WO2005075571A1 - GHz帯域電子部品用樹脂組成物及びGHz帯域電子部品 - Google Patents

GHz帯域電子部品用樹脂組成物及びGHz帯域電子部品 Download PDF

Info

Publication number
WO2005075571A1
WO2005075571A1 PCT/JP2005/001868 JP2005001868W WO2005075571A1 WO 2005075571 A1 WO2005075571 A1 WO 2005075571A1 JP 2005001868 W JP2005001868 W JP 2005001868W WO 2005075571 A1 WO2005075571 A1 WO 2005075571A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
carbon
tube
iron
carbon tube
Prior art date
Application number
PCT/JP2005/001868
Other languages
English (en)
French (fr)
Inventor
Kouichi Yamaguchi
Hidekazu Hayama
Ren-De Sun
Masahiro Yamada
Hitoshi Nishino
Yasunori Yokomichi
Original Assignee
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co., Ltd. filed Critical Osaka Gas Co., Ltd.
Priority to JP2005517797A priority Critical patent/JP4836581B2/ja
Priority to EP05709920.2A priority patent/EP1719804B1/en
Priority to CA002554802A priority patent/CA2554802C/en
Priority to US10/587,950 priority patent/US7652098B2/en
Publication of WO2005075571A1 publication Critical patent/WO2005075571A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon

Definitions

  • the present invention relates to a resin composition for a GHz band electronic component. More specifically, the present invention relates to a resin composition which has a low dielectric loss tangent and is suitable for a circuit board material for electric and electronic equipment, particularly a circuit board material for a GHz band, and other light components. The present invention also relates to a fine electronic component obtained from such a resin composition.
  • the frequency band of radio waves used for mobile communication devices such as mobile phones, digital mobile phones, and mobile communication devices such as satellite communications is in the high frequency band from mega to giga Hz.
  • the use of high-frequency bands such as microwaves and millimeter-wave bands;
  • the CPU clock time of computers has reached the GHz band, and higher frequencies are in progress.
  • electrical insulating materials that have both excellent high-frequency transmission characteristics and low dielectric characteristics.
  • circuit board materials for electronic devices are required to have low dielectric properties such as relative permittivity and dielectric loss tangent, and to be excellent in physical properties such as heat resistance and mechanical strength.
  • the relative permittivity ( ⁇ ) is a parameter indicating the degree of polarization in a dielectric, and the higher the relative permittivity, the greater the propagation delay of an electric signal. Therefore, in order to increase the signal propagation speed and enable high-speed operation, it is preferable that the relative dielectric constant is low.
  • the dielectric loss tangent (tan ⁇ 5) is a parameter that indicates the amount of a signal that propagates through a dielectric and is lost by being converted into heat. The lower the dielectric loss tangent, the lower the signal loss and the better the signal transmission.
  • dielectric loss energy loss in the transmission process
  • This energy loss is caused by the dipole generated by dielectric polarization oscillating due to electric field change in the low frequency band, and is caused by ionic polarization and electronic polarization in the high frequency band.
  • the ratio of the energy consumed in the dielectric per cycle of the alternating electric field to the energy stored in the dielectric is called the dielectric loss tangent and is expressed as tan ⁇ 5.
  • thermoplastic resins such as polyolefin, bicarbonate chloride resin, fluorine resin, unsaturated polyester resin, polyimide resin, epoxy resin, and bis.
  • thermosetting resins such as maleimide triazine resin (resin resin), crosslinkable polyphenylene oxide, and curable polyphenylene ether have been developed to satisfy the following properties.
  • Relative permittivity can be set arbitrarily over a relatively wide range
  • Polyolefins such as polyethylene and polypropylene have covalent bonds such as C-C bonds and do not have large polar groups, so they have excellent electrical properties, especially insulation resistance, but have the disadvantage of low heat resistance. is there. For this reason, the electrical characteristics (dielectric loss, relative permittivity, etc.) in use at high temperatures are degraded, making it unsuitable for use as an insulating film (layer) for capacitors.
  • Polyethylene or polypropylene is once formed as a film, which is then coated and adhered to a conductive material using an adhesive, but this method not only complicates the processing steps but also reduces the thickness of the film-forming layer. There are also problems with coating formation, such as extremely difficult
  • Biel chloride resin has high insulation resistance, chemical resistance, and flame retardancy, but has the disadvantage of lacking heat resistance and high dielectric loss, like polyolefins.
  • Epoxy resin satisfies the required performance in terms of insulation resistance, dielectric strength and heat-resistant temperature.
  • the relative dielectric constant is relatively high at 3 or more, and satisfactory characteristics have not been obtained.
  • the thin film forming ability is poor.
  • lowering the relative dielectric constant has not yet reached a satisfactory level.
  • For the purpose of improving epoxy resin with poor heat resistance for example, Combinations of phenol nopolak resin, vinyl triazine resin, etc.
  • a soldering process is always included in the device fabrication process, so that it can withstand heating for at least 260 seconds with at least 26 O.
  • Heat resistance is required, and it must be excellent in chemical stability such as heat resistance and alkali resistance, as well as in moisture resistance and mechanical properties.
  • polyimide, polyester sulfone, polyphenylene sulfide, polysulfone, thermosetting polyphenylene ether ( ⁇ ⁇ ⁇ ), polyethylene terephthalate and the like are known. However, even with these resins, the dielectric loss increases in the GHz band.
  • Japanese Patent Application Laid-Open No. 8-134324 discloses a thermoplastic resin (polyamide).
  • the general formula aMx Oy ⁇ bS i ⁇ 2 ⁇ cH 20 (where a, b and c are positive real numbers) is applied to Z or thermosetting resin (excluding phenol).
  • y represents 1 and in the case of X, y represents 1 or 3.
  • M represents Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, Sr, At least one metal element selected from the group consisting of Y, Zr, Nb, Mo, Pb, Ba, W and Li.
  • the blending ratio of the reinforcing fiber to the thermoplastic resin or the thermosetting resin is at least about 5% by weight or more, and it is necessary to use a large amount of the reinforcing fiber.
  • the present invention develops an additive capable of reducing dielectric loss (or tan5) in the GHz band only by adding a small amount to a resin, and is capable of flexibly meeting various requirements for electronic components.
  • a main object is to provide a resin composition.
  • Another object of the present invention is to provide a circuit board material for an electric / electronic device having a low dielectric constant, a low dielectric loss tangent, a high heat resistance, and a high mechanical strength, particularly a circuit board material for a GHz band, and the like. It is an object of the present invention to provide a resin composition which is extremely suitable for the production of electronic components.
  • the present inventors have conducted intensive studies to achieve the above object.As a result, when a nanoscale carbon tube is mixed with a synthetic resin in a small amount within a specific range, an increase in the dielectric loss tangent in a high frequency band, particularly in a G Hz band, is suppressed.
  • the resin composition containing a specific small amount of nanoscale force bonbon tube is It has been found that it can be used very suitably as a circuit board material, especially for a GHz band.
  • the nanoscale carbon tube inherently has conductivity, if it is added in an amount of 5% by weight or more as in JP-A-8-134263, the electronic component formed from the obtained resin composition also has conductivity. Therefore, resin for high frequency electronic components As described in JP-A-8-134263, it is not conceivable to mix a large amount of a nanoscale carbon tube with the composition. Conventionally, reducing the dielectric loss tangent in a high-frequency band with a nanoscale carbon tube has been considered. No attempt was made. However, according to the study of the present inventor, by blending a nanoscale force-bon tube in a very small amount much less than 5% by weight described in the above-mentioned Japanese Patent Application Laid-Open No. 8-134263, a dielectric material in the GHz band is obtained. A completely unexpected result was obtained that the tangent was reduced or the increase of the dielectric loss tangent could be suppressed.
  • the present invention has been completed by further studies based on such knowledge, and provides the following resin composition for electronic components, electronic components, and the like.
  • Item 1 At least one resin selected from the group consisting of a thermoplastic resin, a curable resin, and a composite resin of a thermoplastic resin and a curable resin, and a nanoscale tube, comprising: A resin composition for GHz-band electronic parts, characterized in that a single tube contains 0.0001 to 0.4% by weight based on the above resin.
  • Item 2 Nanoscale bon tube is
  • Item 4 The resin composition for a GHz band electronic component according to item 1, wherein Item 3.
  • the nanoscale carbon tube is an amorphous nanoscale carbon tube, and the X-ray diffraction method (incident X-ray: CUKQ, the plane spacing of the carbon network plane (002) measured by the diffractometer method) 3. 54A or more Item 3.
  • the resin composition for an GHz band electronic component according to Item 1 or 2 wherein the diffraction angle (20) is 25.1 degrees or less, and the half-width of the 20 band is 3.2 degrees or more.
  • the resin is polyolefin resin, polyester resin, polyamide resin, fluororesin, polystyrene resin, polyvinyl chloride resin, methacrylate resin, acrylate resin, polycarbonate resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide Resin, polyphenylene ether resin, ABS resin, polyetheretherketone resin, liquid crystal polymer, thermoplastic polyimide resin, polyetherimide resin, polyacetal, polyarylate and polyethernitrile resin Item 4.
  • the resin composition for an GHz band electronic component according to any one of Items 1 to 3, which is at least one type of thermoplastic resin.
  • Item 5 The resin according to any one of Items 1 to 3, wherein the resin is at least one kind of curable resin selected from the group consisting of a thermosetting resin, a photo-hardening resin and an electron beam hardening resin. A resin composition for electronic components in the GHz band.
  • Item 6 The GH according to Item 1, wherein the resin is at least one composite resin selected from the group consisting of a thermoplastic resin in which a cured product of a curable resin is dispersed, and a rigid resin in which the thermoplastic resin is dispersed. Resin composition for z-band electronic components.
  • Item 8 The nanoscale carbon tube is the single-walled carbon nanotube or the nested multi-walled carbon nanotube, and the amount of addition is 0.0001 to 0.1% by weight based on the resin. 7.
  • Item 9 Any of Items 1 to 6 wherein the nanoscale carbon tube is the amorphous nanoscale carbon tube, and the amount of addition is 0.0001 to 0.1% by weight with respect to the resin. 5.
  • the nanoscale carbon tube is the iron-carbon composite, and the amount of addition is 0.0001 to 0.4% by weight based on the resin.
  • Item 11 The nanoscale carbon tube according to any one of Items 1 to 6, wherein the nanoflake carbon tube is the above-mentioned nanoflake carbon tube, and the amount of addition is 0.0001 to 0.1% by weight with respect to the resin.
  • Item 12 Item 1 to: A GHz band electronic component obtained from the resin composition for a GHz band electronic component according to any one of L1.
  • Item 13 A GHz band electronic component obtained from the resin composition for a GHz band electronic component according to any one of L1.
  • the GHz band electronic component according to Item 12 which is a circuit board, a semiconductor interlayer insulating film, and an antenna component.
  • Item 14 The GH according to Item 12 or 13, wherein the tan ⁇ of the resin is reduced to 0.1 or less in the GH z band, and other properties inherent to the resin are retained.
  • z-band electronic components Item 15 0.0001 to 0.4% by weight of at least one resin selected from the group consisting of a thermoplastic resin, a curable resin, and a composite resin of a thermoplastic resin and a curable resin.
  • Nanoscale carbon tube is (i) single-walled carbon nanotubes or nested multi-walled carbon nanotubes
  • Item 16 The method according to Item 15, which is Item 17 Nanoscale at a ratio of 0.0001 to 0.4% by weight with respect to at least one resin selected from the group consisting of a thermoplastic resin, a curable resin, and a composite resin of a thermoplastic resin and a curable resin. It is characterized in that a carbon tube is mixed with a resin, and tan (5 is reduced or suppressed in the GHz band of an electronic component obtained from the resin in comparison with the case of the resin alone, and the resin inherently has How to maintain the other physical properties of item 18
  • FIG. 1 is an electron microscope (TEM) photograph of one iron-carbon composite constituting the carbonaceous material obtained in Example 1 of JP-A-2002-338220.
  • FIG. 2 is an electron microscope (TEM) photograph showing the presence of an iron-carbon composite in the carbonaceous material obtained in Example 1 of JP-A-2002-338220.
  • FIG. 3 is an electron microscope (TEM) photograph of one iron-carbon composite obtained in Example 1 of JP-A-2002-338220, which was cut into a slice.
  • the black triangle ( ⁇ ) shown in the photograph of Fig. 3 indicates the EDX measurement point for composition analysis.
  • Fig. 4 shows a schematic diagram of a TEM image of a carbon tube, (a-1) is a schematic diagram of a TEM image of a cylindrical nanoflake carbon tube, and (a-2) is a multi-layered nested structure. It is a schematic diagram of a TEM image of a carbon nanotube.
  • FIG. 5 is a perspective view showing shapes of an evaluation sample, an outer conductor, and an inner conductor manufactured in Examples and Comparative Examples.
  • FIG. 6 is a graph showing the measurement results of tan ⁇ of the evaluation samples obtained in Comparative Example 1, Example 2, Example 3, and Comparative Example 3.
  • FIG. 7 is a graph showing the measurement results of the relative permittivity of the evaluation samples obtained in Comparative Example 1, Example 2, and Example 3.
  • FIG. 8 is a graph showing the measurement results of tanS of the evaluation samples obtained in Comparative Example 1, Example 6, and Comparative Example 4.
  • FIG. 9 is a graph showing the measurement results of tan ⁇ of the evaluation samples obtained in Comparative Example 1 and Example 7.
  • FIG. 10 is a graph showing the measurement results of tan ⁇ 5 of the evaluation samples obtained in Examples 8 to L1.
  • an electronic component obtained from a resin composition obtained by adding the nanoscale carbon tube to a resin in an extremely small amount of 0.001 to 0.4% by weight The dielectric loss tangent (tan S) can be reduced as compared to the case of resin alone, or the rise of tan ⁇ in the case of resin alone can be suppressed.
  • the relative dielectric constant, heat resistance, and mechanical properties inherent to resin Physical properties (eg, tensile strength, elongation at break, hardness, etc.) and chemical properties, particularly dielectric properties, are maintained as they are without substantially changing.
  • a resin composition obtained by blending a small amount of a nanoscale carbon tube with a resin having physical properties such as a low dielectric constant, high heat resistance, and high mechanical strength according to the present invention.
  • the electronic component obtained from the product has a lower or lower dielectric loss tangent than the resin alone, and has a low dielectric constant, high heat resistance, Physical properties such as high mechanical strength are maintained. Therefore, by using such a resin composition, a circuit board of an electric / electronic device can be obtained.
  • electronic components that can be suitably used as materials, particularly circuit board materials for the GHz band.
  • the addition of the nano-scale pressure-sensitive tubing allows the dielectric tangent in the GHz band without deteriorating the various properties (dielectric properties, thermal properties, chemical properties, and mechanical properties) of the resin. Since the increase is suppressed, there is also an advantage that the range of choice of the resin is increased.
  • the nanoscale carbon tube used in the present invention refers to a carbon tube having a nanometer-sized diameter, and iron or the like may be contained in a space inside the tube of the carbon tube.
  • nanoscale carbon tube examples include (i) a single-walled carbon nanotube or a multi-layer carbon nanotube, (ii) an amorphous nanoscale carbon tube developed by the present applicant, (iii) a nanoflake carbon tube, and (iv) (a) a carbon tube selected from the group consisting of a nanoflake carbon tube and a nested multi-walled carbon nanotube; and (b) iron carbide or iron. (B) an iron-carbon composite in which (b) iron or carbon is filled, or (V) a mixture of two or more of these.
  • the amorphous nanoscale carbon tube, the nanoflake carbon tube, and the iron-carbon composite are particularly preferable because of good dispersion in a solvent and a binder.
  • the reason why these tubes disperse well in solvents and binders has not been completely elucidated.However, the outermost layer of these tubes has a discontinuous carbon network, which results in poor affinity for solvents and binders. It is presumed that it is getting higher.
  • a carbon nanotube is a hollow carbon material in which a graphite sheet (ie, a carbon atom surface or graphite in a graphite structure) is closed in a tubular shape, the diameter is on a nanometer scale, and the wall structure has a graphite structure.
  • carbon nanotube Of these, the one with a wall structure closed in a tubular shape with a single graphite sheet is called a single-walled carbon nanotube, and the multiple graphite sheets are closed in a tubular shape and nested. Are called nested multi-layer carbon nanotubes. In the present invention, any of these single-walled carbon nanotubes and nested multi-walled carbon nanotubes can be used.
  • the single-walled carbon nanotubes usable in the present invention preferably have a diameter of 0.4 to: about! Onm and a length of about! To 500 m, and have a diameter of about 0.7 to 5 nm and a length of 1 to: It is more preferably about LOO m, and particularly preferably about 0.7 to 2 nm in diameter and about 1 to 20 m in length.
  • the nested multi-walled carbon nanotubes usable in the present invention preferably have a diameter of about 1 to about 100 nm and a length of about 1 to 500 mm, and have a diameter of about 1 to 50 nm and a length of 1 to: ! OO ⁇ m is more preferable, and in particular, a diameter of about 1 to 40 nm and a length of about 1 to 20 m is preferable.
  • amorphous nano-scale carbon nanotube is described in WO 00004509 (Japanese Patent No. 3355554), and has a main skeleton composed of carbon.
  • the plane interval (d002) of the carbon network plane (002) measured by the diffractometry method is 3.54 A or more, especially 3.7 A or more, and the diffraction angle (2 is 25.1 degrees)
  • it is characterized in that it is 24.1 degrees or less
  • the half width of the 20 band is 3.2 degrees or more, especially 7.0 degrees or more.
  • the amorphous nanoscale carbon tube has a decomposition temperature of 200 to 900 ° C. in the presence of a catalyst comprising at least one kind of chloride of a metal such as magnesium, iron, cobalt, and nickel. It can be obtained by subjecting a degradable resin, for example, polytetrafluoroethylene, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, or the like, to an excitation treatment.
  • a degradable resin for example, polytetrafluoroethylene, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl alcohol, or the like, to an excitation treatment.
  • the shape of the pyrolytic material as a starting material can be in the form of a film or sheet, powder, Any shape such as a lump may be used.
  • excitation treatment for example, heating in an inert atmosphere, preferably in a temperature range of about 450 to 1800 ° C. and at a temperature not lower than the thermal decomposition temperature of the raw material, in a temperature range of room temperature to about 300 ° C.
  • the amorphous nanoscale carbon tube used in the present invention is a nanoscale carbon nanotube having an amorphous structure (amorphous structure), which is hollow and linear, and whose pores are highly controlled.
  • the shape is mainly a cylinder or a square pillar, and at least one of the ends often has no cap (opens). When the tip is closed, the shape is often flat.
  • the outer diameter of the amorphous nanoscale carbon tube is usually in the range of about 1 to 1000 nm, preferably in the range of about 1 to 200 mn, and more preferably in the range of about 1 to 100 nm. Its aspect ratio (tube length Z diameter) is 2 times or more, preferably 5 times or more.
  • amorphous structure refers to a carbonaceous structure consisting of irregular carbon network planes, not a graphite structure consisting of a continuous carbon layer of regularly arranged carbon atoms. Dalafen sheets are irregularly arranged. From an image obtained by a transmission electron microscope, which is a typical analysis technique, it can be seen that the nanoscale carbon tube having an amorphous structure according to the present invention has a flatness in the plane of the carbon network plane, which is smaller than the diameter of the amorphous nanoscale carbon tube. Less than 1 time.
  • the amorphous nanoscale carbon tube forms the outermost layer because its wall has an amorphous structure in which a large number of fine graphene sheets (carbon mesh planes) are irregularly distributed instead of a graphite structure.
  • the carbon mesh surface is not continuous over the entire length of the tube in the longitudinal direction and is discontinuous.
  • the length of the carbon network plane constituting the outermost layer is less than 20 nm, especially less than 5 nm.
  • Amorphous carbon generally does not show X-ray diffraction, but does show broad reflections.
  • the carbon mesh planes are stacked on the shell ⁇ , so the carbon mesh plane spacing (d. Q2 ) is narrow, and the broad reflection shifts to the high-angle side (2, and becomes gradually sharper (20).
  • the amorphous structure generally does not show X-ray diffraction as described above, but partially shows very weak coherent scattering.
  • incident X-ray CuKo!
  • the theoretical crystallographic properties of the amorphous nanoscale force tube according to the present invention measured by the diffractometry method are as follows.
  • Carbon network plane spacing (is greater than 3.54 A, more preferably greater than 3.7 A; diffraction angle (2 is less than 25.1 degrees, more preferably less than 24.1 degrees)
  • the half band width of the 20 band is 3.2 degrees or more, more preferably 7.0 degrees or more.
  • the amorphous nanoscale carbon tube used in the present invention is represented by X Diffraction angle by line diffraction (2 is in the range of 18.9 to 22.6 degrees, carbon network plane interval (d 002 ) is in the range of 3.9 to 4.7 A, half width of 20 band Is in the range of 7.6 to 8.2 degrees.
  • linear which is one term representing the shape of the amorphous nanoscale carbon tube of the present invention, is defined as follows. That is, let L be the length of the amorphous nanoscale carbon tube image by transmission electron microscopy, and L be the length when the amorphous nanoscale carbon tube is extended. In this case, LZL 0 means a shape characteristic of 0.9 or more.
  • the tube wall portion of such an amorphous nanoscale carbon tube has an amorphous structure composed of a plurality of fine carbon network planes (graph ensheets) oriented in all directions, and is activated by the carbon plane spacing of these carbon network planes. It has the advantage that it has excellent affinity with resin, probably because it has a point. Iron-carbon composite>
  • iron-carbon composite used in the present invention is described in Japanese Patent Application Laid-Open No. 2002-38082 (Japanese Patent No. 3569896), a) a carbon tube selected from the group consisting of a nanoflake carbon tube and a nested multilayer carbon nanotube; and (b) iron carbide or iron.
  • Iron carbide or iron of (b) is filled in the range of 10 to 90% of the space inside the bush.
  • the above-mentioned iron carbide or iron is not completely filled in the area of 100% of the space in the tube, but is filled in the range of 10 to 90% of the space in the tube (that is, partially filled). Is filled in).
  • the wall is a patchwork-like or papier-like (so-called paper mache-like) nanoflake force one-pong tube.
  • the “nanoflake carbon tube” is composed of a plurality (usually a large number) of flake-like graphite sheets gathered in a patchwork or papier-mache (papermache) shape. Refers to a carbon tube made of an aggregate of graphite sheets.
  • Such an iron-carbon composite is prepared according to the method described in JP-A-2002-338220.
  • a heat treatment is performed at 600 to 900 ° C by introducing a thermally decomposable carbon source at a pressure 10- 5 P a ⁇ 200 kP a step
  • Nc c which is the unit of oxygen content B, means the volume (c c) when the gas is converted to the standard state at 25 ° C.
  • the iron-carbon composite comprises: (a) a carbon tube selected from the group consisting of a nanoflake carbon tube and a nested multi-wall carbon nanotube; and (b) iron carbide or iron.
  • a part of the space inside the bon tube (that is, the space surrounded by the tube wall) is not partially filled, and more specifically, about 10 to 90%, particularly about 30 to 80% %, Preferably about 40 to 70%, is filled with iron carbide or iron.
  • the carbon portion is produced at a specific rate after performing the production steps (1) and (2).
  • it becomes a nanoflake carbon tube, and the manufacturing process (1) and (2)
  • a multi-walled carbon nanotube having a nested structure is obtained.
  • the iron-carbon composite comprising the nanoflake carbon tube and iron carbide or iron of the present invention is typically in the form of a column, and such a columnar iron-carbon composite
  • Japanese Unexamined Patent Publication No. Fig. 3 shows a transmission electron microscope ( ⁇ ) photograph of a cross section almost perpendicular to the longitudinal direction of Example 3 (No. 3 382 020 obtained in Example 1), and Fig. 1 shows a ⁇ photograph of the side surface.
  • Fig. 4 (a-1) shows a schematic TEM image of such a cylindrical nanoflake carbon tube.
  • 100 schematically shows a TEM image in the longitudinal direction of the nanoflake carbon tube
  • 200 shows almost the same in the longitudinal direction of the nanoflake carbon tube.
  • a TEM image of a vertical cross section is schematically shown.
  • the nanoflake carbon tube constituting the iron-carbon composite used in the present invention typically has a hollow cylindrical shape, and when a cross section thereof is observed by TEM, an arc-shaped graph ensheet image is concentric. Each graphene sheet image forms a discontinuous ring.
  • a substantially linear graph ensheet image is almost It is arranged in parallel in multiple layers, and the individual Dalafen sheet images are not continuous over the entire length in the longitudinal direction, and are discontinuous.
  • the nanoflake carbon tube that constitutes the iron-carbon composite used in the present invention has a longitudinal direction as apparent from 200 in (a-1) of FIGS. 3 and 4.
  • a large number of arc-shaped graph embedding images are gathered concentrically (multi-layered tube shape), but the individual graph embedding images are, for example, 210, 2 As shown in Fig. 14, it does not form a completely closed continuous ring, but forms a discontinuous ring that is interrupted on the way.
  • Some graph receipt images may be branched, as shown in 211.
  • a plurality of arc-shaped TEM images that constitute one discontinuous ring may be partially disturbed as shown in Fig.
  • Some graphene sheet images may be branched, as shown in FIG. 4 (a-1) 11.
  • the TEM image of one discontinuous layer is shown in the adjacent graph enclosure image as shown at 112 in (a-1) of Fig. 4.
  • they may overlap at least partially, and in some cases, they may be slightly separated from the adjacent graph emceed images, as shown in 1 13.
  • the structure of the nanoflake force-bon tube of the present invention is significantly different from conventional multi-walled carbon nanotubes. That is, as shown at 400 in FIG. 4 (a-2), the nested multi-walled carbon nanotube has a substantially complete TEM image of a cross section perpendicular to its longitudinal direction, as shown at 410.
  • a linear graph ensheet image that is a concentric tube that is a simple circular ⁇ image and that is continuous over its entire length in the longitudinal direction, as indicated by 300 in FIG. 4 (a-2). It is a structure in which 310, etc. are arranged in parallel (concentric cylindrical or nested structure).
  • the nanoflake carbon tube constituting the iron-carbon composite used in the present invention has a large number of flake-shaped dalafen sheets overlapping in a patchwork or papier shape. It looks as if it forms a tube as a whole.
  • Such a nanoflake carbon tube of the present invention and an iron-carbon composite composed of iron carbide or iron included in the space inside the tube are disclosed in Patent No. 2 546 1114.
  • the structure of the carbon nanotube is greatly different.
  • Nano-flake carbon tube constituting the iron-carbon composite used in the present invention When a large number of substantially linear graph embedding images oriented in the longitudinal direction are observed when observing the graph engraving image, the length of each graph embedding image is usually about 2 to 500 nm, especially It is about 10 to 10 O nm. That is, as shown by 100 in FIG. 4 (a-1), a large number of ⁇ images of the substantially linear graph ensheet indicated by 110 are collected and the TEM of the wall of the nanoflake carbon tube is obtained.
  • the length of each substantially linear graph-enclosed image is usually about 2 to 500 nm, especially about 10 to 10 O nm.
  • the outermost layer of the nanoflake force forming the wall of the iron-carbon composite is formed of a discontinuous graph entrainment that is not continuous over the entire length of the tube in the longitudinal direction.
  • the length of the outermost carbon network plane is usually about 2 to 50 O nm, particularly about 10 to 10 O nm.
  • the carbon portion of the wall of the nanoflake force-bon tube constituting the iron-carbon composite used in the present invention has a tubular shape as a whole with a large number of flake-shaped graphene sheets oriented in the longitudinal direction as described above. It has a graphitic structure with an average distance (d002) between carbon mesh planes of 0.334 nm or less when measured by the X-ray diffraction method.
  • the thickness of the wall of the iron-carbon composite used in the present invention is 4.911111 or less, particularly about 0.1 to 20 nm, preferably 1 to 10 nm. nm, which is substantially uniform over the entire length.
  • the carbon tube constituting the iron-carbon composite obtained is a multi-walled carbon nanotube having a nested structure.
  • the nested multi-walled carbon nanotube thus obtained has a concentric circular shape whose TEM image of a cross section perpendicular to the longitudinal direction forms a substantially perfect circle, as shown by 400 in FIG. 4 (a-2). And a structure (concentric cylindrical or nested structure) in which continuous graph emboss images are arranged in parallel over the entire length in the longitudinal direction.
  • Nested multilayer carbon nanotubes constituting the iron-carbon composite used in the present invention The carbon part of the Ube wall has a graphitic structure with an average distance (d002) between carbon mesh planes of 0.334 nm or less as measured by X-ray diffraction.
  • the thickness of the wall portion composed of the nested multilayer carbon nanotubes of the iron-carbon composite used in the present invention is preferably 4 9 11] 11 or less, particularly about 0.1 to 20 nm. About 1 to 10 nm, and is substantially uniform over the entire length.
  • the filling rate (10 to 90%) of iron carbide or iron in the space inside the carbon tube which is selected from the group consisting of the nanoflakes and the nested multi-walled carbon nanotubes, is defined by the present invention.
  • the iron-carbon composite used in the above with a transmission electron microscope, and find that the amount of iron carbide or iron with respect to the area of the image of the space of each carbon tube (that is, the space surrounded by the tube wall of the carbon tube) It is the ratio of the area of the image of the filled part.
  • the filling form of iron carbide or iron includes a form in which the space inside the pressure tube is continuously filled and a form in which the space inside the pressure tube is intermittently filled. Are intermittently filled. Therefore, the iron-carbon composite used in the present invention can be called a metal-containing carbon composite, an iron compound-containing carbon composite, iron carbide, or an iron-containing carbon composite.
  • iron carbide or iron included in the iron-carbon composite used in the present invention is oriented in the longitudinal direction of the carbon tube, has high crystallinity, and is filled with iron carbide or iron.
  • the ratio of the area of the TEM image of crystalline iron carbide or iron to the area of the TEM image in the range (hereinafter referred to as “crystallization rate”) is generally about 90 to 100%, particularly 95 to 100%. %.
  • the high crystallinity of the encapsulated iron carbide or iron is evident from the fact that, when observed by TEM from the control J plane of the iron-carbon composite of the present invention, the ⁇ images of the inclusions are arranged in a lattice pattern. It is clear from the fact that a clear diffraction pattern is obtained in electron beam diffraction.
  • iron carbide or iron in the iron-carbon composite used in the present invention is easily confirmed by an electron microscope and EDX (energy dispersive X-ray detector). be able to.
  • the iron-carbon composite used in the present invention has a small curvature, is linear, and has a substantially uniform wall thickness over its entire length. It has a shape. Its shape is columnar, mainly cylindrical.
  • the outer diameter of the iron-carbon composite according to the present invention is usually in the range of 1 to about L 00 nm, particularly in the range of about 1 to 50 nm, preferably in the range of about 1 to 30 nm. Preferably, it is in the range of about 10 to 30 nm.
  • the aspect ratio (LZD) of the length (L) of the tube to the outer diameter (D) is about 5 to about L0000, and especially about 100 to 1000.
  • linear which is one term indicating the shape of the iron-carbon composite used in the present invention, is defined as follows. That is, the carbonaceous material containing the iron-carbon composite used in the present invention was observed in a range of 200 to 200 nm square by a transmission electron microscope, the length of the image was W, and the image was Assuming that the length when stretched linearly is Wo, the shape characteristic means that the ratio WZWo is 0.8 or more, particularly 0.9 or more.
