WO2003098658A1 - Photomultiplier tube and its using method - Google Patents

Photomultiplier tube and its using method Download PDF

Info

Publication number
WO2003098658A1
WO2003098658A1 PCT/JP2003/006075 JP0306075W WO03098658A1 WO 2003098658 A1 WO2003098658 A1 WO 2003098658A1 JP 0306075 W JP0306075 W JP 0306075W WO 03098658 A1 WO03098658 A1 WO 03098658A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
potential
dynode
final
channel
Prior art date
Application number
PCT/JP2003/006075
Other languages
French (fr)
Japanese (ja)
Inventor
Hisaki Kato
Hideto Kawai
Tsuyoshi Fujimori
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU2003231505A priority Critical patent/AU2003231505A1/en
Priority to JP2004506058A priority patent/JP4173134B2/en
Publication of WO2003098658A1 publication Critical patent/WO2003098658A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/045Position sensitive electron multipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/12Anode arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents

Definitions

  • the present invention relates to a photomultiplier tube and a method of using the same.
  • Japanese Patent Application Laid-Open No. HEI 3-180725 proposes a multi-pole detection node structure.
  • this multi-pole detection anode structure a plurality of anodes are provided on an insulating substrate, and a split electrode is provided between adjacent anodes.
  • the split electrode is effectively at the same potential as the anode or at a potential higher than the anode potential, and captures electrons arriving between the anodes. Therefore, it is possible to prevent the electron from being incident on the insulator region between the anodes and accumulating the negative charge.
  • This publication states that the potential of the split electrode may be temporarily lower than the anode potential or may be slightly lower continuously if the electrons arriving between the anodes can be captured by the split electrode. Have been.
  • FIG. 1 a multi-anode type photomultiplier tube as shown in FIG. 1 has been conventionally known.
  • a photoelectric surface 103a is formed on the inner surface of the light receiving surface plate 103.
  • the focusing electrode 113 is arranged to face the photocathode 103a.
  • a stacked electron multiplier 109 in which a plurality of dynodes 108 are stacked.
  • a multi-pole type anode 112 is provided below the electron multiplication unit 109.
  • the anode 1 1 2 is composed of a plurality of anode pieces 1 2 1 It is arranged corresponding to the number of channels.
  • the electron multiplier 109 has a plurality of channels arranged in a one-dimensional array. That is, in each stage of the dynode 108, a plurality of secondary electron emitting pieces 124 are arranged one-dimensionally in a parallel manner in the X-axis direction. For this reason, also in the anode 112, a plurality of anode pieces 121 are arranged one-dimensionally in a linear manner. Specifically, for example, as shown in FIG. 2 (A) and FIG. 2 (B), the anode piece 1 21 is placed on the anode substrate 120 in parallel to the X-axis direction. They are linearly arranged in a dimension.
  • a plurality of channels are arranged in a two-dimensional matrix shape in the electron multiplying unit 109, that is, a plurality of secondary electron emitting pieces 124 are two-dimensionally arranged in the dynodes 108 of each stage.
  • a plurality of node pieces 121 are arranged in a two-dimensional matrix form also in the anode 112.
  • a plurality of node pieces 1 2 1 are arranged in a two-dimensional matrix.
  • the conventional photomultiplier tube 100 having the above configuration, when light enters the light receiving surface plate 103, electrons are emitted from the photocathode 103a, and the electrons are channeled by the focusing electrode 113. The convergence is performed every time, and multi-stage multiplication is performed for each channel by a plurality of dynodes 108. The electrons multiplied for each channel are collected by the corresponding anode node 121, thereby obtaining an output for each channel.
  • the electron multiplying unit 109 has a stacked channel dynode structure, electrons can be multiply multiplied for each channel. Therefore, the electrons multiplied by the electron multiplying unit 109 rarely reach the anode substrate 120 between the adjacent anode pieces 121. Disclosure of the invention
  • the present inventors have considered the electrons emitted from the electron multiplier 109.
  • the electrons incident on the anode piece 1 2 1 further emit secondary electrons from the anode piece 1 2 1, and the secondary electrons without going to the adjacent anode piece 1 2 1 cause crosstalk.
  • the electrons incident on the anode piece 1 2 1 further emit secondary electrons from the anode piece 1 2 1, and the secondary electrons without going to the adjacent anode piece 1 2 1 cause crosstalk.
  • an object of the present invention is to provide a photomultiplier tube and a method of using the same, which solve the above problems, prevent crosstalk at the anode, and improve the resolution of energy for each channel.
  • the present invention provides a photocathode which emits electrons when light is incident thereon, and a plurality of dynodes, wherein the plurality of dynodes are arranged in a first stage from the photocathode side. From the first stage to the last stage, the dynodes in each stage define a plurality of channels, and multiply multiply the electrons emitted from the photocathode for each corresponding channel by a multi-stage channel dynode unit.
  • a predetermined anode potential applied to each anode electrode and a predetermined anode potential applied to the final stage dynode are provided between two adjacent node electrodes.
  • a voltage is applied to the photocathode, the first to final dynodes, and the anode such that the potential increases in order from the photocathode toward the anode. Is done. Therefore, the anode potential applied to the anode electrode is higher than the final dynode potential applied to the final dynode.
  • the anode potential applied to the anode electrode is higher than the final dynode potential applied to the final dynode.
  • a conductive partition member is provided between each two adjacent anode electrodes so as to partition each two adjacent channels. Then, a potential between the anode potential and the final dynode potential, that is, a potential higher than the final dynode potential and lower than the anode potential is applied to the conductive partition member. For this reason, electrons emitted from an arbitrary channel of the final dynode can be made incident only on the corresponding anode electrode, and from the anode electrode according to the incidence of electrons on the corresponding anode electrode. Emission of secondary electrons can be suppressed. Therefore, crosstalk at the anode can be prevented, and the energy resolution of each channel can be improved.
  • each anode electrode two conductive partition members to which a potential higher than the final dynode potential is applied are arranged.
  • electrons emitted from any channel of the final dynode are electrically attracted to the two conductive partition members arranged on both sides of the corresponding anode electrode, and the corresponding electric potential of the higher potential is further increased. It is led to the anode electrode. This ensures that the electrons from each channel respond To the anode electrode. Therefore, crosstalk between the anode electrodes can be prevented, and the resolution of each channel can be improved.
  • the potential of the conductive partition member is lower than the anode potential, when the electrons reach the anode electrode, the electrons are less likely to be emitted from the anode electrode. Even if electrons are emitted from the anode electrode, the emitted electrons are electrically pushed back by the low potential of these two conductive partition members disposed on both sides of the anode electrode. Therefore, the emitted electrons cannot reach the anode electrode adjacent to the conductive partition member ⁇ and return to the original anode electrode.
  • the emission of electrons from the anode electrode is suppressed, that is, the electrons are hardly emitted from the anode electrode, and even if they are emitted, the emitted electrons are surely returned to the anode electrode. Can be. Therefore, crosstalk between the anode electrodes can be reliably prevented.
  • each conductive partition member has a size that shields between adjacent anode electrodes so that electrons emitted from the anode electrode cannot enter the adjacent anode electrode.
  • the height of the conductive partition member extending toward the final dynode is higher than the height of each anode electrode extending toward the final dynode, and the adjacent anode electrode cannot be seen from each anode electrode. It would be good if each anode electrode could not directly look directly at the adjacent anode electrode. Even if electrons are emitted from the anode electrode, it is possible to prevent the electrons from being incident on the adjacent anode electrode.
  • each conductive partition member is connected to each channel of the final stage dynode so that electrons emitted from each channel of the final stage dynode cannot enter the adjacent anode electrode. It is preferable that the size is such that it can shield the anode electrode adjacent to the corresponding anode electrode.
  • the height of the conductive partition member extending toward the final dynode may be such that each channel of the final dynode cannot see through the anode electrode next to the corresponding anode electrode, that is, directly on a straight line. The size should be such that it cannot be desired.
  • each die node has a plurality of secondary electron emitting pieces, and a height force extending toward the last-stage dynode of the conductive partition member is such that the upper end portion of the conductive partition member is the lowest.
  • the size should be close to the lower end of the corresponding secondary electron emission piece of the final stage dynode, so that the anode electrode of the adjacent channel cannot be seen through each channel of the final stage dynode. Electrons emitted from each channel of the final dynode can be prevented from entering the anode electrode of the next channel.
  • the value of the potential to be applied to the conductive partition member is an intermediate value between the value of the anode potential and the value of the final dynode potential, and the electrons emitted from each channel of the final dynode correspond to the corresponding anode. It is preferable that the value is within a range that can appropriately enter the single electrode and that can prevent the electron from directly or indirectly entering the conductive partition member located on both sides of the anode electrode.
  • the electrons emitted from the final dynode are not directed to the corresponding anode electrode but to one of the conductive partition members located on both sides of the anode electrode. It is directly incident and the output of the anode electrode decreases.
  • the secondary electrons are emitted from the anode electrode with the incidence, and the secondary electrons are electrically transferred to the conductive partition member having a potential higher than the anode potential. Attracted and enter the conductive partition I shoot. Also in this case, the output of the anode electrode decreases.
  • the electrons emitted from the final stage dynode will still be conductive. There is a possibility that the light is directly incident on the partition member and the output of the anode electrode is reduced. Also, even if electrons emitted from the final dynode enter the anode electrode correctly, the potential difference between the anode potential and the potential of the conductive partition member is smaller than the energy (emission speed) of secondary electrons generated at the anode electrode. Due to its small size, the emission of secondary electrons cannot be suppressed.
  • the difference between the potential applied to the conductive partition member and the potential of the final dynode is large enough to allow electrons emitted from each channel of the final dynode to appropriately enter the corresponding anode electrode.
  • the difference between the potential applied to the partition member and the anode potential is such that electrons emitted from each channel of the final dynode enter the conductive partition members located on both sides of the corresponding anode electrode, and It is preferable that the electrode has a size that prevents secondary electrons generated at the anode electrode from entering the adjacent anode electrode of the corresponding anode electrode.
  • the potential to be applied to the conductive partition member is higher than the final stage dynode potential, lower than the anode potential, and the difference between the anode potential and the anode potential is about 5% or more of the difference between the anode potential and the final stage dynode potential.
  • the potential is such that it is within about 70% or less.
  • the conductive partition member has a negative potential, and its absolute value is the absolute value of the potential of the final dynode.
  • a potential within a range of about 5% or more and about 70% or less of the value may be applied.
  • a potential is applied such that the difference between the potential applied to the conductive partition member and the anode potential is about half of the difference between the anode potential and the final-stage dynode potential, that is, about 50%. good.
  • the anode further includes an anode substrate made of a ceramic substrate, and a plurality of anode electrodes are provided on the anode substrate in a one-to-one correspondence with a plurality of channels.
  • the shielding electrode further includes a frame-shaped member, and the plurality of conductive partition members are formed integrally with the frame-shaped member. In this case, simply placing the shielding electrode on the anode substrate such that each conductive partition member is located between two corresponding adjacent anode electrodes, the anode electrode and the conductive partition member can be easily connected to each other. Can be arranged at an appropriate position.
  • each conductive partition member is provided between the corresponding two adjacent anode electrodes in the one-dimensional direction.
  • a plurality of channels are arranged in a two-dimensional matrix
  • a plurality of anode electrodes are also arranged in a two-dimensional matrix. Therefore, each conductive partition member is provided between two corresponding adjacent anode electrodes in each of the two-dimensional directions.
  • the photomultiplier tube of the present invention is provided between the anode and the last-stage dynode, has a plurality of converging pieces, and each two adjacent converging pieces have one opening therebetween.
  • the electrons emitted from each channel of the final stage dynode are converged at the corresponding opening and guided to the corresponding anode electrode, thereby emitting from the final stage dynode.
  • a potential is applied to the focusing electrode to form an electron lens for focusing electrons emitted from each channel of the final dynode and guiding the electrons to the corresponding anode electrode.
  • a potential is applied to the focusing electrode to form an electron lens for focusing electrons emitted from each channel of the final dynode and guiding the electrons to the corresponding anode electrode.
  • substantially the same potential as the final-stage dynode potential is applied to the focusing electrode.
  • the intermediate potential between the dynode potential and the anode potential at the final stage is applied to the conductive partition member, the emission of electrons from the anode electrode can be reliably suppressed, and the crosstalk is reduced. Further, it is possible to surely prevent the occurrence.
  • the photomultiplier tube of the present invention is provided between the photocathode and the stacked-type channel dynode part, has a plurality of different converging pieces, and each of two adjacent converging pieces is adjacent to each other.
  • a plurality of openings are defined by defining one opening, and electrons emitted from an arbitrary position on the photocathode are converged at the corresponding opening to correspond to the corresponding one of the stacked channel dynodes.
  • substantially the same potential as that of the photocathode is applied to the other focusing electrode.
  • another focusing electrode for focusing electrons for each channel is provided between the photocathode and the stacked channel dynode portion, electrons emitted from an arbitrary position on the photocathode can be more reliably. , Can be led to the corresponding channel of the stacked channel dynode.
  • the photomultiplier tube of the present invention further includes a light receiving surface plate and a wall portion formed of, for example, a side tube and a stem for forming a vacuum region together with the light receiving surface plate.
  • the photocathode is formed inside the vacuum region on the inner surface of the light-receiving surface plate, and the stacked channel dynode part, the anode, the shielding electrode, and the focusing electrode are provided inside the vacuum region. For this reason, when light passes through the light receiving surface plate and enters an arbitrary position on the photoelectric surface, electrons are emitted from the position on the photoelectric surface. The electrons are multiplied in the corresponding channel to generate an output signal of the corresponding channel.
  • a light-absorbing glass partition is provided in the light-receiving surface plate corresponding to each channel, and a light-collecting device corresponding to each channel is provided on the outer surface of the light-receiving surface plate.
  • the light is applied to the surface of each secondary electron emission piece that defines each channel of the first and second dynodes from the photocathode side of the multi-stage dynode.
  • Performing a reflection process further increasing the length of each converging piece that defines each channel of the other converging electrode, and setting the respective channels of the die nodes located at the first and second stages.
  • the present invention has a photoelectric surface that emits electrons by the incidence of light, and a plurality of dynodes, wherein the plurality of dynodes are arranged from the first surface to the last stage from the photoelectric surface side.
  • the dynos are arranged in this order,
  • a plurality of channels defines a plurality of channels, and a stacked channel dynode section for multiplying the electrons emitted from the photocathode for each corresponding channel in multiple stages, and a plurality of anode electrodes are opposed to the final stage dynode.
  • an output signal for each channel is transmitted based on the electrons multiplied by the plurality of channels in the plurality of channels of the stacked channel dynode unit.
  • a shielding electrode provided between a pair of adjacent anode electrodes, each of which includes a plurality of conductive partition members facing the final stage of the dynode.
  • a predetermined anode potential is applied to each anode electrode, a predetermined final dynode potential is applied to the final dynode, and each of the conductive partition members is provided.
  • a method of using a photomultiplier tube characterized in that a potential between the anode potential and the final stage node potential is applied.
  • the photocathode and the first to final dynodes and the anode are connected to each other so that the potential increases gradually from the photocathode to the anode.
  • a voltage is applied.
  • the potential applied to the conductive partition member is higher than the final dynode potential and lower than the anode potential. For this reason, electrons emitted from an arbitrary channel of the final dynode are made incident on the corresponding anode electrode, and secondary electrons are emitted from the anode electrode in response to the incidence of electrons on the corresponding anode electrode. Can be suppressed from being released. Therefore, it is possible to prevent crosstalk at the node and to improve the resolution of the energy storage for each channel.
  • the difference between the potential applied to the conductive partition member and the potential of the final dynode is a magnitude that allows electrons emitted from each channel of the final dynode to appropriately enter the corresponding anode electrode.
  • the difference between the potential applied to the conductive partition member and the anode potential indicates that electrons emitted from each channel of the final stage dynode enter the conductive partition member located on both sides of the corresponding anode electrode.
  • FIG. 1 is a cross-sectional view of a conventional photomultiplier tube.
  • FIG. 2 (A) is a plan view showing an example of a state in which a plurality of anode pieces are arranged on a substrate in the photomultiplier tube of FIG. 1, as viewed from the electron incident direction.
  • FIG. 2 (B) is a cross-sectional view taken along the line IIB_IBB ′ in FIG. 2 (A).
  • FIG. 3A is a plan view showing an example of a state in which a plurality of anode pieces are arranged on a substrate in a modified example of the photomultiplier tube in FIG. 1, as viewed from the electron incident direction. is there.
  • FIG. 3 (B) is a cross-sectional view taken along a line IIIB-IIIB 'in FIG. 3 (A).
  • FIG. 4 is a cross-sectional view of the photomultiplier according to the first embodiment of the present invention.
  • FIG. 5 (A) is a plan view of the photomultiplier tube of FIG. 4 showing a state in which a shielding electrode and a plurality of anode pieces are arranged on a ceramic substrate, as viewed from the electron incident direction. .
  • FIG. 5 (B) is a sectional view taken along line VB-VB ′ in FIG. 5 (A).
  • FIG. 6 is a graph showing a change in anode output when the potential supplied to the shielding electrode in the photomultiplier tube of FIG. 4 was changed.
  • FIG. 7 (A) is a plan view of the modified example of the photomultiplier tube of FIG. 4, showing a state where the shield electrode and a plurality of anode pieces are arranged on the ceramic substrate, as viewed from the electron incident direction.
  • FIG. 7 (A) is a plan view of the modified example of the photomultiplier tube of FIG. 4, showing a state where the shield electrode and a plurality of anode pieces are arranged on the ceramic substrate, as viewed from the electron incident direction.
  • FIG. 7 (B) is a cross-sectional view taken along the line VIIB-VIIB ′ in FIG. 7 (A).
  • FIG. 8 is a sectional view of a photomultiplier according to a second embodiment of the present invention.
  • a photomultiplier tube according to a first embodiment of the present invention and a method of using the same will be described with reference to FIGS. 4 to 7 (B).
  • the photomultiplier tube 1 has a substantially rectangular tube-shaped metal side tube 2.
  • the direction of the metal tube 2 is defined as the Z axis.
  • the axis perpendicular to the Z axis and parallel to the plane of FIG. 4 is the X axis.
  • An axis perpendicular to the X axis and the Z axis and perpendicular to the plane of FIG. 4 is defined as the Y axis.
  • a light-receiving surface plate 3 made of glass is fixed to an open end on one side in the tube axis direction of the side tube 2.
  • a photoelectric surface 3a for converting light into electrons is formed on the inner surface of the light receiving surface plate 3.
  • Photocathode 3 a are those formed by reacting Al force Li metal vapor ⁇ Nchimon which had been previously deposited on the light receiving plate 3 c also the other side of the side tube 2 tube axial opening At the end, a flange portion 2a is formed.
  • the periphery of the metal stem 4 is connected to the flange 2a by resistance welding. It is fixed by contact.
  • the sealed vessel 5 is constituted by the side tube 2, the light receiving face plate 3, and the stem 4.
  • a metal exhaust pipe 6 is fixed to the center of the stem 4.
  • the exhaust pipe 6 is used to evacuate the inside of the sealed container 5 by a vacuum pump (not shown) after the assembling work of the photomultiplier tube 1 and to make the inside of the sealed vessel 5 into a vacuum state. It is also used as a tube for introducing metal vapor into the sealed container 5 during formation.
  • a plurality of stem pins 10 are provided to penetrate stem 4.
  • the plurality of stem pins 10 include a plurality of dynode stem pins 10, a plurality of anode pin stem pins, and one shield electrode stem pin.
  • the electron multiplier 7 has an electron multiplier 9 in which ten (10) dynodes 8 are stacked.
  • the dynode 8 is made of, for example, stainless steel.
  • the electron multiplier 7 is supported in the sealed container 5 by a plurality of stem pins 10 provided on the stem 4. Each dynode 8 is electrically connected to the corresponding dynode stem pin 10.
  • the electron multiplier 7 has a flat first focusing electrode 13 arranged between the photocathode 3 a and the electron multiplier 9.
  • the first focusing electrode 13 is also made of, for example, stainless steel.
  • the first focusing electrode 13 has a plurality of linear focusing pieces 23 arranged in parallel with each other.
  • a slit-like opening 13a is formed between adjacent converging pieces 23. Therefore, the plurality of openings 13a force S are linearly arranged in one direction (a direction parallel to the X axis).
  • the electron multiplier 9 is a stacked channel dynode in which a plurality of dynodes 8 are stacked.
  • the electron multiplier 9 has dynodes 8 (dynode D vl to dynode D yl O) of 10 stages in total and the photocathode 3 a
  • the layers are stacked in this order from the side to the node 12 described later.
  • each stage of dynode 8 (dynode D yi (where i is an integer of 1 or more and 10 or less)) is composed of a plurality of linear secondary electron emitting pieces 24 arranged in parallel with each other.
  • a slit-like electron multiplying hole 8a is formed between the adjacent secondary electron emitting pieces 24. Therefore, a plurality of dynodes 8 (D yi) of each stage have The same number of slit-like electron multiplying holes 8 in section 13a) are arranged linearly in one direction (direction parallel to the X axis).
  • Each electron multiplying path L is defined by arranging the electron multiplying holes 8a of the dynodes 8 (Dyl to DylO) in all stages in a stepwise direction.
  • Each electron multiplying path L and each opening 13 a of the focusing electrode plate 13 are in one-to-one correspondence, and one channel A is defined. Therefore, a plurality of channels A are defined by the plurality of openings 13 a of the converging electrode plate 13 and the plurality of electron multiplying holes 8 a in each stage of the electron multiplier 9. These multiple channels A are linearly arranged in one direction (a direction parallel to the X axis).
