equal to or lower than the third-stage dynode Dy3, and preferably has the same potential as the third-stage dynode Dy3. Is given.
  • Other configurations and operations are the same as those of the multi-anod photomultiplier tube 1.
  • FIGS. 5 and 13 the vertical focusing in the multi-anode photomultiplier tube 100 will be described.
  • FIG. 5 illustrates the effect of the electrode 120.
  • FIG. 5 shows the trajectory of electrons in the multi-anod type photomultiplier tube 1.
  • the trajectory r 0 collides with the first screen 21 and does not enter the third-stage dynode D y 3 and is not detected by the node 31. Further, even if the secondary electrons emitted from the third-stage dynode Dy3 are incident on the third-stage dynode Dy3, the secondary electrons are not affected by the negative potential of the first-stage dynode Dy1. It may re-enter the stage dynode D y 3.
  • the third-stage dynode Dy3 jumps and enters the fourth-stage dynode Dy4 (the locus s0).
  • the trajectory from the third-stage dynode Dy3 to the fourth-stage dynode Dy4) means that the secondary electron transit time between the dynodes takes a long time, and the time characteristics deteriorate.
  • the electron trajectories p 4, q 4, r 4, and s 4 correspond to the electron trajectories p 0, q O, r O, and s 0, which are incident on the light incident on the same position of the photoelectric surface 3-1
  • the trajectory of the more emitted electrons is shown.
  • a partition 9 is provided in place of the partition 109 to show the effect of the vertical focusing electrode 120.
  • an opening 144 wider than the opening 24 in the multi-anod photomultiplier tube 1 is provided, and the first-stage dynode D y1 and the third-stage Because of the opening between the dynode Dy3, the electron trajectories p4, q4, r4, and s4 all enter the third dynode Dy3, and the fourth dynode immediately below it. It is incident on D y 4. Therefore, the secondary electron transit time between the second-stage dynode Dy2 and the fourth-stage dynode Dy4 becomes faster, so that the time characteristics are improved as compared with the multi-anode type photomultiplier tube 1. .
  • the first-stage dynode Dy1 and the second-stage dynode Dy2 are placed in the glass container 5.
  • An electron multiplier section 31 having a dynode array 25 and the like is provided, and the light incident on the photocathode 3 is multiplied by the electron multiplier section and detected by the anode 31.
  • An opening 108 is provided between the partition wall 109 and the shield electrode 110, and an opening 112 is provided in the shield electrode 110.
  • the second dynode is desirably provided with a third dynode D y3, and an opening 144 extending between the first dynode Dy1 and the third dynode Dy3 is provided.
  • a plate 1 23 provided between the stage dynode Dy2 and the third stage dynode Dy3, and a lower end of the first stage dynode Dy1 from below the lower end of the first stage dynode Dy1 Is also provided on the second dynode Dy2 side of the opening 144, with the tip located above the lower end of the second dynode Dy2.
  • a second converging electrode 120 having a second screen 22 extending toward the photocathode 3 side so as to be higher than the second dynode Dy2 and less than or equal to the third dynode Dy3. Potential.
  • the electrons emitted in response to the light incident on the photocathode 3 emit the first dynode Dy1, the second dynode Dy2, and the third dynode irrespective of the radiation position on the photocathode 3. It is possible to efficiently enter the electron multiplier such as the de Dy3. Further, the electric field in the segment spaces 5-1 to 5-4 becomes more uniform due to the opening 1108 below the partition wall 109 and the opening 111 of the shield electrode 110, so that the Irrespective of the electron emission position on the surface 3, the transit time difference of the electrons from the photocathode 3 to the first stage dynode Dy1 can be reduced.
  • openings 1 4 2 are formed by the first dynode D y1 and the third dynode D y 3, and secondary electrons from the second-stage dynode D y 2 do not jump over the third-stage dynode D y 3 and enter the fourth-stage dynode D y 4.
  • the time characteristic in detection is further improved.
  • the light incident on the photocathode 3 is detected almost uniformly regardless of the incident position, and the time characteristic is good, so that when used in an image display device or the like, a clear image can be obtained. .
  • FIG. 14 instead of the screen focusing electrode 1 20 shown in FIG. 12, the screen 1 shown in FIG. 2.
  • An opening 144 and an opening 124 may be formed and fixed between the second dynode Dy2 and the third dynode Dy3.
  • a second focusing electrode for converging electrons may be provided.
  • the first focusing electrode and the second focusing electrode may be integrally formed by the same member, or may be independently formed by different members. The edges of the shield electrodes 11 and 110 do not need to rise.
  • the shape of the opening provided in the shield electrode 110 is not limited to a rectangle. Also, the shield electrodes 11 and 110 need not always be provided. According to this, the amount of the material constituting the shield electrodes 11 and 110 can be reduced, and the cost can be reduced.
  • the number of segment spaces 5-1 to 5-4 is not limited to four, but may be, for example, 3 ⁇ 3 9 spaces. At that time, the partition walls 9 are provided in a lattice shape or the like according to the arrangement of the regions.
  • the vertical, horizontal, and oblique portions of the first-stage dynode Dy1 and the second-stage dynode Dy2 do not have to be flat, and may have a curved structure.
  • the third-stage dynode Dy3 does not have to extend from the first screen 21 to the side pipe 6 side, but may extend to a substantially lower side of the first screen 21.
  • the dynode row 25 has the third-stage dynode Dy3 to the tenth-stage dynode Dy10, the dynode row 25 may have a smaller or larger number of dynode rows.
  • the venetian blind type is described as the dynode array 25, but a dynode array of another laminated structure such as a fine mesh type, a microphone opening channel plate type, or the like may be used.
  • a box type or line focus type dynode may be provided as a dynode below the third stage dynode.
  • the glass container 5 has a substantially square pillar shape, but is not limited to this, and may be, for example, a cylindrical shape.
  • the partition wall 109 may be replaced with the partition wall 9.
  • the photomultiplier according to the present invention has been described by taking as an example a multi-anod type photomultiplier 1, 100 having four segment spaces 5_1 to 5-4.
  • the present invention is not limited to this, and can be applied to a photomultiplier tube having only one segment space. In that case, it is preferable that the third or lower dynodes are provided to the outside of the opening 24 or 124.
  • the photomultiplier according to the present invention can be widely used in various fields such as other radiation detection and other light detection, in addition to being usable as a positron CT in the medical field.

Abstract

A photomultiplier comprising a screen convergence electrode (20) disposed between a first stage dynode (Dy1) and a second stage dynode (Dy2) and a plurality of third and subsequent stage dynodes. The screen convergence electrode has a first screen (21), a second screen (22), a flat plate (23) and an opening. The first screen is disposed on the first stage dynode side of the opening to extend toward the photoelectric plane side beyond the lower end of the first stage dynode. The second screen is disposed on the second stage dynode side of the opening to extend toward the photoelectric plane side beyond the lower end of the second stage dynode. Electrons being emitted depending on light incident to the photoelectric plane (3) can thereby impinge efficiently on each dynode at an electron multiplying section regardless of the emitting position on the photoelectric plane and thereby the light incident to the photoelectric plane can be detected substantially uniformly regardless of the incident position.