  • the iron-carbon composite used in the present invention has the following properties when viewed as a bulk material. That is, in the present invention, iron or carbon dioxide is contained in the range of 10 to 90% of the inner space of the tube of the carbon tube selected from the nanoflake carbon tube and the nested multilayer carbon nanotube as described above.
  • the iron-carbon composite filled with iron is not a trace amount that is barely observable by microscopic observation, but is a bulk material containing a large number of the iron-carbon composite, and a carbonaceous material containing the iron-carbon composite. It can be obtained in large quantities in the form of a material or a material which can also be called iron carbide or iron-containing carbonaceous material.
  • An electron microscope of the carbonaceous material of the present invention comprising the nanoflake carbon tube manufactured in Example 1 of JP-A-2002-338382 and iron carbide filled in the space inside the tube. The photograph is shown in FIG.
  • the main component of the carbonaceous material of the present study is the iron-carbon composite in which 10% to 90% of the space inside the carbon tube is filled with iron or iron carbide as described above.
  • soot may be contained in addition to the force S and the iron-carbonaceous composite of the present invention.
  • the components other than the iron-carbonaceous composite of the present invention are removed to improve the purity of the iron-carbonaceous composite in the carbonaceous material of the present invention, and are substantially used in the present invention. It is also possible to obtain a carbonaceous material consisting only of the iron-carbon composite.
  • a large amount of the carbonaceous material containing the iron-carbon composite used in the present invention can be synthesized in large quantities, so that its weight can easily be 1 mg or more. It can be.
  • the carbonaceous material of the present invention has an irradiation area of 25 mm 2 or more with respect to 1 mg of the carbonaceous material, and powder or X-ray powder irradiated with CuK:
  • the integrated intensity of the peak that shows the strongest integrated intensity among the peaks at 40 ° ⁇ 20 ° and 50 ° belonging to Assuming that the integrated intensity of the peak at 26 ° and 20 ⁇ 27 ° attributed to Ib is Ib, the ratio R ( IaZlb) of Ia to Ib is about 0.35 to 5, In particular, it is preferably about 0.5 to 4, more preferably about 1 to 3.
  • the above ratio of Ia / Ib is called an R value.
  • This R value is the average value of the entire carbonaceous material when the carbonaceous material containing the iron-carbon composite used in the present invention is observed by X-ray diffraction at an X-ray irradiation area of 25 mm 2 or more. Because the peak intensity is observed as, the carbonization of the entire carbonaceous material, which is an aggregate of iron-carbon composites, is not the encapsulation or filling rate of one iron-carbon composite that can be measured by TEM analysis. It shows the average value of iron or iron filling ratio or inclusion ratio.
  • the average filling rate of the carbonaceous material as a whole including a large number of the iron-carbon composites of the present invention is determined by observing a plurality of visual fields with a TEM and observing a plurality of iron-carbon composites observed in each visual field. It can also be determined by measuring the average filling factor of iron carbide or iron, and calculating the average value of the average filling factor of a plurality of visual fields.
  • the average filling rate of iron carbide or iron as a whole of the carbonaceous material comprising the iron-carbon composite used in the present invention is about 10 to 90%, particularly 40 to 70%. It is about. Ku Nano Flake Carbon Tube>
  • the contained iron or charcoal iron is dissolved and removed.
  • a hollow nanoflake carbon tube in which iron or iron carbide does not exist in the space can be obtained.
  • Examples of the acid used for the acid treatment include hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, and the concentration thereof is preferably about 0.1 to 2 N.
  • As the acid treatment method various methods can be used.For example, in a 100 ml of 1 N hydrochloric acid, disperse 1 of the iron-containing nanoflake force-bonbon tube and mix at room temperature. After stirring for an hour and separating by filtration, the same treatment is performed twice with 100 ml of 1N hydrochloric acid to obtain hollow nanoflake carbon tubes.
  • the length of the carbon netting surface constituting the outermost surface is 50 O nm or less, especially 2 to 5 nm. 0 O nm, especially 10 to: L 0 O nm.
  • thermoplastic resins In the present invention, at least one selected from the group consisting of various thermoplastic resins, curable resins, and composite resins of thermoplastic resins and curable resins used in the field of electronic components is used. .
  • thermoplastic resin used in the present invention a wide range of thermoplastic resins can be used.
  • polyolefin resins for example, polyethylene resin, polypropylene resin, poly-1-butene resin, poly-4-methyl-1-pentene resin, etc.
  • Cyclic olefins such as linear polyolefin resin, 5-methylpentene resin and polynorporene resin
  • Polyester resin eg, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate / polyethylene glycol block copolymer, etc.
  • polyamide resin eg, nylon 4, nylon) 6, Nylon 6.6, Nylon 610, Nylon 12, etc.
  • Fluororesin e.g., polytetrafuchterethylene resin, polytrifuchterethylene resin, etc.
  • ethylene Z tetrafluoroethylene copolymer Tetrafluoroethylene Z hexafluoropropylene copolymer, heat-meltable fluorine resin
  • thermosetting resin As the curable resin used in the present invention, a thermosetting resin, a photocurable resin, an electron beam curable resin, and the like can be given as typical examples. It has the property of being cured by applying external energy.
  • thermosetting resin include epoxy resins (for example, cresol nopol type epoxy resin, phenol nopolak type epoxy resin, biphenyl type epoxy resin, bisphenol A, various nopolak type epoxy resins synthesized from resorcinol, etc.). Epoxy resin, bisphenol A epoxy resin, brominated bisphenol A epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, halogenated epoxy resin, spirocyclic epoxy resin, etc.
  • thermosetting resins examples include a curable polyphenylene ether resin, a crosslinkable polyphenylene oxide, a maleimide resin, an alkyd resin, and a xylene resin.
  • thermosetting resins may be used alone, or two or more thereof may be used in combination.
  • thermosetting resins can be used by adding a polymerization initiator (curing agent) as needed.
  • curing agents for epoxy resins include amine-based curing agents, polyamide-based curing agents, and acid curing agents. Examples thereof include an anhydride-based curing agent and a latent curing agent, and a compound having an active group (preferably, an amino group, an acid anhydride group, an azide group, or a hydroxyl group) capable of reacting with an epoxy group is suitable.
  • amine-based curing agents aliphatic amines, alicyclic amines, aromatic amines, etc., polyamide-based curing agents, polyamide amines, etc., acid anhydride-based curing agents, aliphatic acid anhydrides, Alicyclic acid anhydrides, aromatic acid anhydrides, phenols, rosin acid anhydrides, etc., as latent curing agents, high melting point active hydrogen compounds (dicyandiamide, organic acid dihydrazide, etc.), tertiary amines, imidazoles Salts (Lewis acid, Bronsted acid salt, etc.), but are not limited thereto.
  • the curing agent for the silicone resin include aminoxysilane.
  • the curing amount J may be used in an amount commonly used for each thermosetting resin, but is generally about 0.3 to 5 parts by weight based on 100 parts by weight of the thermosetting resin. It is particularly preferable to use about 1 to 3 parts by weight.
  • the curable resin used in the present invention may be a photo-curable resin provided with photo-curability.
  • Various known photo-curable resins may be used, such as acrylic resin, silicone resin, and ester. Resins and the like.
  • the following monomers or oligomers are used as UV-curable resins having an acryloyl group in the molecule.
  • a mixture such as a polymer is used. Examples include epoxy acrylate, urethane acrylate, polyester acrylate, and polyol acrylate oligomers or polymers.
  • monofunctional, bifunctional or polyfunctional polymerizable (meth) acrylic systems such as tetrahydrofurfuryl acrylate, 2-hydroxyxethyl acrylate, 2-hydroxy-13-phenoxypropyl acrylate, Monomers, oligomers, or polymers such as polyethylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol and pentaerythritol tetraacrylate.
  • One of these photocurable resins may be used alone, or two or more thereof may be used in combination.
  • the photocurable resin may be blended with a photopolymerization initiator that is usually blended (if necessary, with a photopolymerization accelerator) in a commonly used amount.
  • acetophenone a substance that easily generates a radical by absorbing ultraviolet light
  • known substances such as acetophenone, thioxanthone, benzoin, and peroxide can be used.
  • the amount of the photopolymerization initiator used may be the amount commonly used for each photocurable resin; generally, 0.3 to 5 parts by weight per 100 parts by weight of the photocurable resin. It is preferably about 1 part by weight, particularly about 1 to 3 parts by weight.
  • the photopolymerization accelerator promotes the initiation reaction more efficiently than the photopolymerization initiator alone, and makes the curing reaction more efficient.
  • Known photoinitiating assistants such as aliphatic and aromatic amines Can be used. For example, there are triethanolamine, N-methylenanolamine, Michler's ketone, and 4,4-jetylaminophenone.
  • the amount of the photopolymerization accelerator may be the amount commonly used for each photo-hardening resin. It is preferably about 0.3 to 5 parts by weight, particularly preferably about 1 to 3 parts by weight.
  • the curable resin used in the present invention may be an electron beam curable resin. Conventionally known electron beam hardening properties can be widely used.
  • (A) S aliphatic, alicyclic and aromatic mono- to hexavalent alcohols and polyalkylene glycols Acrylate compounds of (B) aliphatic, alicyclic, and aromatic, mono- to hexavalent alcohols with alkylene oxide added thereto, and (C) polyacryloyl alkyl phosphate Esters, (D) reaction products of carboxylic acid, polyol, and acrylic acid, (E) reaction products of isocyanate, polyol, and acrylic acid, (F) epoxy compound and acrylic acid And (G) an epoxy compound, a polyol, and a reaction product of acrylic acid.
  • the electron beam-curable resin includes polyoxyethylene epichlorohydrin-modified bisphenol A diatalylate, dicyclohexyl acrylate, epichlorohydrin-modified polyethylene dalicol diacrylate, 1, 6 —Hexane diol diacrylate, hydroxybivalic acid ester neopentyl glycol diacrylate, nonylphenoxypolyethylene glycol acrylate, ethylene oxide-modified phenyloxyacrylate phosphoric acid, ethylene oxide-modified phthalic acid acrylate, polybutadiene acrylate , Force-prolactan-modified tetrahydrofurfuryl acrylate, tris (acryloxyshethyl) isocyanurate, trimethylolyl propane triacrylate, pentaerythri] Erythryl pentayl acrylate, erythritol acrylate, diphenyl erythritol hexaacrylate, poly
  • the thermoplastic resin and the curable resin may be used in the form of a composite resin.
  • the composite resin may be used, for example, in the form of a thermoplastic resin in which a cured product of a curable resin is dispersed, or in the form of a thermosetting resin in which a thermoplastic resin is dispersed.
  • the resin composition comprising the above-described resin and the nanoscale carbon tube reduces t an ⁇ 5 from the original resin (base material), and has other physical properties such as relative permittivity, The mechanical strength, heat resistance, etc. are maintained at the same level as the original resin, resulting in electronic components suitable for each application.
  • Thermoplastic resins such as polyolefin Ji, polyester resin, polyamide resin, fluororesin, polystyrene resin, polyvinyl chloride resin, polymethyl (meth) acrylate resin, polycapone resin, polyether sulfone resin, etc.
  • the resin composition of the present invention also includes the resin and the nanoscale pressure-sensitive carbon tube.
  • the resin composition of the present invention is characterized in that the amount of the nanoscale carbon tube added is 0.0001 to 0.4% by weight based on the resin.
  • the mechanism of reducing the dielectric loss tangent in the GH ⁇ band by adding a very small amount of nanoscale carbon tube is unknown at present, but the very small amount of nanoscale force is uniformly dispersed in the carbon tube. It is considered that the electric field change of the dipole caused by the dielectric polarization caused by the polar group contained in the resin is physically canceled out by the nanoscale force tube. If the blending amount of the nanoscale force-one-tube is less than 0.001% by weight, the effect is weakened, and if it exceeds 0.4% by weight, the dielectric loss tangent is increased.
  • the addition amount of the nanoscale carbon tube is 0.005 to 0.4% by weight, preferably 0.001 to 0.4% by weight, particularly 0.001 to 0.3% by weight based on the resin. Preferably it is.
  • the addition amount of the nanoscale carbon tube is more preferably 0.001 to 0.2% by weight, particularly 0.001 to 0.1% by weight, based on the resin.
  • the nanoscale carbon tube is the single-walled carbon nanotube or In the case of nested multi-walled carbon nanotubes, the amount of addition is preferably from 0.0001 to 0.1% by weight, more preferably from 0.0001 to 0.05% by weight, based on the resin.
  • the amount added is 0.0001 to 0.1% by weight, particularly 0.0001 to 0.05% by weight based on the resin. %.
  • the amount of addition is 0.001 to 0.4% by weight, particularly 0.01 to 0.4% by weight, based on the resin. It is preferred that
  • the amount added is preferably 0.0001 to 0.1% by weight, particularly 0.0001 to 0.05% by weight with respect to the resin. preferable.
  • the addition amount of the nanoscale carbon tube is determined by the weight of the thermosetting resin (when a curing agent is used for curing the thermosetting resin, (The sum of the weight of the thermosetting resin and the weight of the curing agent).
  • the addition of the nanoscale carbon tube is based on the total weight of the epoxy resin and the weight of the curing agent used for the setting. The amount is in the above-mentioned range of 0.0001 to 0.4% by weight.
  • the amount of the nanoscale carbon tube added is as follows: (a) the weight of the photopolymerizable resin component (oligomer, monomer, etc.); b) Based on the total weight of the photopolymerization initiator used for curing the photocurable resin (and, if a photopolymerization accelerator is used, the weight of the photopolymerization accelerator).
  • a UV-curable acrylic resin when used as a resin, (a) the weight of the UV-curable acrylic resin, and (b) the weight of the photopolymerization initiator used for the curing thereof (and The amount of the nanoscale carbon tube is in the range of 0.0001 to 0.4% by weight based on the total weight of the photopolymerization accelerator used accordingly.
  • thermoplastic resin composition of the present invention Various methods can be employed to produce the resin composition of the present invention. For example, heat When using a plastic resin, a method of dissolving the thermoplastic resin in a solvent that dissolves the thermoplastic resin to obtain a thermoplastic resin solution, adding a nanoscale carbon tube to the solution, and distilling the solvent from the resulting mixture, or For example, a method of heating and melting a thermoplastic resin to form a liquid, adding a nanoscale carbon tube to the liquid, and kneading the mixture until uniformity can be exemplified.
  • heat When using a plastic resin, a method of dissolving the thermoplastic resin in a solvent that dissolves the thermoplastic resin to obtain a thermoplastic resin solution, adding a nanoscale carbon tube to the solution, and distilling the solvent from the resulting mixture, or For example, a method of heating and melting a thermoplastic resin to form a liquid, adding a nanoscale carbon tube to the liquid, and kneading the mixture until uniformity can be
  • thermosetting resin When a thermosetting resin is used, it is usually in a liquid state before the thermosetting resin is cured. Therefore, a method in which a nanoscale carbon tube is mixed with the thermosetting resin before hardening is adopted. it can. Similarly, since the photo-curable resin and the electron beam-curable resin are usually in a liquid state before being cured, it is possible to adopt a method of mixing the resin before curing with a nanoscale cap tube.
  • composition of the present invention can be obtained by mixing the above resin, the nanoscale carbon tube, and if necessary, the above additives.
  • a known method can be used. For example, a method using a ceramic three-roll, a paint shaker, a planetary mill, or the like can be used. ⁇ i ⁇ ⁇
  • the composition of the present invention provides a resin product having a low dielectric constant, a low dielectric loss tangent, a high heat resistance and a high mechanical strength. It can be suitably used as a substrate material. In particular, it suppresses the increase in dielectric loss tangent in the GHz band without deteriorating the properties of resins with improved various properties (dielectric properties, thermal properties, chemical properties, and mechanical properties). Can be increased.
  • the electronic component of the present invention has the above characteristics in a wide band of 1 GHz or more in the GHz band, but is generally in a band of 1 to 20 GHz, particularly in a band of 1 to 10 GHz. The excellent effects can be obtained.
  • the resin composition of the present invention can be extremely suitably used, for example, as a printed circuit board material for high-frequency equipment represented by satellite broadcasting-related equipment and information processing equipment. Wear. Further, the resin composition of the present invention can be used, for example, in the field of semiconductor packages such as chip carriers and pinhole arrays, in base components such as resistors, switches, capacitors, and photo sensors, and in mechanical components such as IC sockets and connectors. ⁇ ⁇ Applicable in a wide range. It can also be used for containers for microwave ovens.
  • the resin composition of the present invention is particularly useful as a resin composition for producing circuit boards, semiconductor interlayer insulating films, antenna components, insulating materials for high-frequency coaxial cables, and the like as described above.
  • a printed circuit board is formed by forming the composition of the present invention into a plate shape, forming a metal film such as copper on the surface thereof by plating operation or the like, if necessary, and forming a circuit according to a conventional method. can get.
  • the molding of the composition of the present invention can be carried out according to a known molding method, for example, injection molding, extrusion molding, compression molding, casting molding, or the like.
  • a nanoscale carbon tube is added to the resin in an extremely small amount of 0.0001 to 0.4% by weight.
  • the force at which the dielectric loss tangent (tan ⁇ 5) is lower than that of the resin alone or the increase of tan ⁇ when the resin alone is used in the GHz band. Can be suppressed.
  • the present invention provides a method for producing at least one resin selected from the group consisting of the thermoplastic resin, the curable resin, and the composite resin of the thermoplastic resin and the curable resin in the range of 0.001 to 0.001.
  • a GH of an electronic component obtained from the resin characterized in that the resin is mixed with a nanoscale carbon tube, particularly a nanoscale carbon tube according to the above item 2 or 3 at a ratio of 4% by weight.
  • Another object is to provide a method of reducing tan ⁇ in the ⁇ band or suppressing an increase in tan ⁇ .
  • the present invention provides a GH band of an electronic component obtained from at least one resin selected from the group consisting of the thermoplastic resin, the stiffening resin, and the composite resin of the thermoplastic resin and the curable resin.
  • the present invention also provides use of a nanoscale carbon tube, in particular, a nanoscale carbon tube according to the above item 2 or 3, for reducing tan ⁇ and suppressing an increase in tan ⁇ in the above.
  • the nanoscale carbon tube is added to the resin in an amount of 0.0001 to 0.4% by weight.
  • the dielectric loss tangent (tan S) in the GHz band is lower than that of the resin alone, or The rise of tan ⁇ when used alone can be suppressed, while the inherent properties of the resin, such as relative permittivity, heat resistance, and mechanical strength, are maintained substantially unchanged.
  • the present invention provides a method for producing at least one resin selected from the group consisting of the thermoplastic resin, the curable resin, and the composite resin of the thermoplastic resin and the curable resin, from 0.00001
  • a nanoscale carbon tube in particular, a nanoscale carbon tube according to item 2 or 3 is mixed with a resin at a ratio of 0.4% by weight.
  • the tan 3 in the region is reduced or the rise is suppressed compared to the case of resin alone, and the relative permittivity, heat resistance, and mechanical strength inherent to all the shelves (eg, tensile strength, elongation at break, hardness, etc.) It also provides a way to maintain physical properties, such as chemical properties, especially dielectric properties.
  • the present invention provides a Ghz band of an electronic component obtained from at least one resin selected from the group consisting of a thermoplastic resin, a cured 1 raw side fat, and a composite resin of a thermoplastic resin and a curable resin.
  • the tan ⁇ of the electronic component or suppress the increase of tan 5 in the GHz band of the electronic component, and maintain other physical properties of the resin.
  • the present invention also provides the use of a nanoscale carbon tube, particularly the nanoscale carbon tube according to the above item 2 or 3. Examples Hereinafter, the present invention will be described in more detail with reference to Reference Examples (manufacturing examples of nanoscale carbon tubes), Examples, and Comparative Examples. However, the present invention is not limited to these Examples, and various changes are made. Is possible.
  • An amorphous nanoscale carbon tube was produced by the method described below. 1 Omg of anhydrous iron chloride powder (particle size: 500 m or less) was uniformly sprinkled on a PTFE film of 60 m1Ommx1 Omm, and then plasma-excited. Plasma excitation The conditions for initiation were as follows:
  • amorphous nanoscale carbon tubes (outer diameter: 10 to 60 nm, length: 5 to 6 xm) was confirmed by scanning electron microscope (SEM) and X-ray diffraction. Confirmed by
  • the X-ray diffraction angle (2 ⁇ ) of the obtained amorphous nanoscale carbon tube was 19.1 degrees, and the carbon network plane spacing (d 0 2) calculated from it was 4.6 A, 2 The half width of the band of 0 was 8.1 degrees.
  • the obtained iron-carbon composite had an outer diameter of 20 to 10 O nm and a length of 1 to 10 microns and was highly linear.
  • the thickness of the carbon wall was 5 to 40 nm, and was substantially uniform over the entire length.
  • the carbon wall appears not to be nested nor scroll-shaped, but rather patch-like (so-called paper mache-like or papier-like).
  • the nanoflake carbon tube had a graphitic structure in which the average distance (d002) between carbon mesh planes was 0.34 nm or less.
  • X-ray diffraction and EDX it was confirmed that iron carbide was partially filled in the space inside the tube of the nanoflake carbon tube constituting the iron-carbon composite of the present invention.
  • the average filling factor calculated by observing a plurality of visual fields of a TEM observation image of iron carbide in the space inside the nanotube of the nano-flake force of the iron-carbon composite was 30%.
  • the R value calculated from X-ray diffraction was 0.57.
  • the iron-carbon composite (nanoflake carbon nanotube partially encapsulating iron carbide) lg obtained in Reference Example 2 was dispersed in 100 ml of 1N hydrochloric acid, stirred at room temperature for 6 hours, and separated by filtration. . Further, the same treatment was performed twice using 100 ml of 1N hydrochloric acid to obtain a hollow nanoflake force one-pong tube.
  • the obtained nanoflake force-bon tube had substantially the same shape, outer shape, length, and wall thickness as the iron-carbon composite of Reference Example 2 above.
  • the wall portion when observed by TEM, appears to have a patchwork shape (so-called paper mache shape or papier shape), not a nested or scrolled shape, and an X-ray diffraction method. From the results, it was confirmed that the nanoflake carbon tube had a graphitic structure with an average distance (d002) between carbon net surfaces of 0.34 nm or less.
  • photosensitive acrylic resin epoxy acrylate resin (Nippon Kayaku Co., Ltd. EAM-2160) 98 g, photopolymerization initiator (Nippon Kayaku Co., Ltd. DETX-S) lg, photopolymerization accelerator (Japan A mixture of EPA) lg manufactured by Kayaku Co., Ltd.) was used.
  • Table 1 shows the blending amount (parts by weight) of the nanoscale carbon tubing with respect to 100 parts by weight of the photopolymerization initiator and the photopolymerization accelerator in total for the epoxy acrylate resin Ji.
  • the resin and the nano-scale carbon fiber tube are mixed with three ceramic rolls (NR-42A manufactured by Noritake Company), and the nano-scale carbon fiber tube is uniformly dispersed in the resin, and the paste is mixed. Obtained.
  • the obtained paste is placed in a cylindrical mold and irradiated with ultraviolet light (mercury lamp (500W)). Irradiation dose: 6 J / cm 2 ) to obtain a cylindrical molded body. The center of the molded body was cut out to obtain a sample for evaluation.
  • the sample for evaluation is a coaxial workpiece and has a donut shape, as shown at 501 in FIG. 5, with an outer diameter (2b) of 0.7 cm and an inner diameter (2a) of 0.3 cm. The height (L) is 0.15 cm.
  • a sample for evaluation was obtained in the same manner as in Example 2 except that the amorphous nanoscale carbon nanotube obtained in Reference Example 1 was used instead of the iron-carbon composite.
  • Example 6 The same procedure as in Example 6 was performed except that the amount of the amorphous nanoscale carbon tube used was 1.19% by weight or 3.02% by weight based on the total amount of the epoxy acrylate resin, the photopolymerization initiator, and the photopolymerization accelerator. Thus, an evaluation sample was obtained for Hiko.
  • Evaluation samples were obtained in the same manner as in Examples 1 to 5, except that commercially available single-walled carbon nanotubes were used in place of the iron-carbon composite at the ratios shown in Table 1.
  • the amount of the single-walled carbon nanotubes was adjusted to 98 g of the above photosensitive acryl resin (epoxy acryl resin (EAM-2160 manufactured by Nippon Kayaku), 1 g of photopolymerization initiator (DETX-S manufactured by Nippon Kayaku), photopolymerization
  • the same procedure as in Example 7 was carried out except that 0.50% by weight, 0.98% by weight, and 3.01% by weight of the accelerator (a mixture of Nippon Kayaku EPA) were used. For evaluation was obtained.
  • APC 7mm standard coaxial connector coaxially processed evaluation sample (outer diameter (2b): 0.7 cm, inner diameter (2a): 0.3 cm, height (L): 0.15 cm) was inserted into the outer conductor 503 shown in FIG. 5, and two complex parameters S u and S 21 were measured to determine the complex permittivity.
  • the measurement is performed by inserting a material to be measured coaxially into an APC 7 mm standard coaxial connector using a vector network analyzer and measuring the two S parameters of Su and S21 to determine the complex permittivity.
  • FIG. 7 shows the measurement results of the relative permittivity of the evaluation samples obtained in Comparative Example 1, Example 2, and Example 3.
  • the resin composition containing a specific amount of the iron-carbon composite as compared to Sankare for evaluation obtained from the resin alone containing no iron-carbon composite (Comparative Example 1)
  • the rise in the dielectric loss tangent (tan S) was suppressed, but the relative dielectric constant was not substantially changed.
  • FIG. 8 shows the measurement results of tan ⁇ 5 of the evaluation samples obtained in Comparative Example 1, Example 6, and Comparative Example 4.
  • the evaluation sample of Example 6 containing about 0.01% by weight of the amorphous nanoscale 1 / carbon tube was the evaluation sample consisting of resin alone (Comparative Example 1) or the amorphous nanoscale carbon.
  • the increase in tan S was suppressed as compared with the evaluation sample containing more than 1% by weight of the tube (Comparative Example 4).
  • FIG. 9 shows the measurement results of tan S of the evaluation samples obtained in Comparative Example 1 and Example 7.
  • the evaluation sample of Example 7 which contains about 0.02% by weight of carbon nanotubes, suppresses an increase in tan ⁇ as compared with the evaluation sample consisting of resin alone (Comparative Example 1). I have.
  • Table 2 shows the measurement results of tan ⁇ and relative permittivity at 1 GHz, 5 GHz and 10 GHz of the evaluation samples obtained in each example and each comparative example.
  • photosensitive acrylic resin epoxy acrylate resin (Nippon Danisha Co., Ltd. EAM-2160) 98 g, photopolymerization initiator (Nippon Kayaku Co., Ltd. DE TX-S) 1 g, photopolymerization acceleration (EPA made by Nippon Kayaku Co., Ltd.) was used.
  • the iron-carbon complex obtained in Reference Example 2 was used as a nanoscale carbon tube in the ratio shown in Table 4 below.
  • Table 4 shows the blending amount (blocking portion) of the nanoscale carbon tube with respect to 100 parts by weight of the photosensitive acrylic resin (total of an exacrylate resin, a photopolymerization initiator, and a photopolymerization accelerator). .
  • Example 8 a resin and a nanoscale carbon tube (iron-carbon composite) are mixed with a ceramic three-roll (KT R-42A manufactured by Noritake Company), and the nanoscale carbon tube is resinated.
  • KT R-42A ceramic three-roll
  • Example 8 the paste of Example 8 obtained above was mixed with the paste of Comparative Example 1 (from an epoxy acrylate resin, a photopolymerization initiator and a photopolymerization accelerator) so as to have the composition shown in Table 4 below.
  • Example 8 The pastes of Examples 9 to 11 having low concentrations were obtained.
  • the obtained paste was put into a cylindrical mold, and irradiated with ultraviolet rays (irradiation dose: 6 Jcm2) with a mercury lamp (500 W) to obtain a cylindrical molded body.
  • the center of the molded body was cut out to obtain a sample for evaluation.
  • This evaluation sample is a coaxial workpiece having a donut shape, an outer diameter of 0.7 cm, an inner diameter of 0.3 cm, and a height force S of 0.3 cm.
  • the tan ⁇ in the GHz band was measured in the same manner as in Test Example 1 except that the evaluation samples obtained in Examples 8 to 11 were used.
  • Table 8 shows the measurement results of tan ⁇ at 1 GHz, 5 GHz and 10 GHz of the evaluation samples obtained in Examples 8 to L1.
  • Example 3 In place of the amorphous nanoscale force-bon tube, obtained in Reference Example 3; An evaluation sample was obtained in the same manner as in Example 6 except that a no-flake carbon tube was used.
  • the iron-carbon composite obtained in Reference Example 2 was used as a nanoscale carbon tube at the ratios shown in Table 5.
  • Table 5 shows the blending amount (parts by weight) of the nanoscale carbon tube with respect to 100 parts by weight of the thermosetting epoxy resin.
  • the resin and the nanoscale carbon tube (iron-carbon composite) are mixed with three ceramic rolls (NR-42A manufactured by Noritake Company), and the nanoscale carbon tube is uniformly dispersed in the resin to obtain a paste.
  • NR-42A manufactured by Noritake Company
  • the obtained paste was placed in a cylindrical mold and thermally cured at 220 ° C. for 30 minutes to obtain a cylindrical molded body.
  • the center of the molded body was cut out to obtain a Sankare for evaluation.
  • the sample for evaluation is a coaxial workpiece and has a donut shape as shown at 501 in FIG. 5, with an outer diameter (2b) of 0.7 cm_ and an inner diameter (2a) of 0.3. cm and height (L) is 0.15 cm.
  • An evaluation sample for comparison was obtained in the same manner as in Example 18 except that the amount of the amorphous nanoscale carbon tube used was 3.02% by weight based on the thermosetting epoxy resin.
  • LDPE thermoplastic resin
  • LDPE is additionally added so that the content of nanoscale carbon tubes is as shown in Table 6, and the mixture is pressurized with a double-arm kneader.
  • the mixture was heated and kneaded, and a rod-shaped evaluation test piece having a diameter of 3 mm and a length of 120 mm was produced using an injection molding machine manufactured by Nissei Plastic Industry Co., Ltd.
  • Table 6 shows the results. Table 6 shows the blending amount (parts by weight) of the nanoscale carbon tube with respect to 100 parts by weight of the thermoplastic resin.
  • the tan S of the rod-shaped evaluation test piece (Comparative Example 13) obtained from the resin composition not containing the nanoscale carbon tube was more consistent with the present invention. It can be seen that the tan ⁇ 5 of the rod-shaped evaluation test pieces (Examples 20 to 23) obtained from the resin composition containing a specific amount of nanoscale carbon tubes decreased at 2 Gz. . INDUSTRIAL APPLICABILITY According to the present invention, an electronic component obtained from a resin composition obtained by adding the nanoscale carbon tube in an extremely small amount of 0.001 to 0.4% by weight according to the invention is provided.
  • the dielectric loss tangent (the force that reduces the tan (5) even when the resin alone is used, or the tan (the increase in tan (5) when the resin is used alone can be suppressed. It can also suppress the change in drift of tan ⁇ , while the resin has inherent properties such as relative dielectric constant, heat resistance, mechanical strength (for example, tensile strength, elongation at break, hardness, etc.), chemical properties, etc. In particular, the dielectric properties are maintained substantially unchanged.
  • an electronic component can be provided which can be suitably used as a circuit board material of an electric device, especially a circuit board material for a GH band.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本発明は、熱可塑性樹脂、硬化性樹脂、及び熱可塑性樹脂と硬化性樹脂との複合樹脂からなる群から選ばれる少なくとも1種の樹脂、及び、ナノスケールカーボンチューブを含有し、ナノスケールカーボンチューブが上記樹脂を基準として0.0001~0.4重量%の割合で含有されているGHz帯域電子部品用樹脂組成物、及び該樹脂組成物から得られる電子部品等に関する。

Description

GH z帯域電子部品用樹脂組成物及び GH z帯域電子部品 技術分野 本発明は、 GH z帯域電子部品用樹脂組成物に関する。 更に詳しくは、 本発明 は、 低誘電正接を具備し、 電気'電子機器の回路基板材料、 特に GH z帯域用の 回路基板材料、 その他の電子部品の明製造用に好適な樹脂組成物に関する。 また、 本発明はかかる樹脂組成物から得られ 1る細電子部品にも関する。
背景技術 近年、通信情報量の急増に伴い、 P H S、携帯電話等の情報通信機器の小型化、 軽量化、 高速化が強く望まれており、 これに対応できる低誘電性電気絶縁材料が 要求されている。 特に自動車電話、 デジタル携帯電話等の携郷動体通信、 衛星 通信などのモバイル通信機器等に使用される電波の周波数帯域はメガからギガ H z帯の高周波帯域のものが使用されている。 また、 使用可能波長帯域が減少して いることにより、 マイクロ波 'ミリ波帯といった高周波帯域の利用;^'進んできて いる。 また、 コンピュータの C P Uクロックタイムは GH z帯に達し、 高周波数 化が進行している。 このような高周波帯域に対応した通信機の小型化、 軽量化の ためには、 優れた高周波伝送特性と低誘電性特性とをあわせ持つ電気絶縁材料の 開発が必要である。
電子機器の回路基板材料には、 多くの場合、 比誘電率や誘電正接等の誘電特性 が低く、 耐熱性や機械的強度等の物理的特性に優れることが要求される。 比誘電 率 (ε ) とは、 誘電体内の分極の程度を示すパラメ一ターであり、 比誘電率が高 い程電気信号の伝播遅延が大きくなる。 従って、 信号の伝播速度を高め、 高速演 算を可能にするためには、 比誘電率は低い方が好ましい。 誘電正接 (tan <5 ) は、 誘電体内を伝播する信号が熱に変換されて失われる量を示すパラメ一ターであり、 誘電正接が低い程信号の損失が少なくなり、 信号伝達率が向上する。
即ち、 素子回路内では誘電損失といわれる伝送過程におけるエネルギー損失が 生じるが、 このエネルギー損失は熱エネルギーとして素子回路内に放出されるた め好ましくない。 このエネルギー損失は、 低周波帯域においては、 誘電分極によ つて生じた双極子が電界変化により振動するために生ずるものであり、 高周波帯 域においては、 イオン分極や電子分極によって生ずるものである。 交番電界 1サ ィクル当たり誘電体中で消費されるエネルギーと誘電体中に蓄えられるエネルギ —の比を誘電正接といい、 tan <5で表される。
tan δは高周波帯域では周波数の増加にともなって増大し、また電子素子の高密 度実装ィ匕により単位面積当たりの発熱量が多くなるので、 絶縁材料の誘電損失を 少しでも小さくするためには、 tan δの小さな材料を用いる必要がある。誘電損失 の小さい低誘電性高分子材料を用いることにより、 誘電損失および電気抵抗によ る発熱が抑制され、 その結果、 信号の誤作動も少なくなることから、 高周波通信 分野においては伝送損失 (エネルギーロス) の少ない材料が強く望まれている。 電気絶縁性であり、 低誘電率である等の電気特性を有する材料として、 通常、 ポリオレフイン、 塩化ビエル樹脂、 フッ素系樹脂等の熱可塑性樹脂、 不飽和ポリ エステル樹脂、 ポリイミド樹脂、 エポキシ樹脂、 ビスマレイミド卜リアジン樹脂 (Β Τレジン)、架橋性ポリフエ二レンォキサイド、硬化性ポリフエ二レンエーテ ル等の熱硬化性樹脂などが、 次の特性を満足させるため種々開発されている。
·積層板のドリル加工性、 切削加工性
•高耐熱性
.低線膨張率
•金属導体層との密着性ないし接着性 (銅箔密着性)
•機械的強度
·薄膜形成能
•比誘電率を比較的広範囲に渡って任意に設定することが可能
•絶縁性
•耐候性
•誘電特性が温度、 湿度に対して依存性が少ない。 しかしながら、 上記樹脂には下記のような問題点がある。
(1)ポリオレフイン
ポリエチレン、 ポリプロピレン等のポリオレフインは、 C一 C結合等の共有結 合を有し、 且つ大きな極性基を持たないため、 電気特性、 特に絶縁抵抗性に優れ ているが、 耐熱性が低いという欠点がある。 このため高温下での使用における電 気特性 (誘電損失、 比誘電率など) が悪化して、 コンデンサ一等の絶縁膜 (層) として好適とはいえない。
ポリエチレンやポリプロピレンは、 一旦フィルムとして形成させ、 これを接着 剤を用いて導電材料に被覆接着しているが、 この方法は加工工程が複雑となるば かりでなくフィルム形成層の厚みを薄くすることが非常に難しいなど、 被覆形成 上の問題もある。
(2)塩化ビニル樹脂
塩化ビエル樹脂は、 絶縁抵抗性が高ぐ 耐薬品性、 難燃性に優れているが、 ポ リオレフィンと同様耐熱性に欠け、 誘電損失が大きいという欠点がある。
(3)フッ化ビニリデン樹脂、 トリフルォロエチレン樹脂、およびパーフルォロェ チレン樹脂
フッ素原子を分子鎖中に含有しているこれら重合体は、 電気特性 (低誘電率、 低誘電損失)、耐熱性、化学安定性に優れているが、熱可塑性樹脂のように熱処理 加工することによつて成形物、 あるいはフィルム等を得るというような成形加工 性、塗膜形成能に難があり、且つデバイス化を行う際、かなりのコスト高となる。 さらに透明性が低いため応用分野が限られているという欠点がある。
(4)エポキシ樹脂
エポキシ樹脂は、 絶縁抵抗性、 絶縁破壊強度と耐熱温度においては要求性能を 満たしている。 しかし、 比誘電率が 3以上と比較的高く、 満足される特性が得ら れていない。 そして薄膜形成能に乏しいといった欠点もある。 ポリフエ二レンォ キサイド樹脂 (P P O) と多官能シアン酸エステル樹脂類、 さらにこれら樹脂に 他の樹脂を配合し、 ラジカル重合開始剤を添加し、 予備反応させてなる硬化可能 な変性 P P〇樹脂組成物が知られているが、 低比誘電率化は充分満足できるレべ ルまで至っていない。 さらに耐熱性の乏しいエポキシ樹脂の改良目的で、 例えば フエノールノポラック樹脂、 ビニルトリアジン樹脂等の組合せも検討されている が、 フィルムとして力学的特性が著しく低下するという欠点がある。 そこで、 電 気特性を維持したまま上記の問題点、 具体的には加熱加工性の改良、 銅などの金 属導電体 (層) との密着性や接着性の改良を目的として、 分岐シクロ環ァモルフ ァスフッ素ポリマ一、 パ一フルォロエチレンモノマーと他のモノマーとの共重合 体等が提案されているが、 比誘電率、 誘電損失等の電気特性は満たすものの、 高 分子主鎖に存在するメチレン鎖の影響のため耐熱性が悪化し、 デバイス基板等に 対する密着性が良好なものはまだ得られていない。
(5)ポリイミド、ポリエ一テルスルホン、ポリフエ二レンスルフィド、ポリスル フォン、熱硬化性ポリフエ二レンエーテル(P P E)、 ポリエチレンテレフタレ一 h
誘電性 ·絶縁抵抗性に優れた低誘電率材料にさらに求められる性能として、 デ バイス化工程のなかに必ず半田付け工程が入るため少なくとも 2 6 O で 1 2 0 秒の加熱に耐え得るだけの耐熱性が要求され、 耐熱性、 耐アルカリ性等の化学的 安定性、 および耐湿性や機械的特性に優れたものでなければならない。 これらの 要求を満足する高分子素材として、 例えばポリイミド、 ポリエ一テルスルホン、 ポリフエ二レンスルフイド、 ポリスルフォン、 熱硬ィ匕性ポリフエ二レンェ一テル (Ρ Ρ Ε)、ポリエチレンテレフタレート等が知られている。 しかし、 これら樹脂 であっても、 誘電損失が GH z帯域では大きくなつてくる。
このように前述した特性を達成するには樹脂単独では種々の難点があるため、 樹脂に添加剤を添加して、 樹脂の電気的性質を改善することが提案されている。 例えば、 特開平 8— 1 3 4 2 6 3号では、 合成樹脂に特定のゲイ酸金属塩系繊維 状物を特定量配合すると、 高周波域での使用に支障をきたす程の比誘電率及び誘 電正接の上昇を伴うことなぐ 熱伝導性、 耐熱性及び機械的強度をも向上させる ことができ、 加えて、 配合する樹脂の種類によっては、 比誘電率を同程度に維持 したまま、 誘電正接を著しく低下させ得るので、 従来、 合成樹脂が適用されてき た電気 ·電子部品とは異なった電気的用途である回路基板材料、 特に高周波用の 回路基板材料として極めて好適に使用できることを提案している。
より具体的には、 特開平 8— 1 3 4 2 6 3号では、 熱可塑性樹脂 (ポリアミド 樹脂を除く)及び Z又は熱硬化性樹脂(フエノール観旨を除く) に、 一般式 aMx Oy · bS i〇2 · cH20 (ここで a、 b及び cは正の実数を示す。 xが 1の場 合は yは 1を、 Xが 2の場合は yは 1又は 3をそれぞれ示す。 Mは Mg、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Al、 Ga、 S r、 Y、 Z r、 Nb、 M o、 P b、 B a、 W及び L iなる群より選ばれた少なくとも 1種以上の金属元素 を示す。)で表されるケィ酸金属塩系繊維状物質を主成分とする強化繊維を、上記 樹脂及び上記繊維状物質の合計重量を基準として 5〜 60重量%の割合で配合し てなることを特徴とする高周波電子部品用樹脂組成物を提案している。
しかし、 上記特開平 8— 134263号公報では、 熱可塑性樹脂又は熱硬化性 樹脂に対する強化繊維の配合割合が少なくとも約 5重量%以上であり、 該強化繊 維を大量に使用する必要がある。 発明の開示 本発明は、 樹脂に少量添加するだけで、 GHz帯域における誘電損失 (ないし tan5)を低減させることができる添加剤を開発し、種々の要請に柔軟に応えるこ とができる電子部品用樹脂組成物を提供することを主たる目的とする。
また、 本発明の他の目的は、 低比誘電率、 低誘電正接、 高耐熱性、 高機械的強 度を具備する電気'電子機器の回路基板材料、特に GHz帯域用の回路基板材料、 その他の電子部品の製造用に極めて好適な樹脂組成物を提供することである。 本発明者らは、 上記目的達成のため鋭意検討した結果、 合成樹脂にナノスケ一 ルカーボンチューブを特定範囲の少量で配合する場合には、 高周波帯域、 特に G Hz帯域で誘電正接の上昇が抑制されること、 また、 熱伝導性、 耐熱性、 機械的 強度、 比誘電率などの合成樹脂の有する特性が維持されるので、 ナノスケール力 一ボンチューブを特定の少量含有する樹脂組成物は、 回路基板材料、 特に GHz 帯域用の回路基板材料として極めて好適に使用できることを見出した。
ナノスケールカーボンチューブは本来導電性を有しているので、 前記特開平 8 - 134263号のように 5重量%以上も添加すると、 得られる樹脂組成物から 形成される電子部品も導電性を有する。 よって、 高周波帯域の電子部品用の樹脂 組成物に、 特開平 8— 134263号に記載のようにナノスケールカーボンチュ ーブを大量に配合することは考えられず、 従来、 ナノスケールカーボンチューブ で高周波帯域の誘電正接を低減させることは従来試みられることはなかった。 と ころが、 本発明者の研究によると、 ナノスケール力一ボンチューブを、 上記特開 平 8— 134263号に記載の 5重量%を遙かに下回る微量配合することにより、 GHz帯域において、 誘電正接が低下するか、 又は、 誘電正接の上昇を抑制でき るという全く予想外の結果が得られたのである。
本発明は斯かる知見に基づき、 更に検討を重ねて完成されたものであって、 次 の電子部品用樹脂組成物、 電子部品等を提供するものである。
項 1 熱可塑性樹脂、 硬化性樹脂、 及び熱可塑性樹脂と硬化性樹脂との複合樹 脂からなる群から選ばれる少なくとも 1種の樹脂、 及び、 ナノスケ一ルカ一ボン チューブを含有し、 ナノスケール力一ボンチューブが上記樹脂を基準として 0. 0001〜0. 4重量%の割合で含有されていることを特徴とする GHz帯域電 子部品用樹脂組成物。 項 2 ナノスケ一ルカ一ボンチューブが、
(i) 単層カーボンナノチューブ又は入れ子構造の多層カーボンナノチューブ、
(N) アモルファスナノスケールカーボンチューブ、
(i i i) ナノフレークカーボンチューブ、
(iv) (a)ナノフレーク力一ボンチューブ及び入れ子構造の多層カーボンナノチ ュ一ブからなる力一ボンチューブと、 (b)炭化鉄又は鉄とからなり、 該カーボンチ ュ一ブ (a)のチューブ内空間部の 10〜 90 %の範囲に、該炭化鉄又は鉄 (b)が存在 している鉄一炭素複合体、 又は
(V) 上記( i )〜( i V)の 2種以上の混合物
である項 1に記載の GH z帯域電子部品用樹脂組成物。 項 3 ナノスケールカーボンチューブが、 アモルファスナノスケール力一ボン チューブであって、 X線回折法 (入射 X線: CUKQ において、 ディフラクト メ一ター法により測定される炭素網平面 (002) の平面間隔が 3. 54A以上 であり、 回折角度 (2 0 ) が 2 5 . 1度以下であり、 2 0バンドの半値幅が 3 . 2度以上である項 1又は 2に記載の GH z帯域電子部品用樹脂組成物。 項 4 樹脂が、 ポリオレフイン樹脂、 ポリエステル樹脂、 ポリアミド樹脂、 フッ素樹脂、 ポリスチレン樹脂、 ポリ塩化ビニル樹脂、 メタクリル酸エステル樹 脂、 アクリル酸エステル樹脂、 ポリカーボネート樹脂、 ポリスルホン樹脂、 ポリ エーテルスルホン樹脂、 ポリフエ二レンスルフイド樹脂、 ポリフエ二レンェ一テ ル樹脂、 AB S樹脂、 ポリエーテルエーテルケトン樹脂、 液晶ポリマー、 熱可塑 性ポリイミド樹脂、 ポリエーテルイミド樹脂、 ポリアセタール、 ポリアリレート 及びポリエーテル二トリル樹脂からなる群から選ばれた少なくとも 1種の熱可塑 性樹脂である項 1〜 3のいずれかに記載の GH z帯域電子部品用樹脂組成物。 項 5 樹脂が、 熱硬化性樹脂、 光硬ィ匕性樹脂及び電子線硬ィ匕性樹脂からなる群 から選ばれた少なくとも 1種の硬化性樹脂である項 1〜 3のいずれかに記載の G H z帯域電子部品用樹脂組成物。 項 6 樹脂が、 硬化性樹脂の硬化物を分散した熱可塑性樹脂及び熱可塑性樹脂 を分散した硬ィ匕性樹脂からなる群から選ばれた少なくとも 1種の複合樹脂である 項 1に記載の GH z帯域電子部品用樹脂組成物。 項 7 ナノスケールカーボンチューブが、 樹脂を基準として 0. 0 0 1〜0. 4重量%の割合で含有されている項 1〜6のいずれかに記載の GH z帯域電子部 品用樹脂組成物。 項 8 ナノスケールカーボンチューブが、 前記単層カーボンナノチューブ又は 入れ子構造の多層カーボンナノチューブであり、 その添加量が、 樹脂に対して、 0 . 0 0 0 1〜0. 1重量%である項 1〜6のいずれかに記載の GH z帯域電子 部品用樹脂組成物。 項 9 ナノスケールカーボンチューブが、 前記アモルファスナノスケ一ルカ一 ボンチューブであり、その添加量が、樹脂に対して、 0 . 0 0 0 1〜0 . 1重量% である項 1〜 6のいずれかに記載の GH z帯域電子部品用樹脂組成物。 項 1 0 ナノスケールカーボンチューブが、 前記鉄—炭素複合体であり、 その 添加量が、 樹脂に対して、 0 . 0 0 0 1〜0. 4重量%である項:!〜 6のいずれ 力、に記載の GH z帯域電子部品用樹脂組成物。 項 1 1 ナノスケ一ルカ一ボンチューブが、 前記ナノフレークカーボンチュ一 ブであり、 その添加量が、 樹脂に対して、 0. 0 0 0 1〜0 . 1重量%である項 1〜 6のいずれかに記載の GH z帯域電子部品用樹脂組成物。 項 1 2 項 1〜: L 1のいずれかに記載の GH z帯域電子部品用樹脂組成物から 得られる G H z帯域電子部品。 項 1 3 回路基板、 半導体層間絶縁膜、 アンテナ部品である項 1 2に記載の G H z帯域電子部品。 項 1 4 樹脂の tan δが GH z帯域で 0. 1以下に低減されており、 且つ、 樹 脂が本来有している他の物性が保持されている項 1 2又は 1 3に記載の GH z帯 域電子部品。 項 1 5 熱可塑性樹脂、 硬化性樹脂、 及び熱可塑性樹脂と硬化性樹脂との複合 樹脂からなる群から選ばれる少なくとも 1種の樹脂に対して 0 . 0 0 0 1〜0 . 4重量%の割合でナノスケールカーボンチューブを樹脂に配合することを特徴と する、 当該樹脂から得られる電子部品の GH z帯域での tan <5を低減ないし GH z帯域での tan δの上昇を抑制する方法。 項 1 6 ナノスケールカーボンチューブが、 (i) 単層カーボンナノチューブ又は入れ子構造の多層カーボンナノチューブ、
(i i) アモルファスナノスケールカーボンチューブ、
(i i i) ナノフレークカーボンチューブ、
(iv) (a)ナノフレークカーボンチューブ及び入れ子構造の多層カーボンナノチ ュ一ブからなるカーボンチューブと、 (b)炭化鉄又は鉄とからなり、 該カ一ポンチ ュ一ブ (a)のチューブ内空間部の 10〜 90%の範囲に、該炭化鉄又は鉄 (b)が存在 している鉄一炭素複合体、 又は
(V) 上記( i )〜( i V)の 2種以上の混合物
である項 15に記載の方法。 項 17 熱可塑性樹脂、 硬化性樹脂、 及び熱可塑性樹脂と硬化性樹脂との複合 樹脂からなる群から選ばれる少なくとも 1種の樹脂に対して 0. 0001〜0. 4重量%の割合でナノスケールカーボンチューブを樹脂に配合することを特徴と する、 当該樹脂から得られる電子部品の GHz帯域での tan (5を樹脂単独の場合 に比し低減するか又は上昇を抑制し、 樹脂が本来有している他の物性を維持する 方法。 項 18 ナノスケールカーボンチューブが、
( 単層カーボンナノチューブ又は入れ子構造の多層力一ボンナノチューブ、 (i i) アモルファスナノスケールカーボンチューブ、
(i i i) ナノフレークカーボンチューブ、
(iv) (a)ナノフレーク力一ボンチューブ及び入れ子構造の多層力一ボンナノチ ユーブからなるカーボンチューブと、 (b)炭ィ匕鉄又は鉄とからなり、 該カーボンチ ュ一ブ (a)のチューブ内空間部の 10〜90%の範囲に、該炭化鉄又は鉄 (b)が存在 している鉄—炭素複合体、 又は
(V) 上記(i)〜(iv)の 2種以上の混合物
である項 17に記載の方法。 図面の簡単な説明 図 1は、 特開 2002— 338220号の実施例 1で得られた炭素質材料を構 成する鉄一炭素複合体 1本の電子顕微鏡 (TEM)写真である。
図 2は、 特開 2002— 338220号の実施例 1で得られた炭素質材料にお ける鉄—炭素複合体の存在状態を示す電子顕微鏡 (TEM)写真である。
図 3は、 特開 2002— 338220号の実施例 1で得られた鉄—炭素複合体 1本を輪切状にした電子顕微鏡 (TEM)写真である。 尚、 図 3の写真中に示され ている黒三角 (▲) は、 組成分析のための EDX測定ポイントを示している。 図 4は、 力一ボンチューブの TEM像の模式図を示し、 (a-1)は、 円柱状のナノ フレークカーボンチューブの TEM像の模式図であり、 (a-2)は入れ子構造の多層 カーボンナノチューブの TEM像の模式図である。
図 5は、 実施例及び比較例で製造した評価用サンプル、 アウターコンダクタ及 びィンナーコンダクタの形状を示す斜視図である。
図 6は、 比較例 1、 実施例 2、 実施例 3及び比較例 3で得られた評価用サンプ ルの tan δの測定結果を示すグラフである。
図 7は、 比較例 1、 実施例 2及び実施例 3で得られた評価用サンプルの比誘電 率の測定結果を示すグラフである。
図 8は、 比較例 1、 実施例 6及び比較例 4で得られた評価用サンプルの tanS の測定結果を示すグラフである。
図 9は、 比較例 1及び実施例 7で得られた評価用サンプルの tan δの測定結果 を示すグラフである。
図 10は、 実施例 8〜; L 1で得られた評価用サンプルの tan <5の測定結果を示 すグラフである。
上記図面において、 符号は次の意味を有する。
100 ナノフレーク力一ポンチューブの長手方向の TEM像
110 略直線状のグラフエンシート像
200 ナノフレークカーボンチューブの長手方向にほぼ垂直な断面の TEM像 2 1 0 弧状グラフエンシート像
3 0 0 入れ子構造の多層カーボンナノチューブの長手方向の全長にわたつ て連続する直線状グラフエンシート像
4 0 0 入れ子構造の多層カーボンナノチューブの長手方向に垂直な断面の TEM像
5 0 1 評価用サンプル
5 0 2 インナ一コンダクタ
5 0 3 アウターコンダクタ 発明の詳細な記述 本発明者の研究によれば、 上記ナノスケール力一ボンチューブを樹脂に 0. 0 0 1〜0. 4重量%という極めて少量添加してなる樹脂組成物から得られる電子 部品が上記目的を達成することを見いだしていたが、 更に研究を重ねた結果、 更 に少量の 0 . 0 0 0 1重量%の添加量であっても、 同様に上記目的が達成される ことを見出した。
即ち、 本発明によれば、 上記ナノスケールカーボンチューブを樹脂に 0 . 0 0 0 1〜0. 4重量%という極めて少量添加してなる樹脂組成物から得られる電子 部品は、 GH z帯域において、 誘電正接 (tan S ) が榭脂単独の場合よりも低下 するか、 または、 樹脂単独の場合の tan δの上昇を抑制することができ、 一方、 樹脂が本来有する比誘電率、 耐熱性、 機械的強度 (例えば、 引っ張り強度、 破断 伸度、硬度など)、化学的特性等の物性、特に誘電特性は実質上変ィ匕することなく そのまま維持される。
従って、低い比誘電率を有する樹脂を使用すると、本発明に従って、低誘電率、 高耐熱性、 高機械的強度等の物性を有する樹脂にナノスケ一ルカ一ボンチューブ を少量配合してなる樹脂組成物から得られる電子部品は、 GH z帯域において、 榭脂単独に比し、 誘電正接が低下するか又はその上昇が抑制されると共に、 当該 樹脂が本来持つている低誘電率、高耐熱性、高機械的強度等の物性が維持される。 従って、 かかる樹脂組成物を使用することにより、 電気'電子機器の回路基板 材料、 特に GH z帯域用の回路基板材料等として好適に使用できる電子部品が提 供される。
また、 本発明では、 ナノスケール力一ボンチューブの添加により、 樹脂の各種 特性 (誘電特性、 熱的特性、 化学的特性、 機械的特性) を劣ィ匕させることなく G H z帯域で誘電正接の増大を抑えるので、 樹脂の選択の幅が増大するという利点 もある。 ナノスケールカーボンチューブ
本発明で使用するナノスケール力一ボンチューブとしては、 ナノサイズの直径 を有するカーボンチューブを指し、 該カーボンチューブのチューブ内空間部には 鉄等が内包されていてもよい。
かかるナノスケールカーボンチューブとしては、 (i)単層カーボンナノチューブ 又は多層力一ボンナノチューブ、(ii)本出願人が開発したアモルファスナノスケ— ルカ一ボンチューブ、 (iii)ナノフレークカーボンチューブ、 (iv) (a)ナノフレーク カーボンチューブ及び入れ子構造の多層カーボンナノチューブからなる群から選 ばれるカーボンチューブと(b)炭化鉄又は鉄とからなり、 該カ一ボンチューブ (a) のチューブ内空間部の 1 0〜9 0 %の範囲に (b)の炭ィ匕鉄又は鉄が充填されてい る鉄一炭素複合体、 (V)これらの 2種以上の混合物等を例示することができる。 これらのうちでも、 特に、 上記アモルファスナノスケ一ルカ一ボンチューブ、 ナノフレークカーボンチューブおよび上記鉄—炭素複合体が、 溶媒、 バインダー 中での分散が良好であり、 好ましい。 これらチューブが溶媒、 バインダー中での 分散が良好である理由は完全には解明されていないが、 これらチューブの最外層 の炭素網面が不連続であるため、 溶媒、 バインダー等との親和性が高くなつてい るためと推察される。
<力一ボンナノチューブ >
カーボンナノチューブは、 黒鉛シート (即ち、 黒鉛構造の炭素原子面ないしグ ラフエンシー卜) がチューブ状に閉じた中空炭素物質であり、 その直径はナノメ 一トルスケールであり、 壁構造は黒鉛構造を有している。 カーボンナノチューブ のうち、 壁構造が一枚の黒鉛シー卜でチューブ状に閉じたものは単層カーボンナ ノチューブと呼ばれ、 複数枚の黒鉛シートがそれぞれチューブ状に閉じて、 入れ 子状になっているものは入れ子構造の多層力一ボンナノチューブと呼ばれている。 本発明では、 これら単層カーボンナノチューブ及び入れ子構造の多層カーボンナ ノチューブがいずれも使用できる。
本発明で使用できる単層力一ボンナノチューブとしては、 直径が 0.4〜: !Onm 程度、 長さが:!〜 500 m程度のものが好ましく、 直径が 0.7〜5nm程度、 長さ が 1〜: LOO m程度のものがさらに好ましく、 特に、 直径が 0.7〜2nm程度、 長 さが 1〜20 ^ m程度のものが好ましい。
また、 本発明で使用できる入れ子構造の多層カーボンナノチューブとしては、 直径が 1〜: lOOnm程度、 長さが 1〜500 ΠΙ程度のものが好ましく、 直径が 1〜 50nm程度、 長さが 1〜: !OO^m程度のものがさらに好ましく、 特に、 直径が 1 〜40nm程度、 長さが 1〜20 m程度のものが好ましい。 ぐアモルファスナノスケールカーボンチューブ >
また、 上記アモルファスナノスケール力一ボンチューブは、 WO 0 0 Z 4 0 5 0 9 (日本国特許第 3 3 5 5 4 4 2号) に記載されており、 カーボンからなる主 骨格を有し、 直径が 0 . 1〜1 0 0 O ralであり、 アモルファス構造を有するナノ スケールカーボンチューブであって、 直線状の形態を有し、 X線回折法 (入射 X 線: C u K a) において、 ディフラクトメ一夕一法により測定される炭素網平面 ( 0 0 2 ) の平面間隔 (d002) が 3. 54 A以上、 特に 3. 7 A以上であり、 回折角 度 (2 が 2 5 . 1度以下、 特に 2 4. 1度以下であり、 2 0バンドの半値幅 が 3. 2度以上、 特に 7 . 0度以上であることを特徴とするものである。
該アモルファスナノスケ一ルカーボンチューブは、 マグネシウム、 鉄、 コバル ト、 ニッケル等の金属の塩化物の少なくとも 1種からなる触媒の存在下で、 分解 温度が 2 0 0〜9 0 0 °Cである熱分解性樹脂、 例えば、 ポリテトラフルォロェチ レン、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルアルコール等を、 励起処理することにより得られる。
出発原料としての熱分解性觀旨の形状は、 フィルム状乃至シート状、 粉末状、 塊状などの任意の形状であって良い。 例えば、 基板上に薄膜化アモルファスナノ スケールカーボンチューブを形成させた炭素材料を得る場合には、 基板上に熱分 解性樹脂を塗布あるいは載置した状態で、 適切な条件下に励起処理すればよい。 該励起処理としては、 例えば、 不活性雰囲気中、 好ましくは 450〜1800°C程度 の温度域でかつ原料の熱分解温度以上で加熱する、 室温〜 3 0 0 0 程度の温度 域でかつ原料の熱分解温度以上でのプラズマ処理する等の処理が例示できる。 本発明で使用するアモルファスナノスケールカーボンチューブは、 ァモルファ ス構造 (非晶質構造) を有するナノスケールのカーボンナノチューブで、 中空直 線状であり、 細孔が高度に制御されている。 その形状は、 主に円柱、 四角柱など であり、 先端の少なくとも一方が、 キャップを有していない (開口している) 場 合が多い。 先端が閉口している場合には、 形状がフラット状である場合が多い。 該アモルファスナノスケールカーボンチューブの外径は、通常 1〜1000nm程度 の範囲にあり、 好ましくは l〜200mn程度の範囲にあり、 より好ましくは、 1〜 lOOnm程度の範囲にある。 そのアスペクト比 (チューブの長さ Z直径) は 2倍以 上であり、 好ましくは 5倍以上である。
ここで、 「アモルファス構造」とは、規則的に配列した炭素原子の連続的な炭素 層からなる黒鉛質構造ではなく、 不規則な炭素網平面からなる炭素質構造を意味 し、 多数の微細なダラフェンシートが不規則に配列している。 代表的な分析手法 である透過型電子顕微鏡による像からは、 本発明による非晶質構造のナノスケ一 ルカーボンチューブは、 炭素網平面の平面方向の広がりがアモルファスナノスケ —ルカ一ボンチューブの直径の 1倍より小さい。 このように、 アモルファスナノ スケールカーボンチューブは、 その壁部が黒鉛構造ではなく多数の微細なグラフ エンシート(炭素網面)が不規則に分布したアモルファス構造を有しているため、 最外層を構成する炭素網面は、 チューブ長手方向の全長にわたって連続しておら ず、 不連続となっている。 特に、 最外層を構成する炭素網面の長さは、 2 0 nm 未満、 特に 5 nm未満である。
非晶質炭素は一般的には X線回折を示さないが、 ブロードな反射を示す。 黒鉛 質構造では、炭素網平面が規貝啲に積み重なっているので、炭素網平面間隔 (d。Q2) が狭くなり、 ブロードな反射は高角側 (2 に移行して、 次第に鋭くなり (2 0バ ンドの半値幅が狭くなり)、 dQ()2回折線として観測できるようになる (黒鉛的位置 関係で規則正しく積み重なつている場合は d。。2=3. 354Aである)。
これに対し、 非晶質構造は、 上記のように一般的には X線による回折を示さな いが、部分的に非常に弱い干渉性散乱を示す。 X線回折法 (入射 X線 =CuK o!)にお いて、 ディフラクトメ一夕一法により測定される本発明によるアモルファスナノ スケール力一ボンチューブの理論的な結晶学的特性は、 以下の様に規定される: 炭素網平面間隔 ( は、 3. 54A以上であり、 より好ましくは 3. 7A以上である; 回折角度 (2 は、 25. 1度以下であり、 より好ましくは 24. 1度以下である;前 記 2 0バンドの半値幅は、 3. 2度以上であり、 より好ましくは 7. 0度以上である。 典型的には、本発明で使用するアモルファスナノスケールカーボンチューブは、 X線回折による回折角度 (2 が 18. 9〜22. 6度の範囲内にあり、 炭素網平面間隔 (d002) は 3. 9〜4. 7Aの範囲内にあり、 2 0バンドの半値幅は 7. 6〜8. 2度の範囲 内にある。
本発明のアモルファスナノスケールカーボンチューブの形状を表す一つの用語 である 「直線状」 なる語句は、 次のように定義される。 すなわち、 透過型電子顕 微鏡によるアモルファスナノスケールカーボンチューブ像の長さを Lとし、 その アモルファスナノスケールカーボンチューブを伸ばした時の長さを L。とした場合 に、 LZL0が 0. 9以上となる形状特性を意味するものとする。
かかるアモルファスナノスケールカーボンチューブのチューブ壁部分は、 あら ゆる方向に配向した複数の微細な炭素網平面 (グラフエンシート) からなる非晶 質構造であり、これらの炭素網平面の炭素平面間隔により活性点を有するためか、 樹脂との親和性に優れているという利点を有する。 く鉄—炭素複合体〉
また、 本発明で使用する上記鉄一炭素複合体は、 特開 2 0 0 2— 3 3 8 2 2 0 号公報(特許第 3 5 6 9 8 0 6号公報) に記載されており、 (a)ナノフレーク力一 ボンチューブ及び入れ子構造の多層力一ボンナノチューブからなる群から選ばれ る力一ボンチューブと(b)炭化鉄又は鉄とからなり、 該カーボンチューブ (a)のチ ュ一ブ内空間部の 1 0〜9 0 %の範囲に (b)の炭化鉄又は鉄が充填されている。即 ち、 チューブ内空間部の 100%の範囲に完全に充填されているものではなく、 上記炭化鉄又は鉄がそのチューブ内空間部の 10〜 90 %の範囲に充填されてい る (即ち、 部分的に充填されている) ことを特徴とするものである。 壁部は、 パ ツチワーク状ないし張り子状(いわゆる paper mache状)のナノフレーク力一ポ ンチューブである。
本願特許請求の範囲及び明細書において、 「ナノフレークカーボンチューブ」と は、 フレーク状の黒鉛シートが複数枚 (通常は多数) パッチワーク状ないし張り 子状 (papermache状) に集合して構成されている、 黒鉛シートの集合体からな る炭素製チューブを指す。
かかる鉄—炭素複合体は、 特開 2002— 338220号公報に記載の方法に 従って、
(1)不活性ガス雰囲気中、 圧力を 10-5Pa〜200kPaに調整し、 反応炉内の 酸素濃度を、 反応炉容積を A (リットル) とし酸素量を B (Ncc) とした場合の 比 B/Aが 1 X 10—1Q〜l X 10—1となる濃度に調整した反応炉内でハロゲン化 鉄を 600〜 900 °Cまで加熱する工程、 及び
(2)上記反応炉内に不活性ガスを導入し、 圧力 10— 5P a〜200 kP aで熱分解 性炭素源を導入して 600〜900°Cで加熱処理を行う工程
を包含する製造方法により製造される。
ここで、 酸素量 Bの単位である 「Nc c」 は、 気体の 25 °Cでの標準状態に換 算したときの体積 (c c) という意味である。
該鉄—炭素複合体は、 (a)ナノフレークカーボンチューブ及び入れ子構造の多 層カーボンナノチューブからなる群から選ばれるカーボンチューブと (b)炭化鉄 又は鉄とからなるものであって、 該カ一ボンチューブ内空間部 (即ち、 チューブ 壁で囲まれた空間)の実質上全てが充填されているのではなぐ該空間部の一部、 より具体的には 10〜90%程度、 特に 30〜80%程度、 好ましくは 40〜7 0 %程度が炭化鉄又は鉄により充填されている。
本発明で使用する鉄—炭素複合体においては、 特開 2002— 338220号 公報に記載されているように、 炭素部分は、 製造工程 (1)及び (2)を行った後、 特定 の速度で冷却するとナノフレークカーボンチューブとなり、 製造工程 (1)及び (2) を行った後、 不活性気体中で加熱処理を行い、 特定の冷却速度で冷却することに より、 入れ子構造の多層カーボンナノチューブとなる。
<(a-l)ナノフレークカーボンチューブ >
本発明のナノフレークカーボンチューブと炭化鉄又は鉄からなる鉄一炭素複合 体は、 典型的には円柱状であるが、 そのような円柱状の鉄—炭素複合体 (特開 2 0 0 2 - 3 3 8 2 2 0号公の実施例 1で得られたもの) の長手方向にほぼ垂直な 断面の透過型電子顕微鏡 ( ΕΜ)写真を図 3に示し、側面の ΤΈΜ写真を図 1に示す。 また、図 4の (a-1)にそのような円柱状のナノフレークカーボンチューブの TEM 像の模式図を示す。 図 4の (a-1)において、 1 0 0は、 ナノフレークカーボンチュ —ブの長手方向の TEM像を模式的に示しており、 2 0 0は、 ナノフレークカー ボンチューブの長手方向にほぼ垂直な断面の TEM像を模式的に示している。 本発明で使用する鉄一炭素複合体を構成するナノフレークカーボンチューブは、 代表的には、 中空円筒状の形態を有し、 その断面を TEM観察した場合、 弧状グ ラフエンシート像が同心円状に集合しており、 個々のグラフェンシ一ト像は、 不 連続な環を形成しており、 その長手方向を TEMで観察した場合、 略直線状のグ ラフエンシート像が、 長手方向にほぼ並行に多層状に配列しており、 個々のダラ フェンシート像は、 長手方向全長にわたって連続しておらず、 不連続となってい るという特徵を有している。
より詳しくは、 本発明で使用する鉄一炭素複合体を構成しているナノフレーク カーボンチューブは、 図 3及び図 4の (a-1)の 2 0 0から明らかなように、 その長 手方向に垂直な断面を ΤΈΜ観察した場合、 多数の弧状グラフエンシート像が同 心円状 (多層構造のチューブ状) に集合しているが、 個々のグラフエンシート像 は、 例えば 2 1 0、 2 1 4に示すように、 完全に閉じた連続的な環を形成してお らず、途中で途切れた不連続な環を形成している。一部のグラフエンシート像は、 2 1 1に示すように、 分岐している場合もある。 不連続点においては、 一つの不 連続環を構成する複数の弧状 TEM像は、 図 4の (a-1)の 2 2 2に示すように、 層 耩造が部分的に乱れている場合もあれば、 2 2 3に示すように隣接するグラフェ ンシート像との間に間隔が存在している場合もあるが、 TEMで観察される多数の 弧状グラフヱンシート像は、全体として、多層状のチューブ構造を形成している。 また、 図 1及び図 4の (a-1)の 1 0 0から明らかなように、 ナノフレーク力一ポ ンチューブの長手方向を TEMで観察した場合、 多数の略直線状のグラフェンシ ート像が本発明で使用する鉄一炭素複合体の長手方向にほぼ並行に多層状に配列 しているが、 個々のグラフェンシ一ト像 1 1 0は、 鉄—炭素複合体の長手方向全 長にわたって連続しておらず、 途中で不連続となっている。 一部のグラフェンシ ート像は、 図 4の (a-1)の 1 1 1に示すように、 分岐している場合もある。 また、 不連続点においては、層状に配列した TEM像のうち、 一つの不連続層の TEM像 は、 図 4の (a-1)の 1 1 2に示すように、 隣接するグラフエンシート像と少なくと も部分的に重なり合つている場合もあれば、 1 1 3に示すように隣接するグラフ エンシート像と少し離れている場合もあるが、 多数の略直線状の ΤΈΜ像が、 全 体として多層構造を形成している。
かかる本発明のナノフレーク力一ボンチューブの構造は、 従来の多層カーボン ナノチューブと大きく異なっている。 即ち、 図 4の (a-2)の 4 0 0に示すように、 入れ子構造の多層カーボンナノチューブは、 その長手方向に垂直な断面の TEM 像が、 4 1 0に示すように、 実質上完全な円形の ΤΈΜ像となっている同心円状 のチューブであり、 且つ、 図 4の (a-2)の 3 0 0に示すように、 その長手方向の全 長にわたって連続する直線状グラフエンシート像 3 1 0等が平行に配列している 構造 (同心円筒状ないし入れ子状の構造) である。
以上より、 詳細は未だ完全には解明されていないが、 本発明で使用する鉄一炭 素複合体を構成するナノフレークカーボンチューブは、 フレーク状のダラフェン シートが多数パッチワーク状ないし張り子状に重なり合って全体としてチューブ を形成しているようにみえる。
このような本発明のナノフレークカーボンチューブとそのチューブ内空間部に 内包された炭化鉄又は鉄からなる鉄-炭素複合体は、 特許第 2 5 4 6 1 1 4号に 記載されているような入れ子構造の多層力一ボンナノチューブのチューブ内空間 部に金属が内包された複合体に比し、 力一ボンチューブの構造において大きく異 なっている。
本発明で使用する鉄—炭素複合体を構成しているナノフレークカーボンチュー ブを ΊΈΜ観察した場合において、 その長手方向に配向している多数の略直線状 のグラフエンシート像に関し、 個々のグラフエンシート像の長さは、 通常、 2〜 5 0 0 nm程度、 特に 1 0〜 1 0 O nm程度である。 即ち、 図 4の (a-1)の 1 0 0に 示されるように、 1 1 0で示される略直線状のグラフエンシートの ΤΈΜ像が多 数集まってナノフレークカーボンチューブの壁部の TEM像を構成しており、個々 の略直線状のグラフエンシート像の長さは、 通常、 2〜5 0 0 nm程度、 特に 1 0〜1 0 O nm程度である。
このように、 鉄一炭素複合体においては、 その壁部を構成するナノフレーク力 一ボンチューブの最外層は、 チューブ長手方向の全長にわたって連続していない 不連続なグラフエンシー卜から形成されており、その最外面の炭素網面の長さは、 通常、 2〜5 0 O nm程度、 特に 1 0〜1 0 O nm程度である。
本発明で使用する鉄一炭素複合体を構成するナノフレーク力一ボンチューブの 壁部の炭素部分は、 上記のようにフレーク状のグラフエンシートが多数長手方向 に配向して全体としてチューブ状となっているが、 X線回折法により測定した場 合に、 炭素網面間の平均距離(d002)が 0. 3 4 nm以下の黒鉛質構造を有する ものである。
また、 本発明で使用する鉄一炭素複合体のナノフレ一ク力一ボンチューブから なる壁部の厚さは、 4 9 11111以下、 特に0 . l〜2 0 nm程度、 好ましくは 1〜 1 O nm程度であって、 全長に亘つて実質的に均一である。
く (a-2)入れ子構造の多層カーボンナノチューブ >
前記のように、 工程 (1)及び (2)を行つた後、 特定の加熱工程を行うことにより、 得られる鉄一炭素複合体を構成するカーボンチューブは、 入れ子構造の多層カー ボンナノチューブとなる。
こうして得られる入れ子構造の多層カーボンナノチューブは、 図 4の (a-2)の 4 0 0に示すように、 その長手方向に垂直な断面の TEM像が実質的に完全な円を 構成する同心円状のチューブであり、 且つ、 その長手方向の全長にわたって連続 したグラフエンシート像が平行に配列している構造 (同心円筒状ないし入れ子状 の構造) である。
本発明で使用する鉄—炭素複合体を構成する入れ子構造の多層カーボンナノチ ユーブの壁部の炭素部分は、 X線回折法により測定した場合に、 炭素網面間の平 均距離 (d002) が 0. 3 4 nm以下の黒鉛質構造を有するものである。
また、 本発明で使用する鉄—炭素複合体の入れ子構造の多層カーボンナノチュ ーブからなる壁部の厚さは、 4 9 11 ]11以下、 特に0 . l〜2 0 nm程度、 好まし くは 1〜 1 0 nm程度であって、 全長に亘つて実質的に均一である。 く (b)内包されている炭化鉄又は鉄 >
本明細書において、 上記ナノフレーク力一ボンチューブ及び入れ子構造の多層 カーボンナノチューブからなる群から選ばれるカーボンチューブ内空間部の炭化 鉄又は鉄による充填率 (1 0〜9 0 %) は、 本発明で使用する鉄-炭素複合体を 透過型電子顕微鏡で観察し、 各カーボンチューブの空間部 (即ち、 カーボンチュ ーブのチューブ壁で囲まれた空間) の像の面積に対する、 炭化鉄又は鉄が充填さ れている部分の像の面積の割合である。
炭化鉄又は鉄の充填形態は、 力一ボンチューブ内空間部に連続的に充填されて いる形態、力一ボンチューブ内空間部に断続的に充填されている形態等があるが、 基本的には断続的に充填されている。 従って、 本発明で使用する鉄—炭素複合体 は、 金属内包炭素複合体ないし鉄化合物内包炭素複合体、 炭化鉄又は鉄内包炭素 複合体とも言うべきものである。
また、 本発明で使用する鉄-炭素複合体に内包されている炭化鉄又は鉄は、 力 一ボンチューブの長手方向に配向しており、 結晶性が高く、 炭化鉄又は鉄が充填 されている範囲の TEM像の面積に対する、結晶性炭化鉄又は鉄の TEM像の面積 の割合 (以下 「結晶化率」 という) は、 一般に、 9 0〜1 0 0 %程度、 特に 9 5 —1 0 0 %程度である。
内包されている炭化鉄又は鉄の結晶性が高いことは、 本発明鉄一炭素複合体の 御 J面から TEM観察した場合、内包物の ΤΈΜ像が格子状に配列していることから 明らかであり、 電子線回折において明確な回折パターンが得られることからも明 らかである。
また、 本発明で使用する鉄—炭素複合体に炭化鉄又は鉄が内包されていること は、 電子顕微鏡、 E D X (エネルギー分散型 X線検出器) により容易に確認する ことができる。
<鉄 -炭素複合体の全体形状 >
本発明で使用する鉄—炭素複合体は、 湾曲が少なく、 直線状であり、 壁部の厚 さが全長に亘つてほぼ一定の均一厚さを有しているので、 全長に亘つて均質な形 状を有している。 その形状は、 柱状で、 主に円柱状である。
本発明による鉄—炭素複合体の外径は、 通常、 1〜: L 0 0 nm程度、 特に 1〜 5 0 nm程度の範囲にあり、 好ましくは 1〜3 0 nm程度の範囲にあり、 より好 ましくは 1 0〜3 0 nm程度の範囲にある。 チューブの長さ (L) の外径 (D) に対するアスペクト比 (LZD) は、 5〜; L 0 0 0 0程度であり、 特に 1 0〜1 0 0 0程度である。
本発明で使用する鉄一炭素複合体の形状を表す一つの用語である 「直線状」 な る語句は、 次のように定義される。 即ち、 透過型電子顕微鏡により本発明で使用 する鉄—炭素複合体を含む炭素質材料を 2 0 0〜2 0 0 0 nm四方の範囲で観察 し、 像の長さを Wとし、 該像を直線状に伸ばした時の長さを Woとした場合に、 比 WZWoが、 0. 8以上、 特に、 0. 9以上となる形状特性を意味するものと する。
本発明で使用する鉄—炭素複合体は、 バルク材料としてみた場合、 次の性質を 有する。 即ち、 本発明では、 上記のようなナノフレークカーボンチューブ及び入 れ子構造の多層力一ボンナノチューブから選ばれるカーボンチューブのチューブ 内空間部の 1 0〜 9 0 %の範囲に鉄または炭ィ匕鉄が充填されている鉄一炭素複合 体は、 顕微鏡観察によりかろうじて観察できる程度の微量ではなく、 多数の該鉄 一炭素複合体を含むバルク材料であって、 鉄一炭素複合体を含む炭素質材料、 或 いは、 炭化鉄又は鉄内包炭素質材料ともいうべき材料の形態で大量に得られる。 特開 2 0 0 2— 3 3 8 2 2 0号公報の実施例 1で製造されたナノフレークカー ボンチューブとそのチューブ内空間部に充填された炭化鉄からなる本発明炭素質 材料の電子顕微鏡写真を、 図 2に示す。
図 2から判るように、 本発明で使用する鉄一炭素複合体を含む炭素質材料にお いては、 基本的にはほとんど全ての (特に 9 9 %又はそれ以上の) カーボンチュ —ブにおいて、 その空間部 (即ち、 カーボンチューブのチューブ壁で囲まれた空 間) の 1 0〜9 0 %の範囲に炭化鉄又は鉄が充填されており、 空間部が充填され ていない力一ボンチューブは実質上存在しないのが通常である。 但し、 場合によ つては、 炭ィ匕鉄又は鉄が充填されていないカーボンチューブも微量混在すること がある。
また、 本究明の炭素質材料においては、 上記のような力一ボンチューブ内空間 部の 1 0〜 9 0 %に鉄または炭化鉄が充填されている鉄一炭素複合体が主要構成 成分である力 S、 本発明の鉄一炭素質複合体以外に、 スス等が含まれている場合が ある。 そのような場合は、 本発明の鉄-炭素質複合体以外の成分を除去して、 本 発明の炭素質材料中の鉄-炭素質複合体の純度を向上させ、 実質上本発明で使用 する鉄一炭素複合体のみからなる炭素質材料を得ることもできる。
また、 従来の顕微鏡観察で微量確認し得るに過ぎなかった材料とは異なり、 本 発明で使用する鉄一炭素複合体を含む炭素質材料は大量に合成できるので、 その 重量を容易に 1 mg以上とすることができる。
本発明炭素質材料は、該炭素質材料 l mgに対して 2 5 mm2以上の照射面積で、 C u K の: 線を照射した粉末 X線回折測定において、 内包されている鉄または 炭化鉄に帰属される 4 0 ° < 2 0ぐ 5 0 ° のピークの中で最も強い積分強度を 示すピークの積分強度を I aとし、力一ボンチューブの炭素網面間の平均距離(d 002) に帰属される 2 6 ° く 2 0 < 2 7 ° のピークの積分強度 I bとした場合に、 I aの I bに対する比 R (= I aZ l b) が、 0. 3 5〜5程度、 特に 0 . 5〜 4程度であるのが好ましく、 より好ましくは 1〜 3程度である。
本明細書 こおいて、 上記 I a/ I bの比を R値と呼ぶ。 この R値は、 本発明で 使用する鉄一炭素複合体を含む炭素質材料を、 X線回折法において 2 5 mm2以上 の X線照射面積で観察した場合に、 炭素質材料全体の平均値としてピーク強度が 観察されるために、 TEM分析で測定できる 1本の鉄—炭素複合体における内包率 ないし充填率ではなく、鉄一炭素複合体の集合物である炭素質材料全体としての、 炭化鉄又は鉄充填率ないし内包率の平均値を示すものである。
尚、多数の本発明鉄一炭素複合体を含む炭素質材料全体としての平均充填率は、 TEMで複^:の視野を観察し、各視野で観察される複数の鉄—炭素複合体における 炭化鉄又は鉄の平均充填率を測定し、 更に複数の視野の平均充填率の平均値を算 出することによつても求めることができる。 かかる方法で測定した場合、 本発明 で使用する鉄—炭素複合体からなる炭素質材料全体としての炭化鉄又は鉄の平均 充填率は、 1 0〜 9 0 %程度、 特に 4 0〜 7 0 %程度である。 くナノフレークカーボンチューブ >
上記の鉄又は炭化鉄がナノフレークカーボンチューブのチューブ内空間に部分 内包されている鉄—炭素複合体を酸処理することにより、 内包されている鉄又は 炭ィ匕鉄が溶解除去され、 チューブ内空間部に鉄又は炭化鉄が存在しない中空のナ ノフレークカーボンチューブを得ることができる。
上記酸処理に使用する酸としては、 塩酸、 硫酸、 硝酸、 フッ酸等を例示でき、 その濃度は 0 . 1〜2 N程度のものが好ましい。 酸処理方法としては、 種々の方 法により行うことが可能であるが、 例えば、 1 Nの塩酸 1 0 0 m lに対して、 1 の鉄内包ナノフレーク力一ボンチューブを分散し、 室温で 6時間撹拌処理し、 ろ過分離した後、 さらに、 2回 1 Nの塩酸 1 0 0 m lで同様の処理を行なうこと で、 中空のナノフレークカーボンチューブを得ることができる。
この酸処理によってもナノフレークカーボンチューブの基本的構成は特に変 化を受けない。 よって、 チューブ内空間部に鉄又は炭化鉄が存在しない中空のナ ノフレークカーボンチューブにおいても、 その最外面を構成する炭素網面の長さ は、 5 0 O nm以下であり、 特に 2〜5 0 O nm、 特に 1 0〜: L 0 O nmである。 樹脂
本発明では、 電子部品の分野で使用されている各種の熱可塑性樹脂、 硬化性樹 脂、 及び熱可塑性樹脂と硬化性樹脂との複合樹脂からなる群から選ばれた少なく とも 1種を使用する。
本発明で使用される熱可塑性樹脂としては、 広い範囲のものが使用できるが、 例えば、ポリオレフィン樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂、 ポリ 1—ブテン樹脂、 ポリ 4一メチル—1—ペンテン樹脂等の直鎖状ポリオレフ ィン樹脂、 5—メチルペンテン樹脂、 ポリノルポルネン樹脂等の環状ォレフイン を成分に含む環状ポリオレフイン樹脂、)、 ポリエステル樹脂 (例えば、 ポリェチ レンテレフタレ一卜、ポリブチレンテレフ夕レート、ポリエチレンナフタレート · ポリエチレングリコールブロック共重合体等)、 ポリアミド樹脂(例えば、ナイ口 ン 4、 ナイロン 6、 ナイロン 6 · 6、 ナイロン 6 · 1 0、 ナイロン 1 2等)、 フッ 素樹脂(例えば、 ポリ四フッカエチレン樹 ポリ三フッカエチレン樹脂等、 及 び、 エチレン Zテトラフルォロエチレンコポリマ一、 テトラフルォロエチレン Z へキサフル才ロプロピレンコポリマ一、 テトラフルォロエチレン/パ一フルォロ アルコキシビニルエーテルコポリマー等の熱溶融性フッ素榭脂)、ポリスチレン榭 脂、 ポリ塩化ビニル樹脂、 メタクリル酸エステル樹脂又はアクリル酸エステル榭 脂(例えば、 ポリメチルメタクリレート、 ポリメチルァクリレート等)、 ポリカー ポネート樹 J!旨、 ポリスルホン樹脂、 ポリエーテルスルホン樹脂、 ポリフエ二レン スルフイド樹脂、 ポリフエ二レンエーテル系樹脂 (特に、 ポリフエ二レンェ一テ ル、 若干のポリスチレンもしくはスチレン ·ブタジエン系エラストマ一を添加し て耐衝撃性や成形性を改善したポリフエ二レンェ一テル樹脂等)、 AB S樹脂(例 えば、 マレイミドを共重合することにより熱変形温度を高めた耐熱性 AB S樹脂 等)、 ポリエーテルエーテルケトン樹脂、液晶ポリマー(例えばサーモト口ピック 液晶ポリエステル樹脂等)、 熱可塑性ポリイミド樹脂、 ポリエーテルィミド樹脂、 ポリアセタール、 ポリアリレート、 ポリエ一テルニトリル樹脂等を例示できる。 本発明では、 これら熱可塑性樹脂の中から 1種を単独で使用してもよく、 又は 2 種以上を併用してもよい。
また、 本発明で使用する硬化性樹脂は、 熱硬化性樹脂、 光硬化性樹脂、 電子線 硬化性樹脂等が代表として挙げられるが、何れも、加工、成型に際して、熱、光、 電子線等の外部エネルギーを与えることで、 硬化する性質を有するものである。 熱硬化性樹脂としては、 例えば、 エポキシ樹脂 (例えば、 クレゾールノポラッ ク型エポキシ樹脂、 フエノールノポラック型エポキシ樹脂、 ビフエニル型ェポキ シ樹脂、 ビスフエノール A、 レゾルシン等から合成される各種ノポラック型ェポ キシ樹脂、 ビスフエノール A型エポキシ樹脂、 臭素化ビスフエノール A型ェポキ シ樹脂、線^脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、 ハロゲンィ匕エポキシ樹脂、スピロ環式エポキシ樹脂等)、ジァリルフタレート榭脂、 シリコーン榭脂、 フエノール樹 JJ旨、 不飽和ポリエステル樹脂、 ポリイミド樹脂、 ポリウレタン樹脂、 フラン樹脂、尿素樹脂、 メラミン樹脂、 卜リアジン系樹 Ji旨(例 えば、 ビスマレイミドトリアジン樹脂(B Tレジン)等)、硬化性ポリフエ二レン エーテル樹脂、 架橋性ポリフエ二レンオキサイド、 マレイミド系樹脂、 アルキッ ド樹脂、 キシレン樹脂等を例示できる。 本発明では、 これら熱硬化性樹脂の中か ら 1種を単独で使用してもよく、 又は 2種以上を併用してもよい。
これら熱硬化性樹脂は、 必要に応じて適宜、 重合開始材 (硬化剤) を添加して 使用すること力 き、 例えばエポキシ樹脂の硬化剤としては、 アミン系硬化剤、 ポリアミド系硬化剤、 酸無水物系硬化剤、 潜在性硬化剤等が挙げられ、 エポキシ 基と反応しうる活性基(好ましくは、 アミノ基、 酸無水物基、 アジド基、水酸基) を有する化合物が適している。 より具体的には、 アミン系硬化剤として、 脂肪族 ァミン、 脂環族ァミン、 芳香族ァミン等、 ポリアミド系硬化剤として、 ポリアミ ドアミン等、酸無水物系硬化剤として、脂肪族酸無水物、脂環式酸無水物、 芳香 族酸無水物、 ノ、ロゲン系酸無水物等、 潜在性硬化剤として、 高融点活性水素化合 物(ジシアンジアミド、有機酸ジヒドラジド等)、第三ァミン'イミダゾ一ル塩(ル イス酸 ·ブレンステッド酸の塩等) が挙げられるが、 これに限定されない。 シリ コーン樹脂の硬化剤としては、 アミノキシシラン等が挙げられる。 不飽和ポリエ ステル樹脂の硬化剤としては、 過酸化ベンゾィル (B P O)ゃメチルェチルケトン パーォキサイ ド (ME K P O)、 有機過酸化物 ひ、イド口パーオキサイド、 ジアル キルパーォキサイド、 パーォキシエステル、 ジァシルバーォキサイド、 パーォキ シジカーボネート、 パーォキシケタール、 ケトンパーオキサイド) 等が挙げられ る。
これら硬化斉 Jは、 各熱硬化性樹脂について慣用されている使用量で使用すれば よいが、 一般には、 熱硬ィ匕性樹脂 1 0 0重量部に対して 0. 3〜 5重量部程度、 特に 1〜 3重量部程度とするのが好ましい。
本発明で使用する硬化性樹脂は、 光硬化性付与した光硬化性樹脂であってもよ レ^ 光硬化性樹脂としては、 公知の様々なものが使用でき、 アクリル樹脂、 シリ コーン樹脂、 エステル樹脂等があげられる。 代表的なものとして、 分子中にァク リロイル基を有する紫外線硬化型樹脂として次に示すモノマーまたはオリゴマ一 またはポリマーなどの混合物が使用される。 エポキシァクリレート系, ウレタン ァクリレート系, ポリエステルァクリレート系, ポリオールァクリレート系のォ リゴマーまたはポリマーが挙げられる。 更に、 単官能、 二官能もしくは多官能の 重合性 (メタ) ァクリル系としてテトラヒドロフルフリルァクリレート、 2—ヒ ドロキシェチルァクリレート、 2—ヒドロキシ一 3—フエノキシプロピルァクリ レート、 ポリエチレングリコールジァクリレート、 ポリプロピレングリコールジ ァクリレート、 トリメチロールプロパントリァクリレート、 ペン夕エリトリ ] ルトリァクリレート、 ペンタエリトリトールテトラァクリレートなどのモノマ一 またはオリゴマーまたはポリマーが挙げられる。 これら光硬化性樹脂は、 1種を 単独で使用してもよく、 又は 2種以上を併用してもよい。
なお、 光硬化性樹脂には、 通常配合される光重合開始剤 (必要であれば、 光重 合促進剤を併用する) を、 通常使用されている量で配合してもよい。
光重合開始剤としては、 紫外線を吸収してラジカルを発生しやすい物質が好ま しく、 ァセトフエノン系、 チォキサントン系、 ベンゾイン系、 パ一オキサイド系 の公知の物質を用いることができる。 例えば、 ジエトキシァセトフエノン、 4一 フエノキシジクロロアセトフエノン、 ベンゾイン、 ベンゾィンェチルエーテル、 ベンゾィンィソプロピルエーテル、ベンジルジメチルケタール、ベンゾフエノン、 4一フェニ^/ベンゾフエノン、 ァクリ 匕べンゾフエノン、 チォキサントン、 2 —ェチルアンスラキノンなどが挙げられる。
光重合開始剤の使用量は、 各光硬化性樹脂について慣用されている使用量とす ればよい;^、 一般には、 光硬化性樹脂 1 0 0重量部に対して 0 . 3〜5重量部程 度、 特に 1〜 3重量部程度とするのが好ましい。
また、 光重合促進剤としては、 光重合開始剤単独の場合よりも開始反応が促進 され、 硬化反応を効率的にするものであり、 脂肪族、 芳香族のァミンなどの公知 の光開始助剤を使用できる。 例えば、 トリエタノ一ルァミン、 N—メチルジェ夕 ノールァミン、 ミヒラーケトン、 4 , 4ージェチルァミノフエノンなどがある。 光重合促進剤を使用する場合、 その使用量は、 各光硬ィ匕性樹脂について慣用さ れている使用量とすればよいが、 一般には、 光硬化性樹脂 1 0 0重量部に対して 0 . 3〜5重量部程度、 特に 1〜3重量部程度とするのが好ましい。 また、 本発明で使用する硬化性樹脂は、 電子線硬化性樹脂であってもよい。 電 子線硬ィ匕性觀旨としては、 従来公知のものが広く使用でき、 例えば、 (A)S旨肪族、 脂環族、 および芳香族の、 1〜 6価のアルコール及びポリアルキレングリコール のァクリレート化合物類、 (B)脂肪族、 脂環族、 芳香族の、 1〜 6価のアルコール にアルキレンォキサイ ドを付加させたもののァクリレ一ト化合物類、(C)ポリァク リロイルアルキルリン酸エステル類、(D)カルボン酸と、 ポリオ一ルと、 アクリル 酸との反応生成物類、 (E)イソシァネートと、 ポリオールと、 アクリル酸との反応 生成物類、 (F)エポキシ化合物とアクリル酸との反応生成物類、 (G)エポキシ化合 物と、 ポリオールと、 アクリル酸との反応生成物類等を例示できる。
より具体的には、 電子線硬化性樹脂は、 ポリオキシエチレンェピクロルヒドリ ン変性ビスフエノール Aジアタリレート、 ジシクロへキシルァクリレート、 ェピ クロルヒドリン変性ボリエチレンダリコールジァクリレート、 1 , 6—へキサン ジオールジァクリレート、 ヒドロキシビバリン酸エステルネオペンチルグリコー ルジァクリレート、 ノニルフエノキシポリエチレングリコ一ルァクリレート、 ェ チレンオキサイド変性フエノキシィ匕リン酸ァクリレート、 エチレンオキサイド変 性フタル酸ァクリレート、 ポリブタジエンァクリレート、 力プロラクタン変性テ トラヒドロフルフリルァクリレート、 トリス (ァクリロキシェチル) イソシァヌ レート、 トリメチローリレプロパントリァクリレート、 ペンタエリスリ ] ^一リレトリ ァクリレート、 ペン夕エリスリ 1 ^一ルテトラァクリレート、 ジペン夕エリスリト ールへキサァクリレート、 ポリエチレングリコールジァクリレ一ト、 1 , 4—ブ タジェンジオールジアタリレート、 ネオペンチルダリコールジァクリレート、 お よびネオペンチルグリコール変性卜リメチロールプロパンジァクリレー卜などか ら選ばれることが好ましい。
本発明では、 熱可塑性樹脂及び 化性樹脂を複合樹脂の形態で併用することも できる。 この場合、 詨複合樹脂は、 例えば、 硬化性樹脂の硬化物を分散した熱可 塑性樹脂の形態で用いてもよいし、 熱可塑性樹脂を分散した熱硬化性樹脂の形態 で用いてもよい。
上記例示の樹脂とナノスケールカーボンチューブとからなる樹脂組成物は、 元 の樹脂 (母材) より t an <5を低減せしめ、 それ以外の他の物性である比誘電率、 機械的強度、 耐熱性等は元の樹脂と同等に維持され、 結果、 各用途に適した電子 部品を与える。
上記の樹脂の中でも、
(1) ポリオレフイン榭 Ji 、 ポリエステル樹脂、 ポリアミド樹脂、 フッ素樹脂、 ポリスチレン樹脂、 ポリ塩化ビニル樹脂、 ポリメチル (メタ)ァクリレート樹脂、 ポリ力一ポネート榭脂、 ポリエーテルスルホン樹脂等の熱可塑性樹脂、
(2) ポリイミド樹脂、 ビスマレイミドトリアジン樹脂(BTレジン)、 架橋性ポ リフエ二レンオキサイド、 硬化性ポリフエ二レンエーテル、 フエノール樹脂、 メ ラミン樹脂、 尿素樹脂、 不飽和ポリエステル樹脂、 アルキッド樹脂、 ジァリルフ 夕レート樹脂、 キシレン樹脂、 エポキシ樹脂、 エポキシァクリレート系樹脂、 ゥ レ夕ンァクリレート系樹 Ji旨、 ポリエステルァクリレート系樹脂、 ポリオ一ルァク リレート系樹脂等の硬化性樹脂が好ましい。
樹脂組成物
本発明の樹脂組成物ま、 前記樹脂と前記ナノスケール力一ボンチューブとを含 有するものである。
本発明の樹脂組成物は、 ナノスケ一ルカ一ボンチューブの添加量が、 樹脂を基 準として 0. 0001〜0. 4重量%の割合であることを特徴としている。 この ように極微量のナノスケ一ルカ一ボンチューブの添加により、 GH ζ帯域におけ る誘電正接を低減するメカニズムは現在不明であるが、 極微量のナノスケール力 一ボンチューブが均一分散することにより、 樹脂に含まれる極性基が誘電分極に よって生じた双極子の電界変ィ匕をナノスケール力一ボンチューブが物理的に相殺 するためと考えられる。 ナノスケール力一ポンチューブの配合量が、 0. 000 1重量%未満ではその効果が薄れ、 0.4重量%を超えるとかえつて誘電正接が上 昇してしまう。
ナノスケールカーボンチューブの添加量は、樹脂に対して、 0. 000 5〜0. 4重量%、好ましくは 0. 00 1〜0. 4重量%、特に 0. 00 1〜0. 3重量% であるのが好ましい。 ナノスケールカーボンチューブの添加量を、 樹脂に対して 0. 001〜0. 2重量%、 特に 0.001〜0.1重量%にするのがより好ましい。 また、 ナノスケールカーボンチューブが、 前記単層カーボンナノチューブ又は 入れ子構造の多層カーボンナノチューブである場合、 その添加量は、 樹脂に対し て、 0. 0001〜0. 1重量%、 特に 0. 0001〜0. 05重量%であるの が好ましい。
ナノスケール力一ボンチューブが、 前記アモルファスナノスケールカーボンチ ュ一ブである場合、その添加量は、樹脂に対して、 0. 0001〜0. 1重量%、 特に 0. 0001〜0. 05重量%であるのが好ましい。
ナノスケ一ルカ一ボンチューブが、 前記鉄一炭素複合体である場合、 その添加 量は、樹脂に対して、 0. 00 Ο 1〜0. 4重量%、特に 0. 01〜0. 4重量% であるのが好ましい。
ナノスケールカーボンチューブが、 前記ナノフレークカーボンチューブである 場合、 その添加量は、 樹脂に対して、 0. 0001〜0. 1重量%、 特に 0. 0 001〜0. 05重量%であるのが好ましい。
なお、 本発明において、 使用する樹脂が熱硬化性樹脂である場合、 ナノスケ一 ルカーボンチューブの添加量は、 熱硬化性樹脂の重量 (該熱硬化性樹脂の硬化に 硬化剤を使用する場合は、 熱硬ィ匕性榭脂の重量と硬化剤の重量の合計) を基準と するものとする。例えば、熱硬ィ匕性樹脂として、エポキシ樹脂を使用する場合は、 該エポキシ樹脂の重量とその硬ィ匕に使用される硬化剤の重量との合計重量に対し て、ナノスケールカーボンチューブの添加量を前記の 0. 0001〜0. 4重量% の範囲とする。
同様に、 本発明で使用する樹脂が光硬化性樹脂である場合、 ナノスケールカー ボンチューブの添加量は、 (a)光重合性の樹脂成分(オリゴマー、 モノマ一等) の 重量、及び、 (b)該光硬ィ匕性樹脂の硬化に使用される光重合開始剤の重量(及び光 重合促進剤を使用した場合は、 光重合促進剤の重量を加える) の合計重量を基準 とするものとする。 例えば、 樹 S旨として、 紫外線硬化性アクリル樹脂を使用する 場合は、 (a)該紫外線硬化性アクリル樹脂の重量と、 (b)その硬化に使用される光 重合開始剤の重量 (及び必要に応じて使用される光重合促進剤の重量) との合計 重量に対して、 ナノスケールカーボンチューブの添加量を前記の 0. 0001〜 0. 4重量%の範囲とする。
本発明の樹脂組成物を製造するには、 各種の方法が採用できる。 例えば、 熱可 塑性樹脂を使用する場合、 熱可塑性樹脂を溶解する溶媒に溶解させて熱可塑性榭 脂溶液を得、 これにナノスケールカーボンチューブを添加し、 得られる混合物か ら溶媒を留去する方法、 或いは、 熱可塑性樹脂を加熱溶融して液体状とし、 これ にナノスケールカーボンチューブを添加して均一となるまで混練する方法等が例 示できる。
また、 熱硬化性樹脂を使用する場合、 熱硬化性樹脂を硬化する前は通常は液体 状態であるので、 硬ィ匕前の熱硬 f匕性樹脂にナノスケールカーボンチューブを混合 する方法が採用できる。 同様に、 光硬化性樹脂、 電子線硬化性樹脂も、 硬化する 前は通常は液体状態であるので、 硬化前の樹脂にナノスケールカ一ポンチューブ を混合する方法が採用できる。
本発明の樹脂組成物には、 必要に応じて、 本発明の効果を損ねない範囲で、 こ の分野で使用されている酸化防止剤などの各種の添加剤を添加することもできる。 本発明の組成物は、 上記樹脂、 ナノスケールカーボンチューブ及び必要に応じ て上記添加剤を混合することにより得られる。 混合方法としては、 公知の方法が 使用でき、 例えば、 セラミック 3本ロール、 ペイントシエ一カー、 遊星ミル等を 使用する方法が採用できる。 ^i Π ΠΠ
本発明の組成物は、 低比誘電率、 低誘電正接、 高耐熱性及び高機械的強度を具 備した樹脂製品を与えるので、 電気'電子機器の回路基板材料、 特に GH z帯域 用の回路基板材料として好適に使用できる。 特に、 各種特性 (誘電特性、 熱的特 性、化学的特性、機械的特性)を改善した樹脂が持つ特性を劣化させることなく、 GH z帯域で誘電正接の増大を抑えるので、 樹脂の選択性を増大させることがで さる。
ここで、 本発明の電子部品は、 1 GH z以上の広い範囲の GH z帯域において 上記特性を有するが、 一般には、 1〜 2 0 GH z、 特に 1〜 1 0 GH zの範囲の 帯域において、 前記優れた効果を奏することができる。
本発明の樹脂組成物は、 具体的には、 例えば、 衛星放送関連機器等に代表され る高周波機器や情報処理機器のプリント回路基板材料として極めて好適に使用で きる。 更に本発明の樹脂組成物は、 例えば、 チップキャリアやピングリツドアレ ィ等の半導体パッケージの分野、 抵抗器、 スィッチ、 コンデンサ、 フォトセンサ 等のベース部品から I Cソケッ卜やコネクタ等の機構部品に至るまで、 Ψ畐広い範 囲で応用可能である。 また、 電子レンジ用の容器類にも使用が可能である。 本発 明の樹脂組成物は、 特に、 上記のような回路基板、 半導体層間絶縁膜、 アンテナ 部品、 高周波同軸ケーカレの絶縁材料等の製造用樹脂組成物として有用である。 これら電子部品は公知の方法により製造できる。例えば、プリント回路基板は、 本発明組成物を板状に成形し、 必要に応じて、 その表面にめっき操作等により銅 等の金属皮膜を形成し、 常法に従つて回路を形成することにより得られる。 本発明組成物の成形も、 公知の成形方法、 例えば、 射出成形、 押出成形、 圧縮 成型、 注型成形等に従って行うことができる。
また、 本発明によれば、 ナノスケ一ルカ一ボンチューブ、 特に上記項 2又は項 3に記載のナノスケールカーボンチューブを樹脂に 0 . 0 0 0 1〜0 . 4重量% という極めて少量添加してなる本発明の樹脂組成物から得られる電子部品は、 G H z帯域において、 誘電正接 (tan <5 ) が樹脂単独の場合よりも低下する力 ま たは、 樹脂単独の場合の tan δの上昇を抑制することができる。
従って、 本発明は、 前記の熱可塑性樹脂、 硬化性樹脂及び熱可塑性樹脂と硬化 性樹脂との複合樹脂からなる群から選ばれる少なくとも 1種の樹脂に対して 0 . 0 0 0 1〜0. 4重量%の割合でナノスケール力一ボンチューブ、 特に上記項 2又 は項 3に記載のナノスケ一ルカーボンチューブを樹脂に配合することを特徴とす る、 当該樹脂から得られる電子部品の GH ζ帯域での tan δを低減乃至 tan δの 上昇を抑制する方法を提供するちのでもある。
同様に、 本発明は、 上記熱可塑性樹脂、 硬ィ匕性樹脂及び熱可塑性樹脂と硬化性 樹脂との複合樹脂からなる群から選ばれる少なくとも 1種の樹脂から得られる電 子部品の GH ζ帯域での tan δを低減乃至 tan δの上昇を抑制するための、 ナノ スケールカーボンチューブ、 特に上記項 2又は項 3に記載のナノスケールカーボ ンチューブの使用を提供するものでもある。
更に、 本発明によると、 ナノスケールカーボンチューブ、 特に上記項 2又は項 3に記載のナノスケールカーボンチューブを樹脂に 0 . 0 0 0 1〜0. 4重量%と いう極めて少量添カ卩してなる本発明の樹脂糸 £成物から得られる電子部品は、 GH z帯域において、 誘電正接 (tan S ) が樹脂単独の場合よりも低下するか、 また は、 樹脂単独の場合の tan δの上昇を抑制することができ、 一方、 樹脂が本来有 する比誘電率、 耐熱性、 機械的強度等の物' I生は実質上変化することなくそのまま 維持される。
従って、 本発明は、 前記の熱可塑性樹脂、 硬化性樹脂及び熱可塑性棚旨と硬化 性觀旨との複合樹脂からなる群から選ばれる少なくとも 1種の樹脂に対して 0. 0 0 0 1〜0.4重量%の割合でナノスケ一ルカーボンチューブ、 特に上記項 2又 は項 3に記載のナノスケールカーボンチューブを樹脂に配合することを特徴とす る、 当該樹脂から得られる電子部品の GH ζ蒂域での tan 3を樹脂単独の場合に 比し低減させるか又は上昇を抑制し、 棚皆が本来有する比誘電率、 耐熱性、 機械 的強度 (例えば、 引っ張り強度、 破断伸度、 硬度など)、 化学的特性等の物性、 特 に誘電特性は維持する方法を提供するものでもある。
同様に、 本発明は、 熱可塑性樹脂、 硬化 1生横脂、 及び熱可塑性樹脂と硬化性樹 脂との複合樹脂からなる群から選ばれる少なくとも 1種の樹脂から得られる電子 部品の GH z帯域での tan δを、 樹脂自体が有する tan δに比べて低減するか、 又は、 該電子部品の GH z帯域での tan 5の上昇を抑制し、 樹脂が有する他の物 性を維持するための、 ナノスケールカーボンチューブ、 特に上記項 2又は項 3に 記載のナノスケールカーボンチューブの使用を提供するものでもある。 実施例 以下に参考例(ナノスケールカーボンチューブの製造例)、実施例及び比較例を 掲げて本発明をより詳しく説明するが、 本発明はこれら実施例により限定される ものではなく、 各種の変更が可能である。
参考例 1
アモルファスナノスケ一ルカーボンチューブの製造
アモルファスナノスケールカーボンチューブは以下に示す方法で作製した。 6 0 m 1 O mmx 1 O mmの P T F Eフィルムに無水塩化鉄粉末 (粒径 5 0 0 m以下) 1 O mgを均一に振りかけた後、 プラズマ励起した。 プラズマ励 起の条件は、 以下の通りであった:
雰囲気 :アルゴン (A r )
内圧 : 0. 0 1 t o r r
投入電力 : 3 0 0 W
R F周波数: 1 3 . 5 6 MH z。
反応終了後、 アモルファスナノスケ一リレカ一ボンチューブ (外径; 1 0〜6 0 nm、 長さ; 5〜6 xm) が形成されたことを、 走査電子顕微鏡 (S EM) およ び X線回折により確認した。
また、得られたアモルファスナノスケ一ルカーボンチューブの X線回折角度(2 Θ )は 1 9. 1度であり、それから計算される炭素網平面間隔(d 0 0 2 )は 4. 6 A、 2 0のバンドの半値幅は 8. 1度であった。
参考例 2
原料としてトルエンを用い、 触媒として塩化第 2鉄を用い、 特開 2 0 0 2— 3 3 8 2 2 0号に記載の方法に従って反応を行うことにより、 炭化鉄がナノフレー クカーボンチューブのチューブ内空間部に部分的に内包された鉄一炭素複合体を 含む炭素質材料を得た。
得られた鉄—炭素複合体は、 SEM観察の結果から、 外径 2 0〜1 0 O nm、 長 さ 1〜1 0ミクロンで直線性の高いものであった。 また、 炭素からなる壁部の厚 さは、 5〜 4 0 nmであり、全長に亘つて実質的に均一であった。該壁部は、 TEM 観察において、 その炭素壁面が、 入れ子状でもスクロール状でもなく、 パッチヮ ーク状 (いわゆる paper mache状ないし張り子状) になっているように見え、 また、 X線回折法から炭素網面間の平均距離 ( d 002) が 0.34nm以下の黒鉛質 構造を有するナノフレークカーボンチューブであることを確認した。 また、 X線 回折、 E D Xにより、 上記本発明の鉄—炭素複合体を構成するナノフレークカー ボンチューブのチューブ内空間部には炭化鉄が部分的に充填されていることを確 認した。
得られた本発明の炭素質材料を構成する多数の鉄—炭素複合体を含む炭素質材 料を電子顕微鏡(TEM)で観察したところ、 ナノフレークカーボンチューブの空 間部 (即ち、 ナノフレークカーボンチューブのチューブ壁で囲まれた空間) への 炭化鉄の充填率が 20〜60%の範囲の種々の充¾率を有する鉄一炭素複合体が 混在していた。
該多数の鉄—炭素複合体のナノフレーク力一ボンチューブ内空間部への炭化鉄 の TEM観察像の複数の視野を観察して算出した平均充填率は 30 %であった。ま た、 X線回折から算出された R値は、 0. 57であった。
参考例 3
上記参考例 2で得られた鉄—炭素複合体 (炭化鉄を部分内包するナノフレーク 力一ボンチューブ) lgを、 1Nの塩酸 100ml に分散させ、 室温で 6時間撹 拌処理し、 ろ過分離した。 さらに、 2回 1Nの塩酸 100mlを用いて同様の処 理を行ない、 中空のナノフレーク力一ポンチューブを得た。
得られたナノフレーク力一ボンチューブは、 上言己参考例 2の鉄一炭素複合体と 比べて、 形状、 外形、 長さ、 壁部の厚さが実質上同一であった。 また、 該壁部は 、 TEM観察において、 その炭素壁面が、 入れ子状でもスクロール状でもなく、 パ ツチワーク状 (いわゆる paper mache状ないし張り子状) になっているように 見え、 また、 X線回折法から炭素網面間の平均距離 (d002) が 0.34nm以下の黒 鉛質構造を有するナノフレークカーボンチューブであることを確認した。
実施例 1〜 5
硬化性樹脂として、 感光性アクリル樹脂 (エポキシァクリレート樹脂 (日本化 薬社製 EAM-2160) 98 g、 光重合開始剤 (日本化薬社製 DETX- S) l g、 光重合促進剤 (日本化薬社製 EPA) l gを混合したもの) を使用 した。
ナノスケールカーボンチューブとして、 参考例 2で得られた鉄—炭素複合体を 表 1に記載の割合で使用した。 表 1は、 上記エポキシァクリレート樹 Ji皆、 光重合 開始剤、 光重合促進剤の合計 100重量部に対するナノスケ一ルカ一ボンチュー ブの配合量 (重量部) を示している。
樹脂とナノスケール力一ボンチューブ (鉄—炭素ネ复合体) とを、 セラミック 3 本ロール (ノリタケカンパニー製 NR— 42A) により混合し、 ナノスケール 力一ボンチューブを樹脂に均一分散させ、 ペーストを得た。
得られたペーストを円筒形のモールドに入れて水銀灯(500W)で紫外線(照 射線量: 6 J /cm2) を照射し、 円筒形の成形体を得た。 この成形体の中央部をく りぬいて、 評価用サンプルを得た。 この評価用サンプルは、 図 5の 501に示す ように、同軸状加工物で、 ドーナツ型の形状をしており、外径(2b)が 0. 7 cm、 内径 (2a)が 0. 3 cm、 高さ(L)が 0. 15 cmである。
比較例 1〜 3
鉄—炭素複合体の使用量を、 上記エポキシァクリレート樹脂、 光重合開始剤、 光重合促進剤の合計に対して、 0重量%、 1. 02重量%又は 2. 98重量%と した以外は実施例 1〜 5と同様にして比較のための評価用サンプルを得た。
実施例 6
鉄—炭素複合体に代えて、 参考例 1で得たアモルファスナノスケール力一ボン チューブを使用した以外は実施例 2と同様にして評価用サンプルを得た。
比較例 4及び 5
アモルファスナノスケールカーボンチューブの使用量を、 上記エポキシァクリ レート樹脂、光重合開始剤、光重合促進剤の合計に対して 1. 19重量%又は 3. 02重量%とした以外は実施例 6と同様にして比皎のための評価用サンプルを得 た。
実施例 7
鉄—炭素複合体に代えて市販の単層カーボンナノチューブを表 1に記載の割合 で使用した以外は実施例 1〜 5と同様にして評価用サンプルを得た。
比較例 6〜 8
単層カーボンナノチューブの量を上記感光性ァクリル樹脂 (エポキシァクリレ —ト榭脂 (日本化薬社製 EAM-2160) 98 g、 光重合開始剤 (日本化薬 社製 DETX-S) 1 g、 光重合促進剤 (日本化薬社製 EPA) l gを混合 したもの) に対して、 0. 50重量%、 0. 98重量%、 3. 01重量%とする 以外は実施例 7と同様にして比較のための評価用サンプルを得た。 表 1
Figure imgf000038_0001
試験例 1
前記実施例 1〜 7及び比較例 1〜 8で得られた評価用サンプルについて、 黒川 悟ら、 京都府中小企業総合センター技報、 2002、 No.30 に記載の方法に従い、 G H z帯域での tan δ及び比誘電率を測定した。
即ち、 APC 7mm規格の同軸コネクタの同軸状に加工した評価用サンプル (外 径 (2b): 0. 7 cm、 内径 (2a): 0. 3 cm、 高さ (L): 0. 15 cm) を、 図 5 に示すアウターコンダクタ 503に挿入し、 Su、 S21の 2つの Sパラメ一夕を測 定することにより複素誘電率を求める方法によりおこなった。 測定は、 ベクトル ネットワークアナライザにより、 APC7 mm規格の同軸コネクタの同軸状に加工し た被測定材料を挿入し、 Su、 S21の 2つの Sパラメ一夕を測定することにより複 素誘電率を求める方法により行なった。
比較例 1、 実施例 2、 実施例 3及び比較例 3で得られた評価用サンプルの tan δの測定結果を、 図 6に示す。 また、 比較例 1、 実施例 2及び実施例 3で得られ た評価用サンプルの比誘電率の測定結果を、 図 7に示す。 図 6及び図 7から判る ように、 鉄-炭素複合体を含有しない樹脂単独から得られた評価用サンカレ (比 較例 1 ) に比し、 特定量の鉄一炭素複合体を含有する樹脂組成物から得られた評 価用サンプル (実施例 2及び 3 ) は、 誘電正接 (tan S ) の上昇が抑制されてい るが、 比誘電率は実質上変化しないことが判る。
比較例 1、 実施例 6及び比絞例 4で得られた評価用サンプルの tan <5の測定結 果を図 8に示す。 図 8から判るように、 アモルファスナノスケ一 1 /カーボンチュ 一ブを約 0.01重量%含有する実施例 6の評価用サンプルは、樹脂単独からなる評 価用サンプル (比較例 1 ) 又はアモルファスナノスケールカーボンチューブを 1 重量%を越えて含有する評価用サンプル (比較例 4 ) に比べて、 tan Sの上昇が 抑制されている。
また、 比較例 1及び実施例 7で得られた評価用サンプルの tan Sの測定結果を 図 9に示す。図 9から判るように、カーボンナノチューブを約 0.02重量%含有す る実施例 7の評価用サンプルは、 樹脂単独からなる評価用サンプル (比較例 1 ) に比べて、 tan δの上昇が抑制されている。
更に、 各実施例及び各比較例で得られた評価用サンプルの 1 GH z、 5 GH z 及び 1 0 GH zにおける tan δ及び比誘電率の測定結果を表 2に す。
表 2
Figure imgf000040_0001
上記表 2から、 ナノスケ一ルカーボンチューブを特定量含有する本発明の樹脂 組成物を用いて得られる電子部品は、 GHz帯域、 特に 1〜 1 0 GHzの周波数範 囲において、 ナノスケ一ルカ一ボンチューブを含有しない樹脂そのもの (比較例 1 ) 力 ^得られる電子部品と比べて、 tan <5の上昇が抑制されているが、 樹脂が 本来有する物性 (比誘電率) は殆ど劣化されることなく、 ほぼ維持されることが 判る。
試験例 2
比較例 1、 2及び実施例 1〜 5と同様にして得た成形体 (引っ張り試験片) に つき、 J I S K 6 9 1 1に従って引っ張り強度を測定し、 J I S C 2 1 5 1 に従って破断伸度を、 J I S K 5 6 0 0に従って鉛筆硬度を測定した。 これら 物性の測定用の引っ張り試験片は、 これら J I S規格に準拠して調製した。 結果を表 3に示す。 表 3から判るように、 ナノスケールカーボンチューブを含 有していない比較例 1の上記物性値 (樹脂が本来有する物性値) Σ比較して、 本 発明の添加量範囲を超えてナノスケールカーボンチューブを含有する比較例 2の 成形体の上記物性値は変動しており、 有意な変ィ匕が認められたのに対して、 本発 明の添加量範囲内でナノスケールカーボン ューブを含有している実施例 1〜5 の成形体の上記物性値は、 比較例 1の物性 { (樹脂が本来有する物性値) に比べ て大きく変動しておらず、 有意な差は認められなかった。
表 3
Figure imgf000041_0001
注:試験方法
(*1): JIS K6911
(*2): JIS C2151
(*3): JIS K5600 実施例 8〜1 1
樹脂として、 感光性アクリル樹脂 (エポ シァクリレート樹脂 (日本ィ匕薬社製 EAM—2 1 6 0 ) 9 8 g、光重合開始剤(日本化薬社製 D E TX—S ) 1 g、 光重合促進剤 (日本化薬社製 E P A) l gを混合したもの) を使用した。
ナノスケールカーボンチューブとして、 参考例 2で得られた鉄—炭素複令体を 下記表 4に記載の割合で使用した。 表 4は、 上記感光性アクリル樹脂 (エ キシ ァクリレート樹脂、 光重合開始剤、 光重合 進剤の合計) 1 0 0重量部に する ナノスケールカーボンチューブの配合量 (塞量部) を示している。
まず、 樹脂とナノスケ一ルカ一ボンチューブ (鉄一炭素複合体) とを、 セラミ ック 3本ロール (ノリタケカンパニー製 KT R - 4 2 A) により混合し、 ナノス ケ一ルカーボンチューブを榭脂に均一分散ざせ、 実施例 8のペーストを得 こ。 次に、 上記で得られた実施例 8のペース卜を、 下記表 4の組成となるように、 比較例 1のペースト (エポキシァクリレー卜樹脂、 光重合開始剤及び光重令促進 剤からなる組成物) で希釈して、 実施例 8 りナノスケール力一ボンチューブの 濃度が低い実施例 9〜 1 1のペーストを得た。
得られたぺ一ストを円筒形のモールドに入れて水銀灯 ( 5 0 0 W)で紫外線(照 射線量: 6 J cm2) を照射し、 円筒形の成形体を得た。 この成形体の中央部を くりぬいて、 評価用サンプルを得た。 この評価用サンプルは、 同軸状加工物で、 ドーナツ型の形状をしており、外径が 0 . 7 c m、内径が 0 . 3 c m、高さ力 S 0 . 3 c mである。
試験例 3
前記実施例 8〜 1 1で得られた評価用サンプルを使用する以外は試験例 1と同 様にして GH z帯域での tan δを測定した。
実施例 8〜 1 1で得られた評価用サンプルの tan δの測定結果を、 図 1 Οに示 す。
図 1 0から判るように、 鉄-炭素複合体を含有しない樹脂単独から得られた評 価用サンプル (比較例 1 ) に比し、 特定量の鉄—炭素複合体を含有する樹 g旨組成 物から得られた評価用サンプルは、 誘電正接 (tan S ) の上昇が抑制されている ことが判る。
更に、 実施例 8〜: L 1で得られた評価用サンプルの 1 GH z、 5 GH z及び 1 0 GH zにおける tan δの測定結果を表 4に示す。
表 4
Figure imgf000042_0001
実施例 1 2
アモルファスナノスケール力一ボンチューブに代えて、 参考例 3で得ら; たナ ノフレークカーボンチューブを用いる以外は実¾例 6と同様にして評価用サンプ ルを得た。
得られた評価用サンプルを、 試験例 1と同一の方法で GHz帯域での tan (5及 び比誘電率を測定したところ、 tanS及び比誘電率ともに、実施例 6と実質上同様 の結果が得られた。
実施例 13〜 17
樹脂として、 臭素化ビスフヱノール A型エポキシ樹脂 (ジャパンエポキシレジ ン株式会社製、 商品名 「5046B80」) 98 g、 硬ィ匕剤 (ジシアンジアミド : ジャパンエポキシレジン株式会社製 D I CY ) 2 gを混合した熱硬化性ェポ キシ樹脂を使用した。
ナノスケールカーボンチューブとして、 参考例 2で得られた鉄—炭素複合体を 表 5に記載の割合で使用した。
表 5は、 上記熱硬化性エポキシ樹脂 100重量部に対するナノスケールカーボ ンチューブの配合量 (重量部) を示している。
樹脂とナノスケ一ルカ一ボンチューブ (鉄一炭素複合体) とを、 セラミック 3 本ロール (ノリタケカンパニー製 NR - 42 A) により混合し、 ナノスケ一クレ カーボンチューブを樹脂に均一分散させ、 ペーストを得た。
得られたペーストを円筒形のモ一ルドに入れて 220°Cで 30分熱硬化させ、 円筒形の成形体を得た。 この成形体の中央部をくりぬいて、 評価用サンカレを得 た。 この評価用サンプルは、 図 5の 501に示すように、 同軸状加工物で、 ドー ナツ型の形状をしており、外径 (2b)が 0. 7 cm_、 内径 (2a)が 0. 3 cm、高さ (L) が 0. 15 cmである。
比較例 9〜 11
鉄—炭素複合体の使用量を、 上記熱硬ィ匕性エ^キシ樹脂に対して、 0重量%、 1. 05重量%又は 3. 02重量%とした以外ま実施例 13〜 17と同様にして 比較のための評価用サンプルを得た。
実施例 18及び 19
鉄—炭素複合体に代えて、 参考例 1で得たアモルファスナノスケール力一ボン チューブを表 5に記載の量で使用した以外は実施例 13〜17と同様にして評価 用サンプレを得た。
比較例 1 2
アモルファスナノスケールカーボンチューブの使用量を、 上記熱硬化性ェポキ シ樹脂に対して 3 . 0 2重量%とした以外は実施例 1 8と同様にして比較のため の評価用サンプルを得た。
試験例 4
前記実施例 1 3〜1 9及び比較例 9〜: L 2で得られた評価用サンプルを使用す る以外は試験例 1と同様にして GH z帯域での tan (5を測定した。 結果を表 5に 示す。
表 5
Figure imgf000044_0001
表 5から判るように、 鉄—炭素複合体を含有しない樹脂単独から得られた評価 用サンプル (比較例 9 ) に比し、 本発明に従い特定量の鉄一炭素複合体を含有す る樹脂組成物から得られた評価用サンプ レは、 誘電正接 (tan <5 ) の上昇が抑制 されているこ''とが判る。
実施例 2 0〜 2 3
熱可塑性樹脂として日本ポリケム株式会社製の高圧法低密度ポリエチレン (LDPE)に対して 1重量%のナノスケールカーボンチューブ、即ち、参考例 1で得 たアモルファスナノスケールカーボンチューブ又は参考例 2で得られた鉄一炭素 複合体を、 加圧双腕型ニーダ ((株)森山製作所) により加熱混練した。
こうして得られた 1重量%のナノスケ一ルカーボンチューブを含有する混練物 に、ナノスケールカーボンチューブ含有量が表 6に記載の割合になるように LDPE を追加添加し、加圧双腕型ニーダにより加熱混練し、そして、 日精樹脂工業(株) 製の射出成形機により直径 3 mm、長さ 1 2 0 mmの棒状評価試験片を作製した。 こうして得られた評価試験片について、 文献記載の方法 (三菱電線時報 2 0 0 3年 4月 「高周波同軸ケーブル用低損失材料の開発」 —超高周波領域 (GHz帯) での空胴共振器摂動法による誘電特性評価一に記載の方法) に従い、 空胴共振器 摂動法により、 2 GH zでの誘電正接を測定した。
結果を表 6に示す。 表 6は、 上記熱可塑性樹脂 1 0 0重量部に対するナノスケ 一ルカ一ボンチューブの配合量 (重量部) を示している。
比較例 1 3
ナノスケールカーボンチューブを使用しない以外は実施例 2 0〜2 3と同様に して、 比較のための棒状評価試験片を得、 誘電正接を測定した。 結果を表 6に示 す。
表 6
Figure imgf000045_0001
表 6から明らかなように、 ナノスケールカーボンチューブを含有しない樹脂組 成物から得られた棒状評価試験片 (比較例 1 3 ) の tan Sに比べて、 本発明に従 つてナノスケ一ルカ一ボンチューブを特定量含有する樹脂組 fig物から得られた棒 状評価試験片 (実施例 2 0〜2 3 ) の tan <5は 2 G zにおいて低下していること が判る。 産業上の利用可能性 本発明によれば、 上記ナノスケールカーボンチューブを樹 JJ旨に 0 . 0 0 0 1〜 0 . 4重量%という極めて少量添加してなる樹脂組成物から得られる電子部品は、 GH z帯域において、 誘電正接 (tan (5 ) が樹脂単独の場合 りも低下する力、 または、 樹脂単独の場合の tan (5の上昇を抑制することができ、 また、 GH zの 周波数による t a n δのドリフト変化を抑えることも出来、 一方、 樹脂が本来有 する比誘電率、 耐熱性、 機械的強度 (例えば、 引っ張り強度、 破断伸度、 硬度な ど)、化学的特性等の物性、特に誘電特性は実質上変化することなくそのまま維持 される。
従って、 かかる樹脂組成物を使用することにより、 電気'霞子機器の回路基板 材料、 特に GH ζ帯域用の回路基板材料等として好適に使用できる電子部品が提 供される。

Claims

請 求 の 範 囲
1. 熱可塑性樹脂、 硬化性樹脂、 及び熱可塑性樹脂と硬化性樹脂との複合樹脂か らなる群から選ばれる少なくとも 1種の樹脂、 及び、 ナノスケールカーボン チューブを含有し、 ナノスケールカーボンチューブが上記棚旨を基準として
0 . 0 0 0 1〜0. 4重量%の割合で含有されていることを特徴とする GH z帯域電子部品用樹脂組成物。
2. ナノスケールカーボンチューブが、
(i) 単層カーボンナノチューブ又は入れ子構造の多層カーボンナノチュー ブ、
(i i) アモルファスナノスケールカーボンチューブ、
(M i) ナノフレ一クカーボンチューブ、
(i v) (a)ナノフレーク力一ボンチューブ及び入れ子構造の多層カーボンナ ノチューブからなるカーボンチューブと、 (b)炭化鉄又は鉄とからなり、 該カ
—ボンチューブ (a)のチューブ内空間部の 1 0〜9 0 %の範囲に、該炭化鉄又 は鉄 (b)が存在している鉄—炭素複合体、 又は
(V) 上記( i )〜( ί V)の 2種以上の混合物
である請求項 1に記載の GH ζ帯域電子部品用樹脂組成物。
3. ナノスケ一ルカ一ボンチューブが、 アモルファスナノスケール力一ボンチュ ーブであって、 X線回折法 (入射 X線: C u K o!) において、 ディフラクト メータ一法により測定される炭素網平面 (0 0 2 ) の平面間隔が 3 . 5 4 A 以上であり、 回折角度 (2 0 ) が 2 5 . 1度以下であり、 2 0バンドの半値 幅が 3 . 2度以上である請求項 1に記載の GH z帯域電子部品用榭脂組成物。
4. 樹脂が、 ポリオレフイン樹脂、 ポリエステル樹脂、 ポリアミド樹脂、 フッ素 樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、メタクリル酸エステル樹脂、 アクリル酸エステル樹脂、 ポリカーボネート樹脂、 ポリスルホン樹脂、 ポリ エーテルスルホン樹脂、 ポリフエ二レンスルフイド樹脂、 ポリフエ二レンェ —テル樹脂、 AB S樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー、 熱可塑性ポリイミド樹脂、 ポリエーテルイミド樹脂、 ポリアセタール、 ポリ ァリレート及びポリエーテル二トリル樹脂からなる群から選ばれた少なく とも 1種の熱可塑性樹脂である請求項 1に記載の GH z帯域電子部品用榭 脂組成物。
5. 樹脂が、 熱硬化性樹脂、 光硬化性樹脂及び電子線硬化性樹脂からなる群から 選ばれた少なくとも 1種の硬化性樹脂である請求項 1に記載の GH z帯域 電子部品用樹脂組成物。
6. 樹脂が、 硬ィ匕性測旨の硬化物を分散した熱可塑性樹脂及び熱可塑性樹脂を分 散した硬化性樹脂からなる群から選ばれた少なくとも 1種の複合樹脂であ る請求項 1に記載の GH z帯域電子部品用樹脂組成物。
7. ナノスケールカーボンチューブが、 樹脂を基準として 0 . 0 0 1〜0 . 4重 量%の割合で含有されている請求項 1に記載の GH z帯域電子部品用樹脂 組成物。
8. ナノスケールカーボンチューブが、 前記単層カーボンナノチューブ又は入れ 子構造の多層カーボンナノチューブであり、 その添加量が、 樹脂に対して、 0 . 0 0 0 1〜 0 · 1重量%である請求項 1に記載の GH z帯域電子部品用 樹脂組成物。
9. ナノスケ一ルカ一ポンチューブが、 前記アモルファスナノスケールカーボン チューブであり、その添加量が、樹脂に対して、 0. 0 0 0 1〜0 . 1重量% である請求項 1に記載の GH z帯域電子部品用樹脂組成物。
10. ナノスケール力一ボンチューブが、 前記鉄一炭素複合体であり、 その添加量 が、 樹脂に対して、 0. 0001〜0. 4重量%である請求項 1に記載の G H z帯域電子部品用樹脂組成物。
11. ナノスケールカーボンチューブが、 前記ナノフレークカーボンチューブでお り、 その添加量が、 樹脂に対して、 0. 0001〜0. 1重量%である請求 項 1に記載の GH z帯域電子部品用樹脂組成物。
12. 請求項 1に記載の GH z帯域電子部品用樹脂組成物から得られる GH z帯 域電子部品。
13. 回路基板、 半導体層間絶縁膜、 アンテナ部品又は高周波同軸ケーブル絶縁材 料である請求項 12に記載の GH z帯域電子部品。
14. 樹脂の tan δが GHz帯域で 0. 1以下に低減されており、 且つ、 樹脂が φ: 来有している他の物性が保持されている請求項 12に記載の GHz帯域竈 子部品。
15. 熱可塑性樹脂、 硬化性樹脂、 及び熱可塑性樹脂と硬化性棚旨との複合樹脂か らなる群から選ばれる少なくとも 1種の樹脂に対して 0. 0001〜0. 4 重量%の割合でナノスケールカーボンチューブを樹脂に配合することを特 徴とする、 当該樹脂から得られる電子部品の GHz帯域での tan (5を低減な いし GH z帯域での tan dの上昇を抑制する方法。
16. ナノスケールカーボンチューブが、
(i) 単層カーボンナノチューブ又は入れ子構造の多層カーボンナノチュー ブ、
(i i) アモルファスナノスケールカーボンチューブ、
(i i i) ナノフレークカーボンチューブ、
(iv) (a)ナノフレークカーボンチューブ及び入れ子構造の多層カーボンナ ノチューブからなるカーボンチューブと、 (b)炭化鉄又は鉄とからなり、 該カ 一ボンチューブ (a)のチューブ内空間部の 10〜90%の範囲に、該炭化鉄又 は鉄 (b)が存在している鉄—炭素複合体、 又は
(V) 上記(i)〜(iv)の 2種以上の混合物
である請求項 15に記載の方法。
17. 熱可塑性樹脂、 硬化性樹脂、 及び熱可塑性樹脂と硬化性樹脂との複合樹脂か らなる群から選ばれる少なくとも 1種の樹脂に対して 0. 0001〜0. 4 重量%の割合でナノスケールカーボンチューブを樹脂に配合することを特 徴とする、 当該樹脂から得られる電子部品の GHz帯域での tanSを樹脂単 独の場合に比し低減するか又は上昇を抑制し、 樹脂が本来有している他の物 性を維持する方法。
18. ナノスケール力一ボンチューブが、
(i) 単層カーボンナノチューブ又は入れ子構造の多層カーボンナゾチュー ブ、
(i i) アモルファスナノスケールカーボンチューブ、
(i i i) ナノフレークカーボンチューブ、
(iv) (a)ナノフレーク力一ボンチューブ及び入れ子構造の多層力一ポンナ ノチューブからなるカーボンチューブと、 (b)炭化鉄又は鉄とからなり、 該カ 一ボンチューブ (a)のチューブ内空間部の 10〜90%の範囲に、該炭化鉄又 は鉄 (b)が存在している鉄—炭素複合体、 又は
(V) 上記( ί )〜( ί V)の 2種以上の混合物
である請求項 17に記載の方法。
PCT/JP2005/001868 2004-02-04 2005-02-02 GHz帯域電子部品用樹脂組成物及びGHz帯域電子部品 WO2005075571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005517797A JP4836581B2 (ja) 2004-02-04 2005-02-02 GHz帯域電子部品用樹脂組成物及びGHz帯域電子部品
EP05709920.2A EP1719804B1 (en) 2004-02-04 2005-02-02 Use of resin composition for GHz-band electronic component
CA002554802A CA2554802C (en) 2004-02-04 2005-02-02 Resin composition for ghz-band electronic component and ghz-band electronic component
US10/587,950 US7652098B2 (en) 2004-02-04 2005-02-02 Resin composition for GHz-band electronic component and GHz-band electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-027996 2004-02-04
JP2004027996 2004-02-04
JP2004376806 2004-12-27
JP2004-376806 2004-12-27

Publications (1)

Publication Number Publication Date
WO2005075571A1 true WO2005075571A1 (ja) 2005-08-18

Family

ID=34840139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001868 WO2005075571A1 (ja) 2004-02-04 2005-02-02 GHz帯域電子部品用樹脂組成物及びGHz帯域電子部品

Country Status (7)

Country Link
US (1) US7652098B2 (ja)
EP (1) EP1719804B1 (ja)
JP (1) JP4836581B2 (ja)
KR (1) KR100769016B1 (ja)
CA (1) CA2554802C (ja)
TW (1) TW200602414A (ja)
WO (1) WO2005075571A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039567A (ja) * 2005-08-03 2007-02-15 Kri Inc 高周波電子部品用複合成形体及び高周波電子部品用複合成形体製造用組成物
JP2011173957A (ja) * 2010-02-23 2011-09-08 Teijin Ltd ポリエチレンナフタレート組成物およびそれを用いた成形品
JP2012072405A (ja) * 2010-09-29 2012-04-12 Samsung Electro-Mechanics Co Ltd 高分子樹脂組成物及びこれを用いて製造された絶縁フィルム並びにその製造方法
US8491292B1 (en) 2007-07-31 2013-07-23 Raytheon Company Aligning nanomaterial in a nanomaterial composite
JP2013533892A (ja) * 2010-03-26 2013-08-29 ユニバーシティ オブ ハワイ ナノ材料で強化された樹脂および関連材料
US8628746B2 (en) 2007-04-12 2014-01-14 Raytheon Company System and method for dispersing nanostructures in a composite material
CN108659455A (zh) * 2018-05-31 2018-10-16 芜湖卓越线束系统有限公司 一种新能源汽车抗电磁干扰线束护套材料及其制备方法
WO2021090823A1 (ja) 2019-11-06 2021-05-14 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および電子電気機器部品
US20220095962A1 (en) * 2019-01-31 2022-03-31 Arizona Board of Regents on behalf of Arizona Arizona State University Stabilizing matrices for implantable electrochemical biosensors

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160311A1 (en) * 2005-02-02 2008-07-03 Masato Tani Carbon Nanotube-Loaded Inorganic Particle
US8636972B1 (en) * 2007-07-31 2014-01-28 Raytheon Company Making a nanomaterial composite
WO2009029984A1 (en) * 2007-09-03 2009-03-12 Newsouth Innovations Pty Limited Graphene
US20110134617A1 (en) * 2008-08-08 2011-06-09 Pp-Mid Gmbh Polymer molded bodies and printed circuit board arrangement and method for the production thereof
EP2224045A1 (en) 2009-02-27 2010-09-01 Basf Se Process for producing carbon nanofibres and/or carbon nanotubes
US10010867B2 (en) 2009-02-27 2018-07-03 Basf Corporation Process for producing carbon nanofibers and/or carbon nanotubes
KR20110139462A (ko) * 2010-06-23 2011-12-29 삼성전기주식회사 절연수지 조성물 및 이를 이용하여 제조된 인쇄회로기판
US20120256139A1 (en) * 2011-04-08 2012-10-11 Bayer Materialscience Llc Uv-curable coating containing carbon nanotubes
US8980053B2 (en) 2012-03-30 2015-03-17 Sabic Innovative Plastics Ip B.V. Transformer paper and other non-conductive transformer components
FR2991332B1 (fr) 2012-06-04 2015-04-24 Arkema France Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
FR2991330B1 (fr) * 2012-06-04 2015-04-03 Arkema France Materiau composite a tres faible taux de nanocharges carbonees, son procede de preparation et ses utilisations
JP5972735B2 (ja) 2012-09-21 2016-08-17 株式会社東芝 半導体装置
US8815725B2 (en) 2013-01-18 2014-08-26 International Business Machines Corporation Low alpha particle emission electrically-conductive coating
US9701577B1 (en) 2013-02-26 2017-07-11 Ap Technologies Electric privacy glass and resin used therein
FR3029003B1 (fr) * 2014-11-26 2018-06-29 Nexans Dispositif electrique a moyenne ou haute tension
US11118053B2 (en) * 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
KR102100870B1 (ko) * 2018-06-01 2020-04-14 토다이수 주식회사 무선 충전용 자기장 차폐 부재 및 그 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134263A (ja) * 1994-11-16 1996-05-28 Otsuka Chem Co Ltd 高周波電子部品用樹脂組成物
JPH10223048A (ja) * 1997-02-05 1998-08-21 Daikin Ind Ltd 高周波用誘電材料
JP2002290094A (ja) * 2001-03-27 2002-10-04 Toray Ind Inc 電磁波シールド性材料およびその成形体
JP2002338220A (ja) * 2001-03-15 2002-11-27 Osaka Gas Co Ltd 鉄化合物内包炭素複合体およびその製造方法
JP3355442B2 (ja) * 1998-12-28 2002-12-09 大阪瓦斯株式会社 アモルファスナノスケールカーボンチューブおよびその製造方法
WO2002100931A1 (en) * 2001-06-08 2002-12-19 Eikos, Inc. Nanocomposite dielectrics
JP2003158395A (ja) * 2001-11-22 2003-05-30 Kansai Research Institute 電磁波吸収材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176142C (zh) 2002-03-14 2004-11-17 四川大学 聚合物/碳纳米管复合粉体及其固相剪切分散的制备方法
WO2003078316A1 (fr) 2002-03-15 2003-09-25 Osaka Gas Company Limited Composite fer/carbone, matiere carbonee comprenant ce composite fer/carbone et procede de production correspondant
JP4480368B2 (ja) * 2002-09-13 2010-06-16 大阪瓦斯株式会社 ナノスケールカーボンを含有する樹脂組成物、導電性ないし制電性樹脂成形体、導電性ないし制電性樹脂コーティング組成物及び帯電防止膜及びこれらの製造法
WO2004052559A2 (en) * 2002-12-06 2004-06-24 Eikos, Inc. Optically transparent nanostructured electrical conductors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134263A (ja) * 1994-11-16 1996-05-28 Otsuka Chem Co Ltd 高周波電子部品用樹脂組成物
JPH10223048A (ja) * 1997-02-05 1998-08-21 Daikin Ind Ltd 高周波用誘電材料
JP3355442B2 (ja) * 1998-12-28 2002-12-09 大阪瓦斯株式会社 アモルファスナノスケールカーボンチューブおよびその製造方法
JP2002338220A (ja) * 2001-03-15 2002-11-27 Osaka Gas Co Ltd 鉄化合物内包炭素複合体およびその製造方法
JP2002290094A (ja) * 2001-03-27 2002-10-04 Toray Ind Inc 電磁波シールド性材料およびその成形体
WO2002100931A1 (en) * 2001-06-08 2002-12-19 Eikos, Inc. Nanocomposite dielectrics
JP2003158395A (ja) * 2001-11-22 2003-05-30 Kansai Research Institute 電磁波吸収材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEGOAS S.B. ET AL: "Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators", PHYSICAL REVIEW LETTERS, vol. 90, no. 5, 7 February 2003 (2003-02-07), pages 055504.1 - 055504.4, XP002987952 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039567A (ja) * 2005-08-03 2007-02-15 Kri Inc 高周波電子部品用複合成形体及び高周波電子部品用複合成形体製造用組成物
US8628746B2 (en) 2007-04-12 2014-01-14 Raytheon Company System and method for dispersing nanostructures in a composite material
US8491292B1 (en) 2007-07-31 2013-07-23 Raytheon Company Aligning nanomaterial in a nanomaterial composite
JP2011173957A (ja) * 2010-02-23 2011-09-08 Teijin Ltd ポリエチレンナフタレート組成物およびそれを用いた成形品
JP2013533892A (ja) * 2010-03-26 2013-08-29 ユニバーシティ オブ ハワイ ナノ材料で強化された樹脂および関連材料
JP2012072405A (ja) * 2010-09-29 2012-04-12 Samsung Electro-Mechanics Co Ltd 高分子樹脂組成物及びこれを用いて製造された絶縁フィルム並びにその製造方法
CN108659455A (zh) * 2018-05-31 2018-10-16 芜湖卓越线束系统有限公司 一种新能源汽车抗电磁干扰线束护套材料及其制备方法
US20220095962A1 (en) * 2019-01-31 2022-03-31 Arizona Board of Regents on behalf of Arizona Arizona State University Stabilizing matrices for implantable electrochemical biosensors
WO2021090823A1 (ja) 2019-11-06 2021-05-14 三菱エンジニアリングプラスチックス株式会社 樹脂組成物および電子電気機器部品
KR20220098720A (ko) 2019-11-06 2022-07-12 미쓰비시 엔지니어링-플라스틱스 코포레이션 수지 조성물 및 전자 전기 기기 부품

Also Published As

Publication number Publication date
EP1719804A4 (en) 2011-06-22
JPWO2005075571A1 (ja) 2007-10-11
JP4836581B2 (ja) 2011-12-14
US20070129481A1 (en) 2007-06-07
EP1719804B1 (en) 2014-04-02
EP1719804A1 (en) 2006-11-08
TWI356833B (ja) 2012-01-21
TW200602414A (en) 2006-01-16
KR100769016B1 (ko) 2007-10-23
US7652098B2 (en) 2010-01-26
KR20060120269A (ko) 2006-11-24
CA2554802C (en) 2009-12-29
CA2554802A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
WO2005075571A1 (ja) GHz帯域電子部品用樹脂組成物及びGHz帯域電子部品
Li et al. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding
Mondal et al. Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites
Wang et al. Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite
Sharma et al. Enhanced thermomechanical and electrical properties of multiwalled carbon nanotube paper reinforced epoxy laminar composites
Tan et al. Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2T x MXene/graphene framework connected by a hydrogen-bonded interface
Mondal et al. Combination effect of carbon nanofiber and ketjen carbon black hybrid nanofillers on mechanical, electrical, and electromagnetic interference shielding properties of chlorinated polyethylene nanocomposites
Tsai et al. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability
Zhang et al. Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π–π stacking interactions
Omana et al. Recent advances in polymer nanocomposites for electromagnetic interference shielding: A Review
Zachariah et al. Hybrid materials for electromagnetic shielding: A review
Rani et al. Significantly enhanced electromagnetic interference shielding effectiveness of montmorillonite nanoclay and copper oxide nanoparticles based polyvinylchloride nanocomposites
JP2007039567A (ja) 高周波電子部品用複合成形体及び高周波電子部品用複合成形体製造用組成物
EP1912487A1 (en) Electromagnetic wave absorber
Das et al. Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites
El-Shamy Polyvinyl alcohol and silver decorated carbon quantum-dots for new nano-composites with application electromagnetic interface (EMI) shielding
JP7428815B2 (ja) 組成物及びその硬化体
WO2006059750A1 (ja) 硬化性樹脂組成物
Lee et al. Orthogonal pattern of spinnable multiwall carbon nanotubes for electromagnetic interference shielding effectiveness
Xie et al. Microwave-assisted sintering to rapidly construct a segregated structure in low-melt-viscosity poly (lactic acid) for electromagnetic interference shielding
Pawar et al. Dual functionality of hierarchical hybrid networks of multiwall carbon nanotubes anchored magnetite particles in soft polymer nanocomposites: Simultaneous enhancement in charge storage and microwave absorption
Sushmita et al. The journey of polycarbonate-based composites towards suppressing electromagnetic radiation
Saini Historical review of advanced materials for electromagnetic interference (EMI) shielding: Conjugated polymers, carbon nanotubes, graphene based composites
Si et al. Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding
Kausar Hybrid polymeric nanocomposites with EMI shielding applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517797

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2554802

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007129481

Country of ref document: US

Ref document number: 10587950

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580004118.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005709920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067017790

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005709920

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017790

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10587950

Country of ref document: US