  • a multi-pole type flat node 12 is arranged so as to face the final stage dynode 8 (dynode D y 10).
  • this anode 12 as shown in FIGS. 4, 5 (A), and 5 (B), a plurality of rod-shaped anode nodes 21 are connected to a plurality of final dynodes 8 (D y 10). It is arranged on the ceramic substrate 20 so as to correspond to the channel A on a one-to-one basis.
  • the anode 12 has a reflow structure in which the plurality of anode pieces 21 are linearly arranged in the negative direction (the direction parallel to the X axis).
  • Each anode piece 21 is made of, for example, stainless steel (SUS). Each anode piece 21 is connected to a corresponding anode stem pin 10. With such a configuration, individual outputs can be extracted to the outside via the anode stem pins 10. Has become.
  • a flat shielding electrode 15 is formed on the ceramic substrate 20 of the anode 12.
  • the shielding electrode 15 is made of a conductive material.
  • the shielding electrode 15 is made of stainless steel.
  • the shielding electrode 15 may be made of a metal such as nickel, iron nickel (alloy), and aluminum.
  • the shielding electrode 15 is composed of a frame plate 22 and a plurality of linear conductive partition members 25 formed integrally with the frame plate 22 and arranged in parallel with each other. .
  • a slit-like opening 15a is formed between adjacent conductive partition members 25.
  • the shielding electrode 15 having such a configuration is oriented such that the plurality of conductive partition members 25 and the plurality of openings 15 a are arranged in a direction in the direction (parallel to the X axis). In addition, they are arranged on the ceramic substrate 20 such that one anode piece 21 is located in each opening 15a. For this reason, each conductive partition member 25 is located between the corresponding two adjacent anode pieces 21 so as to partition adjacent channels A.
  • each conductive partition member 25 is provided between adjacent anode pieces 21 so that electrons emitted from the anode piece 21 cannot enter the adjacent anode piece 21. It is shaped and sized to shield. Specifically, the sectional height of the conductive partition member 25 in the tube axis direction (Z-axis direction) (the direction of the corresponding secondary electron emission piece 24 at the final stage dynode 8 (dynode D y10)) The cross-sectional height of each node piece 21 in the tube axis direction (the cross-sectional height of the final dynode 8 (dynode D y10) extending in the direction of the corresponding channel A) zl It is higher than 2.
  • each anode piece 21 cannot see through the adjacent anode piece 2 1, that is, each anode piece 2 1 Cannot be directly desired in a straight line. Therefore, even if secondary electrons are emitted from the anode piece 21, it is possible to prevent the secondary electrons from being incident on the adjacent anode piece 21.
  • each conductive partition member 25 is adjacent to the anode piece 21 to which the electrons emitted from each channel A of the final dynode 8 (dynode Dy10) correspond.
  • the shape and size are such that each channel A of the last dynode 8 and the anode piece 21 adjacent to the corresponding anode piece 21 are shielded so that the input cannot be input to the anode piece 21 of the final stage.
  • each The channel A adjacent to the corresponding channel A of the last dynode 8 from the anode piece 21 cannot be seen.
  • the anode piece 21 of the adjacent channel A cannot be seen from each channel A of the last dynode 8. That is, each channel A of the final stage dynode 8 cannot directly desire the anode piece 21 of the adjacent channel A on a straight line. For this reason, it is possible to prevent electrons emitted from each channel A of the final dynode 8 (Dy10) from being incident on the anode node 21 of the adjacent channel A.
  • each of the conductive partition members 25 having the above-described cross-sectional height z1 the electrons from each channel A of the final-stage dynode 8 are input to the anode piece 21 of the adjacent channel.
  • each anode piece 21 has a rod shape with a circular cross section, and the diameter of the cross section (that is, the height z 2 in the tube axis direction) is 0.35 mm.
  • each conductive partition member 25 has a rod shape having a rectangular cross section. And its cross-sectional height (that is, height in the tube axis direction) z 1 is 0.5 ram.
  • the distance between the upper end of each conductive partition member 25 and the lower end of the secondary electron emission piece 24 of the final stage dynode 8 (Dy10) is 0.15 mm.
  • each node piece 21 does not have to have a circular cross section as described above.
  • each anode piece 21 can have any cross-sectional shape, such as a rectangular cross-section as shown in FIG. 2 (B).
  • each of the conductive partition members 25 is not limited to the above-described rectangular cross-section, but may have any cross-sectional shape.
  • the electron multiplier 7 has a plurality of channels A linearly arranged.
  • the electron multiplier 9, the anode 12, and the shield electrode 15 in the electron multiplier 7 are provided with predetermined voltage from a voltage application device 60 composed of a bleeder circuit (not shown) via a stem pin 10. Voltage is supplied.
  • the same potential voltage (for example, a negative potential) is applied to the photocathode 3 a and the focusing electrode plate 13.
  • the dynodes 8 and anodes 12 of all 10 stages of the electron multiplier 9 are connected from the first stage closest to the photocathode 3 a to the 10th stage closest to the anode 12, and further to the anode 12.
  • the voltage is applied so that the potential gradually increases.
  • the dynodes 8 (Dyl to Dyl) in the first to tenth stages are used.
  • the first stage dynode 8 (D y 1) has about 1 72.3 Porto
  • the second stage dynode 8 (D y 2) has about 1 64.6 Porto
  • the final stage (stage 1) Dynode 8 (D y10) is applied with approximately 12.7 ports.
  • Four bolts are applied.
  • a plurality of partitions (slits) 26 made of light-absorbing glass are embedded so as to correspond to the plurality of channels A on a one-to-one basis.
  • each partition part 26 is provided at a position corresponding to the focusing piece 23 of the first focusing electrode 13.
  • the inside of the light receiving face plate 3 is partitioned for each channel A by the partitioning part 26, and crosstalk of light in the light receiving face plate 3 is appropriately prevented.
  • the partition 26 is provided with, for example, a colored (for example, black) thin glass sheet, which allows light to be absorbed.
  • a light collecting member 30 is fixed to the outer surface 29 of the light receiving face plate 3a with an adhesive.
  • the light collecting member 30 is for ensuring that external light is incident on each channel A.
  • the light collecting member 30 is composed of a plurality of (that is, the number of channels A) glass light collecting lens portions 32.
  • Each condenser lens section 32 has one convex lens surface 31.
  • the plurality of condenser lens portions 32 are fixed to the outer surface 29 of the light receiving face plate 3a in a state of being arranged in one direction (a direction parallel to the X axis).
  • the condensing member 30 having such a structure can surely make external light incident on the photocathode 3a while condensing light from the outside between the partitions 26 by the convex lens surface 31. Therefore, the light condensing property is enhanced, and at the same time, measures against light crosstalk are ensured.
  • a light guide such as an optical fiber may be used as the light collecting member 30.
  • each converging piece 23 of the first converging electrode 13 functions as an anti-reflection mesh.
  • the secondary of each of the first-stage and second-stage dynodes 8 (Dyl, Dy2) on the photocathode 3a side is used.
  • the electron emission pieces 24 are at positions where they can be seen when viewed from the photocathode 3a side, while the dynodes 8 (Dy3 to Dy10) of the other stages have electron multiplication paths L Cannot be seen from the photocathode 3a side. Therefore, there is a possibility that the light exiting from the photocathode 3a will be incident on each of the secondary electron emitting pieces 24 of the first and second dynodes 8 (Dyl, Dy2).
  • an oxide film (not shown) is also formed on the surface of the secondary electron emission piece 24 of the first and second stage die nodes 8, and the reflection of light at these is eliminated.
  • the unnecessary cross-talk of light is prevented by preventing unnecessary electrons from being emitted from the photocathode 3a due to the reflected light.
  • the focusing piece 23 of the first focusing electrode 13 and the first and second stage dynodes 8 are subjected to light non-reflection treatment by using, for example, black aluminum instead of an oxide film.
  • a light absorbing material may be formed by vapor deposition or the like.
  • each converging piece 23 of the first converging electrode 13 in the tube axis direction is increased, and the upper part of each converging piece 23 is brought close to the photocathode 3a.
  • the position of the next channel in the photocathode 3a cannot be seen from the surface of the secondary electron emission piece 24 of each channel A of the second dynode 8 (Dyl, Dy2). ing. Therefore, the surface of the secondary electron emission piece 24 of each channel A of the first-stage and second-stage die nodes 8 is linearly aligned with the adjacent channel position in the photocathode 3a. You can't want directly above.
  • each converging piece 23 may also be made to approach the first-stage die node 8 (Dy1). good.
  • the light transmitted through the light receiving surface plate 3 is converted into electrons when incident on an arbitrary position on the photocathode 3a, and the electrons are converted into the corresponding channel A Will be incident inside. Even if a part of the light incident on the photocathode 3a exits the photocathode 3a, this light is reflected by the first focusing electrode 13 and the first and second dynodes 8. Also, even if the light is reflected by the first and second dynodes 8, it is blocked by the converging piece 23 of the converging electrode 13 and returns to the channel A adjacent to the photocathode 3a. Is prevented.
  • Electrons converted from light at any position on the photocathode 3a first pass through the corresponding aperture 13a in the first focusing electrode 13 in the corresponding channel A, where they are converged. You. Further, while passing through the corresponding electron multiplying path L in the electron multiplying unit 9, the light is multiplied by all the dynodes 8 in all stages and is emitted from the corresponding channel A of the final dynode 8. The electrons multiplied by the multi-stage and emitted from the corresponding channel A of the final dynode 8 enter the corresponding anode piece 21. As a result, a predetermined output signal that individually indicates the amount of light that has entered the corresponding position of the light receiving face plate 3 is output from the node piece 21 of the predetermined channel A.
  • the electron multiplier 9 is a stacked channel dynode: Most of the electrons emitted from the secondary electron emitting pieces 24 of the final stage die fly on the path toward the corresponding anode piece 21. In addition, a potential between the potential of the anode piece 21 and the potential of the final dynode 8 (Dy 10) is applied to the shield electrode 15, that is, the conductive partition member 25. For this reason, the electrons emitted from the final dynode 8 (Dy 10) are electrically pulled by the conductive partition members 25 provided on both sides of the corresponding anode piece 21, and have a higher potential. It is definitely led to the corresponding node piece 21.
  • the anode piece 21 may emit secondary electrons.
  • secondary electrons are electrically suppressed by the lower-potential conductive partition members 25 provided on both sides of the anode piece 21. Therefore, secondary electrons are hard to be emitted from the anode piece 21. Also, even if released, it cannot reach the conductive partition member 25 or the other anode piece 21 and is returned to the original anode piece 21.
  • the relationship between the potential (shield potential) to be applied to the shield electrode 15, the anode potential, and the final dynode potential will be described in more detail. If the conductive partition member 25 has a higher potential than the anode piece 21, much of the electrons from the final dynode 8 directly enter the conductive partition member 25, and the output of the anode piece 21 is output. The sensitivity decreases.
  • the potential of the conductive partition member 25 is the same as that of the anode piece 21, Alternatively, when the difference from the anode potential is smaller than the potential of the anode piece 21, a part of the electrons from the final-stage dynode 8 (Dy 10) directly enter the conductive partition member 25. As a result, the anode output will be low. Even if the electrons from the final stage dynode 8 properly enter the corresponding anode piece 21, the energy (emission speed) of the secondary electrons generated by the anode piece 21 at the time of this incidence is reduced.
  • the secondary electrons are emitted from the anode piece 21 and the conductive partition member 25 or the adjacent anode is discharged. It is incident on piece 21. Due to such emission of secondary electrons, the output sensitivity of the anode piece 21 decreases. Also, when a secondary electron is incident on the adjacent node piece 21, crosstalk occurs.
  • the electrons from the final dynode 8 (Dy10) are discharged. However, it can be appropriately incident on the corresponding node piece 21.
  • the energy (emission speed) of the secondary electrons generated at the anode piece 21 at the time of the incidence is smaller than the difference between the potential of the conductive partition member 25 and the potential of the anode piece 21, Secondary electrons can be confined to the anode piece 21. That is, secondary electrons are hardly emitted from the anode piece 21, and even if they are emitted, they can be pushed back to the anode piece 21.
  • the voltage to be applied to the conductive partition member 25 (shielding electrode 15)
  • the potential is an intermediate potential between the final dynode potential and the anode potential, and the conductive partition member 25 appropriately transfers the electrons output from each channel A of the final dynode 8 to the corresponding anode node 21.
  • the distance is set so that the electrons can be guided and the electrons emitted from the final dynode 8 or the electrons emitted from the anode piece 21 do not enter the conductive partition member 25.
  • the potential of the shielding electrode 15 may be set so that the difference between the anode potential and the anode potential is within the range of about 5% or more and about 70% or less of the difference between the anode potential and the final dynode potential. preferable.
  • the present inventors conducted an experiment for examining a preferable range of a voltage to be applied to the shielding electrode 15, that is, each conductive partition member 25.
  • the potential (shield potential) of the shield electrode 15 (that is, each conductive partition member 25) is changed between 170 V and 170 V, and how the output of the anode changes. I checked.
  • FIG. 6 is a graph showing a change in anode output obtained as a result of changing the potential of the shielding electrode 15.
  • the positive anode output current indicates that the number of electrons emitted from the anode piece 21 is larger than the number of electrons incident on the anode piece 21 from the last dynode 8.
  • a negative anode output current indicates that electrons entering the anode piece 21 from the final dynode 8 are properly absorbed by the anode piece 21.
  • the voltage of the shielding electrode 15 is about 20 V
  • the maximum output is obtained from the anode piece 21
  • the voltage of the shielding electrode 15 is about 150 V or more and about 15 V. In the following cases, the output within the allowable range (more than 80% of the maximum output) was obtained with the anode piece 21.
  • the electron multiplier 9 when the electron multiplier 9 is provided with a dynode 8 having a 10-stage configuration, 180 ports were applied to the photocathode 3a and OV was applied to the anode 12, and the 1st stage to the 1st stage were applied.
  • the conductive partition member 25 That is, it is preferable that, for example, a potential in a range of about 150 volts or more and about 15 portes or less is applied to the shielding electrode 15 as an intermediate potential between the final dynode 8 and the anode 12. I understood.
  • the photomultiplier tube 1 of the present embodiment has the photocathode 3 a that emits electrons by light incident on the light-receiving surface plate 3, and emits electrons emitted from the photocathode 3 a for each channel.
  • the electron multiplier 9 is a stacked channel dynode, and a plurality of dynodes 8 are arranged in the first stage (D) from the photocathode 3 a side to the anode 12 side. yl) to the final stage (D y Until 10), the dynodes 8 of each stage define a plurality of channels A, and multiply multiply the electrons emitted from the photocathode 3a for each corresponding channel until the order is reached.
  • the anode 12 includes a plurality of anode pieces 21 facing the final stage dynode 8 and corresponding to a plurality of channels A on a one-to-one basis. An output signal for each channel is transmitted based on the electrons multiplied by the number of channels A in multiple stages.
  • the shield electrode 15 provided with the plurality of conductive partition members 25 is located between two adjacent anode pieces 21 corresponding to each conductive partition member 25, and two adjacent anode pieces 21 are provided. It is set up to partition the channel.
  • the conductive partition member 25 is formed such that the adjacent node pieces 21 cannot be seen through each other, and the channel pieces A of the last dynode 8 are adjacent to the corresponding anode pieces 2 1. 1 has a shape and size that cannot be seen through. For this reason, the conductive partition member 25 shields the adjacent anode pieces 21 from each other, and the anode piece 2 adjacent to the corresponding anode piece 21 from each channel of the final stage dynode 8. 1 is shielded.
  • An intermediate potential between the final stage dynode potential and the anode potential is applied to the conductive partition member 25. Therefore, electrons emitted from each channel A of the final dynode 8 are prevented from entering the adjacent anode piece 21 next to the corresponding anode piece 21 and the corresponding anode piece is prevented. It is possible to appropriately guide only to 2 1 and suppress emission of electrons from the corresponding anode piece 21 to the adjacent anode piece 21. Therefore, crosstalk in the anode 12 can be prevented, and the resolution of each channel can be increased.
  • an oxide film is formed on the surface of each focusing piece 23 of the first focusing electrode 13. Since it is formed, reflection of light at each converging piece 23 is prevented, and unnecessary electrons due to reflected light are not emitted from the photocathode 3a. Further, since an oxide film is also formed on the surface of each secondary electron emission piece 24 of the first and second dynodes 8, the first and second stages The reflection of the light at the dynode 8 is prevented so that unnecessary electrons due to the reflected light are not emitted from the photocathode 3a.
  • a light absorbing glass partition 26 is provided in the light receiving surface plate 3 to prevent light crosstalk between channels A in the light receiving surface plate 3.
  • each focusing piece 23 of the first focusing electrode 13 is elongated in the tube axis direction, and each focusing piece 13 of the first focusing electrode 13 is elongated.
  • An oxide film is formed on each of the secondary electron emitting pieces 24 of the piece 23 and the first and second stage dynodes 8 and a condensing lens 32 is provided to suppress crosstalk of light. since the suppress reliably cross-talk between the channels a, Note c thereby improving the resolution of each channel, in the above description, a plurality of channel a are arranged in the form a one-dimensional array in the electronic ⁇ 9 Was. For this reason, also in the anode 12, as shown in FIGS. 5 (A) and 5 (B), a plurality of rod-shaped anode pieces 21 were arranged one-dimensionally in the lower part.
  • a plurality of channels A may be arranged in a two-dimensional matrix.
  • the plurality of secondary electron multipliers 24 may be arranged in a matrix in a two-dimensional direction including both a direction parallel to the X axis and a direction parallel to the Y axis.
  • FIG. 7 (A) and FIG. 7 (B) A two-dimensional arrangement structure as shown in the figure may be used. More specifically, a plurality of substantially square plate-shaped anode pieces 21 are formed on a ceramic substrate 20 in a matrix in a two-dimensional direction including both a direction parallel to the X axis and a direction parallel to the Y axis. Just arrange them. Also in the shield electrode 15, a plurality of conductive partition members 25 may be arranged in a two-dimensional mesh (lattice) shape and connected to the frame plate 22. As a result, a substantially square opening 15a is formed between the adjacent conductive partition members 25. The shielding electrode 15 having such a structure is arranged on the ceramic substrate 20 such that each of the anode pieces 21 is located in the corresponding opening 15a.
  • the height z 1 of each conductive partition member 25 in the tube axis direction is the height Z 2 of the anode piece 21.
  • the height may be increased so that the adjacent anode pieces 21 cannot be seen through each other, and the adjacent anode pieces 21 may be shielded from each other. Even if secondary electrons are emitted from the anode piece 21, it is possible to prevent the secondary electrons from being incident on the adjacent anode piece 21.
  • each conductive partition member 25 in the tube axis direction is increased so that the upper end thereof is close to the lower end of the corresponding secondary electron emission piece 24 of the final dynode 8, so that the final stage It suffices that the channel piece 21 adjacent to the corresponding node piece 21 from each channel A of the dynode 8 cannot be seen through. Since each channel A of the final dynode 8 can shield the adjacent node 21 of the corresponding node 21, the electric power emitted from each channel A of the final dynode 8 can be shielded. It is possible to prevent a child from entering the adjacent node piece 21.
  • both the anode piece 21 and the conductive partition member 25 have a rectangular cross section, but may have any other cross section.
  • a photomultiplier tube according to a second embodiment of the present invention and a method of using the same will be described with reference to FIG.
  • the photomultiplier tube 1 As shown in FIG. 8, the photomultiplier tube 1 according to the present embodiment has a second focusing electrode 17 provided between the last stage (the tenth stage) dynode 8 and the anode 12. Except for this point, it is the same as the photomultiplier tube 1 of the first embodiment described with reference to FIG. 4, FIG. 5 (A), and FIG. 5 (B).
  • the second focusing electrode 17 has a plurality of linear focusing pieces 27 arranged in parallel with each other.
  • a slit-like opening 17a is formed between adjacent converging pieces 27. Therefore, the plurality of openings 17a are linearly arranged in one direction (a direction parallel to the X axis).
  • the plurality of openings 17 a correspond one-to-one with the plurality of electron multiplication paths L (the plurality of channels A) of the electron multiplier 9.
  • Each opening 17 a is used to converge the electrons emitted from the corresponding channel A of the final dynode 8 (Dy 10) of the electron multiplier 9 and to guide the electrons to the corresponding anode piece 21. It is.
  • a predetermined potential required to form an electron lens suitable for guiding electrons from each channel A of the final stage dynode 8 to the corresponding anode piece 21 is applied to the second focusing electrode 17.
  • the same potential as that of the final-stage dynode 8 is applied to the second focusing electrode 17.
  • the final stage (stage 10) dynode 8 and the Income of 2 It suffices to apply ⁇ 72.7 V to the bundle electrode 1 ⁇ ⁇ ⁇ and to apply ⁇ 36.4 V to the shield electrode 15.
  • the electrons emitted from any channel ⁇ (any electron multiplication path L) of the final stage dynode 8 of the electron multiplication unit 9 are transmitted to the corresponding aperture of the second focusing electrode 17. It passes through section 17a, where it is converged and reliably guided by the corresponding anode piece 21.
  • electrons emitted from any channel A of final stage dynode 8 can be more reliably guided to corresponding anode piece 21 by second focusing electrode 17. . Therefore, it is possible to more reliably prevent electrons from arriving at the adjacent anode piece 21 by mistake.
  • the shield electrode 15 to which the intermediate potential between the final dynode 8 and the anode 12 is applied can reliably suppress the secondary electrons to the anode node 21.
  • the anode 12 instead of the one-dimensional linear structure shown in FIGS. 5 (A) and 5 (B), a two-dimensional arrangement structure shown in FIGS. 7 (A) and 7 (B) may be used.
  • the shielding electrode 15 is formed by integrally forming the plurality of conductive partition members 25 with the frame plate 22. Then, the shielding electrode 15 was disposed on the ceramic substrate 20. However, a plurality of conductive partition members 25 are individually formed, and the ceramic partition member 25 is positioned between two adjacent anode pieces 21 so that the ceramic partition member 25 is located between two adjacent anode pieces 21. It may be arranged on the substrate 20.
  • anode piece 21 was arranged on ceramic substrate 20.
  • the anode piece 21 may be formed by vapor deposition on an insulating substrate.
  • each anode piece 21 and each conductive partition member 25 are not limited to those in the above-described embodiment, and each conductive partition member 25 may be configured to receive electrons from each channel of the final stage die node 8. Function to block the anode node 21 of the adjacent channel from entering the adjacent anode node 21 and to block the electrons emitted from the anode node 21 from entering the adjacent anode node 21. As long as it has.
  • the photomultiplier according to the present invention and a method for using the same are widely used in applications that detect weak light, such as a laser scanning microscope and a DNA sequencer used in the detection field and the like.