Description

明 細 書 光電子増倍管  Description Photomultiplier tube
技術分野 Technical field
本発明は光電子増倍管に関する。 背景技術  The present invention relates to a photomultiplier tube. Background art
特開平 6— 1 1 1 7 5 7号 (以下特許文献 1 という) には、 中心軸の 回りに配置された N個の独立した電子増倍部を有する光電子増倍管が記 載されている。 この光電子增倍管は、 長軸を有する対称構造の密閉容器 を備え、 密閉容器の内側面に形成された光電面から発生する光電子の位 置に応じて光電子を N個の電子増倍部に分けるために、 第 1段ダイノー ドが設けられている。  Japanese Patent Application Laid-Open No. 6-111757 (hereinafter referred to as Patent Document 1) describes a photomultiplier tube having N independent electron multipliers arranged around a central axis. . This photomultiplier tube has a closed container with a symmetrical structure having a long axis, and the photoelectrons are transferred to N electron multipliers according to the positions of the photoelectrons generated from the photocathode formed on the inner surface of the closed container. A first stage dynode is provided for separation.
第 1段ダイノ一ドは、 平坦な底部および光電面の方へと延在する側面 を有するカップ状で、 対称軸が密閉容器の長軸とほぼ一致している。 電 子增倍部は、 シートタイプの電子増倍器により構成されている。 また、 第 1段ダイノードの底部付近の中央部に、 光電面とほぼ同電位を与えら れた電極が配置されている。  The first stage dynode is cup-shaped with a flat bottom and a side surface extending toward the photocathode, with the axis of symmetry approximately coinciding with the long axis of the enclosure. The electron multiplier is composed of a sheet type electron multiplier. In addition, an electrode having substantially the same potential as that of the photocathode is arranged in a central portion near the bottom of the first-stage dynode.
特開平 7— 1 9 2 6 8 6号 (以下、 特許文献 2という) には、 少なく とも 2つのセグメント空間を有する光電子増倍管が記載されている。 こ の光電子增倍管は、 前面内側に光電面が形成された密閉容器を有し、 密 閉容器内に、 光電面から放出される光電子を収束する収束電極に相当す る部分と、 1次の増倍を行なう第 1段ダイノードに相当する部分とを含 む電極が備えられている。  JP-A-7-192686 (hereinafter referred to as Patent Document 2) describes a photomultiplier tube having at least two segment spaces. This photomultiplier tube has a closed container having a photocathode formed on the inside of the front surface, and a portion corresponding to a converging electrode for converging photoelectrons emitted from the photocathode is provided in the closed container. And a portion corresponding to a first-stage dynode for multiplying the power.
電極の収束電極に相当する部分と第 1段ダイノ一ドに相当する部分と は、 平板によって分けられている。 平板は、 各セグメント空間に対応し た孔部を有し、 孔部にはグリ ッドが設けられている。 密閉容器の中心軸 を含む平面を含み、 平板から光電面と逆の方向に、 中央隔壁が設けられ ている。 中央隔壁の光電面と逆側近傍に第 2段以降の入力ダイノード設 けられている。 密閉容器の中心軸を含む中央部分には、 平板と平行に、 かつ僅かに離れて横棒が位置する。 横棒は、 電極とは絶縁され、 光電面 と等しいかそれに近い電位を与えられている。 The portion corresponding to the focusing electrode of the electrode and the portion corresponding to the first stage dynode are separated by a flat plate. The flat plate corresponds to each segment space And a grid is provided in the hole. A central partition wall is provided in a direction including the plane including the central axis of the sealed container and in a direction opposite to the photocathode from the flat plate. The second and subsequent input dynodes are provided near the photovoltaic surface of the central partition wall. A horizontal bar is located in the center of the closed container, including the central axis, parallel to the plate and slightly away from it. The horizontal bar is insulated from the electrode and given a potential equal to or close to that of the photocathode.
特開平 8— 3 0 6 3 3 5号 (以下、 特許文献 3という) には、 マルチ チャンネル電子増倍管が記載されている。 この電子増倍管は、 シート状 のダイノードを有し、 特定のチャンネルの利得を制御するために、 ダイ ノードのシート間に制御電極を設けている。  Japanese Patent Application Laid-Open No. 8-30635 (hereinafter referred to as Patent Document 3) describes a multi-channel electron multiplier. This electron multiplier has a sheet-like dynode, and a control electrode is provided between the sheets of the dynode in order to control the gain of a specific channel.
このマルチチャンネル電子増倍管は内面に光電面を備えた密閉容器を 有し、 各チャンネル間には、 光電面と同電位を与えられた十字型の ώ部 が備えられている。  This multi-channel electron multiplier has a closed container provided with a photocathode on the inner surface, and a cross-shaped ώ portion provided with the same potential as the photocathode is provided between each channel.
特開平 1 1 一 2 5 0 8 5 3号 (以下特許文献 4という) には、 仕切り 板により光電子増倍管の電子収束空間を複数のセグメントに分割した光 電子増倍管が記載されている。 この光電子増倍管においては、 密閉容器 内面に形成された光電面近くから密閉容器の中心軸を含む面の方向に仕 切り板が延在している。仕切り板は、光電面と同電位を与えられている。 複数のセグメントには夫々複数のダイノードが備えられ、 電子を増倍す る。 発明の開示  Japanese Patent Application Laid-Open No. H11-250853 (hereinafter referred to as Patent Document 4) describes a photomultiplier in which the electron focusing space of a photomultiplier is divided into a plurality of segments by a partition plate. . In this photomultiplier tube, a partition plate extends from near a photocathode formed on the inner surface of the sealed container to a direction including a central axis of the sealed container. The partition plate is given the same potential as the photocathode. Each segment has multiple dynodes to multiply electrons. Disclosure of the invention
特許文献 1に記載の光電子増倍管においては、 第 1段ダイノ一ドの形 状をカップ形状とし、 第 1段ダイノードの底部付近の中央部に光電面と ほぼ同電位を与えられた電極を配置して光電子増倍管内の電界を調整し、 光電面から放出された電子および第 1段ダイノ一ドから放出された二次 電子が、 第 1段ダイノードおよび第 2段以降のシートタイプの増倍器に 入射するようにしている。 In the photomultiplier tube described in Patent Document 1, the shape of the first-stage dynode is cup-shaped, and an electrode having substantially the same potential as the photocathode is provided at the center near the bottom of the first-stage dynode. To adjust the electric field in the photomultiplier tube, and the electrons emitted from the photocathode and the secondary emitted from the first stage dynode Electrons enter the first stage dynode and the second and subsequent sheet-type multipliers.
特許文献 2に記載の光電子増倍管においては、 収束電極と第 1段ダイ ノードとを兼ねた電極を備えて、 光電面から放出された電子を第 1段ダ ィノードに入射させ、 第 1段ダイノードから放出された二次電子は、 第 1段ダイノードと第 2段以降の入力ダイノードとの電位差と中央隔壁の 作用により、 第 2段以降の入力ダイノ一ドに入射させている。  The photomultiplier described in Patent Literature 2 includes an electrode serving also as a focusing electrode and a first-stage dynode, and allows electrons emitted from the photocathode to be incident on the first-stage dynode. Secondary electrons emitted from the dynode are incident on the second and subsequent input dynodes due to the potential difference between the first dynode and the second and subsequent input dynodes and the action of the central partition.
特許文献 3に記載の光電子増倍管においては、 シート状ダイノ一ドの 特定チャンネルの利得を制御するために、 ダイノードのシ一ト間に制御 電極を設け、 各チャンネル間には、 光電面と同電位を与えられた十字型 の凸部を備えて電子をダイノ一ドに入射させている。  In the photomultiplier tube described in Patent Document 3, in order to control the gain of a specific channel of a sheet-like dynode, a control electrode is provided between dynode sheets, and a photocathode is provided between each channel. Electrons are made incident on the dynode with a cross-shaped projection provided with the same potential.
特許文献 4に記載の光電子増倍管においては、 複数のセグメント間に 光電面と同電位を与えた仕切り板が配置され、 光電子増倍管内の電界を 調整して電子をダイノードに入射させている。  In the photomultiplier tube described in Patent Document 4, a partition plate having the same potential as the photocathode is arranged between a plurality of segments, and an electron is incident on the dynode by adjusting an electric field in the photomultiplier tube. .
しかしながら、 上記のような光電子増倍管では、 光電面の電子が放出 される場所によっては、 第 1段ダイノ一ドに効率よく入射しない場合が ある。 特に光電面の周縁部分から放出された光電子、 あるいは第 1段ダ イノードの周縁部から放出された二次電子は、 第 1段のダイノードまた は第 2段以降のダイノ一ドに入射できずにすり抜けてしまう場合がある, このような場合には、 光電面の有効面積が縮小され、 実質的な検出感 度が低下してしまうという問題が生ずる。 また、 光電面内での出力信号 が均一にならず、 特に画像処理などに用いる場合には、 周辺部の画像が 鮮明に得られないなどの問題が生ずる。  However, in the photomultiplier tube as described above, there are cases where electrons are not efficiently incident on the first-stage dynode depending on the place where electrons are emitted from the photocathode. In particular, photoelectrons emitted from the periphery of the photocathode or secondary electrons emitted from the periphery of the first-stage dynode cannot enter the first-stage dynode or the second- and subsequent-stage dynodes. In some cases, the effective area of the photocathode is reduced, and the actual detection sensitivity is reduced. In addition, the output signal in the photocathode is not uniform, and particularly when used for image processing or the like, there is a problem that a peripheral image cannot be obtained clearly.
上記課題を解決するためになされた本発明は、ガラス製の入射面板と、 該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に沿 つて延びるガラス製の中空の側管と、 該入射面板の該一つの側の面のう ち該側管の内側に位置した領域に形成され、 該入射面板に入射した光に 応じた光電子を放出する光電面と、 該光電面から放出された光電子を増 倍する電子増倍部と、 該光電面に対応して該側管の内側に設けられ、 該 電子増倍部から放出される電子を受けるアノード電極と、 を備え、 該電 子增倍部は、 該側管の内側に設けられ、 該光電面から放出された光電子 が入射すると増倍して二次電子を放出する第 1段ダイノードと、 該側管 の内側に、 該第 1段ダイノードと該軸方向において略同一位置に配置さ れ、 該第 1段ダイノ一ドから放出された二次電子が入射するとさらに増 倍して二次電子を放出する第 2段ダイノードと、 該側管の内側に、 該第 1段ダイノードおよび該第 2段ダイノードょり該管軸方向における下部 に設けられ、 該第 2段ダイノ一ドから放出された二次電子が入射すると 次々に増倍して二次電子を放出する第 3段ダイノ一ド以下の複数段のダ ィノードと、 該第 3段ダイノードを該第 2段ダイノードに望ませる開口 部を有し該第 2段ダイノードと該第 3段ダイノードとの間に備えられた 平板と、 該第 1段ダイノードの下端よりも該光電面側に延びる該開口部 の第 1段ダイノード側に設けられた第 1のつい立と、 該開口部の第 2段 ダイノード側に設けられ、 先端が該第 2段ダイノ一ドの下端よりも上部 に位置するように該光電面側に延ぴるた第 2のつい立とを備えた収束電 極と、 を有することを特徴とする光電子增倍管である。 Means for Solving the Problems The present invention made in order to solve the above-mentioned problem has a glass incident surface plate, and a glass incident surface plate connected to one surface of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate. A hollow side tube; and a surface on the one side of the entrance face plate A photocathode formed in a region located inside the side tube and emitting photoelectrons according to light incident on the incident face plate; an electron multiplier for multiplying photoelectrons emitted from the photocathode; An anode electrode provided inside the side tube corresponding to the photocathode and receiving an electron emitted from the electron multiplier section; and the electron multiplier section provided inside the side tube. A first-stage dynode that multiplies and emits secondary electrons when the photoelectrons emitted from the photocathode are incident; and inside the side tube, at substantially the same position as the first-stage dynode in the axial direction. A second-stage dynode that is further arranged to multiply and emit secondary electrons when secondary electrons emitted from the first-stage dynode are incident; and a first-stage dynode that is provided inside the side tube. And the second stage dynode is provided at a lower portion in the pipe axis direction, and When secondary electrons emitted from the two-stage dynode are incident, they are multiplied one after another to emit secondary electrons. A flat plate having an opening desired by the two-stage dynode and provided between the second-stage dynode and the third-stage dynode; and the opening extending toward the photocathode side from a lower end of the first-stage dynode. A first screen provided on the first dynode side of the second dynode, and a first screen provided on the second dynode side of the opening so that a tip is located above a lower end of the second dynode. A converging electrode having a second screen extending to the photocathode side; and a photomultiplier tube comprising:
