WO2005087846A1 - 多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの超分子錯体 - Google Patents

多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの超分子錯体 Download PDF

Info

Publication number
WO2005087846A1
WO2005087846A1 PCT/JP2005/004135 JP2005004135W WO2005087846A1 WO 2005087846 A1 WO2005087846 A1 WO 2005087846A1 JP 2005004135 W JP2005004135 W JP 2005004135W WO 2005087846 A1 WO2005087846 A1 WO 2005087846A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyridylnaphthalenediimide
porphyrin
compound
substituted
dendrimer
Prior art date
Application number
PCT/JP2005/004135
Other languages
English (en)
French (fr)
Inventor
Shunichi Fukuzumi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to US10/592,038 priority Critical patent/US20070227590A1/en
Priority to EP05720406A priority patent/EP1724295A4/en
Publication of WO2005087846A1 publication Critical patent/WO2005087846A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a zinc porphyrin dendrimer-pyridyl naphthalenediimide supramolecular complex having a large number of artificial photosynthetic reaction centers.
  • reaction center In natural photosynthesis, one reaction center is connected to many light collection units, and the light energy collected here is efficiently transmitted to the reaction center.
  • Non-Patent Document 1 discloses a conjugated product in which porphyrin and fullerene are covalently linked.
  • porphyrin molecules have been integrated by various methods to enhance the light-collecting ability of the artificial photosynthetic reaction center, but none of the reaction centers having a charge separation function has been integrated. .
  • An artificial photosynthesis model system having a large number of reaction centers has not yet been developed due to the difficulty of synthesizing a dendrimer-like donor receptor array. For this reason, molecules that have both high light-collecting and charge-separating functions have not yet been developed.
  • Non-Patent Document 1 Phys.Chem.A 2002, 106, 3243-3252
  • the present invention uses a zinc porphyrin dendrimer supramolecular complex formed using coordination bonds, has a large number of artificial photosynthetic reaction centers, and has high light-collecting ability and charge-separating ability.
  • the purpose is to construct a light energy conversion system as shown.
  • a complex compound comprising a porphyrin dendrimer and a substituted or unsubstituted pyridylnaphthalenediimide
  • R 1 is alkylene
  • 4 R 2 are independently alkylene
  • 8 R 3 are independently alkylene
  • 16 R 4 are independently alkylene
  • 16 R 5 is a Anorekiren independently
  • 16 R 6 are each independently a porphyrin having a metal, and the metal is bonded to a central portion of each porphyrin;
  • 16 R 7 are independently a substituted or unsubstituted pyridylnaphthalenediimide, and the 16 metal atoms are each axially coordinated with the pyridyl group of the substituted or unsubstituted pyridylnaphthalenediimide.
  • Item 4 The compound according to Item 3, wherein the substituted or unsubstituted pyridylnaphthalene diimidica N pyridyl N, monoalkyl naphthalenediimide, wherein the alkyl group has 3 to 9 carbon atoms.
  • Item 4 The compound according to Item 3, wherein R 4 R 2 , 8 R 3 , 16 R 4 , and 16 R 5 are all -CH1.
  • Item 7 The compound according to Item 3, wherein the 16 metals are all zinc.
  • Item 4 The compound according to Item 3, wherein the 16 porphyrinkers each have a phenyl group, an alkyl-substituted phenyl group or a halogen-substituted phenyl group at the 5-position, the 10-position, the 15-position and the 20-position.
  • Item 4 The compound according to the above item 3, wherein the 16 porphyrinkers each have a 5-position, a 10-position, a 15-position and a 20-position, a fuel group, and a 3,5-di-tert-butylbutyl group. Or a compound having a 2,6-dichloropropyl group. [0019] (9)
  • a method for synthesizing the compound according to the above item 1, comprising a step of mixing the porphyrin dendrimer and a substituted or unsubstituted pyridylnaphthalenediimide in a solvent.
  • Item 4 A method for synthesizing the compound according to Item 3, which comprises mixing a porphyrin dendrimer of the following formula and a substituted or unsubstituted pyridylnaphthalenediimide in a solvent:
  • Item 11 The method according to Item 10, wherein the solvent is benzonitrile.
  • Item 2 The compound for an artificial photosynthetic reaction center according to item 1 above.
  • Item 2 A hydrogen generation photocatalyst comprising the compound according to item 1 above and a platinum catalyst.
  • a method for synthesizing hydrogen comprising a step of irradiating water with light in the presence of a hydrogen generating photocatalyst including a molecule serving as an electron source and the supramolecular complex according to item 1 and a platinum catalyst, Method.
  • An element for converting light into electric current wherein the compound according to the above item 1 is laminated on a conductive substrate.
  • zinc porphyrin dendrimers are used in order to dramatically improve the light-collecting ability, and a supramolecular complex is formed by utilizing a coordination bond with pyridylnaphthalenediimide. It was possible to construct a light energy conversion system that has an artificial photosynthetic reaction center and high light-capturing ability and charge-separating ability. As described above, the high There is no other example of a light energy conversion supramolecule that has separation power.
  • Fig. 1 shows that D (ZnP) (based on the number of porphyrin units!) In the presence of various concentrations of PyNIm (0-4.9 mM) at 298K in PhCN! /, And 2. 9 X 10- 6 M) of the UV-vis space Tuttle illustrating changes.
  • FIG. 2 is a (b) D of degassed PhC N in 298K in the presence of various concentrations of PyNIm (0- 4. 9mM) (ZnP ) (2. 9 X 10- 6 M) 3 shows a fluorescence spectrum.
  • Figure 3 shows (A—A) / (A-A) (solid circle) and (I-I) / (1 I
  • FIG. 4 shows the dependence of K on the supermolecular complex formation between the ZnP portion of D (ZnP) and PyNIm at 298 K in PhCN with the concentration of PyNIm.
  • the black and white circles are (A— A
  • FIG. 5 is a schematic view showing energy transfer and electron transfer in a singlet excited state in a supramolecular D (ZnP-PyNIm) complex.
  • EN is energy transfer.
  • FIG. 6 was measured after 20 s of the laser excitation at 431 nm, PyNIm in degassed PhCN in 298K (4. 9 X 10- 3 M ) D in the presence of (ZnP) (2. 9 shows the transient spectrum of X 10- 6 M).
  • Figure 7 shows the time profile of the absorption at 620nm due to the CS state obtained during nanosecond flash photolysis using different laser powers (10mJ, 2.2mi and 0.5mJ, respectively) .
  • Inset Primary plot of absorbance decay at 620 nm (10 mj, X; 2.2 J, solid square; 0.5 mJ, solid circle).
  • the porphyrin used in the present invention may be an unsubstituted porphyrin // may have any substituent within the range! /.
  • any substituent within the range! /.
  • This substituent is preferably a file or a substituted file, more preferably a file or an alkyl-substituted file or a halogen-substituted file, further preferably a file or a substituted file.
  • It is a dialkyl-substituted phenyl or dichloro-substituted phenol, particularly preferably phenyl or 3,5-ditert-butylphenyl or 2,6-dichlorophenyl. It is preferable that the porphyrins at positions 5, 10, 15, and 20 all have the same substituent, but if necessary, 2 to 4 types of substituents may be substituted at positions 5, 10, and 15 , And 20th place.
  • a substituent may be introduced into the pyrrole ring to the porphyrin, if necessary, as long as the performance of the porphyrin is not impaired.
  • the number of carbon atoms is not particularly limited, but the number of carbon atoms is preferably 1-10. Preferably it is 1-6.
  • porphyrin dendrimer refers to a dendrimer structure ( ⁇ -shaped structure) in which a plurality of porphyrins are present in one molecule.
  • the number of porphyrins in the dendrimer is 2 or more, more preferably 4 or more, even more preferably 8 or more. Above, most preferably 16 or more.
  • there is no particular upper limit on the number of porphyrins in the molecule but in one embodiment the number of porphyrins is 64 or less, and in another embodiment it is 32 or less. In one particularly preferred embodiment, the number of porphyrins in one molecule is 16.
  • the porphyrin dendrimer has the following structural formula:
  • RR 2 , R 3 , R 4 , and R 5 are each independently an alkylene, and the number of carbon atoms is preferably 1 to 10, more preferably 2 to 8, and still more preferably 3 to 8. — Is 6.
  • the alkylene has 3 carbon atoms.
  • R ⁇ R 2 , R 3 , R 4 , and R 5 may all be the same or different, but preferably all are the same in that the production of the dendrimer is facilitated. In particular, it is preferred that R 2 , R 3 , R 4 , and R 5 are all the same. In one preferred embodiment, Also another preferred
  • Alkylene may be linear or branched.
  • R 6 is independently porphyrin having a metal, and the metal is bonded to the central portion of each vorphyrin.
  • any metal atom that can bind to the central portion of the porphyrin and that can further coordinate with the pyridylnaphthalenediimide can be used.
  • it is a transition metal. More preferably, it is zinc.
  • a substituted or unsubstituted pyridylnaphthalenediimide is used.
  • the general formula is shown below.
  • the substituted pyridylnaphthalenediimide is simply described as “pyridylnaphthalenediimide”.
  • R 1 is a substituted or unsubstituted pyridyl, preferably an unsubstituted pyridyl.
  • pyridyl may be any of 2-pyridyl, 3-pyridyl and 4-pyridyl. In one preferred embodiment, it is 4 pyridyl.
  • the substituent is selected within a range that does not impair the performance of pyridyl.
  • alkyl and halogen are possible.
  • the number of carbon atoms of the alkyl is not particularly limited, but is preferably 1 to 10.
  • the alkyl may be linear or branched.
  • R 2 is hydrogen or alkyl. It is preferably an alkyl having 1 to 20 carbon atoms, more preferably an alkyl having 2 to 15 carbon atoms, further preferably an alkyl having 3 to 9 carbon atoms, and particularly preferably an alkyl having 3 to 9 carbon atoms. In one preferred embodiment, it is an alkyl having 6 carbon atoms.
  • the alkyl may be straight-chain or branched.
  • X and Z are each independently hydrogen, alkyl, or halogen, and preferably hydrogen.
  • the number of carbon atoms of the alkyl is not particularly limited, but is preferably 110, more preferably 116.
  • the alkyl may be straight-chain or branched.
  • X is other than hydrogen, the number may be one or two.
  • Y is other than hydrogen, the number may be one or two.
  • the pyridylnaphthalenediimide used in the present invention may be an unsubstituted pyridylnaphthalenediimide or may be a substituted pyridylnaphthalenediimide.
  • substituent in the substituted pyridylnaphthalenediimide conjugate are not particularly limited. But alkyl.
  • the number of substituents is not particularly limited. Preferably, the number of alkyl substituents is one.
  • the chain length in the alkyl substituent used is not particularly limited. In one embodiment the number of carbon atoms in the alkyl substituent is 3 or more, and in a more preferred embodiment the number of carbon atoms or more. There is no particular upper limit, but in one embodiment it is 10 or less.
  • a supramolecular complex refers to a complex having multiple porphyrins and multiple metal atoms in a single molecule.
  • a supramolecular complex of zinc ( ⁇ ) porphyrin dendrimer-111 PyNIm supramolecular complex [D (ZnP-PvNIm)] (Ar 3,5-di-tert-butyl Nil) formula
  • pyridyl naphthalenediimide is N pyridyl N, 1-hexyl pyridyl naphthalenedi imide.
  • porphyrin metal atoms of the porphyrin dendrimer are It is preferable that the pyridylnaphthalenediimide is axially coordinated, but if necessary, the pyridylnaphthalenediimide is bound to! / ⁇ , and even if porphyrin is present! / There is no significant loss.
  • pyridylnaphthalenediimide is bonded to at least 30%, and it is more preferable that pyridylnaphthalenediimide is bonded to at least 50%. More preferably, 70% or more of the pyridylnaphthalenediimide is bonded. Particularly preferably, 90% or more of the pyridylnaphthalenediimide is bonded.
  • the present invention is characterized in that a plurality of pyridylnaphthalenediimides are axially coordinated in one molecule. Therefore, the absolute number of the axially coordinated pyridylnaphthalenediimides in one supramolecular molecule Preferably, 5 or more pyridyl naphthalenediimides are bonded, more preferably 8 or more pyridyl naphthalenediimides are bonded, more preferably 12 or more pyridyl naphthalenediimides are bonded. It is particularly preferable that 15 or more pyridylnaphthalenediimides are bonded.
  • the solvent used in the method of the present invention is not particularly limited as long as the porphyrin dendrimer as a raw material and the substituted or unsubstituted pyridylnaphthalenediimide can be dissolved.
  • it is benzo-tolyl.
  • the porphyrin dendrimer and the substituted or unsubstituted pyridyl naphthalenediimide can form an axial coordination bond between the metal atom of the porphyrin dendrimer and the nitrogen of the pyridyl group of the pyridyl naphthalenediimide by mixing in a suitable solvent. And a supramolecular complex can be formed.
  • the concentration of pyridylnaphthalenediimide during mixing is not particularly limited, but is preferably 1
  • the X 10- 5 M or higher more preferably at 1 X 10- 4 M or more, and particularly preferably 1 X 10-3 M or higher.
  • preferably not more than 1 X 10-M more preferably not more than 5 X 10- 2 M, particularly preferably not more than 1 X 10- 2 M. If the concentration is too low, the yield of the resulting supramolecular complex will be low. If the concentration is too high, it will be difficult to dissolve easy.
  • the concentration of the porphyrin dendrimer at the time of mixing is not particularly limited, but is preferably 1
  • the X 10- 9 M or more, more preferably at 1 X 10- 8 M or more, particularly preferably 1 X 10 - is 7 M or more. Also, preferably, not more than 1 X 10- 4 M, more preferably, not more than 1 X 10- 5 M, particularly preferably not more than 1 X 10- 6 M. If the concentration is too low, the yield of the resulting supramolecular complex will decrease. If the concentration is too high, it will be difficult to dissolve.
  • the mixing molar ratio of the porphyrin dendrimer and the pyridylnaphthalenediimide is not particularly limited, and they can be mixed at an arbitrary molar ratio. It is preferable that the pyridyl naphthalenediimide is in a large excess relative to the porphyrin dendrimer! 1 x 10 mol-1 x 10 5 mol is more preferred for 1 mol of porphyrin dendrimer 1 x 10 2 mol-1 x 10 4 mol is more preferred 1 x 10 3 mol-5 x 10 3 Mole is more preferred.
  • the supramolecular complex of the present invention can perform a photoinduced electron transfer reaction.
  • the photoinduced electron transfer reaction of the supramolecular complex can be confirmed by a method described in Examples described later.
  • a light energy conversion material refers to a material that converts light into electric energy.
  • the light energy conversion material can be used for elements such as a solar cell and a photosensor, and an element having excellent performance can be obtained by using the material of the present invention according to a known manufacturing method. Can be manufactured.
  • the supramolecular complex of the present invention can be used as a material for an artificial photosynthetic reaction center.
  • a material for an artificial photosynthetic reaction center in which an electron donor molecule and an electron acceptor molecule are covalently bonded is known, but like the conventional artificial photosynthetic reaction center material, the supramolecular compound of the present invention is used.
  • the complex can be used as an artificial photosynthetic reaction center.
  • the supramolecular complex of the present invention can be used for a hydrogen generation photocatalyst.
  • water return A hydrogen generating photocatalyst combining a source catalyst and a porphyrin derivative is known, but by using the supramolecular complex of the present invention instead of the porphyrin derivative of the conventional catalyst, the hydrogen generating photocatalyst of the present invention can be obtained.
  • a hydrogen generating photocatalyst can be obtained by stacking a platinum catalyst on a substrate such as glass and further stacking a supramolecular complex thereon.
  • the supramolecular complex of the present invention can be used for a hydrogen synthesis method. For example, by irradiating water with light in the presence of a hydrogen generating photocatalyst containing a molecule and a supramolecular complex serving as an electron source and a platinum catalyst, hydrogen in which water is reduced can be generated.
  • a molecule serving as an electron source any compound molecule capable of giving an electron to an excited state of a photocatalyst can be used.
  • analogs of dihydronicotinamide adenine dinucleotide (NADH), which is an important electron source in the living body, such as 1-benzyl-1,4-dihydro-totinamide can be used.
  • the supramolecular complex of the present invention can be effectively used as a material for a conventionally known device that converts light into electric current.
  • it can be used as a material for a photoelectric conversion element.
  • the configuration of the element any conventionally known configuration can be adopted. For example, by stacking a supramolecular complex on a conductive substrate, an element that converts light into current can be obtained.
  • Polypropyleneimine hexadecamine dendrimer (3.0 generation), 1,2-dimethoxyethane, N-hydroxysuccinimide, and 1,3-dicyclohexylcarbodiimide were obtained from Aldrich Chemical Company, Inc.
  • Glutaric acid and zinc acetate ( ⁇ ) were obtained from Tokyo Chemical Industry Co., Ltd.
  • Cloth form, hexane, dichloromethane and benzo-tolyl (PhCN) were purchased from Wako Pure Chemical Ind., Ltd. Benzo-tolyl and acetonitrile were purified by continuous distillation of calcium hydride.
  • UV-visible spectra were obtained on a Shimadzu UV-3100PC spectrometer or Hewlett Packard 8452A diode array spectrophotometer at 298K. Calibrated fluorescence spectra were obtained using a Shimadzu Fluorescence Spectrophotometer (RF-5000PC). The solution was degassed by argon purge for 15 minutes before measurement. Transient absorption spectra in various solvents were measured using a 431 nm Nd: YAG laser (GCR-130, Quanta-Ray). A noresixenon flash lamp (XF80-60, Tokyo Instruments) was used for the probe light. The output was recorded using a digitizing oscilloscope (HP 54510B, 300 MHz).
  • Pyridylnaphthalenediimide forms a supramolecular complex with dendrimer zinc (II) porphyrin [D (ZnP)] in benzo-tolyl (PhCN), and the supramolecular complex [D (ZnP—
  • Pyridylnaphthalenediimide (PyNIm) was synthesized by the condensation of naphthalenediimide with 4 aminoviridine and characterized by 1 H NMR, FABMS and MALDI-TOF MS spectra.
  • the substituent Ar at the 5-position, 10-position, 15-position and 20-position of each porphyrin is 3,5-ditertbutylbutyl, which is bonded to nitrogen outside naphthalenediimide.
  • Some alkyl groups are linear CH.
  • Figure 1 shows that D (ZnP) (based on the number of porphyrin units) in the presence of various concentrations of PyNIm (0-4.9 mM) at 298 K in PhCN! 6 M) UV-vis spectrum
  • Figure 3 shows plots of (A-A) / (A-A) (solid circles) and (II) / (I-I) (open circles) against PyNIm].
  • (A — A) and (I I) are extrapolated from the [PyNIm] dependence of the spectral change (fluorescence intensity at 659 nm and absorbance at 450 nm).
  • Figure 4 shows the dependence of K on the supramolecular complex formation between the ZnP portion of D (ZnP) and PvNIm at 298K in PhCN with the concentration of PyNIm. Filled circles and open circles correspond to K values determined from plots of (A A) Z (A—A) and (I I) Z (I—I), respectively.
  • the (II) Z (I—IM directly (open circle in FIG. 3) in the change in fluorescence spectrum may also correspond to the molar ratio of the ZnP moiety bound to PyNI m to all ZnP moieties in D (ZnP).
  • this (I-I) / (I-IM) value is much larger than the (AA) Z (A-A) value at the same PyNIm concentration, which means that the energy transfer between porphyrin units is more efficient.
  • the fluorescence of the unbound ZnP moiety was finally quenched by PyNIm bound to a different ZnP moiety that was not initially photoexcited.
  • FIG. 5 shows a schematic diagram of energy transfer and electron transfer in a singlet excited state in a supramolecular D (ZnP—PyNIm) complex. Where EN is energy transfer.
  • Redox potentials of ZnTBPP and PyNIm were determined by cyclic voltammetry measurements in PhCN, as listed in Table 1.
  • the change in the free energy of photoinduced electron transfer from the singlet excited state of D (ZnP) in PhCN to PyNIm was determined by the one-electron acid in PhCN.
  • These redox potentials were determined by cyclic voltammetry in PhCN. Judging from the exothermic light-induced electron transfer process, this quenching of the fluorescence is due to the PyNIm singlet excited state of D (ZnP) in the supramolecular dendrimer complex.
  • the absorption band ( ⁇ 640 nm) attributed to ZnP '+ generated by one-electron
  • the inventors succeeded in constructing a system having multiple photosynthetic reactive centers using a supramolecular complex formed between zinc porphyrin dendrimer and pyridylnaphthalenediimide. Excitation energy transfer occurred between the porphyrin units. Therefore, the CS state of the supramolecular dendrimer complex generated upon laser excitation had a long life at 298 K in PhCN and a lifetime (830 ⁇ s).
  • Figure 6 was measured after 20 mu s of the laser excitation at 431 nm, PyNIm in 29 8K in degassed PhCN (4. 9 X 10- 3 M ) D in the presence of (ZnP) (2. over of 9 X 10- 6 M)
  • FIG. 7 shows the time profile of the absorption at 620 nm due to the CS state obtained during nanosecond flash photolysis using different laser powers (10 mJ, 2.23 ⁇ 4 and 0.5 mJ, respectively).
  • Inset Shows a primary plot of absorbance decay at 620 nm (10 mJ, X; 2.2 mJ, solid square; 0.5 mi, solid circle).
  • a zinc porphyrin dendrimer having a large number of porphyrins is used as a light-collecting antenna model, and a supramolecular zinc porphyrin'pyridylnaphthalenediimide linkage system is used as a charge separation model, so that a pyridyl group is arranged at the zinc site. It has been found that a supramolecule having a plurality of reaction center model molecules can be obtained. In this supramolecule, when the zinc porphyrin site was photoexcited, it was found that long-lived charge separation occurs due to intra-supramolecular photoinduced electron transfer. It was also found that similar supramolecular aggregates were formed when a zinc porphyrin-modified gold cluster was used as a light-collecting antenna model, and that a long-lived charge separation state was obtained.
  • the present invention is not the first example in which a supramolecular complex formed using a coordination bond generates a very long-lived charge-separated state by photoexcitation, and has a large number of artificial photosynthetic reaction centers. It is important as a light energy conversion system with high light collection and charge separation capabilities.
  • the light energy conversion supramolecule of the present invention has a large number of artificial photochemical reaction centers, has high light-collecting ability and charge separation ability, and can be easily developed into a more complex system. Therefore, it can be applied to organic solar cells and photocatalysts as a highly efficient light energy conversion system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Catalysts (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

 配位結合を利用して形成される亜鉛ポルフィリンデンドリマー超分子錯体を用いることにより、多数の人工光合成反応中心を有し、高い光捕集能と電荷分離能を示す光エネルギー変換系を構築すること。球状亜鉛ポルフィリンオリゴマーとして亜鉛ポルフィリンデンドリマーを用いて、ピリジルナフタレンジイミドとの超分子を構築した。亜鉛ポルフィリンデンドリマー・ピリジルナフタレンジイミド超分子において亜鉛ポルフィリンを光励起すると、光誘起電子移動によって電荷分離状態が生成し、その寿命は830マイクロ秒と非常に長いものが得られた。

Description

明 細 書
多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリ ジルナフタレンジイミドとの超分子錯体
技術分野
[0001] 本発明は、多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマ一一ピ リジルナフタレンジイミド超分子錯体に関する。
背景技術
[0002] 天然の光合成においては、 1つの反応中心は、多数の光捕集ユニットに連結され ており、ここで捕集された光エネルギーは、効率的に反応中心へ伝達される。
[0003] 従来から、このような天然光合成におけるエネルギーおよび電子の移動過程を模 倣する多数の人工光合成モデル系が研究されている。し力しながら、人工光合成反 応中心分子としては、電子供与体分子と電子受容体分子を共有結合で連結したもの が主として研究されていた。例えば、】. Phys. Chem. A 2002, 106, 3243— 325 2 (非特許文献 1)は、ポルフィリンとフラーレンとを共有結合で連結させたィ匕合物を開 示する。
[0004] しかしながら、このような人工光合成反応中心分子として電子供与体分子と電子受 容体分子を連結した分子の場合には、その光捕集機能に限界があった。すなわち、 これらの材料では高 ヽ光捕集機能と電荷分離機能を合わせ持つことができな!/ヽと!ヽ う欠点があった。
[0005] 他方、人工光合成反応中心の光捕集能を高めるために様々な方法によりポルフィ リン分子の集積化が行なわれてきたが、電荷分離機能を有する反応中心を集積化し たものはなかった。多数の反応中心を有する人工光合成モデル系は、デンドリマー 状ドナ一一ァクセプターアレイの合成の困難性のために、未だ開発されていない。そ のため高い光捕集機能と電荷分離機能を合わせ持つ分子の開発はまだされていな かった。
非特許文献 1 : Phys. Chem. A 2002, 106, 3243-3252
発明の開示 発明が解決しょうとする課題
[0006] 以下に本発明を詳細に説明する。
[0007] 本発明は、配位結合を利用して形成される亜鉛ポルフィリンデンドリマー超分子錯 体を用いることにより、多数の人工光合成反応中心を有し、高い光捕集能と電荷分 離能を示す光エネルギー変換系を構築することを目的とする。
課題を解決するための手段
[0008] 本発明者は、鋭意研究の結果、亜鉛ポルフィリンデンドリマー [D (ZnP) ] (16個
16 の亜鉛ポルフィリンを含む)と、ピリジルナフタレンジイミド(PyNIm) (D (ZnP) の亜
16 鉛イオンとの結合部位 (ピリジン部分)を有する)との間でベンゾ-トリル中で形成され た超分子錯体を使用して多重光合成反応中心を構築することに成功した。 PyNIm による亜鉛ポルフィリンの一重項励起状態の蛍光の消光力 決定した見掛けの形成 定数は、超分子錯体の形成に起因する UV— visスペクトル変化カゝら決定された形成 定数よりかなり大き力つた。このことは、亜鉛ポルフィリン部分間の効率的なエネルギ 一移動が起こっていることを示しており、これにより、異なる亜鉛ポルフィリン部分と結 合する PyNImによる亜鉛ポルフィリンの一重項励起状態の蛍光の消光が生じる。こ の超分子デンドリマー錯体の電荷分離 (CS)状態を、レーザーフラッシュ光分解にお ける一過性の吸収スペクトルとして検出したところ、レーザー励起の際に生成した CS 状態は、 PhCN中 298Kにおいて長い寿命(830 /z s)を有していた。
[0009] 具体的には、本発明によれば、以下の超分子錯体などが提供される。
[0010] (1)
ポルフィリンデンドリマーおよび置換もしくは非置換のピリジルナフタレンジイミドを 含む錯体化合物であって、
該化合物中のポルフィリンには、金属が結合しており、該金属には、さらに、ピリジ ルナフタレンジイミドのピリジル基が軸配位して 、る、化合物。
[0011] (2)
上記項 1に記載の化合物であって、前記金属が亜鉛である、化合物。
[0012] (3)
以下の式 1で示される錯体ィ匕合物であって、 [0013] [化 3]
(式 1 ) R1 (- N (- R2- N (- R3- N (- R4- N H C O- R5- C O N H- R6- R7)2)2)2)2
ここで、 R1はアルキレンであり、 4個の R2は独立してアルキレンであり、 8個の R3は独 立してアルキレンであり、 16個の R4は独立してアルキレンであり、 16個の R5は独立し てァノレキレンであり、
16個の R6は独立して、金属を有するポルフィリンであり、それぞれのポルフィリンの中 心部分に該金属が結合しており、
16個の R7は独立して、置換もしくは非置換のピリジルナフタレンジイミドであり、 該 16個の金属原子に、それぞれ、該置換もしくは非置換のピリジルナフタレンジイミ ドのピリジル基が軸配位している、化合物。
[0014] (4)
上記項 3に記載の化合物であって、前記置換もしくは非置換のピリジルナフタレン ジイミドカ N ピリジルー N,一アルキル ナフタレンジイミドであり、アルキル基の炭素 数が 3— 9である、化合物。
[0015] (5)
上記項 3に記載の化合物であって、 R 4個の R2、 8個の R3、 16個の R4、および 16 個の R5がすべて、 -C H一である、化合物。
3 6
[0016] (6)
上記項 3に記載の化合物であって、前記 16個の金属がすべて亜鉛である、化合物 [0017] (7)
上記項 3に記載の化合物であって、前記 16個のポルフィリンカ、それぞれ、その 5 位、 10位、 15位および 20位に、フエ-ル基またはアルキル置換フエ-ル基もしくは ハロゲン置換フ 二ル基を有する、化合物。
[0018] (8)
上記項 3に記載の化合物であって、前記 16個のポルフィリンカ、それぞれ、その 5 位、 10位、 15位および 20位〖こ、フエ-ル基、 3, 5—ジー tert ブチルフエ-ル基もしく は 2, 6—ジクロロフヱ-ルフヱ-ル基を有する、化合物。 [0019] (9)
上記項 1に記載の化合物を合成する方法であって、前記ポルフィリンデンドリマー および置換もしくは非置換のピリジルナフタレンジイミドを溶媒中で混合する工程を包 含する、方法。
[0020] (10)
上記項 3に記載の化合物を合成する方法であって、以下の式のポルフィリンデンド リマーおよび置換もしくは非置換のピリジルナフタレンジイミドを溶媒中で混合するェ 程を包含する、方法:
[0021] [化 4]
(式 2) R1 (- N (- R2- N (- R3- N (- R4- N H C O- FT- C O N H- RD) )2)2)2
(11)
上記項 10に記載の方法であって、前記溶媒がベンゾニトリルである、方法。
[0022] (12)
上記項 1に記載の化合物力 なる人工光合成反応中心用材料。
[0023] (13)
上記項 1に記載の化合物と、白金触媒とを含む、水素発生光触媒。
[0024] (14)
水素を合成する方法であって、電子源となる分子及び上記項 1に記載の超分子錯 体と白金触媒とを含む水素発生光触媒の存在下で、水に光を照射する工程を包含 する、方法。
[0025] (15)
光を電流に変換するための素子であって、上記項 1に記載された化合物が導電性 基材の上に積層されている、素子。
発明の効果
[0026] 本発明では光捕集能を飛躍的に向上させるために亜鉛ポルフィリンデンドリマーを 用い、さらにピリジルナフタレンジイミドとの間で配位結合を利用して超分子錯体を形 成させることにより、多数の人工光合成反応中心を有し、高い光捕集能と電荷分離能 を示す光エネルギー変換系を構築することができた。このように高 ヽ光捕集能と電荷 分離能を合わせ持つ光エネルギー変換超分子は他に例がない。
図面の簡単な説明
[0027] [図 1]図 1は、 PhCN中 298Kにおける種々の濃度の PyNIm (0— 4. 9mM)の存在 下での D (ZnP) (ポルフィリン単位の数に基づ!/、て 2. 9 X 10— 6M)の UV— visスぺ タトル変化を示す。
[図 2]図 2は、(b) 種々の濃度の PyNIm (0— 4. 9mM)の存在下における脱気 PhC N中 298Kでの D (ZnP) (2. 9 X 10— 6M)の蛍光スペクトルを示す。
[図 3]図 3は、 [PyNIm]に対する (A— A ) / (A -A ) (黒丸)および (I -I) / (1 I
0 o 0 0 ∞
) (白丸)のプロットを示す。 (A — A )および(I I )は、スペクトル変化の [PyNIm]
0 0 ∞
依存性の外揷カゝら見積もられる(659nmにおける蛍光強度および 450nmにおける 吸光度)。 (A -A ) = 0. 195、(I I ) = 324
∞ 0 0 ∞ 。
[図 4]図 4は、 PhCN中 298Kにおける D (ZnP) の ZnP部分と PyNImとの間の超分 子錯体形成の Kの、 PyNImの濃度に対する依存性を示す。黒丸および白丸は、そ れぞれ (A— A
0)Z(A — A )および (I I
0 0 )Z(I— I )のプロットから決定された K値に
0 ∞
対応する。
[図 5]図 5は、超分子 D (ZnP— PyNIm) 錯体における一重項励起状態のエネルギ 一移動および電子移動の模式図を示す。 ENはエネルギー移動である。
[図 6]図 6は、 431nmにおけるレーザー励起の 20 s後に測定された、脱気 PhCN 中 298Kにおける PyNIm (4. 9 X 10— 3M)の存在下での D (ZnP) (2. 9 X 10— 6M) の過渡スペクトルを示す。
[図 7]図 7は、異なるレーザー出力(それぞれ 10mJ、 2. 2miおよび 0. 5mJ)を用いた ナノ秒フラッシュ光分解の際に得られた CS状態に起因する 620nmにおける吸収の 時間プロフィールを示す。挿入図: 620nmにおける吸光度の減衰の一次プロット(10 mj、 X ; 2. 2 J,黒四角; 0. 5mJ、黒丸)である。
発明を実施するための最良の形態
[0028] 以下に本発明の実施形態についてより具体的に説明する。
[0029] (ポルフィリン)
本発明に用いられるポルフィリンは、非置換のポルフィリンであってもよぐボルフイリ ンとしての性能を損なわな!/、範囲で任意の置換基を有するものであってもよ!/、。例え ば、ポルフィリン中の 5位、 10位、 15位、および 20位、すなわちピロール環とピロール 環との間のメチン基の炭素原子において、置換基としてアルキル、ァリールまたはァ ルキル置換ァリールもしくはハロゲン置換ァリールを有することができる。この置換基 は、好ましくはフエ-ルまたは置換フエ-ルであり、より好ましくはフエ-ルまたはアル キル置換フエ-ルもしくはハロゲン置換フエ-ルであり、さらに好ましくは、フエ-ルま たはジアルキル置換フエ-ルもしくはジクロロ置換フエ-ルであり、特に好ましくはフエ ニルまたは 3, 5—ジー tert—ブチルフエニルもしくは 2, 6—ジクロロフェニルである。な お、ポルフィリンの 5位、 10位、 15位、および 20位はすべて同じ置換基を有すること が好ましいが、必要に応じて、 2— 4種類の置換基を 5位、 10位、 15位、および 20位 の 4ケ所に導入してもよい。
[0030] 以下に、好ましいポルフィリンの例を示す。
(式 3)
[0031] [化 5]
Figure imgf000008_0001
また、ポルフィリンには、必要に応じて、ポルフィリンとしての性能を損なわない範囲 で、ピロール環に置換基が導入されてもよい。
[0032] ここで、ポルフィリンの!/、ずれかの位置に置換基としてアルキルが導入される場合に は、特にその炭素数は限定されないが、その炭素数は好ましくは 1一 10であり、より 好ましくは 1一 6である。
[0033] (ポルフィリンデンドリマー)
本明細書中でポルフィリンデンドリマーとは、 1つの分子中に複数のポルフィリンが、 デンドリマーの構造 (榭状構造)になっているものをいう。好ましくは、デンドリマー中 のポルフィリンの数は 2以上であり、より好ましくは 4以上であり、さらに好ましくは 8以 上であり、最も好ましくは 16以上である。また、分子中のポルフィリンの数に特に上限 はないが、 1つの実施態様では、ポルフィリンの数は 64以下であり、別の実施態様で は 32以下である。特に好ましい 1つの実施態様において、 1分子中のポルフィリンの 数は 16である。
[0034] 1つの好ましい実施態様において、ポルフィリンデンドリマーは以下の構造式を有 する。
[0035] [化 6]
(式 2 ) R 1 (- N (- R2 - N (- R 3 - N (- R 4- N H C O - FT- C O N H - RD ) )2 )2 )2
ここで、 R R2、 R3、 R4、および R5はそれぞれ独立してアルキレンであり、その炭素数 は好ましくは 1一 10であり、より好ましくは、 2— 8であり、さらに好ましくは 3— 6である 。 1つの好ましい実施態様においてアルキレンの炭素数は 3である。 R\ R2、 R3、 R4、 および R5はすべて同一であってもよぐまたはそれぞれ異なっていてもよいが、すべ て同一とすることがデンドリマーの製造が容易になる点で好ましい。特に、 R2、 R3、 R4 、および R5をすベて同一にすることが好ましい。 1つの好ましい実施態様においては 、 とすることができる。また、別の好まし
Figure imgf000009_0001
い実施態様においては、 R1のみを- C H—として、 R2、 R3、 R4、および R5をすベて-
4 8
C H一とすることができる。
3 6
[0036] また、アルキレンは直鎖であってもよぐ分岐鎖であってもよい。
[0037] 上記式中、 R6は独立して、金属を有するポルフィリンであり、それぞれのボルフイリ ンの中心部分に該金属が結合している。
[0038] (金属)
本発明において、ポルフィリンの中央部分に配位させる金属としては、ポルフィリン の中央部分に結合することができ、かつ、さらにピリジルナフタレンジイミドと配位結合 することができる任意の金属原子が使用可能である。好ましくは遷移金属である。より 好ましくは亜鉛である。
[0039] (ピリジルナフタレンジイミド)
本発明には、置換もしくは非置換のピリジルナフタレンジイミドが使用される。以下 に一般式を示す。なお、説明の簡略化のため、本明細書中では、置換もしくは非置 換のピリジルナフタレンジイミドを単に「ピリジルナフタレンジイミド」と簡略ィ匕して記載 する場合がある。
(式 4)
[0040] [化 7]
Figure imgf000010_0001
式 3において、 R1は、置換もしくは非置換のピリジルであり、好ましくは非置換のピリ ジルである。ナフタレンジイミドとの位置関係に関して、ピリジルは、 2 ピリジル、 3—ピ リジル、 4 ピリジルのいずれであっても良い。 1つの好ましい実施態様では 4 ピリジ ルである。ピリジルが置換基を有する場合、その置換基は、ピリジルの性能を損なわ ない範囲で選択される。例えば、アルキルおよびハロゲンなどが可能である。ここでァ ルキルの炭素数は特に限定されないが 1一 10が好ましぐまたアルキルは直鎖であ つてもよく、分岐鎖であってもよい。
[0041] R2は、水素またはアルキルである。好ましくは、炭素数 1一 20のアルキルであり、よ り好ましくは、炭素数 2— 15のアルキルであり、さらに好ましくは、炭素数 3— 9のアル キルであり、特に好ましくは、炭素数 4一 8のアルキルであり、 1つの好ましい実施態 様においては、炭素数 6のアルキルである。また、アルキルは直鎖であってもよぐ分 岐鎖であってもよい。
[0042] Xおよび Zは、独立して、水素、アルキルまたはハロゲンであり、好ましくは、水素で ある。ここでアルキルの炭素数は特に限定されないが、好ましくは 1一 10であり、より 好ましくは 1一 6である。また、アルキルは直鎖であってもよぐ分岐鎖であってもよい 。 Xが水素以外である場合、その数は、 1であってもよぐ 2であってもよい。 Yが水素 以外である場合、その数は、 1であってもよぐ 2であってもよい。
[0043] 本発明に用いるピリジルナフタレンジイミドは、非置換のピリジルナフタレンジイミド であってもよぐまたは置換されたピリジルナフタレンジイミドであってもよい。置換され たピリジルナフタレンジイミドィ匕合物における、置換基の例としては、特に限定されな いが、アルキルが挙げられる。置換基の数は特に限定されない。好ましくはアルキル 置換基の数は 1である。用いられるアルキル置換基における鎖の長さは特に限定さ れない。 1つの実施態様ではアルキル置換基中の炭素数が 3以上であり、より好まし い実施態様では、炭素数力 以上である。上限は特にないが、 1つの実施態様では、 10以下である。
[0044] ピリジルナフタレンジイミドのアルキル置換体として好ましくは、以下の化合物である
。好ましくは、 N ピリジルー N,一アルキル ナフタレンジイミドであり、アルキル基の炭 素数が 3— 9である。
[0045] (超分子錯体)
本明細書中で超分子錯体とは、単一の分子中に、多数のポルフィリンおよび多数 の金属原子を有する錯体を 、う。
[0046] 好まし!/、超分子錯体の例として、亜鉛 (Π)ポルフィリンデンドリマ一一 PyNIm超分子 錯体 [D (ZnP - PvNIm) ]の超分子錯体(Ar= 3, 5 -ジー t ブチルフ ニル)の式
16
を以下に示す。ここで、ピリジルナフタレンジイミドは、 N ピリジルー N,一へキシルーピ リジルナフタレンジイミドである。
(式 5)
[0047] [化 8]
Figure imgf000011_0001
本発明においては、ポルフィリンデンドリマーのすべてのポルフィリンの金属原子に ピリジルナフタレンジイミドが軸配位していることが好ましいが、必要に応じて、ピリジ ルナフタレンジイミドが結合して!/ヽな 、ポルフィリンが!/、くつか存在しても、本発明の 目的が大きく損なわれることはない。
[0048] ポルフィリンデンドリマーのポルフィリンの金属原子の総数のうち、 30%以上にピリ ジルナフタレンジイミドが結合していることが好ましぐ 50%以上にピリジルナフタレン ジイミドが結合していることがより好ましぐ 70%以上にピリジルナフタレンジイミドが結 合していることがさらに好ましぐ 90%以上にピリジルナフタレンジイミドが結合してい ることが特に好ましい。
[0049] 本発明においては、 1つの分子に複数のピリジルナフタレンジイミドが軸配位するこ とが特徴とされるので、その軸配位するピリジルナフタレンジイミドの絶対数として、 1 つの超分子中に、 5個以上のピリジルナフタレンジイミドが結合していることが好ましく 、 8個以上のピリジルナフタレンジイミドが結合していることがより好ましぐ 12個以上 のピリジルナフタレンジイミドが結合していることがさらに好ましぐ 15個以上のピリジ ルナフタレンジイミドが結合して 、ることが特に好ま 、。
[0050] (溶媒)
本発明の方法に用いる溶媒としては、原料となるポルフィリンデンドリマーおよび置 換もしくは非置換のピリジルナフタレンジイミドとを溶解できる限り、特に限定されない 。好ましくは、ベンゾ-トリルである。
[0051] (ポルフィリンデンドリマーとピリジルナフタレンジイミドとの錯体形成)
ポルフィリンデンドリマーおよび置換もしくは非置換のピリジルナフタレンジイミドは、 適切な溶媒中で混合することにより、ポルフィリンデンドリマーの金属原子とピリジル ナフタレンジイミドのピリジル基の窒素との間に軸配位結合を形成することができ、超 分子錯体を形成することができる。
[0052] 混合の際のピリジルナフタレンジイミドの濃度は特に限定されないが、好ましくは 1
X 10— 5M以上であり、より好ましくは、 1 X 10— 4M以上であり、特に好ましくは 1 X 10—3 M以上である。また、好ましくは 1 X 10—M以下であり、より好ましくは 5 X 10— 2M以下 であり、特に好ましくは 1 X 10— 2M以下である。濃度が低すぎる場合には得られる超 分子錯体の収量が少なくなる。濃度が高すぎる場合には溶解させることが困難になり 易い。
[0053] 混合の際のポルフィリンデンドリマーの濃度は特に限定されないが、好ましくは、 1
X 10— 9M以上であり、より好ましくは、 1 X 10— 8M以上であり、特に好ましくは、 1 X 10 — 7M以上である。また、好ましくは、 1 X 10— 4M以下であり、より好ましくは、 1 X 10— 5M 以下であり、特に好ましくは、 1 X 10— 6M以下である。濃度が低すぎる場合には得ら れる超分子錯体の収量が少なくなる。濃度が高すぎる場合には溶解させることが困 難になり易い。
[0054] ポルフィリンデンドリマーとピリジルナフタレンジイミドとの混合モル比は特に限定さ れず、任意のモル比で混合することができる。ポルフィリンデンドリマーに対して、ピリ ジルナフタレンジイミドが大過剰となることが好まし!/、。ポルフィリンデンドリマー 1モル に対して、ピリジルナフタレンジイミドが 1 X 10モルー 1 X 105モルがより好ましぐ 1 X 102モルー 1 X 104モルがより好ましぐ 1 X 103モルー 5 X 103モルがさらに好ましい。
[0055] (超分子錯体の光誘起電子移動反応)
本発明の超分子錯体は、光誘起電子移動反応を行うことができる。超分子錯体の 光誘起電子移動反応は、後述する実施例に説明する方法などにより確認することが できる。
[0056] (光エネルギー変換材料)
本明細書中にぉ ヽて光エネルギー変換材料とは、光を電気エネルギーに変換する 材料をいう。光エネルギー変換材料は、太陽電池、フォトセンサーなどの素子に使用 可能であり、それらの素子にっ 、て公知の製造方法にぉ 、て本発明の材料を用いる ことにより、優れた性能を有する素子を製造することができる。
[0057] (人工光合成反応中心用材料)
本発明の超分子錯体は、人工光合成反応中心用材料として使用可能である。従来 から、電子供与体分子と電子受容体分子とを共有結合させた人工光合成反応中心 用材料が知られているが、そのような従来の人工光合成反応中心用材料と同様に本 発明の超分子錯体を人工光合成反応中心として使用することができる。
[0058] (水素発生光触媒)
本発明の超分子錯体は、水素発生光触媒に利用することができる。従来から、水還 元触媒と、ポルフィリン誘導体とを組み合わせた水素発生光触媒が知られているが、 その従来の触媒のポルフィリン誘導体の代わりに本発明の超分子錯体を使用するこ とにより、本発明の水素発生光触媒を得ることができる。例えば、ガラスなどの基板上 に白金触媒を積層し、さらにその上に超分子錯体を積層することにより、水素発生光 触媒とすることができる。
[0059] (水素合成方法)
本発明の超分子錯体は、水素合成方法に利用することができる。例えば、電子源と なる分子及び超分子錯体と白金触媒とを含む水素発生光触媒の存在下で、水に光 を照射することにより、水が還元された水素を発生することができる。電子源となる分 子としては、光触媒の励起状態に電子を与え得る任意の化合物分子が使用可能で ある。具体的には、生体内の重要な電子源であるジヒドロニコチンアミドアデニンジヌ クレオチド(NADH)の類縁体、例えば、 1一べンジルー 1, 4ージヒドロ-トチンアミド等 が使用可能である。
[0060] (素子)
本発明の超分子錯体は、従来公知の光を電流に変換する素子のための材料として 有効に使用され得る。例えば、光電変換素子のための材料として使用可能である。 素子の構成としては、従来公知の任意の構成が採用可能である。例えば、導電性基 板上に超分子錯体を積層すれば、光を電流に変換する素子を得ることができる。 実施例
[0061] 以下に本発明の非限定的な実施例を説明する。
[0062] (材料)
ポリプロピレンィミンへキサデカァミンデンドリマー(3. 0世代)、 1, 2—ジメトキシエタ ン、 N—ヒドロキシスクシンイミド、および 1, 3—ジシクロへキシルカルボジイミドを、 Aldr ich Chemical Company, Incから入手した。グルタル酸、および酢酸亜鉛(Π)を 、東京化成工業株式会社から入手した。クロ口ホルム、へキサン、ジクロロメタンおよ びべンゾ-トリル(PhCN)を、 Wako Pure Chemical Ind. , Ltd.力ら購入した。 ベンゾ-トリルおよびァセトニトリルを、水素化カルシウム力 連続的に蒸留して精製 した。 2—ァミノ— [5, 10, 15, 20—テトラキス(3, 5—ジー tert—ブチルフエ-ル)ボルフ ィリンおよびピリジルナフタレンジイミド (PyNIm)を、以前の文献に記載された手順と 同じ手順で調製した。
[0063] (亜鉛ポルフィリンデンドリマー [D (ZnP) ]の合成)
16
5— {ァミノ— 2— [5, 10, 15, 20—テトラキス(3, 5—ジ—tert—ブチルフエ-ル)ボルフ ィリン]卜 5—ォキソペンタン酸
乾燥トルエン(lOOmL)中で 2—ァミノ— [5, 10, 15, 20—テトラキス(3, 5—ジー tert —ブチルフエ-ル)ポルフィリン(3. 99g、 3. 70mmol)を無水グルタル酸(4. 22g、 3 7mmol)と共に 5時間加熱還流した。この混合物を、放冷し、そしてジクロロメタン(50 mL)を加えた。この溶液を水(3 X lOOmL)で洗浄し、そして無水硫酸ナトリウムで乾 燥した。溶媒を除去し、そして生成物を、シリカカラムクロマトグラフィー (Type 9385 、メタノール/ジクロロメタン; 1 : 25)で精製して所望の生成物 5— {アミノー 2— [5, 10, 15, 20—テトラキス(3, 5—ジー tert—ブチルフエ-ル)ポルフィリン] }— 5—ォキソペンタ ン酸(3. 96g、 3. 32mmol、 90%)を、紫褐色の微晶質固体として得た。
[0064] 5— {ァミノ— 2— [5, 10, 15, 20—テトラキス(3, 5—ジ—tert—ブチルフエ-ル)ボルフ イリナト]亜鉛 (Π)卜 5—ォキソペンタン酸
5— {ァミノ— 2— [5, 10, 15, 20—テトラキス(3, 5—ジ—tert—ブチルフエ-ル)ボルフ ィリン] }ー5—ォキソペンタン酸(3. 30mg、 2. 77mmol)および酢酸亜鉛 (Π)二水和 物(3. 63mg、 18. Ommol)を、クロ口ホルム(125mL)およびメタノール(25mL)中 で 1時間加熱還流した。溶媒を除去してクロ口ホルム(50mL)を加え、そしてこの混 合物を水(3 X 150mL)で洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、そして溶媒 を除去した。残渣をシリカカラムクロマトグラフィー(Type 9385、 MeOH/クロロホ ルム; 1 : 25)により精製した。主要な赤いバンドを集め、そして溶媒を除去して 5—{ァ ミノ— 2— [5, 10, 15, 20—テトラキス(3, 5—ジ—tert—ブチルフエ-ル)ボルフイリナト] 亜鉛を暗赤色の微結晶として得た。
[0065] 5— {ァミノ— 2— [5, 10, 15, 20—テトラキス(3, 5—ジ—tert—ブチルフエ-ル)ボルフ イリナト]—亜鉛 (Π)卜 5—ォキソペンタン酸 N—ヒドロキシスクシンイミド
乾燥 1, 2—ジメトキシェタン(lOmL)中の 5— {ァミノ— 2— [5, 10, 15, 20—テトラキス (3, 5—ジー tert—ブチルフエ-ル)ボルフイリナト]亜鉛(Π) }—5—ォキソペンタン酸(4 96mg、0. 39mmol)を氷上で冷却した。 N—ヒドロキシスクシンイミド(102mg、 0. 8 9mmol)および 1, 3—ジシクロへキシルカルボジイミド(DCC) (171mg、 0. 83mmol )を加え、そしてこの反応混合物を氷上で冷却して窒素大気圧下で 5時間攪拌した。 この混合物をシリカのプラグを通して濾過し、そして残渣をシリカカラムクロマトグラフ ィー (Type 9385、クロ口ホルム)により精製した。溶媒を除去して、 5—{ァミノ- 2—[5 , 10, 15, 20—テトラキス(3, 5—ジー tert ブチルフエ-ル)ボルフイリナト]亜鉛(Π) } —5 ォキソペンタン酸 N—ヒドロキシスクシンイミド(259mg、 0. 19mmol、49%)を 紫色粗生成物として得た。
[0066] D (ZnP)
16
5 {ァミノ— 2— [5, 10, 15, 20—テトラキス(3, 5—ジ—tert ブチルフエ-ル)ボルフ イリナト]亜鉛(Π) }— 5 ォキソペンタン酸 N—ヒドロキシスクシンイミド(259mg、 0. 1 9mmol)およびポリプロピレンィミンデンドリマー G— 3 (5mg、 0. 0030mmol)を、ジ クロロメタン (3mL)およびトリェチルァミン(20 μ L)に溶解した。この反応混合物を、 窒素下で暗所にて 1. 5時間攪拌した。次いで、この溶液をジクロロメタン(30mL)で 希釈し、水(3 X 30mL)で洗浄し、無水硫酸ナトリウムで乾燥し、そして溶媒を除去し た。残渣を最少量のトルエンに溶解し、そしてサイズ排除カラム(20cm、トルエン中 バイオ ビーズ S— XI)に通した。溶媒を除去して、 D (ZnP) を紫色固体として得た
16
[0067] (光物理的測定)
UV 可視スペクトルを、 298Kにて島津 UV— 3100PC分光計または Hewlett Pa ckard 8452Aダイオードアレイ分光光度計で得た。較正した蛍光スペクトルを、島 津蛍光分光光度計 (RF— 5000PC)を使用して得た。溶液を測定前 15分間アルゴン パージにより脱気した。種々の溶媒中での一過性吸収スペクトルの測定を、 431nm の Nd:YAGレーザー(GCR—130、 Quanta-Ray)を使用して行った。ノ レスキセノ ンフラッシュランプ(XF80— 60、 Tokyo Instruments)をプローブ光のために使用 した。出力をデジタル化オシロスコープ(HP 54510B、 300MHz)を用いて記録し た。
[0068] (結果および考察) ピリジルナフタレンジイミド(PyNIm)と、ベンゾ-トリル(PhCN)中でデンドリマー亜 鉛 (II)ポルフィリン [D (ZnP) ]とにより超分子錯体を形成し、超分子錯体 [D (ZnP—
16
PyNIm) ]が、複数(16)の反応中心を含むことを確認した。
16
[0069] 具体的には、亜鉛 (II)ポルフィリンデンドリマー [D (ZnP) ]を、遊離塩基ポルフィ
16
リンデンドリマーの合成と同じ方法を使用して活性ィ匕亜鉛ポルフィリンを用いて対応 するポリプロピレンィミンの末端官能基ィ匕により合成し、そして13 C NMR ^ベクトル および MALDI— TOF MS スペクトルにより特徴付けした(Hasobe, T. ; Kashiw agi, Y. ; Absalom, M. A. ; Hosomizu, K. ; Crossley, M. J. ; Imahori, H. ; K amat, P. V. ; Fukuzumi, S. Adv. Mater. 2004, in press)。
[0070] ピリジルーナフタレンジイミド(PyNIm)を、ナフタレンジイミドと 4 アミノビリジンとの 縮合により合成し、そして1 H NMRスペクトル、 FABMSスペクトルおよび MALDI— TOF MSスペクトルにより特徴付けした。
[0071] ベンゾ-トリル(PhCN)中 298Kでの D (ZnP) の UV— visスペクトルは、 PyNImを
16
添加すると変化し、この場合、ソーレー帯および Qバンドは、等吸収点を有しつつ、レ ッドシフトした(図 2a)。この吸光度変化は、 PyNIm濃度の増加と共に飽和挙動を示 す(図 3aにおける黒丸)。このことは、 PyNIm力 D (ZnP) と 1: 1錯体を形成したこ
16
とを示す。このような窒素塩基力 1 : 1の化学量論で亜鉛 (Π)ポルフィリンに容易に 結合することは周知である(Sanders, J. K. M. ; Banpos, N. ; Clude— Watson, Z. ; Darling, S. L. ; Hawaley, J. C. ; Kim, H.—J. ; Mak, C. C. ; Webb, S. J . In The Porphyrin Handbook ;Kadish, K. M. , Smith, K. M. , Guilard, R. , Eds. ; Academic Press: San Diego, 2000 ; Vol. 3, pp 1—48)。
[0072] 従って、得られた錯体が以下の化合物であることが確認された。 [0073] [化 9]
Figure imgf000018_0001
なお、上記構造式において、それぞれのポルフィリンの 5位、 10位、 15位および 20 位の置換基 Arは、 3, 5—ジー tert ブチルフエ-ルであり、ナフタレンジイミドの外側 の窒素に結合しているアルキル基は直鎖の C H である。
6 13
[0074] 図 1は、 PhCN中 298Kにおける種々の濃度の PyNIm (0— 4. 9mM)の存在下で の D (ZnP) (ポルフィリン単位の数に基づ!/、て 2. 9 X 10— 6M)の UV— visスペクトル
16
変化のグラフである。
[0075] 図 2に、種々の濃度の PyNIm (0— 4. 9mM)の存在下における脱気 PhCN中 298 Kでの D (ZnP) (2. 9 X 10— 6M)の蛍光スぺクトノレを示す。
16
[0076] PhCN中 430nmの D (ZnP) のソーレー帯の光励起により、 λ =612nmおよ
16 max
び 652nmの蛍光を生じた。 D (ZnP) の PhCN溶液に PyNImを添カ卩すると、 D (Zn
16
P) の蛍光スペクトルにおいて有意な変化を生じた(図 2b)。 D (ZnP) の蛍光強度
16 16 変化の大きさは、図 3 (白丸)に示されるように、 PyNIm濃度の増加と共に増加して一 定になる。このような蛍光強度変化は、超分子デンドリマー錯体中の D (ZnP) の一 重項励起状態から PyNImへの光誘起電子移動に起因する。 UV— visスペクトル変 ィ匕における (A-A ) / (A -A M直(図 3における黒丸)は、 PyNImと結合する ZnP 部分対 D (ZnP) の全ての ZnP部分のモル比に対応し、この値から、形成定数 Kを 決定した。この決定された K値は、図 4 (黒丸)に示されるように、 PyNImの濃度の増 カロと共に減少した。このような PyNImの濃度の増加に伴う K値の減少は、 D (ZnP) の ZnP部分の亜鉛イオンへの PyNImの結合を遅延させる隣接した PyNIm分子の 立体障害の結果であろうと考えられる。
[0077] 図 3は、 PyNIm]に対する (A— A ) / (A -A ) (黒丸)および (I I) / (I -I ) (白 丸)のプロットを示す。(A — A )および(I I )は、スペクトル変化の [PyNIm]依存 性の外揷カゝら見積もられる(659nmにおける蛍光強度および 450nmにおける吸光 度)。(A -A ) = 0. 195、 (I -I ) = 324。
[0078] 図 4は、 PhCN中 298Kにおける D (ZnP) の ZnP部分と PvNImとの間の超分子 錯体形成の Kの、 PyNImの濃度に対する依存性。黒丸および白丸は、それぞれ (A A )Z(A — A )および (I I)Z(I— I )のプロットから決定された K値に対応する
[0079] 蛍光スペクトル変化における (I I)Z(I— I M直(図 3における白丸)はまた、 PyNI mに結合する ZnP部分対 D (ZnP) 中の全ての ZnP部分のモル比に対応し得る。し かし、この(I -I) / (I -I M直は、同じ PyNIm濃度における (A-A )Z(A -A )値 よりかなり大きい。このことは、ポルフィリン単位間の励起エネルギー移動が効率的に 起こったことを示す、この場合、図 5に示されるように、未結合の ZnP部分の蛍光が、 最初は光励起されていない異なる ZnP部分と結合した PyNImにより最終的に消光さ れた。
[0080] 図 5に、超分子 D (ZnP— PyNIm) 錯体における一重項励起状態のエネルギー移 動および電子移動の模式図を示す。ここで、 ENはエネルギー移動である。
[0081] 光誘起電子移動の自由エネルギー変化(A G )を決定するために、 D (ZnP) 、
ZnTBPPおよび PyNImの酸化還元電位を、表 1に列挙したとおり、 PhCN中のサイ クリックボルタンメトリー測定により決定した。 PhCN中の D (ZnP) の一重項励起状 態から PyNImへの光誘起電子移動の自由エネルギー変化を、 PhCN中の 1電子酸 ィ匕電位、 16 (ZnP)の励起エネノレギー(S = 2. 05eV)および PyNImの一電子還元 電位から 0. 68eVと決定された。これらの酸化還元電位を、 PhCN中のサイクリック ボルタンメトリーにより決定した。発熱光誘起電子移動過程から判断して、この蛍光の 消光は、超分子デンドリマー錯体における D (ZnP) の一重項励起状態から PyNIm
16
への光誘起電子移動から生じたと考えられる。
[0082] この超分子デンドリマー錯体における光誘起電子移動の発生は、図 6に示されるよ うに、ナノ秒レーザーフラッシュ光分解を使用して PhCN中で測定された D (ZnP-Py NIm) 錯体の過渡吸収スペクトルにより確認された。図 6において観測される過渡
16
の吸収帯は、 PhCN中の Ru (bpy) 3+ (bpy= 2, 2,一ビビリジン)を用いた D (ZnP)
3 16 の一電子酸ィ匕により生成される ZnP' +に起因する吸収帯(λ =640nm)と、テトラ max
メチルセミキノンラジカルァ-オンを用いた PyNImの一電子還元により生成される Py NImラジカルァ-オン( λ =480、 608、 702、および 779nm)の吸収帯との重ね max
合わせと一致した(Fukuzumi, S. ; Nakanishi, I. ; Suenobu, T. ; Kadish, K. M. J. Am. Chem. Soc. 1999, 121, 3468)。従って、図 6における過渡吸収スぺ タトルは、超分子デンドリマー錯体における D (ZnP) の一重項励起状態から PyNI
16
mへの光誘起電子移動による D (ZnP— PyNIm) 超分子錯体の CS状態の形成を
16
明らかに示す。 PhCNを、 PhCNよりもかなり極性の低いベンゼンと置き換えると、 CS 状態は観測されな!、。代わりに、 D (ZnP) の
16 三重項励起状態が過渡吸収スペクトル として検出されただけであった。
[0083] 表 1 PhCN中の D (ZnP) 、 ZnTBPPおよび PyNImの酸化還元電位
16
[0084] [表 1] compound £°ox vs SCE £°red vs SCE
16(ZnP) 0.81 -
ZnTBPP 0.81 -
PyNIm - -0.56
図 6において検出される CS状態は、明らかな一次速度論にしたがって減衰した (図 7):異なる初期 CS濃度の一次プロットは、同じ勾配で線形相関を与えた(図 7の挿入 図)。したがって、この減衰過程は、分子間光誘起電子移動により生成された ZnP' + と PyNIm'—との間分子間逆電子移動ではなぐ超分子エンドリマー錯体における逆電 子移動に起因する。 D (ZnP-PyNIm) 超分子錯体の CS状態の寿命は、 298Kに
16
おいて 830 sと決定される。電荷分離の量子収率は、溶液基中の ZnTPPのボルフ ィリン三重項一三重項吸収( ε = 74000M"1cm"1) 15と、 CS状態の吸収( ε = 1
470 640
2000M"1cm"1) 16の吸光度の比較により 0. 88と決定された。
[0085] 結果として、亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの間で形成 された超分子錯体を使用して多重光合成反応性中心を有する系を構築することに成 功した。ポルフィリン単位間で励起エネルギー移動が起こった。そのため、レーザー 励起の際に生成された超分子デンドリマー錯体の CS状態は、 PhCN中 298Kにお Vヽて長 、寿命 (830 μ s)を有した。
[0086] 図 6に、 431nmにおけるレーザー励起の 20 μ s後に測定された、脱気 PhCN中 29 8Kにおける PyNIm (4. 9 X 10— 3M)の存在下での D (ZnP) (2. 9 X 10— 6M)の過
16
渡吸収スペクトルを示す。
[0087] 図 7に、異なるレーザー出力(それぞれ 10mJ、 2. 2¾[および 0. 5mJ)を用いたナノ 秒フラッシュ光分解の際に得られた CS状態に起因する 620nmにおける吸収の時間 プロフィール。挿入図: 620nmにおける吸光度の減衰の一次プロット(10mJ、 X ; 2. 2mJ、黒四角; 0. 5mi、黒丸)を示す。
[0088] 上記の結果から、光捕集能を高めるため多数のポルフィリンを有する亜鉛ボルフイリ ンデンドリマーを用い、ピリジルナフタレンジイミドとの間で配位結合を利用した超分 子錯体を形成させることにより、多数の人工光合成反応中心を有し、高い光捕集能と 電荷分離能を示す光エネルギー変換システムが構築された。ベンゾ-トリル溶液中 での紫外可視吸収および蛍光スペクトルから、亜鉛ポルフィリンデンドリマーにビリジ ルナフタレンジイミドを添加すると亜鉛部位にピリジル基が軸配位して複数の光合成 反応中心部位を有する超分子錯体が得られることがわ力つた。この超分子において 、亜鉛ポルフィリン部位を光励起すると超分子内光誘起電子移動によって長寿命電 荷分離状態が生じ、その寿命は 830マイクロ秒と非常に長いものが得られた。
[0089] 光合成の初期過程では、まず光捕集アンテナ複合体にぉ 、て光吸収および反応 中心へのエネルギー移動が起こり、反応中心では得られた光エネルギーを利用して 電荷分離が行われている。本発明では、エネルギー移動と電荷分離を組み合わせた 巨大な光合成モデル分子を超分子の手法を用いて簡便に構築することが可能にな つた o
[0090] 光捕集アンテナモデルとしては、多数のポルフィリンを有する亜鉛ポルフィリンデン ドリマーを用い、電荷分離モデルとしては超分子亜鉛ポルフィリン'ピリジルナフタレ ンジイミド連結系を用いることにより、亜鉛部位にピリジル基が軸配位して複数の反応 中心モデル分子を有する超分子が得られることがわ力つた。この超分子において、亜 鉛ポルフィリン部位を光励起すると超分子内光誘起電子移動によって長寿命電荷分 離状態が生じることがゎカゝつた。光捕集アンテナモデルとして亜鉛ポルフィリン修飾 金クラスターを用いた場合においても、同様の超分子集合体が形成され、長寿命電 荷分離状態が得られることがわ力つた。
産業上の利用可能性
[0091] 本発明は配位結合を利用して形成される超分子錯体が光励起によって非常に長 寿命の電荷分離状態を生成する初めての例であるだけでなぐ多数の人工光合成 反応中心を有するので高い光捕集能と電荷分離能を有する光エネルギー変換シス テムとして重要である。
[0092] 本発明の光エネルギー変換超分子は多数の人工光合式反応中心を有し、高い光 捕集能と電荷分離能を合わせ持つものであり、さらに複雑なシステムに展開すること が容易であるので、高効率光エネルギー変換システムとして有機太陽電池、光触媒 へ応用できる。
[0093] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。

Claims

請求の範囲
[1] ポルフィリンデンドリマーおよび置換もしくは非置換のピリジルナフタレンジイミドを 含む錯体化合物であって、
該化合物中のポルフィリンには、金属が結合しており、該金属には、さらに、ピリジ ルナフタレンジイミドのピリジル基が軸配位して 、る、化合物。
[2] 請求項 1に記載の化合物であって、前記金属が亜鉛である、化合物。
[3] 以下の式 1で示される錯体ィ匕合物であって、
[化 1]
(式 1 ) R1 (- N (- R2- N (- R3- N (- R4- N H C O- R5- C O N H- R6- R7)>J2)2)2
ここで、 R1はアルキレンであり、 4個の R2は独立してアルキレンであり、 8個の R3は独 立してアルキレンであり、 16個の R4は独立してアルキレンであり、 16個の R5は独立し てァノレキレンであり、
16個の R6は独立して、金属を有するポルフィリンであり、それぞれのポルフィリンの中 心部分に該金属が結合しており、
16個の R7は独立して、置換もしくは非置換のピリジルナフタレンジイミドであり、 該 16個の金属原子に、それぞれ、該置換もしくは非置換のピリジルナフタレンジイミ ドのピリジル基が軸配位している、化合物。
[4] 請求項 3に記載の化合物であって、前記置換もしくは非置換のピリジルナフタレン ジイミドカ N ピリジルー N,一アルキル ナフタレンジイミドであり、アルキル基の炭素 数が 3— 9である、化合物。
[5] 請求項 3に記載の化合物であって、
Figure imgf000024_0001
4個の R2、 8個の R3、 16個の R4、および 16 個の R5がすべて、 -C H一である、化合物。
3 6
[6] 請求項 3に記載の化合物であって、前記 16個の金属がすべて亜鉛である、化合物
[7] 請求項 3に記載の化合物であって、前記 16個のポルフィリンが、それぞれ、その 5 位、 10位、 15位および 20位に、フエ-ル基またはアルキル置換フエ-ル基もしくは ハロゲン置換フ 二ル基を有する、化合物。
[8] 請求項 3に記載の化合物であって、前記 16個のポルフィリンカ、それぞれ、その 5 位、 10位、 15位および 20位〖こ、フエ-ル基、 3, 5—ジー tert—ブチルフエ-ル基もしく は 2, 6—ジクロロフヱ-ルフヱ-ル基を有する、化合物。
[9] 請求項 1に記載の化合物を合成する方法であって、前記ポルフィリンデンドリマー および置換もしくは非置換のピリジルナフタレンジイミドを溶媒中で混合する工程を包 含する、方法。
[10] 請求項 3に記載の化合物を合成する方法であって、以下の式のポルフィリンデンド リマーおよび置換もしくは非置換のピリジルナフタレンジイミドを溶媒中で混合するェ 程を包含する、方法:
[化 2]
(式 2) R1 (- N (- R2- N (- R3- N (- R4- N H C O- FT- C O N H- RD) )2)2)2
[11] 請求項 10に記載の方法であって、前記溶媒がベンゾニトリルである、方法。
[12] 請求項 1に記載の化合物力 なる人工光合成反応中心用材料。
[13] 請求項 1に記載の化合物と、白金触媒とを含む、水素発生光触媒。
[14] 水素を合成する方法であって、電子源となる分子及び請求項 1に記載の超分子錯 体と白金触媒とを含む水素発生光触媒の存在下で、水に光を照射する工程を包含 する、方法。
[15] 光を電流に変換するための素子であって、請求項 1に記載されたィ匕合物が導電性 基材の上に積層されている、素子。
PCT/JP2005/004135 2004-03-10 2005-03-09 多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの超分子錯体 WO2005087846A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/592,038 US20070227590A1 (en) 2004-03-10 2005-03-09 Supramolecular Complex of Pyridylnaphthalenediimide with Zinc Porphyrin Dendrimer Having Multiplicity of Artificial Photosynthetic Reaction Center
EP05720406A EP1724295A4 (en) 2004-03-10 2005-03-09 SUPRAMOLECULAR COMPLEX OF PYRIDYL NAPHTHALINDIIMIDE WITH ZINC PORPHYRIDEDRIMER WITH A VARIETY OF ARTIFICIAL PHOTOSYNTHESIS ACTION CENTERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-068248 2004-03-10
JP2004068248A JP3953037B2 (ja) 2004-03-10 2004-03-10 多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの超分子錯体

Publications (1)

Publication Number Publication Date
WO2005087846A1 true WO2005087846A1 (ja) 2005-09-22

Family

ID=34975547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004135 WO2005087846A1 (ja) 2004-03-10 2005-03-09 多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの超分子錯体

Country Status (4)

Country Link
US (1) US20070227590A1 (ja)
EP (1) EP1724295A4 (ja)
JP (1) JP3953037B2 (ja)
WO (1) WO2005087846A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756221B1 (ko) * 2006-03-10 2007-09-06 주식회사 에이스테크놀로지 격리 동작 간소화를 위한 시분할 다중 송수신 시스템
CN100464851C (zh) * 2007-06-29 2009-03-04 中山大学 一种键联金属卟啉的纳米高分子磁性微球及其制备方法
WO2012051337A2 (en) * 2010-10-12 2012-04-19 The Regents Of The University Of Michigan Photoactive devices including porphyrinoids coordinating additives
US9642916B2 (en) 2012-12-12 2017-05-09 The Regents Of The University Of California Porphyrin modified telodendrimers
US11369688B2 (en) 2016-09-15 2022-06-28 The Regents Of The University Of California Hybrid telodendrimers
CN109678905B (zh) * 2018-12-22 2020-06-12 吉林大学 一种配位驱动的自组装超分子笼、制备方法及其应用
CN110358104B (zh) * 2019-07-26 2021-02-26 吉林大学 一种基于不对称配体组装的超分子笼及其制备方法
JP7534577B2 (ja) 2020-08-28 2024-08-15 株式会社分子設計 発光材料、有機無機ハイブリッド発光素子およびディスプレイ
CN112354559B (zh) * 2020-11-19 2023-01-31 海南大学 一种二维受体分子/多级孔TiO2复合光催化剂及其制备方法和光催化应用
CN113912858B (zh) * 2021-10-27 2023-02-28 西京学院 一种检测硝基化合物的多孔聚合物及其制备方法
CN115160582B (zh) * 2022-07-08 2023-09-05 闽都创新实验室 一种晶态三金属吡啶卟啉多孔配合物及其制备方法和应用
CN115746324B (zh) * 2022-11-25 2023-09-19 五邑大学 一种MOFs晶体材料及其制备方法和应用
CN118580513B (zh) * 2024-06-27 2024-10-22 曲靖师范学院 一种n-氧化吡啶基萘酰亚胺配位聚合物的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336171A (ja) * 1999-05-26 2000-12-05 Mitsubishi Chemicals Corp ホール伝導性を有する超分岐高分子
WO2003023876A1 (fr) * 2001-09-05 2003-03-20 Sharp Kabushiki Kaisha Structure polymere, element fonctionnel comportant une telle structure ; transistor et ecran presentant cette structure
JP2003285299A (ja) * 2002-03-27 2003-10-07 Sony Corp 機能材料又は機能素子、及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0104177D0 (en) * 2001-02-20 2001-04-11 Isis Innovation Aryl-aryl dendrimers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336171A (ja) * 1999-05-26 2000-12-05 Mitsubishi Chemicals Corp ホール伝導性を有する超分岐高分子
WO2003023876A1 (fr) * 2001-09-05 2003-03-20 Sharp Kabushiki Kaisha Structure polymere, element fonctionnel comportant une telle structure ; transistor et ecran presentant cette structure
JP2003285299A (ja) * 2002-03-27 2003-10-07 Sony Corp 機能材料又は機能素子、及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI X. ET AL: "Ultrafast Aggregated-to-Aggregate Energy Transfer within Self-assembled Light-Harvestin Columns of Zinc Phthalocyanine Tetrakis(Perylenediimide).", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 126, no. 35, 8 September 2004 (2004-09-08), pages 10810 - 10811, XP002989478 *
MILLER L. ET AL: "Synthesis and Electrochemistry of Molecular Dumbbells. Triblock Copolymers of Dendrons and Rigid Rods.", CHEMISTRY OF MATERIALS., vol. 14, no. 12, 2002, pages 5081 - 5089, XP002989479 *
See also references of EP1724295A4 *

Also Published As

Publication number Publication date
EP1724295A1 (en) 2006-11-22
JP2005255810A (ja) 2005-09-22
EP1724295A4 (en) 2009-12-30
US20070227590A1 (en) 2007-10-04
JP3953037B2 (ja) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2005087846A1 (ja) 多数の人工光合成反応中心を有する亜鉛ポルフィリンデンドリマーとピリジルナフタレンジイミドとの超分子錯体
Khan et al. Boron dipyrrin-porphyrin conjugates
Claessens et al. Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems
Maciejczyk et al. SFX as a low-cost ‘Spiro’hole-transport material for efficient perovskite solar cells
Fungo et al. Synthesis of porphyrin dyads with potential use in solar energy conversion
Giannoudis et al. Photosensitizers for H2 evolution based on charged or neutral Zn and Sn porphyrins
Cárdenas et al. Synthesis, X-ray structure, and electrochemical and excited-state properties of multicomponent complexes made of a [Ru (tpy) 2] 2+ unit covalently linked to a [2]-catenate moiety. Controlling the energy-transfer direction by changing the catenate metal ion
Manninen et al. Synthesis and characterization of tris-(5-amino-8-hydroxyquinoline) aluminum complexes and their use as anode buffer layers in inverted organic solar cells
WO2003050082A2 (en) Regioisomerically pure oxochlorins and methods of synthesis
Nierengarten et al. Synthesis and electronic properties of donor-linked fullerenes: towards photochemical molecular devices
Chaignon et al. Distance-independent photoinduced energy transfer over 1.1 to 2.3 nm in ruthenium trisbipyridine–fullerene assemblies
JP4312353B2 (ja) アンテナ化合物及び電荷分離型化合物を電極上に混合自己組織化単分子膜として集積した光エネルギー・電気エネルギー変換素子
Kengthanomma et al. On the potential of porphyrin-spiked triarylamine stars for bulk heterojunction solar cells
JP2012144447A (ja) ドナー―π―アクセプター型化合物、蛍光色素化合物及び色素増感太陽電池用蛍光色素化合物
Costa et al. An easy access to porphyrin triads and their supramolecular interaction with a pyridyl [60] fulleropyrrolidine
Ott et al. Rapid energy transfer in bichromophoric tris-bipyridyl/cyclometallated ruthenium (II) complexes
WO2004076531A1 (ja) 金属または金属クラスター含有フェニルアゾメチンデンドリマーとその製造方法
CN114891188B (zh) 含有氮氧自由基与二茂铁基团的共轭有机金属聚合物及制备方法与应用、复合热电薄膜
US8436242B2 (en) Photocharge separation using supramolecular complex of π-electron type extended viologen derivative and porphyrin
Lin et al. Preparation and Photovoltaic Characterization of Free‐Base and Metallo Carboxyphenylethynyl Porphyrins for Dye‐Sensitized Solar Cells
Sarı et al. Subphthalocyanine derivatives as donor for solution-processed small molecule organic solar cells
Richeter et al. Preparation, mass spectrometry and electrochemical studies of metal connected porphyrin oligomers
CN114100692A (zh) 一种卟啉基多功能光催化MOFs材料
CN113372217A (zh) 一种富勒烯衍生物与纳米ZnO杂化材料的制备方法
Benitz et al. Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005720406

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005720406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10592038

Country of ref document: US

Ref document number: 2007227590

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10592038

Country of ref document: US