Abstract

A plurality of conductive partitioning members (25) are provided such that each conductive partitioning member (25) is located between two corresponding adjacent anode pieces (21) to partition two adjacent channels. Since the conductive partitioning member (25) has been applied with a potential between the final stage dynode potential and anode potential, electrons emitted from each channel (A) of the final stage dynode (8) can be led appropriately to a corresponding anode piece (21) and emission of electrons from the corresponding anode piece (21) to an adjacent anode piece (21) can be suppressed. Consequently, crosstalk is prevented at the anode and resolution of energy can be enhanced for each channel.

Description

明 細 書  Specification
光電子增倍管及びその使用方法 技術分野 Photomultiplier tube and method of using the same
本発明は光電子増倍管及びその使用方法に関し、 特に、 マ  The present invention relates to a photomultiplier tube and a method of using the same.
ドタイプの光電子増倍管及びその使用方法に関する。 背景技術  And a method of using the same. Background art
日本国特開平 3— 1 8 0 7 2 5号公報は、 多極型検出用ァノード構造 を提案している。 この多極型検出用アノード構造では、 絶縁性基板上に 複数のァノードが設けられており、 分割電極が隣り合うァノード間に設 けられている。 分割電極は、 アノードの電位と実効的に同電位あるいは ァノード電位より高電位となっており、 ァノード間に到来した電子を捕 捉する。 したがって、 アノード間の絶縁体領域に電子が入射してマイナ ス電荷が蓄積されることを防止することができる。 なお、 本公報には、 ァノード間に到来した電子を分割電極により捕捉できるのであれば、 分 割電極の電位がァノード電位より一時的に低くなったり連続的にわずか に小さくてもよいことが記載されている。  Japanese Patent Application Laid-Open No. HEI 3-180725 proposes a multi-pole detection node structure. In this multi-pole detection anode structure, a plurality of anodes are provided on an insulating substrate, and a split electrode is provided between adjacent anodes. The split electrode is effectively at the same potential as the anode or at a potential higher than the anode potential, and captures electrons arriving between the anodes. Therefore, it is possible to prevent the electron from being incident on the insulator region between the anodes and accumulating the negative charge. This publication states that the potential of the split electrode may be temporarily lower than the anode potential or may be slightly lower continuously if the electrons arriving between the anodes can be captured by the split electrode. Have been.
一方、 従来より、 第 1図に示すようなマルチアノードタイプの光電子 増倍管も知られている。  On the other hand, a multi-anode type photomultiplier tube as shown in FIG. 1 has been conventionally known.
かかる従来の光電子增倍管 1 0 0では、 受光面板 1 0 3の内面に光電 面 1 0 3 aが形成されている。 収束電極 1 1 3が、 光電面 1 0 3 aに対 向して配置されている。 収束電極 1 1 3の下方には、 複数段のダイノー ド 1 0 8が積層された積層型の電子増倍部 1 0 9が設けられている。 電 子増倍部 1 0 9の下側には、多極型のァノード 1 1 2が設けられている。 アノード 1 1 2は、 複数のァノード片 1 2 1が、 電子増倍部 1 0 9の複 数のチャンネルに対応して配置されて構成されている。 In such a conventional photomultiplier tube 100, a photoelectric surface 103a is formed on the inner surface of the light receiving surface plate 103. The focusing electrode 113 is arranged to face the photocathode 103a. Below the focusing electrode 113, there is provided a stacked electron multiplier 109 in which a plurality of dynodes 108 are stacked. Below the electron multiplication unit 109, a multi-pole type anode 112 is provided. The anode 1 1 2 is composed of a plurality of anode pieces 1 2 1 It is arranged corresponding to the number of channels.
この例では、 電子増倍部 1 0 9には、 複数のチャンネルが 1次元ァレ ィ状に配列されている。 すなわち、 各段のダイノード 1 0 8において、 複数の二次電子放出片 1 2 4が、 X軸方向に平行に、 1次元状にリユア に配列されている。 このため、 アノード 1 1 2においても、 複数のァノ ード片 1 2 1が 1次元状にリユアに配列されている。 具体的には、 例え ば、 第 2 ( A ) 図及ぴ第 2 ( B ) 図に示すように、 アノード片 1 2 1が、 アノード基板 1 2 0上に、 X軸方向に平行に、 1次元状にリニアに配列 されている。  In this example, the electron multiplier 109 has a plurality of channels arranged in a one-dimensional array. That is, in each stage of the dynode 108, a plurality of secondary electron emitting pieces 124 are arranged one-dimensionally in a parallel manner in the X-axis direction. For this reason, also in the anode 112, a plurality of anode pieces 121 are arranged one-dimensionally in a linear manner. Specifically, for example, as shown in FIG. 2 (A) and FIG. 2 (B), the anode piece 1 21 is placed on the anode substrate 120 in parallel to the X-axis direction. They are linearly arranged in a dimension.
なお、 電子増倍部 1 0 9において複数のチャンネルが 2次元マトリ ツ タス状に配列されている場合、 すなわち、 複数の二次電子放出片 1 2 4 が各段のダイノード 1 0 8において 2次元マトリツタス状に配列されて いる場合には、 アノード 1 1 2においても、 複数のァノード片 1 2 1を 2次元マトリ ックス状に配列する。 例えば、 第 3 ( A ) 図及び第 3 ( B ) 図に示すように、 複数のァノード片 1 2 1を 2次元マトリックス状に配 列する。  When a plurality of channels are arranged in a two-dimensional matrix shape in the electron multiplying unit 109, that is, a plurality of secondary electron emitting pieces 124 are two-dimensionally arranged in the dynodes 108 of each stage. In the case where the anodes 112 are arranged in a matrix form, a plurality of node pieces 121 are arranged in a two-dimensional matrix form also in the anode 112. For example, as shown in FIGS. 3 (A) and 3 (B), a plurality of node pieces 1 2 1 are arranged in a two-dimensional matrix.
上記構成の従来の光電子増倍管 1 0 0では、 光が受光面板 1 0 3に入 射すると、 光電面 1 0 3 aから電子が放出され、 この電子が、 収束電極 1 1 3にてチャンネル毎に収束され、 複数段のダイノード 1 0 8にてチ ヤンネル毎に多段増倍される。 こうしてチャンネル毎に増倍された電子 は、 対応するァノード片 1 2 1にて収集されることで、 チャンネル毎の 出力が得られる。  In the conventional photomultiplier tube 100 having the above configuration, when light enters the light receiving surface plate 103, electrons are emitted from the photocathode 103a, and the electrons are channeled by the focusing electrode 113. The convergence is performed every time, and multi-stage multiplication is performed for each channel by a plurality of dynodes 108. The electrons multiplied for each channel are collected by the corresponding anode node 121, thereby obtaining an output for each channel.
このように、 電子増倍部 1 0 9が積層型のチャンネルダイノ一ド構造 を有していれば、 電子をチャンネル毎に多段増倍することができる。 こ のため、 電子増倍部 1 0 9で増倍された電子が隣り合うアノード片 1 2 1間のァノード基板 1 2 0上に到来することはほとんどない。 発明の開示 As described above, if the electron multiplying unit 109 has a stacked channel dynode structure, electrons can be multiply multiplied for each channel. Therefore, the electrons multiplied by the electron multiplying unit 109 rarely reach the anode substrate 120 between the adjacent anode pieces 121. Disclosure of the invention
しかしながら、 本発明者らは、 上記従来の光電子増倍管 1 0 0では、 アノード片 1 2 1間のクロス トークが生じてしまい、 チャンネル毎のェ ネルギ一の分解能が不十分であることを発見した。  However, the present inventors have found that in the conventional photomultiplier tube 100 described above, crosstalk occurs between the anode pieces 121 and that the resolution of energy per channel is insufficient. did.
そこで、 本発明者らは、 電子増倍部 1 0 9から放出された電子につい て考察した。 その結果、 アノード片 1 2 1に入射した電子が更に当該ァ ノード片 1 2 1から二次電子を放出させ、 この行き場のない二次電子が 隣のアノード片 1 2 1に入射してクロストークを発生させてしまってい ることを発見した。  Therefore, the present inventors have considered the electrons emitted from the electron multiplier 109. As a result, the electrons incident on the anode piece 1 2 1 further emit secondary electrons from the anode piece 1 2 1, and the secondary electrons without going to the adjacent anode piece 1 2 1 cause crosstalk. Was discovered.
そこで、 本発明は、 上記課題を解決し、 アノードにおけるクロストー クを防止し、 チヤンネル毎のエネルギーの分解能を向上させるようにし た光電子増倍管及ぴその使用方法を提供することを目的とする。  Therefore, an object of the present invention is to provide a photomultiplier tube and a method of using the same, which solve the above problems, prevent crosstalk at the anode, and improve the resolution of energy for each channel.
上記目的を達成するために、 本発明は、 光の入射によって電子を放出 する光電面と、 複数段のダイノードを有し、 該複数段のダイノードが、 該光電面の側から、 第 1段目から最終段目まで、 この順に積層状に配置 され、 各段のダイノードが複数のチャンネルを規定し、 該光電面から放 出された電子を対応するチャンネル毎に多段増倍させる積層型チャンネ ルダイノード部と、 複数のアノード電極を、 該最終段目のダイノードに 対向して、 かつ、 該複数のチャンネルに 1対 1に対応して備え、 該積層 型チャンネルダイノード部の該複数のチャンネルで多段増倍された電子 に基づいてチャンネル毎の出力信号を送出するァノードと、 複数の導電 性仕切り部材を該最終段目のダイノードに対向して備え、 各導電性仕切 り部材が、対応する 2つの隣り合う了ノード電極の間に設けられ、かつ、 該各導電性仕切り部材に、 該各アノード電極に印加される所定のァノー ド電位と該最終段目のダイノードに印加される所定の最終段ダイノード 電位との間の電位が印加される遮蔽電極と、 を備えていることを特徴と する光電子増倍管を提供している。 In order to achieve the above object, the present invention provides a photocathode which emits electrons when light is incident thereon, and a plurality of dynodes, wherein the plurality of dynodes are arranged in a first stage from the photocathode side. From the first stage to the last stage, the dynodes in each stage define a plurality of channels, and multiply multiply the electrons emitted from the photocathode for each corresponding channel by a multi-stage channel dynode unit. And a plurality of anode electrodes facing the final dynode and one-to-one corresponding to the plurality of channels, and multi-stage multiplication by the plurality of channels of the stacked channel dynode portion. A node for transmitting an output signal for each channel based on the obtained electrons, and a plurality of conductive partition members opposed to the final dynode, and each conductive partition member has a corresponding one. A predetermined anode potential applied to each anode electrode and a predetermined anode potential applied to the final stage dynode are provided between two adjacent node electrodes. Last stage dynode And a shielding electrode to which an electric potential between the electric potential and the electric potential is applied.
かかる構成の本発明の光電子増倍管においては、 電位が光電面からァ ノードに向かって順次高くなるように、 光電面と第 1段目乃至最終段目 のダイノードとアノードとに対し電圧が印加される。 したがって、 最終 段目のダイノードに印加される最終段ダイノ一ド電位より、 アノード電 極に印加されるァノード電位の方が高い。 光電面の任意の位置に光が入 射すると、 光電面の当該位置から電子が放出される。 この電子は、 第 1 段目乃至最終段目のダイノードにおける対応するチャンネルにて多段增 倍され、 最終段目のダイノードから放出される。  In the photomultiplier tube of the present invention having such a configuration, a voltage is applied to the photocathode, the first to final dynodes, and the anode such that the potential increases in order from the photocathode toward the anode. Is done. Therefore, the anode potential applied to the anode electrode is higher than the final dynode potential applied to the final dynode. When light enters an arbitrary position on the photocathode, electrons are emitted from that position on the photocathode. The electrons are multiplied by a corresponding number of channels in the first to final dynodes, and emitted from the final dynode.
ここで、導電性仕切り部材が、各 2つの隣り合うァノード電極の間に、 各 2つの隣り合うチャンネルを仕切るように設けられている。 そして、 この導電性仕切り部材に、 ァノード電位と最終段ダイノ一ド電位との間 の電位、 すなわち、 最終段ダイノード電位より高く、 .かつ、 アノード電 位より低い電位が印加される。 このため、 最終段ダイノードの任意のチ ャンネルから放出された電子を、 対応するァノード電極のみに入射させ ることができ、 かつ、 該対応するアノード電極への電子の入射に応じて 該ァノード電極から二次電子が放出されるのを抑制することができる。 したがって、 アノードにおけるクロス トークを防止し、 チャンネル毎の エネルギーの分解能を向上させることができる。  Here, a conductive partition member is provided between each two adjacent anode electrodes so as to partition each two adjacent channels. Then, a potential between the anode potential and the final dynode potential, that is, a potential higher than the final dynode potential and lower than the anode potential is applied to the conductive partition member. For this reason, electrons emitted from an arbitrary channel of the final dynode can be made incident only on the corresponding anode electrode, and from the anode electrode according to the incidence of electrons on the corresponding anode electrode. Emission of secondary electrons can be suppressed. Therefore, crosstalk at the anode can be prevented, and the energy resolution of each channel can be improved.
より詳しくは、 各アノード電極の両側には、 最終段ダイノード電位よ り高い電位が印加された 2つの導電性仕切り部材が配置されている。 こ のため、 最終段ダイノードの任意のチャンネルから放出された電子は、 対応するァノード電極の両側に配置されている 2つの導電性仕切り部材 に電気的に引きつけられつつ、 更に高い電位の当該対応するアノード電 極へ導かれる。 このため、 各チャンネルからの電子を、 確実に、 対応す るアノード電極に導くことができる。 したがって、 アノード電極間にお けるクロストークを防止し、 チャンネル毎の分解能を向上させることが できる。 More specifically, on both sides of each anode electrode, two conductive partition members to which a potential higher than the final dynode potential is applied are arranged. As a result, electrons emitted from any channel of the final dynode are electrically attracted to the two conductive partition members arranged on both sides of the corresponding anode electrode, and the corresponding electric potential of the higher potential is further increased. It is led to the anode electrode. This ensures that the electrons from each channel respond To the anode electrode. Therefore, crosstalk between the anode electrodes can be prevented, and the resolution of each channel can be improved.
しかも、 導電性仕切り部材の電位はアノード電位より低いため、 電子 がァノード電極に到達した際ァノード電極より電子が放出されにくくな つている。 たとえ、 当該アノード電極より電子が放出されても、 この放 出電子は、 ァノード電極の両側に配置されているこれら 2つの導電性仕 切り部材の低い電位により電気的に押し戻される。 したがって、 この放 出電子は、 導電性仕切り部材ゃ隣のアノード電極には到達できず、 元の アノード電極へ戻っていく。 このように、 本発明では、 アノード電極か らの電子の放出を押さえ込む、 すなわち、 アノード電極から電子が放出 されにく く し、 たとえ放出されても当該放出電子を確実に当該ァノード 電極に戻すことができる。 したがって、 アノード電極間のクロス トーク を確実に防止することができる。  Moreover, since the potential of the conductive partition member is lower than the anode potential, when the electrons reach the anode electrode, the electrons are less likely to be emitted from the anode electrode. Even if electrons are emitted from the anode electrode, the emitted electrons are electrically pushed back by the low potential of these two conductive partition members disposed on both sides of the anode electrode. Therefore, the emitted electrons cannot reach the anode electrode adjacent to the conductive partition member ゃ and return to the original anode electrode. Thus, in the present invention, the emission of electrons from the anode electrode is suppressed, that is, the electrons are hardly emitted from the anode electrode, and even if they are emitted, the emitted electrons are surely returned to the anode electrode. Can be. Therefore, crosstalk between the anode electrodes can be reliably prevented.
ここで、 各導電性仕切り部材は、 アノード電極から放出された電子 が隣のァノ一ド電極に入力できないよう、 隣り合うァノード電極間を 遮蔽する大きさとなっているのが好ましい。 例えば、 導電性仕切り部 材の最終段ダイノー ドに向かって延びる高さが、 各アノード電極の 最終段ダイノー ドに向かって延びる高さより高く、 各アノード電極 から隣のアノード電極が見通せない、 すなわち、 各アノード電極が隣 のアノー ド電極を直線的に直接望むことができないよ うにすれば良 レ、。 たとえ電子がアノード電極から放出されても、 電子が隣のァノー ド電極に入射するのを防止することができる。  Here, it is preferable that each conductive partition member has a size that shields between adjacent anode electrodes so that electrons emitted from the anode electrode cannot enter the adjacent anode electrode. For example, the height of the conductive partition member extending toward the final dynode is higher than the height of each anode electrode extending toward the final dynode, and the adjacent anode electrode cannot be seen from each anode electrode. It would be good if each anode electrode could not directly look directly at the adjacent anode electrode. Even if electrons are emitted from the anode electrode, it is possible to prevent the electrons from being incident on the adjacent anode electrode.
更に、 各導電性仕切り部材は、 最終段ダイノー ドの各チャンネ ルから放出された電子が対応するァノー ド電極の隣のァノー ド 電極に入力できないよ うに、 最終段ダイノー ドの各チャンネルと, 対応するァノー ド電極の隣のァノー ド電極と を遮蔽するこ とが できる大きさ となっているのが好ましい。 例えば、 導電性仕切り 部材の最終段ダイノー ドに向かって延びる高さを、 最終段ダイノ 一 ドの各チャンネルが対応するァノー ド電極の隣のァノー ド電 極を見通せない、 すなわち、 直線上に直接望むことができないよ う な大き さにすれば良い。 具体的には、 各段のダイ ノー ドは複数 の二次電子放出片を有しており、 導電性仕切り部材の最終段ダイ ノードに向かって延びる高さ力 導電性仕切り部材の上端部が最 終段ダイ ノー ドの対応する二次電子放出片の下端部に近接する 大きさであり 、 最終段ダイノードの各チャンネルから隣のチャン ネルのァノ一ド電極が見通せないようにすれば良い。 最終段ダイノ 一ドの各チャンネルから放出された電子が隣のチャンネルのァノー ド電極に入射するのを防止することができる。 Further, each conductive partition member is connected to each channel of the final stage dynode so that electrons emitted from each channel of the final stage dynode cannot enter the adjacent anode electrode. It is preferable that the size is such that it can shield the anode electrode adjacent to the corresponding anode electrode. For example, the height of the conductive partition member extending toward the final dynode may be such that each channel of the final dynode cannot see through the anode electrode next to the corresponding anode electrode, that is, directly on a straight line. The size should be such that it cannot be desired. Specifically, each die node has a plurality of secondary electron emitting pieces, and a height force extending toward the last-stage dynode of the conductive partition member is such that the upper end portion of the conductive partition member is the lowest. The size should be close to the lower end of the corresponding secondary electron emission piece of the final stage dynode, so that the anode electrode of the adjacent channel cannot be seen through each channel of the final stage dynode. Electrons emitted from each channel of the final dynode can be prevented from entering the anode electrode of the next channel.
導電性仕切り部材に印加すべき電位の値は、 ァノード電位の値と最終 段ダイノード電位の値との中間の値であって、 最終段ダイノードの各チ ャンネルから放出された電子が対応するァノ一ド電極に適切に入射でき. かつ、 当該電子が当該ァノード電極の両側に位置している導電性仕切り 部材に直接又は間接的に入射するのを防止できる範囲内の値であること が好ましい。  The value of the potential to be applied to the conductive partition member is an intermediate value between the value of the anode potential and the value of the final dynode potential, and the electrons emitted from each channel of the final dynode correspond to the corresponding anode. It is preferable that the value is within a range that can appropriately enter the single electrode and that can prevent the electron from directly or indirectly entering the conductive partition member located on both sides of the anode electrode.
導電性仕切り部材に、 アノード電位より高い電位が印加されると、 最 終段ダイノードから出た電子は、 対応するアノード電極ではなく、 この ァノード電極の両側に位置する導電性仕切り部材のいずれかに直接入射 してしまい、 アノード電極の出力が低下してしまう。 また、 最終段ダイ ノ一ドから出た電子がァノード電極に正しく入射しても、 かかる入射に 伴いアノード電極から二次電子が放出され、 アノード電位より高い電位 の導電性仕切り部材に電気的に引き寄せられて、 導電性仕切り部材に入 射してしまう。 この場合にも、 アノード電極の出力が低下してしまう。 また、 アノード電位と同電位、 もしくは、 アノード電位より低くても ァノード電位との差が小さいような電位を導電性仕切り部材に印加した のでは、 最終段ダイノードから出た電子は、 やはり、 導電性仕切り部材 に、 直接入射してしまい、 アノード電極の出力が低くなつてしまう可能 性がある。 また、 最終段ダイノードから出た電子がアノード電極に正し く入射しても、 ァノード電位と導電性仕切り部材の電位との電位差が、 アノード電極で生じる二次電子のエネルギー (放出スピード) に比べ小 さいため、 二次電子の放出を押さえ込むことができない。 したがって、 この場合にも、 二次電子がアノード電極より放出され、 導電性仕切り部 材もしくは隣のアノード電極に到達してしまう。 すると、 アノード電極 の出力が低下してしまう。 二次電子が隣のァノード電極に到達した場合 には、 クロス トークも生じてしまう。 When a potential higher than the anode potential is applied to the conductive partition member, the electrons emitted from the final dynode are not directed to the corresponding anode electrode but to one of the conductive partition members located on both sides of the anode electrode. It is directly incident and the output of the anode electrode decreases. In addition, even if electrons emitted from the final-stage diode correctly enter the anode electrode, secondary electrons are emitted from the anode electrode with the incidence, and the secondary electrons are electrically transferred to the conductive partition member having a potential higher than the anode potential. Attracted and enter the conductive partition I shoot. Also in this case, the output of the anode electrode decreases. If a potential equal to the anode potential or a potential lower than the anode potential but smaller than the anode potential is applied to the conductive partition member, the electrons emitted from the final stage dynode will still be conductive. There is a possibility that the light is directly incident on the partition member and the output of the anode electrode is reduced. Also, even if electrons emitted from the final dynode enter the anode electrode correctly, the potential difference between the anode potential and the potential of the conductive partition member is smaller than the energy (emission speed) of secondary electrons generated at the anode electrode. Due to its small size, the emission of secondary electrons cannot be suppressed. Therefore, also in this case, secondary electrons are emitted from the anode electrode and reach the conductive partition member or the adjacent anode electrode. Then, the output of the anode electrode decreases. When secondary electrons reach the adjacent anode electrode, crosstalk also occurs.
その一方で、 逆に、 導電性仕切り部材に対し、 アノード電位より十 分低く最終段ダイノ一ド電位との差が小さいような電位を印加する と、 最終段ダイノードから出た電子は、 導電性仕切り部材が生成する 電子レンズの影響により、 対応するァノ一ド電極に入射できなくなつ てしまう。  On the other hand, conversely, when a potential is applied to the conductive partition member that is sufficiently lower than the anode potential and has a small difference from the final-stage dynode potential, electrons emitted from the final-stage dynode become conductive. Due to the influence of the electron lens generated by the partition member, the light cannot enter the corresponding anode electrode.
したがって、 導電性仕切り部材に印加される電位と最終段ダイノード 電位との差が、 最終段ダイノードの各チャンネルから放出された電子を 対応するァノード電極に適切に入射させる大きさを有し、 導電性仕切り 部材に印加される電位とァノード電位との差が、 最終段ダイノードの各 チャンネルから放出された電子が対応するァノード電極の両側に位置し ている導電性仕切り部材に入射すること、 及ぴ、 アノード電極で生じる 二次電子が対応するァノ一ド電極の隣のァノ一ド電極に入射するのを 防止する大きさを有しているのが好ましい。 例えば、 導電性仕切り部材に印加すべき電位は、 最終段ダイノード電 位より高く、 アノード電位より低く、 アノード電位との差が、 アノード 電位と最終段ダイノ一ド電位との差の約 5 %以上約 7 0 %以下の範囲内 であるような電位であることが好ましい。 例えば、 アノード電位が 0ボ ルト、 最終段ダイノードが所定の負の電位である場合には、 導電性仕切 り部材には、 負の電位であって、 その絶対値が最終段ダイノードの電位 の絶対値の約 5 %以上約 7 0 %以下であるような範囲内の電位を印加す れば良い。 例えば、 導電性仕切り部材に印加される電位とアノード電位 との差が、ァノード電位と最終段ダイノ一ド電位との差の約半分、即ち、 約 5 0 %であるような電位を印加すれば良い。 Therefore, the difference between the potential applied to the conductive partition member and the potential of the final dynode is large enough to allow electrons emitted from each channel of the final dynode to appropriately enter the corresponding anode electrode. The difference between the potential applied to the partition member and the anode potential is such that electrons emitted from each channel of the final dynode enter the conductive partition members located on both sides of the corresponding anode electrode, and It is preferable that the electrode has a size that prevents secondary electrons generated at the anode electrode from entering the adjacent anode electrode of the corresponding anode electrode. For example, the potential to be applied to the conductive partition member is higher than the final stage dynode potential, lower than the anode potential, and the difference between the anode potential and the anode potential is about 5% or more of the difference between the anode potential and the final stage dynode potential. Preferably, the potential is such that it is within about 70% or less. For example, when the anode potential is 0 volts and the final dynode is a predetermined negative potential, the conductive partition member has a negative potential, and its absolute value is the absolute value of the potential of the final dynode. A potential within a range of about 5% or more and about 70% or less of the value may be applied. For example, when a potential is applied such that the difference between the potential applied to the conductive partition member and the anode potential is about half of the difference between the anode potential and the final-stage dynode potential, that is, about 50%. good.