上記光電子増倍管においては、 光電面は入射光に応じて光電子を放出 する。 電子増倍部は、 第 1段ダイノード、 第 2段ダイノード、 および第 3段ダイノード以下の複数段のダイノード、 収束電極を有している。 第 1段ダイノ一ドは光電面から放出された電子が入射すると、 二次電子を 放出する。 第 2段ダイノードは第 1段ダイノードから放出された電子が 入射すると増倍して二次電子を放出する。 収束電極は、 第 2段ダイノー ドからの電子が通過する開口部を備えた平板を有し、 平板の開口部の第 1段ダイノード側に第 1のつい立が、 該開口部の第 2段ダイノード側に 第 2のつい立が備えられている。 収束電極は、 第 1段ダイノードおょぴ 第 2段ダイノード近傍の電位、 および、 第 2段ダイノードと第 3段ダイ ノ一ドとの間の電位を調整し、 電子を効率よく各段のダイノードに入射 させるようにしている。 In the photomultiplier, the photocathode emits photoelectrons in response to incident light. The electron multiplier has a first stage dynode, a second stage dynode, a plurality of stages of dynodes below the third stage dynode, and a focusing electrode. When the electrons emitted from the photocathode are incident on the first stage, secondary electrons are emitted. When the electrons emitted from the first dynode enter, the second dynode multiplies and emits secondary electrons. The focusing electrode has a flat plate with an opening through which electrons from the second stage dynode pass, A first screen is provided on the first dynode side, and a second screen is provided on the second dynode side of the opening. The focusing electrode adjusts the potential near the first-stage dynode and the second-stage dynode, and the potential between the second-stage dynode and the third-stage dynode to efficiently transfer electrons to each stage dynode. It is made to be incident on.
また本発明は、 ガラス製の入射面板と、 該入射面板の一つの側の面に 接続され、 該入射面版に略垂直な管軸に沿って延びるガラス製の中空の 側管と、 該入射面板の該一つの側の面のうち該側管の内側に位置した領 域に形成され、 該入射面板に入射した光に応じた光電子を放出する光電 面と、 該光電面から放出された光電子を増倍する電子増倍部と、 該光電 面に対応して該側管の内側に設けられ、 該電子増倍部から放出される電 子を受けるアノード電極と、 を備え、 該電子増倍部は、 該側管の内側に 設けられ、 該光電面から放出された光電子が入射すると増倍して二次電 子を放出する第 1段ダイノードと、 該側管の内側に、 該第 1段ダイノー ドと該軸方向において略同一位置に配置され、 該第 1段ダイノードから 放出された二次電子が入射するとさらに増倍して二次電子を放出する第 2段ダイノードと、 該側管の内側に、 該第 1段ダイノードおよぴ該第 2 段ダイノードょり該管軸方向における下部に設けられ、 該第 2段ダイノ 一ドから放出された二次電子が入射すると次々に増倍して二次電子を放 出する第 3段ダイノード以下の複数段のダイノードと、 該第 1段ダイノ 一ド下端側に設けられ該第 1段ダイノ一ドの下端よりも該光電面側に延 びる第 1のつい立と、 該第 3段ダイノードを該第 2段ダイノードに望ま せる切り込み部を備えた平板と、 該切り込み部の第 2段ダイノード下端 側に設けられ、 該第 2段ダイノードの下端よりも該光電面側に延びる第 2のつい立と、 を備え、 該第 2段ダイノードと該第 3段ダイノー ドとの 間に固定されることにより、 該第 1段ダイノードと該第 3段ダイノード との間まで延びる開口部を形成する収束電極と、 を有することを特徴と する光電子増倍管である。 Also, the present invention provides a glass incident surface plate, a glass hollow side tube connected to a surface on one side of the incident surface plate, and extending along a tube axis substantially perpendicular to the incident surface plate. A photoelectric surface which is formed in an area of the one side surface of the face plate located inside the side tube and emits photoelectrons in accordance with light incident on the incident surface plate; and a photoelectron emitted from the photoelectric surface. And an anode electrode provided inside the side tube corresponding to the photocathode and receiving electrons emitted from the electron multiplier. A first stage dynode provided inside the side tube, for multiplying and emitting secondary electrons when photoelectrons emitted from the photocathode enter, and a first dynode inside the side tube; A secondary dynode disposed at substantially the same position as the stage dynode in the axial direction and emitted from the first stage dynode A second-stage dynode that further multiplies when electrons enter and emits secondary electrons; and a first dynode and a second-stage dynode at the lower part in the tube axis direction inside the side tube. A plurality of dynodes, including a third dynode and a third dynode, which sequentially multiply and emit secondary electrons when secondary electrons emitted from the second dynode are incident; and the first dynode. A first screen extending from the lower end of the first dynode to the photocathode side than a lower end of the first dynode, and a notch for making the third dynode desired by the second dynode. A flat plate, and a second screen provided at the lower end of the second dynode of the cut portion and extending toward the photocathode side from the lower end of the second dynode. The first stage die is fixed by being fixed between the third stage die node. Over de and the third-stage dynode And a focusing electrode forming an opening extending to between the photomultiplier and a photomultiplier tube.
上記光電子増倍管においては、 第 1のつい立、 第 2のつい立おょぴ平 板とよりなる収束電極、 および収束電極が固定されて形成される開口部 力 S、 電子増倍部の電位を調整し、 各段のダイノードに電子が効率よく入 射するようにしている。  In the above-mentioned photomultiplier tube, a focusing electrode composed of a first screen and a second screen plate, an opening force S formed by fixing the focusing electrode, The potential is adjusted so that electrons can efficiently enter the dynodes in each stage.
また本発明は、 ガラス製の入射面板と、 該入射面板の一つの側の面に 接続され、 該入射面版に略垂直な管軸に沿って延びるガラス製の中空の 側管と、 該入射面板の該一つの側の面のうち該側管の内側に位置した領 域に形成され、 該入射面板に入射した光に応じた光電子を放出する光電 面と、 該光電面から放出された光電子を増倍する電子増倍部と、 該光電 面に対応して該側管の内側に設けられ、 該電子増倍部から放出される電 子を受けるアノード電極と、 を備え、 該電子增倍部は、 該側管の内側に 設けられ、 該光電面から放出された光電子が入射すると増倍して二次電 子を放出する第 1段ダイノードと、 該側管の内側に、 該第 1段ダイノー ドと該軸方向において略同一位置に配置され、 該第 1段ダイノ一ドから 放出された二次電子が入射するとさらに増倍して二次電子を放出する第 Also, the present invention provides a glass incident surface plate, a glass hollow side tube connected to a surface on one side of the incident surface plate, and extending along a tube axis substantially perpendicular to the incident surface plate. A photoelectric surface which is formed in an area of the one side surface of the face plate located inside the side tube and emits photoelectrons in accordance with light incident on the incident surface plate; and a photoelectron emitted from the photoelectric surface. And an anode electrode provided inside the side tube corresponding to the photocathode and receiving electrons emitted from the electron multiplier. A first stage dynode provided inside the side tube, for multiplying and emitting secondary electrons when photoelectrons emitted from the photocathode enter, and a first dynode inside the side tube; The secondary die released from the first stage die is disposed at substantially the same position in the axial direction as the stage die node. When the electron enters, it multiplies further and emits secondary electrons.
2段ダイノードと、 該側管の内側に、 該第 1段ダイノードおよび該第 2 段ダイノードより該管軸方向における下部に設けられ、 該第 2段ダイノ —ドから放出された二次電子が入射すると次々に増倍して二次電子を放 出する第 3段ダイノード以下の複数段のダイノードと、 該第 1段ダイノ 一ド下端側に設けられ該第 1段ダイノードの下端よりも該光電面側に延 ぴる第 1のつい立と、 該第 3段ダイノ一ドを該第 2段ダイノ一ドに望ま せる第 1の開口部と、 該第 1段ダイノードと該第 3段ダイノードとの間 の第 2の開口部とを備え該第 2段ダイノードと該第 3段ダイノードとの 間に備えられた平板と、 該第 1の開口部の第 2段ダイノード下端側に設 けられ、 該第 2段ダイノードの下端よりも該光電面側に延びる第 2のつ い立とを備えた収束電極と、 を有することを特徴とする光電子増倍管で ある。 A second-stage dynode, and a secondary electron emitted from the second-stage dynode is provided inside the side tube below the first-stage dynode and the second-stage dynode in the tube axis direction. Then, a plurality of dynodes below the third dynode, which multiply one after another to emit secondary electrons, and the photocathode provided at the lower end of the first dynode more than the lower end of the first dynode A first screen extending to the side, a first opening for making the third stage dynode desired to the second stage dynode, and a first opening between the first stage dynode and the third stage dynode. A flat plate provided between the second-stage dynode and the third-stage dynode, and a flat plate provided at a lower end side of the second-stage dynode of the first opening. A focusing electrode having a second screen extending from the lower end of the second dynode to the photocathode side.
上記光電子増倍管においては、 第 1のつい立、 第 2のつい立おょぴ平 板とよりなり、 第 1の開口部およぴ第 2の開口部を有する収束電極が、 電子増倍部の電位を調整し、 各段のダイノードに電子が効率よく入射す るようにしている。  In the above-described photomultiplier tube, a focusing electrode comprising a first screen and a second screen flat plate and having a first opening and a second opening is provided by an electron multiplier. The potential of the section is adjusted so that electrons can efficiently enter the dynodes of each stage.
収束電極は、 第 2段ダイノードよりも高く、 第 3段ダイノード以下の 電位を与えられることが好ましい。 かかる構成により、 第 2段ダイノー ドから放出された電子が、 収束電極により収束されつつ効率よく第 3段 ダイノ一ドに入射する。  The focusing electrode is preferably provided with a potential higher than the second-stage dynode and equal to or lower than the third-stage dynode. With this configuration, the electrons emitted from the second stage dynode efficiently enter the third stage dynode while being converged by the focusing electrode.
さらに本発明は、 ガラス製の入射面板と、 該入射面板の一つの側の面 に接続され、 該入射面版に略垂直な管軸に沿って延びるガラス製の中空 の側管と、 該入射面板の該一つの側の面のうち該側管の内側に位置した 領域に形成され、 該入射面板に入射した光に応じた光電子を放出する光 電面と、 該光電面から放出された光電子を増倍する電子増倍部と、 該光 電面に対応して該側管の内側に設けられ、 該電子増倍部から放出される 電子を受けるアノード電極と、 を備え、 該電子増倍部は、 該側管の内側 に設けられ、 該光電面から放出された光電子が入射すると増倍して二次 電子を放出する第 1段ダイノードと、 該側管の内側に、 該第 1段ダイノ 一ドと該軸方向において略同一位置に配置され、 該第 1段ダイノ一ドか ら放出された二次電子が入射するとさらに增倍して二次電子を放出する 第 2段ダイノードと、 該側管の内側に、 該第 1段ダイノードおよび該第 2段ダイノードょり該管軸方向における下部に設けられ、 該第 2段ダイ ノードから放出された二次電子が入射すると次々に増倍して二次電子を 放出する第 3段ダイノード以下の複数段のダイノードと、 該第 1段ダイ ノ一ドの下端側で、 かつ該第 3段ダイノ一ドの上側に設けられる第 1の 収束電極と、 該第 2段ダイノードの下端側で、 かつ該第 3段ダイノード の上側に設けられる第 2の収束電極と、 を夫々備え、 該第 2段ダイノー ドで増倍された電子は該第 1の収束電極と該第 2の収束電極との間の空 間を通過して該第 3段ダイノ一ドに入射することを特徴とする光電子増 倍管である。 The present invention further provides a glass entrance face plate, a glass hollow side tube connected to a surface on one side of the entrance face plate, and extending along a tube axis substantially perpendicular to the entrance face plate. A photoelectron surface which is formed in an area of the one side surface of the face plate located inside the side tube and emits photoelectrons according to light incident on the incident face plate; and a photoelectron emitted from the photocathode. And an anode electrode provided inside the side tube corresponding to the photoelectric surface and receiving electrons emitted from the electron multiplier. A first dynode that is provided inside the side tube and that multiplies and emits secondary electrons when photoelectrons emitted from the photocathode are incident; and a first stage dynode inside the side tube. The dynode is disposed at substantially the same position in the axial direction as the A second-stage dynode that emits secondary electrons by multiplying by a factor of two when the next electron is incident; and a first dynode and a second-stage dynode provided inside the side tube below the tube axis. A plurality of dynodes below the third dynode, which sequentially multiply and emit secondary electrons when secondary electrons emitted from the second dynode are incident; and the first dynode. A first focusing electrode provided at the lower end of the node and above the third dynode, and a first focusing electrode provided at the lower end of the second dynode and above the third dynode. And the electron multiplied by the second stage dynode passes through the space between the first focusing electrode and the second focusing electrode. A photomultiplier tube characterized by being incident on a dynode.
上記光電子増倍管においては、 該第 1の収束電極と該第 2の収束電極 とが電子増倍部の電位を調整し、 第 2段ダイノ一ドからの電子が該第 1 の収束電極と該第 2の収束電極との間の空間を通過して第 3段ダイノ一 ドに入射するようにして、 各段のダイノードに電子を効率よく入射させ ている。  In the photomultiplier tube, the first focusing electrode and the second focusing electrode adjust the potential of the electron multiplier, and electrons from the second-stage dynode communicate with the first focusing electrode. Electrons are efficiently incident on the dynodes of each stage by passing through the space between the second focusing electrode and entering the third dynode.
また、 上記いずれの光電子増倍管においても、 該第 1の収束電極と該 第 2の収束電極とは同一部材で形成するようにしてもよい。 図面の簡単な説明  In any of the above-described photomultiplier tubes, the first focusing electrode and the second focusing electrode may be formed of the same member. Brief Description of Drawings
第 1図は、 本発明の第 1の実施の形態にかかるマルチアノ一ド型光電 子増倍管 1の第 2図の A— A ' 面における概略断面図である。  FIG. 1 is a schematic cross-sectional view of the multi-anod type photomultiplier tube 1 according to the first embodiment of the present invention, taken along plane AA ′ of FIG.
