WO2005080074A1 - Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material - Google Patents

Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material Download PDF

Info

Publication number
WO2005080074A1
WO2005080074A1 PCT/JP2005/001673 JP2005001673W WO2005080074A1 WO 2005080074 A1 WO2005080074 A1 WO 2005080074A1 JP 2005001673 W JP2005001673 W JP 2005001673W WO 2005080074 A1 WO2005080074 A1 WO 2005080074A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal oxide
film layer
composite material
composite
Prior art date
Application number
PCT/JP2005/001673
Other languages
French (fr)
Japanese (ja)
Inventor
Yuusuke Kondou
Yoshitaka Hirata
Yasushi Shimada
Yasushi Kumashiro
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2006510181A priority Critical patent/JP4375395B2/en
Publication of WO2005080074A1 publication Critical patent/WO2005080074A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0315Oxidising metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer

Definitions

  • Thin film composite material method for producing the same, and multilayer wiring board and electronic component using the thin film composite material
  • the present invention relates to a metal oxide thin film composite material suitably used for an electronic device such as a capacitor, a method for producing the same, and a multilayer wiring board and an electronic component using the thin film composite material.
  • a metal layer In order to form a device using a thin film, it is necessary to form a metal layer to be an electrode. For example, when a capacitor is formed of a thin film, it is common to adopt a so-called sandwich structure in which the thin film is sandwiched between metal layers. Conventionally, a dry process represented by sputtering has been generally used for forming a metal layer. However, dry processes are expensive and difficult to process large substrates. As a means to address this problem, for example, there is a method of forming a metal layer by plating, which is a very common technique in the field of printed wiring boards.
  • the technique of metallizing the metal oxide surface by plating is also widely used, but the conventional technique is to roughen the surface of the metal oxide to form a roughened shape, and to use the anchor effect.
  • the adhesion between the metal layer and the metal oxide was maintained (for example, Japanese Patent Application Laid-Open No. 7-62547).
  • the thickness of a thin film is as thin as submicron, it is impossible to form a roughened shape large enough to have an anchor effect.
  • the loss of uniformity of the film thickness causes the dielectric characteristics to vary when a capacitor is formed. Therefore, it is not preferable. Therefore, it was difficult to form a metal layer having sufficient adhesion on the surface of the metal oxide thin film by plating.
  • the surface of a metal oxide thin film such as barium titanate or strontium titanate has few functional groups contributing to the attachment of the coupling agent, so that the coupling agent does not adhere evenly. It was difficult to obtain sufficient adhesion between the metal oxide thin film and the plated metal layer.
  • the metal oxide thin film is slightly eroded by the plating solution and the uniformity of the film thickness is impaired, the dielectric characteristics of the obtained capacitor may be varied.
  • an object of the present invention is to provide a metal oxide thin film composite material that has excellent adhesion to a metal layer formed by a plating method and is hardly eroded by a plating solution. .
  • the thin film composite material of the present invention is a copper foil, formed on one surface of the copper foil, and at least one metal selected from the group consisting of Cr, Ni, Au, Ag, and an alloy thereof. And a dielectric thin film formed on the surface of the metal thin film layer, having a relative dielectric constant of 10-2000 and a film thickness of 0.052 xm, wherein the outermost layer of the dielectric thin film is It is characterized by being an amorphous metal oxide thin film layer containing Ti as a constituent element.
  • the present invention it is possible to provide a high dielectric constant metal oxide thin film composite material that has excellent adhesion to a metal layer and is hardly eroded by a plating solution. Further, the thin film composite material of the present invention can be suitably used for electronic devices such as capacitors.
  • FIG. 1 is a cross-sectional view showing a thin film composite material 1 produced in an example, and includes a copper foil 6, a Ni thin film layer 5, a first composite metal oxide thin film layer 2, A dielectric thin film 13 composed of a second composite metal oxide thin film layer 3 and a Ti-containing amorphous metal oxide thin film layer 4.
  • FIG. 2 is a cross-sectional view showing a state after forming an electroless Ni—P plating layer 7 and an electric Cu plating layer 8 on the thin film composite material 1 of FIG. 1 in Example 1. is there.
  • FIG. 3 is a cross-sectional view showing a state after forming the upper electrode 9 by etching the plating layer of FIG. 2 in Example 1.
  • FIG. 4 is a cross-sectional view showing a multilayer wiring board including a thin film composite material of the present invention included in a structure manufactured in Example 3, which is laminated and integrated on six surfaces of copper foil of thin film composite material 1. It includes a pre-predator 11 and a copper foil 12, an upper electrode 9 formed in the same manner as in Example 1, and a lower electrode 10 formed by etching the thin film composite material 1.
  • the thin film composite material of the present invention includes a copper foil, a metal thin film layer formed on the copper foil, and an amorphous metal oxide thin film layer formed on the metal thin film and containing Ti as a constituent element.
  • the copper foil is not particularly limited as long as it is a commonly used copper foil.
  • a copper foil whose surface is treated with Zn or chromate for the purpose of heat resistance and protection, for improving adhesion. Any of those having a rough surface and those having other elements, for example, a small amount of Sn added for the purpose of improving characteristics, can be suitably used.
  • the roughened surface of the copper foil having a roughened surface is preferably a surface on which the metal thin film layer is not formed, from the viewpoint of maintaining good insulation of the capacitor.
  • the thickness of the copper foil is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m in terms of handling.
  • the metal thin film layer is selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof.
  • Ni is more preferable from the viewpoint of environmental pollution, in which one or more metals are contained, and Cr and / or Ni are more preferable in terms of cost.
  • Cr and Ni suppress the oxidation of the copper foil during the formation of the metal oxide thin film layer, because themselves form a stable oxide film, and Au and Ag do not easily oxidize themselves. This contributes to securing the insulation of the capacitor.
  • the alloy contains at least one or more components selected from the group consisting of Cr, Ni, Au and Ag in an amount of 80% by weight or more in the alloy.
  • Such alloys include, for example, Ni-P alloy, Ni-B alloy, Ni-P_B alloy, Ni-Co alloy, Ni-Cr alloy, Ni-Cr-A1 alloy, Ni-Cr-Si alloy, Ag_Nd alloy. is there . If the content of at least one or a plurality of components selected from Cr, Ni, Au and Ag is less than 80% by weight, the effect of securing the insulation of the capacitor may be reduced. Ni-P alloys are more preferable in terms of cost and ease of formation.
  • the thickness of the metal thin film layer is preferably in the range of 50 nm to 1 ⁇ m, more preferably in the range of 100 nm to 800 nm. If the thickness is less than 50 nm, the insulating property is undesirably reduced. It is generally disadvantageous in terms of cost to increase the thickness beyond 1 ⁇ .
  • the thickness of the thin film layer can be measured by excavating the thin film layer with a focused ion beam processing device (FIB), observing the obtained cross section with a scanning ion microscope (SIM), and measuring the length.
  • FIB focused ion beam processing device
  • SIM scanning ion microscope
  • the method of forming the metal thin film layer on the copper foil is not particularly limited, but, for example, a plating method, a vapor deposition method, a sputtering method, or the like can be suitably used.
  • the dielectric thin film has at least an amorphous metal oxide thin film layer containing Ti as a constituent element (hereinafter, Ti-containing amorphous metal oxide thin film layer) as the outermost layer of the structure.
  • Ti-containing amorphous metal oxide thin film layer amorphous metal oxide thin film layer containing Ti as a constituent element
  • the “outermost layer” refers to a layer formed at the farthest position in the thickness direction of the metal thin film layer from among a plurality of thin film layers constituting the dielectric thin film, and Layer.
  • the Ti-containing amorphous metal oxide thin film layer alone may be used as the dielectric thin film.
  • Examples of the Ti-containing amorphous metal oxide thin film layer include a thin film of TiO or TiO.
  • the Ti-containing amorphous metal oxide thin film layer may include a crystal region. By making the crystalline region superior, the erosion by the chemical solution can be further reduced, and by making the amorphous region superior, the adhesion to the metal layer can be further improved.
  • the thickness of the Ti-containing amorphous metal oxide thin film layer is preferably in the range of 10 nm to 200 nm, more preferably in the range of 20 to 150 nm.
  • the thickness is less than lOnm, it is difficult to uniformly apply a plating catalyst that easily generates pinholes in the layer, and the layer tends to be easily eroded by a chemical solution.
  • the thickness exceeds 200 nm, device characteristics are liable to deteriorate, which is not preferable.
  • layers other than the Ti-containing amorphous metal oxide thin film layer, which is the outermost layer include, for example, a composite containing Ba and / or Sr and Ti as constituent elements. It is preferable to use a metal oxide thin film layer. More preferably, a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr as a constituent element and Ti, and a crystalline layer containing Ba and / or Sr and Ti as a constituent element A composite metal oxide thin film layer composed of a composite metal oxide, a composite metal oxide thin film layer containing both the amorphous composite metal oxide and the crystalline composite metal oxide, and the like.
  • the body thin film can also be a high-dielectric-constant dielectric thin film that is not eroded by a chemical solution that adheres to the metal layer.
  • a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements as a constituent of the dielectric thin film. Therefore, the dielectric thin film of the present invention is preferably a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr as constituent elements and Ti, and Ti as a constituent element.
  • a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba, Z or Sr, and Ti as constituent elements.
  • Composite metal oxides containing Ba and / or Sr and Ti as constituent elements have a particularly high dielectric constant (for example, BaTiO
  • Composite metal oxides whose properties have been adjusted by adding CaTiO can also be suitably used.
  • the thickness of the composite metal oxide thin film layer is preferably in the range of 10 nm to 200 nm from the viewpoint of ensuring insulation properties. More preferably in the range of 150 nm.
  • an amorphous region of the composite metal oxide is required.
  • the amorphous region has a lower relative permittivity than the crystalline region.
  • the dielectric characteristics of the device depend on the thickness of the composite metal oxide thin film layer. It is not preferable that the film becomes thicker than necessary, because it is inversely proportional to the thickness of the film. Therefore, it is desirable that the upper limit of the thickness does not exceed 200 nm. On the other hand, when the thickness is less than 10 nm, pinholes tend to be generated, and it tends to be difficult to secure necessary insulating properties.
  • the relative dielectric constant of the dielectric thin film composed of the metal oxide thin film layer as described above is preferably 10 to 2000, more preferably 20 to 2000. If the dielectric constant of the dielectric thin film is less than 10, the capacitance density tends to be low, and sufficient device characteristics (capacitor capacitance) tend not to be obtained. In addition, in order for the dielectric constant to exceed 2000, the film must be fired at a high temperature, which is difficult to use in a normal wiring board manufacturing process.