ここで、 アノードは、 セラミック基板からなるアノード基板を更に備 え、 複数のァノード電極がァノード基板上に複数のチャンネルに 1対 1 に対応して設けられていることが好ましい。 そして、 遮蔽電極は、 枠状 部材を更に備え、 複数の導電性仕切り部材がこの枠状部材に対し一体的 に形成されていることが好ましい。 この場合、 遮蔽電極を、 各導電性仕 切り部材が対応する 2つの隣り合うアノード電極間に位置するように、 アノード基板上に配置するだけで、 簡単に、 アノード電極と導電性仕切 り部材とを適切な位置に配置することができる。  Here, it is preferable that the anode further includes an anode substrate made of a ceramic substrate, and a plurality of anode electrodes are provided on the anode substrate in a one-to-one correspondence with a plurality of channels. Preferably, the shielding electrode further includes a frame-shaped member, and the plurality of conductive partition members are formed integrally with the frame-shaped member. In this case, simply placing the shielding electrode on the anode substrate such that each conductive partition member is located between two corresponding adjacent anode electrodes, the anode electrode and the conductive partition member can be easily connected to each other. Can be arranged at an appropriate position.
なお、 積層型チャンネルダイノ一ド部において複数のチャンネルがリ ユアに一方向に配列されている場合には、 複数のアノード電極も当該方 向に略平行に一次元的に配列される。 したがって、 各導電性仕切り部材 は、 当該 1次元方向において、 対応する 2つの隣り合うアノード電極の 間に設けられる。 一方、 複数のチャンネルが二次元マ トリ ックス的に配 列されている場合には、 複数のァノード電極も二次元マトリックス的に 配列される。 したがって、 各導電性仕切り部材は、 当該二次元方向の各 方向において、対応する 2つの隣り合うァノード電極の間に設けられる。 ここで、 本発明の光電子増倍管は、 前記アノードと前記最終段ダイノ 一ドとの間に設けられ、 複数の収束片を有し、 各隣り合う 2つの収束片 がその間に 1つの開口部を規定することで複数の開口部を規定し、 前記 最終段ダイノードの各チャンネルから放出された電子を対応する開口部 で収束して対応するアノード電極に導く ことにより、 該最終段ダイノー ドから放出された電子をチャンネル毎に収束する収束電極を、 更に備え ていることが好ましい。 In the case where a plurality of channels are arranged in one direction in the laminated channel dyno, the plurality of anode electrodes are also arranged one-dimensionally substantially in parallel to the direction. Therefore, each conductive partition member is provided between the corresponding two adjacent anode electrodes in the one-dimensional direction. On the other hand, when a plurality of channels are arranged in a two-dimensional matrix, a plurality of anode electrodes are also arranged in a two-dimensional matrix. Therefore, each conductive partition member is provided between two corresponding adjacent anode electrodes in each of the two-dimensional directions. Here, the photomultiplier tube of the present invention is provided between the anode and the last-stage dynode, has a plurality of converging pieces, and each two adjacent converging pieces have one opening therebetween. By defining a plurality of openings, the electrons emitted from each channel of the final stage dynode are converged at the corresponding opening and guided to the corresponding anode electrode, thereby emitting from the final stage dynode. It is preferable to further include a converging electrode for converging the obtained electrons for each channel.
この場合、 収束電極には、 最終段ダイノードの各チャンネルから放出 された電子を収束して対応するァノード電極に導くための電子レンズを 形成するための電位が印加される。 例えば、 収束電極には、 最終段ダイ ノード電位と略同一の電位が印加されるのが好ましい。 かかる収束電極 により、 最終段ダイノードの任意のチャンネルから放出された電子を、 対応するァノード電極へ、 確実に導く ことができ、 クロス トークをより 確実に防止することができる。 しかも、 導電性仕切り部材には、 最終段 ダイノード電位とアノード電位との中間電位が印加されているため、 ァ ノ一ド電極からの電子の放出を確実に押さえ込むことができ、 クロス ト ークを更に確実に防止することができる。  In this case, a potential is applied to the focusing electrode to form an electron lens for focusing electrons emitted from each channel of the final dynode and guiding the electrons to the corresponding anode electrode. For example, it is preferable that substantially the same potential as the final-stage dynode potential is applied to the focusing electrode. With such a focusing electrode, electrons emitted from an arbitrary channel of the final dynode can be reliably guided to the corresponding anode electrode, and crosstalk can be more reliably prevented. In addition, since the intermediate potential between the dynode potential and the anode potential at the final stage is applied to the conductive partition member, the emission of electrons from the anode electrode can be reliably suppressed, and the crosstalk is reduced. Further, it is possible to surely prevent the occurrence.
ここで、 本発明の光電子増倍管は、 前記光電面と前記積層型チャンネ ルダイノード部との間に設けられ、 複数の別の収束片を有し、 各隣り合 う 2つの別の収束片がその間に 1つの開口部を規定することで複数の開 口部を規定し、 前記光電面の任意の位置から放出された電子を対応する 開口部で収束して該積層型チャンネルダイノード部の対応するチャンネ ルに導くことにより、 該光電面の任意の位置から放出された電子をチヤ ンネル毎に収束する別の収束電極を、 更に備えていることが好ましい。 例えば、 該別の収束電極には、 該光電面と略同一の電位が印加されるの が好ましい。 このように、 光電面と積層型チャンネルダイノード部との間に、 チヤ ンネル毎に電子を収束させる別の収束電極を設ければ、 光電面の任意の 位置から放出された電子を、 より確実に、 積層型チャンネルダイノード 部の対応するチヤンネルに導くことができる。 Here, the photomultiplier tube of the present invention is provided between the photocathode and the stacked-type channel dynode part, has a plurality of different converging pieces, and each of two adjacent converging pieces is adjacent to each other. In the meantime, a plurality of openings are defined by defining one opening, and electrons emitted from an arbitrary position on the photocathode are converged at the corresponding opening to correspond to the corresponding one of the stacked channel dynodes. It is preferable to further include another focusing electrode that guides the electron emitted from an arbitrary position on the photocathode to each channel by guiding the channel to the channel. For example, it is preferable that substantially the same potential as that of the photocathode is applied to the other focusing electrode. As described above, if another focusing electrode for focusing electrons for each channel is provided between the photocathode and the stacked channel dynode portion, electrons emitted from an arbitrary position on the photocathode can be more reliably. , Can be led to the corresponding channel of the stacked channel dynode.
本発明の光電子増倍管は、 更に、 受光面板と、 該受光面板と共に真空 領域を形成するための、 例えば、 側管とステムとからなる壁部とを備え ていることが好ましい。 この場合、 光電面は、 受光面板の内面であって 該真空領域内部に形成され、積層型チャンネルダイノード部、アノード、 遮蔽電極、 及び、 収束電極が、 この真空領域内部に設けられる。 このた め、 光が受光面板を透過し光電面の任意の位置に入射すると、 光電面の 当該位置から電子が放出される。 この電子が、 対応するチャンネルにて 増倍され、 対応するチャンネルの出力信号が生成される。  It is preferable that the photomultiplier tube of the present invention further includes a light receiving surface plate and a wall portion formed of, for example, a side tube and a stem for forming a vacuum region together with the light receiving surface plate. In this case, the photocathode is formed inside the vacuum region on the inner surface of the light-receiving surface plate, and the stacked channel dynode part, the anode, the shielding electrode, and the focusing electrode are provided inside the vacuum region. For this reason, when light passes through the light receiving surface plate and enters an arbitrary position on the photoelectric surface, electrons are emitted from the position on the photoelectric surface. The electrons are multiplied in the corresponding channel to generate an output signal of the corresponding channel.
さ らに、 受光面板内に各チャンネルに対応させて光吸収ガラス の仕切り部を設け、 受光面板の外側表面に各チャンネルに対応し た集光装置を設け、 各収束片の表面に光無反射処理を施し、 複数 段のダイ ノ ー ドの う ちの光電面側から第 1段目及び第 2段目に 位置するダイノー ドの各チャ ンネルを規定する各二次電子放出 片の表面に光無反射処理を施し、 更に、 該別の収束電極の各チヤ ンネルを規定する各収束片の長さを長く して、 第 1段目及び第 2 段目 に位置するダイ ノー ドの前記各チャ ンネルを規定する該各 二次電子放出片の表面で反射した光が該光電面内の隣のチャ ン ネル位置に戻るこ とを防止すれば、 光のク ロス トークをも抑制し て、 分解能を更に向上させることが可能となる。  In addition, a light-absorbing glass partition is provided in the light-receiving surface plate corresponding to each channel, and a light-collecting device corresponding to each channel is provided on the outer surface of the light-receiving surface plate. The light is applied to the surface of each secondary electron emission piece that defines each channel of the first and second dynodes from the photocathode side of the multi-stage dynode. Performing a reflection process, further increasing the length of each converging piece that defines each channel of the other converging electrode, and setting the respective channels of the die nodes located at the first and second stages. By preventing the light reflected on the surface of each of the secondary electron emitting pieces from returning to the adjacent channel position in the photocathode, the crosstalk of light is also suppressed, and the resolution is improved. It is possible to further improve.
また、 本発明は、 光の入射によって電子を放出する光電面と、 複数段 のダイノードを有し、 該複数段のダイノードが、 該光電面の側から、 第 1段目から最終段目まで、 この順に積層状に配置され、 各段のダイノー ドが複数のチャンネルを規定し、 該光電面から放出された電子を対応す るチャンネル毎に多段増倍させる積層型チャンネルダイノード部と、 複 数のアノード電極を、 該最終段目のダイノードに対向して、 かつ、 該複 数のチャンネルに 1対 1に対応して備え、 該積層型チャンネルダイノー ド部の該複数のチャンネルで多段増倍された電子に基づいてチャンネル 毎の出力信号を送出するァノードと、 複数の導電性仕切り部材を該最終 段目のダイノ一ドに対向して備え、 各導電性仕切り部材が対応する 2つ の隣り合うァノード電極の間に設けられる遮蔽電極と、 を備えた光電子 増倍管において、 該各アノード電極に所定のアノード電位を印加し、 該 最終段目のダイノードに所定の最終段ダイノード電位を印加し、 該各導 電性仕切り部材に、 該ァノード電位と該最終段ダイノ一ド電位との間の 電位を印加することを特徴とする光電子増倍管の使用方法を提供してい る。 Further, the present invention has a photoelectric surface that emits electrons by the incidence of light, and a plurality of dynodes, wherein the plurality of dynodes are arranged from the first surface to the last stage from the photoelectric surface side. The dynos are arranged in this order, A plurality of channels defines a plurality of channels, and a stacked channel dynode section for multiplying the electrons emitted from the photocathode for each corresponding channel in multiple stages, and a plurality of anode electrodes are opposed to the final stage dynode. And, in a one-to-one correspondence with the plurality of channels, an output signal for each channel is transmitted based on the electrons multiplied by the plurality of channels in the plurality of channels of the stacked channel dynode unit. And a shielding electrode provided between a pair of adjacent anode electrodes, each of which includes a plurality of conductive partition members facing the final stage of the dynode. A predetermined anode potential is applied to each anode electrode, a predetermined final dynode potential is applied to the final dynode, and each of the conductive partition members is provided. Further, there is provided a method of using a photomultiplier tube, characterized in that a potential between the anode potential and the final stage node potential is applied.
かかる構成の本発明の光電子増倍管の使用方法においては、 電位が光 電面からアノードに向かって順次高くなるように、 光電面と第 1段目乃 至最終段目のダイノードとァノードとに対し電圧が印加される。 導電性 仕切り部材に印加される電位は、最終段ダイノード電位より高く、かつ、 アノード電位より低い電位である。 このため、 該最終段ダイノードの任 意のチャンネルから放出された電子を、 対応するァノード電極に入射さ せ、 かつ、 該対応するアノード電極への電子の入射に応じて該アノード 電極から二次電子が放出されるのを抑制することができる。したがって、 ァノードにおけるクロス トークを防止し、 チャンネノレ毎のエネノレギ一の 分解能を向上させることができる。  In the method of using the photomultiplier tube according to the present invention having such a configuration, the photocathode and the first to final dynodes and the anode are connected to each other so that the potential increases gradually from the photocathode to the anode. On the other hand, a voltage is applied. The potential applied to the conductive partition member is higher than the final dynode potential and lower than the anode potential. For this reason, electrons emitted from an arbitrary channel of the final dynode are made incident on the corresponding anode electrode, and secondary electrons are emitted from the anode electrode in response to the incidence of electrons on the corresponding anode electrode. Can be suppressed from being released. Therefore, it is possible to prevent crosstalk at the node and to improve the resolution of the energy storage for each channel.
ここで、 前記導電性仕切り部材に印加される電位と前記最終段ダイノ ード電位との差が、 該最終段ダイノードの各チャンネルから放出された 電子を対応するァノード電極に適切に入射させる大きさを有し、 該導電 性仕切り部材に印加される電位と該アノード電位との差が、 該最終段ダ イノードの各チャンネルから放出された電子が該対応するァノード電極 の両側に位置している該導電性仕切り部材に入射すること、 及ぴ、 該ァ ノ一ド電極で生じる二次電子が該対応するァノ一ド電極の隣のァノ一 ド電極に入射するのを防止する大きさを有していることが好ましい。 し たがって、 ァノード電極間のクロストークを確実に防止することができ る。 図面の簡単な説明 Here, the difference between the potential applied to the conductive partition member and the potential of the final dynode is a magnitude that allows electrons emitted from each channel of the final dynode to appropriately enter the corresponding anode electrode. Having the conductivity The difference between the potential applied to the conductive partition member and the anode potential indicates that electrons emitted from each channel of the final stage dynode enter the conductive partition member located on both sides of the corresponding anode electrode. And having a size to prevent secondary electrons generated at the ground electrode from being incident on the ground electrode adjacent to the corresponding ground electrode. preferable. Therefore, crosstalk between the anode electrodes can be reliably prevented. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の光電子増倍管の断面図である。  FIG. 1 is a cross-sectional view of a conventional photomultiplier tube.
第 2 (A) 図は、 第 1図の光電子増倍管において、 複数のアノード片 が基板上に配置されている状態の一例を示す、 電子の入射方向から見た 平面図である。  FIG. 2 (A) is a plan view showing an example of a state in which a plurality of anode pieces are arranged on a substrate in the photomultiplier tube of FIG. 1, as viewed from the electron incident direction.
第 2 (B) 図は、 第 2 (A) 図における I I B_ I I B ' 線断面図で ある。  FIG. 2 (B) is a cross-sectional view taken along the line IIB_IBB ′ in FIG. 2 (A).
第 3 (A) 図は、 第 1図の光電子増倍管の変更例において、 複数のァ ノード片が基板上に配置されている状態の一例を示す、 電子の入射方向 から見た平面図である。  FIG. 3A is a plan view showing an example of a state in which a plurality of anode pieces are arranged on a substrate in a modified example of the photomultiplier tube in FIG. 1, as viewed from the electron incident direction. is there.
第 3 (B) 図は、 第 3 (A) 図における I I I B— I I I B ' 線断面 図である。  FIG. 3 (B) is a cross-sectional view taken along a line IIIB-IIIB 'in FIG. 3 (A).
第 4図は、 本発明の第 1の実施の形態による光電子増倍管の断面図で ある。  FIG. 4 is a cross-sectional view of the photomultiplier according to the first embodiment of the present invention.
第 5 (A) 図は、 第 4図の光電子増倍管において、 遮蔽電極と複数の ァノード片とがセラミック基板上に配置されている状態を示す、 電子の 入射方向から見た平面図である。  FIG. 5 (A) is a plan view of the photomultiplier tube of FIG. 4 showing a state in which a shielding electrode and a plurality of anode pieces are arranged on a ceramic substrate, as viewed from the electron incident direction. .
第 5 (B) 図は、 第 5 (A) 図における VB— VB ' 線断面図である。 第 6図は、 第 4図の光電子増倍管において遮蔽電極に供給する電位を 変えていった時のァノード出力の変化を示すグラフである。 FIG. 5 (B) is a sectional view taken along line VB-VB ′ in FIG. 5 (A). FIG. 6 is a graph showing a change in anode output when the potential supplied to the shielding electrode in the photomultiplier tube of FIG. 4 was changed.
第 7 ( A ) 図は、 第 4図の光電子増倍管の変更例において、 遮蔽電極 と複数のァノード片とがセラミック基板上に配置されている状態を示す、 電子の入射方向から見た平面図である。  FIG. 7 (A) is a plan view of the modified example of the photomultiplier tube of FIG. 4, showing a state where the shield electrode and a plurality of anode pieces are arranged on the ceramic substrate, as viewed from the electron incident direction. FIG.
第 7 ( B ) 図は、 第 7 ( A ) 図における V I I B - V I I B ' 線断面 図である。  FIG. 7 (B) is a cross-sectional view taken along the line VIIB-VIIB ′ in FIG. 7 (A).
第 8図は、 本発明の第 2の実施の形態による光電子増倍管の断面図で める。 発明を実施するための最良の形態  FIG. 8 is a sectional view of a photomultiplier according to a second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態に係る光電子増倍管及びその使用方法につ いて図を参照して説明する。  Hereinafter, a photomultiplier according to an embodiment of the present invention and a method for using the same will be described with reference to the drawings.
(第 1の実施の形態)  (First Embodiment)
本発明の第 1の実施の形態による光電子増倍管及びその使用方法につ いて第 4図乃至第 7 ( B ) 図に基づき説明する。  A photomultiplier tube according to a first embodiment of the present invention and a method of using the same will be described with reference to FIGS. 4 to 7 (B).
第 4図に示すように、 本実施の形態に係る光電子増倍管 1は、 略角筒 形状の金属製側管 2を有している。 なお、 金属製側管 2の管軸方向を Z 軸とする。 Z軸に対して垂直で第 4図の紙面に平行な軸を X軸とする。 また、 X軸と Z軸とに垂直で第 4図の紙面に直交する軸を Y軸とする。 側管 2の管軸方向の一側の開口端にはガラス製の受光面板 3が固定さ れている。 受光面板 3の内表面には、 光を電子に変換する光電面 3 aが 形成されている。 光電面 3 aは、 受光面板 3に予め蒸着させておいたァ ンチモンにアル力リ金属蒸気を反応させることで形成されたものである c また、 側管 2の管軸方向の他側の開口端には、 フランジ部 2 aが形成さ れている。 フランジ部 2 aには、 金属製のステム 4の周縁部が、 抵抗溶 接等で固定されている。 このように、 側管 2と受光面板 3 とステム 4と によって密封容器 5が構成されている。 As shown in FIG. 4, the photomultiplier tube 1 according to the present embodiment has a substantially rectangular tube-shaped metal side tube 2. The direction of the metal tube 2 is defined as the Z axis. The axis perpendicular to the Z axis and parallel to the plane of FIG. 4 is the X axis. An axis perpendicular to the X axis and the Z axis and perpendicular to the plane of FIG. 4 is defined as the Y axis. A light-receiving surface plate 3 made of glass is fixed to an open end on one side in the tube axis direction of the side tube 2. On the inner surface of the light receiving surface plate 3, a photoelectric surface 3a for converting light into electrons is formed. Photocathode 3 a are those formed by reacting Al force Li metal vapor § Nchimon which had been previously deposited on the light receiving plate 3 c also the other side of the side tube 2 tube axial opening At the end, a flange portion 2a is formed. The periphery of the metal stem 4 is connected to the flange 2a by resistance welding. It is fixed by contact. Thus, the sealed vessel 5 is constituted by the side tube 2, the light receiving face plate 3, and the stem 4.
また、 ステム 4の中央には金属製の排気管 6が固定されている。 排気 管 6は、 光電子増倍管 1の組立て作業終了後、 密封容器 5の内部を真空 ポンプ (図示せず) によって排気して真空状態にするのに利用されると 共に、 光電面 3 aの形成時にアル力リ金属蒸気を密封容器 5内に導入さ せる管としても利用される。 複数のステムピン 1 0が、 ステム 4を貫通 するように、 設けられている。 これら複数のステムピン 1 0は、 複数の ダイノード用のステムピン 1 0と、 複数のァノード用ステムピンと、 1 本の遮蔽電極用ステムピンとを、 含んでいる。  A metal exhaust pipe 6 is fixed to the center of the stem 4. The exhaust pipe 6 is used to evacuate the inside of the sealed container 5 by a vacuum pump (not shown) after the assembling work of the photomultiplier tube 1 and to make the inside of the sealed vessel 5 into a vacuum state. It is also used as a tube for introducing metal vapor into the sealed container 5 during formation. A plurality of stem pins 10 are provided to penetrate stem 4. The plurality of stem pins 10 include a plurality of dynode stem pins 10, a plurality of anode pin stem pins, and one shield electrode stem pin.
密封容器 5内には、 ブロック状で積層タイプの電子增倍器 7が固定さ れている。 電子增倍器 7は、 1 0枚 ( 1 0段) のダイノード 8を積層さ せた電子増倍部 9を有している。 ダイノード 8は例えばステンレス製で ある。 電子増倍器 7は、 ステム 4に設けられた複数のステムピン 1 0に よって密封容器 5内で支持されている。 なお、 各ダイノード 8が、 対応 するダイノード用ステムピン 1 0と電気的に接続されている。  Inside the sealed container 5, a block-type laminated electronic multiplier 7 is fixed. The electron multiplier 7 has an electron multiplier 9 in which ten (10) dynodes 8 are stacked. The dynode 8 is made of, for example, stainless steel. The electron multiplier 7 is supported in the sealed container 5 by a plurality of stem pins 10 provided on the stem 4. Each dynode 8 is electrically connected to the corresponding dynode stem pin 10.
更に、 電子增倍器 7は、 光電面 3 a と電子增倍部 9との間に配置され た平板状の第 1の収束電極 1 3を有している。 第 1の収束電極 1 3も例 えばステンレス製である。 第 1の収束電極 1 3は、 互いに平行に配列さ れた複数本の直線状の収束片 2 3を有している。 隣接する収束片 2 3間 にスリッ ト状の開口部 1 3 aが形成されている。 したがって、 複数本の 開口部 1 3 a力 S、 一方向 (X軸に平行な方向) にリニアに配列されてい る。  Further, the electron multiplier 7 has a flat first focusing electrode 13 arranged between the photocathode 3 a and the electron multiplier 9. The first focusing electrode 13 is also made of, for example, stainless steel. The first focusing electrode 13 has a plurality of linear focusing pieces 23 arranged in parallel with each other. A slit-like opening 13a is formed between adjacent converging pieces 23. Therefore, the plurality of openings 13a force S are linearly arranged in one direction (a direction parallel to the X axis).
電子増倍部 9は、 複数段のダイノード 8が積層された積層型チャンネ ルダイノードである。 この例では、 電子増倍部 9には、 全 1 0段のダイ ノード 8 (ダイノード D v l〜ダイノード D y l O ) 、 光電面 3 a の 側から後述するァノード 1 2の側へこの順に積層されている。 ここで、 各段のダイノード 8 (ダイノード D y i (ここで、 i は、 1以上 1 0以 下の整数) は、 互いに平行に配列された複数本の直線状の二次電子放出 片 2 4を有している。 隣接する二次電子放出片 24間にスリッ ト状の電 子増倍孔 8 aが形成されている。 したがって、 各段のダイノード 8 (D y i ) には、 複数本 (開口部 1 3 a と同数) のスリッ ト状の電子増倍孔 8 &カ 一方向 (X軸に平行な方向) にリニアに配列されている。 The electron multiplier 9 is a stacked channel dynode in which a plurality of dynodes 8 are stacked. In this example, the electron multiplier 9 has dynodes 8 (dynode D vl to dynode D yl O) of 10 stages in total and the photocathode 3 a The layers are stacked in this order from the side to the node 12 described later. Here, each stage of dynode 8 (dynode D yi (where i is an integer of 1 or more and 10 or less)) is composed of a plurality of linear secondary electron emitting pieces 24 arranged in parallel with each other. A slit-like electron multiplying hole 8a is formed between the adjacent secondary electron emitting pieces 24. Therefore, a plurality of dynodes 8 (D yi) of each stage have The same number of slit-like electron multiplying holes 8 in section 13a) are arranged linearly in one direction (direction parallel to the X axis).
各電子増倍経路 Lが、 全段のダイノード 8 (D y l〜D y l O) の各 電子増倍孔 8 aが段方向に配列されることにより規定されている。 各電 子増倍経路 Lと収束電極板 1 3の各開口部 1 3 a とが、 一対一で対応さ れており、 1つのチャンネル Aが規定されている。 したがって、 収束電 極板 1 3の複数の開口部 1 3 aと、 電子増倍部 9の各段における複数の 電子増倍孔 8 a とにより、 複数のチャンネル Aが規定されている。 これ ら複数のチャンネル Aは、 一方向 (X軸に平行な方向) にリニアに配列 されている。  Each electron multiplying path L is defined by arranging the electron multiplying holes 8a of the dynodes 8 (Dyl to DylO) in all stages in a stepwise direction. Each electron multiplying path L and each opening 13 a of the focusing electrode plate 13 are in one-to-one correspondence, and one channel A is defined. Therefore, a plurality of channels A are defined by the plurality of openings 13 a of the converging electrode plate 13 and the plurality of electron multiplying holes 8 a in each stage of the electron multiplier 9. These multiple channels A are linearly arranged in one direction (a direction parallel to the X axis).
また、 電子増倍器 7の最下部には、 最終段ダイノード 8 (ダイノード D y 1 0) に対向して多極型の平板状ァノード 1 2が配置されている。 このアノード 1 2では、 第 4図及び第 5 (A) 図、 第 5 (B) 図に示す ように、 複数本の棒状ァノード片 2 1が、 最終段ダイノード 8 (D y 1 0) の複数のチャンネル Aに一対一で対応するように、 セラミック製の 基板 2 0上に配置されている。 このように、 アノード 1 2は、 複数のァ ノード片 2 1がー方向 (X軸に平行な方向) にリニアに配列されて構成 されたリユア構造を有している。 各アノード片 2 1は、 例えば、 ステン レス (SU S) 製である。 各アノード片 2 1は、 対応するアノード用ス テムピン 1 0に接続されている。 かかる構成により、 アノード用のステ ムピン 1 0を介して個別的な出力を外部に取り出すことができるように なっている。 At the lowermost part of the electron multiplier 7, a multi-pole type flat node 12 is arranged so as to face the final stage dynode 8 (dynode D y 10). In this anode 12, as shown in FIGS. 4, 5 (A), and 5 (B), a plurality of rod-shaped anode nodes 21 are connected to a plurality of final dynodes 8 (D y 10). It is arranged on the ceramic substrate 20 so as to correspond to the channel A on a one-to-one basis. As described above, the anode 12 has a reflow structure in which the plurality of anode pieces 21 are linearly arranged in the negative direction (the direction parallel to the X axis). Each anode piece 21 is made of, for example, stainless steel (SUS). Each anode piece 21 is connected to a corresponding anode stem pin 10. With such a configuration, individual outputs can be extracted to the outside via the anode stem pins 10. Has become.