第 2図は、 マルチアノ一ド型光電子増倍管 1を上方から見た平面図で ある。  FIG. 2 is a plan view of the multi-anod type photomultiplier tube 1 as viewed from above.
第 3図は、 マルチアノ一ド型光電子増倍管 1の第 2図の C一 C '面にお ける断面図である。  FIG. 3 is a cross-sectional view of the multi-anod type photomultiplier tube 1 taken along a plane C-C ′ in FIG.
第 4図は、 マルチアノ一ド型光電子増倍管 1のつい立収束電極 2 0の 上面図である。  FIG. 4 is a top view of the vertical focusing electrode 20 of the multi-anod type photomultiplier tube 1.
第 5図は、 マルチアノ一ド型光電子増倍管 1における電子の軌跡を示 す図である。  FIG. 5 is a diagram showing a trajectory of electrons in the multi-anod type photomultiplier tube 1.
第 6図は、 第 1のつい立 2 1およぴ第 2のつい立 2 2がない場合のマ ルチアノード型光電子増倍管 1の電子の軌跡を示す図である。 Fig. 6 shows the machine without the first screen 21 and the second screen 22. FIG. 2 is a view showing a trajectory of electrons of a multi-anode type photomultiplier tube 1;
第 7図は、 第 1のつい立 2 1および第 2のつい立 2 2がないマルチア ノード型光電子增倍管 1にメッシュ 2 4を設けた場合の電子の軌跡を示 す図である。  FIG. 7 is a diagram showing the electron trajectory when the mesh 24 is provided in the multi-node anode photomultiplier tube 1 without the first screen 21 and the second screen 22. FIG.
第 8図は、 第 2のつい立 2 2がない場合のマルチアノード型光電子増 倍管 1の電子の軌跡を示す図である。  FIG. 8 is a diagram showing the electron trajectory of the multi-anode type photomultiplier tube 1 when the second screen 22 is not provided.
第 9図は、 本発明の第 2の実施の形態にかかるマルチアノ一ド型光電 子増倍管 1 0 0の第 1 0図の A— A ' における断面図である。  FIG. 9 is a cross-sectional view taken along line AA ′ of FIG. 10 of the multi-anod type photomultiplier tube 100 according to the second embodiment of the present invention.
第 1 0図は、 マルチアノ一ド型光電子増倍管 1 0 0を上方から見た平 面図である。  FIG. 10 is a plan view of the multi-anod type photomultiplier tube 100 viewed from above.
第 1 1図は、マルチアノ一ド型光電子增倍管 1 0 0の第 2図の C一 C ' 面における断面図である。  FIG. 11 is a cross-sectional view of the multi-anod type photomultiplier tube 100 taken along the line C-C 'in FIG.
第 1 2図は、 マルチアノ一ド型光電子增倍管 1 0 0のつい立収束電極 1 2 0の上面図である。  FIG. 12 is a top view of the focusing electrode 120 of the multi-anod type photomultiplier tube 100. FIG.
第 1 3図は、 マルチアノード型光電子増倍管 1 0 0における電子の軌 跡を示す図である。  FIG. 13 is a view showing a trajectory of electrons in the multi-anode type photomultiplier tube 100.
第 1 4図は、 マルチアノ一ド型光電子増倍管 1 0 0のつい立収束電極 2 2 0の上面図である。 発明を実施するための最良の形態  FIG. 14 is a top view of the screen electrode 220 of the multi-anod type photomultiplier tube 100. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の光電子増倍管の例として、 第 1の実施の形態にかかるマルチ ァノード型光電子増倍管 1を図面を参照しながら説明する。  As an example of a photomultiplier tube of the present invention, a multi-node photomultiplier tube 1 according to a first embodiment will be described with reference to the drawings.
まず、 マルチアノード型光電子増倍管 1の構成を、 第 1図乃至第 4図 に基づき説明する。 第 1図に示すように、 マルチアノード型光電子増倍 管 1は、 2 X 2のマルチアノードタイプの光電子増倍管である。 マルチ ァノード型光電子増倍管 1は、 略四角柱形状のガラス容器 5を有してい る。 ガラス容器 5は、 透明ガラス製である。 ガラス容器 5の第 1図にお ける上面は、 光の入射面板 4となっている。 First, the configuration of the multi-anode type photomultiplier 1 will be described with reference to FIGS. 1 to 4. FIG. As shown in FIG. 1, the multi-anode type photomultiplier tube 1 is a 2 × 2 multi-anode type photomultiplier tube. The multi-node photomultiplier tube 1 has a substantially rectangular prism-shaped glass container 5. The The glass container 5 is made of transparent glass. The upper surface of the glass container 5 in FIG. 1 is a light incident surface plate 4.
入射面板 4には、 内側に光電面 3が形成されている。 ガラス容器 5の 側面は、 入射面板 4に略垂直な管軸 Zに沿って延びており、 中空の側管 6をなしている。 ガラス容器 5の底部 7には、 入出力ピン 3 5が設けら れている。 入射面板 4、 側管 6、 底部 7とは一体に形成され、 ガラス容 器 5の内部を密閉している。  The incident surface plate 4 has a photoelectric surface 3 formed inside. The side surface of the glass container 5 extends along a tube axis Z substantially perpendicular to the entrance face plate 4, and forms a hollow side tube 6. Input / output pins 35 are provided on the bottom 7 of the glass container 5. The entrance face plate 4, the side tube 6, and the bottom 7 are integrally formed to seal the inside of the glass container 5.
ガラス容器 5の側管 6上部内面に、 アルミ -ゥム薄膜 7が蒸着され、 光電面 3と同電位を与えられている。 ガラス容器 5の側管 6外面には、 パーマロイなどの磁性材料からなる磁気シールド (図示せず) が備えら れ、 さらに樹脂などからなるチューブで覆われている。  An aluminum-thin film 7 is deposited on the inner surface of the upper part of the side tube 6 of the glass container 5, and is given the same potential as the photoelectric surface 3. The outer surface of the side tube 6 of the glass container 5 is provided with a magnetic shield (not shown) made of a magnetic material such as permalloy, and is covered with a tube made of a resin or the like.
ガラス容器 5内部には、隔壁 9、シールド電極 1 1、平板状電極 1 3、 メッシュ 1 5、 第 1段ダイノード D y l、 第 2段ダイノード D y 2、 つ い立収束電極 2 0、 ダイノード列 2 5、 アノード 3 1等が備えられてい る。 第 1段ダイノード D y l、 第 2段ダイノード D y 2、 つい立収束電 極 2 0、 ダイノ一ド列 2 5は、 電子増倍部に相当する。  Inside the glass container 5, there are a partition 9, a shield electrode 11, a plate electrode 13, a mesh 15, a first-stage dynode Dyl, a second-stage dynode Dy2, a vertical focusing electrode 20, and a dynode array. 25, anode 31 and so on. The first-stage dynode Dyl, the second-stage dynode Dy2, the convergence electrode 20 and the dynode array 25 correspond to an electron multiplier.
ガラス容器 5内部の光電面 3、 シールド電極 1 1、 平板状電極 1 3、 第 1段ダイノード D y 1、第 2段ダイノード D y 2、ダイノ一ド列 2 5、 アノード 3 1等は、 入出力ピン 3 5と図示しない配線にて接続され所定 の電位を与えられている。  The photocathode 3 inside the glass container 5, the shield electrode 11, the flat electrode 13, the first dynode Dy1, the second dynode Dy2, the dynode row 25, the anode 31, etc. It is connected to the output pin 35 by a wiring (not shown) and given a predetermined potential.
隔壁 9は、 導電性部材からなり、 光電面 3から管軸 Zの方向に延びて いる。 第 2図に示すように、 隔壁 9は上方から見ると十文字形状の壁で あり、 ガラス容器 5内の電子収束空間を 4つのセグメント空間 5— 1乃 至 5— 4に分割している。 第 1図に示すように、 下部はシールド電極 1 1 と接続している。 隔壁 9は、 光電面 3と同電位を与えられる。  The partition 9 is made of a conductive member and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 2, the partition wall 9 is a cross-shaped wall when viewed from above, and divides the electron focusing space in the glass container 5 into four segment spaces 5-1 to 5-4. As shown in FIG. 1, the lower part is connected to the shield electrode 11. The partition 9 is given the same potential as the photocathode 3.
シールド電極 1 1は導電性の板状部材であり、 ガラス容器 5内部の隔 壁 9の下部に、 第 2段ダイノード D y 2が光電面 3に対し露出されるの を遮蔽するように配置されている。 シールド電極 1 1の周縁部は、 図示 の例では光電面 3の方向に延びる立ち上がりが設けられ、 シールド電極 1 1の強度を補強している。 シールド電極 1 1は、 光電面 3と同電位を 与えられる。 The shield electrode 11 is a conductive plate-like member, A second dynode D y 2 is arranged below the wall 9 to shield the second dynode D y 2 from being exposed to the photocathode 3. The periphery of the shield electrode 11 is provided with a rising extending in the direction of the photocathode 3 in the example shown in the figure, thereby reinforcing the strength of the shield electrode 11. The shield electrode 11 is given the same potential as the photocathode 3.
平板状電極 1 3は、 第 2図に示すように開口を有し、 シールド電極 1 1の下部にガラス容器 5の断面を覆うように設けられている。 平板上電 極 1 3の周辺部には、 光電面 3の方向に延びる立ち上がりが設けられて いる。 図示の例では、 平板状電極 1 3の開口はガラス容器 5の中心軸 Z の周囲に 4箇所 2行 2列に設けられ、 それぞれのセグメント空間 5— 1 乃至 5— 4に対応する光電面 3 — 1乃至 3 _ 4から放出された電子が通 過する。 The plate-like electrode 13 has an opening as shown in FIG. 2, and is provided below the shield electrode 11 so as to cover the cross section of the glass container 5. A rising portion extending in the direction of the photocathode 3 is provided around the flat electrode 13. In the illustrated example, the opening of the plate-like electrodes 1 3 provided in two rows and two columns four positions around the central axis Z of the glass container 5, each segment space 5 1 to 5 - the photocathode 3 corresponding to the 4 — Electrons emitted from 1 to 3_4 pass through.
平板状電極 1 3は、 第 1段ダイノード D y 1 と同電位か、 第 2段ダイ ノ一ド D y 2の電位を越えない範囲で第 1段ダイノード D y 1の電位よ り少し高い電位を与えられる。  The plate electrode 13 has the same potential as the first-stage dynode Dy1 or a potential slightly higher than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2. Is given.
平板状電極 1 3の各開口には、 メッシュ 1 5が設けられている。 メ ッ シュ 1 5は、 導電性の網状部材である。 メッシュ 1 5には、 第 1段ダイ ノード D y 1 と同電位か、 第 2段ダイノード D y 2の電位を越えない範 囲で第 1段ダイノード D y 1の電位より少し高い電位が与えられる。 各メッシュ 1 5に対応して、 その下部に第 1段ダイノード D y 1が設 けられる。 すなわちガラス容器 5内の各セグメント空間 5— 1乃至 5 _ 4に各 1つ、 合計に 4つの第 1段ダイノード D y 1が設けられている。 第 1段ダイノード D y 1は、 水平に平らに延びる水平部と、 軸方向に 平らに延びる垂直部と、 水平部と垂直部とを接続し斜め方向に延びる斜 め部とを備え、 各セグメント空間 5— 1乃至 5— 4に対応する光電面 3 一 1乃至 3— 4を望むようにガラス容器 5内部の側管 6近傍に配置され ている。 尚、 第 1段ダイノード D y 1は、 光電面 3よりも高くアノード 3 1よりも低い電位を与えられている。 A mesh 15 is provided in each opening of the flat electrode 13. The mesh 15 is a conductive mesh member. The mesh 15 has the same potential as the first-stage dynode Dy1 or a potential slightly higher than the potential of the first-stage dynode Dy1 within a range not exceeding the potential of the second-stage dynode Dy2. . A first-stage dynode Dy1 is provided below each mesh 15. That is, four first-stage dynodes Dy1 are provided, one each in each of the segment spaces 5-1 to 5_4 in the glass container 5. The first-stage dynode D y 1 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely. The photocathode 31 corresponding to the spaces 5-1 to 5-4 is disposed near the side tube 6 inside the glass container 5 so as to desire the photocathode 3 1 to 3-4. ing. The first dynode D y1 is given a potential higher than the photocathode 3 and lower than the anode 31.
第 2段ダイノード D y 2は、 水平に平らに延びる水平部と、 軸方向に 平らに延びる垂直部と、 水平部と垂直部とを接続し斜め方向に延びる斜 め部とを備え、 対応する第 1段ダイノード D y 1を望むようにガラス容 器 5内部の軸 Z近傍に配置されている。 すなわちガラス容器 5内の各セ グメント空間 5— 1乃至 5— 4に各 1つ、 合計 4つの第 2段ダイノード D y 2が設けられている。  The second-stage dynode D y 2 includes a horizontal portion extending horizontally and flat, a vertical portion extending flat in the axial direction, and a beveled portion connecting the horizontal portion and the vertical portion and extending obliquely. The first-stage dynode D y1 is arranged near the axis Z inside the glass container 5 as desired. That is, each of the segment spaces 5-1 to 5-4 in the glass container 5 is provided with four second-stage dynodes Dy2, one each.
4つの第 2段ダイノード D y 2のうち、 セグメント空間 5— 1 とセグ メント空間 5 — 2の 2つの第 2段ダイノード D y 2は、 垂直部の裏側が 一体化されている。 同様に、 セグメント空間 5— 3とセグメント空間 5 — 4の 2つの第 2段ダイノード D y 2は、 垂直部の裏側が一体化されて いる。 第 2段ダイノード D y 2は、 第 1段ダイノード D y lよりも高く アノード 3 1よりも低い電位を与えられている。  Out of the four second-stage dynodes Dy2, the two second-stage dynodes Dy2 in the segment space 5-1 and the segment space 5-2 are integrated on the back side of the vertical part. Similarly, the two second-stage dynodes Dy2 of segment space 5-3 and segment space 5-4 are integrated on the back side of the vertical part. The second-stage dynode Dy2 is given a potential higher than the first-stage dynode Dyl and lower than the anode 31.
第 1段ダイノード D y 1およぴ第 2段ダイノード D y 2と、 ダイノー ド列 2 5との間に、 つい立収束電極 2 0が設けられている。 つい立収束 電極 2 0は、 第 2段ダイノード D y 2よりも高く、 第 3段ダイノード D y 3以下の電位、 好ましくは第 3段ダイノード D y 3と同電位を与えら れる。 第 4図に示すようについ立収束電極 2 0は、 第 1のつい立 2 1、 第 2のつい立 2 2、 平板 2 3、 開口部 2 4等を有している。  A vertical focusing electrode 20 is provided between the first-stage dynode Dy1 and the second-stage dynode Dy2 and the dynode array 25. The convergence electrode 20 is provided with a potential higher than the second-stage dynode Dy2 and equal to or lower than the third-stage dynode Dy3, preferably the same potential as the third-stage dynode Dy3. As shown in FIG. 4, the screen focusing electrode 20 has a first screen 21, a second screen 22, a flat plate 23, an opening 24, and the like.