  • the thickness of the dielectric thin film is preferably in the range of 0.05 to 2 ⁇ m. If the thickness of the dielectric thin film is less than 0.05 / m, it tends to be difficult to achieve both insulating properties and device characteristics.On the other hand, if the film thickness exceeds 2 zm, the device characteristics deteriorate. There is a tendency that it is difficult to obtain a desired capacitor capacity easily, and furthermore, when a multilayer board is manufactured, the board thickness is increased, which is disadvantageous for thinning the board.
  • the method for forming a dielectric thin film composed of the above-described metal oxide thin film layer on the metal thin film is not particularly limited, and may be a known method. Examples thereof include a sol-gel method, a sputtering method, and a chemical method. Chemical vapor deposition (CVD).
  • the sol-gel method is preferred because the composite metal oxide can be easily adjusted to a desired composition.
  • the heat treatment temperature at the time of formation is preferably 400 ° C. or less, and more preferably 350 ° C. or less, in order to suppress oxidation of the copper foil.
  • the surface of the Ti-containing amorphous metal oxide thin film layer contains at least one metal such as Ni alloy such as Ni, Ni-P and Ni-B, and Cu.
  • the metal layer may be formed as a single layer or multiple layers. This metal layer is a layer that can later become an electrode or a circuit.
  • the method for forming such a metal layer is not particularly limited, according to a known method such as plating and sputtering. However, when an electroless plating method is applied, the cost is superior to a dry process such as sputtering. In addition, a metal layer having high adhesion can be formed, and a large substrate can be easily processed.
  • the metal thin film is subjected to a step of treating the surface of the dielectric thin film with a silane coupling agent, a step of applying a plating catalyst to the surface treated with the silane coupling agent, and a step of performing electroless plating using the catalyst as a nucleus.
  • a silane coupling agent to the surface of the dielectric thin film before the electroless plating treatment, it is possible to obtain a more uniform and highly adhesive metal layer.
  • Ni plating film has better adhesion than Cu plating film, but has poor electrical properties. Therefore, Ni alloy such as Ni-P or Ni-B is coated on the substrate, and Cu is thickened on it by electric plating. Therefore, it is preferable that the metal layer has a multilayer structure.
  • the thickness of the metal layer is preferably 50 nm-30 / im. Is less than 50nm a uniform metal layer is obtained exceeds a flame member 30 beta m during electrode processing uneconomical because the load is increased.
  • the thin film composite material of the present invention is suitable for producing a multilayer wiring board and an electronic component.
  • a capacitor / filter circuit is formed by etching the metal layer or the composite metal oxide thin film. It is possible to do.
  • the method for producing a multilayer wiring board and an electronic component including the thin film composite material of the present invention in its configuration includes, for example, 1) a step of laminating the thin film composite material of the present invention on a pre-preda or an inner substrate, 2) A process of treating the surface of the dielectric thin film with a silane coupling agent, 3) a process of applying a plating catalyst to the surface treated with a silane coupling agent, and 4) a process of performing electroless plating using the catalyst as a core. And the like.
  • an electrode for a semiconductor for example, it can be formed by forming an electrolytic plating layer on the electroless plating layer formed in the above step 4) and then etching these plating layers sequentially.
  • the above steps 2) -4) for forming a similar metal layer are unnecessary. Therefore, the manufacturing process of the multilayer wiring board and the like in this case is further simplified.
  • Ba ( ⁇ C H) and Ti (0—i-C H) are mixed so that the molar ratio of Ba and Ti is 1: 1.
  • a solution B was obtained by diluting a part of the solution A with 2-methoxyethanol so that the solution concentration became 0.2 M.
  • water having a molar ratio to Ti of 1: 1 and ammonia having a molar ratio of 1: 0.15 were added to 100.
  • a solution C containing crystalline metal oxide particles diluted to 2-M with 2-methoxyethanol was obtained.
  • a solution E was obtained by diluting tetraisopropoxide orthotitanate with a solution obtained by mixing 2_methoxyethanol and acetic acid at a volume ratio of 3: 1 to 0.4 M.
  • a copper foil 6 manufactured by Mitsui Mining & Smelting Co., Ltd., trade name 3EC-VLP-70 having a size of 10 cm ⁇ 10 cm and a thickness of 500 nm
  • a copper foil with a Ni thin film layer was obtained.
  • solution B was spin-coated on the Ni thin film layer 5 side of the copper foil with the Ni thin film layer.
  • the first composite metal oxide thin film layer 2, the second composite metal oxide thin film layer 3, and the Ti-containing amorphous metal oxide thin film layer 4 are formed on the Ni thin film layer 5 of the copper foil with the Ni thin film layer.
  • a thin film composite material 1 having a dielectric constant of 37 and a dielectric thin film 13 with a thickness of 530 nm was obtained (FIG. 1).
  • the thickness of each layer and the relative dielectric constant of the dielectric thin film were measured as follows.
  • a 5 mm wide polyimide tape (for example, Kapton tape manufactured by Nitto Denko Corporation) is attached to the dielectric thin film surface of the thin film composite material at an arbitrary length, and high-pressure water washing using an aqueous treatment solution containing alumina with an average particle size of 30 ⁇ m is applied. , The dielectric thin film was removed by etching. After performing the ultrasonic cleaning, the polyimide tape was peeled off, and the thickness of the dielectric thin film (each metal oxide layer) was measured using a stylus type step 'surface shape measuring device XP-2 manufactured by Ambis.
  • a metal mask was fixed on the surface of the dielectric thin film of the thin film composite material, and a 50 nm thick Cr layer and a 200 nm thick Cu layer were formed by sputtering to form an upper electrode having a size of 1 mm X lmm.
  • the metal oxide thin film layer near the upper electrode is shaved with a diamond pen to expose the copper foil under the Ni thin film, and the capacitance between the upper electrode and the exposed copper foil is determined by the capacitance of the capacitor. It was regarded as the capacity and its value was measured.
  • the relative dielectric constant of the dielectric thin film was determined from the measured value of the capacitance and the film thickness using the following equation.
  • the capacitance was measured at three measurement points using an Agilent 4285A Precision LCR meter at 25 ° C at a frequency of 1 MHz, and the average value was measured. Using.
  • the specific dielectric constant was increased by the same process as for the thin film composite material 1 except that the number of times of spin coating of the solution E was changed from once to three times, and a 150 nm thick Ti-containing amorphous metal oxide thin film layer was formed. 32. A thin film composite material 2 having a dielectric thin film having a thickness of 630 nm was obtained.
  • Composite material 3 was obtained.
  • aqueous solution adjusted to pH 9 with sodium hydroxide is mixed with lwt% of silane coupling agent A-1100 (trade name, manufactured by Nippon Tunicer Co., Ltd.), and the thin film composite material 1 is immersed in the aqueous solution at 60 ° C for 5 minutes. did.
  • the thin film composite material 1 was washed with warm water of 40 ° C for 3 minutes, washed with Neogant B (manufactured by Atotech Co., Ltd.), Neogant 834 (manufactured by Atotech Co., Ltd.), washed with water, and Neogant WA (Atotech (Manufactured by Co., Ltd., trade name) and water washing in this order to provide a plating catalyst.
  • an electroless Ni—P plating layer 7 was formed to a thickness of 0.4 ⁇ m on the surface of the dielectric thin film 13 of the thin film composite material 1 using ICP Nicoron U (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.).
  • a Cu plating layer 8 was formed at 15 / im by electric Cu plating (Fig. 2).
  • an etching resist was formed by a photolithographic method.
  • a resist material H-9330 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a dry film resist of an alkali development type, was used.
  • the Cu plating layer 8 was removed by etching with a 15% aqueous solution of ammonium persulfate.
  • the etching resist was removed with a 5% aqueous sodium hydroxide solution, and the electroless Ni—P plating layer 7 was removed by etching using Top Lip AZ (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.).
  • Top Lip AZ trade name, manufactured by Okuno Pharmaceutical Co., Ltd.
  • An upper electrode having a size of lmm X lmm was formed on the surface of the dielectric thin film in the same process as in Example 1 except that the thin film composite material 1 was changed to the thin film composite material 2.
  • Example 3 12 / m thick copper foil 12 (Furukawa Circuit Co., Ltd.) on 6 surfaces of copper foil of thin film composite material 1 via glass epoxy pre-predder 11 (Hitachi Kasei Kogyo Co., Ltd., trade name GEA-679F) Foil Co., Ltd., trade name: GTS-12), laminated and integrated under the conditions of 180 ° C, 1.5MPa pressure and 60 minutes of heating and pressurizing time, to produce a multilayer board.
  • an upper electrode 9 was formed on the surface of the dielectric thin film 13 of the thin film composite material 1 in the same process as in Example 1.
  • an etching resist is formed again at a predetermined position on the surface of the dielectric thin film 13 of the thin film composite material 1 by photolithography, and the dielectric thin film is washed by high-pressure water using an aqueous treatment solution containing alumina having an average particle diameter of 30 am. 13 was removed by etching. After ultrasonic cleaning, the etching resist was peeled off with a 5% aqueous sodium hydroxide solution, and an etching resist was formed by a photolithography method. Subsequently, the Ni thin film layer 5 was removed by etching with Top Lip BT (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). /. The copper foil 6 was removed by etching with an aqueous solution of ammonium persulfate. The etching resist was stripped with a 5% aqueous sodium hydroxide solution to form a lower electrode 10 (FIG. 4).
  • An upper electrode having a size of lmm X lmm was formed on the surface of the dielectric thin film in the same process as in Example 1 except that the thin film composite material 1 was changed to the thin film composite material 3.
  • the thin film composite material 3 is treated with an aqueous solution adjusted to pH 9 with sodium hydroxide and then washed with water.
  • Neogant B manufactured by Atotech, trade name
  • Neogant 834 manufactured by Atotech, trade name
  • neogant WA Treated in the order of Atotech Co., Ltd.
  • an electroless Ni_P plating layer was formed on the surface of the dielectric thin film of the thin film composite material 3 using ICP Nicoron U (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). Further, a Cu plating layer of 15 zm was formed by electric Cu plating.
  • an etching resist was formed by photolithography.
  • H-9330 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a dry film resist of an alkali developing type, was used as a resist material.
  • the Cu plating layer was removed by etching with a 15% aqueous solution of ammonium persulfate. Five. /.
  • the etching resist was removed with an aqueous solution of sodium hydroxide, and the electroless Ni—P plating layer was removed by etching with Top Lip AZ (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). In this way An upper electrode having a size of lmm ⁇ 1 mm was formed on the surface of the dielectric thin film of the film composite material 3.
  • Example 1 640 770 51 0 ⁇ 20%
  • Example 1 to 3 the variation in the capacitance is relatively small and remains in the range of ⁇ 20%. However, in Comparative Examples 1 and 2, the capacity variation was as large as about ⁇ 30%. This is due to the non-uniform adhesion of the plating catalyst and the reduced uniformity of the thickness of the composite metal oxide thin film layer. Since the thin film composite material according to the present invention shows uniform adhesion of the plating catalyst and high corrosion resistance, it is possible to suppress the occurrence of such variations.

Abstract

Disclosed is a metal oxide thin film composite material which is excellent in adhesion to a metal layer formed thereon by plating and is hardly corroded by the plating solution. The thin film composite material comprises a copper foil with a metal thin film whose surface is provided with a dielectric thin film having such a structure wherein at least an amorphous metal oxide thin film layer containing Ti as an constituent element is included as the outermost layer.

Description

明 細 書  Specification
薄膜複合材料およびその製造方法、ならびに当該薄膜複合材料を用い た多層配線板および電子部品  Thin film composite material, method for producing the same, and multilayer wiring board and electronic component using the thin film composite material
技術分野  Technical field
[0001] 本発明は、コンデンサなどの電子デバイスに好適に用いられる金属酸化物薄膜複 合材料およびその製造方法、ならびに当該薄膜複合材料を用いた多層配線板およ び電子部品に関する。  The present invention relates to a metal oxide thin film composite material suitably used for an electronic device such as a capacitor, a method for producing the same, and a multilayer wiring board and an electronic component using the thin film composite material.
背景技術  Background art
[0002] 電子機器の小型化、高機能化が進む中、コンデンサやメモリといったデバイスには より高誘電率な材料が求められている。チタン酸バリウム、チタン酸バリウムストロンチ ゥム、チタン酸ジルコン酸鉛などのチタン酸塩を始めとする金属酸化物は高い誘電 率を示すため、これらの用途に好適に用いられている。最近では高度な小型化'高 機能化の要求によりデバイス自体の小型 ·高密度化が求められており、薄膜を用いた デバイスを基板に内蔵化する検討も盛んに行われている。  [0002] As electronic devices have become smaller and more sophisticated, materials such as capacitors and memories have been required to have higher dielectric constants. Metal oxides such as barium titanate, barium strontium titanate, lead zirconate titanate and other metal oxides have high dielectric constants and are therefore suitably used for these applications. Recently, demands for higher miniaturization and higher functionality have led to a demand for smaller and higher-density devices, and studies on incorporating thin-film devices into substrates have been actively conducted.
[0003] 薄膜を用いてデバイスを形成するためには、電極となる金属層の形成が必要である 。例えば、薄膜でコンデンサを形成する場合、金属層で薄膜を挟みこむ、いわゆるサ ンドイッチ構造をとるのが一般的である。従来、金属層の形成にはスパッタに代表さ れるドライプロセスが一般的に使用されてきた。し力 ながら、ドライプロセスはコスト が高ぐ大きな基板の処理も難しい。この問題に対応する手段としては、例えばめつ きで金属層を形成する方法があり、プリント配線板の分野ではごく一般的な手法とな つている。  [0003] In order to form a device using a thin film, it is necessary to form a metal layer to be an electrode. For example, when a capacitor is formed of a thin film, it is common to adopt a so-called sandwich structure in which the thin film is sandwiched between metal layers. Conventionally, a dry process represented by sputtering has been generally used for forming a metal layer. However, dry processes are expensive and difficult to process large substrates. As a means to address this problem, for example, there is a method of forming a metal layer by plating, which is a very common technique in the field of printed wiring boards.
[0004] めっきで金属酸化物表面をメタライズする手法も広く普及している技術であるが、従 来の手法といえば金属酸化物の表面をあらして粗ィ匕形状をつくり、アンカー効果によ つて金属層と金属酸化物の密着性を維持するのが一般的であった (例えば、 日本国 特開 7— 62547号公報)。しかし、薄膜では膜厚がサブミクロンと薄いため、アンカー 効果を持たせるほどの大きな粗ィ匕形状をつくるのは不可能である。また、膜厚の均一 性が損なわれることは、コンデンサを形成した場合に誘電特性がばらつく原因となる ため好ましくない。したがって、めっきで金属酸化物薄膜の表面に密着力の十分な 金属層を形成するのは困難であった。一方、樹脂やガラスなどの平滑面では、粗ィ匕 を行わないめっき方法も活発に研究されており、アンカー効果による物理結合ではな くカップリング剤などによる化学結合を利用しているものなどが公知となっている。例 えば、 日本国特開 2002—226972号公報では、樹脂やガラス面の官能基にカツプリ ング剤を均一に付着させることでめっき触媒の均一性を向上させ、めっき金属層との 高い密着性を得ている。 [0004] The technique of metallizing the metal oxide surface by plating is also widely used, but the conventional technique is to roughen the surface of the metal oxide to form a roughened shape, and to use the anchor effect. Generally, the adhesion between the metal layer and the metal oxide was maintained (for example, Japanese Patent Application Laid-Open No. 7-62547). However, since the thickness of a thin film is as thin as submicron, it is impossible to form a roughened shape large enough to have an anchor effect. In addition, the loss of uniformity of the film thickness causes the dielectric characteristics to vary when a capacitor is formed. Therefore, it is not preferable. Therefore, it was difficult to form a metal layer having sufficient adhesion on the surface of the metal oxide thin film by plating. On the other hand, on smooth surfaces such as resin and glass, plating methods that do not perform roughening are also being actively researched, and those using chemical bonding by a coupling agent instead of physical bonding by an anchor effect, etc. It is known. For example, Japanese Patent Application Laid-Open No. 2002-226972 discloses that a coating agent is uniformly attached to a functional group on a resin or a glass surface to improve the uniformity of a plating catalyst, and to improve a high adhesion to a plating metal layer. It has gained.
発明の開示  Disclosure of the invention
[0005] し力しながら、チタン酸バリウムやチタン酸ストロンチウムなどの金属酸化物薄膜表 面では、カップリング剤の付着に寄与する官能基が乏しいため、カップリング剤が均 一に付着せず、金属酸化物薄膜とめっき金属層の十分な密着力を得ることは難しか つた。また、めっき薬液によって金属酸化物薄膜がわずかに侵食されて膜厚の均一 性が損なわれると、得られるコンデンサの誘電特性にばらつきを生ずることがあった。  [0005] However, the surface of a metal oxide thin film such as barium titanate or strontium titanate has few functional groups contributing to the attachment of the coupling agent, so that the coupling agent does not adhere evenly. It was difficult to obtain sufficient adhesion between the metal oxide thin film and the plated metal layer. In addition, when the metal oxide thin film is slightly eroded by the plating solution and the uniformity of the film thickness is impaired, the dielectric characteristics of the obtained capacitor may be varied.
[0006] 上記課題を鑑みて、本発明は、めっき法で形成される金属層との密着性に優れ、 かつ、めっき薬液に侵食されにくい金属酸化物薄膜複合材料を提供することを目的 とする。  [0006] In view of the above problems, an object of the present invention is to provide a metal oxide thin film composite material that has excellent adhesion to a metal layer formed by a plating method and is hardly eroded by a plating solution. .
[0007] 本発明の薄膜複合材料は、銅箔、前記銅箔の一方の表面に形成され、 Cr、 Ni、 A u、 Ag、およびこれらの合金からなる群から選択される 1種以上の金属を含む金属薄 膜層、ならびに前記金属薄膜層表面に形成され、比誘電率が 10— 2000でかつ膜 厚が 0. 05 2 x mの誘電体薄膜、を備え、前記誘電体薄膜の最外層が構成元素と して Tiを含むアモルファス金属酸化物薄膜層であることをその特徴とするものである  [0007] The thin film composite material of the present invention is a copper foil, formed on one surface of the copper foil, and at least one metal selected from the group consisting of Cr, Ni, Au, Ag, and an alloy thereof. And a dielectric thin film formed on the surface of the metal thin film layer, having a relative dielectric constant of 10-2000 and a film thickness of 0.052 xm, wherein the outermost layer of the dielectric thin film is It is characterized by being an amorphous metal oxide thin film layer containing Ti as a constituent element.
[0008] 本発明によれば、金属層との密着に優れ、かつ、めっき薬液に侵食されにくい、高 誘電率な金属酸化物薄膜複合材料を提供することができる。また、本発明の薄膜複 合材料は、コンデンサなどの電子デバイスに好適に用いることができる。 [0008] According to the present invention, it is possible to provide a high dielectric constant metal oxide thin film composite material that has excellent adhesion to a metal layer and is hardly eroded by a plating solution. Further, the thin film composite material of the present invention can be suitably used for electronic devices such as capacitors.
[0009] 本出願は、同出願人により先にされた日本国特許出願 2004— 042749号(出願日 2004年 2月 19曰)および曰本国特許出願 2004— 272041号(出願曰 2004年 9月 1 7日)に基づく優先権主張を伴うものであって、これらの明細書を参照のためにここに 組み込むものとする。 [0009] The present application is based on Japanese Patent Application No. 2004-042749 (filed on February 19, 2004) and Japanese Patent Application No. 2004-272041 (filed on September 1, 2004) filed by the same applicant. 7)), which are hereby incorporated by reference. Shall be incorporated.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、実施例で作製した薄膜複合材料 1を示す断面図であり、銅箔 6、 Ni薄 膜層 5、ならびに第一の複合金属酸化物薄膜層 2と第二の複合金属酸化物薄膜層 3 と Ti含有アモルファス金属酸化物薄膜層 4とで構成される誘電体薄膜 13、からなる。  [FIG. 1] FIG. 1 is a cross-sectional view showing a thin film composite material 1 produced in an example, and includes a copper foil 6, a Ni thin film layer 5, a first composite metal oxide thin film layer 2, A dielectric thin film 13 composed of a second composite metal oxide thin film layer 3 and a Ti-containing amorphous metal oxide thin film layer 4.
[図 2]図 2は、実施例 1にて、図 1の薄膜複合材料 1上に無電解 Ni— Pめっき層 7およ び電気 Cuめっき層 8を形成した後の状態を示す断面図である。  FIG. 2 is a cross-sectional view showing a state after forming an electroless Ni—P plating layer 7 and an electric Cu plating layer 8 on the thin film composite material 1 of FIG. 1 in Example 1. is there.
[図 3]図 3は、実施例 1にて、図 2のめつき層をエッチングして上部電極 9を形成した後 の状態を示す断面図である。  FIG. 3 is a cross-sectional view showing a state after forming the upper electrode 9 by etching the plating layer of FIG. 2 in Example 1.
[図 4]図 4は、実施例 3で作製した、本発明の薄膜複合材料を構成に含む多層配線 板を示す断面図であり、薄膜複合材料 1の銅箔 6面に積層一体化されたプリプレダ 1 1と銅箔 12、実施例 1と同様に形成された上部電極 9、薄膜複合材料 1のエッチング により形成された下部電極 10を備える。  FIG. 4 is a cross-sectional view showing a multilayer wiring board including a thin film composite material of the present invention included in a structure manufactured in Example 3, which is laminated and integrated on six surfaces of copper foil of thin film composite material 1. It includes a pre-predator 11 and a copper foil 12, an upper electrode 9 formed in the same manner as in Example 1, and a lower electrode 10 formed by etching the thin film composite material 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の薄膜複合材料は、銅箔、該銅箔上に形成される金属薄膜層、および該金 属薄膜上に形成され、構成元素として Tiを含むアモルファス金属酸化物薄膜層を最 外層として少なくとも有する誘電体薄膜を備えてなる薄膜複合材料である。構成元素 として Tiを含むアモルファス金属酸化物薄膜層を誘電体薄膜の最外層(表面)とする ことで、シラン力ップリング剤の付着性向上と薬液侵食の防止効果を同時に向上させ ること力 S可言 となる。 The thin film composite material of the present invention includes a copper foil, a metal thin film layer formed on the copper foil, and an amorphous metal oxide thin film layer formed on the metal thin film and containing Ti as a constituent element. A thin film composite material including a dielectric thin film having at least an outer layer. By using an amorphous metal oxide thin film layer containing Ti as a constituent element as the outermost layer (surface) of the dielectric thin film, it is possible to simultaneously improve the adhesion of the silane coupling agent and the effect of preventing chemical erosion. In other words.
[0012] 上記銅箔は、一般に用いられる銅箔であれば特に限定されず、例えば、耐熱や防 鲭の目的で表面に Znやクロメートによる処理が施されているもの、接着性を向上する ために表面が粗ィヒされているもの、特性改善の目的でその他の元素、例えば Snを微 量添加したものなど、いずれも好適に使用できる。なお、表面が粗ィ匕されている銅箔 の粗化面は、コンデンサの絶縁性を良好に保つ観点から、上記金属薄膜層を形成し ない面であることが望ましい。銅箔の厚さは特に限定しないが、取り扱い性の点から 1 0 μ m— 100 μ mの厚さであることが好ましレ、。  [0012] The copper foil is not particularly limited as long as it is a commonly used copper foil. For example, a copper foil whose surface is treated with Zn or chromate for the purpose of heat resistance and protection, for improving adhesion. Any of those having a rough surface and those having other elements, for example, a small amount of Sn added for the purpose of improving characteristics, can be suitably used. The roughened surface of the copper foil having a roughened surface is preferably a surface on which the metal thin film layer is not formed, from the viewpoint of maintaining good insulation of the capacitor. The thickness of the copper foil is not particularly limited, but is preferably 10 μm to 100 μm in terms of handling.
[0013] 上記金属薄膜層は、 Cr、 Ni、 Au、 Ag、およびこれらの合金からなる群から選択さ れる 1種以上の金属を含み、コストの点から Crおよび/または Niがより好ましぐ環境 汚染性の観点から Niがさらに好ましい。 Crと Niはそれら自身が安定な酸化皮膜を形 成するために、また、 Auと Agはそれら自身が酸化されにくいために、金属酸化物薄 膜層の形成時における銅箔の酸化を抑制し、キャパシタの絶縁性の確保に寄与する 。これ以外の金属、例えば Si〇基板において酸化の抑制に多く使われている Pt、 Ti [0013] The metal thin film layer is selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof. Ni is more preferable from the viewpoint of environmental pollution, in which one or more metals are contained, and Cr and / or Ni are more preferable in terms of cost. Cr and Ni suppress the oxidation of the copper foil during the formation of the metal oxide thin film layer, because themselves form a stable oxide film, and Au and Ag do not easily oxidize themselves. This contributes to securing the insulation of the capacitor. Other metals, such as Pt and Ti, which are often used to suppress oxidation on Si〇 substrates
2  2
、 Pdは、本発明のように銅箔上に形成した場合、金属酸化物薄膜層に割れが生じや すぐ信頼性の高いキャパシタを得ることが難しい。合金としては、 Cr、 Ni、 Auまたは Agから選ばれる少なくともひとつまたは複数の成分を合金中に 80重量%以上含む ものが好ましレ、。このような合金には、例えば Ni— P合金、 Ni— B合金、 Ni— P_B合金 、 Ni - Co合金、 Ni - Cr合金、 Ni - Cr一 A1合金、 Ni - Cr一 Si合金、 Ag_Nd合金がある 。 Cr、 Ni、 Auまたは Agから選ばれる少なくともひとつまたは複数の成分の含有率が 80重量%未満の場合は、キャパシタの絶縁性を確保する効果が低くなるおそれがあ る。コストの点と形成の容易さの点から Ni-P合金がより好ましい。  When Pd is formed on a copper foil as in the present invention, cracks occur in the metal oxide thin film layer and it is difficult to obtain a highly reliable capacitor immediately. Preferably, the alloy contains at least one or more components selected from the group consisting of Cr, Ni, Au and Ag in an amount of 80% by weight or more in the alloy. Such alloys include, for example, Ni-P alloy, Ni-B alloy, Ni-P_B alloy, Ni-Co alloy, Ni-Cr alloy, Ni-Cr-A1 alloy, Ni-Cr-Si alloy, Ag_Nd alloy. is there . If the content of at least one or a plurality of components selected from Cr, Ni, Au and Ag is less than 80% by weight, the effect of securing the insulation of the capacitor may be reduced. Ni-P alloys are more preferable in terms of cost and ease of formation.
[0014] 上記金属薄膜層の厚さは、 50nm— 1 μ mの範囲が好ましぐ lOOnm— 800nmの 範囲がより好ましい。厚さが 50nm未満では、絶縁性が低下し好ましくない。なお、厚 さを 1 μ ΐηを超えてさらに厚くすることは、コストの面で一般に不利である。薄膜層の 厚さは薄膜層を集束イオンビーム加工装置 (FIB)で掘削し、得られた断面を走査ィ オン顕微鏡(SIM)で観察して測長することで計測できる。  The thickness of the metal thin film layer is preferably in the range of 50 nm to 1 μm, more preferably in the range of 100 nm to 800 nm. If the thickness is less than 50 nm, the insulating property is undesirably reduced. It is generally disadvantageous in terms of cost to increase the thickness beyond 1 μΐη. The thickness of the thin film layer can be measured by excavating the thin film layer with a focused ion beam processing device (FIB), observing the obtained cross section with a scanning ion microscope (SIM), and measuring the length.
[0015] 銅箔上への金属薄膜層の形成方法には、特に限定されないが、例えば、めっき法 、蒸着法、スパッタ法などを好適に用いることができる。  [0015] The method of forming the metal thin film layer on the copper foil is not particularly limited, but, for example, a plating method, a vapor deposition method, a sputtering method, or the like can be suitably used.
[0016] 上記誘電体薄膜は、少なくとも、構成元素として Tiを含むアモルファス金属酸化物 薄膜層(以下、 Ti含有アモルファス金属酸化物薄膜層)をその構成の最外層として有 する。なお、「最外層」とは、誘電体薄膜を構成する複数の薄膜層のうち、上記金属 薄膜層力 層の厚み方向に最も遠い位置に形成される層を指し、誘電体薄膜の表 面となる層である。もちろん、 Ti含有アモルファス金属酸化物薄膜層単独で誘電体 薄膜としても良い。  [0016] The dielectric thin film has at least an amorphous metal oxide thin film layer containing Ti as a constituent element (hereinafter, Ti-containing amorphous metal oxide thin film layer) as the outermost layer of the structure. Note that the “outermost layer” refers to a layer formed at the farthest position in the thickness direction of the metal thin film layer from among a plurality of thin film layers constituting the dielectric thin film, and Layer. Of course, the Ti-containing amorphous metal oxide thin film layer alone may be used as the dielectric thin film.
[0017] Ti含有アモルファス金属酸化物薄膜層としては、例えば、 TiOや TiOなどの薄膜  [0017] Examples of the Ti-containing amorphous metal oxide thin film layer include a thin film of TiO or TiO.
2  2
層であることが好ましい。これらは極性基を多分に有することにより、シランカップリン グ剤をより均一に付着させる事ができる。つまり、めっき触媒の均一性が向上し、密着 性の高いめっき金属層を形成することが可能となる。また、耐食性にも優れることから 薬液による侵食が少なぐデバイス特性のばらつきを抑制することができる。また、 Ti 含有アモルファス金属酸化物薄膜層は結晶領域を含んでも構わない。結晶領域を 優位にすれば薬液による侵食をより低減させることができ、アモルファス領域を優位 にすれば金属層との密着性をより向上させることができる。 It is preferably a layer. These have silane coupling agents, possibly due to having polar groups. Can be more uniformly attached. That is, the uniformity of the plating catalyst is improved, and it becomes possible to form a plating metal layer having high adhesion. In addition, since it has excellent corrosion resistance, it is possible to suppress variations in device characteristics where erosion by a chemical solution is small. Further, the Ti-containing amorphous metal oxide thin film layer may include a crystal region. By making the crystalline region superior, the erosion by the chemical solution can be further reduced, and by making the amorphous region superior, the adhesion to the metal layer can be further improved.
[0018] また、 Ti含有アモルファス金属酸化物薄膜層の厚さは、 10nm 200nmの範囲で あることが好ましぐ 20 150nmの範囲であることがより好ましレ、。この厚さが lOnm 未満では、当該層にピンホールが発生し易ぐめっき触媒を均一に付与することが困 難であり、薬液にも侵食され易くなる傾向がある。一方、 200nmを超えると、デバイス 特性の低下を招き易ぐ好ましくない。  Further, the thickness of the Ti-containing amorphous metal oxide thin film layer is preferably in the range of 10 nm to 200 nm, more preferably in the range of 20 to 150 nm. When the thickness is less than lOnm, it is difficult to uniformly apply a plating catalyst that easily generates pinholes in the layer, and the layer tends to be easily eroded by a chemical solution. On the other hand, when the thickness exceeds 200 nm, device characteristics are liable to deteriorate, which is not preferable.
[0019] 誘電体薄膜を複数層で構成する場合において、最外層となる Ti含有アモルファス 金属酸化物薄膜層以外の層には、例えば、構成元素として Baおよび/または Srと、 Tiとを含む複合金属酸化物薄膜層を用いることが好ましい。より好ましくは、構成元 素として Baおよび/または Srと、 Tiとを含むアモルファス複合金属酸化物からなる複 合金属酸化物薄膜層、構成元素として Baおよび/または Srと、 Tiとを含む結晶性複 合金属酸化物からなる複合金属酸化物薄膜層、これらアモルファス複合金属酸化物 および結晶性複合金属酸化物の両方を含む複合金属酸化物薄膜層などが挙げら れ、上記いずれの層を含む誘電体薄膜も、金属層との密着がよぐ薬液による侵食 のない高誘電率な誘電体薄膜となりうる。デバイスの絶縁性を上げるためには、構成 元素として Baおよび/または Srと、 Tiとを含むアモルファス複合金属酸化物からなる 複合金属酸化物薄膜層を誘電体薄膜の構成として入れることが特に好ましい。した がって、本発明における誘電体薄膜は、好ましくは、構成元素として Baおよび/また は Srと、 Tiとを含むアモルファス複合金属酸化物からなる複合金属酸化物薄膜層、 ならびに構成元素として Tiを含むアモルファス金属酸化物薄膜層で構成され、より好 ましくは、構成元素として Baおよび Zまたは Srと、 Tiとを含むアモルファス複合金属 酸化物からなる第一の複合金属酸化物薄膜層、構成元素として Baおよび/または S rと、 Tiとを含む第二の複合金属酸化物薄膜層、ならびに構成元素として Tiを含むァ モルファス金属酸化物薄膜層で構成される。構成元素として Baおよび/または Srと 、 Tiとを含む複合金属酸化物は、セラミックスの中でも特に高誘電率 (例えば BaTiO When the dielectric thin film is composed of a plurality of layers, layers other than the Ti-containing amorphous metal oxide thin film layer, which is the outermost layer, include, for example, a composite containing Ba and / or Sr and Ti as constituent elements. It is preferable to use a metal oxide thin film layer. More preferably, a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr as a constituent element and Ti, and a crystalline layer containing Ba and / or Sr and Ti as a constituent element A composite metal oxide thin film layer composed of a composite metal oxide, a composite metal oxide thin film layer containing both the amorphous composite metal oxide and the crystalline composite metal oxide, and the like. The body thin film can also be a high-dielectric-constant dielectric thin film that is not eroded by a chemical solution that adheres to the metal layer. In order to increase the insulation of the device, it is particularly preferable to include a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements as a constituent of the dielectric thin film. Therefore, the dielectric thin film of the present invention is preferably a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr as constituent elements and Ti, and Ti as a constituent element. , And more preferably, a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba, Z or Sr, and Ti as constituent elements. A second composite metal oxide thin film layer containing Ba and / or Sr as elements and Ti, and an element containing Ti as a constituent element; It is composed of a morphus metal oxide thin film layer. Composite metal oxides containing Ba and / or Sr and Ti as constituent elements have a particularly high dielectric constant (for example, BaTiO
3 で 1500程度、 SrTiOで 200程度)であり、コンデンサの材料として好適に用いること  3 for about 1500, SrTiO for about 200)
3  Three
ができる。もちろんその他の元素や金属酸化物を添加した複合金属酸化物、例えば Can do. Of course, composite metal oxides added with other elements and metal oxides, such as
BaTiOに Laを添加してさらに高誘電率化を図った複合金属酸化物や、 BaTiOにComplex metal oxides with higher dielectric constant by adding La to BaTiO, and BaTiO
3 33 3
CaTiOを添加して特性を調整した複合金属酸化物も好適に用いることができる。 Composite metal oxides whose properties have been adjusted by adding CaTiO can also be suitably used.
3  Three
[0020] 上記複合金属酸化物薄膜層の厚さ、特にアモルファス複合金属酸化物からなる複 合金属酸化物薄膜層は、絶縁性確保の観点から、 10nm— 200nmの範囲であるこ と力好ましく、 20— 150nmの範囲であることがより好ましい。絶縁性を高めるには、複 合金属酸化物のアモルファス領域が必要である力 アモルファス領域は結晶領域よ りも比誘電率が低ぐまた、デバイスの誘電特性は複合金属酸化物薄膜層の膜厚に 反比例するため、必要以上に膜が厚くなるのはデバイス特性の低下を招き好ましくな レ、。したがって、厚さの上限は 200nmを超えないことが望ましレ、。また、厚さが 10nm 未満ではピンホールが発生して必要な絶縁性を確保し難くなる傾向がある。  [0020] The thickness of the composite metal oxide thin film layer, particularly the composite metal oxide thin film layer composed of the amorphous composite metal oxide, is preferably in the range of 10 nm to 200 nm from the viewpoint of ensuring insulation properties. More preferably in the range of 150 nm. To increase the insulation, an amorphous region of the composite metal oxide is required. The amorphous region has a lower relative permittivity than the crystalline region. The dielectric characteristics of the device depend on the thickness of the composite metal oxide thin film layer. It is not preferable that the film becomes thicker than necessary, because it is inversely proportional to the thickness of the film. Therefore, it is desirable that the upper limit of the thickness does not exceed 200 nm. On the other hand, when the thickness is less than 10 nm, pinholes tend to be generated, and it tends to be difficult to secure necessary insulating properties.
[0021] 上記のような金属酸化物薄膜層により構成される誘電体薄膜の比誘電率は、 10— 2000であること力 S好ましく、 20— 2000であることがより好ましレ、。誘電体薄膜の比誘 電率が 10未満であると、容量密度が低くなり、十分なデバイス特性 (コンデンサ容量) が得られ難い傾向がある。また、比誘電率が 2000を超えるためには、膜を高温焼成 する必要があり、通常の配線板製造プロセスでは利用が困難である。  [0021] The relative dielectric constant of the dielectric thin film composed of the metal oxide thin film layer as described above is preferably 10 to 2000, more preferably 20 to 2000. If the dielectric constant of the dielectric thin film is less than 10, the capacitance density tends to be low, and sufficient device characteristics (capacitor capacitance) tend not to be obtained. In addition, in order for the dielectric constant to exceed 2000, the film must be fired at a high temperature, which is difficult to use in a normal wiring board manufacturing process.
[0022] また、誘電体薄膜の膜厚は、 0. 05— 2 μ mの範囲であることが好ましい。誘電体薄 膜の膜厚が 0. 05 / m未満であると、絶縁性とデバイス特性を両立させることが困難 となる傾向があり、一方、膜厚が 2 z mを超えるとデバイス特性が低下し易ぐ所望の コンデンサ容量を得ることが困難となる傾向があり、さらに、多層板を作製した場合に 板厚が厚くなつて、基板の薄型化に不利である。  The thickness of the dielectric thin film is preferably in the range of 0.05 to 2 μm. If the thickness of the dielectric thin film is less than 0.05 / m, it tends to be difficult to achieve both insulating properties and device characteristics.On the other hand, if the film thickness exceeds 2 zm, the device characteristics deteriorate. There is a tendency that it is difficult to obtain a desired capacitor capacity easily, and furthermore, when a multilayer board is manufactured, the board thickness is increased, which is disadvantageous for thinning the board.
[0023] また、金属薄膜上に上記のような金属酸化物薄膜層からなる誘電体薄膜を形成す る方法は、公知の方法でよぐ特に限定されないが、例えば、ゾルーゲル法、スパッタ 法、化学的気相堆積法 (CVD)等を挙げることができる。複合金属酸化物を所望の 組成に調整しやすい点でゾルーゲル法が好ましい。また、複合金属酸化物薄膜層の 形成時における熱処理温度は、銅箔の酸化を抑制するために、 400°C以下であるこ と力 S好ましく、 350°C以下であることがより好ましい。特に上記金属薄膜層に接する複 合金属酸化物薄膜層を形成する際には、 400°C以下で熱処理することが好ましい。 The method for forming a dielectric thin film composed of the above-described metal oxide thin film layer on the metal thin film is not particularly limited, and may be a known method. Examples thereof include a sol-gel method, a sputtering method, and a chemical method. Chemical vapor deposition (CVD). The sol-gel method is preferred because the composite metal oxide can be easily adjusted to a desired composition. In addition, the composite metal oxide thin film layer The heat treatment temperature at the time of formation is preferably 400 ° C. or less, and more preferably 350 ° C. or less, in order to suppress oxidation of the copper foil. In particular, when forming the composite metal oxide thin film layer in contact with the metal thin film layer, it is preferable to perform a heat treatment at 400 ° C. or lower.