本実施の形態では、 更に、 第 4図と、 第 5 ( A ) 図及び第 5 ( B ) 図 に示すように、 平板状の遮蔽電極 1 5が、 アノード 1 2のセラミック基 板 2 0上に配置されている。 この遮蔽電極 1 5は、 導電性を有する材料 で作成されている。 この例では、遮蔽電極 1 5は、ステンレス製である。 なお、 遮蔽電極 1 5は、 ニッケル、 鉄ニッケル (合金) 、 アルミニウム 等の金属でも良い。 この遮蔽電極 1 5は、 枠板 2 2と、 この枠板 2 2に 対し一体的に形成され、 互いに平行に配列された複数本の直線状の導電 性仕切り部材 2 5とから構成されている。 隣接する導電性仕切り部材 2 5間には、 スリ ッ ト状の開口部 1 5 aが形成されている。 かかる構成の 遮蔽電極 1 5は、 複数本の導電性仕切り部材 2 5 と複数本の開口部 1 5 a とがー方向(X軸に平行な方向)にリユアに配列されるような向きで、 かつ、 各開口部 1 5 a内に 1つのァノード片 2 1が位置するように、 セ ラミック基板 2 0上に配置されている。 このため、 各導電性仕切り部材 2 5は、 対応する 2つの隣接するアノード片 2 1の間に位置し、 隣り合 うチャンネル Aを仕切るようになつている。  In the present embodiment, as shown in FIG. 4, FIG. 5 (A) and FIG. 5 (B), a flat shielding electrode 15 is formed on the ceramic substrate 20 of the anode 12. Are located in The shielding electrode 15 is made of a conductive material. In this example, the shielding electrode 15 is made of stainless steel. The shielding electrode 15 may be made of a metal such as nickel, iron nickel (alloy), and aluminum. The shielding electrode 15 is composed of a frame plate 22 and a plurality of linear conductive partition members 25 formed integrally with the frame plate 22 and arranged in parallel with each other. . A slit-like opening 15a is formed between adjacent conductive partition members 25. The shielding electrode 15 having such a configuration is oriented such that the plurality of conductive partition members 25 and the plurality of openings 15 a are arranged in a direction in the direction (parallel to the X axis). In addition, they are arranged on the ceramic substrate 20 such that one anode piece 21 is located in each opening 15a. For this reason, each conductive partition member 25 is located between the corresponding two adjacent anode pieces 21 so as to partition adjacent channels A.
各導電性仕切り部材 2 5は、 第 5 ( B ) 図に示すように、 アノード 片 2 1から放出された電子が隣のアノード片 2 1に入力できないよ う、 隣り合うアノード片 2 1間を遮蔽するような形状及び大きさとな つている。 具体的には、 導電性仕切り部材 2 5の管軸方向 (Z軸方向) の断面高さ (最終段ダイノード 8 (ダイノー ド D y 1 0 ) の対応す る二次電子放出片 2 4 の方向へ延びる断面高さ) z lを、 各ァノー ド片 2 1の管軸方向の断面高さ (最終段ダイノード 8 (ダイノー ド D y 1 0 ) の対応するチヤンネル Aの方向へ延びる断面高さ) z 2よ り高く している。 これにより、 各アノード片 2 1が隣のアノード片 2 1を見通せない、 すなわち、 各アノード片 2 1が隣のアノード片 2 1 を直線的に直接望むことができない。 このため、 たとえアノード片 2 1から二次電子が放出されても、 この二次電子が隣のァノード片 2 1 に入射するのを防止することができる。 As shown in FIG. 5 (B), each conductive partition member 25 is provided between adjacent anode pieces 21 so that electrons emitted from the anode piece 21 cannot enter the adjacent anode piece 21. It is shaped and sized to shield. Specifically, the sectional height of the conductive partition member 25 in the tube axis direction (Z-axis direction) (the direction of the corresponding secondary electron emission piece 24 at the final stage dynode 8 (dynode D y10)) The cross-sectional height of each node piece 21 in the tube axis direction (the cross-sectional height of the final dynode 8 (dynode D y10) extending in the direction of the corresponding channel A) zl It is higher than 2. As a result, each anode piece 21 cannot see through the adjacent anode piece 2 1, that is, each anode piece 2 1 Cannot be directly desired in a straight line. Therefore, even if secondary electrons are emitted from the anode piece 21, it is possible to prevent the secondary electrons from being incident on the adjacent anode piece 21.
しかも、 各導電性仕切り部材 2 5は、 第 4図に示すように、 最終段ダ ィノード 8 (ダイノード D y 1 0 ) の各チャンネル Aから放出された電 子が対応するアノード片 2 1の隣のァノード片 2 1に入力できないよう に、 最終段ダイノード 8の各チャンネル Aと、 対応するアノード片 2 1 の隣のアノード片 2 1 とを遮蔽するような形状及び大きさとなっている 具体的には、 導電性仕切り部材 2 5の管軸方向の断面高さ Z 1を高く し て、 その上端を最終段ダイノード 8の対応する二次電子放出片 2 4の下 端に近接させることにより、 各アノード片 2 1から最終段ダイノード 8 の対応するチャンネル Aの隣のチャンネル Aが見通せないようになって いる。 言い換えれば、 最終段ダイノード 8の各チャンネル Aから隣のチ ヤンネル Aのアノード片 2 1が見通せない。 すなわち、 最終段ダイノー ド 8の各チャンネル Aは、 隣のチャンネル Aのアノード片 2 1を直線上 に直接望むことができない。 このため、 最終段ダイノード 8 ( D y 1 0 ) の各チャンネル Aから放出された電子が隣のチャンネル Aのァノード片 2 1に入射することを防止することができる。 In addition, as shown in FIG. 4, each conductive partition member 25 is adjacent to the anode piece 21 to which the electrons emitted from each channel A of the final dynode 8 (dynode Dy10) correspond. The shape and size are such that each channel A of the last dynode 8 and the anode piece 21 adjacent to the corresponding anode piece 21 are shielded so that the input cannot be input to the anode piece 21 of the final stage. It is to increase the tube axis direction of the section height Z 1 of the conductive partition member 2 5, by approaching the upper end to the corresponding secondary lower end of the electron-emitting element 2 4 of the final stage dynode 8, each The channel A adjacent to the corresponding channel A of the last dynode 8 from the anode piece 21 cannot be seen. In other words, the anode piece 21 of the adjacent channel A cannot be seen from each channel A of the last dynode 8. That is, each channel A of the final stage dynode 8 cannot directly desire the anode piece 21 of the adjacent channel A on a straight line. For this reason, it is possible to prevent electrons emitted from each channel A of the final dynode 8 (Dy10) from being incident on the anode node 21 of the adjacent channel A.
以上のように、 上記断面高さ z 1を有する各導電性仕切り部材 2 5に よれば、 最終段ダイノード 8の各チャンネル Aからの電子が隣のチャン ネルのアノード片 2 1に入力することを防止でき、 かつ、 アノード片 2 1から放出された電子が隣のアノード片 2 1に入射することをも防止で きる。  As described above, according to each of the conductive partition members 25 having the above-described cross-sectional height z1, the electrons from each channel A of the final-stage dynode 8 are input to the anode piece 21 of the adjacent channel. In addition, it is possible to prevent electrons emitted from the anode piece 21 from being incident on the adjacent anode piece 21.
ここで、 本実施の形態では、 各アノード片 2 1は、 断面円形状の棒状 をしており、 その断面の直径 (すなわち、 管軸方向の高さ z 2 ) は 0 . 3 5 m mである。 一方、 各導電性仕切り部材 2 5は、 断面矩形状の棒状 をしており、 その断面高さ (すなわち、 管軸方向の高さ) z 1は 0. 5 ramである。 各導電性仕切り部材 2 5の上端と最終段ダイノード 8 (D y 1 0)の二次電子放出片 2 4の下端との距離は、 0. 1 5 mmである。 ただし、各ァノード片 2 1は上記のような断面円形状でなくてもいい。 例えば、 各アノード片 2 1は、 第 2 (B) 図に示したような断面矩形状 等、 任意の断面形状とすることができる。 また、 各導電性仕切り部材 2 5も、上記の断面矩形状に限らず、任意の断面形状とすることができる。 以上のように、 電子増倍器 7は、 リニアに配列された複数のチャンネ ル Aを有している。 そして、 電子増倍器 7内の電子増倍部 9、 アノード 1 2、 及ぴ、 遮蔽電極 1 5には、 ステムピン 1 0を介して、 図示しない ブリーダ回路からなる電圧印加装置 6 0より所定の電圧が供給される。 ここで、 光電面 3 a と収束電極板 1 3には、 同電位の電圧 (例えば、 負 の電位) が印加される。 また、 電子増倍部 9の全 1 0段のダイノード 8 とアノード 1 2には、 光電面 3 aに最も近い第 1段からァノード 1 2に 最も近い第 1 0段、 さらに、 アノード 1 2に向かって、 電位が順次高く なるように、 電圧が印加される。 例えば、 光電面 3 aに一 8 0 0ボルト を印加し、 アノード 1 2のアノード片 2 1を 0ボルトとする場合には、 第 1段〜第 1 0段のダイノード 8 (D y l〜D y l O) には、 一 8 0 0 Vより順次 ( 80 0) Z l l =約 7 2. 7ボルトずつ増加する電位が、 印加される。 具体的には、 第 1段ダイノード 8 (D y 1 ) には、 約一 7 2 7. 3ポルト、 第 2段ダイノード 8 (D y 2 ) には、 約一 6 5 4. 6 ポルト、 · · ·、 そして、 最終段 (第 1 0段) ダイノード 8 (D y 1 0) には、 約一 7 2. 7ポルトが印加される。 遮蔽電極 1 5には、 後述する ように、最終段ダイノード 8 (D y l O) とアノード 1 2との中間電位、 例えば、 一 ( 8 0 0) Z 1 1ボルトの半分 =約一 3 6. 4ボルトが、 印 加される。 受光面板 3内には、 光吸収ガラスからなる複数の仕切り部 (ス リ ッ ト) 2 6が複数のチャンネル Aに 1対 1 に対応するよ う に埋 設されている。 すなわち、 各仕切り部 2 6 は、 第 1 の収束電極 1 3の収束片 2 3 に対応する位置に設けられている。 この結果、 受 光面板 3内が仕切り部 2 6 によってチャンネル A毎に仕切られ、 受光面板 3 内で光のクロス トークが適切に防止されている。 仕切 り部 2 6には、 例えば、 着色 (例えば、 黒色) が施された薄板ガ ラスが設けられており、 光の吸収を可能なら しめている。 Here, in the present embodiment, each anode piece 21 has a rod shape with a circular cross section, and the diameter of the cross section (that is, the height z 2 in the tube axis direction) is 0.35 mm. . On the other hand, each conductive partition member 25 has a rod shape having a rectangular cross section. And its cross-sectional height (that is, height in the tube axis direction) z 1 is 0.5 ram. The distance between the upper end of each conductive partition member 25 and the lower end of the secondary electron emission piece 24 of the final stage dynode 8 (Dy10) is 0.15 mm. However, each node piece 21 does not have to have a circular cross section as described above. For example, each anode piece 21 can have any cross-sectional shape, such as a rectangular cross-section as shown in FIG. 2 (B). Also, each of the conductive partition members 25 is not limited to the above-described rectangular cross-section, but may have any cross-sectional shape. As described above, the electron multiplier 7 has a plurality of channels A linearly arranged. The electron multiplier 9, the anode 12, and the shield electrode 15 in the electron multiplier 7 are provided with predetermined voltage from a voltage application device 60 composed of a bleeder circuit (not shown) via a stem pin 10. Voltage is supplied. Here, the same potential voltage (for example, a negative potential) is applied to the photocathode 3 a and the focusing electrode plate 13. The dynodes 8 and anodes 12 of all 10 stages of the electron multiplier 9 are connected from the first stage closest to the photocathode 3 a to the 10th stage closest to the anode 12, and further to the anode 12. The voltage is applied so that the potential gradually increases. For example, when 180 volts is applied to the photocathode 3a and the anode piece 21 of the anode 12 is set to 0 volt, the dynodes 8 (Dyl to Dyl) in the first to tenth stages are used. O) is applied with a potential that sequentially increases from 800 V (800) Z ll = about 72.7 volts. Specifically, the first stage dynode 8 (D y 1) has about 1 72.3 Porto, the second stage dynode 8 (D y 2) has about 1 64.6 Porto, ··· And the final stage (stage 1) Dynode 8 (D y10) is applied with approximately 12.7 ports. As will be described later, the shielding electrode 15 has an intermediate potential between the final stage dynode 8 (DylO) and the anode 12, for example, one (800) Z 1 half of 1 volt = about 1 36. Four bolts are applied. In the light-receiving surface plate 3, a plurality of partitions (slits) 26 made of light-absorbing glass are embedded so as to correspond to the plurality of channels A on a one-to-one basis. That is, each partition part 26 is provided at a position corresponding to the focusing piece 23 of the first focusing electrode 13. As a result, the inside of the light receiving face plate 3 is partitioned for each channel A by the partitioning part 26, and crosstalk of light in the light receiving face plate 3 is appropriately prevented. The partition 26 is provided with, for example, a colored (for example, black) thin glass sheet, which allows light to be absorbed.
更に、 受光面板 3 a の外側表面 2 9 には、 集光部材 3 0が接着 剤によって固定されている。 集光部材 3 0は、 外部からの光を各 チャンネル A内に確実に入射させるためのものである。 よ り詳し く は、 集光部材 3 0は、 複数個 (すなわち、 チャンネル Aの数) のガラス製の集光レンズ部 3 2からなる。 各集光レンズ部 3 2は 1 つの凸レンズ面 3 1 を有している。 これら複数個の集光レンズ 部 3 2が、 一方向 (X軸に平行な方向) に並設された状態で、 受 光面板 3 a の外側表面 2 9に固定されている。 かかる構造の集光 部材 3 0は、 外部からの光を凸レンズ面 3 1 によって仕切り部 2 6間で集光させながら、 光電面 3 aに確実に入射させることがで きる。 したがって、 光の集光性が高められる と同時に光のク ロス トーク対策を確実なものと している。 なお、 集光部材 3 0 と して 光ファイバ等のライ トガイ ドを使用しても良い。  Further, a light collecting member 30 is fixed to the outer surface 29 of the light receiving face plate 3a with an adhesive. The light collecting member 30 is for ensuring that external light is incident on each channel A. More specifically, the light collecting member 30 is composed of a plurality of (that is, the number of channels A) glass light collecting lens portions 32. Each condenser lens section 32 has one convex lens surface 31. The plurality of condenser lens portions 32 are fixed to the outer surface 29 of the light receiving face plate 3a in a state of being arranged in one direction (a direction parallel to the X axis). The condensing member 30 having such a structure can surely make external light incident on the photocathode 3a while condensing light from the outside between the partitions 26 by the convex lens surface 31. Therefore, the light condensing property is enhanced, and at the same time, measures against light crosstalk are ensured. In addition, a light guide such as an optical fiber may be used as the light collecting member 30.
また、 第 1 の収束電極 1 3 の各収束片 2 3 の表面には、 図示し ない酸化膜が形成されており、 各収束片 2 3 での光の反射を無く している。 従って、 たとえ、 受光面 3 を透過した光がさ らに光電 面 3 a を抜け出ていずれかの収束片 2 3に入射しても、 この光が 収束片 2 3 で反射することが防止される。 このため、 かかる反射 光が光電面 3 a に戻るこ とによ り 光電面 3 a から無用な電子を 放出させ光のク ロス トークを生じさせるこ とを防止できる。 この よ うに、 第 1 の収束電極 1 3 は、 反射防止メ ッシュ と して機能し ている。 In addition, an oxide film (not shown) is formed on the surface of each converging piece 23 of the first converging electrode 13 so as to eliminate light reflection on each converging piece 23. Therefore, even if the light transmitted through the light receiving surface 3 further exits the photocathode 3 a and enters one of the converging pieces 23, this light is prevented from being reflected by the converging piece 23. . Because of this, such reflection By returning the light to the photocathode 3a, it is possible to prevent unnecessary electrons from being emitted from the photocathode 3a to cause crosstalk of light. Thus, the first focusing electrode 13 functions as an anti-reflection mesh.
また、 多段状に整列された全 1 0段のダイノー ド 8のうち光電 面 3 a側の第 1段目及び第 2段目のダイ ノー ド 8 ( D y l、 D y 2 ) の各二次電子放出片 2 4は、 光電面 3 a側から見た場合に見 通せる位置にあり、 一方、 他の段のダイノー ド 8 ( D y 3〜D y 1 0 ) は、 電子増倍経路 Lが蛇行している故に、 光電面 3 a側か ら見通すこ とができない。 したがって、 光電面 3 a から抜け出た 光が第 1段目及び第 2段目のダイノー ド 8 ( D y l 、 D y 2 ) の 各二次電子放出片 2 4に入射する可能性がある。 このため、 第 1 段目及び第 2段目 のダイ ノー ド 8 の二次電子放出片 2 4 の表面 にも図示しない酸化膜が形成されており 、 これらでの光の反射を 無く して、 反射光による無用な電子を光電面 3 aから放出させな いよ う にし、 光のクロス トークを防止している。 なお、 第 1 の収 束電極 1 3 の収束片 2 3や第 1段 · 第 2段ダイノー ド 8 には、 光 無反射処理と して、 酸化膜の代わり に、 例えば、 ブラックアルミ のよ う な光吸収性の物質を蒸着等によ り形成してもよい。  In addition, of the 10-stage dynodes 8 arranged in a multi-stage manner, the secondary of each of the first-stage and second-stage dynodes 8 (Dyl, Dy2) on the photocathode 3a side is used. The electron emission pieces 24 are at positions where they can be seen when viewed from the photocathode 3a side, while the dynodes 8 (Dy3 to Dy10) of the other stages have electron multiplication paths L Cannot be seen from the photocathode 3a side. Therefore, there is a possibility that the light exiting from the photocathode 3a will be incident on each of the secondary electron emitting pieces 24 of the first and second dynodes 8 (Dyl, Dy2). For this reason, an oxide film (not shown) is also formed on the surface of the secondary electron emission piece 24 of the first and second stage die nodes 8, and the reflection of light at these is eliminated. The unnecessary cross-talk of light is prevented by preventing unnecessary electrons from being emitted from the photocathode 3a due to the reflected light. The focusing piece 23 of the first focusing electrode 13 and the first and second stage dynodes 8 are subjected to light non-reflection treatment by using, for example, black aluminum instead of an oxide film. A light absorbing material may be formed by vapor deposition or the like.
さらに、 第 1 の収束電極 1 3の各収束片 2 3の管軸方向の長さ を長く して、 各収束片 2 3 の上部を光電面 3 a に近接させ、 第 1 段目及ぴ第 2段目のダイノー ド 8 ( D y l 、 D y 2 ) の各チャン ネル Aの二次電子放出片 2 4の表面から、 光電面 3 a 内の隣のチ ヤ ンネル位置が見通せないよ うになつている。 したがって、 第 1 段目及び第 2段目 のダイ ノー ド 8 の各チャンネル Aの二次電子 放出片 2 4の表面は、 光電面 3 a 内の隣のチャンネル位置を直線 上に直接望むことができない。 このため、 たとえ第 1段目及び第 2段目 のダイ ノー ド 8 の二次電子放出片 2 4 の表面にて光が多 少反射したと しても、 その光が光電面 3 a の隣のチャンネル位置 に戻るこ とが防止されており、 光のクロス トークがよ り確実に防 止されている。 なお、 各収束片 2 3 の管軸方向の長さを長くする こ とによって、 各収束片 2 3 の下部をも第 1段ダイ ノー ド 8 ( D y 1 ) に近接させるよ う にしても良い。 Further, the length of each converging piece 23 of the first converging electrode 13 in the tube axis direction is increased, and the upper part of each converging piece 23 is brought close to the photocathode 3a. The position of the next channel in the photocathode 3a cannot be seen from the surface of the secondary electron emission piece 24 of each channel A of the second dynode 8 (Dyl, Dy2). ing. Therefore, the surface of the secondary electron emission piece 24 of each channel A of the first-stage and second-stage die nodes 8 is linearly aligned with the adjacent channel position in the photocathode 3a. You can't want directly above. For this reason, even if the light is slightly reflected on the surface of the secondary electron emission piece 24 of the first and second stage die nodes 8, the light is reflected next to the photocathode 3a. Return to the channel position is prevented, and optical crosstalk is more reliably prevented. By increasing the length of each converging piece 23 in the tube axis direction, the lower part of each converging piece 23 may also be made to approach the first-stage die node 8 (Dy1). good.
上記構造を有する本実施の形態の光電子増倍管 1では、 受光面板 3を 透過した光は、光電面 3 aの任意の位置に入射すると、電子に変換され、 その電子は、 対応するチャンネル A内に入射することになる。 なお、 光 電面 3 aに入射した光の一部が光電面 3 aを抜け出てしまっても、 この 光は第 1の収束電極 1 3や第 1段、第 2段ダイノード 8にて反射されず、 また、 たとえ、 第 1段、 第 2段ダイノード 8にて反射されても、 収束電 極 1 3の収束片 2 3により遮られて、 光電面 3 aの隣のチャンネル Aに 戻ってしまうことが防止される。 したがって、 光電面 3 aから無用な電 子が放出されるのが防止され、 光のクロストークが防止されている。 光電面 3 aの任意の位置で光から変換された電子は、 対応するチャン ネル Aにおいて、 まず、 第 1の収束電極 1 3における対応する開口部 1 3 aを通過し、 その際、 収束される。 さらに、 電子増倍部 9における対 応する電子増倍経路 Lを通りながら、 全段のダイノード 8で多段増倍さ れて、 最終段ダイノード 8の対応するチャンネル Aから放出される。 こ うして多段增倍され最終段ダイノード 8の対応するチャンネル Aから放 出された電子は、 対応するアノード片 2 1に入射する。 この結果、 当該 所定のチャンネル Aのァノード片 2 1から、 受光面板 3の対応する位置 に入射した光の量を個別的に示す所定の出力信号が出力される。  In the photomultiplier tube 1 of the present embodiment having the above structure, the light transmitted through the light receiving surface plate 3 is converted into electrons when incident on an arbitrary position on the photocathode 3a, and the electrons are converted into the corresponding channel A Will be incident inside. Even if a part of the light incident on the photocathode 3a exits the photocathode 3a, this light is reflected by the first focusing electrode 13 and the first and second dynodes 8. Also, even if the light is reflected by the first and second dynodes 8, it is blocked by the converging piece 23 of the converging electrode 13 and returns to the channel A adjacent to the photocathode 3a. Is prevented. Therefore, unnecessary electrons are prevented from being emitted from the photocathode 3a, and light crosstalk is prevented. Electrons converted from light at any position on the photocathode 3a first pass through the corresponding aperture 13a in the first focusing electrode 13 in the corresponding channel A, where they are converged. You. Further, while passing through the corresponding electron multiplying path L in the electron multiplying unit 9, the light is multiplied by all the dynodes 8 in all stages and is emitted from the corresponding channel A of the final dynode 8. The electrons multiplied by the multi-stage and emitted from the corresponding channel A of the final dynode 8 enter the corresponding anode piece 21. As a result, a predetermined output signal that individually indicates the amount of light that has entered the corresponding position of the light receiving face plate 3 is output from the node piece 21 of the predetermined channel A.
ここで、 電子増倍部 9は積層型チャンネルダイノードであるため: 最 終段ダイノ一ドの二次電子放出片 2 4から放出された電子のほとんどは、 対応するアノード片 2 1へ向かう経路上を飛行する。 しかも、 遮蔽電極 1 5、 すなわち、 導電性仕切り部材 2 5には、 ァノード片 2 1の電位と 最終段ダイノード 8 ( D y 1 0 )の電位との間の電位が与えられている。 そのため、 最終段ダイノード 8 ( D y 1 0 ) から出た電子は、 対応する アノード片 2 1の両側に設けられている導電性仕切り部材 2 5により、 電気的に引っ張られながら、 より高電位の対応するァノード片 2 1へ確 実に導かれる。 Here, the electron multiplier 9 is a stacked channel dynode: Most of the electrons emitted from the secondary electron emitting pieces 24 of the final stage die fly on the path toward the corresponding anode piece 21. In addition, a potential between the potential of the anode piece 21 and the potential of the final dynode 8 (Dy 10) is applied to the shield electrode 15, that is, the conductive partition member 25. For this reason, the electrons emitted from the final dynode 8 (Dy 10) are electrically pulled by the conductive partition members 25 provided on both sides of the corresponding anode piece 21, and have a higher potential. It is definitely led to the corresponding node piece 21.
ここで、 電子がアノード片 2 1に到達すると、 アノード片 2 1は二次 電子を放出する可能性がある。 しかしながら、 かかる二次電子は、 当該 アノード片 2 1の両側に設けられたより低い電位の導電性仕切り部材 2 5により、 電気的に押さえ込まれている。 したがって、 二次電子は、 ァ ノード片 2 1から、 放出されにく くなつている。 また、 たとえ放出され ても、 導電性仕切り部材 2 5や他のァノード片 2 1に到達することがで きず、 元のアノード片 2 1へ引き戻される。  Here, when the electrons reach the anode piece 21, the anode piece 21 may emit secondary electrons. However, such secondary electrons are electrically suppressed by the lower-potential conductive partition members 25 provided on both sides of the anode piece 21. Therefore, secondary electrons are hard to be emitted from the anode piece 21. Also, even if released, it cannot reach the conductive partition member 25 or the other anode piece 21 and is returned to the original anode piece 21.
以下、 遮蔽電極 1 5に印加すべき電位 (シールド電位) と、 アノード 電位及ぴ最終段ダイノード電位との関係について、より詳細に説明する。 導電性仕切り部材 2 5がアノード片 2 1より高電位である場合には、 最終段ダイノード 8からの電子の多くが導電性仕切り部材 2 5に直接入 射してしまい、 アノード片 2 1の出力感度が低下してしまう。 たとえ、 最終段ダイノード 8 ( D y 1 0 ) からの電子の一部がアノード片 2 1に 正しく入射しても、 かかる入射に伴い二次電子がァノード片 2 1より放 出され、 アノード電位より高い電位の導電性仕切り部材 2 5に電気的に 引き寄せられて、 導電性仕切り部材 2 5に入射してしまい、 アノード片 出力が低下してしまう。  Hereinafter, the relationship between the potential (shield potential) to be applied to the shield electrode 15, the anode potential, and the final dynode potential will be described in more detail. If the conductive partition member 25 has a higher potential than the anode piece 21, much of the electrons from the final dynode 8 directly enter the conductive partition member 25, and the output of the anode piece 21 is output. The sensitivity decreases. Even if some of the electrons from the final dynode 8 (Dy10) enter the anode piece 21 correctly, secondary electrons are emitted from the anode piece 21 with the incidence, and the anode potential It is electrically attracted to the high-potential conductive partition member 25 and is incident on the conductive partition member 25, and the output of the anode is reduced.
また、 導電性仕切り部材 2 5の電位が、 アノード片 2 1 と同電位か、 もしくはアノード片 2 1の電位より低いもののァノード電位との差が小 さい場合には、 最終段ダイノード 8 ( D y 1 0 ) からの電子の一部が、 導電性仕切り部材 2 5に直接入射してしまい、 やはり、 アノード出力が 低くなつてしまう。 また、 たとえ、 最終段ダイノード 8からの電子が対 応するアノード片 2 1に適切に入射しても、 この入射の際にアノード片 2 1で生成される二次電子のエネルギー (放出スピード) の方が導電性 仕切り部材 2 5の電位とァノード片 2 1の電位との差に比べ大きいため に、 当該二次電子は、 アノード片 2 1から放出され、 導電性仕切り部材 2 5もしくは隣のアノード片 2 1に入射してしまう。 かかる二次電子の 放出により、 アノード片 2 1の出力感度が落ちてしまう。 また、 二次電 子が隣のァノード片 2 1に入射すると、 クロス トークが生じてしまう。Also, whether the potential of the conductive partition member 25 is the same as that of the anode piece 21, Alternatively, when the difference from the anode potential is smaller than the potential of the anode piece 21, a part of the electrons from the final-stage dynode 8 (Dy 10) directly enter the conductive partition member 25. As a result, the anode output will be low. Even if the electrons from the final stage dynode 8 properly enter the corresponding anode piece 21, the energy (emission speed) of the secondary electrons generated by the anode piece 21 at the time of this incidence is reduced. Is larger than the difference between the potential of the conductive partition member 25 and the potential of the anode piece 21, the secondary electrons are emitted from the anode piece 21 and the conductive partition member 25 or the adjacent anode is discharged. It is incident on piece 21. Due to such emission of secondary electrons, the output sensitivity of the anode piece 21 decreases. Also, when a secondary electron is incident on the adjacent node piece 21, crosstalk occurs.
—方、 導電性仕切り部材 2 5の電位がァノード片 2 1の電位より低 く、 かつ、 アノード片電位との差がある程度大きければ、 最終段ダイ ノード 8 ( D y 1 0 ) からの電子を、 適切に、 対応するァノード片 2 1に入射させることができる。 しかも、 その入射の際にアノード片 2 1で生成される二次電子のエネルギー (放出スピード) が導電性仕切 り部材 2 5の電位とアノード片 2 1の電位との差に比べ小さいため、 当該二次電子をァノード片 2 1に押さえ込むことができる。 すなわち- アノー ド片 2 1から二次電子を放出されにく く し、 また、 たとえ放出 されても当該アノード片 2 1に押し戻すことができる。 On the other hand, if the potential of the conductive partition member 25 is lower than the potential of the anode piece 21 and the difference between the potential of the anode piece 21 and the potential of the anode piece is large to some extent, the electrons from the final dynode 8 (Dy10) are discharged. However, it can be appropriately incident on the corresponding node piece 21. Moreover, the energy (emission speed) of the secondary electrons generated at the anode piece 21 at the time of the incidence is smaller than the difference between the potential of the conductive partition member 25 and the potential of the anode piece 21, Secondary electrons can be confined to the anode piece 21. That is, secondary electrons are hardly emitted from the anode piece 21, and even if they are emitted, they can be pushed back to the anode piece 21.
ただし、 導電性仕切り部材 2 5の電位がァノ一ド電位より十分低く なり最終段ダイノ一ド電位に近くなつてく ると、 導電性仕切り部材 2 5が発生する電子レンズ効果により、 最終段ダイノード 8からの電子 は、 対応するチヤンネルのアノード片 2 1へ適切に導かれなくなつて しまう。  However, when the potential of the conductive partition member 25 becomes sufficiently lower than the anode potential and becomes close to the final stage node potential, the electron lens effect generated by the conductive partition member 25 causes the final stage dynode. Electrons from 8 will not be properly directed to the corresponding channel anode piece 21.
したがって、 導電性仕切り部材 2 5 (遮蔽電極 1 5 ) に印加すべき電 位は、 最終段ダイノード電位とアノード電位との中間電位であって、 導 電性仕切り部材 2 5が最終段ダイノード 8の各チャンネル Aから出力さ れた電子を対応するァノード片 2 1に適切に導くことができ、 かつ、 最 終段ダイノード 8からの放出電子あるいはァノード片 2 1からの放出電 子が導電性仕切り部材 2 5に入射してしまわない範囲内に設定する。 例 えば、 遮蔽電極 1 5の電位を、 そのアノード電位との差が、 アノード電 位と最終段ダイノード電位との差の、 例えば、 約 5 %以上約 70 %以下 の範囲内に設定することが好ましい。 Therefore, the voltage to be applied to the conductive partition member 25 (shielding electrode 15) The potential is an intermediate potential between the final dynode potential and the anode potential, and the conductive partition member 25 appropriately transfers the electrons output from each channel A of the final dynode 8 to the corresponding anode node 21. The distance is set so that the electrons can be guided and the electrons emitted from the final dynode 8 or the electrons emitted from the anode piece 21 do not enter the conductive partition member 25. For example, the potential of the shielding electrode 15 may be set so that the difference between the anode potential and the anode potential is within the range of about 5% or more and about 70% or less of the difference between the anode potential and the final dynode potential. preferable.
(実験)  (Experiment)
本発明者らは、 遮蔽電極 1 5、 すなわち、 各導電性仕切り部材 2 5に 印加すべき電圧の好ましい範囲を調べるための実験を行った。  The present inventors conducted an experiment for examining a preferable range of a voltage to be applied to the shielding electrode 15, that is, each conductive partition member 25.
なお、 この実験においても、 光電子増倍管 1の光電面 3 aに一 8 0 0 Vを印加し、 アノード 1 2を 0 Vとし、 全第 1 0段のダイノード 8 (D y l〜D y l O) に、 — 8 0 0 Vより順次 (8 0 0) Z l l =約 7 2. 7 Vずつ増加する電位を印加した。 したがって、 最終段ダイノード 8に は、 一 (8 0 0) / 1 1 =- 7 2. 7 Vが印加された。  In this experiment, too, 180 V was applied to the photocathode 3a of the photomultiplier tube 1, the anode 12 was set to 0 V, and the dynodes 8 (Dyl to Dyl O ), A potential was sequentially increased from −800 V by (800) Z ll = approximately 72.7 V. Therefore, a voltage of 1 (800) / 1 1 = -72.7 V was applied to the last dynode 8.
そして、 遮蔽電極 1 5 (すなわち、 各導電性仕切り部材 2 5) の電位 (シールド電位) を一 7 0 V〜十 7 0 Vの間で変化させていき、 ァノー ド片出力がどのように変わるかを調べた。  Then, the potential (shield potential) of the shield electrode 15 (that is, each conductive partition member 25) is changed between 170 V and 170 V, and how the output of the anode changes. I checked.
第 6図は、 遮蔽電極 1 5の電位を変化させた結果得られたアノード出 力の変化を示すグラフである。 ここで、 アノード出力電流がプラスであ るとは、 最終段ダイノード 8からアノード片 2 1に入射する電子の数よ りアノード片 2 1から放出される電子の数が多いことを示している。 逆 に、 アノード出力電流がマイナスであるとは、 最終段ダイノード 8から アノード片 2 1に入った電子が適切にァノード片 2 1で吸収されている ことを示す。 このグラフより明らかなように、 遮蔽電極 1 5の電圧が約一 2 0 Vの 時ァノード片 2 1で最高出力が得られ、 遮蔽電極 1 5の電圧が約一 5 0 V以上約一 5 V以下の時、 アノード片 2 1で許容範囲 (最高出力の約 8 割以上) の出力が得られた。 FIG. 6 is a graph showing a change in anode output obtained as a result of changing the potential of the shielding electrode 15. Here, the positive anode output current indicates that the number of electrons emitted from the anode piece 21 is larger than the number of electrons incident on the anode piece 21 from the last dynode 8. Conversely, a negative anode output current indicates that electrons entering the anode piece 21 from the final dynode 8 are properly absorbed by the anode piece 21. As is clear from this graph, when the voltage of the shielding electrode 15 is about 20 V, the maximum output is obtained from the anode piece 21, and the voltage of the shielding electrode 15 is about 150 V or more and about 15 V. In the following cases, the output within the allowable range (more than 80% of the maximum output) was obtained with the anode piece 21.
以上の実験より、 電子増倍部 9が 1 0段構成のダイノード 8を備えて いる場合において、 光電面 3 aに一 8 0 0ポルト、 アノード 1 2に O V を印加し、 第 1段〜第 1 0段のダイノード 8に、 一 8 0 0ポルトより、 順次、 (8 0 0 ) Z 1 1 =約 7 2 . 7ボルトずつ増加する電位を印加す る場合には、 導電性仕切り部材 2 5、 すなわち、 遮蔽電極 1 5には、 最 終段ダイノード 8とアノード 1 2との中間電位として、 例えば、 約一 5 0ボルト以上約一 5ポルト以下の範囲の電位を印加するのが好ましいこ とがわかった。 例えば、 一 ( 8 0 0 ) / 1 1ボルトの半分 =約一 3 6 · 4ボルトの電位を印加すれば良い。  From the above experiment, when the electron multiplier 9 is provided with a dynode 8 having a 10-stage configuration, 180 ports were applied to the photocathode 3a and OV was applied to the anode 12, and the 1st stage to the 1st stage were applied. When applying a potential that increases in steps of (800) Z 11 = approximately 72.7 volts sequentially from 180 ports to the dynode 8 of the 10th stage, the conductive partition member 25 That is, it is preferable that, for example, a potential in a range of about 150 volts or more and about 15 portes or less is applied to the shielding electrode 15 as an intermediate potential between the final dynode 8 and the anode 12. I understood. For example, a potential of 1 (800) / half of 11 volts = approximately 1364 volts may be applied.
また、 遮蔽電極 1 5に一 3 6 . 4ボルトの電位を印加して実験 を行ったと ころ、 ク ロス トークが減少されチャンネル毎の分解能 が向上していることが確認された。  In addition, when an experiment was performed by applying a potential of 136.4 volts to the shielding electrode 15, it was confirmed that crosstalk was reduced and the resolution of each channel was improved.
以上のよ うに、 本実施の形態の光電子增倍管 1 は、 受光面板 3 に入射した光によって電子を放出する光電面 3 a を有し、 光電面 3 a から放出された電子をチャ ンネル毎に増倍させる複数段の ダイノー ド 8からなる電子增倍部 9を有し、 光電面 3 a と電子増 倍部 9 と の間でチャ ンネル毎に電子を収束させる第 1 の収束電 極 1 3 を有し、 電子増倍部 9の各チャンネルで増倍させた電子に 基づいてチャ ンネル毎に出力信号を送出するアノー ド 1 2 を有 している。 ここで、 電子増倍部 9 は、 積層型チャンネルダイノー ドであり、 複数段のダイノー ド 8が、 光電面 3 a の側からァノー ド 1 2 の側へ向かって、 第 1段目 (D y l ) から最終段目 (D y 1 0 ) まで、 この順に積層状に配置され、 各段のダイ ノー ド 8が 複数のチャンネル Aを規定し、 光電面 3 aから放出された電子を 対応するチャンネル毎に多段増倍させる。 アノー ド 1 2は、 複数 のアノー ド片 2 1 を、 最終段目のダイノー ド 8に対向して、 かつ、 複数のチャンネル Aに 1対 1 に対応して備え、 電子増倍部 9の複 数のチヤ ンネル Aで多段増倍された電子に基づいてチヤ ンネル 毎の出力信号を送出する。 As described above, the photomultiplier tube 1 of the present embodiment has the photocathode 3 a that emits electrons by light incident on the light-receiving surface plate 3, and emits electrons emitted from the photocathode 3 a for each channel. A first convergence electrode 1 for converging electrons for each channel between the photocathode 3a and the electron multiplier 9 between the photocathode 3a and the electron multiplier 9 3 and an anode 12 for transmitting an output signal for each channel based on the electrons multiplied by each channel of the electron multiplier 9. Here, the electron multiplier 9 is a stacked channel dynode, and a plurality of dynodes 8 are arranged in the first stage (D) from the photocathode 3 a side to the anode 12 side. yl) to the final stage (D y Until 10), the dynodes 8 of each stage define a plurality of channels A, and multiply multiply the electrons emitted from the photocathode 3a for each corresponding channel until the order is reached. The anode 12 includes a plurality of anode pieces 21 facing the final stage dynode 8 and corresponding to a plurality of channels A on a one-to-one basis. An output signal for each channel is transmitted based on the electrons multiplied by the number of channels A in multiple stages.
こ こで、 複数の導電性仕切り部材 2 5 を備えた遮蔽電極 1 5が 各導電性仕切り部材 2 5が対応する 2つの隣り合う アノ ー ド片 2 1 の間に位置し、 2つの隣り合うチャンネルを仕切るよ うに、 設けられている。 ここで、 導電性仕切り部材 2 5は、 隣り合うァ ノー ド片 2 1 が互いに見通せず、 かつ、 最終段ダイノード 8 の各 チャ ンネル Aから対応するアノー ド片 2 1 の隣のァノー ド片 2 1 が見通せないよ う な形状及び大き さを有している。 このため、 導電性仕切り部材 2 5は、 隣り合うアノー ド片 2 1 を互いに遮蔽 し、 かつ、 最終段ダイノー ド 8の各チャンネルから対応するァノ ー ド片 2 1 の隣のアノー ド片 2 1 を遮蔽している。 導電性仕切り 部材 2 5 には、 最終段ダイノー ド電位とァノー ド電位との中間の 電位が印加されている。 したがって、 最終段ダイノー ド 8 の各チ ヤ ンネル Aから放出された電子が対応するアノー ド片 2 1 の隣 のァノー ド片 2 1 に入射するのを防止して当該対応するァノ ー ド片 2 1 のみに適切に導き、 かつ、 当該対応するアノー ド片 2 1 から隣のアノー ド片 2 1 へ電子が放出されるのを抑える こ と が できる。 このため、 アノー ド 1 2におけるク ロス トークを防止す るこ とができ、 チャンネル毎の分解能を高めるこ とができる。  Here, the shield electrode 15 provided with the plurality of conductive partition members 25 is located between two adjacent anode pieces 21 corresponding to each conductive partition member 25, and two adjacent anode pieces 21 are provided. It is set up to partition the channel. Here, the conductive partition member 25 is formed such that the adjacent node pieces 21 cannot be seen through each other, and the channel pieces A of the last dynode 8 are adjacent to the corresponding anode pieces 2 1. 1 has a shape and size that cannot be seen through. For this reason, the conductive partition member 25 shields the adjacent anode pieces 21 from each other, and the anode piece 2 adjacent to the corresponding anode piece 21 from each channel of the final stage dynode 8. 1 is shielded. An intermediate potential between the final stage dynode potential and the anode potential is applied to the conductive partition member 25. Therefore, electrons emitted from each channel A of the final dynode 8 are prevented from entering the adjacent anode piece 21 next to the corresponding anode piece 21 and the corresponding anode piece is prevented. It is possible to appropriately guide only to 2 1 and suppress emission of electrons from the corresponding anode piece 21 to the adjacent anode piece 21. Therefore, crosstalk in the anode 12 can be prevented, and the resolution of each channel can be increased.
しかも、 第 1 の収束電極 1 3 の各収束片 2 3 の表面に酸化膜が 形成されているので、 各収束片 2 3 での光の反射を防止して、 反 射光による無用な電子を光電面 3 a から放出させない。 また、 第 1段目及び第 2段目 のダイ ノ ー ド 8 の各二次電子放出片 2 4 の 表面にも酸化膜が形成されているので、 当該第 1段目及ぴ第 2段 目のダイノー ド 8 での光の反射を防止して、 反射光による無用な 電子を光電面 3 a から放出させないよ う にしている。 更に、 各収 束片 2 3の管軸方向の長さを長くすることによ り 、 第 1段目及び 第 2段目 のダイ ノー ド 8 によ り光が多少反射されてもその反射 光が光電面 3 a の隣のチャンネルに戻るのを防止し、 無用な電子 を光電面 3 a から放出させない。 更に、 受光面板 3内に光吸収ガ ラスの仕切り部 2 6 を設けて、 受光面板 3内でのチャンネル A間 での光のク ロス トークを防止している。 しかも、 受光面板 3の外 側表面 2 9上に、 集光レンズ部 3 2をチャンネル A毎に対応して 並べるこ とで、 各チャンネル A毎の光の集光を確実にしている。 以上のよ う に、 受光面 3に仕切り部 2 6 を形成し、 第 1の収束電 極 1 3 の各収束片 2 3 を管軸方向に長く し、 第 1 の収束電極 1 3 の各収束片 2 3 と第 1段、 第 2段ダイノー ド 8の各二次電子放出 片 2 4に酸化膜を形成し、 かつ、 集光レンズ 3 2 を設け、 光のク ロス トークを抑えるよ うに構成したので、 チャンネル A間のクロ ス トークを確実に抑え、 チャンネル毎の分解能を向上させている c なお、 上記説明では、 電子增倍部 9において複数のチャンネル Aが 1 次元アレイ状に配列されていた。 このため、 アノード 1 2においても、 第 5 ( A ) 図及ぴ第 5 ( B ) 図に示すように、 複数の棒状アノード片 2 1が 1次元状にリユアに配列されていた。 Moreover, an oxide film is formed on the surface of each focusing piece 23 of the first focusing electrode 13. Since it is formed, reflection of light at each converging piece 23 is prevented, and unnecessary electrons due to reflected light are not emitted from the photocathode 3a. Further, since an oxide film is also formed on the surface of each secondary electron emission piece 24 of the first and second dynodes 8, the first and second stages The reflection of the light at the dynode 8 is prevented so that unnecessary electrons due to the reflected light are not emitted from the photocathode 3a. Further, by increasing the length of each of the converging pieces 23 in the tube axis direction, even if light is slightly reflected by the first and second stage die nodes 8, the reflected light To return to the channel next to the photocathode 3a and prevent unnecessary electrons from being emitted from the photocathode 3a. Further, a light absorbing glass partition 26 is provided in the light receiving surface plate 3 to prevent light crosstalk between channels A in the light receiving surface plate 3. In addition, by arranging the condenser lenses 32 on the outer surface 29 of the light-receiving surface plate 3 in correspondence with each channel A, light of each channel A is surely collected. As described above, the partitioning part 26 is formed on the light receiving surface 3, each focusing piece 23 of the first focusing electrode 13 is elongated in the tube axis direction, and each focusing piece 13 of the first focusing electrode 13 is elongated. An oxide film is formed on each of the secondary electron emitting pieces 24 of the piece 23 and the first and second stage dynodes 8 and a condensing lens 32 is provided to suppress crosstalk of light. since the suppress reliably cross-talk between the channels a, Note c thereby improving the resolution of each channel, in the above description, a plurality of channel a are arranged in the form a one-dimensional array in the electronic增倍9 Was. For this reason, also in the anode 12, as shown in FIGS. 5 (A) and 5 (B), a plurality of rod-shaped anode pieces 21 were arranged one-dimensionally in the lower part.
しかしながら、 電子増倍部 9においては、 複数のチャンネル Aが 2次 元マ トリ ックス状に配列されていても良い。 すなわち、 各段のダイノー ド 8において、 複数の二次電子増倍片 2 4が、 X軸に平行な方向と Y軸 に平行な方向との両方からなる 2次元方向にマトリックス状に配列され ていても良い。 However, in the electron multiplier 9, a plurality of channels A may be arranged in a two-dimensional matrix. In other words, each stage dyno In Example 8, the plurality of secondary electron multipliers 24 may be arranged in a matrix in a two-dimensional direction including both a direction parallel to the X axis and a direction parallel to the Y axis.
かかる場合には、アノード 1 2においても、第 5 ( A )図及び第 5 ( B ) 図を参照して説明した 1次元リニア配置構造の代わりに、 例えば、 第 7 ( A ) 図及ぴ第 7 ( B ) 図に示すような 2次元配置構造とすれば良い。 より詳しくは、 複数の略正方形板状のァノード片 2 1を、 セラミック基 板 2 0上に、 X軸に平行な方向と Y軸に平行な方向との両方からなる 2 次元方向にマトリックス状に配列すれば良い。遮蔽電極 1 5においても、 複数の導電性仕切り部材 2 5を二次元メ ッシュ (格子) 状に配列し枠板 2 2に接続すれば良い。 この結果、 隣り合う導電性仕切り部材 2 5の間 に略正方形状の開口部 1 5 aが形成される。 かかる構造の遮蔽電極 1 5 を、 各ァノード片 2 1が対応する開口部 1 5 a内に位置するように、 セ ラミック基板 2 0上に配置する。  In such a case, in the anode 12, instead of the one-dimensional linear arrangement structure described with reference to FIGS. 5 (A) and 5 (B), for example, FIG. 7 (A) and FIG. 7 (B) A two-dimensional arrangement structure as shown in the figure may be used. More specifically, a plurality of substantially square plate-shaped anode pieces 21 are formed on a ceramic substrate 20 in a matrix in a two-dimensional direction including both a direction parallel to the X axis and a direction parallel to the Y axis. Just arrange them. Also in the shield electrode 15, a plurality of conductive partition members 25 may be arranged in a two-dimensional mesh (lattice) shape and connected to the frame plate 22. As a result, a substantially square opening 15a is formed between the adjacent conductive partition members 25. The shielding electrode 15 having such a structure is arranged on the ceramic substrate 20 such that each of the anode pieces 21 is located in the corresponding opening 15a.
なお、かかる 2次元配置構造の場合にも、第 7 ( B ) 図に示すように、 各導電性仕切り部材 2 5の管軸方向の高さ z 1を、 アノード片 2 1の高 さ Z 2より高く して、 隣り合うアノード片 2 1が互いに見通せないよう にし、 隣り合うアノード片 2 1を互いに遮蔽すれば良い。 たとえァノー ド片 2 1から二次電子が放出されても、 この二次電子が隣のアノード片 2 1に入射するのを防止することができる。 しかも、 各導電性仕切り部 材 2 5の管軸方向の高さ z 1を高く してその上端を最終段ダイノード 8 の対応する二次電子放出片 2 4の下端に近接させることにより、 最終段 ダイノード 8の各チャンネル Aから対応するァノード片 2 1の隣のァノ ード片 2 1が見通せないようにすれば良い。 最終段ダイノード 8の各チ ヤンネル Aに対し、 対応するァノード片 2 1の隣のァノード片 2 1を遮 蔽できるため、 最終段ダイノード 8の各チャンネル Aから放出された電 子が隣のァノード片 2 1に入射するのを防止することができる。 In this two-dimensional arrangement, as shown in FIG. 7 (B), the height z 1 of each conductive partition member 25 in the tube axis direction is the height Z 2 of the anode piece 21. The height may be increased so that the adjacent anode pieces 21 cannot be seen through each other, and the adjacent anode pieces 21 may be shielded from each other. Even if secondary electrons are emitted from the anode piece 21, it is possible to prevent the secondary electrons from being incident on the adjacent anode piece 21. In addition, the height z1 of each conductive partition member 25 in the tube axis direction is increased so that the upper end thereof is close to the lower end of the corresponding secondary electron emission piece 24 of the final dynode 8, so that the final stage It suffices that the channel piece 21 adjacent to the corresponding node piece 21 from each channel A of the dynode 8 cannot be seen through. Since each channel A of the final dynode 8 can shield the adjacent node 21 of the corresponding node 21, the electric power emitted from each channel A of the final dynode 8 can be shielded. It is possible to prevent a child from entering the adjacent node piece 21.
また、 第 7 ( B ) 図においては、 アノード片 2 1も導電性仕切り部材 2 5も、 共に、 断面矩形状であつたが、 他の任意の断面形状とすること ができる。  Further, in FIG. 7 (B), both the anode piece 21 and the conductive partition member 25 have a rectangular cross section, but may have any other cross section.
(第 2の実施の形態)  (Second embodiment)
本発明の第 2の実施の形態による光電子増倍管及びその使用方法につ いて第 8図に基づき説明する。  A photomultiplier tube according to a second embodiment of the present invention and a method of using the same will be described with reference to FIG.
本実施の形態の光電子増倍管 1は、 第 8図に示すように、 最終段 (第 1 0段) ダイノード 8 とアノード 1 2 との間に、 第 2の収束電極 1 7が 設けられている点を除き、 第 4図、 第 5 ( A ) 図、 第 5 ( B ) 図を参照 して説明した第 1の実施の形態の光電子増倍管 1 と同一である。  As shown in FIG. 8, the photomultiplier tube 1 according to the present embodiment has a second focusing electrode 17 provided between the last stage (the tenth stage) dynode 8 and the anode 12. Except for this point, it is the same as the photomultiplier tube 1 of the first embodiment described with reference to FIG. 4, FIG. 5 (A), and FIG. 5 (B).
本実施の形態では、 第 2の収束電極 1 7は、 互いに平行に配列された 複数本の直線状の収束片 2 7を有している。 隣接する収束片 2 7間にス リッ ト状の開口部 1 7 aが形成されている。 したがって、 複数本の開口 部 1 7 aが、 一方向 (X軸に平行な方向) にリニアに配列されている。 これら複数の開口部 1 7 aは、電子増倍部 9の複数の電子增倍経路 L (複 数のチャンネル A ) と、 一対一で対応している。 各開口部 1 7 aは、 電 子増倍部 9の最終段ダイノード 8 ( D y 1 0 ) の対応するチャンネル A から放出された電子を収束し、 対応するァノード片 2 1に導くためのも のである。  In the present embodiment, the second focusing electrode 17 has a plurality of linear focusing pieces 27 arranged in parallel with each other. A slit-like opening 17a is formed between adjacent converging pieces 27. Therefore, the plurality of openings 17a are linearly arranged in one direction (a direction parallel to the X axis). The plurality of openings 17 a correspond one-to-one with the plurality of electron multiplication paths L (the plurality of channels A) of the electron multiplier 9. Each opening 17 a is used to converge the electrons emitted from the corresponding channel A of the final dynode 8 (Dy 10) of the electron multiplier 9 and to guide the electrons to the corresponding anode piece 21. It is.
ここで、 第 2の収束電極 1 7には、 電子を最終段ダイノード 8の各チ ヤンネル Aから対応するァノード片 2 1に導くために適した電子レンズ を形成するために必要な所定の電位が印加される。 例えば、 第 2の収束 電極 1 7には、 最終段ダイノード 8と同一の電位が印加される。 具体的 には、 既述の例のように、 光電面 3 aに一 8 0 0 Vを印加しァノード電 位を 0 Vとする場合には、 最終段 (第 1 0段) ダイノード 8と第 2の収 束電極 1 Ίに、 互いに等しい— 7 2 . 7 Vを印加し、 遮蔽電極 1 5に— 3 6 . 4 Vを印加すれば良い。 Here, a predetermined potential required to form an electron lens suitable for guiding electrons from each channel A of the final stage dynode 8 to the corresponding anode piece 21 is applied to the second focusing electrode 17. Applied. For example, the same potential as that of the final-stage dynode 8 is applied to the second focusing electrode 17. Specifically, as in the example described above, when 180 V is applied to the photocathode 3a and the anode potential is set to 0 V, the final stage (stage 10) dynode 8 and the Income of 2 It suffices to apply −72.7 V to the bundle electrode 1 等 し い and to apply −36.4 V to the shield electrode 15.
かかる構成によれば、 電子増倍部 9の最終段ダイノード 8の任意のチ ヤンネル Α (任意の電子増倍経路 L ) から放出された電子は、 第 2の収 束電極 1 7の対応する開口部 1 7 aを通過し、 その際、 収束され、 対応 するアノード片 2 1により確実に導かれる。  According to such a configuration, the electrons emitted from any channel Α (any electron multiplication path L) of the final stage dynode 8 of the electron multiplication unit 9 are transmitted to the corresponding aperture of the second focusing electrode 17. It passes through section 17a, where it is converged and reliably guided by the corresponding anode piece 21.
本実施の形態によれば、 第 2の収束電極 1 7により、 最終段ダイノー ド 8の任意のチャンネル Aから放出された電子を、 より確実に、 対応す るアノード片 2 1へ導くことができる。 したがって、 電子が隣のァノー ド片 2 1に誤って到達してしまうことをより確実に防止することができ る。 しかも、 最終段ダイノード 8とアノード 1 2との中間電位が印加さ れている遮蔽電極 1 5により、 二次電子をァノード片 2 1に対し確実に 押さえ込むことができる。  According to the present embodiment, electrons emitted from any channel A of final stage dynode 8 can be more reliably guided to corresponding anode piece 21 by second focusing electrode 17. . Therefore, it is possible to more reliably prevent electrons from arriving at the adjacent anode piece 21 by mistake. In addition, the shield electrode 15 to which the intermediate potential between the final dynode 8 and the anode 12 is applied can reliably suppress the secondary electrons to the anode node 21.
なお、 本実施の形態でも、 電子増倍部 9において複数のチャンネル A が 2次元マトリ ックス状に配置されている場合には、 第 1の実施の形態 の場合と同様、 アノード 1 2は、 第 5 ( A ) 図、 第 5 ( B ) 図のような 1次元リニア構造ではなく、 第 7 ( A ) 図、 第 7 ( B ) 図のような 2次 元配置構造とすれば良い。  Note that, also in the present embodiment, when the plurality of channels A are arranged in a two-dimensional matrix in the electron multiplier 9, as in the case of the first embodiment, the anode 12 Instead of the one-dimensional linear structure shown in FIGS. 5 (A) and 5 (B), a two-dimensional arrangement structure shown in FIGS. 7 (A) and 7 (B) may be used.
本発明による光電子增倍管及ぴその使用方法は上述した実施の形態に 限定されず、 特許請求の範囲に記載した範囲で種々の変形や改良が可能 である。  The photomultiplier tube and the method of using the same according to the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made within the scope described in the claims.
例えば、 上記実施の形態では、 複数の導電性仕切部材 2 5が枠板 2 2 に対し一体的に形成されることにより、遮蔽電極 1 5が形成されていた。 そして、 遮蔽電極 1 5がセラミック基板 2 0上に配置されていた。 しか しながら、 複数の導電性仕切部材 2 5を個別に作成し、 各導電性仕切部 材 2 5が 2つの隣り合うアノード片 2 1間に位置するように、 セラミツ ク基板 2 0上に配置するのでも良い。 For example, in the above embodiment, the shielding electrode 15 is formed by integrally forming the plurality of conductive partition members 25 with the frame plate 22. Then, the shielding electrode 15 was disposed on the ceramic substrate 20. However, a plurality of conductive partition members 25 are individually formed, and the ceramic partition member 25 is positioned between two adjacent anode pieces 21 so that the ceramic partition member 25 is located between two adjacent anode pieces 21. It may be arranged on the substrate 20.
上記実施の形態では、 アノード片 2 1をセラミック基板 2 0上に配 置していた。 しかしながら、 かかる構成ではなくても良い。 例えば、 アノード片 2 1を絶縁性基板に蒸着して作成しても良い。  In the above embodiment, anode piece 21 was arranged on ceramic substrate 20. However, such a configuration is not necessary. For example, the anode piece 21 may be formed by vapor deposition on an insulating substrate.
各アノード片 2 1及ぴ各導電性仕切部材 2 5の形状及ぴ配置状態は、 上記実施の形態に限られず、 各導電性仕切部材 2 5が、 最終段ダイノー ド 8の各チヤンネルからの電子が隣のチャンネルのァノード片 2 1に入 射できないように遮蔽し、 かつ、 アノード片 2 1から放出された電子が 隣のアノード片 2 1に入射できないよう隣り合うァノード片間を遮蔽す る機能を有する限り、 任意のものとすることができる。  The shape and arrangement of each anode piece 21 and each conductive partition member 25 are not limited to those in the above-described embodiment, and each conductive partition member 25 may be configured to receive electrons from each channel of the final stage die node 8. Function to block the anode node 21 of the adjacent channel from entering the adjacent anode node 21 and to block the electrons emitted from the anode node 21 from entering the adjacent anode node 21. As long as it has.
上記実施の形態では、 光電面 3 aを透過した光によるクロストークを 防止する様々な構成を採用していた。 しかしながら、 かかる構成は採用 しなくても良い。 したがって、 第 1の収束電極 1 3の収束片 2 3や第 1 段 ·第 2段ダイノード 8に光無反射処理を施さなくても良い。 また、 第 1の収束電極 1 3の収束片 2 3は管軸方向に長くなくてもいい。 受光面 板 3には、 仕切り部 2 6を形成しなくても良い。 受光面板 3上に集光部 材 3 0を形成しなくても良い。 産業上の利用可能性  In the above embodiment, various configurations for preventing crosstalk due to light transmitted through the photocathode 3a have been employed. However, such a configuration need not be adopted. Therefore, it is not necessary to perform the light non-reflection processing on the converging piece 23 of the first converging electrode 13 and the first-stage / second-stage dynode 8. Further, the focusing piece 23 of the first focusing electrode 13 need not be long in the tube axis direction. The light receiving surface plate 3 does not need to be formed with the partition part 26. The light collecting member 30 may not be formed on the light receiving surface plate 3. Industrial applicability
本発明に係る光電子增倍管及びその使用方法は、 検出分野等で 使用される レーザスキャニング顕微鏡や D N Aシーケンサ等、 微 弱な光を検出する用途に幅広く用いられる。  INDUSTRIAL APPLICABILITY The photomultiplier according to the present invention and a method for using the same are widely used in applications that detect weak light, such as a laser scanning microscope and a DNA sequencer used in the detection field and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光の入射によって電子を放出する光電面と、 1. A photocathode that emits electrons when light enters,
複数段のダイノードを有し、 該複数段のダイノードが、 該光電面の側 から、 第 1段目から最終段目まで、 この順に積層状に配置され、 各段の ダイノ一ドが複数のチヤンネルを規定し、 該光電面から放出された電子 を対応するチャンネル毎に多段増倍させる積層型チャンネルダイノード 部と、  It has a plurality of dynodes, and the plurality of dynodes are arranged in this order from the side of the photocathode from the first stage to the last stage, and the dynodes of each stage are arranged in a plurality of channels. A stacked channel dynode section for multiplying electrons emitted from the photocathode for each corresponding channel in multiple stages;
複数のアノード電極を、 該最終段目のダイノードに対向して、 かつ、 該複数のチャンネルに 1対 1に対応して備え、 該積層型チャンネルダイ ノ一ド部の該複数のチャンネルで多段増倍された電子に基づいてチヤン ネル毎の出力信号を送出するァノードと、  A plurality of anode electrodes are provided facing the final dynode and in a one-to-one correspondence with the plurality of channels. A node for transmitting an output signal for each channel based on the multiplied electrons;
複数の導電性仕切り部材を該最終段目のダイノードに対向して備え、 各導電性仕切り部材が、 対応する 2つの隣り合うアノード電極の間に設 けられ、 かつ、 該各導電性仕切り部材に、 該各アノード電極に印加され る所定のァノード電位と該最終段目のダイノ一ドに印加される所定の最 終段ダイノード電位との間の電位が印加される遮蔽電極と、  A plurality of conductive partition members are provided so as to face the final dynode, and each conductive partition member is provided between two corresponding anode electrodes adjacent to each other. A shielding electrode to which a potential between a predetermined anode potential applied to each anode electrode and a predetermined final dynode potential applied to the final stage dynode is applied;
を備えていることを特徴とする光電子増倍管。  A photomultiplier tube comprising:
2 . 電位が前記光電面から前記第 1段目乃至前記最終段目のダイノード を経て前記アノードに向かって順次高くなるように、 該光電面と該第 1 段目乃至該最終段目のダイノードと該ァノードとに対し電圧が印加され、 前記各導電性仕切り部材に、前記最終段ダイノード電位より高く、かつ、 前記ァノード電位より低い電位が印加され、 該最終段ダイノードの任意 のチャンネルから放出された電子を、対応するァノード電極に入射させ、 かつ、 該対応するアノード電極への電子の入射に応じて該アノード電極 から二次電子が放出されるのを抑制することを特徴とする請求項 1記載 の光電子増倍管。 2. The photocathode and the first to final dynodes are so arranged that the potential is sequentially increased from the photocathode to the anode via the first to final dynodes. A voltage is applied to the anode and a potential higher than the final dynode potential and lower than the anode potential is applied to each of the conductive partition members, and the potential is released from an arbitrary channel of the final dynode. 2. The method according to claim 1, wherein electrons are made incident on a corresponding anode electrode, and secondary electrons are suppressed from being emitted from the anode electrode in response to the electrons being incident on the corresponding anode electrode. Photomultiplier tube.
3 . 前記導電性仕切り部材に印加される電位と前記最終段ダイノ一ド電 位との差が、 該最終段ダイノ一ドの各チャンネルから放出された電子を 対応するァノード電極に適切に入射させる大きさを有し、 該導電性仕切 り部材に印加される電位と該アノード電位との差が、 該最終段ダイノー ドの各チャンネルから放出された電子が該対応するァノード電極の両側 に位置している該導電性仕切り部材に入射すること、 及び、 該アノード 電極で生じる二次電子が該対応するァノ一ド電極の隣のァノ一ド電極 に入射するのを防止する大きさを有していることを特徴とする請求項 2 記載の光電子増倍管。  3. The difference between the potential applied to the conductive partitioning member and the potential of the final dynode causes the electrons emitted from each channel of the final dynode to properly enter the corresponding anode electrode. The difference between the potential applied to the conductive partition member and the anode potential is such that electrons emitted from each channel of the final stage dynode are located on both sides of the corresponding anode electrode. Having a size to prevent secondary electrons generated at the anode electrode from entering the adjacent anode electrode of the corresponding anode electrode. The photomultiplier tube according to claim 2, wherein the photomultiplier tube is used.
4 . 前記導電性仕切り部材に印加される電位と前記ァノード電位との差 1 該ァノード電位と前記最終段ダイノード電位との差の約 5 %以上約 7 0 %以下の範囲内であることを特徴とする請求項 2記載の光電子増倍 管。  4. The difference between the potential applied to the conductive partition member and the anode potential 1 The difference between the anode potential and the final dynode potential is in the range of about 5% to about 70%. 3. The photomultiplier tube according to claim 2, wherein
5 . 前記導電性仕切り部材に印加される電位と前記アノード電位との差 力 該ァノード電位と前記最終段ダイノード電位との差の約 5 0 %であ ることを特徴とする請求項 4記載の光電子増倍管。 5. The difference between the potential applied to the conductive partition member and the anode potential is about 50% of the difference between the anode potential and the last-stage dynode potential. Photomultiplier tube.
6 . 前記各導電性仕切り部材は、 前記隣り合うアノード電極間を遮蔽 し、 前記ァノード電極から放出された電子を隣のァノード電極に入力 させない大きさとなっていることを特徴とする請求項 1記載の光電子 増倍管。  6. The conductive partitioning member according to claim 1, wherein each of the conductive partition members has a size that shields between the adjacent anode electrodes and does not allow electrons emitted from the anode electrodes to be input to the adjacent anode electrodes. Photomultiplier tube.
7 . 前記導電性仕切り部材の前記最終段ダイノ一ドに向かって延びる 高さが、 前記各ァノ一ド電極の該最終段ダイノ一ドに向かって延びる 高さより高く、 該各ァノー ド電極から隣りのァノード電極が見通せな いことを特徴とする請求項 6記載の光電子増倍管。  7. The height of the conductive partition member extending toward the final stage node is higher than the height of each of the anode electrodes extending toward the final stage node, and from each of the anode electrodes. 7. The photomultiplier tube according to claim 6, wherein an adjacent anode electrode cannot be seen through.
8 . 前記各導電性仕切り部材は、 前記最終段ダイノードの各チャンネ ルと前記対応するァノード電極の隣のァノード電極とを遮蔽し、 該最 終段ダイノ一ドの各チャンネルから放出された電子を該対応するァ ノ一ド電極の隣のァノ一ド電極に入力させない大きさ となっている ことを特徴とする請求項 1記載の光電子増倍管。 8. Each of the conductive partitioning members is a respective one of the channels of the last-stage dynode. And shields the anode and the anode electrode adjacent to the corresponding anode electrode, and emits electrons emitted from each channel of the final stage anode to the anode electrode adjacent to the corresponding anode electrode. The photomultiplier tube according to claim 1, wherein the photomultiplier tube has a size that does not allow input.
9 . 前記各段のダイノードは複数の二次電子放出片を有しており、 前記 導電性仕切り部材の前記最終段ダイノードに向かって延びる高さが、 該導電性仕切り部材の上端部が該最終段ダイノ一ドの対応する二次 電子放出片の下端部に近接する大きさであり、 該最終段ダイノードの 各チャンネルから隣のチャンネルの前記アノード電極が見通せない ことを特徴とする請求項 8記載の光電子増倍管。 9. The dynode of each stage has a plurality of secondary electron emitting pieces, and the height of the conductive partition member extending toward the final stage dynode is such that the upper end of the conductive partition member has the final end. 9. The anode of a next channel which has a size close to the lower end of the corresponding secondary electron emitting piece of the stage dynode, and wherein the anode electrode of an adjacent channel cannot be seen from each channel of the final stage dynode. Photomultiplier tube.
1 0 . 前記アノードは、 セラミック基板からなるアノード基板を更に備 え、 前記複数のァノード電極が該ァノード基板上に前記複数のチャンネ ルに 1対 1に対応して設けられており、 前記遮蔽電極は、 枠状部材を更 に備え、 前記複数の導電性仕切り部材が該枠状部材に対し一体的に形成 されており、 該遮蔽電極は、 前記各導電性仕切り部材が対応する 2つの 隣り合うァノード電極間に位置するように該ァノード基板上に配置され ていることを特徴とする請求項 1記載の光電子増倍管。  10. The anode further includes an anode substrate formed of a ceramic substrate, wherein the plurality of anode electrodes are provided on the anode substrate in one-to-one correspondence with the plurality of channels, and the shielding electrode is provided. Is further provided with a frame-shaped member, wherein the plurality of conductive partition members are formed integrally with the frame-shaped member, and the shielding electrode comprises two adjacent ones corresponding to the respective conductive partition members. 2. The photomultiplier tube according to claim 1, wherein the photomultiplier tube is arranged on the anode substrate so as to be located between the anode electrodes.
1 1 . 前記複数のチャンネルはリニアに一方向に配列されており、 前記 複数のァノード電極は当該方向に略平行に一次元的に配列されており、 もって、 前記各導電性仕切り部材は当該一次元方向において前記対応す る 2つの隣り合うァノード電極の間に設けられていることを特徴とする 請求項 1記載の光電子増倍管。  1 1. The plurality of channels are linearly arranged in one direction, and the plurality of anode electrodes are one-dimensionally arranged substantially parallel to the direction. 2. The photomultiplier tube according to claim 1, wherein the photomultiplier tube is provided between the two adjacent anode electrodes in the original direction.
1 2 .前記複数のチャンネルは二次元マトリックス的に配列されており、 前記複数のァノード電極は二次元マトリ ックス的に配列されており、 も つて、 前記各導電性仕切り部材は、 当該二次元方向の各方向において前 記対応する 2つの隣り合うァノード電極の間に設けられていることを特 徴とする請求項 1記載の光電子増倍管。 12. The plurality of channels are arranged in a two-dimensional matrix, the plurality of anode electrodes are arranged in a two-dimensional matrix, and each of the conductive partition members is arranged in the two-dimensional direction. In each of the directions described above, it is provided between two adjacent anode electrodes. The photomultiplier tube according to claim 1, wherein
1 3 . 前記アノー ドと前記最終段ダイノー ドとの間に設けられた 複数の収束片を有し、 各隣り合う 2つの収束片がその間に 1つの 開口部を規定することで複数の開口部を規定し、 前記最終段ダイ ノー ドの各チャ ンネルから放出された電子を対応する開口部で 収束して対応するアノード電極に導く ことによ り 、 該最終段ダイ ノー ドから放出された電子をチャ ンネル毎に収束する収束電極 を、 更に備えているこ とを特徴とする請求項 1記載の光電子増倍 管。  13. A plurality of converging pieces provided between the anode and the last-stage dynode, and two converging pieces adjacent to each other define one opening therebetween, thereby forming a plurality of opening parts. By converging the electrons emitted from each channel of the last-stage die node at the corresponding opening and guiding the electrons to the corresponding anode electrode, the electrons emitted from the last-stage die node are defined. 2. The photomultiplier tube according to claim 1, further comprising: a focusing electrode for focusing the light for each channel.
1 4 . 前記収束電極には、 前記最終段ダイノー ド電位と略同一の 電位が印加される こ と を特徴とする請求項 1 3記載の光電子増 倍管。  14. The photomultiplier according to claim 13, wherein a potential substantially the same as the final dynode potential is applied to the focusing electrode.
1 5 . 前記光電面と前記積層型チャンネルダイノー ド部との間に 設けられ、 複数の別の収束片を有し、 各隣り合う 2つの別の収束 片がその間に 1 つの開口部を規定するこ とで複数の開口部を規 定し、 前記光電面の任意の位置から放出された電子を対応する開 口部で収束して該積層型チャ ンネルダイ ノー ド部の対応するチ ヤンネルに導く こ とによ り 、 該光電面の任意の位置から放出され た電子をチャンネル毎に収束する別の収束電極を、 更に備えてい るこ とを特徴とする請求項 1 3記載の光電子増倍管。  15. Provided between the photocathode and the stacked channel dynode portion and having a plurality of different converging pieces, each two adjacent converging pieces defining one opening therebetween. Thus, a plurality of openings are defined, and electrons emitted from an arbitrary position on the photocathode are converged at the corresponding opening and guided to the corresponding channel of the stacked channel die node. 14. The photomultiplier according to claim 13, further comprising another focusing electrode for focusing electrons emitted from an arbitrary position on the photocathode for each channel. .
1 6 . 前記別の収束電極には、 前記光電面と略同一の電位が印加 されるこ とを特徴とする請求項 1 5記載の光電子増倍管。  16. The photomultiplier according to claim 15, wherein substantially the same potential as that of the photocathode is applied to the other focusing electrode.
1 7 . 受光面板と、 該受光面板と共に真空領域を形成するための 壁部とを更に備え、 前記光電面は、 該受光面板の内面であって該 真空領域内部に形成され、 前記積層型チャンネルダイノー ド部、 前記アノー ド、 前記遮蔽電極、 及ぴ、 前記収束電極が、 該真空領 域内部に設けられ、 該受光面板内に前記各チャンネルに対応させ て光吸収ガラスの仕切り部が設けられ、 該受光面板の外側表面に 前記各チャンネルに対応させて集光装置が設けられており 、 前記 各別の収束片の表面に光無反射処理が施されており 、 前記各段の ダイ ノー ドは前記複数のチャンネルを規定する複数の二次電子 放出片を有し、 前記複数段のダイノー ドの うちの前記光電面側か ら第 1段目及ぴ第 2段目 に位置するダイ ノー ドの前記各チャ ン ネルを規定する該各二次電子放出片の表面に光無反射処理が施 されており、 17. A light-receiving surface plate, and a wall for forming a vacuum region together with the light-receiving surface plate, wherein the photoelectric surface is formed on the inner surface of the light-receiving surface plate inside the vacuum region, A dynode section, the anode, the shielding electrode, and the focusing electrode; A light-absorbing glass partition portion is provided in the light-receiving surface plate corresponding to each of the channels, and a light-collecting device is provided on the outer surface of the light-receiving surface plate in correspondence with each of the channels. The surface of each of the converging pieces is subjected to a light non-reflection treatment, and the die node of each stage has a plurality of secondary electron emitting pieces that define the plurality of channels; An anti-reflection treatment is performed on the surface of each of the secondary electron emission pieces defining the respective channels of the dynodes located at the first and second stages from the photocathode side of the dynode. Has been given,
前記別の収束電極の前記各チャンネルを規定する前記各収束片の該光 電面及ぴ該積層型チャンネルダイノード部に向かって延びる長さが、 前 記複数段のダイノードのうちの前記光電面側から第 1段目及び第 2段目 に位置するダイノ一ドの前記各チャンネルを規定する該各二次電子放出 片の表面で反射した光が該光電面内の隣のチャンネル位置に戻ることを 防止する大きさを有していることを特徴とする請求項 1 5記載の光電子 増倍管。  The length of the focusing surface defining the respective channels of the different focusing electrode extending toward the photoelectric surface and the stacked channel dynode portion is the photoelectric surface side of the plurality of dynodes. The light reflected on the surface of each of the secondary electron emission pieces defining the respective channels of the dynodes located at the first and second stages returns to the next channel position in the photocathode. 16. The photomultiplier tube according to claim 15, having a size to prevent it.
1 8 . 光の入射によって電子を放出する光電面と、  1 8. A photocathode that emits electrons when light enters,
複数段のダイノードを有し、 該複数段のダイノードが、 該光電面の側 から、 第 1段目から最終段目まで、 この順に積層状に配置され、 各段の ダイノードが複数のチャンネルを規定し、 該光電面から放出された電子 を対応するチャンネル毎に多段増倍させる積層型チャンネルダイノード 部と、  It has a plurality of dynodes, and the plurality of dynodes are arranged in this order from the side of the photocathode to the first stage to the last stage, and each dynode defines a plurality of channels. A stacked channel dynode unit for multiplying the electrons emitted from the photocathode for each corresponding channel in multiple stages;
複数のアノード電極を、 該最終段目のダイノードに対向して、 かつ、 該複数のチャンネルに 1対 1に対応して備え、 該積層型チャンネルダイ ノード部の該複数のチャンネルで多段増倍された電子に基づいてチャン ネル毎の出力信号を送出するアノードと、 複数の導電性仕切り部材を該最終段目のダイノードに対向して備え、 各導電性仕切り部材が対応する 2つの隣り合うァノード電極の間に設け られる遮蔽電極と、 A plurality of anode electrodes are provided so as to face the final stage dynode and correspond to the plurality of channels on a one-to-one basis, and are multi-stage multiplied by the plurality of channels of the stacked channel dynode part. An anode that sends an output signal for each channel based on the electrons A plurality of conductive partitioning members facing the final dynode, a shielding electrode provided between two adjacent anode electrodes corresponding to each conductive partitioning member,
を備えた光電子増倍管において、  In a photomultiplier tube with
該各アノード電極に所定のアノード電位を印加し、  Applying a predetermined anode potential to each anode electrode,
該最終段目のダイノ一ドに所定の最終段ダイノード電位を印加し、 該各導電性仕切り部材に、 該ァノード電位と該最終段ダイノード電位 との間の電位を印加することを特徴とする光電子増倍管の使用方法。  A photoelectron, wherein a predetermined final dynode potential is applied to the final dynode, and a potential between the anode potential and the final dynode potential is applied to each conductive partition member. How to use the multiplier.
1 9 . 更に、 電位が前記光電面から前記第 1段目乃至前記最終段目のダ ィノードを経て前記アノードに向かって順次高くなるように、 該光電面 と該第 1段目乃至該最終段目のダイノードと該アノードとに対し電圧を 印加し、 19. Further, the photocathode and the first to final stages are so arranged that a potential is sequentially increased from the photocathode to the anode via the first to final stage dynodes. Applying a voltage to the eye dynode and the anode,
前記各導電性仕切り部材に印加される電位は、 前記最終段ダイノード 電位より高く、 かつ、 前記アノード電位より低い電位であり、 該最終段 ダイノードの任意のチャンネルから放出された電子を、 対応するァノー ド電極に入射させ、 かつ、 該対応するアノード電極への電子の入射に応 じて該ァノード電極から二次電子が放出されるのを抑制することを特徴 とする請求項 1 8記載の光電子増倍管の使用方法。  The potential applied to each of the conductive partition members is higher than the final-stage dynode potential and lower than the anode potential. Electrons emitted from an arbitrary channel of the final-stage dynode are converted into a corresponding anode. 19. The photoelectron enhancement device according to claim 18, wherein the photoelectron is made incident on the anode electrode, and secondary electrons are suppressed from being emitted from the anode electrode in response to the electron incidence on the corresponding anode electrode. How to use the multiplier.
2 0 . 前記導電性仕切り部材に印加される電位と前記最終段ダイノード 電位との差が、 該最終段ダイノードの各チャンネルから放出された電子 を対応するァノード電極に適切に入射させる大きさを有し、 該導電性仕 切り部材に印加される電位と該ァノード電位との差が、 該最終段ダイノ 一ドの各チャンネルから放出された電子が該対応するァノード電極の両 側に位置している該導電性仕切り部材に入射すること、 及び、 該ァノー ド電極で生じる二次電子が該対応するァノ一ド電極の隣のァノ一ド電 極に入射するのを防止する大きさを有していることを特徴とする請求 項 1 9記載の光電子増倍管の使用方法。 20. The difference between the potential applied to the conductive partition member and the potential of the last-stage dynode has a magnitude enough to cause electrons emitted from each channel of the last-stage dynode to appropriately enter the corresponding anode electrode. The difference between the potential applied to the conductive partition member and the anode potential is such that electrons emitted from each channel of the final stage node are located on both sides of the corresponding anode electrode. Having a size to prevent the secondary electrons generated at the anode electrode from being incident on the anode electrode adjacent to the corresponding anode electrode; Claims characterized by Item 19. Use of the photomultiplier tube according to item 19.
2 1 . 前記導電性仕切り部材に印加される電位と前記ァノード電位との 差が、 該ァノード電位と前記最終段ダイノ一ド電位との差の約 5 %以上 約 7 0 %以下の範囲内であることを特徴とする請求項 1 9記載の光電子 増倍管の使用方法。  21. The difference between the potential applied to the conductive partition member and the anode potential is within a range of about 5% or more and about 70% or less of the difference between the anode potential and the final-stage node potential. 10. The method for using a photomultiplier tube according to claim 19, wherein:
2 2 . 前記導電性仕切り部材に印加される電位と前記ァノード電位との 差が、 該アノード電位と前記最終段ダイノード電位との差の約 5 0 %で あることを特徴とする請求項 2 1記載の光電子増倍管の使用方法。  22. The difference between the potential applied to the conductive partition member and the anode potential is about 50% of the difference between the anode potential and the final dynode potential. Use of the photomultiplier described.
2 3 . 前記光電子増倍管が、 前記ァノー ドと前記最終段ダイノ ー ドと の間に設けられた複数の収束片を有し、 各隣り合う 2つの収 束片がその間に 1 つの開口部を規定する こ とで複数の開口部を 規定し、 前記最終段ダイノー ドの各チャンネルから放出された電 子を対応する開口部で収束して対応するァノ ー ド電極に導く こ とによ り 、 該最終段ダイ ノー ドから放出された電子をチャンネル 毎に収束する収束電極を更に備え、 23. The photomultiplier tube has a plurality of converging pieces provided between the anode and the last dynode, and two adjacent converging pieces have one opening therebetween. By defining a plurality of openings, the electrons emitted from each channel of the final dynode are converged at the corresponding openings and guided to the corresponding anode electrodes. A focusing electrode for focusing the electrons emitted from the final-stage die node for each channel;
更に、 該収束電極に前記最終段ダイノー ド電位と略同一の電位 を印加する こ と を特徴とする請求項 1 8記載の光電子增倍管の 使用方法。  19. The method according to claim 18, further comprising: applying a potential substantially equal to the final dynode potential to the focusing electrode.
PCT/JP2003/006075 2002-05-15 2003-05-15 Photomultiplier tube and its using method WO2003098658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003231505A AU2003231505A1 (en) 2002-05-15 2003-05-15 Photomultiplier tube and its using method
JP2004506058A JP4173134B2 (en) 2002-05-15 2003-05-15 Photomultiplier tube and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002140354 2002-05-15
JP2002-140354 2002-05-15

Publications (1)

Publication Number Publication Date
WO2003098658A1 true WO2003098658A1 (en) 2003-11-27

Family

ID=29544921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006075 WO2003098658A1 (en) 2002-05-15 2003-05-15 Photomultiplier tube and its using method

Country Status (3)

Country Link
JP (1) JP4173134B2 (en)
AU (1) AU2003231505A1 (en)
WO (1) WO2003098658A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127971A (en) * 2004-10-29 2006-05-18 Hamamatsu Photonics Kk Photodetector
WO2007017984A1 (en) 2005-08-10 2007-02-15 Hamamatsu Photonics K.K. Photomultiplier
WO2007099958A1 (en) 2006-02-28 2007-09-07 Hamamatsu Photonics K.K. Photomultiplier, radiation sensor, and photomultiplier fabricating method
EP1921661A1 (en) * 2005-08-10 2008-05-14 Hamamatsu Photonics K. K. Photomultiplier
US7838810B2 (en) 2006-02-28 2010-11-23 Hamamatsu Photonics K.K. Photomultiplier tube and a radiation detecting device employing the photomultiplier tube
US7847232B2 (en) 2006-02-28 2010-12-07 Hamamatsu Photonics K.K. Photomultiplier tube and radiation detecting device employing the photomultiplier tube
US7902509B2 (en) 2006-02-28 2011-03-08 Hamamatsu Photonics K.K. Photomultiplier tube and radiation detecting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471051A (en) * 1987-08-05 1989-03-16 Hamamatsu Photonics Kk Photomultiplier device
JPH03180725A (en) * 1989-12-11 1991-08-06 Hamamatsu Photonics Kk Anode structure for multielectrode type detection
JPH0572344A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Radiation detecting apparatus
JPH05114385A (en) * 1991-10-18 1993-05-07 Hamamatsu Photonics Kk Photomultiplier tube
JPH09288992A (en) * 1996-04-24 1997-11-04 Hamamatsu Photonics Kk Electron multiplier and photomultiplier tube
JPH09306416A (en) * 1996-05-15 1997-11-28 Hamamatsu Photonics Kk Electron multiplier and photomultiplier tube
JPH11329339A (en) * 1998-05-18 1999-11-30 Hamamatsu Photonics Kk Photomultiplier tube and spectrometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471051A (en) * 1987-08-05 1989-03-16 Hamamatsu Photonics Kk Photomultiplier device
JPH03180725A (en) * 1989-12-11 1991-08-06 Hamamatsu Photonics Kk Anode structure for multielectrode type detection
JPH0572344A (en) * 1991-09-11 1993-03-26 Hamamatsu Photonics Kk Radiation detecting apparatus
JPH05114385A (en) * 1991-10-18 1993-05-07 Hamamatsu Photonics Kk Photomultiplier tube
JPH09288992A (en) * 1996-04-24 1997-11-04 Hamamatsu Photonics Kk Electron multiplier and photomultiplier tube
JPH09306416A (en) * 1996-05-15 1997-11-28 Hamamatsu Photonics Kk Electron multiplier and photomultiplier tube
JPH11329339A (en) * 1998-05-18 1999-11-30 Hamamatsu Photonics Kk Photomultiplier tube and spectrometer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127971A (en) * 2004-10-29 2006-05-18 Hamamatsu Photonics Kk Photodetector
JP4627431B2 (en) * 2004-10-29 2011-02-09 浜松ホトニクス株式会社 Photodetector and radiation detection apparatus
WO2007017984A1 (en) 2005-08-10 2007-02-15 Hamamatsu Photonics K.K. Photomultiplier
EP1892749A1 (en) * 2005-08-10 2008-02-27 Hamamatsu Photonics Kabushiki Kaisha Photomultiplier
EP1921661A1 (en) * 2005-08-10 2008-05-14 Hamamatsu Photonics K. K. Photomultiplier
EP1892749A4 (en) * 2005-08-10 2011-08-24 Hamamatsu Photonics Kk Photomultiplier
EP1921661A4 (en) * 2005-08-10 2011-10-05 Hamamatsu Photonics Kk Photomultiplier
WO2007099958A1 (en) 2006-02-28 2007-09-07 Hamamatsu Photonics K.K. Photomultiplier, radiation sensor, and photomultiplier fabricating method
US7812532B2 (en) 2006-02-28 2010-10-12 Hamamatsu Photonics K.K. Photomultiplier tube, radiation detecting device, and photomultiplier tube manufacturing method
US7838810B2 (en) 2006-02-28 2010-11-23 Hamamatsu Photonics K.K. Photomultiplier tube and a radiation detecting device employing the photomultiplier tube
US7847232B2 (en) 2006-02-28 2010-12-07 Hamamatsu Photonics K.K. Photomultiplier tube and radiation detecting device employing the photomultiplier tube
US7902509B2 (en) 2006-02-28 2011-03-08 Hamamatsu Photonics K.K. Photomultiplier tube and radiation detecting device

Also Published As

Publication number Publication date
JP4173134B2 (en) 2008-10-29
JPWO2003098658A1 (en) 2005-09-22
AU2003231505A1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US5936348A (en) Photomultiplier tube with focusing electrode plate
KR100917387B1 (en) Electron beam detector, scanning type electron microscope, mass spectrometer, and ion detector
EP2442350B1 (en) Photomultiplier tube
JP3466712B2 (en) Electron tube
US20040227070A1 (en) Ion detector
US8507838B2 (en) Microstructure photomultiplier assembly
US5616987A (en) Electron multiplier
US6906318B2 (en) Ion detector
US6538399B1 (en) Electron tube
WO2002067287A1 (en) Photomultiplier
US5619100A (en) Photomultiplier
JPH05182631A (en) Electron tube provided with electron multiplier
WO2003098658A1 (en) Photomultiplier tube and its using method
US5453609A (en) Non cross talk multi-channel photomultiplier using guided electron multipliers
EP0622824B1 (en) Photomultiplier
US5210403A (en) Radiation detecting device with a photocathode being inclined to a light incident surface
JP3312771B2 (en) Electron multiplier
JPH03147240A (en) Photo-electron multiplying tube
CA2457516C (en) Ion detector
JP3620920B2 (en) Electron multiplier and photomultiplier tube
JPS5923609B2 (en) Secondary electron multiplier
JP3312772B2 (en) Photomultiplier tube
WO2005091333A1 (en) Photomultiplier
CN116825600A (en) Photomultiplier tube, manufacturing method thereof and detector
JPS62195844A (en) Electron multiplying element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004506058

Country of ref document: JP

122 Ep: pct application non-entry in european phase