開口部 2 4は、 軸 Zの周囲に 4箇所、 第 2段ダイノード D y 2を望む 位置に 2行 2列に配置されている。 開口部 2 4の第 1段ダイノード D y 1側端部に、 光電面 3の方向に延びる第 1のつい立 2 1が備えられてい る。 第 1のつい立 2 1は、 ガラス容器 5内の各セグメント空間 5 — 1乃 至 5— 4に各 1つ、 合計 4つ配置される。 第 1のつい立 2 1は、 第 1段 ダイノード D y 1の下端部よりも光電面 3側まで延ぴていることが好ま しい。 The openings 24 are arranged in two rows and two columns at four positions around the axis Z, where the second-stage dynode Dy2 is desired. At the end of the opening 24 on the first dynode Dy1 side, a first screen 21 extending in the direction of the photocathode 3 is provided. The first screen 2 1 is disposed in each of the segment spaces 5-1 to 5-4 in the glass container 5, one in each of the four spaces. The first screen 21 preferably extends to the photocathode 3 side from the lower end of the first dynode Dy1. That's right.
開口部 2 4の第 2段ダイノード D y 2側端部に、 光電面 3の方向に延 びる第 2のつい立 2 2が備えられている。 第 2のつい立 2 2は、 ガラス 容器 5内の各セグメント空間 5— 1乃至 5— 4に各 1つ、 合計 4つ配置 ざれる。 第 2のつい立 2 2は、 第 2段ダイノード D y 2の下端部の上ま で延びている。  At the end of the opening 24 on the second dynode Dy2 side, a second screen 22 extending in the direction of the photocathode 3 is provided. The second screen 22 is arranged in each of the segment spaces 5-1 to 5-4 in the glass container 5, one for each, a total of four. The second screen 22 extends above the lower end of the second dynode Dy2.
ダイノ一ド列 2 5は、 マルチアノ一ド型光電子増倍管 1においてはべ ネシャンブラインド型ダイノードである。 各段のダイノードは、 平板部 2 6 と 4つのダイノード部 2 7とからなっている。 4つのダイノ一ド部 2 7は、 4つの開口部 2 4に対応しており、 当該開口部 2 4の第 1つい 立 2 1より側管 6側まで延びている。  The dynode array 25 is a venetian blind dynode in the multi-anodic photomultiplier tube 1. The dynodes at each stage include a flat plate portion 26 and four dynode portions 27. The four dynode portions 27 correspond to the four openings 24, and extend from the first stand 21 of the openings 24 to the side pipe 6 side.
ダイノ一ド列 2 5の各ダイノ一ド部 2 7には夫々複数の電極エレメン ト 2 8が備えられている。 第 3、 5、 7、 9段ダイノード D y 3、 D y 5、 D y 7、 D y 9においては、 電極エレメント 2 8はその二次電子放 出面が第 2段ダイノードを望むように、 管軸 Zに対して 4 5度傾斜して 配置されている。 第 4、 6、 8段ダイノード D y 4、 D y 6、 D y 8の 電極ェレメント 2 8は、 第 3、 5、 7、 9段ダイノード D y 3、 D y 5、 D y 7、 D y 9の電極エレメント 2 8とは逆方向に管軸 Zに対して 4 5 度傾斜して配置されている。  Each of the dynode portions 27 of the dynode row 25 is provided with a plurality of electrode elements 28. In the third, fifth, seventh and ninth-stage dynodes Dy3, Dy5, Dy7 and Dy9, the electrode element 28 is connected to the tube so that its secondary electron emission surface desires the second-stage dynode. It is arranged at an angle of 45 degrees with respect to the axis Z. The electrode elements 28 of the 4th, 6th and 8th dynodes Dy4, Dy6 and Dy8 are the 3rd, 5th, 7th and 9th dynodes Dy3, Dy5, Dy7 and Dy Nine electrode elements 28 are arranged at an angle of 45 degrees with respect to the tube axis Z in the opposite direction.
第 3段ダイノード D y 3の平板部 2 6には、 つい立収束電極 2 0の平 板 2 3がダイノ一ド部 2 7の上部に位置するように一体化されている。 第 4段から第 9段のダイノード D y 4乃至 D y 9の平板部 2 6には、 メ ッシュ電極 2 9が電極エレメント 2 8の上部に位置するように一体化さ れている。  The flat plate 23 of the vertical focusing electrode 20 is integrated with the flat plate 26 of the third dynode Dy3 so as to be located above the dynode 27. The mesh electrode 29 is integrated with the flat plate portion 26 of the fourth to ninth dynodes Dy4 to Dy9 so as to be located above the electrode element 28.
アノード 3 1は、 第 9段ダイノード D y 9の下部に 4つのダイノード 部に対応して設けられている。 第 1 0段ダイノード D y 1 0は、 ァノー ド 3 1の下部に位置するように設けられ、 第 9段ダイノード D y 9から 放出された電子が入射するとアノード 3 1側に二次電子を放出する。 ァ ノード 3 1は、 第 1 0段ダイノード D y 1 0から放出された電子が入射 するとそれを検出する。 The anodes 31 are provided below the ninth dynode Dy9 so as to correspond to the four dynodes. The 10th stage dynode D y 10 is When the electrons emitted from the ninth-stage dynode Dy9 are incident, secondary electrons are emitted to the anode 31 side. Node 31 detects when an electron emitted from the 10th dynode Dy10 is incident.
上記構造を備えるマルチアノード型光電子増倍管 1は、 以下のように 動作する。  The multi-anode type photomultiplier 1 having the above structure operates as follows.
光電面 3、 隔壁 9、 シールド電極 1 1、 平板上電極 1 3、 つい立収束 電極 2 0、 第 1段ダイノード D y l、 第 2段ダイノード D y 2、 ダイノ 一ド列 2 5、 およぴァノード 3 1は、 入出力ピン 3 5を介して所定の電 圧を印加される。  Photocathode 3, Partition wall 9, Shield electrode 11, Plate electrode 13, Standing focus electrode 20, First stage dynode Dyl, Second stage dynode Dy2, Dinode row 25, etc. A predetermined voltage is applied to the transfer node 31 via the input / output pin 35.
入射面板 4の内、 1つのセグメント空間 5— 1乃至 5— 4のいずれか に対応する領域に光が入射すると、 対応する光電面 3— 1乃至 3— 4の いずれかは、 入射した光量に応じた量の光電子を放出する。 放出された 光電子は、 対応するセグメント空間に備えられた隔壁 9、 シールド電極 1 1、 平板状電極 1 3等により収束され、 対応するメッシュ 1 5を通過 して第 1段ダイノード D y lに入射する。  When light enters the area corresponding to any one of the segment spaces 5-1 to 5-4 in the incident surface plate 4, any of the corresponding photoelectric surfaces 3-1 to 3-4 becomes smaller than the amount of incident light. Emit a corresponding amount of photoelectrons. The emitted photoelectrons are converged by the partition wall 9, shield electrode 11 and plate electrode 13 provided in the corresponding segment space, pass through the corresponding mesh 15 and enter the first stage dynode D yl .
第 1段ダイノード D y 1は、 入射した光電子に応じて二次電子を放出 する。 この二次電子は、 つい立収束電極 2 0により収束されて、 第 2段 ダイノード D y 2に入射する。  The first-stage dynode D y 1 emits secondary electrons according to the incident photoelectrons. The secondary electrons are focused by the vertical focusing electrode 20 and are incident on the second dynode Dy2.
このとき、 第 1のつい立 2 1が、 第 1段ダイノード D y 1の下端位置 より上側に延びているため、 第 1段ダイノード D y 1の等電位線の位置 が上方向に引き上げられ、 当該等電位線の第 2段ダイノード D y 2上の 位置を、第 2段ダイノード D y 2の斜め部よりも水平部に近い位置とし、 垂直部と斜め部の大部分を二次電子放出領域とすることができる。  At this time, since the first screen 21 extends above the lower end position of the first-stage dynode Dy1, the position of the equipotential line of the first-stage dynode Dy1 is raised upward, The position of the equipotential line on the second dynode Dy2 is set to a position closer to the horizontal part than the diagonal part of the second dynode Dy2, and most of the vertical part and the diagonal part are the secondary electron emission region. It can be.
第 2段ダイノード D y 2から放出された電子は、 第 2段ダイノード D V 2より高い電位を与えられた第 3段ダイノード D y 3に向かう。 この とき、 第 2のつい立 2 2が第 2段ダイノード D y 2下端位置の上側まで 突出して備えられており、 第 2段ダイノード D y 2から放出された電子 を効率よくつい立収束電極 2 0の開口部 2 4に導くことができる。 The electrons emitted from the second-stage dynode Dy2 go to the third-stage dynode Dy3 which is given a higher potential than the second-stage dynode DV2. this At this time, the second screen 22 is provided so as to protrude above the lower end position of the second dynode Dy2, so that electrons emitted from the second dynode Dy2 can be efficiently focused on the vertical focusing electrode 20. Can be led to the opening 24.
開口部 2 4を通過した電子は、 第 3段ダイノード D y 3に入射する。 第 3段ダイノード D y 3は、開口部 2 4よりも側管 6側まで延ぴており、 開口部 2 4を通過した電子を効率よく入射させることができる。 電子は ダイノ一ド列 2 5において順次多段増倍され、ァノード 3 1に入射する。 アノード 3 1は、 入射した電子に応じた信号を発生し、 入出力ピン 3 5を介してガラス容器 5外部に出力信号として出力する。  The electrons passing through the opening 24 enter the third-stage dynode Dy3. The third-stage dynode Dy3 extends to the side tube 6 side from the opening 24, and the electrons passing through the opening 24 can be efficiently incident. The electrons are sequentially multiplied by multiple stages in the dynode train 25 and incident on the anode 31. The anode 31 generates a signal corresponding to the incident electrons and outputs the signal as an output signal to the outside of the glass container 5 via the input / output pin 35.
マルチアノード型光電子増倍管 1においては、 シールド電極 1 1、 平 板上電極 1 3、 つい立収束電極 2 0、 第 1段ダイノード D y 1、 第 2段 ダイノード D y 2、 ダイノード列 2 5、 およびアノード 3 1 がガラス容 器 5内部に配置され、 外周に磁気シールドが設けられている。 よって、 光電子の収束およぴ増倍を、 外部磁界の影響を受けることなく正確に行 なうことができる。  In the multi-anode type photomultiplier tube 1, the shield electrode 11, the flat plate electrode 13, the vertical focusing electrode 20, the first dynode Dy1, the second dynode Dy2, and the dynode row 25 , And the anode 31 are disposed inside the glass container 5, and a magnetic shield is provided on the outer periphery. Therefore, convergence and multiplication of photoelectrons can be accurately performed without being affected by an external magnetic field.
次に、 第 5図乃至第 8図を参照しながら、 つい立収束電極 2 0の効果 について説明する。  Next, the effect of the vertical focusing electrode 20 will be described with reference to FIGS. 5 to 8.
第 5図は、 マルチアノ一ド型光電子増倍管 1における電子の軌跡を示 す図である。 マルチアノ一ド型光電子増倍管 1において第 1のつい立 2 1、 第 2のつい立 2 2は、 平板 2 3と共に第 2段ダイノード D y 2より 高く、 第 3段ダイノード D y 3以下の電位、 好ましくは第 3段ダイノー ド D y 3と同電位を与えられ、 第 1段ダイノード D y 1から第 2段ダイ ノード D y 2、 およぴ第 2段ダイノード D y 2から第 3段ダイノード D y 3への電子の軌跡を制御している。 このため電子の軌跡 p 0、 q 0、 r 0、 s 0は図示のように、 夫々の軌跡で第 1段ダイノード D y 1、 第 2段ダイノード D y 2から逸れることなく入射している。 第 2段ダイノード D y 2に入射した後に放出された電子の軌跡を見る と、 電子の軌跡 r Oは、 第 2段ダイノード D y 2から放出された後、 第 1のつい立 2 1に衝突している。 すなわち、 この電子の軌跡 r Oの位置 に入射した光は、 アノード 3 1によって検出されないことになる。 電子 の軌跡 p 0、 q 0、 s 0は第 3段ダイノード D y 3に入射し、 さらに第 4段ダイノード D y 4へと入射している。 FIG. 5 is a diagram showing a trajectory of electrons in the multi-anod type photomultiplier tube 1. In the multi-anod type photomultiplier tube 1, the first screen 2 1 and the second screen 2 2 are higher than the second stage dynode D y 2 together with the flat plate 23, and the third screen dynode D y 3 or less. Potential, preferably the same potential as the third stage dynode Dy3, the first stage dynode Dy1 to the second stage dynode Dy2, and the second stage dynode Dy2 to the third stage It controls the trajectory of electrons to dynode D y 3. For this reason, the electron trajectories p 0, q 0, r 0, and s 0 are incident on the respective trajectories without deviating from the first-stage dynode Dy 1 and the second-stage dynode Dy 2 as shown. Looking at the trajectory of electrons emitted after being incident on the second-stage dynode D y 2, the electron trajectory r O collides with the first screen 21 after being emitted from the second-stage dynode D y 2 are doing. That is, the light that has entered the position of the electron trajectory r O is not detected by the anode 31. The electron trajectories p 0, q 0, and s 0 are incident on the third-stage dynode D y 3 and further incident on the fourth-stage dynode D y 4.
よって、 上記マルチアノード型光電子增倍管 1では、 光電面の周縁部 に入射した光の検出効率が多少低くなるが、 概ね良好に入射光の検出が 行なえる。  Therefore, in the multi-anode type photomultiplier tube 1, the detection efficiency of the light incident on the periphery of the photocathode is slightly reduced, but the detection of the incident light can be generally performed satisfactorily.
比較例として、 第 6図には第 1のつい立 2 1及ぴ第 2のつい立がない 場合の電子の軌跡を示している。第 6図において電子の軌跡 p 1、 q 1、 r 1、 s 1は、 電子の軌跡 p 0、 q 0、 r 0、 s 0と光電面 3— 1のほ ぼ同位置に入射した光により放出された電子の軌跡である。  As a comparative example, FIG. 6 shows the trajectories of electrons in the case where the first screen 21 and the second screen are not provided. In FIG. 6, the electron trajectories p 1, q 1, r 1, and s 1 are due to the light that has entered the electron trajectories p 0, q 0, r 0, and s 0 at almost the same position as the photocathode 3-1. It is a trajectory of emitted electrons.