[0024] また、 Ti含有アモルファス金属酸化物薄膜層の表面、すなわち上記誘電体薄膜表 面上には、 Ni、 Ni— Pや Ni— Bなどの Niァロイ、 Cuなどの金属を 1種以上含む金属層 が単層もしくは複層形成されていてもよい。この金属層は後に電極や回路となりうる 層である。このような金属層を形成する方法としては、めっきゃスパッタ等の公知方法 によればよぐ特に限定されないが、無電解めつき法を適用すると、スパッタなどのド ライプロセスに比べてコストに優れ、かつ、密着性の高い金属層を形成することが可 能であり、また、大型基板の処理も容易であるため、好ましい。より好ましくは、誘電体 薄膜の表面をシランカップリング剤で処理する工程、シランカップリング剤で処理した 表面にめっき触媒を付与する工程、および触媒を核として無電解めつきを行う工程を 経て金属層を形成する。無電解めつき処理前にシランカップリング剤を誘電体薄膜 表面に付与することにより、より均一で密着性の高い金属層を得ることが可能である。 また、 Niめっき皮膜は Cuめっき皮膜より密着性に優れるが、電気特性では劣るため 、 Ni— Pや Ni— Bなどの Niァロイを下地めつきとし、その上に電気めつきで Cuを厚付 けして、複層構造の金属層とすることが好ましい。  [0024] The surface of the Ti-containing amorphous metal oxide thin film layer, that is, on the surface of the dielectric thin film, contains at least one metal such as Ni alloy such as Ni, Ni-P and Ni-B, and Cu. The metal layer may be formed as a single layer or multiple layers. This metal layer is a layer that can later become an electrode or a circuit. The method for forming such a metal layer is not particularly limited, according to a known method such as plating and sputtering. However, when an electroless plating method is applied, the cost is superior to a dry process such as sputtering. In addition, a metal layer having high adhesion can be formed, and a large substrate can be easily processed. More preferably, the metal thin film is subjected to a step of treating the surface of the dielectric thin film with a silane coupling agent, a step of applying a plating catalyst to the surface treated with the silane coupling agent, and a step of performing electroless plating using the catalyst as a nucleus. Form a layer. By applying a silane coupling agent to the surface of the dielectric thin film before the electroless plating treatment, it is possible to obtain a more uniform and highly adhesive metal layer. In addition, Ni plating film has better adhesion than Cu plating film, but has poor electrical properties. Therefore, Ni alloy such as Ni-P or Ni-B is coated on the substrate, and Cu is thickened on it by electric plating. Therefore, it is preferable that the metal layer has a multilayer structure.
[0025] また、上記金属層の厚さは、 50nm— 30 /i mであること力 S好ましレ、。 50nm未満で は均一な金属層が得られ難ぐ 30 β mを超えると電極加工時に負荷が大きくなるた め不経済である。 [0025] The thickness of the metal layer is preferably 50 nm-30 / im. Is less than 50nm a uniform metal layer is obtained exceeds a flame member 30 beta m during electrode processing uneconomical because the load is increased.
[0026] 本発明の薄膜複合材料は、多層配線板および電子部品を製造するために好適で あり、例えば、上記金属層や上記複合金属酸化物薄膜をエッチングすることによりコ ンデンサゃフィルタ回路を形成することが可能である。  The thin film composite material of the present invention is suitable for producing a multilayer wiring board and an electronic component. For example, a capacitor / filter circuit is formed by etching the metal layer or the composite metal oxide thin film. It is possible to do.
[0027] 本発明の薄膜複合材料を構成に含む多層配線板および電子部品の製造方法とし ては、例えば、 1)本発明の薄膜複合材料をプリプレダや内層基板等に積層するェ 程、 2)誘電体薄膜の表面をシランカップリング剤で処理する工程、 3)シランカツプリ ング剤で処理した表面にめっき触媒を付与する工程、 4)触媒を核として無電解めつ きを行う工程、を経る方法などが挙げられる。また、上記のような工程の後にコンデン サ用電極を形成する場合には、例えば、上記工程 4)で形成した無電解めつき層上 にさらに電解めつき層を形成した後、これらめつき層を順次エッチングすることにより 形成可能である。なお、薄膜複合材料として、誘電体薄膜上に予め前述した金属層 が形成されたものを用いる場合には、それと同様の金属層を形成するための上記ェ 程 2)— 4)は不要であり、それゆえこの場合における多層配線板等の製造工程はより 簡略化されることになる。 The method for producing a multilayer wiring board and an electronic component including the thin film composite material of the present invention in its configuration includes, for example, 1) a step of laminating the thin film composite material of the present invention on a pre-preda or an inner substrate, 2) A process of treating the surface of the dielectric thin film with a silane coupling agent, 3) a process of applying a plating catalyst to the surface treated with a silane coupling agent, and 4) a process of performing electroless plating using the catalyst as a core. And the like. Also, after the above steps, In the case of forming an electrode for a semiconductor, for example, it can be formed by forming an electrolytic plating layer on the electroless plating layer formed in the above step 4) and then etching these plating layers sequentially. . When a thin film composite material in which the above-described metal layer is formed in advance on a dielectric thin film is used, the above steps 2) -4) for forming a similar metal layer are unnecessary. Therefore, the manufacturing process of the multilayer wiring board and the like in this case is further simplified.
[0028] 次に実施例により本発明を具体的に説明するが、本発明はこれらに限定されるもの ではない。 Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these.
実施例  Example
[0029] (薄膜複合材料 1) [0029] (Thin film composite material 1)
Ba (〇C H ) および Ti (0— i-C H )を、 Baと Tiのモル比が 1: 1となるように、モレ Ba (〇C H) and Ti (0—i-C H) are mixed so that the molar ratio of Ba and Ti is 1: 1.
2 5 2 3 7 2 5 2 3 7
キュラー ·シーブで脱水した 2—メトキシエタノールに溶解させて 0. 6Mの溶液を得た 。次に、この溶液を攪拌しながら 120°Cで 18時間還流させて、複合金属アルコキシド : BaTi (〇C H OCH ) の溶夜 Aを得た。  It was dissolved in 2-methoxyethanol which had been dehydrated with a molecular sieve to obtain a 0.6M solution. Next, this solution was refluxed at 120 ° C. for 18 hours while stirring to obtain a mixed metal alkoxide: BaTi (〇C H OCH 2).
2 4 3 6  2 4 3 6
[0030] 次いで、溶液 Aの一部を、溶液濃度が 0. 2Mとなるように 2—メトキシエタノールで希 釈した溶液 Bを得た。一方、溶液 Aの一部に、 Tiとのモル比が 1: 1となる水および 1: 0. 15となるアンモニアを加え、 100。Cで 3時間攪拌した後、 0. 2Mとなるように 2—メト キシエタノールで希釈した結晶性の金属酸化物粒子を含む溶液 Cを得た。この 0. 2 Mに調製した 2種の溶液 Bおよび溶液 Cを体積比で 1: 1となるように混合して溶液 D ( 複合金属アルコキシド化合物の総和/結晶性の金属酸化物粒子 = 50mol%Z50 mol%)を得た。  Next, a solution B was obtained by diluting a part of the solution A with 2-methoxyethanol so that the solution concentration became 0.2 M. On the other hand, to a part of the solution A, water having a molar ratio to Ti of 1: 1 and ammonia having a molar ratio of 1: 0.15 were added to 100. After stirring with C for 3 hours, a solution C containing crystalline metal oxide particles diluted to 2-M with 2-methoxyethanol was obtained. The two solutions B and C prepared at 0.2 M were mixed in a volume ratio of 1: 1 to obtain a solution D (total of composite metal alkoxide compounds / crystalline metal oxide particles = 50 mol% Z50 mol%).
[0031] また、オルトチタン酸テトライソプロポキシドを 0. 4Mとなるよう、体積比 3: 1で 2_メト キシエタノールと酢酸を混合した溶液で希釈して溶液 Eを得た。  Further, a solution E was obtained by diluting tetraisopropoxide orthotitanate with a solution obtained by mixing 2_methoxyethanol and acetic acid at a volume ratio of 3: 1 to 0.4 M.
[0032] 一方、 10cm X 10cmの大きさの厚さ 70 z mの銅箔 6 (三井金属鉱業 (株)製、商品 名 3EC— VLP—70)の光沢面側に、スパッタ法により厚さ 500nmの Ni薄膜層 5を形 成して、 Ni薄膜層付の銅箔を得た。 On the other hand, a copper foil 6 (manufactured by Mitsui Mining & Smelting Co., Ltd., trade name 3EC-VLP-70) having a size of 10 cm × 10 cm and a thickness of 500 nm By forming the Ni thin film layer 5, a copper foil with a Ni thin film layer was obtained.
[0033] 次に、この Ni薄膜層付の銅箔の Ni薄膜層 5側に、溶液 Bをスピンコートした。 350Next, solution B was spin-coated on the Ni thin film layer 5 side of the copper foil with the Ni thin film layer. 350
°Cのホットプレート上で 4分間乾燥後、再び溶液 Bをスピンコートし同様に乾燥するこ とで、膜厚が 80nmの第一の複合金属酸化物薄膜層 2を形成した。さらに、当該第一 の複合金属酸化物薄膜層 2上に溶液 Dをスピンコートし同様に乾燥する操作を 8回 繰り返すことで、膜厚が 400nmの第二の複合金属酸化物薄膜層 3を形成した。さら に、当該第二の複合金属酸化物薄膜層 3上に溶液 Eを 1回スピンコートした後、 350 。Cのホットプレート上で 2時間焼成することで、膜厚が 50nmの Ti含有アモルファス金 属酸化物薄膜層 4を形成した。これにより、 Ni薄膜層付銅箔の Ni薄膜層 5上に、第 一の複合金属酸化物薄膜層 2、第二の複合金属酸化物薄膜層 3および Ti含有ァモ ルファス金属酸化物薄膜層 4からなり、比誘電率が 37、膜厚が 530nmの誘電体薄 膜 13を有する薄膜複合材料 1を得た(図 1)。なお、各層の膜厚と誘電体薄膜の比誘 電率は、以下のようにして測定した。 After drying on a hot plate at 4 ° C for 4 minutes, spin-coat solution B again and dry in the same manner. Thus, the first composite metal oxide thin film layer 2 having a thickness of 80 nm was formed. Further, the operation of spin-coating the solution D on the first composite metal oxide thin film layer 2 and drying it in the same manner is repeated eight times to form the second composite metal oxide thin film layer 3 having a thickness of 400 nm. did. Further, the solution E was spin-coated once on the second composite metal oxide thin film layer 3, and then 350. By baking for 2 hours on a C hot plate, a Ti-containing amorphous metal oxide thin film layer 4 having a thickness of 50 nm was formed. As a result, the first composite metal oxide thin film layer 2, the second composite metal oxide thin film layer 3, and the Ti-containing amorphous metal oxide thin film layer 4 are formed on the Ni thin film layer 5 of the copper foil with the Ni thin film layer. Thus, a thin film composite material 1 having a dielectric constant of 37 and a dielectric thin film 13 with a thickness of 530 nm was obtained (FIG. 1). The thickness of each layer and the relative dielectric constant of the dielectric thin film were measured as follows.
[0034] <膜厚 > [0034] <Thickness>
薄膜複合材料の誘電体薄膜表面に 5mm幅のポリイミドテープ (例えば、 日東電工 社製カプトンテープ)を任意長さで貼り付け、平均粒径 30 μ mのアルミナを含む水系 処理液を用いた高圧水洗にて、誘電体薄膜をエッチング除去した。超音波洗浄を行 つた後にポリイミドテープを剥離し、アンビォス社製触針式段差'表面形状測定装置 XP— 2を用いて、誘電体薄膜 (各金属酸化物層)の膜厚を測定した。  A 5 mm wide polyimide tape (for example, Kapton tape manufactured by Nitto Denko Corporation) is attached to the dielectric thin film surface of the thin film composite material at an arbitrary length, and high-pressure water washing using an aqueous treatment solution containing alumina with an average particle size of 30 μm is applied. , The dielectric thin film was removed by etching. After performing the ultrasonic cleaning, the polyimide tape was peeled off, and the thickness of the dielectric thin film (each metal oxide layer) was measured using a stylus type step 'surface shape measuring device XP-2 manufactured by Ambis.
[0035] <比誘電率 > <Relative permittivity>
薄膜複合材料の誘電体薄膜表面にメタルマスクを固定し、スパッタ法で Cr層を 50η m、 Cu層を 200nm形成して、 1mm X lmmの大きさの上部電極を形成した。ついで 、当該上部電極近傍の金属酸化物薄膜層をダイヤモンドペンで削って Ni薄膜の下 の銅箔を露出させ、この上部電極と露出させた銅箔との間の静電容量をコンデンサ の静電容量とみなし、その値を測定した。静電容量の測定値と膜厚から下記式を用 レ、て誘電体薄膜の比誘電率を求めた。なお、静電容量は、 3か所の測定ポイントに ついて、アジレント'テクノロジ一社製 4285A型プレシジョン LCRメータを用いて、 25 °C、周波数 1MHzの条件下における値を測定し、その平均値を用いた。  A metal mask was fixed on the surface of the dielectric thin film of the thin film composite material, and a 50 nm thick Cr layer and a 200 nm thick Cu layer were formed by sputtering to form an upper electrode having a size of 1 mm X lmm. Next, the metal oxide thin film layer near the upper electrode is shaved with a diamond pen to expose the copper foil under the Ni thin film, and the capacitance between the upper electrode and the exposed copper foil is determined by the capacitance of the capacitor. It was regarded as the capacity and its value was measured. The relative dielectric constant of the dielectric thin film was determined from the measured value of the capacitance and the film thickness using the following equation. The capacitance was measured at three measurement points using an Agilent 4285A Precision LCR meter at 25 ° C at a frequency of 1 MHz, and the average value was measured. Using.
C = ε ε (S/d)  C = ε ε (S / d)
0  0
(式中、 Cは静電容量、 ε は真空の誘電率、 ε は誘電体薄膜の比誘電率、 Sは上  (Where C is the capacitance, ε is the dielectric constant of vacuum, ε is the relative dielectric constant of the dielectric thin film, and S is
0 r  0 r
部電極面積、 dは誘電体薄膜の膜厚を示す) [0036] (薄膜複合材料 2) Area, d indicates the thickness of the dielectric thin film) (Thin Film Composite Material 2)
溶液 Eのスピンコート回数を 1回から 3回に変え、膜厚が 150nmの Ti含有ァモルフ ァス金属酸化物薄膜層を形成した以外は薄膜複合材料 1と同様な工程により、比誘 電率が 32、膜厚が 630nmの誘電体薄膜を有する薄膜複合材料 2を得た。  The specific dielectric constant was increased by the same process as for the thin film composite material 1 except that the number of times of spin coating of the solution E was changed from once to three times, and a 150 nm thick Ti-containing amorphous metal oxide thin film layer was formed. 32. A thin film composite material 2 having a dielectric thin film having a thickness of 630 nm was obtained.
[0037] (複合薄膜材料 3) [0037] (Composite thin film material 3)
溶液 Eのスピンコートを省き、 Ti含有アモルファス金属酸化物薄膜層を形成しなか つた以外は複合薄膜材料 1と同様な工程により、比誘電率が 40、膜厚が 480nmの 誘電体薄膜を有する薄膜複合材料 3を得た。  A thin film having a dielectric thin film having a relative dielectric constant of 40 and a film thickness of 480 nm by the same process as that of the composite thin film material 1 except that the spin coating of the solution E was omitted and the Ti-containing amorphous metal oxide thin film layer was not formed. Composite material 3 was obtained.
[0038] (実施例 1) (Example 1)
水酸化ナトリウムで pH9に調整した水溶液に lwt%のシランカップリング剤 A— 110 0 (日本ュニカー株式会社製、商品名)を混合し、この水溶液に薄膜複合材料 1を 60 °Cで 5分間浸漬した。その後、薄膜複合材料 1を 40°Cの温水で 3分湯洗し、ネオガン ト B (アトテック株式会社製、商品名)、ネオガント 834 (アトテック株式会社製、商品名 )、水洗、ネオガント WA (アトテック株式会社製、商品名)、水洗の順に処理し、めつ き触媒を付与した。続いて ICPニコロン U (奥野製薬工業株式会社製、商品名)を用 レ、て無電解 Ni— Pめっき層 7を薄膜複合材料 1の誘電体薄膜 13表面に 0. 4 μ m形成 した。さらに、電気 Cuめっきで Cuめっき層 8を 15 /i m形成した(図 2)。次に、フォトリ ソグラフ法にてエッチングレジストを形成した。レジスト材料としては、アルカリ現像タイ プのドライフィルムレジストである、 H-9330 (日立化成工業株式会社製、商品名)を 用いた。その後、 15%過硫酸アンモニゥム水溶液にて Cuめっき層 8をエッチング除 去した。 5%水酸化ナトリウム水溶液でエッチングレジストを除去し、さらに、トップリツ プ AZ (奥野製薬工業株式会社製、商品名)にて無電解 Ni— Pめっき層 7をエッチング 除去した。このようにして薄膜複合材料 1の誘電体薄膜 13表面上に lmm X 1mmの 大きさの上部電極 9を形成した(図 3)。  An aqueous solution adjusted to pH 9 with sodium hydroxide is mixed with lwt% of silane coupling agent A-1100 (trade name, manufactured by Nippon Tunicer Co., Ltd.), and the thin film composite material 1 is immersed in the aqueous solution at 60 ° C for 5 minutes. did. After that, the thin film composite material 1 was washed with warm water of 40 ° C for 3 minutes, washed with Neogant B (manufactured by Atotech Co., Ltd.), Neogant 834 (manufactured by Atotech Co., Ltd.), washed with water, and Neogant WA (Atotech (Manufactured by Co., Ltd., trade name) and water washing in this order to provide a plating catalyst. Subsequently, an electroless Ni—P plating layer 7 was formed to a thickness of 0.4 μm on the surface of the dielectric thin film 13 of the thin film composite material 1 using ICP Nicoron U (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). Furthermore, a Cu plating layer 8 was formed at 15 / im by electric Cu plating (Fig. 2). Next, an etching resist was formed by a photolithographic method. As a resist material, H-9330 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a dry film resist of an alkali development type, was used. Thereafter, the Cu plating layer 8 was removed by etching with a 15% aqueous solution of ammonium persulfate. The etching resist was removed with a 5% aqueous sodium hydroxide solution, and the electroless Ni—P plating layer 7 was removed by etching using Top Lip AZ (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). Thus, an upper electrode 9 having a size of lmm × 1 mm was formed on the surface of the dielectric thin film 13 of the thin film composite material 1 (FIG. 3).
[0039] (実施例 2) (Example 2)
薄膜複合材料 1を薄膜複合材料 2に変えた以外は実施例 1と同様な工程で誘電体 薄膜表面上に lmm X lmmの大きさの上部電極を形成した。  An upper electrode having a size of lmm X lmm was formed on the surface of the dielectric thin film in the same process as in Example 1 except that the thin film composite material 1 was changed to the thin film composite material 2.
[0040] (実施例 3) 薄膜複合材料 1の銅箔 6面に、厚み 100 μ mのガラスエポキシプリプレダ 11 (日立 化成工業株式会社製、商品名 GEA— 679F)を介して、厚み 12 / mの銅箔 12 (古河 サーキットフオイル株式会社、商品名 GTS-12)を配し、温度 180°C、圧力 1 · 5MPa 、加熱加圧時間 60分のプレス条件で積層一体化し、多層板を作製した。ついで、薄 膜複合材料 1の誘電体薄膜 13表面に、実施例 1と同様な工程で上部電極 9を形成し た。次に、再びフォトリソグラフ法により薄膜複合材料 1の誘電体薄膜 13表面の所定 箇所にエッチングレジストを形成し、平均粒径 30 a mのアルミナを含む水系処理液 を用いた高圧水洗にて誘電体薄膜 13をエッチング除去した。超音波洗浄を行った 後、エッチングレジストを 5%水酸化ナトリウム水溶液にて剥離し、さらにフォトリソダラ フ法によりエッチングレジストを形成した。続いてトップリップ BT (奥野製薬工業株式 会社製、商品名)にて Ni薄膜層 5をエッチング除去し、 15。/。過硫酸アンモニゥム水溶 液で銅箔 6をエッチング除去した。エッチングレジストを 5%水酸化ナトリウム水溶液で 剥離し、下部電極 10を形成した(図 4)。 (Example 3) 12 / m thick copper foil 12 (Furukawa Circuit Co., Ltd.) on 6 surfaces of copper foil of thin film composite material 1 via glass epoxy pre-predder 11 (Hitachi Kasei Kogyo Co., Ltd., trade name GEA-679F) Foil Co., Ltd., trade name: GTS-12), laminated and integrated under the conditions of 180 ° C, 1.5MPa pressure and 60 minutes of heating and pressurizing time, to produce a multilayer board. Next, an upper electrode 9 was formed on the surface of the dielectric thin film 13 of the thin film composite material 1 in the same process as in Example 1. Next, an etching resist is formed again at a predetermined position on the surface of the dielectric thin film 13 of the thin film composite material 1 by photolithography, and the dielectric thin film is washed by high-pressure water using an aqueous treatment solution containing alumina having an average particle diameter of 30 am. 13 was removed by etching. After ultrasonic cleaning, the etching resist was peeled off with a 5% aqueous sodium hydroxide solution, and an etching resist was formed by a photolithography method. Subsequently, the Ni thin film layer 5 was removed by etching with Top Lip BT (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). /. The copper foil 6 was removed by etching with an aqueous solution of ammonium persulfate. The etching resist was stripped with a 5% aqueous sodium hydroxide solution to form a lower electrode 10 (FIG. 4).
[0041] (比較例 1) (Comparative Example 1)
薄膜複合材料 1を薄膜複合材料 3に変えた以外は実施例 1と同様な工程で誘電体 薄膜表面上に lmm X lmmの大きさの上部電極を形成した。  An upper electrode having a size of lmm X lmm was formed on the surface of the dielectric thin film in the same process as in Example 1 except that the thin film composite material 1 was changed to the thin film composite material 3.
[0042] (比較例 2) (Comparative Example 2)
薄膜複合材料 3を水酸化ナトリウムで pH9に調整した水溶液で処理した後水洗し、 ネオガント B (アトテック株式会社製、商品名)、ネオガント 834 (アトテック株式会社製 、商品名)、水洗、ネオガント WA (アトテック株式会社製、商品名)、水洗の順に処理 した。続いて ICPニコロン U (奥野製薬工業株式会社製、商品名)を用いて無電解 Ni _Pめっき層を薄膜複合材料 3の誘電体薄膜表面に 0. 形成した。さらに、電気 Cuめっきで Cuめっき層を 15 z m形成した。次に、フォトリソグラフ法にてエッチング レジストを形成した。レジスト材料としては、アルカリ現像タイプのドライフィルムレジス トである、 H-9330 (日立化成工業株式会社製、商品名)を用いた。その後、 15%過 硫酸アンモニゥム水溶液にて Cuめっき層をエッチング除去した。 5。/。水酸化ナトリウ ム水溶液でエッチングレジストを除去し、さらに、トップリップ AZ (奥野製薬工業株式 会社製、商品名)にて無電解 Ni— Pめっき層をエッチング除去した。このようにして薄 膜複合材料 3の誘電体薄膜表面上に lmm X 1mmの大きさの上部電極を形成した。 The thin film composite material 3 is treated with an aqueous solution adjusted to pH 9 with sodium hydroxide and then washed with water. Neogant B (manufactured by Atotech, trade name), Neogant 834 (manufactured by Atotech, trade name), washed with water, neogant WA ( Treated in the order of Atotech Co., Ltd.) and water washing. Subsequently, an electroless Ni_P plating layer was formed on the surface of the dielectric thin film of the thin film composite material 3 using ICP Nicoron U (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). Further, a Cu plating layer of 15 zm was formed by electric Cu plating. Next, an etching resist was formed by photolithography. H-9330 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a dry film resist of an alkali developing type, was used as a resist material. Thereafter, the Cu plating layer was removed by etching with a 15% aqueous solution of ammonium persulfate. Five. /. The etching resist was removed with an aqueous solution of sodium hydroxide, and the electroless Ni—P plating layer was removed by etching with Top Lip AZ (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.). In this way An upper electrode having a size of lmm × 1 mm was formed on the surface of the dielectric thin film of the film composite material 3.
[0043] (密着性評価)  (Adhesion evaluation)
次に、実施例 1一 3、比較例 1および 2で作製した評価基板の上部電極と誘電体薄 膜最外層との密着性をテープ試験で調べた。評価は、上部電極 6か所にセロハンテ ープ CFIS Z 1522に規定)を圧着し、 10秒後瞬時に引き剥がして電極の剥離を観 察することで行った。結果を表 1に示す。表中の NG数は電極 6箇所に対する剥離数 である。  Next, the adhesiveness between the upper electrode and the outermost layer of the dielectric thin film of the evaluation substrates produced in Examples 13 and 13 and Comparative Examples 1 and 2 was examined by a tape test. Evaluation was carried out by crimping cellophane tape CFIS Z 1522 at six locations on the upper electrode, and immediately peeling it off 10 seconds later and observing the peeling of the electrode. The results are shown in Table 1. The number of NGs in the table is the number of peelings at six electrodes.
[0044] [表 1]  [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0045] 実施例 1一 3ではいずれも電極の剥離はなかった。これは誘電体薄膜の最外層表 面の水酸基とシランカップリング剤が化学的かつ均一に結合し、高い密着力が得ら れた効果である。一方、比較例 1一 2では誘電体薄膜最外層表面の極性基が乏しい ため、十分な密着力が得られず電極剥離が発生した。このように本発明によれば、め つきで形成した金属層と誘電体薄膜との密着性を向上させることができる。 [0045] In Examples 1 to 3, no electrode was peeled off. This is an effect that the hydroxyl group on the outermost layer surface of the dielectric thin film is chemically and uniformly bonded to the silane coupling agent, and high adhesion is obtained. On the other hand, in Comparative Examples 1 and 2, the polar groups on the surface of the outermost layer of the dielectric thin film were poor, so that sufficient adhesion was not obtained and electrode peeling occurred. As described above, according to the present invention, the adhesion between the metal layer formed by plating and the dielectric thin film can be improved.
[0046] (容量ばらつきの評価)  (Evaluation of capacitance variation)
続いて、各実施例および比較例で作成した基板におけるコンデンサの容量ばらつ きを評価した。実施例 1一 2で作製した基板および比較例 1一 2で作製した基板につ いては、それぞれの上部電極近傍の金属酸化物薄膜層をダイヤモンドペンで削って Ni薄膜の下の銅箔を露出させ、この上部電極と露出させた銅箔との間の静電容量を コンデンサの静電容量とみなして評価した。また、実施例 3の基板については、上部 電極とエッチングによって形成した下部電極との間の静電容量をコンデンサの静電 容量とみなして評価した。また、静電容量の測定は、それぞれ 30か所の測定ポイント について、アジレント'テクノロジ一社製 4285A型プレシジョン LCRメータを用いて、 25°C、周波数 1MHzの条件下における値を測定した。結果を表 2に示す。  Subsequently, variations in the capacitance of the capacitors on the substrates prepared in each of the examples and the comparative examples were evaluated. For the substrates fabricated in Example 1-2 and Comparative Example 1-2, the metal oxide thin film layer near each upper electrode was scraped with a diamond pen to expose the copper foil under the Ni thin film. Then, the capacitance between the upper electrode and the exposed copper foil was evaluated as the capacitance of the capacitor. For the substrate of Example 3, the capacitance between the upper electrode and the lower electrode formed by etching was evaluated as the capacitance of the capacitor. The capacitance was measured at 30 measurement points using an Agilent 4285A Precision LCR meter manufactured by Agilent Technologies at 25 ° C and a frequency of 1 MHz. Table 2 shows the results.
[0047] [表 2] 項目 平均 (pF) 最大 (DF) 最小(DF) ばらつき [Table 2] Item Average (pF) Maximum (DF) Minimum (DF) Variation
実施例 1 640 770 51 0 ±20%  Example 1 640 770 51 0 ± 20%
実施例 2 450 520 390 ± 1 5%  Example 2 450 520 390 ± 15%
実施例 3 61 0 730 490 ±20%  Example 3 61 0 730 490 ± 20%
比較例 1 800 1040 560 ±30%  Comparative Example 1 800 1040 560 ± 30%
比較例 2 81 0 1050 560 ± 30%  Comparative Example 2 81 0 1050 560 ± 30%
[0048] 実施例 1一 3では容量ばらつきが比較的小さぐいずれも ± 20%の範囲内に留まつ ている。しかし、比較例 1および 2では容量ばらつきが大きぐ ± 30%程度となった。 これはめつき触媒の付着が不均一であることや複合金属酸化物薄膜層の膜厚均一 性が低下したことによるものである。本発明による薄膜複合材料ではめつき触媒の均 一な付着と高い耐食性を示すため、このようなばらつきの発生を抑制することが可能 である。 [0048] In Examples 1 to 3, the variation in the capacitance is relatively small and remains in the range of ± 20%. However, in Comparative Examples 1 and 2, the capacity variation was as large as about ± 30%. This is due to the non-uniform adhesion of the plating catalyst and the reduced uniformity of the thickness of the composite metal oxide thin film layer. Since the thin film composite material according to the present invention shows uniform adhesion of the plating catalyst and high corrosion resistance, it is possible to suppress the occurrence of such variations.
[0049] 前述したところが、この発明の好ましい実施態様であること、多くの変更及び修正を この発明の精神と範囲とにそむくことなく実行できることは当業者によって了承されよ う。  [0049] It will be appreciated by those skilled in the art that the foregoing is a preferred embodiment of the invention, and that many changes and modifications may be made without departing from the spirit and scope of the invention.

Claims

請求の範囲 The scope of the claims
[1] 銅箔、  [1] copper foil,
前記銅箔の一方の表面に形成され、 Cr、 Ni、 Au、 Ag、およびこれらの合金からな る群から選択される 1種以上の金属を含む金属薄膜層、ならびに  A metal thin film layer formed on one surface of the copper foil and containing at least one metal selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof; and
前記金属薄膜層表面に形成され、比誘電率が 10— 2000でかつ膜厚が 0. 05 2 z mの誘電体薄膜、  A dielectric thin film formed on the surface of the metal thin film layer, having a relative dielectric constant of 10 to 2000 and a thickness of 0.052 zm,
を備え、前記誘電体薄膜の最外層が構成元素として Tiを含むアモルファス金属酸化 物薄膜層であることを特徴とする薄膜複合材料。  A thin-film composite material comprising: a dielectric thin film, wherein the outermost layer of the dielectric thin film is an amorphous metal oxide thin film layer containing Ti as a constituent element.
[2] 前記誘電体薄膜が、構成元素として Baおよび/または Srと、 Tiとを含む複合金属 酸化物薄膜層、ならびに構成元素として Tiを含むアモルファス金属酸化物薄膜層、 で構成されていることを特徴とする請求項 1に記載の薄膜複合材料。  [2] The dielectric thin film is composed of a composite metal oxide thin film layer containing Ba and / or Sr as constituent elements and Ti, and an amorphous metal oxide thin film layer containing Ti as a constituent element. 2. The thin film composite material according to claim 1, wherein:
[3] 前記誘電体薄膜が、前記構成元素として Baおよび/または Srと、 Tiとを含むァモ ルファス複合金属酸化物からなる複合金属酸化物薄膜層、ならびに構成元素として Tiを含むアモルファス金属酸化物薄膜層、で構成されていることを特徴とする請求項 1に記載の薄膜複合材料。  [3] The dielectric thin film is composed of a composite metal oxide thin film layer made of an amorphous composite metal oxide containing Ba and / or Sr as the constituent elements and Ti, and an amorphous metal oxide containing Ti as a constituent element. 2. The thin film composite material according to claim 1, comprising a thin film layer.
[4] 前記誘電体薄膜が、構成元素として Baおよび Zまたは Srと、 Tiとを含むァモルファ ス複合金属酸化物からなる第一の複合金属酸化物薄膜層、構成元素として Baおよ び/または Srと、 Tiとを含む第二の複合金属酸化物薄膜層、ならびに構成元素とし て Tiを含むアモルファス金属酸化物薄膜層、で構成されていることを特徴とする請求 項 1に記載の薄膜複合材料。  [4] The dielectric thin film is a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba, Z or Sr as constituent elements, and Ti, and Ba and / or 2. The thin film composite according to claim 1, comprising a second composite metal oxide thin film layer containing Sr and Ti, and an amorphous metal oxide thin film layer containing Ti as a constituent element. material.
[5] 前記構成元素として Tiを含むアモルファス金属酸化物薄膜層が、 Ti〇または Ti〇  [5] The amorphous metal oxide thin film layer containing Ti as the constituent element is made of Ti〇 or Ti〇
2 の薄膜層であることを特徴とする請求項 1一 4のいずれ力 4項に記載の薄膜複合材 料。  5. The thin film composite material according to claim 4, wherein the thin film composite material is a thin film layer of No. 2.
[6] 前記構成元素として Baおよび Zまたは Srと、 Tiとを含むアモルファス複合金属酸 化物からなる複合金属酸化物薄膜層の厚さ力 S、 10nm— 200nmの範囲であることを 特徴とする請求項 3または 4に記載の薄膜複合材料。  [6] The thickness force S of the composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and Z or Sr as the constituent elements and Ti is in a range of 10 nm to 200 nm. Item 5. The thin film composite material according to item 3 or 4.
[7] 前記構成元素として Tiを含むアモルファス金属酸化物薄膜層の厚さが、 10nm— 2 OOnmの範囲であることを特徴とする請求項 1一 6のいずれ力 1項に記載の薄膜複合 材料。 7. The thin film composite according to claim 1, wherein the thickness of the amorphous metal oxide thin film layer containing Ti as a constituent element is in a range of 10 nm to 200 nm. material.
[8] 前記金属薄膜層の厚さが、 50nm— 1 μ mの範囲であることを特徴とする請求項 1 一 7のいずれ力 1項に記載の薄膜複合材料。  [8] The thin film composite material according to any one of [17] to [17], wherein the thickness of the metal thin film layer is in the range of 50 nm to 1 μm.
[9] 前記金属薄膜層に接する前記複合金属酸化物薄膜層を形成する際に、 400°C以 下で熱処理されることを特徴とする請求項 2 8のいずれ力、 1項に記載の薄膜複合材 料。 9. The thin film according to claim 28, wherein a heat treatment is performed at 400 ° C. or less when forming the composite metal oxide thin film layer in contact with the metal thin film layer. Composite materials.
[10] 銅箔、  [10] copper foil,
前記銅箔の一方の表面に形成され、 Cr、 Ni、 Au、 Ag、およびこれらの合金からな る群から選択される 1種以上の金属を含む金属薄膜層、  A metal thin film layer formed on one surface of the copper foil and containing at least one metal selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof;
前記金属薄膜層表面に形成され、比誘電率が 10— 2000でかつ膜厚が 0. 05 2 μ mの誘電体薄膜、ならびに  A dielectric thin film formed on the surface of the metal thin film layer and having a relative dielectric constant of 10 to 2000 and a thickness of 0.052 μm, and
前記誘電体薄膜表面に形成され、 Ni、 Ni_P、 Ni_B、 Cuからなる群から選択され る 1種以上の金属を含む金属層、  A metal layer formed on the surface of the dielectric thin film and containing at least one metal selected from the group consisting of Ni, Ni_P, Ni_B, and Cu;
を備え、前記誘電体薄膜の最外層が構成元素として Tiを含むアモルファス金属酸化 物薄膜層であることを特徴とする薄膜複合材料。  A thin-film composite material comprising: a dielectric thin film, wherein the outermost layer of the dielectric thin film is an amorphous metal oxide thin film layer containing Ti as a constituent element.
[11] 前記誘電体薄膜が、構成元素として Baおよび/または Srと、 Tiとを含む複合金属 酸化物薄膜層、ならびに構成元素として Tiを含むアモルファス金属酸化物薄膜層、 で構成されていることを特徴とする請求項 10に記載の薄膜複合材料。 [11] The dielectric thin film is composed of a composite metal oxide thin film layer containing Ba and / or Sr as constituent elements and Ti, and an amorphous metal oxide thin film layer containing Ti as a constituent element. 11. The thin film composite material according to claim 10, wherein:
[12] 前記誘電体薄膜が、構成元素として Baおよび/または Srと、 Tiとを含むァモルファ ス複合金属酸化物からなる複合金属酸化物薄膜層、ならびに構成元素として Tiを含 むアモルファス金属酸化物薄膜層、で構成されていることを特徴とする請求項 10に 記載の薄膜複合材料。 [12] The dielectric thin film is a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr as constituent elements and Ti, and an amorphous metal oxide containing Ti as a constituent element. 11. The thin film composite material according to claim 10, comprising a thin film layer.
[13] 前記誘電体薄膜が、構成元素として Baおよび Zまたは Srと、 Tiとを含むァモルファ ス複合金属酸化物からなる第一の複合金属酸化物薄膜層、構成元素として Baおよ び/または Srと、 Tiとを含む第二の複合金属酸化物薄膜層、ならびに構成元素とし て Tiを含むアモルファス金属酸化物薄膜層、で構成されていることを特徴とする請求 項 10に記載の薄膜複合材料。  [13] The dielectric thin film is a first composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and Z or Sr as constituent elements and Ti, and Ba and / or The thin film composite according to claim 10, comprising a second composite metal oxide thin film layer containing Sr and Ti, and an amorphous metal oxide thin film layer containing Ti as a constituent element. material.
[14] 前記構成元素として Tiを含むアモルファス金属酸化物薄膜層が、 Ti〇または Ti〇 の薄膜層であることを特徴とする請求項 10— 13のいずれ力 1項に記載の薄膜複合 材料。 [14] The amorphous metal oxide thin film layer containing Ti as the constituent element is made of Ti〇 or Ti〇 14. The thin-film composite material according to claim 1, wherein the thin-film composite material is a thin-film layer.
[15] 前記構成元素として Baおよび/または Srと、 Tiとを含むアモルファス複合金属酸 化物からなる複合金属酸化物薄膜層の厚さ力 10nm 200nmの範囲であることを 特徴とする請求項 12または 13に記載の薄膜複合材料。  [15] The composite metal oxide thin film layer comprising an amorphous composite metal oxide containing Ba and / or Sr as a constituent element and Ti as a component has a thickness of 10 nm to 200 nm. 14. The thin film composite material according to 13.
[16] 前記構成元素として Tiを含むアモルファス金属酸化物薄膜層の厚さが、 10nm-2[16] The thickness of the amorphous metal oxide thin film layer containing Ti as the constituent element is 10 nm-2
OOnmの範囲であることを特徴とする請求項 10— 15のいずれ力 4項に記載の薄膜複 合材料。 The thin film composite material according to claim 4, wherein the composite thickness is in the range of OOnm.
[17] 前記金属薄膜層の厚さが、 50nm 1 μ mの範囲であることを特徴とする請求項 10 一 16のレ、ずれか 1項に記載の薄膜複合材料。  17. The thin film composite material according to claim 10, wherein the thickness of the metal thin film layer is in a range of 50 nm and 1 μm.
[18] 前記金属薄膜層に接する前記複合金属酸化物薄膜層を形成する際に、 400°C以 下で熱処理されることを特徴とする請求項 11一 17のいずれ力、 1項に記載の薄膜複 合材料。 18. The method according to claim 11, wherein a heat treatment is performed at 400 ° C. or less when forming the composite metal oxide thin film layer in contact with the metal thin film layer. Thin film composite material.
[19] 前記金属層の厚さが、 50nm— 30 μ ΐηの範囲であることを特徴とする請求項 10— [19] The method according to claim 10, wherein the thickness of the metal layer is in a range of 50 nm-30 μΐη.
18のいずれか 1項に記載の薄膜複合材料。 19. The thin film composite material according to any one of 18.
[20] 銅箔の一方の表面に、 Cr、 Ni、 Au、 Ag、およびこれらの合金からなる群から選択 される 1種以上の金属を含む金属薄膜層を形成する工程、 [20] forming a metal thin film layer on one surface of the copper foil, the metal thin film layer containing one or more metals selected from the group consisting of Cr, Ni, Au, Ag, and alloys thereof;
前記金属薄膜層表面に、比誘電率が 10— 2000でかつ膜厚が 0. 05— 2 μ ΐηであ つて、その最外層が構成元素として Tiを含むアモルファス金属酸化物薄膜層である 誘電体薄膜を形成する工程、  On the surface of the metal thin film layer, the relative dielectric constant is 10-2000 and the film thickness is 0.05-2 μΐη, and the outermost layer is an amorphous metal oxide thin film layer containing Ti as a constituent element. Forming a thin film,
前記誘電体薄膜表面をシランカップリング剤で処理する工程、  A step of treating the dielectric thin film surface with a silane coupling agent,
前記シランカップリング剤で処理した表面にめっき触媒を付与する工程、ならびに 前記めつき触媒を核とする無電解めつきにより、 Ni、 Ni_P、 Ni_B、 Cu力 なる群 力 選択される 1種以上の金属を含む金属層を形成する工程、  A step of applying a plating catalyst to the surface treated with the silane coupling agent; and, by electroless plating with the plating catalyst as a nucleus, a group force of Ni, Ni_P, Ni_B, Cu force selected from one or more types. Forming a metal layer containing a metal,
を有することを特徴とする薄膜複合材料の製造方法。  A method for producing a thin film composite material, comprising:
[21] 請求項 10— 19のいずれ力 4項に記載の薄膜複合材料、または請求項 20に記載 の製造方法で製造された薄膜複合材料を構成に含むことを特徴とする多層配線板。 [21] A multilayer wiring board comprising, in its configuration, the thin-film composite material according to any one of claims 10 to 19 or the thin-film composite material produced by the production method according to claim 20.
[22] 請求項 10— 19のいずれ力 4項に記載の薄膜複合材料、または請求項 20に記載 の製造方法で製造された薄膜複合材料を構成に含むことを特徴とする電子部品。 請求項 1一 9のいずれ力 1項に記載の薄膜複合材料の銅箔面にプリプレダまたは 内層基板を積層する工程、 [22] The thin film composite material according to any one of claims 10 to 19, or the lamella according to claim 20 An electronic component comprising in its configuration a thin film composite material produced by the production method according to (1). A step of laminating a pre-preda or an inner layer substrate on a copper foil surface of the thin film composite material according to claim 1,
誘電体薄膜表面をシランカップリング剤で処理する工程、  A step of treating the surface of the dielectric thin film with a silane coupling agent,
前記シランカップリング剤で処理した表面にめっき触媒を付与する工程、ならびに 前記めつき触媒を核とする無電解めつきにより、 Ni、 Ni_P、 Ni_B、 Cu力 なる群 から選択される 1種以上の金属を含む金属層を形成する工程、  A step of applying a plating catalyst to the surface treated with the silane coupling agent, and at least one selected from the group consisting of Ni, Ni_P, Ni_B, and Cu by electroless plating with the plating catalyst as a nucleus. Forming a metal layer containing a metal,
を有することを特徴とする多層配線板の製造方法。 A method for manufacturing a multilayer wiring board, comprising:
PCT/JP2005/001673 2004-02-19 2005-02-04 Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material WO2005080074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510181A JP4375395B2 (en) 2004-02-19 2005-02-04 Thin film composite material and manufacturing method thereof, and multilayer wiring board and electronic component using the thin film composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-042749 2004-02-19
JP2004042749 2004-02-19
JP2004-272041 2004-09-17
JP2004272041 2004-09-17

