TW200528580A - Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material - Google Patents

Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material Download PDF

Info

Publication number
TW200528580A
TW200528580A TW94104355A TW94104355A TW200528580A TW 200528580 A TW200528580 A TW 200528580A TW 94104355 A TW94104355 A TW 94104355A TW 94104355 A TW94104355 A TW 94104355A TW 200528580 A TW200528580 A TW 200528580A
Authority
TW
Taiwan
Prior art keywords
thin film
metal oxide
composite material
layer
film layer
Prior art date
Application number
TW94104355A
Other languages
Chinese (zh)
Inventor
Yuusuke Kondou
Yoshitaka Hirata
Yasushi Shimada
Yasushi Kumashiro
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW200528580A publication Critical patent/TW200528580A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0315Oxidising metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Capacitors (AREA)

Abstract

Disclosed is a metal oxide thin film composite material which is excellent in adhesion to a metal layer formed thereon by plating and is hardly corroded by the plating solution. The thin film composite material comprises a copper foil with a metal thin film whose surface is provided with a dielectric thin film having such a structure, in which at least an amorphous metal oxide thin film layer containing Ti as an constituent element is included as the outermost layer.

Description

200528580 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於一種適用於電容器等的電子裝置的金屬 氧化物薄膜複合材料及其製造方法,以及使用該薄膜複合 材料之多層配線板及電子零件。 【先前技術】 • 隨電子機器的小型化、高機能化的進展,於電容器、 g己憶體等的裝置,要求更高介電常數的材料。鈦酸鋇、鈦 酸鋇總、鈦酸鉻酸鉛等的鈦酸鹽爲首之金屬氧化物因顯示 高介電常數’適合用於這些用途。最近因爲高度小型化· 高機能化的要求,要求裝置本身的小型.高密度化,現正 盛行檢討將使用薄膜的裝置內藏於基板。 爲了形成使用薄膜的裝置,必須形成作爲電極的金屬 層。例如’以薄膜形成電容器的情況,以金屬層夾住薄膜 # ,亦即採用一般的三明治構造。傳統金屬層的形成,一般 可使用濺鍍爲代表的乾式製程。但是,乾式製程價格高, 難以處理大型基板。作爲對付該問題之手段,例如以電鍍 形成金屬層的方法,一般在印刷配線板的領域使用的方法 雖然以電鍍使金屬氧化物表面金屬化的手法爲廣泛普 及的技術,以傳統手法而言,金屬氧化物表面雜亂製造粗 糙化形狀,透過錨的效果維持金屬層與金屬氧化物的密著 性普通(例如日本公開專利特開7 - 6 2 5 4 7號公報)。但是 200528580 (2) ,因爲薄膜的膜厚薄至次微米,不可能製造維持如錨的效 果程度大的粗糙化形狀。而且,膜厚的均勻性的破壞成爲 形成電容器時介電特性不均的原因,故不適合。所以,以 電鍍於金屬氧化物薄膜表面,難以形成足夠密著力的金屬 層。另一方面,於樹脂、玻璃等的平滑面,不產生粗糙化 的方法也被積極硏究中,已知並非透過錨的效果的物理結 合,而是利用偶合劑等之化學結合等。例如日本公開專利 特開2002-226972號公報,將偶合劑均勻附著於樹脂、玻 璃面的官能基,可提高電鍍觸媒的均勻性,可得與電鍍金 屬層高的密著性。 【發明內容】 但是’於鈦酸鋇、鈦酸緦等的金屬氧化物薄膜表面, 因缺乏被偶合劑附著的官能基,無法均勻附著偶合劑,難 以得到金屬氧化物薄膜與電鍍金屬層足夠的密著力。而且 ,經由電鍍藥液侵蝕金屬氧化物薄膜,損壞膜厚均勻性時 ,所得電容器的介電特性產生不均勻情況。 有鑑於上述課題’本發明係以提供與電鍍法形成的金 屬層的密著性優異且難以被電鍍藥液侵蝕的金屬氧化物薄 膜複合材料爲目的。 本發明的薄膜複合材料,其特徵爲··具備銅箱、形成 於上述銅箔一側的表面、包含選自Cr、Ni、An、Ag以及 這些的合金所成群的1種以上的金屬之金屬薄膜層,以及 形成於該金屬薄膜層表面、比介電常數]〇〜2〇〇〇且膜厚 200528580 (3) 0.05〜2 μηι的介電體薄膜,該介電體薄膜的最 爲構成元素之非晶系金屬氧化物薄膜層。 根據本發明,可提供與金屬層的密著性優 電鍍藥液侵蝕的金屬氧化物薄膜複合材料。而 的薄膜複合材料,可適用於電容器等的電子裝 本申請案係基於同申請人先前之日本專) 042749號(申請日2004年2月19日)以及日 2004-272041號(申請日2004年9月17日)伴隨 張,參照這些說明書組合而成。 【實施方式】 本發明的薄膜複合材料,具備:銅箔;金 形成於該銅箔上;以及,介電體薄膜,形成於 上且至少具有含Ti爲構成元素的非晶系金屬 層作爲其最外層。藉由含Ti爲構成元素的非 φ 化物薄膜層作爲介電體薄膜層的最外層(表面 提高甲矽烷偶合劑的附著性與藥液侵蝕的防止: 上述銅箔,只要是一般使用的銅箔無特別 因耐熱、防鏽的目的在表面施以Zn、鉻酸鹽 提高接著性表面粗糙化者、因改善特性的目的 量Sn的其他元素等,可使用任一種。而且, 的銅箔之粗糙化的面,從良好地保持電容器的 點,期望爲不形成上述金屬薄膜層的面。銅范 別限制,從使用性的觀點,I 0 μ m〜1 0 0 μ m的厚虔 外層係含Ti 異且難以被 且,本發明 置。 HJ 申請 2004- 本專利申請 優先權的主 屬薄膜層, 該金屬薄膜 氧化物薄膜 晶系金屬氧 ),可同時 效果。 限制,例如 處理者、爲 添加例如微 表面粗糙化 絕緣性的觀 的厚度無特 ί較佳。 200528580 (4) 上述金屬薄膜層係包含選自Cr、Ni、Αιχ、Ag以及這 些的合金所成群的1種以上的金屬,從價格的觀點C r以及 /或N i更好,從環境污染的觀點N i更加好。因爲C r與N i 這些本身形成安定的氧化膜,或Au與Ag這些本身難以 氧化,在金屬氧化物薄膜層的形成時,抑制銅箔的氧化’ 確保電容器的絕緣性。這些以外的金屬,例如大多使用於 Si02基板抑制氧化的Pt、Ti、Pd,在本發明形成於銅箔上 φ 的情況,容易於金屬氧化物薄膜層產生破裂,難以得到可 靠性高的電容器。作爲合金,選自 Cr、Ni、Au或Ag所 成群的至少1種或複數成分包含8 0重量%以上於合金中較 佳。如此的合金,係例如Ni-P合金、Ni-B合金、Ni-P-B 合金、Ni-Co 合金、Ni-Cr 合金、Ni-Cr-Al 合金、Ni-Cr-Si 合金、Ag-Nd合金。選自(:1*、]^、人11或八§所成群的至 少1種或複數成分的含有率不足8 0重量%的情況,確保電 容器的絕緣性的效果有變低之虞。從價格與容易形成的觀 φ 點,Ni-P合金更好。 上述金屬薄膜層的厚度,在50 nm〜1 μηι的範圍較佳, 100nm〜8 0 0nm的範圍更好。若厚度不足50nm絕緣性低, 故不適合。又若厚度超過1 μηι更厚,一般不利於價格面。 薄膜層的厚度之測量,可以聚離子束加工裝置(FIB)切 削’所得剖面利用掃描式離子顯微鏡(S IM )觀察測量長 度。 朝銅箔上形成金屬薄膜層的方法無特別限制,可適用 例如電鍍法、蒸鐽法、濺鍍法等。 -8- 200528580 (5) 上述介電體薄膜,至少有包含Ti爲構成元素的非晶 系金屬氧化物薄膜層(以下,稱爲含Ti的非晶系金屬氧 化物薄膜層)作爲其構成的最外層。而且,所謂「最外層 」係指構成介電體薄膜的複數薄膜層中,從上述金屬薄膜 層在層的厚度方向最遠的位置形成的層,即成爲介電體薄 膜表面的層。當然含Ti的非晶系金屬氧化物薄膜層也可 單獨作爲介電體薄膜。 Φ 作爲含Ti的非晶系金屬氧化物薄膜層,例如Ti〇、200528580 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a metal oxide thin film composite material suitable for an electronic device such as a capacitor and a manufacturing method thereof, a multilayer wiring board using the thin film composite material, and Electronic parts. [Previous technology] • With the progress of miniaturization and high performance of electronic equipment, materials such as capacitors and memory devices have been required to have higher dielectric constants. Metal oxides such as barium titanate, barium titanate total, and lead chromate, such as titanates, exhibit high dielectric constants and are suitable for these applications. Recently, due to the requirements of high miniaturization and high performance, the device itself has been required to be small and high-density. It is currently under review to embed thin-film devices in substrates. In order to form a device using a thin film, it is necessary to form a metal layer as an electrode. For example, 'if the capacitor is formed of a thin film, the thin film # is sandwiched by a metal layer, that is, a general sandwich structure is used. The traditional metal layer can be formed by a dry process typified by sputtering. However, dry processes are expensive and difficult to handle large substrates. As a means to deal with this problem, for example, a method of forming a metal layer by electroplating, and a method generally used in the field of printed wiring boards, although the technique of metallizing the surface of a metal oxide by electroplating is a widely used technique. The surface of the metal oxide is chaotically produced into a roughened shape, and the adhesion between the metal layer and the metal oxide is maintained through the effect of the anchor (for example, Japanese Laid-Open Patent Publication No. 7-6 2 5 4 7). However, 200528580 (2), because the thickness of the film is as thin as a sub-micron, it is impossible to produce a roughened shape that maintains a high degree of effectiveness as an anchor. Further, the deterioration of the uniformity of the film thickness is not suitable because it causes the non-uniformity of the dielectric characteristics when the capacitor is formed. Therefore, it is difficult to form a metal layer with sufficient adhesion by plating on the surface of the metal oxide film. On the other hand, methods for preventing roughening on smooth surfaces such as resin and glass have also been actively investigated. It is known that chemical bonding such as coupling agents and the like is not used for physical bonding through the effect of anchors. For example, Japanese Laid-Open Patent Publication No. 2002-226972 discloses that uniformly attaching a coupling agent to a functional group of a resin or a glass surface can improve the uniformity of a plating catalyst and can obtain high adhesion to a plating metal layer. [Summary of the Invention] However, on the surface of metal oxide thin films such as barium titanate and gadolinium titanate, due to the lack of functional groups attached by the coupling agent, the coupling agent cannot be uniformly attached, and it is difficult to obtain sufficient metal oxide films and plated metal layers. Adhesion. In addition, when the metal oxide thin film is eroded by the plating solution, the uniformity of the film thickness is damaged, and the dielectric characteristics of the obtained capacitor are uneven. In view of the above-mentioned problem, the present invention aims to provide a metal oxide thin film composite material which is excellent in adhesion with a metal layer formed by a plating method and is hardly attacked by a plating solution. The thin film composite material of the present invention is characterized by including a copper box, a surface formed on one side of the copper foil, and one or more metals selected from the group consisting of Cr, Ni, An, Ag, and alloys of these. A metal thin film layer, and a dielectric thin film formed on the surface of the metal thin film layer with a specific dielectric constant] of 0 to 2000, and a film thickness of 200528580 (3) 0.05 to 2 μm, and the most structure of the dielectric thin film Elemental amorphous metal oxide thin film layer. According to the present invention, it is possible to provide a metal oxide thin film composite material excellent in adhesion with a metal layer and corroded by a plating solution. The thin film composite material can be applied to electronic devices such as capacitors. This application is based on the previous Japanese patent application No. 042749 (application date February 19, 2004) and date 2004-272041 (application date 2004) September 17) Accompanying Zhang and referring to these instructions combined. [Embodiment] The thin film composite material of the present invention includes: a copper foil; gold is formed on the copper foil; and a dielectric thin film is formed thereon as an amorphous metal layer containing at least Ti as a constituent element. Outermost. The non-φ thin film layer containing Ti as a constituent element is used as the outermost layer of the dielectric thin film layer (the surface improves the adhesion of the silane coupling agent and the prevention of the chemical liquid erosion: the above-mentioned copper foils are generally used copper foils) Either one can be used without applying Zn or chromate on the surface for the purpose of heat resistance and rust prevention to improve the adhesive surface roughening or other elements for the purpose of improving the characteristics of Sn, etc. In addition, the copper foil is rough The surface to be converted is preferably a surface that does not form the above-mentioned metal thin film layer from the point that the capacitor is well held. The copper range is limited. From the viewpoint of usability, a thick outer layer of I 0 μm to 100 μm contains Ti is different and difficult to be used in the present invention. HJ application 2004- The main thin film layer of the priority of this patent application, the metal thin film oxide thin film crystalline metal oxygen), can have simultaneous effects. Restrictions, such as the thickness of the processor, are not particularly preferred in order to add, for example, micro-surface roughening insulation. 200528580 (4) The metal thin film layer system contains one or more metals selected from the group consisting of Cr, Ni, Alx, Ag, and these alloys, and Cr and / or Ni are more preferable from the viewpoint of price, and environmental pollution The view Ni is better. Because Cr and Ni form a stable oxide film by themselves, or Au and Ag are difficult to oxidize by themselves, the formation of a metal oxide film layer suppresses the oxidation of the copper foil 'to ensure the insulation of the capacitor. Metals other than these are, for example, Pt, Ti, and Pd, which are mostly used in SiO2 substrates to suppress oxidation. When the present invention is formed on a copper foil φ, the metal oxide thin film layer is easily broken, and it is difficult to obtain a highly reliable capacitor. As the alloy, at least one selected from the group consisting of Cr, Ni, Au, and Ag or a plurality of components is preferably contained in the alloy in an amount of 80% by weight or more. Such alloys are, for example, Ni-P alloy, Ni-B alloy, Ni-P-B alloy, Ni-Co alloy, Ni-Cr alloy, Ni-Cr-Al alloy, Ni-Cr-Si alloy, and Ag-Nd alloy. When the content rate of at least one or a plurality of components selected from (: 1 *,] ^, people 11 or 8§ is less than 80% by weight, the effect of ensuring the insulation of the capacitor may be lowered. The price and easy-to-form φ point of Ni-P alloy are better. The thickness of the metal thin film layer is preferably in the range of 50 nm to 1 μηι, and the range of 100 nm to 800 nm is better. If the thickness is less than 50 nm, the insulation property is better. It is not suitable because it is low. If it is thicker than 1 μm, it is generally not conducive to the price. The measurement of the thickness of the thin film layer can be cut by a polyion beam processing device (FIB) and observed with a scanning ion microscope (S IM). Measure the length. There is no particular limitation on the method for forming the metal thin film layer on the copper foil. For example, plating, evaporation, sputtering, etc. can be applied. -8- 200528580 (5) The above dielectric film contains at least Ti An amorphous metal oxide thin film layer (hereinafter referred to as a Ti-containing amorphous metal oxide thin film layer) constituting an element is an outermost layer of the constitution. The "outermost layer" refers to a dielectric thin film. In a plurality of thin film layers, The layer formed from the metal thin film layer farthest from the layer thickness direction is the layer on the surface of the dielectric thin film. Of course, the Ti-containing amorphous metal oxide thin film layer can also be used as the dielectric thin film alone. Φ Examples of the Ti-containing amorphous metal oxide thin film layer include Ti0,

Ti〇2等的薄膜層較佳。這些因具有充分的極性基,可使甲 矽烷偶合劑更均勻附著。亦即,可提高電鍍觸媒的均勻性 ,可形成密著性高的電鍍金屬層。而且,因耐腐蝕性優異 藥液的侵蝕少,可抑制裝置特性的不均勻。而且,含Ti 的非晶系金屬氧化物薄膜層也可包含結晶區域。若結晶區 域佔優勢,可更減少藥液的侵蝕,若非結晶區域佔優勢, 可更提高與金屬層的密著性。 # 而且,含Ti的非晶系金屬氧化物薄膜層的厚度,以 10nm〜200nm範圍較佳,20〜150nm的範圍更好。該厚度若 不足1 〇nm,該層容易產生孔洞,難以賦予電鍍觸媒均勻 性,也有容易被藥液侵蝕的傾向。另一方面,若超過 2 0 Onm,容易導致裝置特性降低,故不適合。 以複數層構成介電體薄膜的情況,除成爲最外層的含 Ti的非晶系金屬氧化物薄膜層以外的層,例如使用含B a 以及/或Sr與Ti爲構成元素之複合金屬氧化物薄膜層較 佳。更好爲例如含Ba以及/或Sr與Ti爲構成元素之非晶 -9- 200528580 (6) 系複合金屬氧化物構成的複合金屬氧化物薄膜層、含B a 以及/或Sr與Ti爲構成元素之結晶性複合金屬氧化物構 成的複合金屬氧化物薄膜層、包含這些非晶系複合金屬氧 化物以及結晶性複合金屬氧化物兩者的複合金屬氧化物薄 膜層等,包含上述任一層之介電體薄膜,也可成爲與金屬 層的密著佳、不受藥液侵蝕的高介電常數的介電體薄膜。 爲了提高裝置的絕緣性,含Ba以及/或Sr與Ti爲構成元 φ 素之非晶系複合金屬氧化物構成的複合金屬氧化物薄膜層 ,作爲介電體的構成特別好。所以,本發明的介電體薄膜 ,較佳爲由含Ba以及/或Sr與Ti爲構成元素之非晶系複 合金屬氧化物構成的複合金屬氧化物薄膜層,以及含Ti 爲構成元素之非晶系金屬氧化物薄膜層構成,更好爲含 Ba以及/或Sr與Ti爲構成元素之非晶系複合金屬氧化物 構成第一複合金屬氧化物薄膜層、含Ba以及/或Sr與Ti 爲構成元素之第二複合金屬氧化物薄膜層,以及含Ti爲 φ 構成元素之非晶系金屬氧化物薄膜層構成。含B a以及/或 S r與T i爲構成元素複合金屬氧化物,在陶瓷中也具特別 高的介電常數(例如BaTi03爲1 5 00程度,SrTi03爲200程 度),可適合作爲電容器的材料。當然也可使用添加其他 元素、金屬氧化物之複合金屬氧化物,例如添加La於 BaTi03更高介電常數化之複合金屬氧化物、添加CaTi03 於BaTi03調整特性之複合金屬氧化物。 上述複合金屬氧化物薄膜層的厚度,特別是非晶系複 合金屬氧化物構成的複合金屬氧化物薄膜層,從確保絕緣 -10- 200528580 (7) 性的觀點’以1 〇 n m〜2 0 0 n m的範圍較佳,2 0〜1 5 0 n m的範圍 更好。絕緣性高,複合金屬氧化物必須有非晶系的區域, 非晶系區域比結晶區域的比介電常數低,而且裝置的介電 特性因與複合金屬氧化物薄膜層的厚度成反比,膜厚超過 需要以上會導致裝置的特性降低,故不適合。所以,厚度 的上限期望不超過200nm。而且,厚度不足l〇nm時會產 生孔洞,有無法確保必須的絕緣性的傾向。 藉由如上述複合金屬氧化物薄膜層構成的介電體薄膜 的比介電常數爲10〜2000較佳,20〜2000更好。若介電體薄 膜的比介電常數不到1 〇,容量密度變低,有難以得到充分 的裝置特性(電容容量)的傾向。而且,比介電常數爲了 超過2 0 0 0,膜必須在高溫燒成,難以應用於一般的配線板 製造製程。 而且’介電體薄fl吴的厚度在0.05〜2μπχ的範圍較佳。 若介電體薄膜的厚度不到〇 · 〇 5 μ m,絕緣性以及裝置特性難 以同時存在之虞,另一方面,膜厚超過2 μ m時,裝置特性 容易降低,有難以得到期望的電容容量之傾向,再者,製 作多層板時板厚變厚,不利於基板的薄型化。 而且,於金屬薄膜上形成如上述金屬氧化物薄膜層構 成的介電體薄膜的方法,可利用習知的方法,無特別限制 ,例如凝膠法、濺鍍法、化學氣相沈積法(CVD )等。從 容易調整複合金屬氧化物成爲期望的組成的觀點,以凝膠 法較佳。而且,複合金屬氧化物薄膜層形成時,其熱處理 溫度爲了抑制銅箔的氧化,在40(TC以下較佳,35(rc以下 -11 - 200528580 (8) 更好。特別是在形成連接上述金屬薄膜層之複合金屬氧化 物薄膜層時,在400 °C以下熱處理較佳。 而且’含Ti的非晶系金屬氧化物薄膜層的表面,亦 即上述介電體薄膜表面上,也可形成單層或複數層包含1 種以上的Ni、Ni-P、Ni-B等Ni合金、Cii等金屬之金屬 層。於金屬層係後繪成爲電極、電路的層。作爲形成如此 金屬層的方法,可使用電鍍、濺鍍等習知的方法,無特別 # 限制’適用於無電解電鍍法時,比濺鍍等乾式製程價格上 優且可形成枪者性局的金屬層,又因大型基板處理容易, 故較適合。更好爲經過介電體薄膜的表面以甲矽烷偶合劑 處理的步驟、甲矽烷偶合劑處理過的表面賦予電鍍觸媒的 步驟、以及觸媒爲核進行無電解電鍍的步驟,形成金屬層 。藉由無電解電鍍處理前將甲矽烷偶合劑賦予介電體薄膜 表面’可得均勻密著性更高的金屬層。而且,由於Ni電 鍍膜、Cii電鍍膜雖然密著性優異,但電氣特性差,以Ni_ • p、Ni-B等Ni合金作爲底電鍍,於其上以電氣電鍍覆以 厚的c 11 ’成爲複數層構造的金屬層較佳。 而且,上述金屬層的厚度,50nm〜30μιη較佳。若不 到5 0nm,難以得到均勻的金屬層,若超過3〇μηι,電極加 工時負荷變大,不經濟。 本發明的薄膜複合材料,適用於製造多層配線板以及 電子零件’例如藉由蝕刻上述金屬層、上述複合金屬氧化 物薄膜,可形成電容器、濾波器電路。 構成包含本發明的薄膜複合材料之多層配線板以及電 -12- 200528580 (9) 子零件的製造方法,例如經過(1 )將本發明的薄膜複合 材料層合於膠片(prep r eg )、內層基板的步驟;(2 )介 電體薄膜的表面以甲矽烷偶合劑處理的步驟;(3 )甲矽 烷偶合劑處理過的表面賦予電鍍觸媒的步驟;(4 )以觸 媒爲核進行無電解電鍍的步驟的方法等。而且,如上述步 驟之後形成電容器用電極的情況,例如於上述步驟(4 ) 形成的無電解電鑛層上再形成電解電鑛層後,依序飽刻這 些電鍍層而可形成。而且,使用預先形成上述金屬層於介 電體薄膜上者作爲薄膜複合材料的情況,無需進行與其相 同的形成金屬層之上述步驟(2 )〜(4 ),所以於該情況 ,多層配線板等的製造步驟變得更簡化。 然後,藉由實施例具體地說明本發明,但本發明不限 於這些實施例。 [實施例] (薄膜複合材料1 )A thin film layer such as Ti02 is preferred. These have sufficient polar groups to make the silicone coupling agent adhere more uniformly. That is, the uniformity of the plating catalyst can be improved, and a plated metal layer having high adhesion can be formed. In addition, since the chemical solution is excellent in corrosion resistance, it is less likely to cause unevenness in device characteristics. The Ti-containing amorphous metal oxide thin film layer may include a crystal region. If the crystalline area is dominant, the erosion of the chemical solution can be reduced, and if the non-crystalline area is dominant, the adhesion with the metal layer can be further improved. # Moreover, the thickness of the Ti-containing amorphous metal oxide thin film layer is preferably in the range of 10 nm to 200 nm, and more preferably in the range of 20 to 150 nm. If the thickness is less than 10 nm, holes are likely to be formed in the layer, it is difficult to impart uniformity to the plating catalyst, and it tends to be easily eroded by the chemical solution. On the other hand, if it exceeds 20 Onm, it is easy to cause degradation of the device characteristics, so it is not suitable. When the dielectric thin film is composed of a plurality of layers, a layer other than the Ti-containing amorphous metal oxide thin film layer which becomes the outermost layer is, for example, a composite metal oxide containing B a and / or Sr and Ti as constituent elements. A thin film layer is preferred. More preferably, for example, amorphous -9-200528580 (6) based composite metal oxide containing Ba and / or Sr and Ti as constituent elements, and a composite metal oxide thin film layer containing B a and / or Sr and Ti A composite metal oxide thin film layer composed of an elemental crystalline composite metal oxide, a composite metal oxide thin film layer containing both of these amorphous composite metal oxides and a crystalline composite metal oxide, etc. The electrical thin film can also be a high-dielectric constant thin film that has good adhesion to the metal layer and is not affected by the chemical liquid. In order to improve the insulation of the device, a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements φ is particularly suitable as a dielectric. Therefore, the dielectric thin film of the present invention is preferably a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements, and a non-metal containing Ti as a constituent element. The crystalline metal oxide thin film layer is composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements, and the first composite metal oxide thin film layer is preferably composed of Ba and / or Sr and Ti. The second composite metal oxide thin film layer of the constituent elements and the amorphous metal oxide thin film layer containing Ti as the φ constituent element. Contains B a and / or S r and T i as constituent element composite metal oxides, and also has a particularly high dielectric constant in ceramics (for example, BaTi03 is about 1 500, and SrTi03 is about 200), which is suitable for capacitors. material. Of course, it is also possible to use a composite metal oxide containing other elements and metal oxides, for example, a composite metal oxide having La with a higher dielectric constant added to BaTi03, and a composite metal oxide having CaTi03 added to BaTi03 to adjust characteristics. The thickness of the above-mentioned composite metal oxide thin film layer, especially a composite metal oxide thin film layer composed of an amorphous composite metal oxide, from the viewpoint of ensuring insulation -10- 200528580 (7) properties, 'from 10 nm to 200 nm The range is better, and the range from 20 to 150 nm is better. The insulating property is high, and the composite metal oxide must have an amorphous region. The amorphous region has a lower specific dielectric constant than the crystalline region, and the dielectric characteristics of the device are inversely proportional to the thickness of the composite metal oxide thin film layer. A thickness exceeding the required thickness is not suitable because the characteristics of the device are degraded. Therefore, the upper limit of the thickness is desirably not more than 200 nm. Furthermore, if the thickness is less than 10 nm, pores are generated, and the necessary insulation properties tend not to be ensured. The specific dielectric constant of the dielectric thin film composed of the composite metal oxide thin film layer as described above is preferably 10 to 2000, and more preferably 20 to 2000. When the specific dielectric constant of the dielectric thin film is less than 10, the capacity density becomes low, and it is difficult to obtain sufficient device characteristics (capacitance capacity). In addition, in order for the specific permittivity to exceed 2000, the film must be fired at a high temperature, which is difficult to apply to a general wiring board manufacturing process. The thickness of the thin dielectric body is preferably in the range of 0.05 to 2 μπχ. If the thickness of the dielectric thin film is less than 0.05 μm, it is difficult to have both insulation and device characteristics at the same time. On the other hand, when the film thickness exceeds 2 μm, the device characteristics are likely to decrease, and it may be difficult to obtain a desired capacitance. The tendency of capacity is that the thickness of the board becomes thicker when manufacturing a multilayer board, which is not conducive to the reduction in thickness of the substrate. In addition, a method for forming a dielectric thin film composed of the above-mentioned metal oxide thin film layer on a metal thin film may be a conventional method without any particular limitation, such as a gel method, a sputtering method, a chemical vapor deposition method (CVD), and the like. )Wait. From the viewpoint of easily adjusting the composite metal oxide to a desired composition, the gel method is preferred. In addition, when the composite metal oxide thin film layer is formed, the heat treatment temperature is preferably 40 (TC or lower, 35 (rc or lower-11-200528580 (8)) in order to suppress the oxidation of the copper foil. In particular, it is formed to connect the above metals. In the case of a composite metal oxide thin film layer of a thin film layer, heat treatment is preferably performed at a temperature below 400 ° C. Furthermore, the surface of the amorphous metal oxide thin film layer containing Ti, that is, the surface of the above-mentioned dielectric thin film, can also form a single layer. The layer or layers include one or more metal layers such as Ni alloys such as Ni, Ni-P, Ni-B, and Cii. After the metal layer system is drawn, the layers are used as electrodes and circuits. As a method of forming such a metal layer, Can use conventional methods such as electroplating and sputtering, without special restrictions # Applicable to non-electrolytic plating, which is more expensive than dry processes such as sputtering and can form a metal layer of the gunner's bureau. It is also used for large substrate processing. It is easy to use, so it is more suitable. It is better to provide a step of treating the surface of the dielectric film with a silane coupling agent, a step of applying a plating catalyst to the surface treated with the silane coupling agent, and electroless plating using the catalyst as a core. step A metal layer is formed. By applying a silane coupling agent to the surface of the dielectric thin film before the electroless plating treatment, a more uniform metal layer can be obtained. Moreover, although the Ni plating film and the Cii plating film are adhered, It has excellent electrical properties but poor electrical characteristics. It is preferred to use Ni alloys such as Ni_ • p and Ni-B as the base plating, and to apply metal plating with thick c 11 ′ to form a multiple-layer metal layer. The thickness of the layer is preferably from 50 nm to 30 μm. If it is less than 50 nm, it is difficult to obtain a uniform metal layer. If it exceeds 30 μm, the load during electrode processing becomes large and uneconomical. The thin film composite material of the present invention is suitable for manufacturing multiple layers Wiring board and electronic component 'For example, a capacitor and a filter circuit can be formed by etching the above-mentioned metal layer and the above-mentioned composite metal oxide film. A multilayer wiring board including the thin-film composite material of the present invention and an electric circuit are provided. A method for manufacturing a sub-component, for example, (1) a step of laminating a thin film composite material of the present invention on a film (prep r eg) and an inner substrate; (2) a table of a dielectric film A step of treating with a silane coupling agent; (3) a step of applying a plating catalyst to the surface treated with the silane coupling agent; (4) a method of performing an electroless plating process using the catalyst as a nucleus; and the like In the case where a capacitor electrode is formed later, for example, after the electrolytic power ore layer is formed on the electroless power ore layer formed in the above step (4), these electroplated layers can be formed by sequentially saturating them. In addition, the above-mentioned metal layer is formed in advance. In the case where a dielectric film is used as a thin film composite material, it is not necessary to perform the same steps (2) to (4) as described above for forming a metal layer. Therefore, in this case, the manufacturing steps of a multilayer wiring board and the like are simplified. Next, the present invention will be specifically described by examples, but the present invention is not limited to these examples. [Example] (Thin film composite material 1)

Ba ( OC2H5 ) 2以及 Ti ( 0-i-C3H7 )的莫耳比爲 j : 1 ,利用分子篩溶解於脫水的2-甲氧基乙醇,得到〇·6Μ的 溶液。然後,一邊攪拌該溶液,一邊回流! 8小時,得到複 合金屬烷氧化物·· BaTi ( OC2H4OCH3 ) 6的溶液A。 然後’溶液A的一部分以2-甲氧基乙醇稀釋爲溶液濃 度〇·2Μ的溶液b。另一方面,於溶液a的〜部分添加與 以的莫耳比成爲1:1的水以及成爲1:0.15的氨,於1〇〇。〇 攪拌3小時後,以2 _甲氧基乙醇稀釋爲〇 . 2M的含結晶性金 -13- 200528580 (10) 屬氧化物粒子的溶液c。該〇·2Μ調製的2種溶液B以及溶 液C以體積比1 : 1混合,得到溶液D (複合金屬烷氧化物 化合物的總和/結晶性金屬氧化物粒子=50莫耳%/50莫耳% )° 而且,正鈦酸四異丙酯以體積比3: 1的2 -甲氧基乙醇 與乙酸混合的溶液稀釋爲0 · 4 Μ,得到溶液E。 另一方面,將lOcmXIOcm大小厚度70μπι的銅箔6( 三井金屬礦業(股)製、商品名3EC-VLP-70 )的光、澤面 側,以濺鍍法形成厚度5 00nm的Ni薄膜層5,得到附有 Ni薄膜層的銅箔。 然後,於該附有N i薄膜層的銅箔的N i薄膜層5側, 旋轉塗佈溶液B。在3 5 0 °C的熱墊板上乾燥4分鐘後,再旋 轉塗佈溶液B,再進行同樣的乾燥,形成膜厚80nm的第 一複合金屬氧化物薄膜層2。再者,於該第一複合金屬氧 化物薄膜層2上,旋轉塗佈溶液D、進行同樣的乾燥,反 覆進行8次如此的操作,形成膜厚40 0 nm的第二複合金屬 氧化物薄膜層3。再於該第二複合金屬氧化物薄膜層3上, 旋轉塗佈溶液E —次後,在3 5 0 °C的熱墊板上燒成2小時, 形成膜厚5 0 n m的含T i的非晶系金屬氧化物薄膜層4。如 此得到薄膜複合材料1 (圖1 ),其在附有Ni薄膜層的銅 箔的Ni薄膜層5上,具有由第一複合金屬氧化物薄膜層2 、第二複合金屬氧化物薄膜層3以及含Ti的非晶系金屬氧 化物薄膜層4構成、比介電常數3 7、膜厚5 3 0 nm的介電體 薄膜1 3。而且’各層膜厚以及介電體薄膜的比介電常數, -14- 200528580 (11) 由如下方式測定。 〈膜厚〉 於薄膜複合材料的介電體薄膜表面,貼附任意長度 5 mm寬的聚醯亞胺膠帶(例如日東電工公司製Kapton膠 帶)’使用平均粒徑30μιη的含氧化鋁水系處理液高壓水 洗’蝕刻除去介電體薄膜。進行超音波洗淨後,剝離聚醯 亞胺膠帶’使用Ambios公司製接觸探針式段差·表面形 狀測定裝置XP-2 ’測定介電體薄膜(各金屬氧化物層) 的厚度。 〈比介電常數〉 於薄膜複合材料的介電體薄膜表面,固定金屬遮罩, 以職鑛法形成50nm Cr層、200nm Cu層,形成lmmXlmm 大小的上部電極。然後,於該上部電極附近的金屬氧化物 Φ 薄膜層以鑽石筆切削,露出N i薄膜下的銅箔,該上部電 極與露出的銅箔間的靜電容量視爲電容器的靜電容量,測 定其値。由靜電容量與膜厚使用下述式,求得介電體薄膜 的比介電常數。而且,靜電容量係於3處測定點,使用安 捷倫科技公司製4 2 8 5 A型精密 L C R儀,於2 5 °C ,頻率 1 MHz的條件下測定的値,使用其平均値。 C = s〇sr(S/d) -15- 200528580 (12) (式中,C表示靜電容量,ε()表示真空介電常數,^表示 介電體薄膜的比介電常數,s表示上部電極的面積&gt;(1表 示介電體薄膜的膜厚。) (薄膜複合材料2) 除溶液E的旋轉塗佈次數由〗次改爲3次,形成膜厚 15 0nm的含Ti非晶系金屬氧化物薄膜層外,與薄膜複合 • 材料1同樣的步驟,得到具有比介電常數3 2、膜厚6 3 〇 nm 的介電體薄膜層之薄膜複合材料2。 (薄膜複合材料3 ) 除省略溶液E的旋轉塗佈,不形成含丁丨非晶系金屬 氧化物薄膜層外,與薄膜複合材料〗同樣的步驟,得到具 有比介電常數4〇、膜厚48〇nm的介電體薄膜層之薄膜複合 材料3。 (實施例1 ) 方^使用氫氧化鈉調整爲p Η 9的水溶液中混合1重量% 的甲砂院偶合劑Α-1 10〇 (日本Uni car股份公司製、商品 名),將薄膜複合材料〗於6 〇 〇c浸漬於該溶液5分鐘。然後 ’將薄膜複合材料1於4〇艺的溫水熱水洗3分鐘,以 Neocont B ( Atotech 股份公司製' 商品名)、Neocont 8 3 4 ( Atotech股份公司製、商品名)、水洗、Ne〇c〇nt WA ( Atotech股份公司製、商品名)、水洗的順序處理, -16- 200528580 (13) 賦予電鍍觸媒。然後,使用I c P N i k ο 1 ο η U (奧野製藥工 業股份公司製、商品名)’形成0·4μιη的無電解Ni-P電 鍍層7於薄膜複合材料1的介電體薄膜〗3的表面。再者,以 電氣Cu電鍍形成丨5μπι的Cu電鍍層8 (圖2 )。然後,以 黃光微影法形成蝕刻光阻。作爲光阻材料,係使用鹼顯影 類的乾膜光阻之H-93 3 0 (日立化成工業股份公司製、商 品名)。然後,以1 5。/。過硫酸銨水溶液,蝕刻除去cu電 # 鍍層8。以5 %的氫氧化鈉水溶液除去蝕刻光阻,又以 Toprip AZ (奧野製藥工業股份公司製、商品名)蝕刻除 去無電解Ni-P電鍍層7。如此於薄膜複合材料〗的介電體 薄膜13的表面形成大小的上部電極9 (圖3 )。 (實施例2 ) 除將薄膜複合材料!改爲薄膜複合材料2外,利用與實 施例1同樣的步驟,形成lmmXlmm大小的上部電極。 參 (實施例3 ) 於薄膜複合材料!的銅箔6的面上,隔著厚度i〇(^m的 玻璃環氧膠片1 1 (日立化成工業股份公司製、商品名 G E A - 6 7 9 F ),配置厚度】2 μ m的銅箔丨2 (古河電路箔股份 公司、商品名gts]2),於溫度18(rc、壓力K5Mpa、加 熱加壓時間60分鐘的壓合條件下層合一體化,製作多層板 。然後,於薄腠複合材料丨的介電體薄膜i 3的表面,利用 與實施例1同樣的步驟,形成上部電極9。然後,再以黃光 -17- 200528580 (14) 微影法,於薄膜複合材料1的介電體薄膜丨3的表面的既定 處,形成蝕刻光阻’使用含平均粒徑3 〇 μηι氧化鋁的水系 處理液高壓水洗,蝕刻除去介電體薄膜i 3。進行超音波洗 淨後,蝕刻光阻以5 %的氫氧化鈉水溶液剝離,再以 Toprip BT (奧野製藥工業股份公司製、商品名)蝕刻除 去N i薄膜層5。以1 5 %過硫酸銨水溶液蝕刻除去銅箔6。 將蝕刻光阻以5 °/。的氫氧化鈉水溶液剝離,形成下部電極 1 0 (圖 4 ) 〇 (比較例1 ) 除將薄膜複合材料1改爲薄膜複合材料3外,利用與寶 施例1同樣的步驟,形成1 mniX 1 mm大小的上部電極。 (比較例2 ) 將薄膜複合材料3於使用氫氧化鈉調整爲p H 9的水溶液中 處理後,以水洗、Neocont B (Atotech股份公司製、商品 名)、Neocont 8 3 4 ( Atotech股份公司製、商品名)、水 洗、Neocont WA ( Atotech股份公司製、商品名)、水洗 的順序處理。然後,使用ICP Nikolon U (奧野製藥工藥 月又份公司製、商品名),形成〇 · 4 μ m的無電解N i - p電金度 層於薄膜複合材料3的介電體薄膜的表面。再者,以電氣 Cu電鍍形成15μηι的cu電鍍層。然後,以黃光微影法形 成蝕刻光阻。作爲光阻材料,係使用鹼顯影類的乾膜光阻 之H- 9 3 3 0 (日立化成工業股份公司製、商品名)。然後 -18- 200528580 (15) ,以1 5%過硫酸銨水溶液,蝕刻除去cu電鍍層。以5%的 氫氧化鈉水溶液除去蝕刻光阻,又以Top rip AZ (奧野製 楽工業股伤公司製、商品名)餓刻除去無電解Ni-P電鍍 層。如此於薄膜複合材料3的介電體薄膜的表面形成 1 m m X 1 m m大小的上部電極。 (密著性評價) 然後,實施例1〜3、比較例1以及2製作的評價基板的 上部電極以及介電體薄膜最外層的密著性,以膠帶測試調 查。評價係以玻璃紙膠帶(JI S Z 1 5 2 2規定)壓著上部電 極6處地方,1 〇秒後瞬間剝離,觀察電極的剝離。結果表 示於表1。表中的NG數係對電極6處地方的剝離數。 【表1】 項目 NG數 實施例1 0 實施例2 0 實施例3 0 比較例1 1 比較例2 3The molar ratio of Ba (OC2H5) 2 and Ti (0-i-C3H7) was j: 1, which was dissolved in dehydrated 2-methoxyethanol using a molecular sieve to obtain a 0.6M solution. Then, while stirring the solution, reflux! After 8 hours, a solution A of a composite metal alkoxide · BaTi (OC2H4OCH3) 6 was obtained. Then, a portion of the 'solution A was diluted with 2-methoxyethanol to a solution b having a solution concentration of 0.2 M. On the other hand, water at a molar ratio of 1: 1 to ammonia and ammonia at 1: 0.15 were added to ~ part of solution a at 100. 〇 After stirring for 3 hours, the solution c containing crystalline gold -13-200528580 (10) metal oxide particles was diluted with 2-methoxyethanol to 0.2M. The two kinds of solution B and solution C prepared by the 0.2M were mixed at a volume ratio of 1: 1 to obtain a solution D (total of composite metal alkoxide compound / crystalline metal oxide particles = 50 mole% / 50 mole% ) ° Furthermore, tetraisopropyl orthotitanate was diluted to a solution of 2-Methanol and acetic acid in a volume ratio of 3: 1 to 0.4 M to obtain a solution E. On the other hand, a 10 cm × 10 cm thick copper foil 6 (manufactured by Mitsui Metals Mining Co., Ltd., trade name: 3EC-VLP-70) was used to form a Ni thin film layer 5 with a thickness of 5000 nm on the light and satin sides 5 To obtain a copper foil with a Ni thin film layer. Then, the solution B was spin-coated on the Ni film layer 5 side of the copper foil with the Ni film layer. After drying on a hot pad at 350 ° C for 4 minutes, the coating solution B was spin-coated and dried in the same manner to form the first composite metal oxide thin film layer 2 with a film thickness of 80 nm. Furthermore, the first composite metal oxide thin film layer 2 was spin-coated with the solution D and dried in the same manner. This operation was repeated 8 times to form a second composite metal oxide thin film layer having a thickness of 40 nm. 3. Then, the second composite metal oxide thin film layer 3 was spin-coated with solution E for one time, and then fired on a hot pad at 350 ° C for 2 hours to form a Ti-containing film having a thickness of 50 nm. Amorphous metal oxide thin film layer 4. Thus, a thin film composite material 1 (FIG. 1) is obtained, which has a first composite metal oxide thin film layer 2 and a second composite metal oxide thin film layer 3 on a Ni thin film layer 5 of a copper foil with a Ni thin film layer, and A Ti-containing amorphous metal oxide thin film layer 4 is a dielectric thin film 13 having a specific dielectric constant 37 and a film thickness 5 30 nm. The film thickness of each layer and the specific permittivity of the dielectric thin film are measured in the following manner. <Film thickness> A 5 mm wide polyimide tape (such as Kapton tape manufactured by Nitto Denko Corporation) is attached to the surface of the dielectric thin film of the thin film composite material. 'Alumina-containing aqueous treatment solution with an average particle diameter of 30 μm is used. High-pressure water washing 'etching removes the dielectric film. After ultrasonic cleaning, the polyimide tape was peeled off and the thickness of the dielectric film (each metal oxide layer) was measured using a contact probe type step and surface shape measuring device XP-2 manufactured by Ambios. <Specific permittivity> A metal mask is fixed on the surface of the dielectric thin film of the thin film composite material, and a 50 nm Cr layer and a 200 nm Cu layer are formed by a professional mining method to form an upper electrode having a size of 1 mm × 1 mm. Then, the metal oxide Φ thin film layer near the upper electrode was cut with a diamond pen to expose the copper foil under the Ni film. The electrostatic capacitance between the upper electrode and the exposed copper foil was regarded as the capacitance of the capacitor, and its capacitance was measured. . The specific dielectric constant of the dielectric thin film was obtained from the electrostatic capacity and film thickness using the following formula. In addition, the electrostatic capacity was measured at three measurement points, using a 4 2 8 5 A precision LC instrument manufactured by Agilent Technologies, and the chirp measured at 25 ° C and a frequency of 1 MHz, and the average chirp was used. C = s〇sr (S / d) -15- 200528580 (12) (where C is the electrostatic capacity, ε () is the vacuum permittivity, ^ is the specific permittivity of the dielectric film, and s is the upper part Area of the electrode> (1 indicates the film thickness of the dielectric thin film.) (Thin film composite 2) The number of spin coatings except solution E was changed from 〖times to 3 times to form a Ti-containing amorphous system with a film thickness of 150 nm. Except for the metal oxide thin film layer, the same steps as the thin film composite material 1 were used to obtain a thin film composite material 2 having a dielectric thin film layer with a dielectric constant of 3 2 and a thickness of 6 300 nm. (Thin film composite material 3) Except that the spin coating of the solution E is omitted, and a thin film layer containing butyl and amorphous metal oxide is not formed, the same procedure as that of the thin film composite material is used to obtain a dielectric having a specific dielectric constant of 40 and a film thickness of 48 nm Thin film composite material 3 of the bulk film layer. (Example 1) Fang ^^ 1% by weight of the Kojishayuan coupling agent A-1 100 (made by Japan Uni car Co., Ltd.) was mixed with an aqueous solution adjusted to p Η 9 using sodium hydroxide. , Trade name), immerse the film composite material at 600 ° C for 5 minutes. Then 'the film The composite material 1 was washed with warm water and hot water for 4 minutes, and Neocont B (made by Atotech Corporation's trade name), Neocont 8 3 4 (made by Atotech Corporation, trade name), washed, Neocoon WA (Atotech Co., Ltd., trade name), sequential processing of washing, -16- 200528580 (13) Plating catalyst is given. Then, I c PN ik ο 1 ο η U (Okuno Pharmaceutical Industry Co., Ltd., trade name) 'An electroless Ni-P plating layer 7 of 0.4 μm was formed on the surface of the dielectric thin film 3 of the thin film composite material 1. Furthermore, a Cu plating layer 8 of 5 μm was formed by electro Cu plating (FIG. 2). The yellow photolithography method is used to form an etching photoresist. As the photoresist material, an alkali-developed dry film photoresist H-93 3 0 (manufactured by Hitachi Chemical Industry Co., Ltd., trade name) is used. Then, 15 is used. .Ammonium persulfate aqueous solution, etching to remove Cu electroplating layer 8. The photoresist was removed with a 5% sodium hydroxide aqueous solution, and electroless Ni-P plating was removed by etching with Toprip AZ (manufactured by Okano Pharmaceutical Industry Co., Ltd.). Layer 7. Dielectric body as thin film composite An upper electrode 9 of a size is formed on the surface of the thin film 13 (FIG. 3). (Example 2) An upper electrode having a size of 1 mm × 1 mm is formed by the same procedure as in Example 1 except that the thin film composite material is changed to the thin film composite material 2. Reference (Example 3) On the surface of the copper foil 6 of the thin film composite material, a glass epoxy film 1 1 (made by Hitachi Chemical Industry Co., Ltd., trade name GEA-6 7 9 F) is sandwiched by a thickness i0 (^ m). ), Configuration thickness] 2 μm copper foil 丨 2 (Furukawa Circuit Foil Co., Ltd., trade name gts) 2), laminated and integrated under a lamination condition at a temperature of 18 (rc, pressure K5Mpa, heating and pressing time of 60 minutes) , Making multilayer boards. Then, the upper electrode 9 was formed on the surface of the thin dielectric material film i 3 of the thin composite material by the same procedure as in Example 1. Then, using yellow light -17- 200528580 (14) lithography method, an etched photoresist is formed on a predetermined surface of the dielectric film 丨 3 of the thin film composite material 1 with an average particle size of 3 μm alumina. The aqueous treatment liquid was washed with high pressure water, and the dielectric film i 3 was removed by etching. After ultrasonic cleaning, the photoresist was peeled off with a 5% aqueous solution of sodium hydroxide, and the Ni thin film layer 5 was removed by etching with Toprip BT (manufactured by Okuno Pharmaceutical Co., Ltd., trade name). The copper foil 6 was removed by etching with a 15% ammonium persulfate aqueous solution. The etch photoresist was adjusted to 5 ° /. The sodium hydroxide aqueous solution was peeled off to form the lower electrode 10 (Fig. 4). ○ (Comparative Example 1) Except that the thin film composite material 1 was changed to the thin film composite material 3, 1 mniX 1 was formed by the same procedure as that of Baoshi Example 1. mm size upper electrode. (Comparative Example 2) The thin film composite material 3 was treated in an aqueous solution adjusted to pH 9 with sodium hydroxide, and then washed with water, Neocont B (manufactured by Atotech Co., Ltd.), Neocont 8 3 4 (manufactured by Atotech Co., Ltd.) , Trade name), water washing, Neocont WA (manufactured by Atotech Co., Ltd., trade name), and water washing in order. Then, ICP Nikolon U (trade name, manufactured by Okano Pharmaceutical Co., Ltd., trade name) was used to form a 0.4 μm electroless Ni-p electro-metallic layer on the surface of the dielectric thin film of the thin-film composite material 3. . Furthermore, a 15 μm Cu plating layer was formed by electro Cu plating. Then, an etching photoresist was formed by yellow light lithography. As the photoresist material, H- 9 3 3 0 (manufactured by Hitachi Chemical Industries, Ltd., trade name) is used as a dry film photoresist of alkali development type. Then -18- 200528580 (15), using a 5% aqueous solution of ammonium persulfate, etch to remove the Cu plating layer. The photoresist was removed with a 5% sodium hydroxide aqueous solution, and the electroless Ni-P plating layer was removed with a top rip AZ (manufactured by Okuno Sakai Industrial Co., Ltd., trade name). In this way, an upper electrode having a size of 1 m × 1 mm was formed on the surface of the dielectric thin film of the thin film composite material 3. (Evaluation of Adhesion) Then, the adhesion of the upper electrodes of the evaluation substrates prepared in Examples 1 to 3 and Comparative Examples 1 and 2 and the outermost layer of the dielectric film was checked with a tape test. The evaluation was carried out by pressing cellophane tape (specified by JI S Z 1 5 2 2) on 6 places of the upper electrode, and peeling off immediately after 10 seconds. Observation of electrode peeling. The results are shown in Table 1. The number of NG in the table is the number of peelings at six places on the counter electrode. [Table 1] Number of items NG Example 1 0 Example 2 0 Example 3 0 Comparative example 1 1 Comparative example 2 3

於實施例1〜3沒有一電極剝離。此因介電體薄膜的最 外層表面的氫氧基與甲矽烷偶合劑化學地且均勻地結合, 可得高密著力的效果。另一方面,於比較例1〜2因介電體 -19- 200528580 (16) 薄膜最外層表面缺乏極性基,無法得到充分的密著力,產 生電極剝離。如此根據本發明,可提高以電鍍形成的金屬 層以及介電體薄膜的密著性。 (容量不均的評價) 然後,對各實施例以及比較例作成的基板評價其電容 器的容量不均。於實施例1〜2製作的基板以及比較例i〜2製 • 作的基板,個別的上部電極附近的金屬氧化物薄膜層以鑽 石筆切削,露出N i薄膜下的銅箔,該上部電極與露出的 銅箔間的靜電容量視爲電容器的靜電容量,進行評價。而 且,對實施例3的基板,上部電極與蝕刻形成的下部電極 之間的靜電容量視爲電容器的靜電容量,進行評價◊而且 ,靜電容量的測定係於3 0處測定點,使用安捷倫科技公司 製4 2 8 5 A型精密L C R儀,於2 5 °C,頻率1 MHz的條件下測 定的値。結果表示於表2。 表2 項目 平均(PF) 最大(pF) 最小(pF) 不均程度 實施例1 640 770 5 10 ±20% 實施例2 450 520 390 ±15% 實施例3 6 10 730 490 土 20% 比較例1 800 1040 560 ±30% 比較例2 8 10 1050 560 ±30% - 20- 200528580 (17) 實施例1〜3的容量不均比較小,任一者都在土 2 〇 %的範 圍內。但是,比較例1以及2的容量不均較大,在± 3 0 %的 程度。此因電鍍觸媒附著不均、複合金屬氧化物薄膜層的 膜厚均勻性降低。本發明之薄膜複合材料,因顯示電鍍觸 媒均勻附著以及高耐腐蝕性,可抑制如此不均的產生。 上述係本發明的較佳實施態樣,本業者了解在不違背 本發明的精神與範圍可進行諸多變更以及修正。 【圖式簡單說明】 圖1表示實施例製作的薄膜複合材料1之剖面圖,由銅 箱6、Ni薄膜層5、以及第一複合金屬氧化物薄膜層2與第 二複合金屬氧化物薄膜層3與含T i的非晶系金屬氧化物薄 膜層4構成的介電體薄膜13所構成。 圖2表示實施例1中圖1的薄膜複合材料1上無電解n i -P電鍍層7以及電氣C u電鍍層8形成後的狀態之剖面圖。 φ 圖3表示實施例1中蝕刻圖2的電鍍層形成上部電極9後 的狀態之剖面圖。 圖4表示實施例3製作、其構成包含本發明的薄膜複合 材料之多層配線板的剖面圖,具備層合~體化於薄膜複合 材料1的銅箔6面上之膠片1 1以及銅箔1 2、與實施例1同樣 形成的上部電極9、因蝕刻薄膜複合材料1而形成的下部電 極1 0。 【主要元件符號說明】 -21 - 200528580 (18) 1 :薄膜複合材料 2 :第一複合金屬氧化物薄膜層 3:第二複合金屬氧化物薄膜層 4 :含Ti的非晶系金屬氧化物薄膜層 5 : N i薄膜層 6 :銅箔 7:無電解Ni-P電鍍層 φ 8 :電氣C u電鍍層 9 :上部電極 I 〇 :下部電極 II :膠片 1 2 :銅箔 1 3 :介電體薄膜In Examples 1 to 3, none of the electrodes peeled off. This is because the hydroxyl groups on the outermost surface of the dielectric film and the silane coupling agent are chemically and uniformly combined, and a high adhesion effect can be obtained. On the other hand, in Comparative Examples 1 to 2, due to the lack of a polar group on the surface of the outermost layer of the dielectric -19-200528580 (16), sufficient adhesion was not obtained, and electrode peeling occurred. As described above, according to the present invention, the adhesion of a metal layer and a dielectric thin film formed by electroplating can be improved. (Evaluation of Capacitance Unevenness) Then, the substrates prepared in each of Examples and Comparative Examples were evaluated for the uneven capacitance of the capacitors. In the substrates manufactured in Examples 1 to 2 and the substrates manufactured in Comparative Examples i to 2, individual metal oxide film layers near the upper electrode were cut with a diamond pen to expose the copper foil under the Ni film. The upper electrode and The capacitance between the exposed copper foils was regarded as the capacitance of the capacitor and evaluated. In addition, the capacitance between the upper electrode and the lower electrode formed by the etching of the substrate of Example 3 was regarded as the capacitance of the capacitor, and the capacitance was measured. The capacitance was measured at 30 measurement points using Agilent Technologies. A 4 2 8 5 type A precision LCR meter was used to measure the radon at 25 ° C and a frequency of 1 MHz. The results are shown in Table 2. Table 2 Item average (PF) maximum (pF) minimum (pF) degree of unevenness Example 1 640 770 5 10 ± 20% Example 2 450 520 390 ± 15% Example 3 6 10 730 490 20% Comparative Example 1 800 1040 560 ± 30% Comparative Example 2 8 10 1050 560 ± 30%-20- 200528580 (17) The variations in capacity of Examples 1 to 3 are relatively small, and any of them is within the range of 20%. However, Comparative Examples 1 and 2 have large capacity unevenness, which is about ± 30%. This causes unevenness in the adhesion of the plating catalyst and reduces the uniformity of the thickness of the composite metal oxide thin film layer. The thin film composite material of the present invention can suppress the occurrence of such unevenness because it shows uniform adhesion of the plating catalyst and high corrosion resistance. The above is a preferred embodiment of the present invention, and those skilled in the art understand that many changes and modifications can be made without departing from the spirit and scope of the present invention. [Brief description of the drawings] FIG. 1 shows a cross-sectional view of the thin film composite material 1 produced in the embodiment, which is composed of a copper box 6, a Ni thin film layer 5, a first composite metal oxide thin film layer 2 and a second composite metal oxide thin film layer. 3 and a dielectric thin film 13 made of a Ti-containing amorphous metal oxide thin film layer 4. FIG. 2 is a sectional view showing a state after the electroless n i -P plating layer 7 and the electric Cu plating layer 8 are formed on the thin film composite material 1 of FIG. 1 in Example 1. FIG. Fig. 3 is a cross-sectional view showing a state where the plated layer of Fig. 2 is etched to form the upper electrode 9 in Example 1. Figs. 4 shows a cross-sectional view of a multilayer wiring board including a thin film composite material of the present invention produced in Example 3, and includes a film 1 1 and a copper foil 1 laminated to a copper foil 6 surface of the thin film composite material 1. 2. The upper electrode 9 formed in the same manner as in Example 1 and the lower electrode 10 formed by etching the thin film composite material 1. [Description of main component symbols] -21-200528580 (18) 1: Thin film composite material 2: First composite metal oxide thin film layer 3: Second composite metal oxide thin film layer 4: Ti-containing amorphous metal oxide thin film Layer 5: Ni thin film layer 6: Copper foil 7: Electroless Ni-P plating layer φ 8: Electrical Cu plating layer 9: Upper electrode I 〇: Lower electrode II: Film 1 2: Copper foil 1 3: Dielectric Body film

-22 ~-22 ~

Claims (1)

(1) 200528580 十、申請專利範圍 1 . 一種薄膜複合材料,其特徵爲:具備 銅箔; 形成於該銅箔其中一側的表面,包含選自、Ni、 Au、Ag以及這些的合金所成群的”重以上的金屬之金屬薄 膜層;以及, 形成於該金屬薄膜層表面,比介電常數1〇〜2〇〇〇且膜 • 厚0·05〜2μιη之介電體薄膜;其中, 該介電體薄膜的最外層係含Ti爲構成元素之非晶系 金屬氧化物薄膜層。 2 ·如申請專利範圍第〗項之薄膜複合材料,其中該介 電體薄膜係由含Ba以及/或Sr與Ti爲構成元素之複合金 屬氧化物薄膜層,以及含Ti爲構成元素的非晶系金屬氧 化物薄膜層構成。 3 ·如申請專利範圍第1項之薄膜複合材料,其中該介 # 電體薄膜係由含Ba以及/或Sr與Ti爲構成元素之非晶系 複合金屬氧化物構成的複合金屬氧化物薄膜層,以及含 Ti爲構成元素的非晶系金屬氧化物薄膜層構成。 4 .如申請專利範圍第1項之薄膜複合材料,其中該介 電體薄膜係由含Ba以及/或Sr與Ti爲構成元素之非晶系 複合金屬氧化物構成的第一複合金屬氧化物薄膜層、含 Ba以及/或Sr與Ti爲構成元素之第二複合金屬氧化物薄 膜層、以及含Ti爲構成元素之非晶系金屬氧化物薄膜層 構成。 -23- (2) 200528580 5·如申請專利範圍第丨項至第4項中任一項之薄膜複合 材料’其中該含Τι爲構成元素之非晶系金屬氧化物薄膜 層係TiO或Ti02的薄膜層。 6 ·如申請專利範圍第3項或第4項之薄膜複合材料,其 中該含Ba以及/或Sr與Ti爲構成元素之非晶系複合金屬 氧化物構成的複合金屬氧化物薄膜層的厚度,在 10nm〜200nm的箪包圍° Φ 7 .如申請專利範圍第1項至第4項中任一項之薄膜複合 材料’其中該含Ti爲構成元素之非晶系金屬氧化物薄膜 層的厚度,在l〇nm〜20〇nm的範圍。 8 .如申請專利範圍第丨項至第4項中任一項之薄膜複合 材料,其中該金屬薄膜層的厚度,在50nm〜1 μιη的範圍。 9.如申請專利範圍第2項至第4項中任一項之薄膜複合 材料’其中在形成連接該金屬薄膜層之該複合金屬氧化物 薄膜層時,係在4 0 0 °C以下熱處理。 • 1 〇 · —種薄膜複合材料,其特徵爲:具備 銅范; 形成於該銅箔一側的表面,包含選自Cr、Ni、Au、 Ag以及這些的合金所成群的1種以上的金屬之金屬薄膜層 形成於該金屬薄膜層表面,比介電常數1 〇〜2 000且膜 厚0.05〜2μηι之介電體薄膜;以及, 形成於該介電體薄膜表面,包含選自Ni、Ni-P、Ni-B以及Cu所成群的1種以上的金屬之金屬層;其中, -24- (3) 200528580 該介電體薄膜的最外層係含T i爲構成元素之#晶系 金屬氧化物薄膜層。 1 1 .如申請專利範圍第1 0項之薄膜複合材料,其中該 介電體薄膜係由含Ba以及/或Sr與Ti爲構成元素之複合 金屬氧化物薄膜層,以及含Ti爲構成元素的非晶系金屬 氧化物薄膜層構成。 1 2 ·如申請專利範圍第1 0項之薄膜複合材料,其中該 # 介電體薄膜係由含Ba以及/或Sr與Ti爲構成元素之非晶 系複合金屬氧化物構成的複合金屬氧化物薄膜層,以及含 Ti爲構成元素的非晶系金屬氧化物薄膜層構成。 1 3 .如申請專利範圍第1 0項之薄膜複合材料,其中該 介電體薄膜係由含Ba以及/或Sr與Ti爲構成元素之非晶 系複合金屬氧化物構成的第一複合金屬氧化物薄膜層、含 以及/或Sr與Ti爲構成元素之第二複合金屬氧化物薄 膜層、以及含Ti爲構成元素之非晶系金屬氧化物薄膜層 鲁構成。 14·如申請專利範圍第1〇項至第13項中任一項之薄膜 複合材料,其中該含Ti爲構成元素之非晶系金屬氧化物 薄膜層係TiO或Ti02的薄膜層。 1 5 ·如申請專利範圍第1 2項或第1 3項之薄膜複合材料 ’其中該含Ba以及/或Sr與Ti爲構成元素之非晶系複合 $屬氧化物構成的複合金屬氧化物薄膜層的厚度,在 1 〇nm〜2〇〇ηηι的範圍。 ]6 ·如申請專利範圍第1 〇項至第1 3項中任一項之薄膜 -25- (4) (4)200528580 複合材料,其中該含Ti爲構成元素之非晶系金屬氧化物 薄膜層的厚度,在l〇nm〜200nm的範圍。 1 7 ·如申請專利範圍第1 0項至第1 3項中任一項之薄膜 複合材料,其中該金屬薄膜層的厚度,在SOnmM μηι的範 圍。 1 8 ·如申請專利範圍第1 1項至第1 3項中任一項之薄膜 複合材料,其中在形成連接該金屬薄膜層之該複合金屬氧 化物薄膜層時,係在4 0 0 °C以下熱處理。 1 9 ·如申請專利範圍第1 〇項至第1 3項中任一項之薄膜 複合材料,其中該金屬層的厚度,在5〇ηηι〜3〇μηι的範圔 〇 2 〇 . —種薄膜複合材料的製造方法,其特徵爲:包含 以下步驟 形成金屬薄膜層的步驟:於該銅箔其中一側的表面, 形成包含選自Cr、Ni、Au、Ag以及這些的合金所成群的 1種以上的金屬之金屬薄膜層; 形成介電體薄膜的步驟:於該金屬薄膜層表面,形成 比介電常數10〜2000且膜厚〇.05〜2μηι之介電體薄膜,其最 外層係含Ti爲構成元素之非晶系金屬氧化物薄膜層; 甲矽烷偶合劑處理步驟:以甲矽烷偶合劑處理該介電 體薄0吴表面; 賦予電鍍觸媒的步驟:於該甲矽烷偶合劑處理過的表 面賦予電鍍觸媒;以及, 形成金屬層的步驟:藉由一進行以該電鍍觸媒爲核之 -26- (5) 200528580 無電解電鍍,形成包含選自N i、n i ρ Ν· R [μ -]¾ 0 iM 1 — p、Μ 1 - B以及C U所成 群的1種以上的金屬之金屬層。 2 1 · —種多層配線板,其特徵爲:其構成係包含如申 請專利範圍第1〇項至第項中任〜項之薄膜複合材料、或 以如申請專利範圍第20項之製造方法製造的薄膜複合材料 〇 2 2 · —種電子零件’其特徵爲:其構成係包含如申請 Φ 專利範圍第1 0項至第1 9項中任一項之薄膜複合材料、或以 如申請專利範圍第20項之製造方法製造的薄膜複合材料。 2 3 · —種多層配線板的製造方法,其特徵爲:包含以 下步驟 層合步驟:層合膠片或內層基板於如申請專利範 圍第1項至第9項中任一項之薄膜複合材料的銅箔面; 甲矽烷偶合劑處理步驟:以甲矽烷偶合劑處理介電體 薄膜表面; • 賦予電鍍觸媒的步驟:於該甲矽烷偶合劑處理過的表 面賦予電鍍觸媒;以及, 形成金屬層的步驟:藉由一進行以該電鍍觸媒爲核之 無電解電鍍,形成包含選自Ni、Ni-P、Ni-B以及Cu所成 群的1種以上的金屬之金屬層。 -27 -(1) 200528580 10. Scope of patent application 1. A thin film composite material, characterized by: having a copper foil; a surface formed on one side of the copper foil, comprising a material selected from the group consisting of Ni, Au, Ag, and alloys thereof A group of metal thin film layers of more than "metal"; and a dielectric thin film formed on the surface of the metal thin film layer with a dielectric constant of 10 to 2000 and a thickness of 0.05 to 2 μm; wherein, The outermost layer of the dielectric thin film is an amorphous metal oxide thin film layer containing Ti as a constituent element. 2 · The thin film composite material according to the item of the scope of the patent application, wherein the dielectric thin film is composed of Ba and / Or Sr and Ti are composite metal oxide thin film layers, and Ti is an amorphous metal oxide thin film layer. 3 · For example, the thin film composite material in the scope of patent application, where The electrical thin film is a composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements, and an amorphous metal oxide thin film layer containing Ti as a constituent element. 4. The thin film composite material according to item 1 of the scope of patent application, wherein the dielectric thin film is a first composite metal oxide thin film composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements Layer, a second composite metal oxide thin film layer containing Ba and / or Sr and Ti as constituent elements, and an amorphous metal oxide thin film layer containing Ti as constituent elements. -23- (2) 200528580 5 · 如The thin-film composite material according to any one of the scope of the patent application No. 丨 to No. 4 wherein the amorphous metal oxide thin-film layer containing Ti as a constituent element is a thin-film layer of TiO or Ti02. The thin film composite material according to item 3 or item 4, wherein the thickness of the composite metal oxide thin film layer composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements is surrounded by ytterbium of 10 nm to 200 nm ° Φ 7. The thickness of the thin film composite material according to any one of claims 1 to 4 in the scope of the patent application, wherein the thickness of the amorphous metal oxide thin film layer containing Ti as a constituent element is in a range of 10 nm to 20 mm. nm range 8. as applied The thin film composite material according to any one of the patent items 丨 to 4, wherein the thickness of the metal thin film layer is in the range of 50 nm to 1 μm. 9. As in any one of the patent application scopes 2 to 4 According to the item of the thin film composite material, in forming the composite metal oxide thin film layer connected to the metal thin film layer, the heat treatment is performed below 400 ° C. • 1 〇 · — a thin film composite material, characterized by: copper A metal thin film layer formed on the surface of one side of the copper foil and containing one or more metals selected from the group consisting of Cr, Ni, Au, Ag, and these alloys is formed on the surface of the metal thin film layer, and has a dielectric A dielectric thin film having a constant of 1 to 2 000 and a thickness of 0.05 to 2 μm; and, formed on the surface of the dielectric thin film, containing at least one member selected from the group consisting of Ni, Ni-P, Ni-B, and Cu -24- (3) 200528580 The outermost layer of the dielectric thin film is a #crystalline metal oxide thin film layer containing T i as a constituent element. 1 1. The thin film composite material according to item 10 of the scope of patent application, wherein the dielectric thin film is a composite metal oxide thin film layer containing Ba and / or Sr and Ti as constituent elements, and a thin film containing Ti as a constituent element It is composed of an amorphous metal oxide thin film layer. 1 2 · The thin film composite material according to item 10 of the scope of patent application, wherein the #dielectric thin film is a composite metal oxide composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements A thin film layer and an amorphous metal oxide thin film layer containing Ti as a constituent element. 13. The thin film composite material according to item 10 of the scope of patent application, wherein the dielectric thin film is a first composite metal oxide composed of an amorphous composite metal oxide containing Ba and / or Sr and Ti as constituent elements A thin film layer, a second composite metal oxide thin film layer containing and / or Sr and Ti as constituent elements, and an amorphous metal oxide thin film layer containing Ti as constituent elements. 14. The thin film composite material according to any one of items 10 to 13 of the scope of application for a patent, wherein the amorphous metal oxide film containing Ti as a constituent element is a thin film layer of TiO or Ti02. 1 5 · If the thin film composite material of item 12 or item 13 of the scope of patent application 'wherein the amorphous metal oxide film containing Ba and / or Sr and Ti as constituent elements is a composite metal oxide film The thickness of the layer is in the range of 10 nm to 200 nm. ] 6 · If the thin film of any one of the range of 10 to 13 of the application for a patent-25- (4) (4) 200528580 composite material, wherein the amorphous metal oxide thin film containing Ti as a constituent element The thickness of the layer ranges from 10 nm to 200 nm. 1 7 · The thin film composite material according to any one of items 10 to 13 of the scope of patent application, wherein the thickness of the metal thin film layer is in the range of SOnmM μm. 1 8 · The thin film composite material according to any one of claims 11 to 13 in the scope of patent application, wherein when the composite metal oxide thin film layer connected to the metal thin film layer is formed, the temperature is at 400 ° C. The following heat treatment. 1 9 · The thin film composite material according to any one of claims 10 to 13 in the scope of application for a patent, wherein the thickness of the metal layer is in the range of 50 μm to 30 μm. —A kind of film The method for manufacturing a composite material is characterized in that it includes the step of forming a metal thin film layer on the surface of one side of the copper foil to form a group consisting of Cr, Ni, Au, Ag, and an alloy selected from these groups. A metal thin film layer of more than two kinds of metals; a step of forming a dielectric thin film: on the surface of the metal thin film layer, a dielectric thin film having a dielectric constant of 10 to 2000 and a thickness of 0.05 to 2 μm is formed, and the outermost layer Amorphous metal oxide thin film layer containing Ti as a constituent element; Silane coupling agent treatment step: treating the thin surface of the dielectric with a silane coupling agent; Step of imparting electroplating catalyst: the silane coupling agent The treated surface is provided with a plating catalyst; and, a step of forming a metal layer is performed by performing -26- (5) 200528580 electroless plating with the plating catalyst as a nucleus to form a layer containing a material selected from Ni, ni ρ Ν R [μ-] ¾ 0 A metal layer of one or more metals grouped by iM 1 —p, M 1 -B, and C U. 2 1 · A multilayer wiring board characterized in that its composition includes a thin-film composite material such as any one of items 10 to 1 in the scope of patent application, or is manufactured by a manufacturing method such as in the scope of patent application 20 Thin-film composite material 022-an electronic component characterized in that its composition includes a thin-film composite material such as any one of the 10th to the 19th patent application scope, or a patent application scope such as The thin film composite material manufactured by the manufacturing method of item 20. 2 3 · — A method for manufacturing a multilayer wiring board, characterized in that it comprises the following steps: a laminating step: laminating a film or an inner layer substrate with a thin film composite material as in any one of claims 1 to 9 of the scope of patent application Copper foil surface; silane coupling agent treatment step: treating the surface of the dielectric film with a silane coupling agent; a step of imparting a plating catalyst: imparting a plating catalyst to the treated surface of the silane coupling agent; and, forming Step of metal layer: forming a metal layer containing one or more metals selected from the group consisting of Ni, Ni-P, Ni-B, and Cu by performing electroless plating using the plating catalyst as a core. -27-
TW94104355A 2004-02-19 2005-02-15 Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material TW200528580A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004042749 2004-02-19
JP2004272041 2004-09-17

Publications (1)

Publication Number Publication Date
TW200528580A true TW200528580A (en) 2005-09-01

Family

ID=34889333

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94104355A TW200528580A (en) 2004-02-19 2005-02-15 Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material

Country Status (3)

Country Link
JP (1) JP4375395B2 (en)
TW (1) TW200528580A (en)
WO (1) WO2005080074A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862371B2 (en) * 2005-11-30 2012-01-25 Tdk株式会社 Thin film electronic component and manufacturing method thereof
JP4952332B2 (en) * 2006-10-20 2012-06-13 日立化成工業株式会社 CAPACITOR LAYER FORMING MATERIAL, MANUFACTURING METHOD THEREOF, AND PRINTED WIRING BOARD
JP2008258555A (en) * 2007-03-14 2008-10-23 Hitachi Chem Co Ltd Thin film composite material, method for manufacturing the same, electronic component material using thin film composite material, method for manufacturing electronic component, electronic component, and method for manufacturing the same
JP2009113465A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Thin film composite material, material for wiring board using it, wiring board, and electronic component
JP5171407B2 (en) * 2008-06-06 2013-03-27 昭和電工株式会社 Circuit board, manufacturing method thereof, and electronic apparatus
CN103129034B (en) * 2013-01-18 2015-11-18 肇庆市双石金属实业有限公司 A kind of Thermochromic decorative layer of iodide doping of flexibility
JP6750462B2 (en) 2016-11-04 2020-09-02 Tdk株式会社 Substrate with built-in thin film capacitors and electronic components
CN110767473B (en) * 2018-07-25 2022-06-03 浙江清华柔性电子技术研究院 Flexible energy storage film
CN115948773A (en) * 2023-01-04 2023-04-11 山东大学 Preparation method of ultrathin copper foil based on crystalline-amorphous composite stripping layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208363A (en) * 1999-01-08 2000-07-28 Hokuriku Electric Ind Co Ltd Circuit board equipped with capacitor and manufacture of the same
JP4224190B2 (en) * 2000-06-20 2009-02-12 パナソニック電工株式会社 Printed wiring board manufacturing method and printed wiring board

Also Published As

Publication number Publication date
JP4375395B2 (en) 2009-12-02
WO2005080074A1 (en) 2005-09-01
JPWO2005080074A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
TW200528580A (en) Thin film composite material, method for producing same, and multilayer wiring board and electronic component using such thin film composite material
US9773611B2 (en) Chip electronic component and manufacturing method thereof
JP5289794B2 (en) Multilayer electronic component and manufacturing method thereof
TWI544507B (en) Embedded multilayer ceramic electronic component and printed circuit board having the same
JP2006140454A (en) Capacitor structure
US7736397B2 (en) Method for manufacturing capacitor embedded in PCB
CN102376449B (en) Laminate type ceramic electronic component and manufacturing method therefor
JP6610663B2 (en) Electronic components
JP2006093663A (en) Dielectric structure
US9171671B2 (en) Laminate type electronic component and manufacturing method therefor
JP6323017B2 (en) Multilayer ceramic electronic components
TW200905014A (en) Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property
JP4770628B2 (en) Capacitor manufacturing method
JP4770627B2 (en) Capacitor manufacturing method
TW200527456A (en) Thin film capacitors on ceramic
JP2010093112A (en) Multilayer electronic component, and method of manufacturing the same
JP2011204706A (en) Laminated electronic component
JP4929973B2 (en) Manufacturing method of capacitor material for resin substrate
CN102376450B (en) Multilayer ceramic electronic component and manufacture method thereof
JP4952332B2 (en) CAPACITOR LAYER FORMING MATERIAL, MANUFACTURING METHOD THEREOF, AND PRINTED WIRING BOARD
JPH04246854A (en) Thin film capacitor
JP4148293B2 (en) Thin film composite material, wiring board material using the same, wiring board, electronic component material, electronic component, and methods for producing the same
JP2004253997A (en) Method for manufacturing electronic parts, electronic parts, resonator, and filter
JPS61263189A (en) Manufacture of ceramic wiring board
Lu et al. Dielectric properties of titanate based ceramic capacitors using electroless Ni as contact electrodes