第 6図に示すように、 第 1のつい立 2 1および第 2のつい立 2 2がな いと電子の軌跡 p l、 q l、 r l、 s iは、 電子の軌跡 p 0、 q 0、 r 0、 s 0に比べて第 2段ダイノード D y 2への入射位置が光電面方向に 移動している。 また、 第 3段ダイノード D y 3からの電界が弱いため第 2段ダイノ一ド D y 2への第 1段ダイノード D y 1による負電位の影響 が強く、 電子の軌跡 p 1、 q 1のように第 2段ダイノード D y 2から出 られない二次電子が多く存在することになる。 よって、 光電面 3に入射 した光を効率よく検出することができない。  As shown in FIG. 6, without the first screen 2 1 and the second screen 2 2, the electron trajectories pl, ql, rl, and si are the electron trajectories p 0, q 0, r 0, The position of incidence on the second-stage dynode Dy2 is shifted toward the photocathode as compared to s0. In addition, since the electric field from the third dynode Dy3 is weak, the negative potential of the first dynode Dy1 on the second dynode Dy2 is strong, and the electron trajectories p1, q1 Thus, there are many secondary electrons that cannot escape from the second-stage dynode Dy2. Therefore, the light incident on the photocathode 3 cannot be detected efficiently.
第 2の比較例として、 第 7図には第 1のつい立 2 1及び第 2のつい立 がなく、 平板 2 3の開口部 2 4、 および第 1段ダイノード D y 1 と第 3 段ダイノード D y 3 との間に相当する部分に、 メッシュ 3 4を設けた場 合の電子の軌跡を示している。 第 7図において電子の軌跡 p 2、 q 2、 r 2、 s 2は、 電子の軌跡 p 0、 q 0、 r 0、 s Oと光電面 3— 1のほ ぼ同位置に入射した光により放出された電子の軌跡である。 As a second comparative example, FIG. 7 does not have the first screen 21 and the second screen, the opening 24 of the flat plate 23, the first dynode Dy1, and the third dynode. The trajectory of electrons when a mesh 34 is provided in the portion corresponding to D y 3 is shown. In FIG. 7, the electron trajectories p 2, q 2, r 2, and s 2 correspond to the electron trajectories p 0, q 0, r 0, s O and the photocathode 3-1. It is a trajectory of an electron emitted by light incident on the same position.
第 7図に示すように、 第 1のつい立 2 1および第 2のつい立 2 2がな レヽと電子の軌跡 p 2、 q 2、 r 2、 s 2は、 電子の軌跡 p 1、 q 1、 r 1、 s 1 と同様電子の軌跡 p 0、 q 0、 r 0、 s 0に比べて第 2段ダイ ノード D y 2への入射位置が光電面方向に移動する。 また、 第 3段ダイ ノード D y 3からの電界が弱いため第 2段ダイノード D y 2への第 1段 ダイノード D y 1の負電位の影響が強く、 電子の軌跡 p 2、 q 2のよう に第 2段ダイノード D y 2から出られない二次電子が多く存在すること になる。  As shown in FIG. 7, the first screen 21 and the second screen 22 are formed and the trajectories p2, q2, r2, and s2 of the electrons are the trajectories p1, q of the electrons. Similar to 1, r 1 and s 1, the position of incidence on the second dynode D y 2 moves toward the photocathode as compared to the electron trajectories p 0, q 0, r 0 and s 0. Also, since the electric field from the third-stage dynode Dy3 is weak, the negative potential of the first-stage dynode Dy1 on the second-stage dynode Dy2 is strong, as shown by the electron trajectories p2 and q2. Therefore, there are many secondary electrons that cannot escape from the second-stage dynode Dy2.
さらに、 第 3段ダイノード D y 3にメッシュ 3 4を貼ったので、 第 3 段ダイノード D y 3から出た二次電子が第 1段ダイノード D y 1の負電 位の影響を受けることがなくなり、 電子の軌跡 r 2、 s 2のように第 4 段ダイノード D y 4に入射しなくなる。 よって、 光電面 3に入射した光 をほとんど検出することができない。  Furthermore, since the mesh 3 4 is attached to the third dynode Dy3, the secondary electrons emitted from the third dynode Dy3 are not affected by the negative potential of the first dynode Dy1, The electron trajectories r 2 and s 2 no longer enter the fourth-stage dynode D y 4. Therefore, the light incident on the photocathode 3 can hardly be detected.
第 3の比較例として、 第 8図には第 2のつい立 2 2がない場合の電子 の軌跡を示している。 第 8図において電子の軌跡 p 3、 q 3、 r 3、 s 3は、 電子の軌跡 p 0、 q 0、 r 0、 s 0と光電面 3— 1のほぼ同位置 に入射した光により放出された電子の軌跡を示している。  As a third comparative example, FIG. 8 shows an electron trajectory without the second screen 22. In Fig. 8, the electron trajectories p3, q3, r3, and s3 are emitted by light incident on the photocathode 3-1 at approximately the same position as the electron trajectories p0, q0, r0, and s0. FIG.
第 8図に示すように、第 2のつい立 2 2がない場合も電子の軌跡 p 3、 q 3、 r 3、 s 3は、 第 2段ダイノード D y 2への入射位置は電子の軌 跡 p 0、 q 0、 r 0、 s 0とほぼ同位置である。 しかし第 2段ダイノー ド D y 2から放出された二次電子は第 1のつい立 2 1およぴ第 1段ダイ ノード D y 1下方の平板 2 3に引き寄せられ、 電子の軌跡 q 3、 r 3、 s 3のように、 第 1のつい立 2 1に衝突する。 よって、 第 3段ダイノー ド D y 3に入射する電子が減少するので、 光電面 3に入射した光を効率 よく検出することができない。 以上説明したように、 第 1の実施の形態にかかるマルチアノ一ド型光 電子増倍管 1においては、ガラス容器 5内に、第 1段ダイノード D y 1、 第 2段ダイノード D y 2、 ダイノード列 2 5等を有する電子増倍部およ ぴアノード 3 1等を設け、光電面 3に入射した光を電子増倍部で増倍し、 アノード 3 1により検出する。 As shown in FIG. 8, the electron trajectories p 3, q 3, r 3, and s 3 also show the position of incidence on the second-stage dynode D y 2 even when there is no second screen 22. It is almost the same position as the traces p 0, q 0, r 0, s 0. However, secondary electrons emitted from the second-stage dynode D y 2 are attracted to the plate 23 below the first screen 21 and the first-stage dynode D y 1, and the electron trajectory q 3, As in r 3 and s 3, it collides with the first screen 2 1. Therefore, the number of electrons incident on the third dynode Dy3 decreases, so that light incident on the photocathode 3 cannot be detected efficiently. As described above, in the multi-anodic photomultiplier tube 1 according to the first embodiment, the first-stage dynode Dy1, the second-stage dynode Dy2, the dynode An electron multiplier having columns 25 and the like and an anode 31 are provided. Light incident on the photocathode 3 is multiplied by the electron multiplier and detected by the anode 31.
また、 第 3段ダイノード D y 3を該第 2段ダイノードに望ませる開口 部 2 4を備え、 第 2段ダイノード D y 2と第 3段ダイノード D y 3 との 間に備えられた平板 2 3と、 開口部 2 4の第 1段ダイノード D y 1側に 備えられ、 第 1段ダイノード D y 1の下端よりも光電面 3側に延びる第 1のつい立 2 1 と、開口部 2 4の第 2段ダイノード D y 2側に備えられ、 先端が第 2段ダイノード D y 2の下端よりも上部に位置するように光電 面 3側に延びた第 2のつい立 2 2とを有するつい立収束電極 2 0を設け 第 2段ダイノード D y 2よりも高く、 第 3段ダイノード D y 3以下の電 位を与 る。  In addition, an opening 24 for making the third dynode Dy3 desired by the second dynode is provided, and a flat plate 23 provided between the second dynode Dy2 and the third dynode Dy3 is provided. A first screen 21 provided on the first dynode Dy1 side of the opening 24 and extending toward the photocathode 3 side from the lower end of the first dynode Dy1; A second screen provided on the second-stage dynode Dy2 side, the second screen extending to the photocathode 3 side such that the tip is located above the lower end of the second-stage dynode Dy2; A focusing electrode 20 is provided to give an electric potential higher than the second-stage dynode Dy2 and equal to or lower than the third-stage dynode Dy3.
上記構成により、 光電面 3に入射した光に応じて放出される電子を、 光電面 3における放射位置にかかわらず第 1段ダイノード D y 1、 第 2 段ダイノード D y 2、 第 3段ダイノード D y 3などの電子増倍部に効率 よく入射させることが可能となる。 このように光電面 3に入射した光は 入射箇所にかかわらずほぼ均一に検出されるので、 画像表示装置等に用 いられる際に、 鮮明な画像を得ることが可能になる。  With the above configuration, the electrons emitted in response to the light incident on the photocathode 3 are converted into the first dynode Dy1, the second dynode Dy2, and the third dynode D regardless of the radiation position on the photocathode 3. It is possible to efficiently enter the electron multiplier such as y3. As described above, since the light incident on the photocathode 3 is detected almost uniformly regardless of the incident position, a clear image can be obtained when used in an image display device or the like.
次に、 第 9図乃至第 1 3図を参照しながら、 本発明の第 2の実施の形 態にかかるマルチアノ一ド型光電子增倍管 1 0 0について説明する。 第 1の実施の形態にかかるマルチアノ一ド型光電子增倍管 1 と同様の構成 については、 同一の符号を付す。  Next, a multi-anode photomultiplier 100 according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 13. FIG. The same components as those of the multi-anod type photomultiplier 1 according to the first embodiment are denoted by the same reference numerals.
第 9図乃至第 1 2図に示すように、 マルチアノード型光電子増倍管 1 0 0は、 マルチアノ一ド型光電子増倍管 1の隔壁 9に替えて隔壁 1 0 9 を、 つい立収束電極 2 0に替えてつい立収束電極 1 2 0を、 シールド電 極 1 1に替えてシールド電極 1 1 0を備えている。 As shown in FIGS. 9 to 12, the multi-anode type photomultiplier tube 100 is a partition wall 10 instead of the partition wall 9 of the multi-anod type photomultiplier tube 1. Is replaced by a vertical focusing electrode 20, and a vertical focusing electrode 120 is provided. A shield electrode 11 is replaced by a shield electrode 110.
隔壁 1 0 9は、 導電性部材からなり、 光電面 3から管軸 Zの方向に延 びている。 第 1 0図に示すように、 隔壁 1 0 9は上方から見ると十文字 形状の壁であり、 隔壁 9 と同様ガラス容器 5内の電子収束空間を 4つの セグメント空間 5— 1乃至 5— 4に分割している。 隔壁 1 0 9の下部は シールド電極 1 1 0との間に開口部 1 0 8をなしている。隔壁 1 0 9は、 光電面 3と同電位を与えられる。  The partition wall 109 is made of a conductive material and extends from the photocathode 3 in the direction of the tube axis Z. As shown in FIG. 10, the partition wall 109 is a cross-shaped wall when viewed from above. Like the partition wall 9, the electron converging space in the glass container 5 is divided into four segment spaces 5-1 to 5-4. Divided. The lower part of the partition wall 109 forms an opening 108 with the shield electrode 110. The partition wall 109 is given the same potential as the photocathode 3.
第 1 0図に示すように、 シールド電極 1 1 0は導電性の板状部材であ り、 ガラス容器 5内部の隔壁 1 0 9の下方、 平板上電極 1 3の上部に配 置されている。 シールド電極 1 1 0の周縁部は、 図示の例では光電面 3 の方向に延びる立ち上がりが設けられ、 シールド電極 1 1 0の強度を補 強している。 シールド電極 1 1 0の中央部には、 開口 1 1 2が備えられ ている。 開口 1 1 2は上方から見た形状は長方形である。 シールド電極 1 1 0は、 光電面 3と同電位を与えられる。  As shown in FIG. 10, the shield electrode 110 is a conductive plate-shaped member, and is disposed below the partition wall 109 inside the glass container 5 and above the flat plate electrode 13. . The periphery of the shield electrode 110 is provided with a rise extending in the direction of the photocathode 3 in the illustrated example, and the strength of the shield electrode 110 is enhanced. An opening 112 is provided at the center of the shield electrode 110. The shape of the opening 1 1 2 when viewed from above is rectangular. The shield electrode 110 is given the same potential as the photocathode 3.
つい立収束電極 1 2 0は、 第 1 2図のように第 1のつい立 2 1、 第 2 のつい立 2 2、 および平板 1 2 3を有している。 つい立収束電極 1 2 0 を第 2段ダイノード D y 2と第 3段ダイノード D y 3との間で固定する ことで、 第 9図に示すように、 第 1段ダイノード D y 1 と第 3段ダイノ ード D y 3との間まで延びる開口部 1 4 2が形成される。 すなわち、 第 1段ダイノード D y 1 の裏面と第 3段ダイノード D y 3の電子入射面が 向かい合うことになる。  The screen focusing electrode 120 has a first screen 21, a second screen 22, and a flat plate 123 as shown in FIG. By fixing the vertical focusing electrode 12 0 between the second-stage dynode Dy2 and the third-stage dynode Dy3, as shown in FIG. 9, the first-stage dynode Dy1 and the third An opening 144 is formed extending to between the step dynode Dy3. That is, the back surface of the first-stage dynode Dy1 faces the electron incident surface of the third-stage dynode Dy3.
第 1のつい立 2 1、 第 2のつい立 2 2はマルチアノ一ド型光電子増倍 管 1 と同様の構成である。 つい立収束電極 1 2 0は、 つい立収束電極 2 0と同様、 第 2段ダイノード D y 2よりも高く、 第 3段ダイノード D y 3以下、 好ましくは第 3段ダイノード D y 3と同電位を与えられる。 他の構成および動作はマルチアノ一ド型光電子増倍管 1 と同様である 次に、 第 5図および第 1 3図を参照しながら、 マルチアノード型光電 子増倍管 1 0 0におけるつい立集束電極 1 2 0の効果について説明する 第 5図は、 マルチアノ一ド型光電子増倍管 1における電子の軌跡を示 す図である力 S、第 1の実施の形態で説明したように、電子の軌跡 r 0は、 第 1のつい立 2 1に衝突してしまい、 第 3段ダイノード D y 3に入射せ ずァノード 3 1に検出されない。 また、 第 3段ダイノード D y 3に入射 しても、 第 3段ダイノード D y 3から放出された二次電子は第 1段ダイ ノード D y 1の負電位の影響を受けないため、 第 3段ダイノード D y 3 に再入射する場合がある。 また、 第 1段ダイノード D y 1の負電位の影 響を受けないため、 第 3段ダイノード D y 3を飛び越えて第 4段ダイノ 一ド D y 4に入射する場合もあり (軌跡 s 0の第 3段ダイノード D y 3 から第 4段ダイノード D y 4の軌跡) 、 ダイノード間の二次電子走行時 間が長くかかってしまうことになり、 時間特性が悪くなる。 The first screen 21 and the second screen 22 have the same configuration as the multi-anod type photomultiplier tube 1. Like the standing focus electrode 20, the standing focus electrode 1 20 is higher than the second-stage dynode Dy2, is equal to or lower than the third-stage dynode Dy3, and preferably has the same potential as the third-stage dynode Dy3. Is given. Other configurations and operations are the same as those of the multi-anod photomultiplier tube 1. Next, referring to FIGS. 5 and 13, the vertical focusing in the multi-anode photomultiplier tube 100 will be described. FIG. 5 illustrates the effect of the electrode 120. FIG. 5 shows the trajectory of electrons in the multi-anod type photomultiplier tube 1. The force S, as described in the first embodiment, The trajectory r 0 collides with the first screen 21 and does not enter the third-stage dynode D y 3 and is not detected by the node 31. Further, even if the secondary electrons emitted from the third-stage dynode Dy3 are incident on the third-stage dynode Dy3, the secondary electrons are not affected by the negative potential of the first-stage dynode Dy1. It may re-enter the stage dynode D y 3. In addition, since there is no influence of the negative potential of the first-stage dynode Dy1, there is also a case where the third-stage dynode Dy3 jumps and enters the fourth-stage dynode Dy4 (the locus s0). The trajectory from the third-stage dynode Dy3 to the fourth-stage dynode Dy4) means that the secondary electron transit time between the dynodes takes a long time, and the time characteristics deteriorate.
第 1 3図において電子の軌跡 p 4、 q 4、 r 4、 s 4は、 電子の軌跡 p 0、 q O、 r O、 s 0と光電面 3— 1のほぼ同位置に入射した光によ り放出された電子の軌跡を示している。 ここではつい立収束電極 1 2 0 による効果を示すため、 隔壁 1 0 9に替えて隔壁 9を設けている。  In FIG. 13, the electron trajectories p 4, q 4, r 4, and s 4 correspond to the electron trajectories p 0, q O, r O, and s 0, which are incident on the light incident on the same position of the photoelectric surface 3-1 The trajectory of the more emitted electrons is shown. Here, a partition 9 is provided in place of the partition 109 to show the effect of the vertical focusing electrode 120.
マルチアノ一ド型光電子增倍管 1 0 0では、 マルチアノ一ド型光電子 増倍管 1における開口部 2 4よりも広い開口部 1 4 2を設け、 第 1段ダ ィノード D y 1 と第 3段ダイノード D y 3との間が開口になったことで 電子の軌跡 p 4、 q 4、 r 4、 s 4は全て第 3段ダイノード D y 3に入 射し、 さらにその真下の第 4段ダイノード D y 4に入射している。 よつ て、 第 2段ダイノード D y 2と第 4段ダイノード D y 4間での二次電子 走行時間が速くなるので、 マルチアノード型光電子増倍管 1に比べて時 間特性が改善される。 以上説明したように、 第 2の実施の形態にかかるマルチアノ一ド型光 電子增倍管 1 0 0においては、 ガラス容器 5内に、 第 1段ダイノード D y 1、 第 2段ダイノード D y 2、 ダイノード列 2 5等を有する電子増倍 部おょぴァノード 3 1等を設け、 光電面 3に入射した光を電子増倍部で 増倍し、 アノード 3 1により検出する。 In the multi-anod photomultiplier tube 100, an opening 144 wider than the opening 24 in the multi-anod photomultiplier tube 1 is provided, and the first-stage dynode D y1 and the third-stage Because of the opening between the dynode Dy3, the electron trajectories p4, q4, r4, and s4 all enter the third dynode Dy3, and the fourth dynode immediately below it. It is incident on D y 4. Therefore, the secondary electron transit time between the second-stage dynode Dy2 and the fourth-stage dynode Dy4 becomes faster, so that the time characteristics are improved as compared with the multi-anode type photomultiplier tube 1. . As described above, in the multi-anod type photomultiplier tube 100 according to the second embodiment, the first-stage dynode Dy1 and the second-stage dynode Dy2 are placed in the glass container 5. An electron multiplier section 31 having a dynode array 25 and the like is provided, and the light incident on the photocathode 3 is multiplied by the electron multiplier section and detected by the anode 31.
隔壁 1 0 9とシールド電極 1 1 0との間には、開口 1 0 8が設けられ、 シールド電極 1 1 0には開口 1 1 2が設けられている。 また、 第 3段ダ ィノード D y 3を該第 2段ダイノードに望ませ、 第 1段ダイノード D y 1 と第 3段ダイノード D y 3との間まで延びる開口部 1 4 2を備え、 第 2段ダイノード D y 2と第 3段ダイノード D y 3との間に備えられた平 板 1 2 3と、 第 1段ダイノード D y 1下端の下方から第 1段ダイノ一ド D y 1 の下端よりも光電面 3側に延びる第 1 のつい立 2 1 と、 開口部 1 4 2の第 2段ダイノード D y 2側に備えられ、 先端が第 2段ダイノード D y 2の下端より も上部に位置するように光電面 3側に延びた第 2のつ い立 2 2とを有するつい立収束電極 1 2 0を設け、 第 2段ダイノード D y 2よりも高く、 第 3段ダイノード D y 3以下の電位を与える。  An opening 108 is provided between the partition wall 109 and the shield electrode 110, and an opening 112 is provided in the shield electrode 110. Further, the second dynode is desirably provided with a third dynode D y3, and an opening 144 extending between the first dynode Dy1 and the third dynode Dy3 is provided. A plate 1 23 provided between the stage dynode Dy2 and the third stage dynode Dy3, and a lower end of the first stage dynode Dy1 from below the lower end of the first stage dynode Dy1 Is also provided on the second dynode Dy2 side of the opening 144, with the tip located above the lower end of the second dynode Dy2. And a second converging electrode 120 having a second screen 22 extending toward the photocathode 3 side so as to be higher than the second dynode Dy2 and less than or equal to the third dynode Dy3. Potential.
上記構成により、 光電面 3に入射した光に応じて放出される電子を、 光電面 3における放射位置にかかわらず第 1段ダイノード D y 1、 第 2 段ダイノード D y 2、 第 3段ダイノ一ド D y 3などの電子増倍部に効率 よく入射させることが可能となる。 また、 隔壁 1 0 9の下方の開口部 1 0 8およぴシールド電極 1 1 0の開口部 1 1 2により、 セグメント空間 5— 1乃至 5— 4内の電界がより均一になるので、 光電面 3上の電子の 放出位置にかかわらず、 光電面 3から第 1段ダイノー ド D y 1に入射す るまでの電子の走行時間差を小さくすることができる。 そのため、 画像 表示装置等に用いられる際に、 鮮明な画像を得ることが可能になる。 さらに開口部 1 4 2が第 1段ダイノード D y 1 と第 3段ダイノード D y 3 との間まで延びており、 第 2段ダイノード D y 2からの二次電子が 第 3段ダイノード D y 3を飛び越えて第 4段ダイノード D y 4に入射す ることがなく、 光の検出における時間特性がさらに改善される。 With the above configuration, the electrons emitted in response to the light incident on the photocathode 3 emit the first dynode Dy1, the second dynode Dy2, and the third dynode irrespective of the radiation position on the photocathode 3. It is possible to efficiently enter the electron multiplier such as the de Dy3. Further, the electric field in the segment spaces 5-1 to 5-4 becomes more uniform due to the opening 1108 below the partition wall 109 and the opening 111 of the shield electrode 110, so that the Irrespective of the electron emission position on the surface 3, the transit time difference of the electrons from the photocathode 3 to the first stage dynode Dy1 can be reduced. Therefore, when used in an image display device or the like, a clear image can be obtained. Further, openings 1 4 2 are formed by the first dynode D y1 and the third dynode D y 3, and secondary electrons from the second-stage dynode D y 2 do not jump over the third-stage dynode D y 3 and enter the fourth-stage dynode D y 4. The time characteristic in detection is further improved.
このように光電面 3に入射した光は入射箇所にかかわらずほぼ均一に 検出され、 時間特性も良好であるので、 画像表示装置等に用いられる際 に、 鮮明な画像を得ることが可能になる。  As described above, the light incident on the photocathode 3 is detected almost uniformly regardless of the incident position, and the time characteristic is good, so that when used in an image display device or the like, a clear image can be obtained. .
以上、 添付図面を参照しながら本発明による光電子増倍管の好適な実 施形態について説明したが、 本発明は上述した実施の形態に限定されな い。 当業者であれば、 特許請求の範囲に記載された技術的思想の範疇内 において各種の変形や改良が可能である。  As described above, the preferred embodiment of the photomultiplier according to the present invention has been described with reference to the accompanying drawings, but the present invention is not limited to the above-described embodiment. Those skilled in the art can make various modifications and improvements within the scope of the technical idea described in the claims.
例えば、 図 1 2のつい立収束電極 1 2 0に代えて図 1 4のつい立収束 電極 2 2 0のように、 1枚の平板に第 1のつい立 2 1、 第 2のつい立 2 2、 開口部 1 4 2、 開口部 1 2 4を形成し、 これを第 2段ダイノード D y 2と第 3段ダイノード D y 3との間に固定してもよい。  For example, as shown in FIG. 14 instead of the screen focusing electrode 1 20 shown in FIG. 12, the screen 1 shown in FIG. 2. An opening 144 and an opening 124 may be formed and fixed between the second dynode Dy2 and the third dynode Dy3.
収束電極 2 0、 1 2 0または 2 2 0の代わりに、 第 1段ダイノード D y 1の下端側でかつ第 3段ダイノード D y 3の上側位置に、 第 3段ダイ ノード D y 3への二次電子を収束させるための第 1の収束電極と、 第 2 段ダイノード D y 2の下端側でかつ第 3段ダイノード D y 3の上側位置 に、 第 3段ダイノード D y 3への二次電子を収束させるための第 2の収 束電極を設けてもよい。 これらの第 1の収束電極と第 2の収束電極は、 同一部材で一体に構成にしてもよいし、別部材で独立に構成してもよレ、。 シールド電極 1 1、 1 1 0の周縁部は、 立ち上がりがなくてもよい。 シールド電極 1 1 0に設けられる開口の形状は、 長方形には限定されな い。また、シールド電極 1 1、 1 1 0は必ずしも備えられなくてもよい。 これによれば、 シールド電極 1 1、 1 1 0を構成する材料の量を少なく することができ、 コス トの削減が可能である。 セグメント空間 5— 1乃至 5— 4は 4つに限定されず、 例えば 3 X 3 の 9空間等でもよい。 そのとき隔壁 9は、 領域の配置に応じて格子状等 に設けられる。 Instead of the focusing electrode 2 0, 1 2 0 or 2 2 0, at the lower end of the first-stage dynode D y 1 and above the third-stage dynode D y 3, A first converging electrode for converging secondary electrons, and a secondary electrode for the third-stage dynode Dy3 at the lower end of the second-stage dynode Dy2 and above the third-stage dynode Dy3. A second focusing electrode for converging electrons may be provided. The first focusing electrode and the second focusing electrode may be integrally formed by the same member, or may be independently formed by different members. The edges of the shield electrodes 11 and 110 do not need to rise. The shape of the opening provided in the shield electrode 110 is not limited to a rectangle. Also, the shield electrodes 11 and 110 need not always be provided. According to this, the amount of the material constituting the shield electrodes 11 and 110 can be reduced, and the cost can be reduced. The number of segment spaces 5-1 to 5-4 is not limited to four, but may be, for example, 3 × 3 9 spaces. At that time, the partition walls 9 are provided in a lattice shape or the like according to the arrangement of the regions.
平板状電極 1 3の開口には、メッシュ 1 5を備えなくてもよレ、。また、 第 1段ダイノード D y 1、 第 2段ダイノード D y 2における垂直部、 水 平部、 斜め部は平らでなくてもよく、 湾曲した構造でもよい。  It is not necessary to provide the mesh 15 in the opening of the flat electrode 13. The vertical, horizontal, and oblique portions of the first-stage dynode Dy1 and the second-stage dynode Dy2 do not have to be flat, and may have a curved structure.
第 3段ダイノード D y 3は、 第 1のつい立 2 1より側管 6側に延びて いなくてもよく、 第 1のつい立 2 1の略下側まで延ぴていればよい。 ダイノード列 2 5は、 第 3段ダイノード D y 3から第 1 0段ダイノー ド D y 1 0を有するとしたが、 これより少ないかまたは多い段数のダイ ノ一ド列でもよレ、。  The third-stage dynode Dy3 does not have to extend from the first screen 21 to the side pipe 6 side, but may extend to a substantially lower side of the first screen 21. Although the dynode row 25 has the third-stage dynode Dy3 to the tenth-stage dynode Dy10, the dynode row 25 may have a smaller or larger number of dynode rows.
また、 ダイノード列 2 5としてべネシャンブラインド型のものについ て説明したが、ファインメッシュ型、マイク口チャンネルプレート型等、 他の積層構造のダイノード列でもよい。 また、 積層型でなく、 ボックス 型やラインフォーカス型のダイノードを第 3段ダイノード以下のダイノ ードとして設けるようにしてもよい。  Also, the venetian blind type is described as the dynode array 25, but a dynode array of another laminated structure such as a fine mesh type, a microphone opening channel plate type, or the like may be used. Instead of a stacked type, a box type or line focus type dynode may be provided as a dynode below the third stage dynode.
ガラス容器 5は、 略四角柱型としたがこれに限定されず、 例えば円柱 型などでもよい。  The glass container 5 has a substantially square pillar shape, but is not limited to this, and may be, for example, a cylindrical shape.
マルチアノード型光電子増倍管 1 0 0においては隔壁 1 0 9を有する としたが、 隔壁 1 0 9を隔壁 9に替えてもよい。  Although the multi-anode type photomultiplier tube 100 has the partition wall 109, the partition wall 109 may be replaced with the partition wall 9.
上記実施の形態では本発明にかかる光電子增倍管を、 4つのセグメン ト空間 5 _ 1乃至 5— 4を有するマルチアノ一ド型光電子増倍管 1、 1 0 0を例にして説明したがこれに限定されず、 1つのセグメント空間の みを有する光電子増倍管にも適用することができる。 その場合、 第 3段 以下のダイノードは、 開口部 2 4または 1 2 4よりも外側まで設けられ ることが好ましい。 産業上の利用の可能性 In the above-described embodiment, the photomultiplier according to the present invention has been described by taking as an example a multi-anod type photomultiplier 1, 100 having four segment spaces 5_1 to 5-4. The present invention is not limited to this, and can be applied to a photomultiplier tube having only one segment space. In that case, it is preferable that the third or lower dynodes are provided to the outside of the opening 24 or 124. Industrial potential
本発明の光電子增倍管は、 ポジトロン C Tとして医療分野で利用でき る他、 他の放射線検出や他の光検出等、 様々な分野で広く利用すること ができる。  The photomultiplier according to the present invention can be widely used in various fields such as other radiation detection and other light detection, in addition to being usable as a positron CT in the medical field.

Claims

請 求 の 範 囲 The scope of the claims
1 . ガラス製の入射面板と、  1. Glass entrance face plate,
該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に 沿って延びるガラス製の中空の側管と、  A hollow glass side tube connected to a surface on one side of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate;
該入射面板の該一つの側の面のうち該側管の内側に位置した領域に形 成され、 該入射面板に入射した光に応じた光電子を放出する光電面と、 該光電面から放出された光電子を増倍する電子増倍部と、  A photocathode formed in an area of the one side surface of the incident face plate located inside the side tube, for emitting photoelectrons corresponding to light incident on the incident face plate; and a photocathode emitted from the photocathode. An electron multiplier for multiplying the photoelectrons
該光電面に対応して該側管の内側に設けられ、 該電子増倍部から放出 される電子を受けるァノード電極と、  An anode electrode provided inside the side tube corresponding to the photoelectric surface and receiving electrons emitted from the electron multiplier;
を備え、  With
該電子増倍部は、  The electron multiplier is
該側管の内側に設けられ、 該光電面から放出された光電子が入射する と増倍して二次電子を放出する第 1段ダイノードと、  A first-stage dynode provided inside the side tube and multiplying to emit secondary electrons when photoelectrons emitted from the photoelectric surface enter;
該側管の内側に、 該第 1段ダイノードと該軸方向において略同一位置 に配置され、 該第 1段ダイノードから放出された二次電子が入射すると さらに増倍して二次電子を放出する第 2段ダイノードと、  Inside the side tube, it is arranged at substantially the same position as the first stage dynode in the axial direction, and when secondary electrons emitted from the first stage dynode enter, further multiply to emit secondary electrons A second stage dynode,
該側管の内側に、 該第 1段ダイノ一ドおよぴ該第 2段ダイノードより 該管軸方向における下部に設けられ、 該第 2段ダイノードから放出され た二次電子が入射すると次々に増倍して二次電子を放出する第 3段ダイ ノード以下の複数段のダイノードと、  Inside the side tube, provided below the first stage dynode and the second stage dynode in the axial direction of the tube, when secondary electrons emitted from the second stage dynode are incident, they are successively. A multi-stage dynode below the third dynode that multiplies and emits secondary electrons;
該第 3段ダイノ一ドを該第 2段ダイノードに望ませる開口部を備え、 該第 2段ダイノードと該第 3段ダイノードとの間に備えられた平板と、 該開口部の第 1段ダイノ一ド側に設けられ、 該第 1段ダイノ一ドの下端 よりも該光電面側に延びる第 1のつい立と、 該開口部の第 2段ダイノー ド側に設けられ、 先端が該第 2段ダイノー ドの下端よりも上部に位置す るように該光電面側に延びる第 2のつい立とを備えた収束電極と、 を有することを特徴とする光電子増倍管。 An opening for allowing the third dynode to be provided to the second dynode; a flat plate provided between the second dynode and the third dynode; and a first dynode of the opening. A first screen extending from the lower end of the first stage node toward the photocathode side; a second screen side of the opening having a second end connected to the second stage node; A focusing electrode having a second screen extending toward the photocathode side so as to be located above a lower end of the step dynode; A photomultiplier tube comprising:
2 . ガラス製の入射面板と、  2. The entrance face plate made of glass,
該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に沿 つて延びるガラス製の中空の側管と、 A hollow glass side tube connected to a surface on one side of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate;
該入射面板の該一つの側の面のうち該側管の内側に位置した領域に形 成され、 該入射面板に入射した光に応じた光電子を放出する光電面と、 該光電面から放出された光電子を増倍する電子增倍部と、  A photocathode formed in an area of the one side surface of the incident face plate located inside the side tube, for emitting photoelectrons corresponding to light incident on the incident face plate; and a photocathode emitted from the photocathode. Electron multiplier that multiplies the photoelectrons
該光電面に対応して該側管の内側に設けられ、 該電子増倍部から放出 される電子を受けるァノード電極と、  An anode electrode provided inside the side tube corresponding to the photoelectric surface and receiving electrons emitted from the electron multiplier;
を備え、  With
該電子増倍部は、  The electron multiplier is
該側管の内側に設けられ、 該光電面から放出された光電子が入射する と増倍して二次電子を放出する第 1段ダイノードと、  A first-stage dynode provided inside the side tube and multiplying to emit secondary electrons when photoelectrons emitted from the photoelectric surface enter;
該側管の内側に、 該第 1段ダイノードと該軸方向において略同一位置 に配置され、 該第 1段ダイノードから放出された二次電子が入射すると さらに增倍して二次電子を放出する第 2段ダイノードと、  Inside the side tube, it is arranged at substantially the same position as the first stage dynode in the axial direction, and when secondary electrons emitted from the first stage dynode are incident, the secondary electrons are further multiplied by 增 to emit secondary electrons. A second stage dynode,
該側管の内側に、 該第 1段ダイノ一ドおよび該第 2段ダイノードより 該管軸方向における下部に設けられ、 該第 2段ダイノードから放出され た二次電子が入射すると次々に増倍して二次電子を放出する第 3段ダイ ノード以下の複数段のダイノードと、  Inside the side tube, provided below the first-stage dynode and the second-stage dynode in the axial direction of the tube, and successively multiplied when secondary electrons emitted from the second-stage dynode enter. Dynodes below the third dynode that emit secondary electrons
該第 1段ダイノ一ド下端側に設けられ該第 1段ダイノードの下端より も該光電面側に延びる第 1のつい立と、 該第 3段ダイノ一ドを該第 2段 ダイノードに望ませる切り込み部を備えた平板と、 該切り込み部の第 2 段ダイノ一ド下端側に設けられ、 該第 2段ダイノ一ドの下端よりも該光 電面側に延びる第 2のつい立と、 を備え、 該第 2段ダイノードと該第 3 段ダイノードとの間に固定されることにより、 該第 1段ダイノードと該 第 3段ダイノードとの間まで延びる開口部を形成する収束電極と、 を有することを特徴とする光電子増倍管。 A first screen provided on a lower end side of the first stage dynode and extending to the photocathode side from a lower end of the first stage dynode; and making the third stage dynode desired by the second stage dynode. A flat plate provided with a cut portion, and a second screen provided at a lower end side of the second stage die of the cut portion and extending toward the photoelectric surface side from a lower end of the second stage die. Being fixed between the second-stage dynode and the third-stage dynode, the first-stage dynode and the third-stage dynode are fixed. A focusing electrode forming an opening extending to a third stage dynode; and a photomultiplier tube.
3 . ガラス製の入射面板と、  3. Glass entrance face plate,
該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に沿 つて延びるガラス製の中空の側管と、 A hollow glass side tube connected to a surface on one side of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate;
該入射面板の該一つの側の面のうち該側管の内側に位置した領域に形 成され、 該入射面板に入射した光に応じた光電子を放出する光電面と、 該光電面から放出された光電子を増倍する電子増倍部と、  A photocathode formed in an area of the one side surface of the incident face plate located inside the side tube, for emitting photoelectrons corresponding to light incident on the incident face plate; and a photocathode emitted from the photocathode. An electron multiplier for multiplying the photoelectrons
該光電面に対応して該側管の内側に設けられ、 該電子増倍部から放出 される電子を受けるアノード電極と、  An anode electrode provided inside the side tube corresponding to the photocathode and receiving electrons emitted from the electron multiplier;
を備え、  With
該電子増倍部は、  The electron multiplier is
該側管の内側に設けられ、 該光電面から放出された光電子が入射する と増倍して二次電子を放出する第 1段ダイノードと、  A first-stage dynode provided inside the side tube and multiplying to emit secondary electrons when photoelectrons emitted from the photoelectric surface enter;
該側管の内側に、 該第 1段ダイノードと該軸方向において略同一位置 に配置され、 該第 1段ダイノ一ドから放出された二次電子が入射すると さらに増倍して二次電子を放出する第 2段ダイノードと、  Inside the side tube, it is arranged at substantially the same position as the first-stage dynode in the axial direction, and when secondary electrons emitted from the first-stage dynode enter, are further multiplied to generate secondary electrons. A second stage dynode that emits,
該側管の内側に、 該第 1段ダイノードおよぴ該第 2段ダイノードより 該管軸方向における下部に設けられ、 該第 2段ダイノードから放出され た二次電子が入射すると次々に増倍して二次電子を放出する第 3段ダイ ノード以下の複数段のダイノードと、  Inside the side tube, provided below the first stage dynode and the second stage dynode in the axial direction of the tube, multiplying sequentially when secondary electrons emitted from the second stage dynode enter. Dynodes below the third dynode that emit secondary electrons
該第 1段ダイノ一ド下端側に設けられ該第 1段ダイノ一ドの下端より も該光電面側に延びる第 1のつい立と、 該第 3段ダイノードを該第 2段 ダイノードに望ませる第 1の開口部と、 該第 1段ダイノードと該第 3段 ダイノードとの間の第 2の開口部とを備え該第 2段ダイノ一ドと該第 3 段ダイノードとの間に備えられた平板と、 該第 1の開口部の第 2段ダイ ノード下端側に設けられ、 該第 2段ダイノードの下端よりも該光電面側 に延びる第 2のつい立とを備えた収束電極と、 A first screen provided at a lower end side of the first stage dynode and extending to the photocathode side from a lower end of the first stage dynode; and the third dynode is desired to the second dynode. A first opening, and a second opening between the first dynode and the third dynode, provided between the second dynode and the third dynode. A flat plate and a second stage die of the first opening A focusing electrode provided at the lower end of the node, the second dynode extending from the lower end of the second dynode toward the photocathode;
を有することを特徴とする光電子増倍管。 A photomultiplier tube comprising:
4 . 該収束電極は、 該第 2段ダイノードよりも高く、 該第 3段ダイノ 一ド以下の電位を与えられることを特徴とする請求項 1乃至 3のいずれ か一項に記載の光電子増倍管。  4. The photomultiplier according to any one of claims 1 to 3, wherein the focusing electrode is provided with a potential higher than the second-stage dynode and equal to or lower than the third-stage dynode. tube.
5 . ガラス製の入射面板と、  5. Glass entrance plate,
該入射面板の一つの側の面に接続され、 該入射面版に略垂直な管軸に 沿って延びるガラス製の中空の側管と、  A hollow glass side tube connected to a surface on one side of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate;
該入射面板の該一つの側の面のうち該側管の内側に位置した領域に形 成され、 該入射面板に入射した光に応じた光電子を放出する光電面と、 該光電面から放出された光電子を増倍する電子増倍部と、  A photocathode formed in an area of the one side surface of the incident face plate located inside the side tube, for emitting photoelectrons corresponding to light incident on the incident face plate; and a photocathode emitted from the photocathode. An electron multiplier for multiplying the photoelectrons
該光電面に対応して該側管の内側に設けられ、 該電子増倍部から放出 される電子を受けるァノード電極と、  An anode electrode provided inside the side tube corresponding to the photoelectric surface and receiving electrons emitted from the electron multiplier;
を備え、  With
該電子増倍部は、  The electron multiplier is
該側管の内側に設けられ、 該光電面から放出された光電子が入射する と増倍して二次電子を放出する第 1段ダイノードと、  A first-stage dynode provided inside the side tube and multiplying to emit secondary electrons when photoelectrons emitted from the photoelectric surface enter;
該側管の内側に、 該第 1段ダイノ一ドと該軸方向において略同一位置 に配置され、 該第 1段ダイノードから放出された二次電子が入射すると さらに増倍して二次電子を放出する第 2段ダイノードと、  Inside the side tube, it is arranged at substantially the same position as the first stage dynode in the axial direction, and when secondary electrons emitted from the first stage dynode are incident, they are further multiplied to generate secondary electrons. A second stage dynode that emits,
該側管の内側に、 該第 1段ダイノードおよぴ該第 2段ダイノードょり 該管軸方向における下部に設けられ、 該第 2段ダイノードから放出され た二次電子が入射すると次々に増倍して二次電子を放出する第 3段ダイ ノード以下の複数段のダイノードと、  Inside the side tube, the first stage dynode and the second stage dynode are provided at a lower part in the tube axis direction, and when the secondary electrons emitted from the second stage dynode enter, they increase one after another. A multi-stage dynode below the third dynode that doubles and emits secondary electrons;
該第 1段ダイノードの下端側で、 かつ該第 3段ダイノードの上側に設 けられる第 1の収束電極と、 At the lower end of the first stage dynode and above the third stage dynode A first focusing electrode that can be
該第 2段ダイノードの下端側で、 かつ該第 3段ダイノードの上側に設 けられる第 2の収束電極と、  A second focusing electrode provided at a lower end of the second dynode and above the third dynode;
を夫々備え、 該第 2段ダイノ一ドで增倍された電子は該第 1の収束電 極と該第 2の収束電極との間の空間を通過して該第 3段ダイノ一ドに入 射することを特徴とする光電子増倍管。  And the electron multiplied by 增 in the second stage node passes through the space between the first focusing electrode and the second focusing electrode and enters the third stage node. A photomultiplier tube characterized by emitting light.
6 . 該第 1の収束電極と、 該第 2の収束電極とは同一部材で形成され ていることを特徴とする請求項 5に記載の光電子増倍管。  6. The photomultiplier tube according to claim 5, wherein the first focusing electrode and the second focusing electrode are formed of the same member.
PCT/JP2004/003855 2004-03-22 2004-03-22 Photomultiplier WO2005091333A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/003855 WO2005091333A1 (en) 2004-03-22 2004-03-22 Photomultiplier
JP2006511105A JPWO2005091333A1 (en) 2004-03-22 2004-03-22 Photomultiplier tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003855 WO2005091333A1 (en) 2004-03-22 2004-03-22 Photomultiplier

Publications (1)

Publication Number Publication Date
WO2005091333A1 true WO2005091333A1 (en) 2005-09-29

Family

ID=34993959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003855 WO2005091333A1 (en) 2004-03-22 2004-03-22 Photomultiplier

Country Status (2)

Country Link
JP (1) JPWO2005091333A1 (en)
WO (1) WO2005091333A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449834B2 (en) 2006-10-16 2008-11-11 Hamamatsu Photonics K.K. Photomultiplier having multiple dynode arrays with corresponding insulating support member
US7659666B2 (en) 2006-10-16 2010-02-09 Hamamatsu Photonics K.K. Photomultiplier
US7821203B2 (en) 2006-10-16 2010-10-26 Hamamatsu Photonics K.K. Photomultiplier
US7990064B2 (en) 2006-10-16 2011-08-02 Hamamatsu Photonics K.K. Photomultiplier
CN110189977A (en) * 2018-02-22 2019-08-30 浜松光子学株式会社 Ion detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150876A (en) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk Photomultiplier and electron multiplier
JPH07192686A (en) * 1993-11-09 1995-07-28 Philips Electron Nv Photoelectron multiplier
JPH07245078A (en) * 1994-03-07 1995-09-19 Hamamatsu Photonics Kk Photomultiplier
JPH0817389A (en) * 1994-06-28 1996-01-19 Hamamatsu Photonics Kk Electron tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150876A (en) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk Photomultiplier and electron multiplier
JPH07192686A (en) * 1993-11-09 1995-07-28 Philips Electron Nv Photoelectron multiplier
JPH07245078A (en) * 1994-03-07 1995-09-19 Hamamatsu Photonics Kk Photomultiplier
JPH0817389A (en) * 1994-06-28 1996-01-19 Hamamatsu Photonics Kk Electron tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449834B2 (en) 2006-10-16 2008-11-11 Hamamatsu Photonics K.K. Photomultiplier having multiple dynode arrays with corresponding insulating support member
US7659666B2 (en) 2006-10-16 2010-02-09 Hamamatsu Photonics K.K. Photomultiplier
US7821203B2 (en) 2006-10-16 2010-10-26 Hamamatsu Photonics K.K. Photomultiplier
US7990064B2 (en) 2006-10-16 2011-08-02 Hamamatsu Photonics K.K. Photomultiplier
CN110189977A (en) * 2018-02-22 2019-08-30 浜松光子学株式会社 Ion detector

Also Published As

Publication number Publication date
JPWO2005091333A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP3466712B2 (en) Electron tube
JP3598173B2 (en) Electron multiplier and photomultiplier tube
US8507838B2 (en) Microstructure photomultiplier assembly
JP4640881B2 (en) Photomultiplier tube
US5410211A (en) Electron tube with an electron multiplier having a plurality of stages of dynodes
US5363014A (en) Photomultiplier
JP3640464B2 (en) Electron multiplier and photomultiplier tube
WO1999066534A1 (en) Electron tube
JP2925020B2 (en) Photomultiplier tube
US7064485B2 (en) Photomultiplier tube having focusing electrodes with apertures and screens
WO2005091333A1 (en) Photomultiplier
US4980604A (en) Sheet-type dynode electron multiplier and photomultiplier tube comprising such dynodes
WO2005091332A1 (en) Multianode electron multiplier
WO2007099960A1 (en) Photomultiplier and radiation detecting apparatus
US7115854B1 (en) Photomultiplier and photodetector including the same
JP2005011592A (en) Electron multiplier
JP4173134B2 (en) Photomultiplier tube and method of using the same
JPS59108254A (en) Photomultiplier tube
US7489077B2 (en) Multi-anode type photomultiplier tube
WO1998057353A1 (en) Electron multiplier and photomultiplier
JPS5923609B2 (en) Secondary electron multiplier
JP4249548B2 (en) Electron multiplier
JP2005243554A (en) Photomultiplier tube
JP5497331B2 (en) Photomultiplier tube
JPH09320511A (en) Electron multiplier and photomultiplier tube

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511105

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase