WO2005085437A1 - 変異バチルス属細菌 - Google Patents

変異バチルス属細菌 Download PDF

Info

Publication number
WO2005085437A1
WO2005085437A1 PCT/JP2005/003756 JP2005003756W WO2005085437A1 WO 2005085437 A1 WO2005085437 A1 WO 2005085437A1 JP 2005003756 W JP2005003756 W JP 2005003756W WO 2005085437 A1 WO2005085437 A1 WO 2005085437A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
bacillus
sequence
promoter
bacillus subtilis
Prior art date
Application number
PCT/JP2005/003756
Other languages
English (en)
French (fr)
Inventor
Keiji Endo
Katsuya Ozaki
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to US10/590,275 priority Critical patent/US7855065B2/en
Priority to EP05720028A priority patent/EP1721973B1/en
Priority to DK05720028.9T priority patent/DK1721973T3/da
Priority to DE602005021757T priority patent/DE602005021757D1/de
Priority to CN200580007128XA priority patent/CN1930289B/zh
Publication of WO2005085437A1 publication Critical patent/WO2005085437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Definitions

  • the present invention relates to a host microorganism, a recombinant microorganism, and a method for producing a protein or polypeptide used for producing a useful protein or polypeptide.
  • the industrial production of useful substances by microorganisms includes foods such as alcoholic beverages, miso, and soy sauce, as well as amino acids, organic acids, nucleic acid-related substances, antibiotics, carbohydrates, lipids, and proteins.
  • foods such as alcoholic beverages, miso, and soy sauce
  • a transcription factor that regulates the expression of a gene in particular, a sigma factor of an RNA polymerase
  • a sigma factor of an RNA polymerase for example, Pseudomonas fluorescens (Pseudomonas fluorescens) is known.
  • Pseudomonas fluorescens Pseudomonas fluorescens
  • m ⁇ D gene which encodes a major sigma factor (a no-keeping sigma factor) involved in the transcription of genes essential for growth during vegetative growth.
  • Non-Patent Document 1 Examples of reports of increased production of antibiotics such as pyoluteorin and 2,4 diacetylphloroglucinol (see, for example, Non-Patent Document 1), and corynepacterium and glutamicum (Corvnebacterium glut amicus)! There are reported examples of increasing the fermentative production of L-lysine by overexpressing the ⁇ kA gene (for example, see Patent Document 1).
  • Patent Document 1 International Publication No. 2003Z054179 pamphlet
  • Non-Patent Document 1 J. Bacteriol., 177, 5387, (1995)
  • the present invention has, on the genome or a plasmid, a DNA in which a promoter sequence that is specifically recognized and transcribed during sporulation is linked upstream of the dsA gene or a gene corresponding to the gene, A mutant Bacillus bacterium is provided.
  • the present invention also provides a recombinant microorganism in which a gene encoding a heterologous protein or polypeptide has been introduced into the mutant Bacillus bacterium, and a method for producing a protein or polypeptide using the recombinant microorganism. Things.
  • the present invention also relates to a DNA comprising a promoter sequence that is specifically recognized and transcribed during the sporulation stage connected upstream of the ⁇ kA gene or a gene corresponding to the ⁇ kA gene, on the genome of a Bacillus bacterium or It is intended to provide a method for constructing a mutant bacillus belonging to the genus Bacillus, characterized by being constructed so as to have it on a plasmid.
  • FIG. 1 is a schematic diagram showing sequential sigma factor activation during a sporulation process.
  • FIG. 2 is a conceptual diagram showing an example of construction of the sigA gene of the present invention.
  • the present invention provides a mutant Bacillus bacterium capable of improving the productivity of a protein or polypeptide, a recombinant microorganism obtained by introducing a gene encoding a heterologous protein or polypeptide into the mutant Bacillus bacterium, A method for producing a protein or polypeptide using a recombinant microorganism.
  • Bacillus bacteria have a plurality of sigma factors involved in recognition of a promoter sequence as subunits of RNA polymerase.
  • Sigma Factor Recognition of Different Promoters Different genes are transcribed by binding to the RNA polymerase core complex, which consists of multiple subunits other than sigma factors, thereby reducing the presence of thousands of genes in the genome. Therefore, control gene expression according to the situation! / It is thought to be ⁇
  • SigB and ECF sigma which control the response to environmental changes; known (Bacillus subtilis and Its Closest Relatives: From Genes to ells, Edited by AL Sonenshein, American Society for Microbiology, pp289, (2002)).
  • the sigma factor that controls the sporulation process is sequentially expressed and activated as the sporulation process proceeds, as shown in FIG.
  • the phosphorylation of SpoOA a regulator of initiation of spore formation
  • a phosphate relay system Cell, 64, 545, (1991)
  • SigF Induces transcription of the operon (spoIIGA-sigE) containing the structural gene (sigE) of the SigE precursor (J. Bacteriol., 169, 3329, (1987)).
  • the activation of SigF is regulated by the anti-sigma factor SpoIIAB, the anti-anti-sigma factor SpoIIAA, and SpoIIE, a phosphatase of SpoIIAA (Genes Cells, 1, 881 (1996)).
  • SigF induces transcription of the structural gene IR) of the signaling protein SpoIIR.
  • SpoIIR secreted from the daughter cell activates SpoIIGA, a SigE precursor-activating protease located in the non-target diaphragm on the mother cell side, and this activates SigE. (Proc. Natl. Acad. Sci. US A., 92, 2012, (1995)).
  • SigF induces the transcription of the SigG structural gene (sigG)
  • SigE induces the transcription of the SigK structural gene (sigK).
  • Activated dani occurs after the activation of SigE on the mother cell side, and activation of SigK occurs after this on the mother cell side (Mol. Microbiol., 31, 1285, (1999)).
  • SigA mainly associates with the RNA polymerase core complex and induces transcription of a gene having a promoter recognized by SigA or operon. It has been reported that when other sigma factors are activated during the early phase, displacement of the sigma factors associated with the RNA polymerase core complex occurs, and the amount of RNA polymerase associated with SigA decreases relatively. (J. Bacteriol., 179, 4969, (1999)). For this reason, after the sporulation stage, the transcription amount of the promoter force recognized by SigA is considered to decrease relatively.
  • the present inventors have determined that a promoter sequence that is specifically recognized and expressed during the sporulation stage is mainly involved in the transcription of genes essential for growth during the vegetative growth stage.
  • the expression of the SigA gene can be enhanced during the spore formation phase after the vegetative growth phase, and the amount of binding between the sigma factor and the RNA polymerase core complex can be increased. It has been found that this can improve the productivity of the heterologous protein or polypeptide after the sporulation stage.
  • the heterologous protein or polypeptide can be efficiently produced.
  • the identity between the amino acid sequence and the base sequence is calculated by the Lipman-Pearson method (Science, 227, 1435, (1985)). Specifically, the analysis is performed by using the homology analysis (Search homology) program of the genetic information processing software Genetyx-Win (software development) and setting the unit size to compare (ktup) to 2. .
  • the mutated Bacillus bacterium of the present invention comprises, on its genome or DNA, a DNA comprising a promoter sequence which is specifically recognized and transcribed during the sporulation stage, upstream of the skA gene or a gene corresponding to the gene. It was constructed to have it on a plasmid.
  • the parent microorganism for constructing such a mutant Bacillus bacterium is not limited in its origin as long as it is a Bacillus bacterium characterized by performing sporulation. ⁇ Among them, preferred examples of Bacillus bacteria used in the present invention include Bacillus subtilis, Bacillus cereus, and Bacillus norodrans whose whole genome information is disclosed. Bacillus halodulans). Bacillus subtilis is particularly preferred in view of the fact that genetic engineering and genome engineering techniques have been established, and the ability to secrete and produce proteins outside the cells.
  • the sA gene of Bacillus subtilis refers to a gene encoding the amino acid sequence shown in SEQ ID NO: 1, and the gene corresponding to the gene is 70% or more in the amino acid sequence shown in SEQ ID NO: 1.
  • a promoter sequence that is specifically recognized and transcribed during the sporulation stage is linked to the upstream of the ⁇ kA gene or a gene corresponding to the ⁇ kA gene.
  • the sequence may be a naturally occurring sequence, a modified version of the naturally occurring sequence, or a chemically synthesized sequence.
  • sigma factors are said to recognize and bind to sequences of several bases existing at around 10 bases and 35 bases upstream of the transcription start site, and are called -10 regions and -35 regions, respectively.
  • the arrangement of the two regions and the distance between the two regions have a common feature for each sigma factor. It is known to have, and is called a consensus sequence.
  • the (1)-(6) promoter sequence contains (l ′) a sequence in which transcriptional repression by AbrB is released with an increase in SpoOA-P concentration, and a sequence containing a consensus sequence of SigA, (2, ) A sequence containing the consensus sequence of (3,) SigF, a sequence containing the consensus sequence of (4,) SigE, a sequence containing the consensus sequence of (5,) SigG, (6, ) Sequences including the consensus sequence of SigK can be exemplified.
  • Table 1 shows the consensus sequences of each sigma factor reported to date for B. subtilis.
  • R represents A or G
  • W represents A or T
  • N represents any base.
  • Uppercase letters indicate higher storability and lowercase letters indicate lower storability.
  • the promoter sequence which is specifically recognized and transcribed during the sporulation stage in the present invention is any one of the above (1)-(6) or (1 ')-(6') It has the following characteristics.
  • examples of the naturally occurring promoter sequences include the Bacillus subtilis gene or operon promoter shown in Table 2, and (2) Among the promoter sequences having any of the characteristics of (2 ′) and (2 ′), those derived from nature include the Bacillus subtilis gene or operon promoter shown in Table 3, and (3) or (3 ′)
  • examples of the naturally occurring promoter sequence include the Bacillus subtilis gene or the operon promoter shown in Table 4, and any of (4) or (4 ′)
  • those derived from nature include the Bacillus subtilis gene or operon promoter shown in Table 5, and promoters having any of the characteristics of (5) or (5 ′).
  • Naturally derived promoters include the Bacillus subtilis genes and operon promoters shown in Table 6, and among the promoter sequences having the characteristics of either (6) or (6 ′), those of natural origin Examples include the Bacillus subtilis gene or operon promoter shown in Table 7.
  • promoter sequence include a promoter having any one of the features (1)-(6) or (1 ')-(6').
  • SigE has been reported to show higher affinity for RNA polymerase than SigA (J. B acteriol., 179, 4969, (1999)), more preferably, It is preferable to use a promoter whose transcription is activated before activating SigE.
  • the promoter sequence is a promoter sequence (corresponding to the above (1) or ()) in which the repression of transcription by AbrB is released with an increase in SpoOA-P concentration, and is recognized and transcribed by SigA.
  • Promoter sequences (corresponding to (2) or (2 ′) above).
  • promoter sequences having the characteristics of any of the above (1) and (1 ') include the Bacillus subtilis gene or operon promoter sequence shown in Table 1, and among them, A particularly preferred example is the promoter sequence of ⁇ kH of Bacillus subtilis.
  • the promoter sequence of Bacillus subtilis ⁇ kH is the base sequence of base numbers 987 to 1027 in the base sequence shown in SEQ ID NO: 2, preferably the base sequence of base numbers 987 to 1047, more preferably the base sequence of base numbers 1 to 1047. It is a nucleotide sequence containing a sequence having a base length of up to 5000 base pairs, preferably up to 2000 base pairs, more preferably up to 1047 base pairs, and having the same promoter function as the promoter of the gene.
  • promoter sequences having the characteristics of any of the above (2) and (2 ') include the Bacillus subtilis gene or operon promoters shown in Table 2.
  • particularly preferred examples include the promoter sequence of the SOOIIAA-SOOIIAB-sigF operon (. ⁇ operon) of Bacillus cerevisiae.
  • the promoter sequence of the SOOIIA operon of Bacillus subtilis is the base sequence of base numbers 1081-1110 in the base sequence shown in SEQ ID NO: 3, preferably the base sequence of base numbers 1081-1118, and more preferably the base sequence of base numbers 1111-1143. It has a base length of up to 5000 base pairs, preferably up to 2000 base pairs, more preferably up to 1143 base pairs, including the base sequence, and has the same promoter function as the promoter of the gene.
  • the promoter sequences specifically recognized and expressed in the sporulation stage used in the present invention include the promoters of each gene or each operon of Bacillus subtilis shown in Table 1 to Table 6.
  • a sequence corresponding to the sequence is also included.
  • the base sequence of base numbers 987-1027 in the base sequence shown in SEQ ID NO: 2 preferably the base sequence of base numbers 1081-1118, more preferably the base sequence
  • a base length of up to 5000 base pairs, preferably up to 2000 base pairs, more preferably up to 2000 base pairs, including a base sequence in which one or more bases have been substituted, deleted or inserted with respect to the base sequence of No. 11143 Is a DNA sequence having a base sequence of 1047 base pairs or less and having the same promoter function as the promoter of the gene.
  • the base sequence of base numbers 1081-1110 in the base sequence represented by SEQ ID NO: 3 preferably the base sequence of base numbers 1081-1118, more preferably Is a base sequence having a base number of 1 1143, including a base sequence in which one or more bases are substituted, deleted or inserted, a base length of up to 5000 base pairs, preferably up to 2000 base pairs, more preferably Is a DNA fragment having a base sequence within 1118 base pairs and having the same promoter function as the promoter of the operon.
  • the promoter sequence recognized by the sigma factor specifically involved in transcription during the sporulation stage used in the present invention includes a Bacillus subtilis gene described in Table 2 or Table 3 or a Bacillus subtilis gene.
  • the promoter sequence of the ortholog gene of the gene constituting the operon preferably, the promoter sequence of the ortholog gene derived from Bacillus bacterium is also included.
  • Orthologous genes can be found by using the CreateZ view Orthologous gene table program of the Microbial Genome Database (MBLTD, http: z / mogd. Genome, ad. JpZ) published on the Internet.
  • orthologous genes of the Bacillus subtilis ⁇ kH gene include the Bacillus'no and Rhodrans' ⁇ KH (BH0115) genes and the Bacillus cereus BC0114 gene.
  • the orthologs of the genes constituting the ⁇ 2 ⁇ operon of Bacillus subtilis include the ⁇ g £ (BH1538) gene, the ⁇ IIAS (BH1537) gene of Bacillus' Hallodrans, and the sr »oIIAA (BH1536), Notylus and Cereus. BC4072 gene, BC4073 gene, and BC4074 gene.
  • the above promoter sequence can be used alone, or a plurality of types can be used in combination.
  • DNA in which a promoter sequence specifically recognized and transcribed in the sporulation stage is bound to the upstream of the ⁇ k gene of Bacillus subtilis or a gene corresponding to the gene is, for example, originally present on the Bacillus subtilis genome. Constructed on the genome by inserting a DNA fragment containing a promoter sequence that is specifically recognized and transcribed during the sporulation stage, upstream or downstream of the SigA recognition promoter sequence located upstream of the existing ⁇ kA gene can do .
  • the site for inserting the DNA fragment containing the promoter sequence that is specifically recognized and transcribed during the sporulation stage may be located upstream of the ⁇ igA gene or the gene corresponding to the gene.
  • a region within 2000 base pairs adjacent to the upstream side is preferred.
  • a region within 1000 base pairs is more preferred.
  • a region within 500 base pairs is even more preferred.
  • a region of 11198 base pairs is particularly preferred.
  • the DNA fragment should be at least 15 base pairs from the ⁇ kA structural gene. It is desirable to insert it upstream.
  • DNA in which a promoter sequence specifically recognized and transcribed during the sporulation stage is linked to the upstream of the ⁇ kA gene or a gene corresponding to the gene may be constructed by a method such as PCR. It is possible.
  • the sequence derived from the upstream sequence of the ⁇ kA gene, which originally exists on the Bacillus subtilis genome, between the junction site and the ⁇ structural gene is preferably a 0-2000 base pair. It is more preferably 0 to 500 base pairs, more preferably 0 to 198 base pairs, particularly preferably 0 to 198 base pairs.
  • the DNA fragment containing the promoter sequence that is specifically recognized and transcribed during spore formation does not contain an appropriate ribosome binding site sequence
  • the DNA fragment between the junction site and the ⁇ gA structural gene is 15 base pairs or more.
  • the DNA thus constructed may be newly introduced into the parent Bacillus bacterium.
  • a DNA fragment obtained by linking a DNA fragment containing a promoter sequence that is specifically recognized and transcribed during the sporulation stage and a DNA fragment containing the ⁇ gene and the like is prepared by a method such as PCR.
  • a method can be used in which the plasmid is cloned into a plasmid vector that can be replicated in a parent Bacillus bacterium.
  • Bacillus subtilis is used as a parent Bacillus bacterium for constructing the mutant Bacillus bacterium of the present invention
  • pUB110 (Plasmid, 15, 93, (1986)
  • pC194 j. Bacteriol , 150, 815, (1982)
  • ⁇ 14-3 Plasmid, 30, 119, (1993)
  • a DNA fragment containing a promoter sequence specifically recognized and transcribed during the sporulation stage and ligated upstream of a DNA fragment containing a gene or the like is introduced into the genome by a method such as homologous recombination. can do.
  • a method such as homologous recombination.
  • there are already several reports! (Mol. Gen. Genet., 223, 268 (1990), etc.) By following these methods, the mutant Bacillus bacterium of the present invention can be obtained.
  • a DNA fragment containing a promoter sequence that is specifically recognized and transcribed during the sporulation phase by the first PCR during the sporulation phase, and a housekeeping sigma Three fragments, a structural gene fragment of the factor and a gene fragment of the drug-resistant marker gene, are prepared. At this time, for example, at the downstream end of the DNA fragment containing the promoter sequence, the upstream side of the structural gene fragment of the housekeeping sigma factor is prepared.
  • the three types of PCR fragments prepared in the first round were designated as type III, and an upstream primer of the fragment containing the promoter sequence and a downstream primer of the drug resistance marker gene fragment.
  • the anneal with the ⁇ kA gene fragment occurs in the gene fragment sequence added to the downstream end of the fragment containing the promoter sequence and the upstream end of the drug resistance marker gene fragment.
  • a DNA fragment in which a promoter sequence recognized by a sigma factor specifically involved in transcription during the sporulation stage is linked upstream of the sigA gene and a drug resistance marker gene is linked downstream thereof Can be obtained (Figure 2).
  • the ⁇ i gene of Bacillus subtilis or the promoter of the ⁇ ⁇ operon is used as a promoter sequence specifically recognized and transcribed during the sporulation stage, and a clonal lamfuecol resistance gene is used as a drug resistance marker gene.
  • a general PCR enzyme kit such as Pyrobest DNA polymerase (Takara Shuzo)
  • PCR Protocols Current Methods and Applications, Edited by BA White
  • the desired DNA fragment can be obtained by performing SOE-PCR under the usual conditions shown in Humana Press, pp251 (1993), Gene, 77, 61, (1989).
  • the DNA fragment obtained by force is introduced into, for example, the Bacillus subtilis genome
  • the DNA fragment is cloned into a plasmid vector that cannot be replicated in the Bacillus subtilis cells, for example, pMW219 (-Tubongene), and is subjected to combination.
  • pMW219 -Tubongene
  • homologous recombination occurs between the gene region of the housekeeping sigma factor on the plasmid and the ⁇ kA gene region on the genome.
  • the DNA fragment containing the ⁇ gA gene to which the specifically recognized and transcribed promoter sequence is bound can be isolated from the cells introduced into the genome together with the plasmid vector (Fig. 2).
  • a gene encoding a protein or polypeptide of interest is linked to the downstream of a promoter recognized by SigA, and the resulting gene is introduced into the mutated Bacillus bacterium obtained according to the present invention. Since the production of the target protein or polypeptide continues not only during the sporulation stage but also during the sporulation period, the target protein or polypeptide is produced in a much larger amount than the parent Bacillus bacterium.
  • the target protein or polypeptide gene is not particularly limited, and includes various industrial enzymes such as detergents, foods, fibers, feeds, chemicals, medical care, diagnostics, and physiologically active peptides.
  • industrial enzymes are classified according to their functions: Oxidoreductase, transferase (Transferase), hydrolase (Hydrolase), lyase (Lyase), isomerase (Isom erase), and synthetic enzyme.
  • Oxidoreductase Oxidoreductase, transferase (Transferase), hydrolase (Hydrolase), lyase (Lyase), isomerase (Isom erase), and synthetic enzyme.
  • Hydrolases such as cellulase, ⁇ -amylase and protease.
  • cellulases belonging to family 5 in the classification of polysaccharide hydrolases include cellulases belonging to family 5 in the classification of polysaccharide hydrolases (Biochem. J., 280, 309 (1991)).
  • cellulases derived from microorganisms, especially from bacteria belonging to the genus Bacillus are exemplified.
  • Bacillus sp. Bacillus sp. (Bacillus sp.) KSM-S237 (FERM BP-7875) or Bacillus sp.
  • ⁇ -amylase examples include a microorganism-derived ⁇ -amylase, and in particular, a liquid amylase derived from a Bacillus bacterium is preferable.
  • a liquid amylase derived from a Bacillus bacterium is preferable.
  • an alkaline amylase derived from Bacillus sp. KSM K38 strain consisting of the amino acid sequence represented by SEQ ID NO: 19, Amylase having an amino acid sequence having an identity of 90%, preferably 80%, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 98% or more.
  • the amino acid sequence identity is calculated by the Lipman-Pearson method (Science, 227, 1435, (1985)).
  • proteases include serine proteases derived from microorganisms, particularly, serine proteases and metal proteases derived from Bacillus bacteria.
  • an alkaline protease derived from Bacillus claus cillus eki) KSM-K16 strain (FERM BP-3376) consisting of the amino acid sequence represented by SEQ ID NO: 21 or 70%, preferably 80% And more preferably 90% or more, even more preferably 95% or more, particularly preferably 98% or more.
  • the target protein or polypeptide gene needs to be linked upstream with a promoter sequence recognized by a housekeeping sigma factor such as Bacillus subtilis SigA. It is desirable that a control region related to the above, that is, a translation initiation region including a ribosome binding site and an initiation codon, and a secretory signal peptide region are properly bound.
  • a control region related to the above that is, a translation initiation region including a ribosome binding site and an initiation codon, and a secretory signal peptide region are properly bound.
  • KSM-S237 strain (FERM BP-7875) and KSM-64 strain (FERM BP-2886)
  • Transcription initiation control region including the promoter transcribed by the housekeeping sigma factor of the cellulase gene of interest, a translation initiation region, a signal peptide region for secretion, and more specifically, base number 1 of the base sequence represented by SEQ ID NO: 5 1 base sequence of 659, base sequence of base number 11696 of the cellulase gene comprising the base sequence represented by SEQ ID NO: 7, and 70% or more, preferably 80% or more, more preferably 90% or more of the base sequence.
  • it is properly linked to the structural gene of the protein or polypeptide.
  • the recombinant plasmid in which the above-mentioned DNA fragment containing the protein or polypeptide gene of interest is ligated to an appropriate plasmid vector, is transformed by a general transformation method according to the present invention.
  • the productivity of the target protein or polypeptide can be improved by incorporation into different Bacillus bacteria.
  • the target protein or polypeptide can also be prepared by directly incorporating the DNA fragment into the mutant Bacillus genomic bacterium genome of the present invention using a DNA fragment obtained by binding an appropriate homologous region to the mutant Bacillus genomic bacterium genome of the present invention. Productivity can be improved.
  • Production of a target protein or polypeptide using the mutant Bacillus bacterium of the present invention as a host is performed by inoculating the strain into a medium containing an assimilable carbon source, nitrogen source, and other essential components. Culture may be performed by a culture method, and after the culture, the protein or polypeptide may be collected and purified.
  • a Bacillus bacterium with improved transcription efficiency of the ⁇ kA gene in the sporulation stage can be constructed.
  • Useful proteins or polysaccharides can be constructed by using the mutant Bacillus bacterium as a host cell for recombinant production. Peptides can be produced efficiently.
  • a DNA fragment in which the ⁇ kH gene promoter or ⁇ ⁇ operon motor is linked upstream of the structural gene is introduced into the B. subtilis genome using homologous recombination once.
  • the construction of a plasmid for performing this was carried out. That is, a genomic DNA extracted from 168 strains of Bacillus subtilis was type III, and a 1.2 kb fragment (A) containing the ⁇ gA gene was prepared by PCR using a set of primers of sigAf and sigAr shown in Table 8.
  • the DNA fragment (F) cannot be replicated in B. subtilis cells! / Inserts the plasmid vector for E. coli into the ⁇ mi restriction enzyme cleavage point of pMW219 and has a promoter that is specifically transcribed during the sporulation stage ⁇ ⁇ Plasmid p M for introducing the gene into the Bacillus subtilis genome
  • WPHsigA and pMWPFsigA were constructed.
  • sigAm and sigFUr-sigAm shown in Table 8 were used in place of sigAf and sigFUr-sigAm, respectively, and the same operation was performed to obtain the start codon of the ⁇ gA gene in pMWPFsigA ( ATG) was constructed in which pMWPFsigAm was replaced with ⁇ (ATA), which was not recognized as the start codon.
  • Bacillus subtilis mutants (168PHsigA, 168PFsigA, and 168PFsigAm) obtained in Example 2 and 168 B. subtilis as a control were added to Bacillus sp. KSM-S237 (FERM).
  • BP-7875 derived recombinant plasmid in which a DNA fragment (3. 1 kb) encoding alkaline cellulase (Japanese Patent Application Laid-Open No. 2000-210081) is inserted into the ⁇ mHI restriction enzyme cleavage site of shuttle vector pHY30 OPLK (Yakult). pHY-S237 was introduced by the protoplast transformation method.
  • the strain thus obtained was cultured with shaking at 37 ° C overnight in 10 mL of LB medium, and 0.05 mL of this culture was further added to 50 mL of 2XL-maltose medium (2% tryptone, 1% yeast extract, l% NaCl, 7.5% maltose, 7.5 ppm manganese sulfate 4-pentahydrate, 15 ppm tetracycline) and cultured with shaking at 30 ° C for 3 days. After the cultivation, the alkaline cellulase activity of the culture supernatant from which the cells were removed by centrifugation was measured, and the amount of alkaline cellulase secreted and produced outside the cells by the culture was determined.
  • 2XL-maltose medium 2% tryptone, 1% yeast extract, l% NaCl, 7.5% maltose, 7.5 ppm manganese sulfate 4-pentahydrate, 15 ppm tetracycline
  • the productivity of alkaline protease derived from Bacillus bacteria was determined as follows. An evaluation was performed. Using the genomic DNA extracted from Bacillus eki KSM-K16 strain (FERM BP-3376) as type III, PCR was performed using primer sets S237pKAPpp-F and KAPter-R (Bglll) shown in Table 10. A 1.3 kb DNA fragment (G) encoding an alkaline protease (Appl. Microbiol.
  • the two fragments of (H) were mixed to form ⁇ and subjected to SOE-PCR using the primer set of S237ppp-F2 (BamHI) and APter-R (Bglll) shown in Table 10 to obtain A 1.8 kb DNA fragment (I) in which an alkaline protease gene was linked downstream of the promoter region of the recellulase gene was obtained.
  • the obtained 1.8 kb DNA fragment (I) was inserted into the ⁇ mHI-IsII restriction enzyme cleavage site of the shuttle vector PHY300PLK (Yakult) to construct a plasmid pHYKAP (S237p) for evaluation of alkaline protease productivity.
  • the constructed plasmid pHYKAP (S237p) was introduced into the 168PHsigA strain, the 168PFsigA strain, and, as a control, the 168 Bacillus subtilis strain by a protoplast transformation method.
  • the strain thus obtained was cultured under shaking under the same conditions as in Example 3 for 3 days. After the culture, the cells were removed by centrifugation, and the alkaline protease activity of the culture supernatant was measured to determine the amount of alkaline protease secreted and produced outside the cells by the culture.
  • Table 11 when the 168PHsigA strain or the 168PFsigA strain was used as the host, higher secretion production of alkaline protease was observed as compared with the control 168 strain (wild type).
  • Bacillus bacteria as follows: Amylase derived was evaluated for productivity.
  • Strain KSM-S237 (FERM BP-7875) was designated as type I, and S237ppp-F2 (BamHl) and S237ppp-R2 (ALAA) shown in Table 10 were used. PCR was performed using the primer set to amplify a 0.6 kb DNA fragment (K) containing a promoter region of an alkaline cellulase gene (Japanese Patent Laid-Open No. 2000-210081) and a region encoding a secretory signal sequence.
  • K 0.6 kb DNA fragment
  • the obtained 2.2 kb DNA fragment (L) was inserted into the ⁇ mHI-I restriction enzyme cleavage site of shuttle vector I-PHY300PLK (Yakult) to construct a plasmid PHYK38 (S237ps) for evaluating alkaline amylase productivity.
  • the constructed plasmid pHYK38 (S237ps) was introduced into 168PHsigA strain, 168PFsigA strain, and 168 Bacillus subtilis strain as a control by a protoplast transformation method.
  • the strain thus obtained was shake-cultured under the same conditions as in Example 3 for 5 days. After culturing, remove the cells by centrifugation! The alkaline amylase activity of the supernatant of the culture solution was measured, and the amount of amylase secreted and produced outside the cells by culturing was determined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 タンパク質又はポリペプチドの生産性向上を可能とする変異バチルス属細菌、また当該変異バチルス属細菌に異種タンパク質又はポリペプチドをコードする遺伝子を導入した組換え微生物、更に、当該組換え微生物を用いるタンパク質又はポリペプチドの製造法を提供する。  sigA遺伝子又は当該遺伝子に相当する遺伝子の上流に胞子形成期に特異的に認識、転写されるプロモーター配列が連結してなるDNAを、ゲノム上或いはプラスミド上に有する変異バチルス属細菌、当該変異バチルス属細菌に異種タンパク質又はポリペプチドをコードする遺伝子を導入した組換え微生物、当該組換え微生物を用いるタンパク質又はポリペプチドの製造法。

Description

変異バチルス属細菌
技術分野
[0001] 本発明は、有用なタンパク質又はポリペプチドの生産に用いる宿主微生物、組換え 微生物、及びタンパク質又はポリペプチドの生産方法に関する。
背景技術
[0002] 微生物による有用物質の工業的生産は、アルコール飲料や味噌、醤油等の食品 類をはじめとし、アミノ酸、有機酸、核酸関連物質、抗生物質、糖質、脂質、タンパク 質等、その種類は多岐に渡っており、またその用途についても食品、医薬や、洗剤、 化粧品等の日用品、或いは各種ィ匕成品原料に至るまで幅広い分野に広がっている
[0003] こうした微生物による有用物質の工業生産においては、その生産性の向上が重要 な課題の一つであり、その手法として、突然変異等の遺伝学的手法による生産菌の 育種が行われてきた。一方、微生物遺伝学、バイオテクノロジーの発展により、特に 最近では、遺伝子組換え技術等を用いたより効率的な生産菌の育種が行われるよう になっており、遺伝子組換えのための宿主微生物の開発が進められている。遺伝子 組換え技術を用いた生産菌育種の方法として、遺伝子の発現を調節する転写因子、 特に RNAポリメラーゼのシグマ因子を増強する例が知られており、例えば、シユード モナス ·フルオレセンス (Pseudomonas fluorescens)にお!/、て、栄養増殖期にお いて生育に必須な遺伝子の転写に関与する主要シグマ因子 (ノヽウスキーピングシグ マ因子)をコードする m^D遺伝子のコピー数を増加させることにより pyoluteorinや 2 , 4 diacetylphloroglucinol等の抗生物質の生産量を増加させた報告例(例えば 、非特許文献 1参照)や、コリネパクテリゥム,グルタミカム(Corvnebacterium glut amicus)にお!/、てハウスキーピングな^ kA遺伝子を過剰発現させることにより Lーリジ ンの発酵生産量を増加させた報告例 (例えば、特許文献 1参照)などがある。
[0004] し力しながら、これらはいずれも栄養増殖期に於いてハウスキーピングシグマ因子 遺伝子の発現を増強するものであった。また、枯草菌 (Bacillus subtilis)をはじめ とするバチルス属細菌においては、シグマ因子を増強することによって有用物質の生 産量を増加させると 、う報告はこれまでにな 、。
特許文献 1:国際公開第 2003Z054179号パンフレット
非特許文献 1 :J. Bacteriol. , 177, 5387, (1995)
発明の開示
[0005] 本発明は、 dsA遺伝子又は当該遺伝子に相当する遺伝子の上流に胞子形成期 に特異的に認識、転写されるプロモーター配列が連結してなる DNAを、ゲノム上或 いはプラスミド上に有する変異バチルス属細菌を提供するものである。
[0006] また本発明は、当該変異バチルス属細菌に異種タンパク質又はポリペプチドをコー ドする遺伝子を導入した組換え微生物、更に、当該組換え微生物を用いるタンパク 質又はポリペプチドの製造法を提供するものである。
[0007] また本発明は、 ^kA遺伝子又は当該遺伝子に相当する遺伝子の上流に胞子形成 期に特異的に認識、転写されるプロモーター配列が連結してなる DNAを、バチルス 属細菌のゲノム上或いはプラスミド上に有するように構築することを特徴とする変異バ チルス属細菌の構築方法を提供するものである。
図面の簡単な説明
[0008] [図 1]胞子形成過程における逐次的シグマ因子の活性ィ匕を示した模式図である。
[図 2]本発明 sigA遺伝子の構築例を示した概念図である。
発明を実施するための最良の形態
[0009] 本発明は、タンパク質又はポリペプチドの生産性向上を可能とする変異バチルス属 細菌、また当該変異バチルス属細菌に異種タンパク質又はポリペプチドをコードする 遺伝子を導入した組換え微生物、更に、当該組換え微生物を用いるタンパク質又は ポリペプチドの製造法を提供することに関する。
[0010] バチルス属細菌は、 RNAポリメラーゼのサブユニットとしてプロモーター配列の認 識に関与するシグマ因子を複数有している。異なるプロモーターを認識するシグマ因 子力 シグマ因子以外の複数サブユニットから成る RNAポリメラーゼコア複合体に結 合することによって異なる遺伝子が転写され、これによつて、ゲノム上に数千個存在 する遺伝子にっ ヽて、状況に応じた遺伝子の発現制御を行って!/ヽると考えられて ヽ る。例えば、バチルス属細菌のうち、枯草菌については 17個のシグマ因子が同定さ れており、栄養増殖期において生育に必須な遺伝子の転写に関与する主要シグマ 因子 (ハウスキーピングシグマ因子)である SigAをはじめ、胞子形成過程を制御する シグマ因子 SigH、 SigF, SigE、 SigG、 SigK、べん毛形成や細胞壁溶解を制御す るシグマ因子 SigD、ある種のアミノ酸や糖の代謝を制御するシグマ因子 SigL、環境 変化への対応を制御するシグマ因子 SigBや ECFシグマと呼ばれるシグマ因子等の 存在; ^知られている ( Bacillus subtilis and Its Closest Relatives: From Genes to し ells, Edited by A. L. Sonenshein, American Societ y for Microbiology, pp289, (2002) )。
これらの中で、胞子形成過程を制御するシグマ因子は、図 1に示す様に胞子形成 過程の進行に伴って順次発現'活性化されることが知られている。即ち、枯草菌が栄 養飢餓状態に陥ると、まずリン酸リレー系と呼ばれる複数のタンパク質間での多段階 リン酸伝達系を経て胞子形成開始制御因子である SpoOAのリン酸化が引き起こされ る(Cell, 64, 545, (1991) )。リン酸ィ匕 SpoOA(SpoOA— P)の濃度上昇に伴 V、、 SigHの構造遺伝子 (sieH)の発現を抑制して!/、るリプレッサー AbrBの誘導が抑 制され、結果的に^ iの転写が SigA依存的に誘導される (J. Bacteriol. , 173 , 521, (1991) )。 SigHが活性化された後、非対象隔膜形成により枯草菌の細 胞質は母細胞側と娘細胞側に分割され、次 ヽで娘細胞側で SpoOA— Pと SigHが共 役して SigFの構造遺伝子 (sieF)を含むオペロン (s。oIIAA— s。oIIAB— sieF)の転 写を誘導し(Gene, 101, 113, (1991) )、母細胞側では SpoOA— Pと SigAが 共役して SigE前駆体の構造遺伝子 (sigE)を含むオペロン (spoIIGA-sigE)の転写 を誘導する(J. Bacteriol. , 169, 3329, (1987) )。 SigFはアンチ シグマ 因子 SpoIIAB及びアンチ アンチ—シグマ因子 SpoIIAA、更に SpoIIAAの脱リン酸 化酵素である SpoIIEにより活性化を制御されており(Genes Cells, 1, 881 (1 996) )、活性ィ匕した SigFはシグナル伝達タンパクである SpoIIRの構造遺伝子 IR)の転写を誘導する。娘細胞側から分泌された SpoIIRは母細胞側の非対象隔膜 に局在する SigE前駆体活性ィ匕プロテアーゼである SpoIIGAを活性ィ匕し、これによつ て SigEの活性化が起こると考えられている(Proc. Natl. Acad. Sci. U. S. A. , 92, 2012, (1995) )。
[0012] 更に娘細胞側では SigFが SigGの構造遺伝子 (sigG)の転写を誘導し、母細胞側 では SigEが SigKの構造遺伝子 (sigK)の転写を誘導するが、娘細胞側での SigGの 活性ィ匕は母細胞側での SigEの活性ィ匕の後に起こり、母細胞側で SigKの活性ィ匕は この後に起こる(Mol. Microbiol. , 31, 1285, (1999) )。
[0013] 栄養増殖期には主として SigAが RNAポリメラーゼコア複合体と会合して、 SigAが 認識するプロモーターを有する遺伝子、またはオペロンの転写を誘導している力 上 記の様な機構により、胞子形成期に入って他のシグマ因子が活性化されると、 RNA ポリメラーゼコア複合体と会合するシグマ因子の置換が起こり、 SigAと会合する RN Aポリメラーゼの量は相対的に低下することが報告されている (J. Bacteriol. , 17 9, 4969, (1999) )。この為、胞子形成期以降、 SigAにより認識されるプロモー ター力 の転写量は相対的に低下するものと考えられる。
[0014] 斯カる状況の下、本発明者らは、胞子形成期において特異的に認識、発現される プロモーター配列を、主に栄養増殖期において生育に必須な遺伝子の転写に関与 する主要シグマ因子である SigAの遺伝子に連結させることにより、 SigAの遺伝子の 発現を栄養増殖期後の胞子形成期において増強することができ、当該シグマ因子と RNAポリメラーゼコア複合体との結合量を増加させ、これによつて胞子形成期以降 の異種タンパク質又はポリペプチドの生産性の向上が図れることを見出した。
[0015] 本発明の微生物によれば、該異種タンパク質又はポリペプチドを効率よく生産する ことができる。
[0016] 本発明においてアミノ酸配列及び塩基配列の同一性は、 Lipman— Pearson法 ( Science, 227, 1435, (1985) )によって計算される。具体的には、遺伝情報 処理ソフトウェア Genetyx— Win (ソフトウェア開発)のホモロジ一解析 (Search ho mology)プログラムを用いて、 Unit size to compare (ktup)を 2として解析を行 うこと〖こより算出される。
[0017] 本発明の変異バチルス属細菌は、 skA遺伝子又は当該遺伝子に相当する遺伝子 の上流に胞子形成期に特異的に認識、転写されるプロモーター配列が連結してなる DNAを、そのゲノム上或いはプラスミド上に有するように構築したものである。 [0018] 斯カる変異バチルス属細菌を構築するための親微生物としては、胞子形成を行うこ とを特徴とするバチルス属細菌であれば、その由来は限定されず、野生型のものでも 変異を施したものでもよ ヽ。中でも本発明にお 、て用いられるバチルス属細菌の好ま しい例は、全ゲノム情報が明らかにされている、枯苣菌(Bacillus subtilis)、バチル ス 'セレウス(Bacillus cereus)、バチルス'ノヽロドランス(Bacillus halodulans)な どが挙げられ、特に、遺伝子工学、ゲノム工学技術が確立されている点、またタンパ ク質を菌体外に分泌生産させる能力を有する点から枯草菌が好ましい。
[0019] 枯草菌の sA遺伝子とは、配列番号 1に示されるアミノ酸配列をコードする遺伝子 をいい、当該遺伝子に相当する遺伝子とは、配列番号 1に示されるアミノ酸配列にお いて 70%以上、好ましくは 80%以上、より好ましくは 90%以上、更に好ましくは 95% 以上、特に好ましくは 98%以上の同一性を有するアミノ酸配列をコードする遺伝子を 示す。
[0020] 斯かる^ kA遺伝子又は当該遺伝子に相当する遺伝子の上流に、胞子形成期特異 的に認識、転写されるプロモーター配列を連結するが、胞子形成期に特異的に認識 、転写されるプロモーター配列としては、天然由来のものでも、天然由来を改変した ものでも、或いは化学合成したものでも良い。
[0021] 例えば枯草菌においては、以下(1)一(6)の何れかの特徴をもつプロモーター配 列が挙げられる。
(1) SpoOA— P濃度の上昇に伴って AbrBによる転写抑制が解除され、且つ SigA にて認識、転写されるプロモーター配列
(2) SigHにて認識、転写されるプロモーター配列
(3) SigFにて認識、転写されるプロモーター配列
(4) SigEにて認識、転写されるプロモーター配列
(5) SigGにて認識、転写されるプロモーター配列
(6) SigKにて認識、転写されるプロモーター配列
[0022] 一般に、シグマ因子は転写開始点の上流 10塩基及び 35塩基付近に存在する数 塩基の配列を認識して結合するとされており、それぞれ- 10領域、—35領域と呼ばれ ている。両領域の配列、両領域間の距離は、シグマ因子毎にそれぞれ共通な特徴を 持つことが知られており、コンセンサス配列と呼ばれている。従って、前記(1)一(6) のプロモーター配列には、(l ' ) SpoOA— P濃度の上昇に伴って AbrBによる転写抑 制が解除され、且つ SigAのコンセンサス配列を含む配列、(2,)SigHのコンセンサ ス配列を含む配列、(3,)SigFのコンセンサス配列を含む配列、(4,)SigEのコンセ ンサス配列を含む配列、(5,) SigGのコンセンサス配列を含む配列、(6, ) SigKのコ ンセンサス配列を含む配列等が例示できる。
これまでに報告されている枯草菌各シグマ因子のコンセンサス配列を表 1に示す。
[0023] [表 1]
Figure imgf000007_0001
[0024] (Bacillus subtilis and Its Closest Relatives: From Genes to Cells,
Edited by A. L. Sonenshein, American Society for Microbiolog y, pp289, (2002) )
配列中、 Rは Aまたは G、 Wは Aまたは T、 Nは任意の塩基をそれぞれ示す。また大 文字は保存性が高く、小文字は保存性が低 、ことを表す。
[0025] また、これまでに報告されて 、る AbrBの認識結合配列は、 WaWWtttWCAAaaa aW (Wは Aまたは Tを示す。また大文字は保存性が高ぐ小文字は保存性が低いこ とを示す)で表される(J. Bacteriol. , 177, 6999, (1995) )。
以上の様に、本発明に於ける胞子形成期に特異的に認識、転写されるプロモータ 一配列とは、前記(1)一(6)、或いは(1 ' )一(6 ' )の何れかの特徴を有するものであ る。 [0026] (1)または( )の何れかの特徴を有するプロモーター配列のうち、天然由来のものと しては、表 2に示される枯草菌の遺伝子又はオペロンのプロモーターが挙げられ、(2 )または(2' )の何れかの特徴を有するプロモーター配列のうち、天然由来のものとし ては、表 3に示される枯草菌の遺伝子又はオペロンのプロモーターが挙げられ、(3) または(3 ' )の何れかの特徴を有するプロモーター配列のうち、天然由来のものとして は、表 4に示される枯草菌の遺伝子又はオペロンのプロモーターが挙げられ、(4)ま たは (4' )の何れかの特徴を有するプロモーター配列のうち、天然由来のものとして は、表 5に示される枯草菌の遺伝子又はオペロンのプロモーターが挙げられ、(5)ま たは(5 ' )の何れかの特徴を有するプロモーター配列のうち、天然由来のものとして は、表 6に示される枯草菌の遺伝子又はオペロンのプロモーターが挙げられ、(6)ま たは(6 ' )の何れかの特徴を有するプロモーター配列のうち、天然由来のものとして は、表 7に示される枯草菌の遺伝子又はオペロンのプロモーターが挙げられる。
[0027] 尚、表中の各遺伝子の名称、番号及び機能等は、 Nature, 390, 249— 256, (19 97)で報告され、 JAF AN : Japan Functional Analysis Network for Bacill us subtilis (BSORF DB)でインターネット公開(http:ZZbacillus. genome, ad. jpZ、 2003年 6月 17日更新)された枯草菌ゲノムデーターに基づいて記載して いる。
[0028] [表 2]
Figure imgf000008_0001
[0029] (Bacillus subtilis and other gram— positive bacteria ; biochemistry. physiology, and molecular genetics, Edited by A. L. Sonenshein , American Society for Microbiology, pp757, (1993)、 J. Bacteriol. , 177, 6999, (1995) )
表中、オペロンについては、転写単位の先頭の遺伝子名を示した。
[0030] [表 3]
Figure imgf000009_0001
[0031] (Bacillus subtilis and Its Closest Relatives: From Genes to Cells,
Edited by A. L. Sonenshein, American Society for Microbiolog y, pp289, (2002) )
表中、オペロンについては、転写単位の先頭の遺伝子名を示した。
[0032] [表 4] 遗伝子名 遺伝子番号
aach BG10295
bofC BG1 191 7
gerAA BG10385
gpr BG10438
katX BG1 1945
sspN BG14179
spoIIQ BG1 1978
spoIIR BG10937
spoIIIG BG10236
spoIVB BG1031 1
ywhE BG12459
yhcN BG1 1592
lonB BG1 1077
[0033] (Bacillus subtilis and Its Closest Relatives: From Genes to Cells,
Edited by A. L. Sonenshein, American Society for Microbiolog y, pp289, (2002) )
表中、オペロンについては、転写単位の先頭の遺伝子名を示した。
[0034] [表 5]
遗伝子名 遺伝子番号
spoIIP BG10439
spoIID BG10766
spoIIM BG10768
bofA BG10087
spoIIIAA BG 10540
spoIIID BG 10408
spoIVFA BG10331
cotE BG 10494
cotJA BG1 1799
dacB BG10527
spoIVA BG10275
spoIVCB BG10459
spo VB BG10778
spo VD BG 10222
spo VE BG10226
spoVK BG1 1039
spoVM BG10776
spoVR BG10182
spo VID BG 10346
glgB BG 10907
mmgA BG1 1319
phoB BG10697
yknT BG12251
yte V BG12339
safA BG13781
yaaH BG10080
cwlD BG1 1514
cwlJ BG1 1 172
yjmC BG13206
yfhS BG 12892
yoaW BG 13493
(Bacillus subtilis and Its Closest Relatives: From Genes to Cells, Edited by A. L. Sonenshein, American Society for Microbiolog y, pp289, (2002) )
表中、オペロンについては、転写単位の先頭の遺伝子名を示した。 [0036] [表 6]
Figure imgf000012_0001
[0037] (Bacillus subtilis and Its Closest Relatives: From Genes to Cells,
Edited by A. L. Sonenshein, American Society for Microbiolog y, pp289, (2002) )
表中、オペロンについては、転写単位の先頭の遺伝子名を示した。
[¾7]
Figure imgf000013_0001
[0039] (Bacillus subtilis and Its Closest Relatives: From Genes to Cells,
Edited by A. L. Sonenshein, American Society for Microbiolog y, pp289, (2002) )
表中、オペロンについては、転写単位の先頭の遺伝子名を示した。
[0040] 以上の様に、本発明に於いて用いられる胞子形成期に特異的に認識、転写される プロモーター配列としての好適な例としては、前記(1)一(6)、或いは(1 ' )一(6' )の 何れかの特徴をもつプロモーターが挙げられる。一方、枯草菌において、 SigEは R NAポリメラーゼに対して SigAより高い親和性を示すとの報告例もあることから (J. B acteriol. , 179, 4969, (1999) )、より好適には、 SigE力 S活' |4ィ匕する以前に転写 が活性ィ匕するプロモーターを利用することが好ましい。より好ましい当該プロモーター 配列としては、 SpoOA— P濃度の上昇に伴って AbrBによる転写抑制が解除され、 且つ SigAにより認識、転写されるプロモーター配列(前記(1)又は( )に相当)、又 は SigHにより認識、転写されるプロモーター配列(前記(2)又は(2' )に相当)が挙 げられる。
[0041] 前記(1)又は(1 ' )の何れかの特徴を有するプロモーター配列のうち、天然由来の ものとしては、表 1に示した枯草菌の遺伝子又はオペロンのプロモーター配列が挙げ られ、中でも特に好適な例としては、枯草菌の^ kHのプロモーター配列が挙げられ る。枯草菌の^ kHのプロモーター配列は、配列番号 2に示す塩基配列における塩基 番号 987— 1027の塩基配列、好ましくは塩基番号 987— 1047の塩基配列、より好 ましくは塩基番号 1一 1047の塩基配列を含む、塩基長 5000塩基対以内、好ましく は 2000塩基対以内、より好ましくは 1047塩基対以内の塩基配列であり、且つ当該 遺伝子のプロモーターと同一のプロモーター機能を有するものである。
[0042] また前記(2)又は(2' )の何れかの特徴を有するプロモーター配列のうち、天然由 来のものとしては、表 2に示される枯草菌の遺伝子又はオペロンのプロモーターが挙 げられ、中でも特に好谪な例としては枯苣菌の SOOIIAA— SOOIIAB— sigFオペロン ( 。οΠΑオペロン)のプロモーター配列が挙げられる。枯苣菌の SOOIIAオペロンのプロ モーター配列は、配列番号 3に示す塩基配列における塩基番号 1081— 1110の塩 基配列、好ましくは塩基番号 1081— 1118の塩基配列、より好ましくは塩基番号 1一 1143の塩基配列を含む、塩基長 5000塩基対以内、好ましくは 2000塩基対以内、 より好ましくは 1143塩基対以内の塩基配列であり、且つ当該遺伝子のプロモーター と同一のプロモーター機能を有するものである。
[0043] また、本発明で用いられる胞子形成期特異的に認識、発現されるプロモーター配 列としては、表 1一表 6記載の枯草菌の各遺伝子或いは各オペロンのプロモーター 配列に相当する配列も含まれる。例えば、枯草菌の sH遺伝子のプロモーター配列 に相当する配列としては、配列番号 2に示す塩基配列における塩基番号 987— 102 7の塩基配列、好ましくは塩基番号 1081— 1118の塩基配列、より好ましくは塩基番 号 1一 1143の塩基配列に対して、 1個又は複数個の塩基が置換、欠失若しくは挿入 された塩基配列を含む、塩基長 5000塩基対以内、好ましくは 2000塩基対以内、よ り好ましくは 1047塩基対以内の塩基配列であり、且つ当該遺伝子のプロモーターと 同一のプロモーター機能を有する DNA断片が挙げられる。
[0044] また、 ^2ΐΙΔオペロンのプロモーター配列に相当する配列としては、配列番号 3で 示される塩基配列における塩基番号 1081— 1110の塩基配列、好ましくは塩基番 号 1081— 1118の塩基配列、更に好ましくは塩基番号 1一 1143の塩基配列に対し て、 1個又は複数個の塩基が置換、欠失若しくは挿入された塩基配列を含む、塩基 長 5000塩基対以内、好ましくは 2000塩基対以内、より好ましくは 1118塩基対以内 の塩基配列であり、且つ当該オペロンのプロモーターと同一のプロモーター機能を 有する DNA断片が挙げられる。
[0045] 更に、本発明で用いられる胞子形成期における転写に特異的に関与するシグマ因 子により認識されるプロモーター配列には、表 2又は表 3記載の枯草菌の遺伝子又 は、枯草菌のオペロンを構成する遺伝子のォーソログ(ortholog)遺伝子のプロモー ター配列、好適には、バチルス属細菌由来の当該ォーソログ遺伝子のプロモーター 配列も含まれる。ォーソログ遺伝子は、インターネットで公開される Microbial Geno me Database (MBLTD、 http : z / mogd. genome, ad. jpZ)の CreateZ view Orthologous gene tableプログラムを利用することによって見出すことができる 。枯草菌^ kH遺伝子のォーソログ遺伝子の例としては、バチルス'ノ、ロドランスの^ k H(BH0115)遺伝子や、バチルス.セレウスの BC0114遺伝子などが挙げられる。ま た、枯草菌の^ 2ΠΔオペロンを構成する各遺伝子のォーソログとしては、バチルス' ハロドランスの^ g£ (BH1538)遺伝子、^ IIAS(BH1537)遺伝子、又 sr»oIIAA ( BH1536)、ノ チルス,セレウスの BC4072遺伝子、 BC4073遺伝子、又 BC4074 遺伝子などが挙げられる。
[0046] 斯カる胞子形成期における転写に特異的に関与するシグマ因子により認識される プロモーター配列は、上記のプロモーター配列を単独で用いる他、複数種を組み合 わせて用いることができる。
[0047] 胞子形成期において特異的に認識、転写されるプロモーター配列が枯草菌の^ k 遺伝子又は当該遺伝子に相当する遺伝子の上流に結合してなる DNAは、例えば 、元来枯草菌ゲノム上に存在する^ kA遺伝子の上流に存在する SigA認識プロモー ター配列の上流又は下流に、胞子形成期において特異的に認識、転写されるプロモ 一ター配列を含む DNA断片を挿入することによってゲノム上に構築することができる 。尚、胞子形成期において特異的に認識、転写されるプロモーター配列を含む DN A断片を挿入する部位は、^ igA遺伝子又は当該遺伝子に相当する遺伝子の上流で あればよいが、^ kA構造遺伝子の上流側に隣接する 2000塩基対以内の領域が好 ましぐ 1000塩基対以内の領域がより好ましぐ 500塩基対以内の領域が更に好まし ぐ 1一 198塩基対の領域が特に好ましい。但し、胞子形成期において特異的に認 識、転写されるプロモーター配列を含む DNA断片が適切なリボソーム結合部位の配 列を含まない場合には、該 DNA断片を^ kA構造遺伝子より 15塩基対以上、上流に 挿入することが望ましい。
[0048] また、胞子形成期に特異的に認識、転写されるプロモーター配列を ^kA遺伝子又 は当該遺伝子に相当する遺伝子の上流側に連結した DNAは PCRなどの方法によ つて構築することも可能である。尚、連結部位から^ 構造遺伝子までの間の、元来 枯草菌ゲノム上に存在する ^kA遺伝子の上流配列に由来する配列は、 0— 2000塩 基対であることが好ましぐ 0— 1000塩基対であることがより好ましぐ 0— 500塩基対 であることが更に好ましぐ 0— 198塩基対であることが特に好ましい。但し、胞子形 成期において特異的に認識、転写されるプロモーター配列を含む DNA断片が適切 なリボソーム結合部位の配列を含まな 、場合には、連結部位から^ gA構造遺伝子ま での間の、元来枯草菌ゲノム上に存在する^ kA遺伝子の上流配列に由来する配列 は 15塩基対以上であることが望ましい。本発明変異バチルス属細菌を構築するため には、このようにして構築した DNAを新たに親バチルス属細菌へ導入すれば良 、。
[0049] 例えば胞子形成期に特異的に認識、転写されるプロモーター配列を含む DNA断 片と^ 遺伝子等を含む DNA断片を連結した DNA断片を PCR等の方法により調 製し、親バチルス属細菌内で複製可能なプラスミドベクターにクローユングして取り込 ませる方法を用いることができる。特に、本発明変異バチルス属細菌を構築するため の親バチルス属細菌として枯草菌を用いる場合、複製可能なプラスミドベクターとし ては pUB110 (Plasmid, 15, 93, (1986) )、 pC194 (j. Bacteriol. , 150, 815 , (1982) )、 ρΤΧ14— 3 (Plasmid, 30, 119, (1993) )をはじめとして既に報告のあ る多数のプラスミドベクターを利用することが可能である。
[0050] 或いは、胞子形成期において特異的に認識、転写されるプロモーター配列を含む DNA断片が 遺伝子等を含む DNA断片の上流に連結した DNA断片を、相同 組換え等の方法によってゲノム上に導入することができる。相同組換えを利用してゲ ノム上に DNA断片を導入する方法につ!、ては既に!/、くつかの報告があり(Mol. G en. Genet. , 223, 268 (1990)等)、それらの方法に従うことによって、本発明の 変異バチルス属細菌を得ることができる。
[0051] 以下、より具体的に SOE (splicing by overlap extension)— PCR法(Gene, 7 7, 51, (1989) )により調製された胞子形成期において特異的に認識、転写される プロモーター配列を含む DNA断片と^ 遺伝子を含む DNA断片が連結した DN A断片を調製し、相同組換えを利用することによりゲノム上に当該 DNA断片を導入 する方法について説明するが、本発明における当該 DNA断片の導入方法は下記 に限定されるものではない。
[0052] 本発明において、まず 1回目の PCRにより胞子形成期において特異的に認識、転 写される胞子形成期において特異的に認識、転写されるプロモーター配列を含む D NA断片と、ハウスキーピングシグマ因子の構造遺伝子断片、並びに薬剤耐性マー カー遺伝子断片の 3断片を調製するが、この際、例えば、当該プロモーター配列を含 む DNA断片の下流末端にハウスキーピングシグマ因子の構造遺伝子断片の上流 側 10— 30塩基対配列、逆に薬剤耐性マーカー遺伝子断片の上流末端にはハウス キーピングシグマ因子の構造遺伝子断片の下流側 10— 30塩基対配列が付加され る様にデザインしたプライマーを用いる(図 2)。
[0053] 次いで、 1回目に調製した 3種類の PCR断片を铸型とし、当該プロモーター配列を 含む断片の上流側プライマーと薬剤耐性マーカー遺伝子断片の下流側プライマー を用いて 2回目の PCRを行うことによって、当該プロモーター配列を含む断片の下流 末端及び薬剤耐性マーカー遺伝子断片の上流末端に付加した 遺伝子断片配 列において、 ^kA遺伝子断片とのァニールが生じ、 PCR増幅の結果、 sigA遣伝子 の上流に胞子形成期における転写に特異的に関与するシグマ因子により認識される プロモーター配列が連結され、且つ薬剤耐性マーカー遺伝子がその下流に連結さ れた DNA断片を得ることができる(図 2)。
[0054] 胞子形成期に特異的に認識、転写されるプロモーター配列として枯草菌の^ i遺 伝子、或いは^ ΠΑオペロンのプロモーターを、薬剤耐性マーカー遺伝子として、ク 口ラムフエ-コール耐性遺伝子を用いる場合、例えば表 8に示したプライマーセットを 用い、 Pyrobest DNAポリメラーゼ(宝酒造)などの一般の PCR用酵素キット等を用 ヽて、成書 (PCR Protocols. Current Methods and Applications, Edit ed by B. A. White, Humana Press, pp251 (1993)、 Gene, 77, 61, ( 1989)等)に示される通常の条件により SOE— PCRを行うことによって、所望の DNA 断片を得ることができる。
[0055] 力べして得られた DNA断片を、例えば枯草菌ゲノム上に導入する場合、枯草菌細 胞内にて複製出来ないプラスミドベクター、例えば pMW219 (-ツボンジーン)にクロ 一ユングし、コンビテント法等によって細胞内に取り込ませると、プラスミド上のハウス キーピングシグマ因子の遺伝子領域と、ゲノム上の^ kA遺伝子領域の間で相同組換 えが生じ、薬剤耐性マーカーによる選択によって、胞子形成期に特異的に認識、転 写されるプロモーター配列が結合した^ gA遺伝子を含む DNA断片がプラスミドべク ターと共にゲノム上に導入された細胞を分離することができる(図 2)。即ち、表 3に示 したプライマーセットを用いて調製した DNA断片を pMW219にクローユングしたプ ラスミドを枯草菌細胞内に取り込ませた場合、クロラムフエ-コールを含む寒天培地 上に生育するコロニーを分離し、 sigH遣伝子、或いは^ ΙΙΔオペロンのプロモータ 一領域と^ gA遺伝子が連結した DNA断片がゲノム上に導入されて ヽることを、ゲノ ムを铸型とした PCR法などによって確認すればよい。
[0056] 以上は主に親バチルス属細菌として枯草菌を用いる場合にっ 、て示したが、他の バチルス属細菌についても同様にして本発明の変異バチルス属細菌を得ることがで きる。
[0057] 力べして得られたバチルス属細菌を用いることにより、異種タンパク質又はポリぺプ チドの生産において、異種タンパク質又はポリペプチドをコードする遺伝子の転写、 並びにタンパク生産に関わる種々の遺伝子の転写を行う SigAが胞子形成期に発現 増強される為、生産性の向上が達成される。
すなわち、 SigAによって認識されるプロモーターの下流に目的とするタンパク質又 はポリペプチドをコードする遺伝子を結合させた後、これを本発明により得られた変 異バチルス属細菌に導入することによって、栄養増殖期のみならず、胞子形成期に 於いても目的のタンパク質又はポリペプチドの生産が継続するため、親バチルス属 細菌に比べ、著量の目的タンパク質又はポリペプチドを生産する。
[0058] 目的タンパク質又はポリペプチド遺伝子は特に限定されず、洗剤、食品、繊維、飼 料、化学品、医療、診断など各種産業用酵素や、生理活性ペプチドなどが含まれる 。また、産業用酵素の機能別には、酸ィ匕還元酵素 (Oxidoreductase)、転移酵素 (T ransferase)、加水分解酵素(Hydrolase)、脱離酵素(Lyase)、異性化酵素(Isom erase)、合成酵素(LigaseZSynthetase)等が含まれるが、好適にはセルラーゼ、 α—アミラーゼ、プロテアーゼ等の加水分解酵素の遺伝子が挙げられる。具体的に は、多糖加水分解酵素の分類(Biochem. J. , 280, 309 (1991) )中でファミリー 5に属するセルラーゼが挙げられ、中でも微生物由来、特にバチルス属細菌由来の セルラーゼが挙げられる。より具体的な例として、配列番号 4又は 6で示されるァミノ 酸配列からなるバチルス エスピー(Bacillus sp. ) KSM—S237株(FERM BP— 7875)又はバチルス エスピー(Bacillus sp. ) KSM— 64株(FERM BP— 2886) 由来のアルカリセルラーゼゃ、当該アミノ酸配列と 70%、好ましくは 80%、より好まし くは 90%以上、さらに好ましくは 95%以上、特に好ましくは 98%以上の同一性を有 するアミノ酸配列力 なるセルラーゼが挙げられる。
[0059] また、 α アミラーゼの具体例としては、微生物由来の α アミラーゼが挙げられ、 特にバチルス属細菌由来の液ィ匕型アミラーゼが好ましい。より具体的な例として、配 列番号 19で示されるアミノ酸配列からなるバチルス エスピー(Bacillus sp. ) KSM K38株(FERM BP— 6946)由来のアルカリアミラーゼや、当該アミノ酸配列と 70 %、好ましくは 80%、より好ましくは 90%以上、さらに好ましくは 95%以上、特に好ま しくは 98%以上の同一性を有するアミノ酸配列力もなるアミラーゼが挙げられる。尚、 アミノ酸配列の同一性は Lipman— Pearson法 (Science, 227, 1435, (198 5) )によって計算される。また、プロテアーゼの具体例としては、微生物由来、特にバ チルス属細菌由来のセリンプロテアーゼゃ金属プロテアーゼ等が挙げられる。より具 体的な例として、配列番号 21で示されるアミノ酸配列からなるバチルス クラウジ cillus eki )KSM— K16株(FERM BP— 3376)由来のアルカリプロテアーゼ や、当該アミノ酸配列と 70%、好ましくは 80%、より好ましくは 90%以上、さらに好ま しくは 95%以上、特に好ましくは 98%以上の同一性を有するアミノ酸配列からなるプ 口テアーゼが挙げられる。
[0060] 一方、前述の様に目的タンパク質又はポリペプチド遺伝子は、その上流に枯草菌 S igAなどのハウスキーピングシグマ因子によって認識されるプロモーター配列が結合 されている必要があり、更に、翻訳、分泌に関わる制御領域、即ち、リボソーム結合部 位および開始コドンを含む翻訳開始領域、又、分泌用シグナルペプチド領域が適正 な形で結合されていることが望ましい。例えば、特開 2000-210081号公報ゃ特開 平 4— 190793号公報等に記載されているバチルス属細菌、すなわち KSM— S237 株(FERM BP— 7875)、 KSM— 64株(FERM BP— 2886)由来のセルラーゼ遺 伝子のハウスキーピングシグマ因子で転写されるプロモーターを含む転写開始制御 領域、翻訳開始領域、分泌用シグナルペプチド領域、より具体的には配列番号 5で 示される塩基配列の塩基番号 1一 659の塩基配列、配列番号 7で示される塩基配列 からなるセルラーゼ遺伝子の塩基番号 1一 696の塩基配列、また当該塩基配列に対 して 70%以上、好ましくは 80%以上、より好ましくは 90%以上、さらに好ましくは 95 %以上、特に好ましくは 98%以上の同一性を有する塩基配列力 なる DNA断片、 あるいは上記 、ずれかの塩基配列の一部が欠失した塩基配列力 なる DNA断片が 、 目的タンパク質又はポリペプチドの構造遺伝子と適正に結合されていることが望ま しい。
[0061] 上記の目的タンパク質又はポリペプチド遺伝子を含む DNA断片と適当なプラスミド ベクターを結合させた組換えプラスミドを、一般的な形質転換法によって本発明の変 異バチルス属細菌に取り込ませることによって、 目的タンパク質又はポリペプチドの 生産性を向上させることができる。また、当該 DNA断片に本発明の変異バチルス属 細菌ゲノムとの適当な相同領域を結合した DNA断片を用い、本発明の変異バチル ス属細菌ゲノムに直接組み込むことによつても目的タンパク質又はポリペプチドの生 産性を向上させることができる。
[0062] 本発明の変異バチルス属細菌を宿主とした目的タンパク質又はポリペプチドの生 産は、当該菌株を同化性の炭素源、窒素源、その他の必須成分を含む培地に接種 し、通常の微生物培養法にて培養し、培養終了後、タンパク質又はポリペプチドを採 取'精製することにより行えばよい。
[0063] 以上より、胞子形成期における^ kA遺伝子の転写効率が向上したバチルス属細菌 を構築することができ、当該変異バチルス属細菌を組換え生産の宿主細胞として用 いれば有用なタンパク質又はポリペプチドを効率的に生産することができる。
[0064] 以下、実施例を用いて、本発明の変異バチルス属細菌の構築方法と、当該変異バ チルス属細菌を宿主として用いたセルラーゼの生産方法について具体的に説明す る。
実施例
[0065] 実施例 1 胞子形成期に特異的に転写されるプロモーターを有する^ kA遺伝子を枯 草菌ゲノム上に導入するためのプラスミドの構築
図 2に示す方法と同様にして、^ kH遺伝子プロモーター或いは^ ΠΑオペロンブ 口モーターを 構造遺伝子の上流に連結した DNA断片を、 1回交差の相同組換 えを利用して枯草菌ゲノム上へ導入する為のプラスミドの構築を行った。即ち、枯草 菌 168株力も抽出したゲノム DNAを铸型とし、表 8に示した sigAfと sigArのプライマ 一セットを用いて ^gA遺伝子を含む 1. 2kb断片 (A)を PCRにより調製した。同様に 表 8に示した sigHUfと sigHUr— sigAのプライマーセットを用いてゲノム上の^ i遺 伝子の上流に隣接する^ kH遺伝子のプロモーターを含む 1. Okb断片 (B)を調製し た。同様に表 8に示した sigFUfと sigFUr— sigAのプライマーセットを用いてゲノム上 の^ ΠΑオペロンの上流に隣接し、 sigF遺伝子の転写を司る^ ΠΑオペロンのプ 口モーターを含む 1. lkb断片(C)を調製した。またプラスミド pC194 (j. Bacteriol . 150 (2) , 815 (1982) )を铸型とし、表8に示したCmFWとCmr—sigAのプラィマ 一セットを用いてクロラムフエ-コール耐性遺伝子を含む 0. 9kb断片 (D)を調製した
。次いで、得られた (A) (B) (D) 3断片を混合して铸型とし、表 8に示した sigHUfと C mFWのプライマーセットを用いた SOE— PCRを行うことによって、 3断片を(B) (A) (
D)の順になる様に結合させ、 sigH遣伝子のプロモーター力 sigA構造遣伝子の上流 に連結し、更にその下流にクロラムフエ-コール耐性遺伝子が逆向きに結合した 3. 1 kbの DNA断片 (E)を得た。同様に (A) (C) (D) 3断片を混合して铸型とし、表 8に示 した sigFUfと CmFWのプライマーセットを用いた SOE— PCRを行うことによって、 3 断片を(C) (A) (D)の順になる様に結合させ、^ ΠΔオペロンプロモーターが ^kA 構造遺伝子の上流に連結し、更にその下流にクロラムフエ-コール耐性遺伝子が逆 向きに結合した 3. 2kbの DNA断片(F)を得た。 3. lkbの DNA断片(E)と 3. 2kbの
DNA断片 (F)をそれぞれ枯草菌細胞内では複製できな!/、大腸菌用プラスミドベクタ 一 pMW219の≤m i制限酵素切断点に挿入し、胞子形成期に特異的に転写される プロモーターを有する^ Δ遺伝子を枯草菌ゲノム上に導入するためのプラスミド pM
WPHsigA及び pMWPFsigAを構築した。
[0066] また上記のプライマーのうち、 sigAf及び sigFUr— sigAに代えて、それぞれ表 8に 示す sigAmf及び sigFUr— sigAmを用いて同様の操作を行うことにより、 pMWPFsi gAにおける^ gA遺伝子の開始コドン (ATG)が開始コドンとして認識されな ヽ (ATA )に置換された pMWPFsigAmを構築した。
[0067] 実施例 2 胞子形成期に特異的に転写されるプロモーターを有する^ kA遺伝子の枯 草菌 168株ゲノムへの導入
胞子形成期に特異的に転写されるプロモーターを有する 遺伝子、又は開始コ ドン (ATG)が (ATA)に置換された^ gA遺伝子 (sigAm)を枯草菌ゲノム上に導入 するためのプラスミド pMWPHsigA、 pMWPFsigA、及び pMWPFsigAmを用いて コンビテント法によりそれぞれ枯草菌 168株の形質転換を行い、クロラムフエ-コール を含む LB寒天培地上に生育したコロニーを形質転換体として分離した。得られた形 質転換体力ゝら抽出したゲノムを铸型として PCRを行うことによって、ゲノム上の sigA遣 伝子とプラスミド上の^ kA遺伝子又は ^kAmの間での相同組換えにより、胞子形成 期に特異的に転写されるプロモーターを有する ^kA又は^ sAm力 1. 2kb断片(D
)と共にゲノム内に挿入されたことを確認し、これらを 168PHsigA株、 168PFsigA株 、及び 168PFsigAm株と命名した。
[0068] 実施例 3 枯草菌変異株のアルカリセルラーゼ分泌生産評価
実施例 2にて得られた 3種類の枯草菌変異株(168PHsigA株、 168PFsigA株、 及び 168PFsigAm株)、及び対照として枯草菌 168株に、バチルス エスピー (Baci llus sp. )KSM—S237株(FERM BP— 7875)由来のアルカリセルラーゼ(特開 2 000— 210081号公報)をコードする DNA断片(3. lkb)がシャトルベクター pHY30 OPLK (ヤクルト)の^ mHI制限酵素切断点に挿入された組換えプラスミド pHY— S2 37を、プロトプラスト形質転換法によって導入した。これによつて得られた菌株を 10m Lの LB培地で一夜 37°Cで振盪培養を行い、更にこの培養液 0. 05mLを 50mLの 2 X L—マルトース培地(2%トリプトン、 1%酵母エキス、 l%NaCl、 7. 5%マルトース、 7. 5ppm硫酸マンガン 4— 5水和物、 15ppmテトラサイクリン)に接種し、 30°Cで 3日 間、振盪培養を行った。培養後、遠心分離によって菌体を除いた培養液上清のアル カリセルラーゼ活性を測定し、培養によって菌体外に分泌生産されたアルカリセルラ 一ゼの量を求めた。この結果、表 9に示した様に、宿主として 168PHsigA株又は 16 8PFsigA株を用いた場合、対照の 168株(野生型)の場合と比較して高いアルカリセ ルラーゼの分泌生産が認められた。一方、宿主として 168PFsigAmを用いた場合の アルカリセルラーゼ分泌量は、対照の 168株(野生型)と同等であったことから、 168 PHsigA株又は 168PFsigA株に於ける高生産化力 ゲノム上に新たに付加された gH遺伝子或 、は SOOIIAオペロンのプロモーターを持つ sigA遣伝子〖こより、 SigAが 生産されたことによるものと推定された。
[0069] [表 8] プライマー 塩基配列 ' 配列番号
SigAf ATGGCTGATAAACAAACCCA 8
Si Ar CACCACAATGTTCATTTGCA 9 sigHUf ACAGCCTTTCTTCCTCATTCT 1 0 sigHUr-sigA CGTGGGTTTGTTTATCAGCCATTCCGATCCCCCCGGCGCACG 1 1
sigFUf GCTGATAGAACGTGACACGGG 1 2 sigFUr-si A CGTGGGTTTGTTTATCAGCCATGCTCATTCCTCCTTGATATG 1 3
CmFW CAACTAAAGCACCCATTAG 1 4
Cmr-sigA CATTTGCAAATGAACATTGTGGTGCTTCTTCAACTAACGGGGCA 1 5 sigAtnf ATAGCTGAT ACAAACCCA 1 6 sigFUr-sigAm CGTGGGTTTGTTTATCAGCTATGCTCATTCCTCCTTGATATG 1 7
[0070] [表 9]
Figure imgf000024_0001
[0071] 実施例 4 枯草菌変異株のアルカリプロテアーゼ分泌生産評価
実施例 3にてアルカリセルラーゼ生産性向上が認められた 168PHsigA株及び 16 8PFsigA株の他のタンパク質又はポリペプチド生産における有効性を確認する為に 、以下の様にバチルス属細菌由来のアルカリプロテアーゼ生産性評価を行った。 バチルス クラウジ(Bacillus eki )KSM— K16株(FERM BP— 3376)より抽 出したゲノム DNAを铸型として、表 10に示される S237pKAPpp— Fと KAPter— R ( Bglll)のプライマーセットを用いて PCRを行 、、配列番号 21で示されるアミノ酸配列 を有するアルカリプロテアーゼ(Appl. Microbiol. Biotechnol. , 43, 473, (19 95) )をコードする 1. 3kbの DNA断片(G)を増幅した。またバチルス エスピー( illus sp. )KSM— S237株(FERM BP— 7875)より抽出したゲノム DNAを铸型と して、表 10に示される S237ppp— F2 (BamHI)と S237pKAPpp— Rのプライマーセ ットを用いて PCRを行い、アルカリセルラーゼ遺伝子(特開 2000— 210081号公報) のプロモーター領域を含む 0. 6kbの DNA断片(H)を増幅した。次いで、得られた( G) (H)の 2断片を混合して铸型とし、表 10に示される S237ppp-F2(BamHI)と APter— R(Bglll)のプライマーセットを用いた SOE—PCRを行うことによって、アル力 リセルラーゼ遺伝子のプロモーター領域の下流にアルカリプロテアーゼ遺伝子が連 結した 1.8 kbの DNA断片(I)を得た。得られた 1.8 kbの DNA断片(I)をシャトル ベクター PHY300PLK (ヤクルト)の^ mHI— IslII制限酵素切断点に挿入し、アル カリプロテアーゼ生産性評価用プラスミド pHYKAP (S237p)を構築した。
構築したプラスミド pHYKAP(S237p)を 168PHsigA株、 168PFsigA株、及び対 照として枯草菌 168株にプロトプラスト形質転換法によって導入した。これによつて得 られた菌株を実施例 3と同様の条件にて 3日間、振盪培養を行った。培養後、遠心分 離によって菌体を除 、た培養液上清のアルカリプロテアーゼ活性を測定し、培養に よって菌体外に分泌生産されたアルカリプロテア一ゼの量を求めた。この結果、表 11 に示した様に、宿主として 168PHsigA株又は 168PFsigA株を用いた場合、対照の 168株(野生型)の場合と比較して高いアルカリプロテアーゼの分泌生産が認められ た。
[0072] [表 10]
Figure imgf000025_0001
[0073] [表 11] 宿主 アル力リプロテアーゼ分泌生産量 (相対値)
1 6 8 (野生株) 100
1 6 8 PH s i g A 129
1 6 8 P F s i g A 130 実施例 5 枯草菌変異株のアルカリアミラーゼ分泌生産評価
実施例 3及び 4にてアルカリセルラーゼ及びアルカリプロテアーゼ生産性向上が認 められた 168PHsigA株及び 168PFsigA株の他のタンパク質又はポリペプチド生産 における有効性を更に確認する為に、以下の様にバチルス属細菌由来のアミラーゼ 生産性評価を行った。
バチルス エスピー(Bacillus sp. )KSM— K38株(FERM BP— 6946)より抽出 したゲノム DNAを铸型として、表 10に示される K38matu— F2 (ALAA)と SP64K3 8— R(Xbal)のプライマーセットを用いて PCRを行い、配列番号 19で示されるァミノ 酸配列を有するアルカリアミラーゼ(Appl. Environ. Microbiol. , 67, 1744, (20 01) )をコードする 1. 5kbの DNA断片 (J)を増幅した。またバチルス エスピー (Baci llus sp. )KSM— S237株(FERM BP— 7875)より抽出したゲノム DNAを铸型と して、表 10に示される S237ppp— F2 (BamHl)と S237ppp— R2 (ALAA)のプライ マーセットを用いて PCRを行い、アルカリセルラーゼ遺伝子(特開 2000— 210081号 公報)のプロモーター領域と分泌シグナル配列をコードする領域を含む 0. 6kbの D NA断片 (K)を増幅した。次いで、得られた CO (Κ)の 2断片を混合して铸型とし、表 1 0に示される S237ppp— F2 (BamHI)と SP64K38— R (Xbal)のプライマーセットを 用いた SOE—PCRを行うことによって、アルカリセルラーゼ遺伝子のプロモーター領 域と分泌シグナル配列をコードする領域の下流にアルカリアミラーゼ遺伝子が連結し た 2. lkbの DNA断片(L)を得た。得られた 2. 2kbの DNA断片(L)をシャトルベクタ 一 PHY300PLK (ヤクルト)の^ mHI— I制限酵素切断点に挿入し、アルカリアミ ラーゼ生産性評価用プラスミド PHYK38 (S237ps)を構築した。
構築したプラスミド pHYK38 (S237ps)を 168PHsigA株、 168PFsigA株、及び 対照として枯草菌 168株にプロトプラスト形質転換法によって導入した。これによつて 得られた菌株を実施例 3と同様の条件にて 5日間、振盪培養を行った。培養後、遠心 分離によって菌体を除!ヽた培養液上清のアルカリアミラーゼ活性を測定し、培養によ つて菌体外に分泌生産されたアミラーゼの量を求めた。この結果、表 12に示した様 に、宿主として 168PHsigA株又は 168PFsigA株を用いた場合、対照の 168株(野 生型)の場合と比較して高いアルカリアミラーゼの分泌生産が認められ、上記変異株 が種々のタンパク質又はポリペプチド生産において有効であることが示された。
[表 12] 宿主 アル力リアミラーゼ分泌生産量 (相対値)
168 (野生株) 100
168 PH s i g A 189
168 PF s i gA 182

Claims

請求の範囲
[1] sigA遣伝子又は当該遺伝子に相当する遺伝子の上流に胞子形成期に特異的に 認識、転写されるプロモーター配列が連結してなる DNAを、ゲノム上或いはプラスミ ド上に有する変異バチルス属細菌。
[2] 胞子形成期に特異的に認識、転写されるプロモーター配列が、枯草菌の^ kH遺伝 子のプロモーター配列又はこれに相当する配列及び Z又は枯草菌の^ ΠΔオペ口 ンのプロモーター配列又はこれに相当する配列である請求項 1記載の変異バチルス 属細菌。
[3] バチルス属細菌が、枯草菌である請求項 1又は 2記載の変異バチルス属細菌。
[4] 請求項 1一 3のいずれか 1項記載の変異バチルス属細菌に、異種のタンパク質又は ポリペプチドをコードする遺伝子を導入した組換え微生物。
[5] 請求項 4記載の組換え微生物を用いるタンパク質又はポリペプチドの製造方法。
[6] タンパク質がセルラーゼ、アミラーゼ又はプロテアーゼである請求項 5記載の製造 方法。
[7] セルラーゼが配列番号 4で示されるアミノ酸配列からなるアルカリセルラーゼ、又は 当該アミノ酸配列に対して 70%以上の相同性を有し、かつアルカリセルラーゼ活性 を有するものである請求項 6記載の製造方法。
[8] アミラーゼが配列番号 19で示されるアミノ酸配列力もなるアルカリアミラーゼ、又は 当該アミノ酸配列に対して 70%以上の相同性を有し、かつアルカリアミラーゼ活性を 有するものである請求項 6記載の製造方法。
[9] プロテアーゼが配列番号 21で示されるアミノ酸配列からなるアルカリプロテアーゼ、 又は当該アミノ酸配列に対して 70%以上の相同性を有し、かつアルカリプロテア一 ゼ活性を有するものである請求項 6記載の製造方法。
[10] ^kA遺伝子又は当該遺伝子に相当する遺伝子の上流に胞子形成期に特異的に 認識、転写されるプロモーター配列が連結してなる DNAを、バチルス属細菌のゲノ ム上或 、はプラスミド上に有するように構築することを特徴とする変異バチルス属細 菌の構築方法。
PCT/JP2005/003756 2004-03-05 2005-03-04 変異バチルス属細菌 WO2005085437A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/590,275 US7855065B2 (en) 2004-03-05 2005-03-04 Mutant bacterium belonging to the genus Bacillus
EP05720028A EP1721973B1 (en) 2004-03-05 2005-03-04 Mutant bacterium belonging to the genus bacillus
DK05720028.9T DK1721973T3 (da) 2004-03-05 2005-03-04 Mutant bakterie hørende til slægten Bacillus
DE602005021757T DE602005021757D1 (de) 2004-03-05 2005-03-04 Zur gattung bacillus gehörendes mutantes bakterium
CN200580007128XA CN1930289B (zh) 2004-03-05 2005-03-04 变异芽孢杆菌属细菌

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-062852 2004-03-05
JP2004062852 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005085437A1 true WO2005085437A1 (ja) 2005-09-15

Family

ID=34918129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003756 WO2005085437A1 (ja) 2004-03-05 2005-03-04 変異バチルス属細菌

Country Status (6)

Country Link
US (1) US7855065B2 (ja)
EP (1) EP1721973B1 (ja)
CN (1) CN1930289B (ja)
DE (1) DE602005021757D1 (ja)
DK (1) DK1721973T3 (ja)
WO (1) WO2005085437A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485341B2 (ja) * 2004-12-20 2010-06-23 花王株式会社 組換え微生物
US20130224757A1 (en) * 2010-08-19 2013-08-29 Novozymes A/S Induced sporulation screening method
KR101755767B1 (ko) * 2014-09-05 2017-07-10 씨제이제일제당 (주) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
CN106811416B (zh) * 2017-02-24 2020-06-12 中国农业科学院植物保护研究所 水解酶CwlC在芽胞杆菌母细胞裂解中的应用
CN110055204B (zh) * 2019-05-10 2020-04-10 齐鲁工业大学 一种敲除spoⅡQ和pcf基因提高地衣芽孢杆菌发酵产酶的方法及应用
CN113801888B (zh) * 2021-09-16 2023-09-01 南京农业大学 用于提高枯草芽孢杆菌自发突变频率的质粒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327472A (ja) * 1993-05-19 1994-11-29 Kao Corp アルカリプロテアーゼ遺伝子
JP2000184882A (ja) * 1998-12-21 2000-07-04 Kao Corp 新規アミラーゼ
JP2000210081A (ja) * 1999-01-21 2000-08-02 Kao Corp 耐熱性アルカリセルラ―ゼ遺伝子
WO2003054179A1 (en) * 2001-12-20 2003-07-03 Degussa Ag Alleles of the siga gene from coryneform bacteria

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955310A (en) * 1998-02-26 1999-09-21 Novo Nordisk Biotech, Inc. Methods for producing a polypeptide in a bacillus cell
CN1212395C (zh) 1999-06-10 2005-07-27 花王株式会社 突变α-淀粉酶
JP4897186B2 (ja) * 2002-03-27 2012-03-14 花王株式会社 変異アルカリセルラーゼ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327472A (ja) * 1993-05-19 1994-11-29 Kao Corp アルカリプロテアーゼ遺伝子
JP2000184882A (ja) * 1998-12-21 2000-07-04 Kao Corp 新規アミラーゼ
JP2000210081A (ja) * 1999-01-21 2000-08-02 Kao Corp 耐熱性アルカリセルラ―ゼ遺伝子
WO2003054179A1 (en) * 2001-12-20 2003-07-03 Degussa Ag Alleles of the siga gene from coryneform bacteria

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"American Society for Microbiology", 2002, article "Cells", pages: 289
"Current Methods and Applications", 1993, HUMANA PRESS, article "PCR Protocols", pages: 251
"Current Methods and Applications", 1993, HUMANA PRESS, pages: 251
BIRD T. ET AL: "The effect of supercoiling on the in vitro transcription of the spoIIA operon from Bacillus subtilis", BIOCHIMIE, vol. 74, 1992, pages 627 - 634, XP002989832 *
GENE, vol. 77, 1989, pages 51
GENE, vol. 77, 1989, pages 61
HELDENWANG W.G. ET AL: "The sigma factors of Bacillus subtilis", MICROBIOL. REV., vol. 59, 1995, pages 1 - 30, XP000601241 *
J. BACTERIOL., vol. 179, 1999, pages 4969
MOL. GEN. GENET., vol. 223, 1990, pages 268
PARK S.G. ET AL: "Sequencing and phylogenetic analysis of the spoIIA operon from diverse Bacillus and Paenibacillus species", GENE, vol. 194, 1997, pages 25 - 33, XP004084656 *
PLASMID, vol. 30, 1993, pages 119
SCHNIDER U. ET AL: "Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHAO enhances antibiotic production and improves biocontrol abilities", J. BACTERIOL., vol. 177, 1995, pages 5387 - 5392, XP002989831 *
SCIENCE, vol. 227, 1985, pages 1435
See also references of EP1721973A4 *

Also Published As

Publication number Publication date
DK1721973T3 (da) 2010-09-13
EP1721973A4 (en) 2007-07-18
EP1721973A1 (en) 2006-11-15
CN1930289A (zh) 2007-03-14
US20090170154A1 (en) 2009-07-02
DE602005021757D1 (de) 2010-07-22
US7855065B2 (en) 2010-12-21
EP1721973B1 (en) 2010-06-09
CN1930289B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5226958B2 (ja) 組換え微生物
JP4336082B2 (ja) 宿主微生物
JP5140307B2 (ja) 組換え微生物
WO2005085437A1 (ja) 変異バチルス属細菌
JP4915728B2 (ja) 組換え微生物
JP4839144B2 (ja) 宿主微生物
JP4850011B2 (ja) 組換え微生物
JP4839143B2 (ja) 組換え微生物
JP4832153B2 (ja) 組換え微生物
JP4820101B2 (ja) 変異バチルス属細菌
JP2006345860A (ja) 組換えバチルス属細菌
JP4839169B2 (ja) 組換え微生物
JP4842749B2 (ja) 組換え微生物
US8623631B2 (en) Modified promoter
JP5140285B2 (ja) 組換え微生物
WO2005045045A2 (en) Recombinant microorganism
JP4648038B2 (ja) 改変プロモーター
JP2010178714A (ja) 組換え微生物
JP2009038985A (ja) 微生物及びこれを用いたタンパク質又ポリペプチドの製造方法
JP4861659B2 (ja) 組換え微生物
JP4842750B2 (ja) 組換え微生物
JP4842751B2 (ja) 組換え微生物
JP4685521B2 (ja) 組換え微生物
JP2010193760A (ja) タンパク質又はポリペプチドの製造方法
JP2009034067A (ja) 組換え微生物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10590275

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005720028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580007128.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005720028

Country of ref document: EP