Publications (1)

Publication Number Publication Date
WO2005080074A1 true WO2005080074A1 (en) 2005-09-01

Family

ID=34889333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001673 WO2005080074A1 (en) 2004-02-19 2005-02-04 Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material

Country Status (3)

Country Link
JP (1) JP4375395B2 (en)
TW (1) TW200528580A (en)
WO (1) WO2005080074A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150186A (en) * 2005-11-30 2007-06-14 Tdk Corp Electrode for thin-film electronic component, thin-film electronic component and manufacturing method thereof
JP2008124414A (en) * 2006-10-20 2008-05-29 Hitachi Chem Co Ltd Capacitor layer forming material, its manufacturing method, and printed wiring board
JP2008258555A (en) * 2007-03-14 2008-10-23 Hitachi Chem Co Ltd Thin film composite material, method for manufacturing the same, electronic component material using thin film composite material, method for manufacturing electronic component, electronic component, and method for manufacturing the same
JP2009113465A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Thin film composite material, material for wiring board using it, wiring board, and electronic component
JP2009295843A (en) * 2008-06-06 2009-12-17 Showa Denko Kk Circuit board and method of manufacturing the same, and electronic apparatus
CN103129034A (en) * 2013-01-18 2013-06-05 肇庆市双石金属实业有限公司 Thermochromic decorative layer doped with flexible iodide
US10085343B2 (en) 2016-11-04 2018-09-25 Tdk Corporation Thin-film capacitor and electronic component embedded substrate
CN110767472A (en) * 2018-07-25 2020-02-07 浙江清华柔性电子技术研究院 Flexible energy storage film, preparation method thereof and film capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208363A (en) * 1999-01-08 2000-07-28 Hokuriku Electric Ind Co Ltd Circuit board equipped with capacitor and manufacture of the same
JP2002009416A (en) * 2000-06-20 2002-01-11 Matsushita Electric Works Ltd Sheet for manufacturing printed wiring board, method for manufacturing printed wiring board using the sheet for manufacturing printed wiring board, and printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208363A (en) * 1999-01-08 2000-07-28 Hokuriku Electric Ind Co Ltd Circuit board equipped with capacitor and manufacture of the same
JP2002009416A (en) * 2000-06-20 2002-01-11 Matsushita Electric Works Ltd Sheet for manufacturing printed wiring board, method for manufacturing printed wiring board using the sheet for manufacturing printed wiring board, and printed wiring board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150186A (en) * 2005-11-30 2007-06-14 Tdk Corp Electrode for thin-film electronic component, thin-film electronic component and manufacturing method thereof
JP2008124414A (en) * 2006-10-20 2008-05-29 Hitachi Chem Co Ltd Capacitor layer forming material, its manufacturing method, and printed wiring board
JP2008258555A (en) * 2007-03-14 2008-10-23 Hitachi Chem Co Ltd Thin film composite material, method for manufacturing the same, electronic component material using thin film composite material, method for manufacturing electronic component, electronic component, and method for manufacturing the same
JP2009113465A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Thin film composite material, material for wiring board using it, wiring board, and electronic component
JP2009295843A (en) * 2008-06-06 2009-12-17 Showa Denko Kk Circuit board and method of manufacturing the same, and electronic apparatus
CN103129034A (en) * 2013-01-18 2013-06-05 肇庆市双石金属实业有限公司 Thermochromic decorative layer doped with flexible iodide
US10085343B2 (en) 2016-11-04 2018-09-25 Tdk Corporation Thin-film capacitor and electronic component embedded substrate
CN110767472A (en) * 2018-07-25 2020-02-07 浙江清华柔性电子技术研究院 Flexible energy storage film, preparation method thereof and film capacitor
CN110767473A (en) * 2018-07-25 2020-02-07 浙江清华柔性电子技术研究院 Flexible energy storage film
CN110767473B (en) * 2018-07-25 2022-06-03 浙江清华柔性电子技术研究院 Flexible energy storage film

Also Published As

Publication number Publication date
JPWO2005080074A1 (en) 2007-10-25
TW200528580A (en) 2005-09-01
JP4375395B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
CA2595300C (en) Multilayered construction for resistor and capacitor formation
JP4375395B2 (en) Thin film composite material and manufacturing method thereof, and multilayer wiring board and electronic component using the thin film composite material
CA2595302C (en) Method of making multilayered construction for use in resistors and capacitors
US20100208440A1 (en) Passive electrical article
US7485411B2 (en) Method for manufacturing printed circuit board with thin film capacitor embedded therein
JP4283882B2 (en) Method for producing metal-coated polyimide resin substrate with excellent heat aging characteristics
KR900003152B1 (en) Method for forming capacitive circuit on circuit board
US20070234539A1 (en) Method for manufacturing capacitor embedded in PCB
CN102376449B (en) Laminate type ceramic electronic component and manufacturing method therefor
US20080100986A1 (en) Capacitor embedded printed circuit board and manufacturing method thereof
JP2023134756A (en) Multilayer ceramic capacitor having ultra-broadband performance
JP4770627B2 (en) Capacitor manufacturing method
JP4192946B2 (en) MATERIAL FOR MULTILAYER WIRING BOARD CONTAINING CAPACITOR, MULTILAYER WIRING BOARD SUBSTRATE, MULTILAYER WIRING BOARD AND METHOD FOR PRODUCING THE SAME
JP4952332B2 (en) CAPACITOR LAYER FORMING MATERIAL, MANUFACTURING METHOD THEREOF, AND PRINTED WIRING BOARD
JP2008227153A (en) Dielectric material for multilayer printed wiring board with built-in capacitor, multilayer printed wiring board with built-in capacitor member and capacitor, and method for manufacturing multilayer printed wiring board with built-in capacitor
JPH0329307A (en) Manufacture of laminated ceramic chip capacitor
JPH0669632A (en) Manufacture of printed wiring board
JP4148293B2 (en) Thin film composite material, wiring board material using the same, wiring board, electronic component material, electronic component, and methods for producing the same
JP2008172182A (en) Thin-film capacitor mounting substrate, manufacturing method of the same, and semiconductor device using its substrate
JPS61263189A (en) Manufacture of ceramic wiring board
JP6973149B2 (en) Board for flexible printed wiring board
KR20090093211A (en) Method for Manufacturing of Multi-layer Thin film Substrate
JP2017112184A (en) Substrate for printed wiring board and manufacturing method thereof
JP4200639B2 (en) Mounting method of PZT-based crystal film element
JP2000208363A (en) Circuit board equipped with capacitor and manufacture of the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510181

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase