WO2005074015A1 - Method and device for supporting plate member, stage device, exposure device, and method of manufacturing device - Google Patents

Method and device for supporting plate member, stage device, exposure device, and method of manufacturing device Download PDF

Info

Publication number
WO2005074015A1
WO2005074015A1 PCT/JP2005/001224 JP2005001224W WO2005074015A1 WO 2005074015 A1 WO2005074015 A1 WO 2005074015A1 JP 2005001224 W JP2005001224 W JP 2005001224W WO 2005074015 A1 WO2005074015 A1 WO 2005074015A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate member
supporting
stage
area
region
Prior art date
Application number
PCT/JP2005/001224
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Ono
Kenichi Ashida
Koue Mukaide
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005517518A priority Critical patent/JPWO2005074015A1/en
Publication of WO2005074015A1 publication Critical patent/WO2005074015A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus

Definitions

  • Plate member support method plate member support device, stage device, exposure device, and device manufacturing method
  • the present invention relates to a technique relating to an exposure apparatus used in a lithographic process for manufacturing a highly integrated semiconductor circuit element, and particularly to an apparatus for supporting a plate member used for various measurements.
  • the present application Pama, January 29, 2004 ⁇ Patent application No. 2004-021456 filed in the present application [The priority is claimed here, the content of which is incorporated herein.
  • Devices such as semiconductor elements, liquid crystal display elements, and thin-film magnetic heads are manufactured by repeating a film forming process, an exposure process, an etching process, and the like a plurality of times.
  • an exposure apparatus that transfers a circuit pattern formed on a photomask onto a photosensitive substrate is used, and a substrate stage on which a substrate is placed and a two-dimensionally moving substrate stage and a mask having the circuit pattern are placed.
  • a mask stage that is placed and two-dimensionally moved, and transfers a circuit pattern formed on the mask to the substrate via the projection optical system while sequentially moving the mask stage and the substrate stage.
  • the substrate When performing the exposure processing, the substrate is accurately aligned with the circuit pattern formed on the mask, or the surface of the substrate (exposed surface) is leveled with respect to the imaging surface of the circuit pattern. Or need to ring.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-338868
  • the above-mentioned plate members and the like are required to have high flatness with the miniaturization of circuit patterns.
  • a plate member having high flatness is used. That is, the plate member is mounted on a stage such as a substrate stage. When being fixed on the seat, the plate member is deformed by the influence of the surface accuracy of the pedestal, and the surface accuracy is deteriorated.
  • a fastening means such as a screw
  • the plate member is deformed by the fastening force, thereby deteriorating the surface accuracy.
  • a difference in thermal expansion between the plate member and the pedestal may deteriorate the surface accuracy of the plate member.
  • An object of the present invention is to provide a supporting method, a supporting device, and the like that can suppress deterioration. Means for solving the problem
  • the first invention is a method for supporting a plate member (1) in which an area (AR) having a predetermined surface accuracy is formed, wherein only one end (la) of the plate member (1) is supported.
  • the plate member on which the region having the predetermined surface accuracy is formed is cantilevered, so that the contact area with the member supporting the plate member is reduced, and the plate member is fixed to the support member. Deformation can be suppressed.
  • the deformation generated at one end is a predetermined amount. Since it is difficult to transmit to the area having the surface accuracy, the surface accuracy of the plate member can be further maintained.
  • a slit (7) for separating an area (AR) having a predetermined surface accuracy from one end (la) can be used as the buffer section (6).
  • an elastic hinge (8) connecting the region (AR) and the one end (la) can be used.
  • the method includes the step of interposing a region (21a) between the area (AR) and the fixed area (21a) in the plate member (21).
  • a buffer (26) for suppressing the transmission of deformation from the fixed area is provided.
  • a slit (27) for separating the area (AR) having a predetermined surface accuracy from the fixed area (2 la) can be used.
  • an elastic hinge (28) for connecting the area (AR) and the fixed area (21a) can be used.
  • a member (2, 22) having a surface (2b, 22b) opposed to the fixed region (la, 21a) of the plate member (1, 21) via a narrow gap (CL1, CL2) is arranged.
  • the vibration of the plate member can be attenuated by the squeeze effect generated between the fixed area and the facing surface, so that various measurements using the plate member can be performed with high precision.
  • a second invention provides a plate member support device (10) including a plate member (1) in which an area (AR) having a predetermined surface accuracy is formed, and a pedestal (2) for supporting the plate member.
  • a plate member support device 10 including a plate member (1) in which an area (AR) having a predetermined surface accuracy is formed, and a pedestal (2) for supporting the plate member.
  • the plate member on which the region having the predetermined surface accuracy is formed is cantilevered, so that the contact area with the pedestal is reduced, and deformation of the plate member caused by fixing to the pedestal is suppressed. Can be.
  • the deformation generated at one end is a predetermined value. Since it is difficult to transmit to the area having the surface accuracy, the surface accuracy of the plate member can be further maintained.
  • a slit (7) for separating an area (AR) having a predetermined surface accuracy from one end (la) can be used as the buffer section (6).
  • an elastic hinge (8) connecting the region (AR) and the one end (la) can be used.
  • a plate member supporting device (20) including a plate member (21) in which an area (AR) having a predetermined surface accuracy is formed, and a pedestal (22) supporting the plate member is provided.
  • a buffer portion (26) for suppressing the transmission of deformation from the fixed region is provided between the region and the fixed region (21a) of the plate member. According to the present invention, it is difficult for the deformation generated in the fixed region to be transmitted to the region having the predetermined surface accuracy, so that the surface accuracy of the plate member can be easily maintained.
  • a slit (27) for separating the area (AR) having a predetermined surface accuracy from the fixed area (2 la) can be used.
  • the area (AR) and the fixed area An elastic hinge (28) for connecting with (21a) can be used.
  • the plate members (1, 21) are formed of ceramics or glass, deformation of the plate members due to thermal deformation can be suppressed.
  • the third invention is directed to a stage device (RST, WST) having a movable member (RS, XYS) movable on a mounting surface (RH, WH) with a plate (R, W) mounted thereon.
  • the plate member supporting device (10, 20) using the method of the first invention or the plate member supporting device (10, 20) of the second invention is provided on the moving member.
  • the stage device since the stage device is provided with the plate member having the predetermined surface accuracy, it can be used as a reference for various measurements of the stage device.
  • the plate-like body (R, W) and the high flatness area (AR) of the plate member (BFP, AIS, WFP) supported by the plate member support device (10, 20) are at the same height.
  • the plate member can be used as a reference for measurement of the plate-like body.
  • a fourth invention has a mask stage (RST) holding a mask (R) and a substrate stage (WST) holding a substrate (W), and a pattern (PA) formed on the mask
  • the stage device (WST, RST) of the third invention is used for at least one of the mask stage and the substrate stage. According to the present invention, measurement of a mask or a substrate can be performed with high accuracy.
  • the exposure apparatus (EX) of the fourth invention is used in the lithographic process. According to the present invention, a device having a fine pattern can be manufactured.
  • a sixth invention is an exposure apparatus for a display element for forming a predetermined pattern on a substrate mounted on a substrate stage, wherein an area (AR) having a predetermined surface accuracy is formed on the substrate stage.
  • a plate member (1) and a pedestal (2) for supporting the plate member (1) are provided, and the plate member (1) is supported by fixing only one end (la) thereof to the pedestal (2). did.
  • a seventh invention is an exposure apparatus for a display element for transferring a pattern formed on a mask mounted on a mask stage onto a substrate mounted on a substrate stage, wherein the mask stage and the substrate At least one of the stages is provided with a plate member (1) on which an area (AR) having a predetermined surface accuracy is formed and a pedestal (2) for supporting the plate member (1), and the plate member (1) is attached to the stage. Only one end (la) is fixed to the pedestal (2) and supported.
  • a first aspect of the present invention in a method for supporting a plate member on which a region having a predetermined surface accuracy is formed, only one end of the plate member is supported.
  • the plate member on which the region having the predetermined surface accuracy is formed is cantilevered, the contact area with the member supporting the plate member is reduced, and the plate member is fixed to the support member. S can suppress deformation.
  • the surface accuracy of the plate member is maintained, and various measurements and the like using the plate member can be performed with high accuracy.
  • a buffer for suppressing the transmission of the deformation of the fixed area force is provided between the area and the fixed area of the plate member. It was provided. According to the present invention, since the deformation generated in the fixed region is less likely to be transmitted to the region having the predetermined surface accuracy, the force S can easily maintain the surface accuracy of the plate member. Thereby, various measurements using the plate member can be performed with high accuracy.
  • a second invention is a plate member supporting device including a plate member in which a region having a predetermined surface accuracy is formed, and a pedestal supporting the plate member, wherein only one end of the plate member is fixed to the pedestal.
  • the plate member having the region having the predetermined surface accuracy is cantilevered, the contact area with the pedestal is reduced, and deformation of the plate member due to being fixed to the pedestal can be suppressed. it can. Thereby, the surface accuracy of the plate member is maintained, and various measurements and the like using the plate member can be performed with high accuracy.
  • a plate member supporting device including a plate member having a region having predetermined surface accuracy and a pedestal for supporting the plate member, a region between the region and the region to be fixed in the plate member, A buffer is provided to suppress the transmission of the deformation. According to the invention Then, it is difficult for the deformation generated in the fixed region to be transmitted to the region having the predetermined surface accuracy, so that the surface accuracy of the plate member can be easily maintained. Thereby, various measurements using the plate member can be performed with high accuracy.
  • a third invention is a stage device having a movable member on which a plate-shaped body can be mounted and movable, on a mounting surface, wherein the plate member supporting device using the method of the first invention on the movable member, Alternatively, a plate member supporting device according to the second invention is provided.
  • the stage device since the stage device is provided with the plate member having the predetermined surface accuracy, it can be used as a standard for various measurements of the stage device. Thereby, the force S for improving the positioning accuracy and the like of the stage device can be obtained.
  • a fourth invention is an exposure apparatus that has a mask stage for holding a mask and a substrate stage for holding a substrate, and that exposes a pattern formed on the mask to the substrate.
  • the stage device of the third invention is used. According to the present invention, measurement of a mask or a substrate can be performed with high accuracy. As a result, the alignment between the mask and the substrate can be performed with high accuracy.
  • the exposure apparatus according to the fourth aspect is used in the lithographic process.
  • a device having a fine pattern can be manufactured. As a result, it is possible to increase the capacity of the semiconductor memory and increase the speed and integration of the CPU processor.
  • the exposure apparatus for a display element it is possible to measure a substrate with high accuracy.
  • the exposure apparatus for a display element it is possible to measure a mask or a substrate with high accuracy.
  • FIG. 1A is a plan view showing a first embodiment of a plate member supporting device.
  • FIG. 1B is a side view showing the first embodiment of the plate member supporting device.
  • FIG. 3A is a plan view showing a form in which an elastic hinge is provided on a plate member.
  • FIG. 3B is a side view showing an embodiment in which an elastic hinge is provided on a plate member.
  • FIG. 4A is a plan view showing a second embodiment of the plate member supporting device.
  • FIG. 4B is a sectional view showing a second embodiment of the plate member supporting device.
  • FIG. 5A is a view showing a modification of the plate member supporting device.
  • FIG. 5B is a view showing a modification of the plate member supporting device.
  • FIG. 6 A schematic diagram showing an exposure apparatus
  • FIG. 7 Diagrams showing various reference plates arranged on a wafer stage
  • FIG. 8 is a flowchart showing an example of a semiconductor device manufacturing process.
  • FIG. 1A and 1B are diagrams showing a plate member supporting device 10, FIG. 1A is a plan view, and FIG. 1B is a side view.
  • the plate member supporting device 10 includes a plate member 1 on which an area AR having a predetermined surface accuracy is formed, and a pedestal 2 on which one end of the plate member 1 is supported. And the so-called cantilevered support.
  • the pedestal 2 supporting the plate member 1 is also fastened and supported on the table 3 by fastening members 5 such as bolts.
  • the plate member 1 is a plate-like member formed of low thermal expansion ceramics or glass, and includes one end (fixed area) la and a central part lc and a tip part lb.
  • the region AR formed on the upper surface of the central portion lc has, for example, a flatness on the order of nanometers. Since the plate member 1 is made of a material with low thermal expansion, the accuracy of area AR due to thermal deformation is poor. Can be suppressed.
  • the pedestal (member) 2 is a plate-like member formed of a metal, a ceramic material, or the like, and has, on its upper surface, a joining portion 2a in contact with the plate member 1, a groove 2c dug down from the joining portion 2a, and a joining portion.
  • An opposing portion (opposing surface) 2b formed slightly lower than the portion 2a is formed.
  • the plate member 1 on which the region AR having high surface accuracy is formed is cantilevered on the pedestal 2, and the surface of the region AR generated by fastening the plate member 1 to the pedestal 2 Accuracy can be prevented from deteriorating.
  • the plate member 1 is supported on the pedestal 2 by a so-called double-sided support, or when substantially the entire surface of the plate member 1 is supported (closely attached) on the pedestal 2, the plate member 1 is deformed along the upper surface of the pedestal 2. Because it will do. That is, the area AR of the plate member 1 is affected by the surface accuracy of the upper surface of the pedestal 2. In order to avoid such inconvenience, it is necessary to form the upper surface of the pedestal 2 with high surface accuracy.
  • the plate member 1 By supporting the plate member 1 on the pedestal 2 in a cantilevered manner as in the plate member supporting device 10 of the present embodiment, the deformation of the plate member 1 along the upper surface of the pedestal 2 is reduced. Therefore, the surface accuracy of the area AR of the plate member 1 can be maintained.
  • a gap CL1 of about 110 ⁇ m is formed between the distal end portion lb of the plate member 1 and the facing portion 2b of the pedestal 2, when the plate member 1 is vibrated in the vertical direction, in addition, this vibration can be suppressed by the squeeze effect generated in the gap CL1.
  • the squeeze effect is defined as the fluid (air) existing between the two surfaces (gap CL1) when the relative distance between the two surfaces (tip lb, opposing portion 2b) fluctuates periodically.
  • the effect is that the relative distance between the two surfaces fluctuates due to the kinematic viscosity of the surface.
  • the gap CL1 is preferably set to the above-described level. As described above, the vibration of the plate member 1 is suppressed by the squeeze effect generated in the gap CL1, and the surface accuracy of the area AR of the plate member 1 can be dynamically maintained.
  • a buffering section for suppressing the distortion of the one end la caused by the axial force or the like of the fastening member 4 from being transmitted to the area AR. 6 may be provided.
  • FIG. 2 is a diagram showing a configuration in which a slit portion 7 is provided in the configuration of FIGS. 1A and 1B
  • FIGS. 3A and 3B are diagrams showing a configuration in which an elastic hinge 8 is provided in the configuration of FIGS. 1A and 1B.
  • the slit section 7 is provided as the buffer section 6, the distortion generated at one end la is transmitted so as to be interrupted by the slit section 7 or to bypass the slit section 7. Therefore, the influence on the area AR is reduced.
  • the elastic hinge 8 is provided, the distortion generated at the one end la is released (the elastic hinge 8 is deformed) in the elastic hinge 8 having low rigidity, so that the influence on the area AR is reduced.
  • the provision of the buffer portion 6 between the one end la of the plate member 1 and the region AR having high surface accuracy suppresses the influence of the axial force of the fastening member 4 and the like, and furthermore, the region of the plate member 1 Area The surface accuracy of AR can be maintained.
  • FIG. 4A and 4B are views showing the plate member supporting device 20, FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view along AA in FIG. 4A. Note that the same members as those of the plate member supporting device 10 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the plate member supporting device 20 is composed of a plate member 21 in which an area AR having a predetermined surface accuracy is formed, and a pedestal 22 on which the plate member 21 is supported. Is fastened and supported by a fastening member 4 such as a bolt.
  • the pedestal 22 supporting the plate member 21 is also fastened and supported on the table 3 by the fastening members 5 such as bolts on the three feet 22d provided on the outer periphery of the pedestal 22. In FIGS. 4A and 4B, two bolts are used for each fastening point.
  • the plate member 21 is a flat plate-shaped member formed of low thermal expansion ceramic or glass, and has a central portion 21c where an area AR having a predetermined surface accuracy is formed, and a central hole 21c formed by a slit hole. Opening and surrounding a frame-shaped outer part (fixed area) 21a, center part 21c and outer part It is configured with three elastic hinges 28 connecting the 21a and the force.
  • the area AR formed on the upper surface of the central portion 21c is formed, for example, with a flatness of nanometer order. Since the plate member 21 is formed of a material having low thermal expansion, it is possible to suppress the deterioration of the accuracy of the area AR due to thermal deformation.
  • the pedestal (member) 22 is a plate-shaped member formed of a metal, a ceramic material, or the like, and has on its upper surface an opposing portion 22b (opposing surface) opposing the central portion 21c of the plate member 21, and an opposing portion 22b.
  • An outer peripheral portion 22a formed so as to surround b and also has a lower opposed portion 22b, and three protruding portions 22c formed on the outer peripheral portion 22a and in contact with the outer peripheral portion 21a of the plate member 21.
  • the above-described three feet 22d are provided via elastic hinges 29.
  • the lower surface of the foot portion 22d (the contact surface with the table 3) is formed slightly below the lower surface of the pedestal 22 (table 3 side).
  • the foot 22 d of the pedestal 22 and the upper surface of the table 3 come into close contact with each other, and about 1 to 30 A gap CL3 of about ⁇ m is formed.
  • the plate member 21 As described above, by supporting the plate member 21 on which the area AR having high surface accuracy is formed on the pedestal 22 via the slit hole 27 and the elastic hinge 28, the plate member 21 is fastened to the pedestal 22.
  • the resulting area AR can be prevented from deteriorating in surface accuracy. This is because between the outer peripheral portion 21a to be fastened and supported and the central portion 21c in which the region AR is formed, a buffer portion for suppressing the distortion of the outer peripheral portion 21a caused by the axial force or the like of the fastening member 4 from being transmitted to the region AR.
  • the slit hole 27 and the elastic hinge 28 as 26 are provided.
  • the transmission of the distortion generated in the outer peripheral portion 21 a by the axial force of the fastening member 4 is cut off by the slit hole 27. Furthermore, since the distortion transmitted so as to bypass the slit hole 7 is released to the elastic hinge 28 having low rigidity (the elastic hinge 28 is deformed), the influence on the area AR is reduced. In order to obtain such an effect, the elastic hinge 28 is separated from the fastening member 4 as much as possible. It is desirable to provide them at spaced positions. The reason for this is that the distortion transmission distance from the outer peripheral portion 21a to the area AR is increased to reduce the influence on the area AR.
  • the pedestal 22 itself is also fastened and supported on the table 3 by the fastening member 5, but since the elastic hinge 29 is provided between the foot 22d and the outer peripheral portion 22a, the distortion generated in the foot 22d is reduced by the elastic hinge. Thus, the transmission to the outer peripheral portion 22a is suppressed.
  • a gap CL2 of about 110 to 30 xm is formed between the central portion 21c of the plate member 21 and the facing portion 22b of the pedestal 2, the vertical vibration generated in the plate member 21 is reduced. Vibration can be controlled by the squeeze effect of CL2. Further, a gap CL3 of about 110 / im is formed between the upper surface of the table 3 and the lower surface of the pedestal 22, so that the upward and downward vibration generated in the pedestal 22 is controlled by the squeezing effect of the gap CL3. Can be shaken.
  • the vibration of the plate member 21 is suppressed by the squeeze effect generated in the gaps CL2 and CL3, and the surface accuracy of the area AR of the plate member 21 is dynamically maintained. it can.
  • FIG. 5A and 5B are views showing a modification of the plate member supporting device 20.
  • FIG. The same members as those of the plate member supporting device 20 in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the plate member supporting device 20 shown in FIG. 5A changes the fastening position between the plate member 21 and the pedestal 22. That is, the positions of the three fastening members 4 are substantially evenly arranged on the outer peripheral portion 21a of the plate member 21. Then, the positions of the three elastic hinges 28 are also substantially equally arranged so as to be separated from the three fastening members 4 respectively. For this reason, in terms of shape, the force S at which the elements are arranged in a well-balanced manner, and the outer peripheral portion 21a of the plate member 21 is slightly over-restricted to the central portion 21c. That is, the three fastening members 4 bind the same component in the same horizontal direction. However, the plate member supporting device 20 can also provide a The surface accuracy of the area AR of the material 21 can be sufficiently maintained.
  • the plate member supporting device 20 shown in FIG. 5B is one in which an outer peripheral portion 21a and a central portion 21c of a plate member 21 are connected by two elastic hinges 28. For this reason, the outer peripheral portion 21a of the plate member 21 does not become excessively restrained with respect to the central portion 21c. However, one of the elastic hinges 28 is disposed close to the fastening member 4. Further, since the center portion 21c is supported by the two elastic hinges 28, the support is somewhat unstable. However, even with such a plate member supporting device 20, the surface accuracy of the area AR of the plate member 21 can be sufficiently maintained.
  • the plate members 1 and 21 may be fixed directly to the table 3.
  • predetermined gaps CL1 and CL2 may be formed between the plate members 1 and 21 and a part of the upper surface of the tape holder 3, and the damping action by the squeeze effect may be obtained in these gaps CL1 and CL2. .
  • FIG. 6 is a conceptual diagram showing an exposure apparatus EX of the present invention.
  • the exposure apparatus EX irradiates the reticle (plate, mask) R with the exposure light EL, and relatively synchronously moves the reticle R and the eno, (plate, substrate) W in the one-dimensional direction.
  • the exposure apparatus EX which is a so-called “scanning” stepper, is a step-and-scan type scanning exposure apparatus that transfers the circuit pattern PA formed on the reticle R onto the wafer W via the projection optical system PL.
  • the exposure light source 101 the illumination optical system IL that illuminates the reticle R with uniform illuminance with the exposure light EL based on the light beam emitted from the light source 101, the reticle stage RST that supports the reticle R, and the reticle R
  • the projection optical system PL that irradiates the wafer W with the exposure light EL emitted from the force, the wafer stage WST that supports the wafer W, the focal position detection system sensor AF, and various alignment optical system sensors RA, WA1, WA2, etc. Is provided.
  • the direction coincident with the optical axis AX of the projection optical system PL is defined as the Z-axis direction
  • the synchronous movement direction (running direction) between the reticle R and the wafer W is defined as X in a plane perpendicular to the Z-axis direction
  • the direction perpendicular to the axial direction, the Z-axis direction, and the X-axis direction (non-running direction) is the Y-axis direction.
  • Change The directions around the X axis, the Y axis, and the Z axis are the ⁇ ⁇ , ⁇ ⁇ , and ⁇ ⁇ directions, respectively.
  • vacuum ultraviolet rays having a wavelength of about 120 nm to about 190 nm, for example, an ArF excimer laser (wavelength: 193 nm), a fluorine (F) laser (157 nm), a krypton (Kr) laser (1
  • an ArF excimer laser beam is used.
  • the light source 101 is also provided with a light source control device (not shown).
  • the light source control device responds to an instruction from the control device CONT to control the oscillation center wavelength and the spectral half-width of the emitted exposure light EL. Control, trigger control of pulse oscillation, etc.
  • the illumination optical system IL includes optical components such as a relay lens system, an optical path bending mirror, and a condenser lens system arranged in a predetermined positional relationship within the housing.
  • the laser beam emitted from the light source 101 enters the illumination optical system IL, and the illumination beam (exposure light) EL whose cross-sectional shape of the laser beam is shaped and the illuminance distribution is substantially uniform is obtained, and the reticle stage RST The circuit pattern area of the reticle R supported by the reticle is irradiated with a substantially uniform illuminance distribution.
  • the wavelength of the exposure light EL is substantially equal to the wavelength of the light source 101.
  • Reticle stage (stage device, mask stage) RST scans reticle R with reticle holder (placement surface) RH that holds reticle R by suction using a vacuum suction method or a method using an electrostatic chuck or an electromagnet.
  • a stage (moving member) RS that moves by a predetermined stroke in the direction, and a reticle stage driving unit RSTD such as a linear motor that moves these stages.
  • the stage RS has a rectangular opening, and the reticle R is held by a reticle holder RH provided around the opening by vacuum suction or the like.
  • a movable mirror 110 extending in the Y-axis direction and a movable mirror (not shown) extending in the X-axis direction are provided on the stage RS.
  • the movable mirror 110 is irradiated from the laser interferometer 121 via the measuring beam power S mirror 122.
  • the reflected light from the movable mirror 110 is received by a detector in the laser interferometer 121, and the position of the reticle R in the X-axis direction is detected based on the result of the reception.
  • a movable mirror extending in the X-axis direction is also irradiated with a measurement beam from a laser interferometer (not shown), and the position of the reticle R in the Y-axis direction is detected based on the reflected light.
  • the detection result of the laser interferometer 121 etc. is output to the controller CONT. It is.
  • the projection optical system PL is formed by sealing a plurality of projection lens systems such as a lens made of a fluoride crystal such as fluorite and lithium fluoride and a reflecting mirror with a projection system housing, and directly below the reticle stage RST. Is provided.
  • a reduction system that reduces the exposure light EL emitted through the reticle R at a predetermined projection magnification (for example, 1Z4) is used.
  • the reticle R is irradiated with illumination light (ultraviolet light) from the illumination optical system IL, a portion of the pattern area formed on the reticle R from the portion illuminated by the ultraviolet light is irradiated.
  • the imaging light flux enters the projection optical system PU, and a partial inverted image of the circuit pattern PA is elongated in the Y-axis direction at the center of the field of view on the image plane side of the projection optical system PL for each pulse irradiation of the ultraviolet pulse light.
  • the image is limited to a slit shape or a rectangular shape (polygon).
  • the projected partial inverted image of the circuit pattern PA is reduced and transferred to one of the plurality of shot areas on the wafer W arranged on the image plane of the projection optical system PL.
  • Wafer stage (stage device, substrate stage) WST is a XY stage (moving member) XYS, which can move within a two-dimensional plane (XY plane) by a wafer stage driving unit WSTD equipped with a linear motor.
  • Z ⁇ stage ZS provided on stage XYS and micro-rotatable in and around the Z-axis by wafer stage driver WSTD, and Z ⁇ stage ZS provided on Z ⁇ stage ZS for vacuum chucking of wafer W ⁇ electrostatic chuck It has a wafer holder (placement surface) WH that holds by suction in a system.
  • the XY stage XYS has a structure in which a pair of blocks that can move in directions perpendicular to each other are stacked, and can move in the X-axis direction and the Y-axis direction on the equipment base based on the drive of the wafer stage drive unit WSTD.
  • the wafer stage WST is provided so as to be movable also in the direction of inclination with respect to the optical axis of the projection optical system PL, so that when the wafer W is supported, position adjustment including leveling adjustment of the wafer W is enabled. I have.
  • a movable mirror 111 extending in the Y-axis direction and a movable mirror 112 (see FIG. 7) extending in the X-axis direction are provided on wafer stage WST.
  • the movable mirror 111 is irradiated with a measurement beam from a laser interferometer 123 via a mirror 124. Then, the reflected light from the moving mirror 111 is received by a detector in the laser interferometer 123, and the X-ray A position in the axial direction is detected.
  • a movable mirror 112 extending in the X-axis direction is irradiated with a measurement beam from a laser interferometer (not shown), and the position of the wafer W in the Y-axis direction is detected based on the reflected light. Then, the detection result of the laser interferometer 123 and the like is output to the control device CONT.
  • FIG. 7 is a diagram showing various reference plates arranged on the wafer stage. As shown in Fig. 7, the positions on the wafer stage WST that do not interfere with the wafer holder WH are used for the baseline measurement of the reference plane plate BFP used to adjust the focus position detection sensor AF and the baseline measurement of the wafer alignment sensor WA1.
  • the reference plane plate AFP used for measurement of the position of the reticle R by the reticle alignment sensor RA of the VRA method and the reference plane plate WFP for alignment measurement used for the baseline measurement of the wafer alignment sensors WA1 and WA2. Provided.
  • These reference plane plates (plate members) BFP, AFP, and WFP are made of a member having a low expansion coefficient such as ceramics or glass, and the upper surface thereof (the surface (area) AR to be detected by various sensors described later) has a predetermined plane. It is formed to have a degree.
  • the surface AR to be inspected (the height and inclination in the Z-axis direction) is set so as to substantially coincide with the surface (exposed surface) of the wafer W (see FIG. 1B).
  • an AIS light receiving system (not shown) capable of receiving light passing through the reference plane plate AFP is embedded in the wafer stage WST.
  • an AIS mark (not shown) is formed on the reference flat plate AFP by chromium evaporation or the like.
  • the reference mark group FM includes VRA marks used in the reticle alignment sensor RA, LSA marks used in the wafer alignment sensors WA1 and WA2, LIA marks, and FIA marks (the positional deviation is not shown). In. These marks are formed at predetermined positions determined in advance based on the VRA marks.
  • the mark force corresponding to the AIS mark and the VRA mark is formed at a predetermined position on the lower surface side of the reticle R by chromium evaporation or the like.
  • the above-mentioned plate member supporting devices 10 and 20 are applied to these reference plane plates BFP, AFP and WFP.
  • the test surface AR of the reference flat plates BFP, AFP, and WFP is installed without distortion due to fastening or the like, and a predetermined flatness is maintained.
  • the focus position detection system (autofocus) sensor AF is a sensor for detecting the position (focal position) of the surface of the wafer W in the Z-axis direction, and is provided on the side of the projection optical system PL. It includes a light transmitting unit 151 and a light receiving unit. The illustration of the light receiving unit is omitted.
  • the non-photosensitive detection light is emitted from the light transmitting unit 151 to the wafer W.
  • a number of slits are provided between the light transmitting unit and the wafer W, and the detection light illuminates a plurality of slit lights, and the images of these slit lights are inclined with respect to the optical axis of the projection optical system PL. Is projected onto the wafer W.
  • the light receiving unit detects the detection light reflected on the wafer W.
  • the wafer stage WST is driven to change the position of the wafer W in the Z-axis direction while moving from the light transmitting part of the focus position detection sensor AF to the wafer W.
  • the detection light is irradiated, and the light receiving unit detects the light generated by the wafer W force by the irradiation of the detection light, and the best imaging plane is detected based on the detection result. Since the focus position detection sensor AF is a multipoint AF sensor, the inclination of the wafer W can also be detected.
  • the exposure apparatus EX includes a reticle alignment system RA of a TTR (Through The Reticule) system and a video reticle alignment system (VRA) as a reticle alignment system.
  • a reticle alignment system RA of a TTR (Through The Reticule) system and a video reticle alignment system (VRA) as a reticle alignment system.
  • an FIA (Field Image Alignment) type wafer alignment system sensor WA1 is provided as an off-axis wafer alignment system.
  • a wafer alignment system sensor WA2 of an LSA (Laser Step Alignment) system or an LIA (Laser Interferometric Alignment) system is provided as a wafer alignment system of a TTL (through the lens) system.
  • the reticle alignment sensor RA is provided between the illumination optical system IL and the reticle stage RST, and uses exposure light EL as alignment light.
  • the VRA type reticle alignment sensor RA includes an optical system 145 that guides the exposure light EL as alignment light to the reference plane plate WFP, and a light receiving unit that receives light generated from the FIA mark by the irradiation of the alignment light. 146.
  • the reticle alignment sensor RA corresponds to the reticle R provided with a predetermined mark. Illuminates the alignment light based on the exposure light EL emitted from the illumination optical system IL, and irradiates the reference mark group FM provided on the reference plane plate WFP on the wafer stage WST via the projection optical system PL . Further, reticle alignment sensor RA receives light (reflected light) generated by reticle R force by irradiation of alignment light and light (reflected light) generated from reference plane plate WFP of wafer stage WST via projection optical system PL. ) Is received and reticle R is aligned.
  • the wafer alignment sensor WA1 of the FIA type or the out-of-axis type is provided on the side of the projection optical system PL, and includes an alignment light source 134 for emitting alignment light having a wavelength different from that of the exposure light EL.
  • the optical system includes optical systems 135 and 137 for guiding the alignment light emitted from the alignment light source 134 to the reference mark group FM, and a light receiving unit 136 for receiving light generated from the FIA mark by the irradiation of the alignment light.
  • the wafer alignment sensor WA1 Prior to performing the alignment process, the wafer alignment sensor WA1 irradiates a mark for AIS and a mark for FIA, and based on the measurement result, determines the relative position between the reticle R and the wafer alignment sensor WA2. Is obtained.
  • An LSA or LIA type wafer alignment sensor WA2 includes an alignment light source 131, optical systems 132 and 138 for causing the alignment light emitted from the alignment light source 131 to enter the projection optical system PL, and alignment light. And a light receiving unit 133 that receives light generated from the reference mark group FM by the irradiation of the light.
  • the LSA alignment system is disclosed in detail in, for example, Japanese Patent Application Laid-Open No. 60-130742. Further, the alignment system of the LIA system is disclosed in detail in, for example, JP-A-61-215905.
  • the LSA mark and the LIA mark formed on the reference mark group FM are irradiated, and the position measurement reference of the wafer W is obtained based on the measurement result.
  • a preparation operation is performed prior to the exposure operation under the control of the controller CONT.
  • multiple slit lights are sent from the focus position detection sensor AF to the reference plane plate BFP.
  • offset adjustment oil adjustment
  • the reticle alignment sensor RA measures the reference flat plate WFP and performs reticle alignment.
  • the wafer alignment sensor WA1 measures the reference plane plate AFP, and the baseline measurement of the alignment sensor is performed.
  • the reference flat plate WFP is measured by the wafer alignment sensors WA1 and WA2, and fine alignment of the wafer W (enhanced Grono no alignment (EGA), etc.) is performed.
  • ESA enhanced Grono no alignment
  • the control device CONT monitors the measurement values of the X-axis laser interferometer 123 and the Y-axis laser interferometer on the wafer W side based on the alignment result, and performs the first shot of the wafer W (first time).
  • the wafer stage drive WSTD is commanded to move the wafer stage WST to the acceleration start position (running start position) for exposure of the (th shot area).
  • a plurality of slit lights are projected from the focus position detection system sensor AF to the wafer W, and the Z stage ZS is driven, so that the circuit pattern PA of the reticle R is formed.
  • the work of adjusting the exposure surface of the wafer W to the image plane (focusing) is performed.
  • the controller CONT instructs the reticle stage driving unit RSTD and the wafer stage driving unit WSTD to start scanning in the X-axis direction with the reticle stage RST and the wafer stage WST (XY stage XYS).
  • the exposure light EL irradiates the pattern area of the reticle R, and scanning exposure starts.
  • the controller CONT CONT
  • the wafer stage WST moves stepwise in the X and Y axis directions, and moves to the acceleration start position for exposure in the second shot area. That is, an inter-shot stepping operation is performed.
  • the running exposure of the shot area of the wafer W and the stepping operation for the exposure of the next shot area are repeatedly performed, and the circuit pattern ⁇ of the reticle R is present in all the exposure target shot areas on the wafer W.
  • the images are sequentially transferred.
  • the various sensors (AF, RA, WAl, WA2) described above apply the reference planes BFP, AFP, WFP to each of the test surface AR or the test surface AR.
  • the various marks formed are measured.
  • the surface AR to be inspected of the reference plane plates BFP, AFP, and WFP maintains high flatness, so that the surface AR to be inspected or various marks formed on the surface AR can be measured with high accuracy. S can do it.
  • the vibration of the reference plane plates BFP, AFP, and WFP caused by the movement of the wafer stage WST is also damped by the squeeze effect. Can be measured.
  • the alignment of the reticle R and the wafer W and the leveling of the wafer W are performed with high precision, so that the fine circuit pattern PA can be exposed on the wafer W.
  • the plate members to which the plate member supporting devices 10, 20 are applied include the reference plane plates BFP, AFP, and WFP.
  • the present invention may be applied to a member for measuring an illuminance amount and illuminance unevenness arranged on a wafer stage.
  • the force S described in the case where the plate members BFP, AFP, and WFP to which the plate member supporting devices 10 and 20 are applied is placed on the wafer stage WST, for example, on the reticle stage RST May be arranged.
  • An exposure apparatus to which the present invention is applied uses a step-and-repeat type exposure apparatus that exposes a pattern of a mask while keeping the mask and the substrate stationary and sequentially moves the substrate in steps. Is also good.
  • a proximity exposure apparatus that exposes a mask pattern by bringing a mask into close contact with a substrate without using a projection optical system may be used.
  • the application of the exposure apparatus is not limited to an exposure apparatus for manufacturing semiconductor devices.
  • an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern to a square glass plate and a thin film magnetic head are manufactured. It can be widely applied to an exposure apparatus for performing the above.
  • the present invention appropriately takes necessary liquid countermeasures also for an immersion exposure apparatus that forms a predetermined pattern on a substrate via a liquid supplied between a projection optical system and a substrate (wafer). Is applicable.
  • the structure and exposure operation of the immersion exposure apparatus are disclosed, for example, in WO 99/49504, JP-A-6-124873, and JP-A-10-303114.
  • national legislation in the designated country (or selected elected country) specified in this international application the disclosures in the above publications and corresponding US patents are incorporated herein by reference.
  • the present invention is also applicable to a twin-stage type exposure apparatus.
  • the structure and exposure operation of a twin-stage type exposure apparatus are disclosed in, for example, JP-A-10-163099 and JP-A-10-214783, and JP-T-2000-505958, which are disclosed in US Pat. No. 6,208,407. I have. To the extent permitted by national legislation in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents shall be incorporated by reference into the description of the wood specification.
  • an exposure stage capable of holding and moving a substrate to be processed, such as a wafer, and a measurement stage having various measurement members and sensors.
  • the present invention can also be applied to an exposure apparatus having: To the extent permitted by national law in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are hereby incorporated by reference.
  • the light source of the exposure apparatus to which the present invention is applied includes not only a KrF excimer laser (248 nm), an ArF excimer laser (193 nm), an F2 laser (157 nm), but also g-line (436 nm) and i-line. (365 nm) or the like can be used.
  • the magnification of the projection optical system is not limited to the reduction system, but may be the same magnification or magnification system, or may be shifted.
  • the stage may be a type that moves along a guide or a guideless type that does not have a guide.
  • a planar motor is used as the stage driving device, one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is connected to the stage moving surface ( Base).
  • the reaction force generated by the movement of the wafer stage is mechanically controlled by using a frame member as described in JP-A-8-166475 and US Pat. No. 5,528,118 corresponding thereto. You may escape to the floor (earth). To the extent permitted by national law of the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are incorporated by reference into this specification.
  • the reaction force generated by the movement of the reticle stage can be measured mechanically by using a frame member as described in JP-A-8-330224 and the corresponding US Patent 5,874,820. You may escape to the floor (ground). To the extent permitted by national law in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are hereby incorporated by reference.
  • the exposure apparatus to which the present invention is applied controls various subsystems including the respective constituent elements recited in the claims of the present application while maintaining predetermined mechanical accuracy, electrical accuracy, and optical accuracy. So, it is manufactured by assembling. To ensure these various precisions, before and after this assembly, adjustments to achieve optical precision for various optical systems, adjustments to achieve mechanical precision for various mechanical systems, and adjustments to achieve mechanical precision, Adjustments are made to achieve electrical accuracy for various electrical systems.
  • the assembly process from the various subsystems to the exposure apparatus involves mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping between the various subsystems. Connections are included. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure equipment is completed, comprehensive adjustments are made to ensure the various precisions of the entire exposure equipment. It is desirable that the exposure apparatus be manufactured in a tallied room where the temperature, cleanliness, etc. are controlled.
  • a microdevice such as a semiconductor device has a step 201 for designing the function and performance of the microdevice, a step 202 for fabricating a mask (reticle) based on the design step, and a device substrate.
  • Step 203 of manufacturing a certain substrate substrate processing step 204 of exposing a mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, device assembling step (including dicing step, bonding step, package step) 205, inspection ⁇ Manufactured through Step 206 etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A method and a device for supporting a plate member capable of suppressing the deterioration of the surface accuracy of the plate member due to its deformation when the plate member for which high flatness is requested is fixed to a pedestal on a substrate stage. The plate member supporting device (10) comprises the plate member (1) on which an area (AR) having a specified surface accuracy is formed and the pedestal (2) supporting the plate member (1). Only one end part (1a) of the plate member (1) is fixedly supported on the pedestal (2).

Description

明 細 書  Specification
板部材の支持方法、板部材支持装置、ステージ装置、露光装置、及びデ バイスの製造方法  Plate member support method, plate member support device, stage device, exposure device, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、高集積半導体回路素子の製造のためのリソグラフイエ程で用いられる露 光装置、特に各種計測に用いられる板部材を支持する装置に関する技術である。 本願 ίま、 2004年 1月 29日 ίこ出願された特願 2004—021456号【こ対し優先権を主 張し、その内容をここに援用する。  The present invention relates to a technique relating to an exposure apparatus used in a lithographic process for manufacturing a highly integrated semiconductor circuit element, and particularly to an apparatus for supporting a plate member used for various measurements. The present application Pama, January 29, 2004 ίPatent application No. 2004-021456 filed in the present application [The priority is claimed here, the content of which is incorporated herein.
背景技術  Background art
[0002] 半導体素子や液晶表示素子あるいは薄膜磁気ヘッド等のデバイスは、成膜処理工 程、露光処理工程、エッチング処理工程などの各工程を複数回繰り返すことによって 製造される。この露光処理工程では、フォトマスクに形成された回路パターンを感光 性基板上に転写する露光装置が用いられ、基板を載置して 2次元移動する基板ステ ージと回路パターンを有するマスクを載置して 2次元移動するマスクステージとを有し 、マスク上に形成された回路パターンをマスクステージ及び基板ステージを逐次移動 しながら投影光学系を介して基板に転写する。  [0002] Devices such as semiconductor elements, liquid crystal display elements, and thin-film magnetic heads are manufactured by repeating a film forming process, an exposure process, an etching process, and the like a plurality of times. In this exposure processing step, an exposure apparatus that transfers a circuit pattern formed on a photomask onto a photosensitive substrate is used, and a substrate stage on which a substrate is placed and a two-dimensionally moving substrate stage and a mask having the circuit pattern are placed. A mask stage that is placed and two-dimensionally moved, and transfers a circuit pattern formed on the mask to the substrate via the projection optical system while sequentially moving the mask stage and the substrate stage.
そして、露光処理を行う際には、マスクに形成されている回路パターンに対して基 板を精度良く位置合わせしたり、回路パターンの結像面に対して基板の表面(露光 面)をレべリングしたりする必要がある。  When performing the exposure processing, the substrate is accurately aligned with the circuit pattern formed on the mask, or the surface of the substrate (exposed surface) is leveled with respect to the imaging surface of the circuit pattern. Or need to ring.
このため、マスク或いは基板の位置や姿勢等を計測するための基準等となる各種 板部材或いはセンサ類が基板ステージ上等に配置されてレ、る。  For this reason, various plate members or sensors serving as references for measuring the position or orientation of the mask or the substrate are arranged on the substrate stage or the like.
特許文献 1:特開 2001 - 338868号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-338868
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 上述した板部材等は、回路パターンの微細化に伴い、高い平面度を要求されてい る。し力しながら、従来は、高い平面度を有する板部材を用いても、その面精度を維 持することが困難であるという問題がある。すなわち、板部材を基板ステージ等の台 座上に固定する際に、台座の面精度の影響を受け、板部材が変形して面精度を悪 化させてしまう。特に、ネジ等の締結手段を用いた場合には、その締結力により板部 材が変形して面精度を悪化させてしまう。また、板部材と台座との熱膨張差により、板 部材の面精度を悪化させてしまう場合もある。 [0003] The above-mentioned plate members and the like are required to have high flatness with the miniaturization of circuit patterns. Conventionally, there is a problem that it is difficult to maintain the surface accuracy even if a plate member having high flatness is used. That is, the plate member is mounted on a stage such as a substrate stage. When being fixed on the seat, the plate member is deformed by the influence of the surface accuracy of the pedestal, and the surface accuracy is deteriorated. In particular, when a fastening means such as a screw is used, the plate member is deformed by the fastening force, thereby deteriorating the surface accuracy. In addition, a difference in thermal expansion between the plate member and the pedestal may deteriorate the surface accuracy of the plate member.
更に、パネ等の弾性体を介して板部材を固定することにより、上述した問題の解決 を図る技術があるが、基板ステージの高加速化により弾性体が変形し、板部材の位 置決め精度等が悪化し、板部材を用いた計測精度が悪化するという問題もある。  Furthermore, there is a technique for solving the above-mentioned problem by fixing the plate member via an elastic body such as a panel. However, the acceleration of the substrate stage causes the elastic body to be deformed, and the positioning accuracy of the plate member is reduced. However, there is also a problem that the measurement accuracy using the plate member deteriorates.
[0004] 本発明は、上述した事情に鑑みてなされたもので、高い平面度が要求される板部 材を基板ステージ等上の台座に固定する際に、板部材の変形に伴う面精度の悪化 を抑制することができる支持方法及び支持装置等を提供することを目的とする。 課題を解決するための手段  The present invention has been made in view of the above circumstances, and when fixing a plate member requiring high flatness to a pedestal on a substrate stage or the like, the surface accuracy of the plate member due to deformation of the plate member is reduced. An object of the present invention is to provide a supporting method, a supporting device, and the like that can suppress deterioration. Means for solving the problem
[0005] 本発明に係る板部材の支持方法、板部材支持装置、ステージ装置、露光装置、及 びデバイスの製造方法では、上記課題を解決するために以下の手段を採用した。 第 1の発明は、所定の面精度を有する領域 (AR)が形成された板部材(1)を支持 する方法において、板部材(1)の一端部(la)のみを支持するようにした。この発明に よれば、所定の面精度を有する領域が形成された板部材を片持ち支持するので、板 部材を支持する部材との接触面積が小さくなり、支持部材に固定したことによる板部 材の変形を抑えることができる。  [0005] In the method for supporting a plate member, the plate member supporting apparatus, the stage apparatus, the exposure apparatus, and the device manufacturing method according to the present invention, the following means are employed in order to solve the above problems. The first invention is a method for supporting a plate member (1) in which an area (AR) having a predetermined surface accuracy is formed, wherein only one end (la) of the plate member (1) is supported. According to the present invention, the plate member on which the region having the predetermined surface accuracy is formed is cantilevered, so that the contact area with the member supporting the plate member is reduced, and the plate member is fixed to the support member. Deformation can be suppressed.
[0006] また、一端部(la)と領域 (AR)との間に、一端部からの変形の伝達を抑制する緩 衝部(6)を設けるものでは、一端部に発生した変形が所定の面精度を有する領域に 伝わりづらくなるので、更に板部材の面精度を維持することができる。  [0006] Further, in a configuration in which a shock absorber (6) for suppressing the transmission of deformation from one end is provided between the one end (la) and the area (AR), the deformation generated at one end is a predetermined amount. Since it is difficult to transmit to the area having the surface accuracy, the surface accuracy of the plate member can be further maintained.
例えば、緩衝部(6)としては、所定の面精度を有する領域 (AR)と一端部(la)とを 離隔させるスリット(7)を用レ、ることができる。また、領域 (AR)と一端部(la)とを連結 する弾性ヒンジ (8)を用いることができる。  For example, as the buffer section (6), a slit (7) for separating an area (AR) having a predetermined surface accuracy from one end (la) can be used. Also, an elastic hinge (8) connecting the region (AR) and the one end (la) can be used.
[0007] また、所定の面精度を有する領域 (AR)が形成された板部材(21)を支持する方法 において、領域 (AR)と板部材(21)における被固定領域(21a)との間に、被固定領 域からの変形の伝達を抑制する緩衝部(26)を設けるようにした。この発明によれば、 被固定領域に発生した変形が所定の面精度を有する領域に伝わりづらくなるので、 容易に板部材の面精度を維持することができる。 [0007] Further, in the method for supporting a plate member (21) having an area (AR) having a predetermined surface accuracy, the method includes the step of interposing a region (21a) between the area (AR) and the fixed area (21a) in the plate member (21). In addition, a buffer (26) for suppressing the transmission of deformation from the fixed area is provided. According to the present invention, since the deformation generated in the fixed region becomes difficult to be transmitted to the region having the predetermined surface accuracy, The surface accuracy of the plate member can be easily maintained.
例えば、緩衝部(26)としては、所定の面精度を有する領域 (AR)と被固定領域(2 la)とを離隔させるスリット(27)を用いることができる。また、領域 (AR)と被固定領域 (21a)とを連結する弾性ヒンジ(28)を用いることができる。  For example, as the buffer section (26), a slit (27) for separating the area (AR) having a predetermined surface accuracy from the fixed area (2 la) can be used. Further, an elastic hinge (28) for connecting the area (AR) and the fixed area (21a) can be used.
また、板部材(1 , 21)における被固定領域(la, 21a)と狭い隙間(CL1 , CL2)を 介して対向する面(2b, 22b)を有する部材(2, 22)を配置して、板部材の振動を抑 制するものでは、板部材の振動を被固定領域と対向面との間で発生するスクイーズ 効果により減衰させることができるので、板部材を用いた各種計測等を高精度に行う こと力 Sできる。  A member (2, 22) having a surface (2b, 22b) opposed to the fixed region (la, 21a) of the plate member (1, 21) via a narrow gap (CL1, CL2) is arranged. In the case of suppressing the vibration of the plate member, the vibration of the plate member can be attenuated by the squeeze effect generated between the fixed area and the facing surface, so that various measurements using the plate member can be performed with high precision. The ability to do S.
[0008] 第 2の発明は、所定の面精度を有する領域 (AR)が形成された板部材(1)と、板部 材を支持する台座(2)とを備える板部材支持装置(10)において、板部材の一端部 のみを台座に固定して支持するようにした。この発明によれば、所定の面精度を有す る領域が形成された板部材を片持ち支持するので、台座との接触面積が小さくなり、 台座に固定したことによる板部材の変形を抑えることができる。  [0008] A second invention provides a plate member support device (10) including a plate member (1) in which an area (AR) having a predetermined surface accuracy is formed, and a pedestal (2) for supporting the plate member. In the above, only one end of the plate member is fixed to and supported on the pedestal. According to the present invention, the plate member on which the region having the predetermined surface accuracy is formed is cantilevered, so that the contact area with the pedestal is reduced, and deformation of the plate member caused by fixing to the pedestal is suppressed. Can be.
[0009] また、一端部(la)と領域 (AR)との間に、一端部からの変形の伝達を抑制する緩 衝部(6)を設けるものでは、一端部に発生した変形が所定の面精度を有する領域に 伝わりづらくなるので、更に板部材の面精度を維持することができる。  [0009] Further, in a configuration in which a shock absorber (6) for suppressing the transmission of deformation from one end is provided between the one end (la) and the area (AR), the deformation generated at one end is a predetermined value. Since it is difficult to transmit to the area having the surface accuracy, the surface accuracy of the plate member can be further maintained.
例えば、緩衝部(6)としては、所定の面精度を有する領域 (AR)と一端部(la)とを 離隔させるスリット(7)を用いることができる。また、領域 (AR)と一端部(la)とを連結 する弾性ヒンジ(8)を用いることができる。  For example, a slit (7) for separating an area (AR) having a predetermined surface accuracy from one end (la) can be used as the buffer section (6). Further, an elastic hinge (8) connecting the region (AR) and the one end (la) can be used.
[0010] また、所定の面精度を有する領域 (AR)が形成された板部材(21)と、板部材を支 持する台座(22)とを備える板部材支持装置(20)におレ、て、領域と板部材における 被固定領域(21a)との間に、被固定領域からの変形の伝達を抑制する緩衝部(26) を設けるようにした。この発明によれば、被固定領域に発生した変形が所定の面精度 を有する領域に伝わりづらくなるので、容易に板部材の面精度を維持することができ る。  [0010] Further, a plate member supporting device (20) including a plate member (21) in which an area (AR) having a predetermined surface accuracy is formed, and a pedestal (22) supporting the plate member is provided. Thus, between the region and the fixed region (21a) of the plate member, a buffer portion (26) for suppressing the transmission of deformation from the fixed region is provided. According to the present invention, it is difficult for the deformation generated in the fixed region to be transmitted to the region having the predetermined surface accuracy, so that the surface accuracy of the plate member can be easily maintained.
例えば、緩衝部(26)としては、所定の面精度を有する領域 (AR)と被固定領域(2 la)とを離隔させるスリット(27)を用いることができる。また、領域 (AR)と被固定領域 (21a)とを連結する弾性ヒンジ(28)を用いることができる。 For example, as the buffer section (26), a slit (27) for separating the area (AR) having a predetermined surface accuracy from the fixed area (2 la) can be used. Also, the area (AR) and the fixed area An elastic hinge (28) for connecting with (21a) can be used.
また、板部材(1 , 21)における被固定領域(la, 21a)と狭い隙間を介して対向する 対向面(2b, 22b)を台座(2, 22)に設けるものでは、板部材の振動を被固定領域と 対向面との間で発生するスクイーズ効果により減衰させることができるので、板部材を 用いた各種計測等を高精度に行うことができる。  In the case where the opposing surfaces (2b, 22b) facing the fixed areas (la, 21a) of the plate members (1, 21) with a narrow gap are provided on the pedestal (2, 22), the vibration of the plate members is reduced. Since the attenuation can be achieved by the squeeze effect generated between the fixed area and the facing surface, various measurements using the plate member can be performed with high accuracy.
また、板部材(1 , 21)は、セラミックス或いはガラスにより形成されるものでは、熱変 形による板部材の変形を抑制することができる。  Further, when the plate members (1, 21) are formed of ceramics or glass, deformation of the plate members due to thermal deformation can be suppressed.
[0011] 第 3の発明は、戴置面 (RH, WH)に板状体 (R, W)を戴置して移動可能な移動部 材 (RS, XYS)を有するステージ装置 (RST, WST)において、移動部材上に第 1の 発明の方法を用いた板部材支持装置(10, 20)、或いは第 2の発明の板部材支持装 置(10, 20)を備えるようにした。この発明によれば、ステージ装置に、所定の面精度 を有する板部材が設けられるので、ステージ装置の各種計測の基準として用いること ができる。 [0011] The third invention is directed to a stage device (RST, WST) having a movable member (RS, XYS) movable on a mounting surface (RH, WH) with a plate (R, W) mounted thereon. In), the plate member supporting device (10, 20) using the method of the first invention or the plate member supporting device (10, 20) of the second invention is provided on the moving member. According to the present invention, since the stage device is provided with the plate member having the predetermined surface accuracy, it can be used as a reference for various measurements of the stage device.
また、板状体 (R, W)と、板部材支持装置(10, 20)に支持される板部材 (BFP, AI S, WFP)の高平面度領域 (AR)とが、同一高さに配置されるものでは、板部材を板 状体の計測の基準として用いることができる。  In addition, the plate-like body (R, W) and the high flatness area (AR) of the plate member (BFP, AIS, WFP) supported by the plate member support device (10, 20) are at the same height. In the arrangement, the plate member can be used as a reference for measurement of the plate-like body.
[0012] 第 4の発明は、マスク (R)を保持するマスクステージ (RST)と、基板 (W)を保持す る基板ステージ (WST)とを有し、マスクに形成されたパターン (PA)を基板に露光す る露光装置 (EX)において、マスクステージと基板ステージの少なくとも一方に、第 3 の発明のステージ装置 (WST, RST)を用いるようにした。この発明によれば、マスク 或いは基板の計測を高精度に行うことができる。  A fourth invention has a mask stage (RST) holding a mask (R) and a substrate stage (WST) holding a substrate (W), and a pattern (PA) formed on the mask In the exposure apparatus (EX) for exposing the substrate to the substrate, the stage device (WST, RST) of the third invention is used for at least one of the mask stage and the substrate stage. According to the present invention, measurement of a mask or a substrate can be performed with high accuracy.
[0013] 第 5の発明は、リソグラフイエ程を含むデバイスの製造方法において、リソグラフイエ 程において第 4の発明の露光装置 (EX)を用いるようにした。この発明によれば、微 細なパターンを備えるデバイスを製造することができる。  [0013] In a fifth invention, in a device manufacturing method including a lithographic process, the exposure apparatus (EX) of the fourth invention is used in the lithographic process. According to the present invention, a device having a fine pattern can be manufactured.
第 6の発明は、基板ステージに載置された基板に所定のパターンを形成するため の表示素子用の露光装置であって、基板ステージに、所定の面精度を有する領域( AR)が形成された板部材(1)と板部材(1)を支持する台座 (2)とを設け、板部材(1) を、その一端部(la)のみを台座(2)に固定して支持するようにした。 第 7の発明は、マスクステージに載置されたマスクに形成されたパターンを基板ステ 一ジに載置された基板上に転写する表示素子用の露光装置であって、前記マスクス テージと前記基板ステージの少なくとも一方に、所定の面精度を有する領域 (AR)が 形成された板部材(1)と板部材(1 )を支持する台座 (2)とを設け、板部材(1)を、そ の一端部(la)のみを台座(2)に固定して支持するようにした。 A sixth invention is an exposure apparatus for a display element for forming a predetermined pattern on a substrate mounted on a substrate stage, wherein an area (AR) having a predetermined surface accuracy is formed on the substrate stage. A plate member (1) and a pedestal (2) for supporting the plate member (1) are provided, and the plate member (1) is supported by fixing only one end (la) thereof to the pedestal (2). did. A seventh invention is an exposure apparatus for a display element for transferring a pattern formed on a mask mounted on a mask stage onto a substrate mounted on a substrate stage, wherein the mask stage and the substrate At least one of the stages is provided with a plate member (1) on which an area (AR) having a predetermined surface accuracy is formed and a pedestal (2) for supporting the plate member (1), and the plate member (1) is attached to the stage. Only one end (la) is fixed to the pedestal (2) and supported.
発明の効果  The invention's effect
[0014] 本発明によれば以下の効果を得ることができる。  According to the present invention, the following effects can be obtained.
第 1の発明は、所定の面精度を有する領域が形成された板部材を支持する方法に おいて、記板部材の一端部のみを支持するようにした。この発明によれば、所定の面 精度を有する領域が形成された板部材を片持ち支持するので、板部材を支持する 部材との接触面積が小さくなり、支持部材に固定したことによる板部材の変形を抑え ること力 Sできる。これにより、板部材の面精度が維持され、板部材を用いた各種計測 等を高精度に行うことができる。  According to a first aspect of the present invention, in a method for supporting a plate member on which a region having a predetermined surface accuracy is formed, only one end of the plate member is supported. According to the present invention, since the plate member on which the region having the predetermined surface accuracy is formed is cantilevered, the contact area with the member supporting the plate member is reduced, and the plate member is fixed to the support member. S can suppress deformation. Thus, the surface accuracy of the plate member is maintained, and various measurements and the like using the plate member can be performed with high accuracy.
また、所定の面精度を有する領域が形成された板部材を支持する方法において、 該領域と板部材における被固定領域との間に、被固定領域力 の変形の伝達を抑 制する緩衝部を設けるようにした。この発明によれば、被固定領域に発生した変形が 所定の面精度を有する領域に伝わりづらくなるので、容易に板部材の面精度を維持 すること力 Sできる。これにより、板部材を用いた各種計測等を高精度に行うことができ る。  Further, in the method for supporting a plate member having an area having a predetermined surface accuracy, a buffer for suppressing the transmission of the deformation of the fixed area force is provided between the area and the fixed area of the plate member. It was provided. According to the present invention, since the deformation generated in the fixed region is less likely to be transmitted to the region having the predetermined surface accuracy, the force S can easily maintain the surface accuracy of the plate member. Thereby, various measurements using the plate member can be performed with high accuracy.
[0015] 第 2の発明は、所定の面精度を有する領域が形成された板部材と、板部材を支持 する台座とを備える板部材支持装置において、板部材の一端部のみを台座に固定 して支持するようにした。この発明によれば、所定の面精度を有する領域が形成され た板部材を片持ち支持するので、台座との接触面積が小さくなり、台座に固定したこ とによる板部材の変形を抑えることができる。これにより、板部材の面精度が維持され 、板部材を用いた各種計測等を高精度に行うことができる。  [0015] A second invention is a plate member supporting device including a plate member in which a region having a predetermined surface accuracy is formed, and a pedestal supporting the plate member, wherein only one end of the plate member is fixed to the pedestal. To support. According to the present invention, since the plate member having the region having the predetermined surface accuracy is cantilevered, the contact area with the pedestal is reduced, and deformation of the plate member due to being fixed to the pedestal can be suppressed. it can. Thereby, the surface accuracy of the plate member is maintained, and various measurements and the like using the plate member can be performed with high accuracy.
また、所定の面精度を有する領域が形成された板部材と、板部材を支持する台座 とを備える板部材支持装置において、該領域と板部材における被固定領域との間に 、被固定領域からの変形の伝達を抑制する緩衝部を設けるようにした。この発明によ れば、被固定領域に発生した変形が所定の面精度を有する領域に伝わりづらくなる ので、容易に板部材の面精度を維持することができる。これにより、板部材を用いた 各種計測等を高精度に行うことができる。 Further, in a plate member supporting device including a plate member having a region having predetermined surface accuracy and a pedestal for supporting the plate member, a region between the region and the region to be fixed in the plate member, A buffer is provided to suppress the transmission of the deformation. According to the invention Then, it is difficult for the deformation generated in the fixed region to be transmitted to the region having the predetermined surface accuracy, so that the surface accuracy of the plate member can be easily maintained. Thereby, various measurements using the plate member can be performed with high accuracy.
[0016] 第 3の発明は、戴置面に板状体を戴置して移動可能な移動部材を有するステージ 装置において、移動部材上に第 1の発明の方法を用いた板部材支持装置、或いは 第 2の発明の板部材支持装置を備えるようにした。この発明によれば、ステージ装置 に、所定の面精度を有する板部材が設けられるので、ステージ装置の各種計測の基 準として用いることができる。これにより、ステージ装置の位置決め精度等を向上させ ること力 Sできる。  [0016] A third invention is a stage device having a movable member on which a plate-shaped body can be mounted and movable, on a mounting surface, wherein the plate member supporting device using the method of the first invention on the movable member, Alternatively, a plate member supporting device according to the second invention is provided. According to the present invention, since the stage device is provided with the plate member having the predetermined surface accuracy, it can be used as a standard for various measurements of the stage device. Thereby, the force S for improving the positioning accuracy and the like of the stage device can be obtained.
[0017] 第 4の発明は、マスクを保持するマスクステージと、基板を保持する基板ステージと を有し、マスクに形成されたパターンを基板に露光する露光装置において、マスクス テージと基板ステージの少なくとも一方に、第 3の発明のステージ装置を用いるように した。この発明によれば、マスク或いは基板の計測を高精度に行うことができる。これ により、マスクと基板との位置合わせ(ァライメント)を高精度に行うことができる。  [0017] A fourth invention is an exposure apparatus that has a mask stage for holding a mask and a substrate stage for holding a substrate, and that exposes a pattern formed on the mask to the substrate. On the other hand, the stage device of the third invention is used. According to the present invention, measurement of a mask or a substrate can be performed with high accuracy. As a result, the alignment between the mask and the substrate can be performed with high accuracy.
[0018] 第 5の発明は、リソグラフイエ程を含むデバイスの製造方法において、リソグラフイエ 程において第 4の発明の露光装置を用いるようにした。この発明によれば、微細なパ ターンを備えるデバイスを製造することができる。これにより、半導体メモリの大容量化 や CPUプロセッサの高速化 ·高集積化を達成することができる。  [0018] In a fifth aspect, in the device manufacturing method including the lithographic process, the exposure apparatus according to the fourth aspect is used in the lithographic process. According to the present invention, a device having a fine pattern can be manufactured. As a result, it is possible to increase the capacity of the semiconductor memory and increase the speed and integration of the CPU processor.
第 6の発明によれば、表示素子用の露光装置において、基板の計測を高精度に行 うことが可能になる。  According to the sixth aspect, in the exposure apparatus for a display element, it is possible to measure a substrate with high accuracy.
また、第 7の発明によれば、表示素子用の露光装置において、マスクあるいは基板 の計測を高精度に行うことが可能になる。  Further, according to the seventh aspect, in the exposure apparatus for a display element, it is possible to measure a mask or a substrate with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1A]板部材支持装置の第 1実施形態を示す平面図  FIG. 1A is a plan view showing a first embodiment of a plate member supporting device.
[図 1B]板部材支持装置の第 1実施形態を示す側面図  FIG. 1B is a side view showing the first embodiment of the plate member supporting device.
[図 2]板部材にスリット部を設けた図  [Figure 2] Diagram showing slits provided on plate member
[図 3A]板部材に弾性ヒンジを設けた形態を示す平面図  FIG. 3A is a plan view showing a form in which an elastic hinge is provided on a plate member.
[図 3B]板部材に弾性ヒンジを設けた形態を示す側面図 [図 4A]板部材支持装置の第 2実施形態を示す平面図 FIG. 3B is a side view showing an embodiment in which an elastic hinge is provided on a plate member. FIG. 4A is a plan view showing a second embodiment of the plate member supporting device.
[図 4B]板部材支持装置の第 2実施形態を示す断面図  FIG. 4B is a sectional view showing a second embodiment of the plate member supporting device.
[図 5A]板部材支持装置の変形例を示す図  FIG. 5A is a view showing a modification of the plate member supporting device.
[図 5B]板部材支持装置の変形例を示す図  FIG. 5B is a view showing a modification of the plate member supporting device.
[図 6]露光装置を示す模式図  [FIG. 6] A schematic diagram showing an exposure apparatus
[図 7]ウェハステージ上に配置される各種基準板を示す図 [FIG. 7 ] Diagrams showing various reference plates arranged on a wafer stage
[図 8]半導体デバイスの製造工程の一例を示すフローチャート図  FIG. 8 is a flowchart showing an example of a semiconductor device manufacturing process.
符号の説明  Explanation of symbols
[0020] 1 , 21 板部材 la —端部(被固定領域) 2, 22 台座 (部材) 2b, 22b 対向 部(対向面) 6, 26 緩衝部 7 スリット部 8, 28 弾性ヒンジ 10, 20 板部材支 持装置 21a 外周部 (被固定領域) 27 スリット孔 CL1 , CL2 隙間 AR 領域 ,被検面 R レチクル (板状体、マスク) PA 回路パターン (パターン) RH レチク ルホルダ(戴置面) RS ステージ (移動部材) RST レチクルステージ (ステージ装 置、マスクステージ) W ウェハ(板状体、基板) WH ウェハホルダ(戴置面) XY S XYステージ (移動部材) WST ウェハステージ (ステージ装置、基板ステージ) EX 露光装置  [0020] 1, 21 plate member la—end (fixed area) 2, 22 pedestal (member) 2b, 22b facing portion (facing surface) 6, 26 cushioning portion 7 slit portion 8, 28 elastic hinge 10, 20 plate Member support device 21a Outer circumference (fixed area) 27 Slit hole CL1, CL2 Clearance AR area, surface to be inspected R reticle (plate, mask) PA circuit pattern (pattern) RH reticle holder (mounting surface) RS stage (Moving member) RST Reticle stage (stage device, mask stage) W Wafer (plate, substrate) WH Wafer holder (mounting surface) XY S XY stage (moving member) WST Wafer stage (stage device, substrate stage) EX Exposure equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の板部材の支持方法、板部材支持装置の第 1実施形態について図 を参照して説明する。図 1A, Bは板部材支持装置 10を示す図であって、図 1Aは平 面図、図 1Bは側面図である。 Hereinafter, a plate member supporting method and a plate member supporting device according to a first embodiment of the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing a plate member supporting device 10, FIG. 1A is a plan view, and FIG. 1B is a side view.
板部材支持装置 10は、所定の面精度を有する領域 ARが形成された板部材 1と板 部材 1の一端が支持される台座 2とから構成され、板部材 1が台座 2の上面にボルト 等の締結部材 4によって締結支持され、所謂片持ち支持される。そして、板部材 1を 支持した台座 2もまたボルト等の締結部材 5によってテーブル 3上に締結支持される。 板部材 1は、低熱膨張のセラミックス或いはガラスにより形成された平板状の部材で あり、一端部 (被固定領域) laと中央部 lc先端部 lbとから構成される。そして、中央 部 lcの上面に形成される領域 ARは、例えば、ナノメートルオーダーの平面度を有す る。板部材 1を熱膨張の少ない材料で形成したので、熱変形による領域 ARの精度悪 化を抑制することができる。 The plate member supporting device 10 includes a plate member 1 on which an area AR having a predetermined surface accuracy is formed, and a pedestal 2 on which one end of the plate member 1 is supported. And the so-called cantilevered support. The pedestal 2 supporting the plate member 1 is also fastened and supported on the table 3 by fastening members 5 such as bolts. The plate member 1 is a plate-like member formed of low thermal expansion ceramics or glass, and includes one end (fixed area) la and a central part lc and a tip part lb. The region AR formed on the upper surface of the central portion lc has, for example, a flatness on the order of nanometers. Since the plate member 1 is made of a material with low thermal expansion, the accuracy of area AR due to thermal deformation is poor. Can be suppressed.
台座 (部材) 2は、金属やセラミックス材料等により形成された板状部材であり、その 上面には、板部材 1と接触する接合部 2aと、接合部 2aから掘り下げられた溝部 2cと、 接合部 2aよりも僅かに低く形成された対向部(対向面) 2bとが形成される。  The pedestal (member) 2 is a plate-like member formed of a metal, a ceramic material, or the like, and has, on its upper surface, a joining portion 2a in contact with the plate member 1, a groove 2c dug down from the joining portion 2a, and a joining portion. An opposing portion (opposing surface) 2b formed slightly lower than the portion 2a is formed.
そして、図 1に示すように、板部材 1を台座 2上に締結部材 4によって片持ち支持す ると、板部材 1の一端部 laと台座 2の接合部 2aのみが密着し、板部材 1の中央部 lc と台座 2の溝部 2cとの間に数ミリ程度の隙間が形成され、更に板部材 1の先端部 lbと 台座 2の対向部 2bとの間に約 1一 30 x m程度の隙間 CL1が形成される。これにより 、板部材 1は、一端部 laのみが台座 2の接合部 2aと接触し、他の部分には何れの部 材も接触してレ、なレ、状態となる。  Then, as shown in FIG. 1, when the plate member 1 is cantilevered on the pedestal 2 by the fastening member 4, only one end la of the plate member 1 and the joint 2a of the pedestal 2 come into close contact, and the plate member 1 A gap of about several millimeters is formed between the center part lc of the base member 2 and the groove part 2c of the pedestal 2, and a gap of about 110 to 30 xm is formed between the tip part lb of the plate member 1 and the facing part 2b of the pedestal 2. CL1 is formed. As a result, the plate member 1 comes into contact with only the one end la in contact with the joint 2a of the pedestal 2, and comes into contact with any other members in the other portions.
[0022] 上述したように、高い面精度を有する領域 ARが形成された板部材 1を台座 2上に 片持ち支持することにより、板部材 1を台座 2に締結することにより生ずる領域 ARの 面精度の悪化を防止することができる。なぜならば、板部材 1を台座 2上に所謂両持 ち支持したり、板部材 1の略全面を台座 2上に支持 (密着)させたりすると、板部材 1が 台座 2の上面に沿って変形してしまうからである。つまり、板部材 1の領域 ARが、台 座 2の上面の面精度に影響されてしまうのである。このような不都合を回避するため には、台座 2の上面も高い面精度を有するように形成する必要が生じる。 As described above, the plate member 1 on which the region AR having high surface accuracy is formed is cantilevered on the pedestal 2, and the surface of the region AR generated by fastening the plate member 1 to the pedestal 2 Accuracy can be prevented from deteriorating. This is because, when the plate member 1 is supported on the pedestal 2 by a so-called double-sided support, or when substantially the entire surface of the plate member 1 is supported (closely attached) on the pedestal 2, the plate member 1 is deformed along the upper surface of the pedestal 2. Because it will do. That is, the area AR of the plate member 1 is affected by the surface accuracy of the upper surface of the pedestal 2. In order to avoid such inconvenience, it is necessary to form the upper surface of the pedestal 2 with high surface accuracy.
し力しながら、本実施形態の板部材支持装置 10のように、板部材 1を台座 2上に片 持ち支持することにより、板部材 1が台座 2の上面に沿って変形することが少なくなる ので、板部材 1の領域 ARの面精度を維持することができる。  By supporting the plate member 1 on the pedestal 2 in a cantilevered manner as in the plate member supporting device 10 of the present embodiment, the deformation of the plate member 1 along the upper surface of the pedestal 2 is reduced. Therefore, the surface accuracy of the area AR of the plate member 1 can be maintained.
[0023] 更に、板部材 1の先端部 lbと台座 2の対向部 2bとの間に約 1一 30 μ ΐη程度の隙間 CL1を形成したので、板部材 1に上下方向の振動が発生した際に、隙間 CL1に生じ るスクイーズ効果によってこの振動を制振することができる。 Further, since a gap CL1 of about 110 μm is formed between the distal end portion lb of the plate member 1 and the facing portion 2b of the pedestal 2, when the plate member 1 is vibrated in the vertical direction, In addition, this vibration can be suppressed by the squeeze effect generated in the gap CL1.
ここで、スクイーズ効果とは、 2面 (先端部 lb,対向部 2b)間の相対的な距離が周期 的に変動したときに、 2面間の間(隙間 CL1)に存在する流体 (空気)の動粘性により 2面間の相対的な距離の変動が妨げられる効果である。本実施形態のように、 2面間 の間に存在する流体が空気の場合には、その隙間 CL1を上述した程度にすることが 好ましい。 このように、隙間 CL1に生じるスクイーズ効果によって、板部材 1の振動が抑えられ 、板部材 1の領域 ARの面精度を動的に維持することができる。 Here, the squeeze effect is defined as the fluid (air) existing between the two surfaces (gap CL1) when the relative distance between the two surfaces (tip lb, opposing portion 2b) fluctuates periodically. The effect is that the relative distance between the two surfaces fluctuates due to the kinematic viscosity of the surface. When the fluid existing between the two surfaces is air as in the present embodiment, the gap CL1 is preferably set to the above-described level. As described above, the vibration of the plate member 1 is suppressed by the squeeze effect generated in the gap CL1, and the surface accuracy of the area AR of the plate member 1 can be dynamically maintained.
[0024] また、板部材 1における一端部 laと高い面精度を有する領域 ARとの間に、締結部 材 4の軸力等によって生じる一端部 laの歪みが領域 ARに伝わることを抑える緩衝部 6を設けてもよレ、。 [0024] Further, between the one end la of the plate member 1 and the area AR having high surface accuracy, a buffering section for suppressing the distortion of the one end la caused by the axial force or the like of the fastening member 4 from being transmitted to the area AR. 6 may be provided.
図 2は図 1A, Bの構成にスリット部 7を設けた構成を示す図、図 3A, Bは図 1A, B の構成に弾性ヒンジ 8を設けた構成を示す図である。  FIG. 2 is a diagram showing a configuration in which a slit portion 7 is provided in the configuration of FIGS. 1A and 1B, and FIGS. 3A and 3B are diagrams showing a configuration in which an elastic hinge 8 is provided in the configuration of FIGS. 1A and 1B.
このように、緩衝部 6として、スリット部 7を設けた場合には、一端部 laに生じた歪み は、スリット部 7によりその伝達が断絶され、或いはスリット部 7を迂回するように伝達す るため、領域 ARへの影響が少なくなる。また、弾性ヒンジ 8を設けた場合には、一端 部 laに生じた歪みは、剛性の低い弾性ヒンジ 8において開放(弾性ヒンジ 8が変形)さ れるので、領域 ARへの影響が少なくなる。  As described above, when the slit section 7 is provided as the buffer section 6, the distortion generated at one end la is transmitted so as to be interrupted by the slit section 7 or to bypass the slit section 7. Therefore, the influence on the area AR is reduced. In addition, when the elastic hinge 8 is provided, the distortion generated at the one end la is released (the elastic hinge 8 is deformed) in the elastic hinge 8 having low rigidity, so that the influence on the area AR is reduced.
このように、板部材 1における一端部 laと高い面精度を有する領域 ARとの間に、緩 衝部 6を設けることにより締結部材 4の軸力等による影響を抑え、更に板部材 1の領 域 ARの面精度を維持することができる。  As described above, the provision of the buffer portion 6 between the one end la of the plate member 1 and the region AR having high surface accuracy suppresses the influence of the axial force of the fastening member 4 and the like, and furthermore, the region of the plate member 1 Area The surface accuracy of AR can be maintained.
[0025] 次に、板部材の支持方法、板部材支持装置の第 2実施形態について図を参照して 説明する。図 4A, Bは板部材支持装置 20を示す図であり、図 4Aは平面図、図 4Bは 図 4Aの AA断面図である。なお、第 1実施形態における板部材支持装置 10と同一 の部材には、同一の番号を付し、説明を省略する。 Next, a plate member supporting method and a plate member supporting device according to a second embodiment will be described with reference to the drawings. 4A and 4B are views showing the plate member supporting device 20, FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view along AA in FIG. 4A. Note that the same members as those of the plate member supporting device 10 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
板部材支持装置 20は、所定の面精度を有する領域 ARが形成された板部材 21と 板部材 21が支持される台座 22とから構成され、板部材 21の外周部 21aの 3箇所が 台座 22の上面にボルト等の締結部材 4によって締結支持される。そして、板部材 21 を支持した台座 22もまたボルト等の締結部材 5によって、台座 22の外周に設けた 3 つの足部 22dがテーブル 3上に締結支持される。なお、図 4A, Bにおいては、各締 結箇所には 2つのボルトが用いられている。  The plate member supporting device 20 is composed of a plate member 21 in which an area AR having a predetermined surface accuracy is formed, and a pedestal 22 on which the plate member 21 is supported. Is fastened and supported by a fastening member 4 such as a bolt. The pedestal 22 supporting the plate member 21 is also fastened and supported on the table 3 by the fastening members 5 such as bolts on the three feet 22d provided on the outer periphery of the pedestal 22. In FIGS. 4A and 4B, two bolts are used for each fastening point.
[0026] 板部材 21は、低熱膨張のセラミックス或いはガラスにより形成された平板状の部材 であり、所定の面精度を有する領域 ARが形成される中央部 21cと、中央部 21cをスリ ット孔 27を開けて取り囲む枠形の外周部(被固定領域) 21aと、中央部 21cと外周部 21aとを連結する 3つの弾性ヒンジ 28と力 構成される。なお、中央部 21cの上面に 形成される領域 ARは、例えば、ナノメートノレオーダーの平面度に形成される。板部 材 21を熱膨張の少ない材料で形成したので、熱変形による領域 ARの精度悪化を抑 制すること力 Sできる。 The plate member 21 is a flat plate-shaped member formed of low thermal expansion ceramic or glass, and has a central portion 21c where an area AR having a predetermined surface accuracy is formed, and a central hole 21c formed by a slit hole. Opening and surrounding a frame-shaped outer part (fixed area) 21a, center part 21c and outer part It is configured with three elastic hinges 28 connecting the 21a and the force. The area AR formed on the upper surface of the central portion 21c is formed, for example, with a flatness of nanometer order. Since the plate member 21 is formed of a material having low thermal expansion, it is possible to suppress the deterioration of the accuracy of the area AR due to thermal deformation.
台座 (部材) 22は、金属やセラミックス材料等により形成された板状部材であり、そ の上面には、板部材 21の中央部 21cと対向する対向部 22b (対向面)と、対向部 22 bを取り囲むように形成されると共により対向部 22bも低く形成された外周部 22aと、 外周部 22a上に形成されて板部材 21の外周部 21aと当接する 3つの突出部 22cとか ら構成される。更に、台座 22の外周には、上述した 3つの足部 22dが弾性ヒンジ 29を 介して設けられる。なお、足部 22dの下面(テーブル 3との接触面)は、台座 22の下 面よりも僅かに下側(テーブル 3側)に形成される。  The pedestal (member) 22 is a plate-shaped member formed of a metal, a ceramic material, or the like, and has on its upper surface an opposing portion 22b (opposing surface) opposing the central portion 21c of the plate member 21, and an opposing portion 22b. An outer peripheral portion 22a formed so as to surround b and also has a lower opposed portion 22b, and three protruding portions 22c formed on the outer peripheral portion 22a and in contact with the outer peripheral portion 21a of the plate member 21. You. Further, on the outer periphery of the pedestal 22, the above-described three feet 22d are provided via elastic hinges 29. The lower surface of the foot portion 22d (the contact surface with the table 3) is formed slightly below the lower surface of the pedestal 22 (table 3 side).
そして、図 4A, Bに示すように、板部材 21を台座 22上に締結部材 4によって締結 支持すると、板部材 21の外周部 21aと台座 22の突出部 22cのみが密着し、板部材 2 1と台座 22との間に隙間が形成され、板部材 21の中央部 21cと台座 22の対向部 22 bとの間に約 1一 30 /i m程度の隙間 CL 2が形成される。  Then, as shown in FIGS. 4A and 4B, when the plate member 21 is fastened and supported on the pedestal 22 by the fastening member 4, only the outer peripheral portion 21a of the plate member 21 and the protruding portion 22c of the pedestal 22 come into close contact, and the plate member 21 A gap is formed between the base member 22 and the pedestal 22, and a gap CL2 of about 110 / im is formed between the central portion 21c of the plate member 21 and the facing portion 22b of the pedestal 22.
更に、台座 22をテーブル 3上に締結部材 5によって締結支持すると、台座 22の足 部 22dとテーブル 3の上面とが密着し、台座 22の下面とテーブル 3の上面との間に約 1— 30 μ m程度の隙間 CL3が形成される。  Further, when the pedestal 22 is fastened and supported on the table 3 by the fastening member 5, the foot 22 d of the pedestal 22 and the upper surface of the table 3 come into close contact with each other, and about 1 to 30 A gap CL3 of about μm is formed.
上述したように、高い面精度を有する領域 ARが形成された板部材 21を台座 22上 にスリット孔 27及び弾性ヒンジ 28を介して支持することにより、板部材 21を台座 22に 締結することにより生ずる領域 ARの面精度の悪化を防止することができる。なぜなら ば、締結支持される外周部 21aと領域 ARが形成された中央部 21cとの間に、締結部 材 4の軸力等によって生じる外周部 21aの歪みが領域 ARに伝わることを抑える緩衝 部 26としてのスリット孔 27及び弾性ヒンジ 28を設けたからである。すなわち、締結部 材 4の軸力によって外周部 21aに生じた歪は、スリット孔 27によりその伝達が断絶さ れる。更に、スリット孔 7を迂回するように伝達した歪みは、剛性の低い弾性ヒンジ 28 におレ、て開放(弾性ヒンジ 28が変形)されるので、領域 ARへの影響が少なくなる。 なお、このような作用を得るために、弾性ヒンジ 28は、締結部材 4からできるだけ離 間した位置に設けることが望ましい。外周部 21aから領域 ARまでの歪みの伝達距離 を長くして、領域 ARへの影響を少なくするためである。 As described above, by supporting the plate member 21 on which the area AR having high surface accuracy is formed on the pedestal 22 via the slit hole 27 and the elastic hinge 28, the plate member 21 is fastened to the pedestal 22. The resulting area AR can be prevented from deteriorating in surface accuracy. This is because between the outer peripheral portion 21a to be fastened and supported and the central portion 21c in which the region AR is formed, a buffer portion for suppressing the distortion of the outer peripheral portion 21a caused by the axial force or the like of the fastening member 4 from being transmitted to the region AR. This is because the slit hole 27 and the elastic hinge 28 as 26 are provided. That is, the transmission of the distortion generated in the outer peripheral portion 21 a by the axial force of the fastening member 4 is cut off by the slit hole 27. Furthermore, since the distortion transmitted so as to bypass the slit hole 7 is released to the elastic hinge 28 having low rigidity (the elastic hinge 28 is deformed), the influence on the area AR is reduced. In order to obtain such an effect, the elastic hinge 28 is separated from the fastening member 4 as much as possible. It is desirable to provide them at spaced positions. The reason for this is that the distortion transmission distance from the outer peripheral portion 21a to the area AR is increased to reduce the influence on the area AR.
このように、板部材 21における外周部 2 laと高い面精度を有する領域 ARが形成さ れた中央部 21cとの間に、緩衝部 26を設けることにより締結部材 4の軸力による影響 を抑え、板部材 21の領域 ARの面精度を維持することができる。  Thus, by providing the buffer portion 26 between the outer peripheral portion 2 la of the plate member 21 and the central portion 21 c where the region AR having high surface precision is formed, the influence of the axial force of the fastening member 4 is suppressed. The surface accuracy of the area AR of the plate member 21 can be maintained.
また、台座 22自体も締結部材 5によりテーブル 3上に締結支持されるが、足部 22d と外周部 22aとの間に弾性ヒンジ 29が設けられるので、足部 22dに生じた歪みは弾 性ヒンジ 29により緩和され、外周部 22aへの伝達が抑えられる。  The pedestal 22 itself is also fastened and supported on the table 3 by the fastening member 5, but since the elastic hinge 29 is provided between the foot 22d and the outer peripheral portion 22a, the distortion generated in the foot 22d is reduced by the elastic hinge. Thus, the transmission to the outer peripheral portion 22a is suppressed.
このようにして、締結部材 4, 5の軸力等による影響を抑え、板部材 21の領域 ARの 面精度を維持することができる。  In this manner, the influence of the axial force or the like of the fastening members 4 and 5 can be suppressed, and the surface accuracy of the area AR of the plate member 21 can be maintained.
[0028] また、板部材 21の中央部 21cと台座 2の対向部 22bとの間に約 1一 30 x m程度の 隙間 CL2が形成されるので、板部材 21に発生した上下方向の振動を隙間 CL2のス クイーズ効果によって制振することができる。更に、テーブル 3の上面と台座 22の下 面との間に約 1一 30 /i m程度の隙間 CL3を形成されるので、台座 22に発生した上 下方向の振動を隙間 CL3のスクイーズ効果によって制振することができる。 [0028] Further, since a gap CL2 of about 110 to 30 xm is formed between the central portion 21c of the plate member 21 and the facing portion 22b of the pedestal 2, the vertical vibration generated in the plate member 21 is reduced. Vibration can be controlled by the squeeze effect of CL2. Further, a gap CL3 of about 110 / im is formed between the upper surface of the table 3 and the lower surface of the pedestal 22, so that the upward and downward vibration generated in the pedestal 22 is controlled by the squeezing effect of the gap CL3. Can be shaken.
このように、テーブル 3が振動したとしても、隙間 CL2, CL3に生じるスクイーズ効果 によって、板部材 21の振動が抑えられ、板部材 21の領域 ARの面精度を動的に維 持すること力 Sできる。  Thus, even if the table 3 vibrates, the vibration of the plate member 21 is suppressed by the squeeze effect generated in the gaps CL2 and CL3, and the surface accuracy of the area AR of the plate member 21 is dynamically maintained. it can.
[0029] 次に、第 2実施形態の板部材支持装置の変形例について説明する。図 5A, Bは板 部材支持装置 20の変形例を示す図である。なお、第 2実施形態における板部材支 持装置 20と同一の部材には、同一の番号を付し、説明を省略する。  Next, a modification of the plate member supporting device of the second embodiment will be described. 5A and 5B are views showing a modification of the plate member supporting device 20. FIG. The same members as those of the plate member supporting device 20 in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
図 5Aに示す板部材支持装置 20は、板部材 21と台座 22との締結位置を変化させ たものである。すなわち、 3つの締結部材 4の位置を板部材 21の外周部 21aに略均 等配置したものである。そして、 3つの弾性ヒンジ 28の位置も 3つの締結部材 4からそ れぞれ離間させるように、略均等配置される。このため形状的には、各要素がバラン スよく配置されている力 S、板部材 21の外周部 21aは中央部 21cに対してやや過拘束 に支持することになる。すなわち、 3つの締結部材 4が同じ水平方向の同じ成分を拘 束してしまうからである。し力、しながら、このような板部材支持装置 20によっても、板部 材 21の領域 ARの面精度を十分に維持することができる。 The plate member supporting device 20 shown in FIG. 5A changes the fastening position between the plate member 21 and the pedestal 22. That is, the positions of the three fastening members 4 are substantially evenly arranged on the outer peripheral portion 21a of the plate member 21. Then, the positions of the three elastic hinges 28 are also substantially equally arranged so as to be separated from the three fastening members 4 respectively. For this reason, in terms of shape, the force S at which the elements are arranged in a well-balanced manner, and the outer peripheral portion 21a of the plate member 21 is slightly over-restricted to the central portion 21c. That is, the three fastening members 4 bind the same component in the same horizontal direction. However, the plate member supporting device 20 can also provide a The surface accuracy of the area AR of the material 21 can be sufficiently maintained.
[0030] 図 5Bに示す板部材支持装置 20は、板部材 21の外周部 21aと中央部 21cとを 2つ の弾性ヒンジ 28で連結したものである。このため、板部材 21の外周部 21aは中央部 21cに対して過拘束とはならなレ、。ところ力 一方の弾性ヒンジ 28が締結部材 4に近 接配置される。また、中央部 21cを 2つの弾性ヒンジ 28で支持するので、やや不安定 な支持となる。し力 ながら、このような板部材支持装置 20によっても、板部材 21の 領域 ARの面精度を十分に維持することができる。  The plate member supporting device 20 shown in FIG. 5B is one in which an outer peripheral portion 21a and a central portion 21c of a plate member 21 are connected by two elastic hinges 28. For this reason, the outer peripheral portion 21a of the plate member 21 does not become excessively restrained with respect to the central portion 21c. However, one of the elastic hinges 28 is disposed close to the fastening member 4. Further, since the center portion 21c is supported by the two elastic hinges 28, the support is somewhat unstable. However, even with such a plate member supporting device 20, the surface accuracy of the area AR of the plate member 21 can be sufficiently maintained.
[0031] なお、図 1Aから図 5Bの構成において、板部材 1, 21を台座 2, 22に固定する場合 に替わりに、直接、テーブル 3に固定してもよい。その場合、板部材 1, 21とテープノレ 3の上面の一部との間に所定の隙間 CL1 , CL2を形成し、これらの隙間 CL1, CL2 でスクイーズ効果による制振作用を得るようにしてもよい。  Note that, in the configuration of FIGS. 1A to 5B, instead of fixing the plate members 1 and 21 to the pedestals 2 and 22, the plate members 1 and 21 may be fixed directly to the table 3. In this case, predetermined gaps CL1 and CL2 may be formed between the plate members 1 and 21 and a part of the upper surface of the tape holder 3, and the damping action by the squeeze effect may be obtained in these gaps CL1 and CL2. .
[0032] 次に、上述した板部材支持装置 10, 20を用いたステージ装置及び露光装置及び デバイスの製造方法の実施形態について、図を用いて説明する。図 6は本発明の露 光装置 EXを示す概念図である。  Next, an embodiment of a stage apparatus, an exposure apparatus, and a device manufacturing method using the above-described plate member supporting apparatuses 10 and 20 will be described with reference to the drawings. FIG. 6 is a conceptual diagram showing an exposure apparatus EX of the present invention.
露光装置 EXは、露光光 ELをレチクル (板状体、マスク) Rに照明しつつ、レチクル Rとウエノ、(板状体、基板) Wとを一次元方向に相対的に同期移動させて、レチクル R に形成された回路パターン PAを投影光学系 PLを介してウェハ W上に転写するステ ップ'アンド'スキャン方式の走査型露光装置、いわゆるスキャニング'ステツパである 露光装置 EXは、図 6に示すように、露光用の光源 101、光源 101から射出された 光束に基づく露光光 ELをレチクル Rに均一な照度で照明する照明光学系 IL、レチク ル Rを支持するレチクルステージ RST、レチクル R力、ら射出される露光光 ELをウェハ W上に照射する投影光学系 PL、ウェハ Wを支持するウェハステージ WST、及び焦 点位置検出系センサ AFや各種ァライメント光学系センサ RA, WA1, WA2等を備え る。  The exposure apparatus EX irradiates the reticle (plate, mask) R with the exposure light EL, and relatively synchronously moves the reticle R and the eno, (plate, substrate) W in the one-dimensional direction. The exposure apparatus EX, which is a so-called “scanning” stepper, is a step-and-scan type scanning exposure apparatus that transfers the circuit pattern PA formed on the reticle R onto the wafer W via the projection optical system PL. As shown in the figure, the exposure light source 101, the illumination optical system IL that illuminates the reticle R with uniform illuminance with the exposure light EL based on the light beam emitted from the light source 101, the reticle stage RST that supports the reticle R, and the reticle R The projection optical system PL that irradiates the wafer W with the exposure light EL emitted from the force, the wafer stage WST that supports the wafer W, the focal position detection system sensor AF, and various alignment optical system sensors RA, WA1, WA2, etc. Is provided.
なお、以下の説明において、投影光学系 PLの光軸 AXと一致する方向を Z軸方向 、 Z軸方向に垂直な平面内でレチクル Rとウェハ Wとの同期移動方向(走查方向)を X軸方向、 Z軸方向及び X軸方向に垂直な方向(非走查方向)を Y軸方向とする。更 に、 X軸、 Y軸、及び Z軸まわり方向をそれぞれ、 Θ Χ、 θ Υ、及び Θ Ζ方向とする。 In the following description, the direction coincident with the optical axis AX of the projection optical system PL is defined as the Z-axis direction, and the synchronous movement direction (running direction) between the reticle R and the wafer W is defined as X in a plane perpendicular to the Z-axis direction. The direction perpendicular to the axial direction, the Z-axis direction, and the X-axis direction (non-running direction) is the Y-axis direction. Change The directions around the X axis, the Y axis, and the Z axis are the Θ Θ, θ Υ, and Θ Ζ directions, respectively.
[0033] 光源 101としては、波長約 120nm—約 190nmの真空紫外線、例えば、 ArFェキ シマレーザ(波長: 193nm)、フッ素(F )レーザ(157nm)、クリプトン(Kr )レーザ(1 As the light source 101, vacuum ultraviolet rays having a wavelength of about 120 nm to about 190 nm, for example, an ArF excimer laser (wavelength: 193 nm), a fluorine (F) laser (157 nm), a krypton (Kr) laser (1
2 2  twenty two
46nm)、アルゴン (Ar )レーザ(126nm)等を発生させる光源が用いられる。本実施  46 nm) and a light source that generates an argon (Ar) laser (126 nm) or the like is used. This implementation
2  2
形態においては ArFエキシマレーザ光が用いられる。  In the embodiment, an ArF excimer laser beam is used.
また、光源 101には、図示しない光源制御装置が併設されており、この光源制御装 置は、制御装置 CONTからの指示に応じて、射出される露光光 ELの発振中心波長 及びスペクトル半値幅の制御、パルス発振のトリガ制御等を行う。  The light source 101 is also provided with a light source control device (not shown). The light source control device responds to an instruction from the control device CONT to control the oscillation center wavelength and the spectral half-width of the emitted exposure light EL. Control, trigger control of pulse oscillation, etc.
[0034] 照明光学系 ILは、ハウジング内に所定の位置関係で配置されたリレーレンズ系、光 路折り曲げ用ミラー、コンデンサレンズ系等力 成る光学部品を備える。 [0034] The illumination optical system IL includes optical components such as a relay lens system, an optical path bending mirror, and a condenser lens system arranged in a predetermined positional relationship within the housing.
そして、光源 101から射出されたレーザビームは、照明光学系 ILに入射され、レー ザビームの断面形状が整形されるとともに照度分布がほぼ均一な照明光(露光光) E Lとなって、レチクルステージ RSTに支持されているレチクル Rの回路パターン領域 にほぼ均一な照度分布で照射される。  Then, the laser beam emitted from the light source 101 enters the illumination optical system IL, and the illumination beam (exposure light) EL whose cross-sectional shape of the laser beam is shaped and the illuminance distribution is substantially uniform is obtained, and the reticle stage RST The circuit pattern area of the reticle R supported by the reticle is irradiated with a substantially uniform illuminance distribution.
なお、露光光 ELの波長は、光源 101の波長とは実質的に等しくなつている。  The wavelength of the exposure light EL is substantially equal to the wavelength of the light source 101.
[0035] レチクルステージ(ステージ装置、マスクステージ) RSTは、レチクル Rを真空吸着 方式あるいは静電チャックや電磁石などを用いた方式によって吸着保持するレチク ルホルダ(戴置面) RHと、レチクル Rを走査方向に所定ストロークで移動するステー ジ (移動部材) RSと、これらを移動させるリニアモータ等のレチクルステージ駆動部 R STDを備える。そして、ステージ RSには、矩形開口が形成されており、開口周辺部 に設けられたレチクルホルダ RHによりレチクル Rが真空吸着等により保持される。 また、ステージ RS上には、 Y軸方向に延びた移動鏡 110と、 X軸方向に延びた移 動鏡 (不図示)とが設けられる。移動鏡 110には、レーザ干渉計 121から測長ビーム 力 Sミラー 122を介して照射される。移動鏡 110からの反射光はレーザ干渉計 121内 のディテクタで受光され、この受光結果に基づいてレチクル Rの X軸方向における位 置が検出される。同様に、 X軸方向に延びた移動鏡にも不図示のレーザ干渉計から 測長ビームが照射され、その反射光に基づいてレチクル Rの Y軸方向における位置 が検出される。そして、レーザ干渉計 121等の検出結果は制御装置 CONTに出力さ れる。 [0035] Reticle stage (stage device, mask stage) RST scans reticle R with reticle holder (placement surface) RH that holds reticle R by suction using a vacuum suction method or a method using an electrostatic chuck or an electromagnet. A stage (moving member) RS that moves by a predetermined stroke in the direction, and a reticle stage driving unit RSTD such as a linear motor that moves these stages. The stage RS has a rectangular opening, and the reticle R is held by a reticle holder RH provided around the opening by vacuum suction or the like. A movable mirror 110 extending in the Y-axis direction and a movable mirror (not shown) extending in the X-axis direction are provided on the stage RS. The movable mirror 110 is irradiated from the laser interferometer 121 via the measuring beam power S mirror 122. The reflected light from the movable mirror 110 is received by a detector in the laser interferometer 121, and the position of the reticle R in the X-axis direction is detected based on the result of the reception. Similarly, a movable mirror extending in the X-axis direction is also irradiated with a measurement beam from a laser interferometer (not shown), and the position of the reticle R in the Y-axis direction is detected based on the reflected light. The detection result of the laser interferometer 121 etc. is output to the controller CONT. It is.
[0036] 投影光学系 PLは、蛍石、フッ化リチウム等のフッ化物結晶からなるレンズや反射鏡 などの複数の投影レンズ系を投影系ハウジングで密閉したものであり、レチクルステ ージ RSTの直下に設けられる。投影レンズ系としては、レチクル Rを介して射出され る露光光 ELを所定の投影倍率 ( は例えば 1Z4)で縮小する縮小系が用レ、られ る。  The projection optical system PL is formed by sealing a plurality of projection lens systems such as a lens made of a fluoride crystal such as fluorite and lithium fluoride and a reflecting mirror with a projection system housing, and directly below the reticle stage RST. Is provided. As the projection lens system, a reduction system that reduces the exposure light EL emitted through the reticle R at a predetermined projection magnification (for example, 1Z4) is used.
そして、レチクル Rに照明光学系 ILから照明光(紫外ノ^レス光)が照射されると、レ チクル R上に形成されたパターン領域のうちの紫外ノ^レス光によって照明された部分 からの結像光束が投影光学系 PUこ入射し、その回路パターン PAの部分倒立像が 紫外パルス光の各パルス照射の度に投影光学系 PLの像面側の視野中央に Y軸方 向に細長レ、スリット状又は矩形状(多角形)に制限されて結像される。これにより、投 影された回路パターン PAの部分倒立像は、投影光学系 PLの結像面に配置された ウェハ W上の複数のショット領域のうちの 1つのレジスト層に縮小転写される。  Then, when the reticle R is irradiated with illumination light (ultraviolet light) from the illumination optical system IL, a portion of the pattern area formed on the reticle R from the portion illuminated by the ultraviolet light is irradiated. The imaging light flux enters the projection optical system PU, and a partial inverted image of the circuit pattern PA is elongated in the Y-axis direction at the center of the field of view on the image plane side of the projection optical system PL for each pulse irradiation of the ultraviolet pulse light. The image is limited to a slit shape or a rectangular shape (polygon). As a result, the projected partial inverted image of the circuit pattern PA is reduced and transferred to one of the plurality of shot areas on the wafer W arranged on the image plane of the projection optical system PL.
[0037] ウェハステージ (ステージ装置、基板ステージ) WSTは、リニアモータを備えたゥェ ハステージ駆動部 WSTDにより 2次元平面(XY平面)内を移動可能な XYステージ( 移動部材) XYSと、 XYステージ XYS上に設けられ、ウェハステージ駆動部 WSTD により Z軸方向及び Z軸まわりに微小回転可能な Z Θステージ ZSと、 Z Θステージ ZS 上に設けられ、ウェハ Wを真空吸着方式ゃ静電チャック方式で吸着保持するウェハ ホルダ(戴置面) WHとを備える。 XYステージ XYSは互いに直交する方向へ移動可 能な一対のブロックを重ね合わせた構造を有し、装置ベース上においてウェハステ ージ駆動部 WSTDの駆動に基づき X軸方向及び Y軸方向に移動可能となっている 。更に、ウェハステージ WSTは投影光学系 PLの光軸に対して傾斜方向にも移動可 能に設けられており、ウェハ Wを支持した際、ウェハ Wのレべリング調整を含む位置 調整を可能としている。 [0037] Wafer stage (stage device, substrate stage) WST is a XY stage (moving member) XYS, which can move within a two-dimensional plane (XY plane) by a wafer stage driving unit WSTD equipped with a linear motor. ZΘ stage ZS provided on stage XYS and micro-rotatable in and around the Z-axis by wafer stage driver WSTD, and ZΘ stage ZS provided on ZΘ stage ZS for vacuum chucking of wafer W ゃ electrostatic chuck It has a wafer holder (placement surface) WH that holds by suction in a system. The XY stage XYS has a structure in which a pair of blocks that can move in directions perpendicular to each other are stacked, and can move in the X-axis direction and the Y-axis direction on the equipment base based on the drive of the wafer stage drive unit WSTD. Has become. Further, the wafer stage WST is provided so as to be movable also in the direction of inclination with respect to the optical axis of the projection optical system PL, so that when the wafer W is supported, position adjustment including leveling adjustment of the wafer W is enabled. I have.
また、ウェハステージ WST上には、 Y軸方向に延びた移動鏡 111と、 X軸方向に延 びた移動鏡 112 (図 7参照)とが設けられる。移動鏡 111には、レーザ干渉計 123か ら測長ビームがミラー 124を介して照射される。そして、移動鏡 111からの反射光は レーザ干渉計 123内のディテクタで受光され、この受光結果に基づいてウェハ Wの X 軸方向における位置が検出される。同様に X軸方向に延びた移動鏡 112にも不図示 のレーザ干渉計から測長ビームが照射され、その反射光に基づいてウェハ Wの Y軸 方向における位置が検出される。そして、レーザ干渉計 123等の検出結果は制御装 置 CONTに出力される。 Further, a movable mirror 111 extending in the Y-axis direction and a movable mirror 112 (see FIG. 7) extending in the X-axis direction are provided on wafer stage WST. The movable mirror 111 is irradiated with a measurement beam from a laser interferometer 123 via a mirror 124. Then, the reflected light from the moving mirror 111 is received by a detector in the laser interferometer 123, and the X-ray A position in the axial direction is detected. Similarly, a movable mirror 112 extending in the X-axis direction is irradiated with a measurement beam from a laser interferometer (not shown), and the position of the wafer W in the Y-axis direction is detected based on the reflected light. Then, the detection result of the laser interferometer 123 and the like is output to the control device CONT.
図 7は、ウェハステージ上に配置される各種基準板を示す図である。図 7に示すよう に、ウェハステージ WST上におけるウェハホルダ WHと干渉しない位置には、焦点 位置検出系センサ AFの調整に用いられる基準平面板 BFPと、ウェハァライメント系 センサ WA1のベースライン計測に用いられる基準平面板 AFPと、 VRA方式のレチ クルァライメント系センサ RAによるレチクル Rの位置計測及びウェハァライメント系セ ンサ WA1, WA2のベースライン計測に用いられるァライメント計測用の基準平面板 WFPとが設けられる。  FIG. 7 is a diagram showing various reference plates arranged on the wafer stage. As shown in Fig. 7, the positions on the wafer stage WST that do not interfere with the wafer holder WH are used for the baseline measurement of the reference plane plate BFP used to adjust the focus position detection sensor AF and the baseline measurement of the wafer alignment sensor WA1. The reference plane plate AFP used for measurement of the position of the reticle R by the reticle alignment sensor RA of the VRA method and the reference plane plate WFP for alignment measurement used for the baseline measurement of the wafer alignment sensors WA1 and WA2. Provided.
これらの基準平面板(板部材) BFP, AFP, WFPは、セラミックスやガラス等の低膨 張係数の部材から成り、その上面(後述する各種センサによる被検面 (領域) AR)が 所定の平面度を有するように形成される。  These reference plane plates (plate members) BFP, AFP, and WFP are made of a member having a low expansion coefficient such as ceramics or glass, and the upper surface thereof (the surface (area) AR to be detected by various sensors described later) has a predetermined plane. It is formed to have a degree.
更に、その被検面 ARの位置 (Z軸方向の高さ、傾き)がウェハ Wの表面(露光面)と 略一致するように設置される(図 1B参照)。なお、基準平面板 AFPの下方には基準 平面板 AFPを通過した光を受光可能な不図示の AIS受光系がウェハステージ WST 内に埋設される。  Further, the surface AR to be inspected (the height and inclination in the Z-axis direction) is set so as to substantially coincide with the surface (exposed surface) of the wafer W (see FIG. 1B). Below the reference plane plate AFP, an AIS light receiving system (not shown) capable of receiving light passing through the reference plane plate AFP is embedded in the wafer stage WST.
そして、基準平面板 AFPには、 AIS用マーク(不図示)がクロム蒸着などにより形成 される。  Then, an AIS mark (not shown) is formed on the reference flat plate AFP by chromium evaporation or the like.
同様に、ァライメント計測用の基準平面板 WFPの表面には、各種の基準マーク群( Fiduciary mark) FM (不図示)がクロム蒸着などにより形成される。基準マーク群 FM は、レチクルァライメント系センサ RAで用いられる VRA用マーク、ウェハァライメント 系センサ WA1 , WA2で用いられる LSA用マーク、 LIA用マーク、 FIA用マーク(レヽ ずれも不図示)を含んでいる。これらのマークは、 VRA用マークを基準として予め決 められた所定位置に形成される。  Similarly, on the surface of the reference flat plate WFP for alignment measurement, various reference marks (Fiduciary marks) FM (not shown) are formed by chromium evaporation or the like. The reference mark group FM includes VRA marks used in the reticle alignment sensor RA, LSA marks used in the wafer alignment sensors WA1 and WA2, LIA marks, and FIA marks (the positional deviation is not shown). In. These marks are formed at predetermined positions determined in advance based on the VRA marks.
なお、 AIS用マーク、 VRA用マークに対応するマーク力 レチクル Rの下面側の所 定位置にそれぞれクロム蒸着等により形成される。 そして、これらの基準平面板 BFP, AFP, WFPには、上述した板部材支持装置 10 , 20が適用される。これにより、基準平面板 BFP, AFP, WFPの被検面 ARが締結 等に伴う歪みのない状態で設置され、所定の平面度が維持される。 The mark force corresponding to the AIS mark and the VRA mark is formed at a predetermined position on the lower surface side of the reticle R by chromium evaporation or the like. The above-mentioned plate member supporting devices 10 and 20 are applied to these reference plane plates BFP, AFP and WFP. As a result, the test surface AR of the reference flat plates BFP, AFP, and WFP is installed without distortion due to fastening or the like, and a predetermined flatness is maintained.
[0039] 図 6に戻り、焦点位置検出系(オートフォーカス)センサ AFは、ウェハ Wの表面の Z 軸方向における位置 (焦点位置)を検出するためのセンサであり、投影光学系 PLの 側面に送光部 151と受光部とを備える。なお、受光部の図は、省略してある。  Referring back to FIG. 6, the focus position detection system (autofocus) sensor AF is a sensor for detecting the position (focal position) of the surface of the wafer W in the Z-axis direction, and is provided on the side of the projection optical system PL. It includes a light transmitting unit 151 and a light receiving unit. The illustration of the light receiving unit is omitted.
送光部 151からはウェハ Wに対して非感光性の検出光が照射される。送光部とゥ ェハ Wとの間には多数のスリットが設けられており、検出光は複数のスリット光を照明 し、これらスリット光の像が投影光学系 PLの光軸に対して斜めにウェハ W上に投影さ れる。受光部はウェハ W上で反射した検出光を検出する。最良結像面(ベストフォー カス面)を検出する際には、ウェハステージ WSTが駆動されてウェハ Wの Z軸方向 における位置を変化させつつ焦点位置検出系センサ AFの送光部からウェハ Wに対 して検出光が照射され、検出光の照射によりウェハ W力 発生した光を受光部が検 出し、この検出結果に基づいて、最良結像面が検出される。なお、焦点位置検出系 センサ AFは多点 AFセンサであるため、ウェハ Wの傾きも検出することができる。  The non-photosensitive detection light is emitted from the light transmitting unit 151 to the wafer W. A number of slits are provided between the light transmitting unit and the wafer W, and the detection light illuminates a plurality of slit lights, and the images of these slit lights are inclined with respect to the optical axis of the projection optical system PL. Is projected onto the wafer W. The light receiving unit detects the detection light reflected on the wafer W. When detecting the best imaging plane (best focus plane), the wafer stage WST is driven to change the position of the wafer W in the Z-axis direction while moving from the light transmitting part of the focus position detection sensor AF to the wafer W. On the other hand, the detection light is irradiated, and the light receiving unit detects the light generated by the wafer W force by the irradiation of the detection light, and the best imaging plane is detected based on the detection result. Since the focus position detection sensor AF is a multipoint AF sensor, the inclination of the wafer W can also be detected.
[0040] また、露光装置 EXは、レチクルァライメント系として、 TTR (Through The Reticule) 方式であってビデオ ·レチクル'ァライメント(VRA)方式のレチクルァライメント系セン サ RAを備える。また、オファクシス方式のウェハァライメント系として、 FIA (Field Image Alignment)方式のウェハァライメント系センサ WA1を備える。更に、 TTL ( Through The Lens)方式のウェハァライメント系として、 LSA (Laser Step Alignment) 方式或いは LIA (Laser Interferometric Alignment)方式のウェハァライメント系センサ WA2を備える。  The exposure apparatus EX includes a reticle alignment system RA of a TTR (Through The Reticule) system and a video reticle alignment system (VRA) as a reticle alignment system. In addition, as an off-axis wafer alignment system, an FIA (Field Image Alignment) type wafer alignment system sensor WA1 is provided. Further, as a wafer alignment system of a TTL (through the lens) system, a wafer alignment system sensor WA2 of an LSA (Laser Step Alignment) system or an LIA (Laser Interferometric Alignment) system is provided.
[0041] レチクルァライメント系センサ RAは、照明光学系 ILとレチクルステージ RSTとの間 に設けられており、ァライメント光として露光光 ELを使用する。また、 VRA方式のレチ クルァライメント系センサ RAは、ァライメント光としての露光光 ELを基準平面板 WFP に導く光学系 145と、ァライメント光の照射により FIA用マークから発生した光を受光 する受光部 146とを備える。  The reticle alignment sensor RA is provided between the illumination optical system IL and the reticle stage RST, and uses exposure light EL as alignment light. The VRA type reticle alignment sensor RA includes an optical system 145 that guides the exposure light EL as alignment light to the reference plane plate WFP, and a light receiving unit that receives light generated from the FIA mark by the irradiation of the alignment light. 146.
そして、レチクルァライメント系センサ RAは、所定のマークを備えたレチクル Rに対 して照明光学系 ILから射出された露光光 ELに基づくァライメント光を照射するととも に、投影光学系 PLを介してウェハステージ WST上の基準平面板 WFPに設けられ た基準マーク群 FMを照射する。更に、レチクルァライメント系センサ RAは、ァライメ ント光の照射によりレチクル R力 発生した光(反射光)、及び投影光学系 PLを介し てウェハステージ WSTの基準平面板 WFPから発生する光(反射光)を受光して、レ チクル Rの位置合わせを行う。 Then, the reticle alignment sensor RA corresponds to the reticle R provided with a predetermined mark. Illuminates the alignment light based on the exposure light EL emitted from the illumination optical system IL, and irradiates the reference mark group FM provided on the reference plane plate WFP on the wafer stage WST via the projection optical system PL . Further, reticle alignment sensor RA receives light (reflected light) generated by reticle R force by irradiation of alignment light and light (reflected light) generated from reference plane plate WFP of wafer stage WST via projection optical system PL. ) Is received and reticle R is aligned.
[0042] FIA方式、オファクシス方式のウェハァライメント系センサ WA1は、投影光学系 PL の側部に設けられており、露光光 ELとは異なる波長のァライメント光を射出するァラ ィメント用光源 134と、ァライメント用光源 134から射出したァライメント光を基準マー ク群 FMに導く光学系 135, 137と、ァライメント光の照射により FIA用マークから発生 した光を受光する受光部 136とを備える。 [0042] The wafer alignment sensor WA1 of the FIA type or the out-of-axis type is provided on the side of the projection optical system PL, and includes an alignment light source 134 for emitting alignment light having a wavelength different from that of the exposure light EL. The optical system includes optical systems 135 and 137 for guiding the alignment light emitted from the alignment light source 134 to the reference mark group FM, and a light receiving unit 136 for receiving light generated from the FIA mark by the irradiation of the alignment light.
そして、ウェハァライメント系センサ WA1は、ァライメント処理を行うに先立って、 AI S用マーク、 FIA用マークを照射して、その計測結果に基づいて、レチクル Rとウェハ ァライメント系センサ WA2との相対位置であるベースライン量を求める。  Prior to performing the alignment process, the wafer alignment sensor WA1 irradiates a mark for AIS and a mark for FIA, and based on the measurement result, determines the relative position between the reticle R and the wafer alignment sensor WA2. Is obtained.
[0043] LSA或いは LIA方式のウェハァライメント系センサ WA2は、ァライメント用光源 13 1と、ァライメント用光源 131から射出したァライメント光を投影光学系 PLに入射させ る光学系 132, 138と、ァライメント光の照射により基準マーク群 FMから発生した光 を受光する受光部 133とを備える。 An LSA or LIA type wafer alignment sensor WA2 includes an alignment light source 131, optical systems 132 and 138 for causing the alignment light emitted from the alignment light source 131 to enter the projection optical system PL, and alignment light. And a light receiving unit 133 that receives light generated from the reference mark group FM by the irradiation of the light.
なお、 LSA方式のァライメント系については、例えば、特開昭 60-130742号公報 に詳細に開示されている。また、 LIA方式のァライメント系については、例えば特開 昭 61-215905号公報に詳細に開示されている。  The LSA alignment system is disclosed in detail in, for example, Japanese Patent Application Laid-Open No. 60-130742. Further, the alignment system of the LIA system is disclosed in detail in, for example, JP-A-61-215905.
そして、ァライメント処理を行うに先立って、基準マーク群 FMに形成された LSAマ ーク、 LIAマークを照射して、その計測結果に基づいて、ウェハ Wの位置計測の基 準を求める。  Then, prior to performing the alignment process, the LSA mark and the LIA mark formed on the reference mark group FM are irradiated, and the position measurement reference of the wafer W is obtained based on the measurement result.
[0044] 続いて、以上のような構成を備えた露光装置 EXによる露光作業について、簡単に 説明する。  Subsequently, an exposure operation by the exposure apparatus EX having the above configuration will be briefly described.
まず、制御装置 CONTの管理の下、露光作業に先立って準備作業を行う。  First, a preparation operation is performed prior to the exposure operation under the control of the controller CONT.
具体的には、焦点位置検出系センサ AFから基準平面板 BFPに複数のスリット光を 投光して、複数のスリット光のオフセット調整 (原点調整)が行われる。 Specifically, multiple slit lights are sent from the focus position detection sensor AF to the reference plane plate BFP. By projecting light, offset adjustment (origin adjustment) of a plurality of slit lights is performed.
そして、各種の露光条件が設定された後に、レチクルァライメント系センサ RAにより 基準平面板 WFPを計測してレチクルァライメントを行う。また、ウェハァライメント系セ ンサ WA1により基準平面板 AFPを計測して、ァライメントセンサのベースライン計測 が行われる。更に、ウェハァライメント系センサ WA1, WA2により基準平面板 WFP を計測して、ウェハ Wのファインァライメント(ェンハンスト ·グローノ ノぃァライメント(E GA)等)が行われる。これによりウェハ W上の複数のショット領域の配列座標が求め られる。  Then, after various exposure conditions are set, the reticle alignment sensor RA measures the reference flat plate WFP and performs reticle alignment. In addition, the wafer alignment sensor WA1 measures the reference plane plate AFP, and the baseline measurement of the alignment sensor is performed. Further, the reference flat plate WFP is measured by the wafer alignment sensors WA1 and WA2, and fine alignment of the wafer W (enhanced Grono no alignment (EGA), etc.) is performed. Thus, the arrangement coordinates of the plurality of shot areas on the wafer W are obtained.
上述したァライメント作業が終了すると、制御装置 CONTはァライメント結果に基づ いてウェハ W側の X軸レーザ干渉計 123及び Y軸レーザ干渉計の計測値をモニタし つつ、ウェハ Wのファーストショット(第 1番目のショット領域)の露光のための加速開 始位置(走查開始位置)にウェハステージ駆動部 WSTDに指令してウェハステージ WSTを移動させる。  When the above-described alignment operation is completed, the control device CONT monitors the measurement values of the X-axis laser interferometer 123 and the Y-axis laser interferometer on the wafer W side based on the alignment result, and performs the first shot of the wafer W (first time). The wafer stage drive WSTD is commanded to move the wafer stage WST to the acceleration start position (running start position) for exposure of the (th shot area).
そして、走査開始位置において、制御装置 CONTの管理の下で、焦点位置検出 系センサ AFからウェハ Wに複数のスリット光を投光すると共に Zステージ ZSを駆動し て、レチクル Rの回路パターン PAの結像面にウェハ Wの露光面を合わせる作業(焦 点合わせ)が行われる。  Then, at the scanning start position, under the control of the control device CONT, a plurality of slit lights are projected from the focus position detection system sensor AF to the wafer W, and the Z stage ZS is driven, so that the circuit pattern PA of the reticle R is formed. The work of adjusting the exposure surface of the wafer W to the image plane (focusing) is performed.
準備作業が完了すると、制御装置 CONTは、レチクルステージ駆動部 RSTD及び ウェハステージ駆動部 WSTDに指令して、レチクルステージ RST及びウェハステー ジ WST (XYステージ XYS)との X軸方向の走査を開始し、レチクルステージ RST, ウェハステージ WSTがそれぞれの目標走査速度に達すると、露光光 ELによってレ チクル Rのパターン領域が照射され、走查露光が開始される。  When the preparation work is completed, the controller CONT instructs the reticle stage driving unit RSTD and the wafer stage driving unit WSTD to start scanning in the X-axis direction with the reticle stage RST and the wafer stage WST (XY stage XYS). When the reticle stage RST and the wafer stage WST reach their respective target scanning speeds, the exposure light EL irradiates the pattern area of the reticle R, and scanning exposure starts.
そして、レチクル Rのパターン領域の異なる領域が露光光 ELで逐次照明され、パタ ーン領域全面に対する照明が完了することにより、ウェハ W上のファーストショット領 域に対する走查露光が終了する。これにより、レチクル Rの回路パターン PAが投影 光学系 PLを介してウェハ W上のファーストショット領域のレジスト層に縮小転写される このファーストショット領域に対する走查露光が終了すると、制御装置 CONTにより 、ウェハステージ WSTが X, Y軸方向にステップ移動し、セカンドショット領域の露光 のための加速開始位置に移動する。すなわち、ショット間ステッピング動作が行われ る。 Then, different areas of the pattern area of the reticle R are sequentially illuminated with the exposure light EL, and the illumination of the entire pattern area is completed, thereby completing the scanning exposure for the first shot area on the wafer W. As a result, the circuit pattern PA of the reticle R is reduced and transferred to the resist layer in the first shot area on the wafer W via the projection optical system PL. When the scanning exposure for this first shot area is completed, the controller CONT Then, the wafer stage WST moves stepwise in the X and Y axis directions, and moves to the acceleration start position for exposure in the second shot area. That is, an inter-shot stepping operation is performed.
そして、セカンドショット領域に対して上述した走查露光を行う。  Then, the scanning exposure described above is performed on the second shot area.
このようにして、ウェハ Wのショット領域の走查露光と次ショット領域の露光のための ステッピング動作とが繰り返し行われ、ウェハ W上の全ての露光対象ショット領域にレ チクル Rの回路パターン ΡΑが順次転写される。  In this way, the running exposure of the shot area of the wafer W and the stepping operation for the exposure of the next shot area are repeatedly performed, and the circuit pattern の of the reticle R is present in all the exposure target shot areas on the wafer W. The images are sequentially transferred.
[0046] 上述したように、露光作業に先立つ準備作業において、上述した各種センサ (AF, RA, WAl, WA2)により基準平面板 BFP、 AFP、 WFPの各被検面 AR或いは被検 面 ARに形成された各種マークが計測される。 As described above, in the preparatory work prior to the exposure work, the various sensors (AF, RA, WAl, WA2) described above apply the reference planes BFP, AFP, WFP to each of the test surface AR or the test surface AR. The various marks formed are measured.
この際、基準平面板 BFP、 AFP、 WFPの被検面 ARは、高い平面度が維持されて レ、るので、被検面 AR或いは被検面 ARに形成された各種マークを高精度に計測す ること力 Sできる。また、ウェハステージ WSTの移動に伴う基準平面板 BFP、 AFP、 W FPの振動も、スクイーズ効果により制振されるので、更に被検面 AR或いは被検面 A Rに形成された各種マークを高精度に計測することができる。  At this time, the surface AR to be inspected of the reference plane plates BFP, AFP, and WFP maintains high flatness, so that the surface AR to be inspected or various marks formed on the surface AR can be measured with high accuracy. S can do it. In addition, the vibration of the reference plane plates BFP, AFP, and WFP caused by the movement of the wafer stage WST is also damped by the squeeze effect. Can be measured.
これにより、レチクル R及びウェハ Wのァライメント、ウェハ Wのレべリングが高精度 に行われるので、ウェハ W上に微細な回路パターン PAを露光することができる。そし て、半導体メモリの大容量化や CPUプロセッサの高速化'高集積化を達成することが できる。  Thereby, the alignment of the reticle R and the wafer W and the leveling of the wafer W are performed with high precision, so that the fine circuit pattern PA can be exposed on the wafer W. In addition, it is possible to increase the capacity of the semiconductor memory and increase the speed and increase the integration of the CPU processor.
[0047] なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形 状や組合せ等は一例であって、本発明の主旨から逸脱しない範囲においてプロセス 条件や設計要求等に基づき種々変更可能である。本発明は、例えば以下のような変 更をも含むものとする。  [0047] The operation procedure described in the above-described embodiment, or the various shapes and combinations of the constituent members are merely examples, and may be based on the process conditions, design requirements, and the like without departing from the gist of the present invention. Various changes can be made. The present invention includes, for example, the following changes.
[0048] 露光装置 EXにおいて、板部材支持装置 10, 20が適用される板部材として、基準 平面板 BFP, AFP, WFPを挙げた力 これらに限らなレ、。例えば、ウェハステージ上 に配置される照度量、照度むらを計測するための部材等に適用してもよい。  [0048] In the exposure apparatus EX, the plate members to which the plate member supporting devices 10, 20 are applied include the reference plane plates BFP, AFP, and WFP. For example, the present invention may be applied to a member for measuring an illuminance amount and illuminance unevenness arranged on a wafer stage.
[0049] また、板部材支持装置 10, 20が適用される板部材 BFP, AFP, WFPをウェハステ ージ WST上に配置する場合について述べた力 S、例えば、レチクルステージ RST上 に配置する場合であってもよい。 The force S described in the case where the plate members BFP, AFP, and WFP to which the plate member supporting devices 10 and 20 are applied is placed on the wafer stage WST, for example, on the reticle stage RST May be arranged.
[0050] 本発明が適用される露光装置としては、マスクと基板とを静止した状態でマスクのパ ターンを露光し、基板を順次ステップ移動させるステップ'アンド'リピート型の露光装 置を用いてもよい。  An exposure apparatus to which the present invention is applied uses a step-and-repeat type exposure apparatus that exposes a pattern of a mask while keeping the mask and the substrate stationary and sequentially moves the substrate in steps. Is also good.
また、本発明が適用される露光装置として、投影光学系を用いることなくマスクと基 板とを密接させてマスクのパターンを露光するプロキシミティ露光装置を用いてもょレヽ  Further, as an exposure apparatus to which the present invention is applied, a proximity exposure apparatus that exposes a mask pattern by bringing a mask into close contact with a substrate without using a projection optical system may be used.
[0051] 露光装置の用途としては半導体デバイス製造用の露光装置に限定されることなぐ 例えば、角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装 置や、薄膜磁気ヘッドを製造するための露光装置にも広く適当できる。 The application of the exposure apparatus is not limited to an exposure apparatus for manufacturing semiconductor devices. For example, an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern to a square glass plate and a thin film magnetic head are manufactured. It can be widely applied to an exposure apparatus for performing the above.
また、本発明は、投影光学系と基板(ウェハ)との間に供給された液体を介して基板 上に所定のパターンを形成する液浸露光装置にも、必要な液体対策を適宜施したう えで適用可能である。液浸露光装置の構造および露光動作は、例えば国際公開第 99/49504号パンフレット、特開平 6— 124873号、および特開平 10— 303114号に 開示されている。本国際出願で指定した指定国(又は選択した選択国)の国内法令 で許される限りにおいて、上記公報及び対応する米国特許における開示を援用して 本明細書の記載の一部とする。  In addition, the present invention appropriately takes necessary liquid countermeasures also for an immersion exposure apparatus that forms a predetermined pattern on a substrate via a liquid supplied between a projection optical system and a substrate (wafer). Is applicable. The structure and exposure operation of the immersion exposure apparatus are disclosed, for example, in WO 99/49504, JP-A-6-124873, and JP-A-10-303114. To the extent permitted by national legislation in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are incorporated herein by reference.
また、本発明は、ツインステージ型の露光装置にも適用できる。ツインステージ型の 露光装置の構造および露光動作は、例えば特開平 10 - 163099号および特開平 10 —214783号、特表 2000— 505958号あるレ、は米国特許 6, 208, 407号に開示され ている。本国際出願で指定した指定国(又は選択した選択国)の国内法令で許され る限りにおいて、上記公報及び対応する米国特許における開示を援用して木明細書 の記載の一部とする。  The present invention is also applicable to a twin-stage type exposure apparatus. The structure and exposure operation of a twin-stage type exposure apparatus are disclosed in, for example, JP-A-10-163099 and JP-A-10-214783, and JP-T-2000-505958, which are disclosed in US Pat. No. 6,208,407. I have. To the extent permitted by national legislation in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents shall be incorporated by reference into the description of the wood specification.
また、本発明は、特開平 11—135400号に開示されているように、ウェハ等の被処 理基板を保持して移動可能な露光ステージと、各種の計測部材ゃセンサを備えた計 測ステージとを備えた露光装置にも適用することができる。本国際出願で指定した指 定国(又は選択した選択国)の国内法令で許される限りにおいて、上記公報及び対 応する米国特許における開示を援用して本明細書の記載の一部とする。 [0052] また、本発明が適用される露光装置の光源には、 KrFエキシマレーザ(248nm)、 ArFエキシマレーザ(193nm)、 F2レーザ(157nm)等のみならず、 g線(436nm) や i線(365nm)等を用いることができる。さらに、投影光学系の倍率は縮小系のみな らず等倍および拡大系のレ、ずれでもよレ、。 Further, as disclosed in Japanese Patent Application Laid-Open No. 11-135400, an exposure stage capable of holding and moving a substrate to be processed, such as a wafer, and a measurement stage having various measurement members and sensors. The present invention can also be applied to an exposure apparatus having: To the extent permitted by national law in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are hereby incorporated by reference. The light source of the exposure apparatus to which the present invention is applied includes not only a KrF excimer laser (248 nm), an ArF excimer laser (193 nm), an F2 laser (157 nm), but also g-line (436 nm) and i-line. (365 nm) or the like can be used. Furthermore, the magnification of the projection optical system is not limited to the reduction system, but may be the same magnification or magnification system, or may be shifted.
[0053] また、ウェハステージゃレチクルステージにリニアモータを用いる場合は、エアベア リングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮 上型のどちらを用いてもいい。また、ステージは、ガイドに沿って移動するタイプでも いいし、ガイドを設けないガイドレスタイプでもよレ、。さらに、ステージの駆動装置とし て平面モータを用いる場合、磁石ユニット(永久磁石)と電機子ユニットのいずれか一 方をステージに接続し、磁石ユニットと電機子ユニットの他方をステージの移動面側( ベース)に設ければよい。  When a linear motor is used for the wafer stage and the reticle stage, either an air levitation type using an air bearing or a magnetic levitation type using Lorentz force or reactance force may be used. The stage may be a type that moves along a guide or a guideless type that does not have a guide. Further, when a planar motor is used as the stage driving device, one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is connected to the stage moving surface ( Base).
[0054] ウェハステージの移動により発生する反力は、特開平 8 - 166475号公報及びこれ に対応する米国特許 5, 528, 118号に記載されているように、フレーム部材を用い て機械的に床(大地)に逃がしてもよい。本国際出願で指定した指定国(又は選択し た選択国)の国内法令で許される限りにおいて、上記公報及び対応する米国特許に おける開示を援用して本明細書の記載の一部とする。  The reaction force generated by the movement of the wafer stage is mechanically controlled by using a frame member as described in JP-A-8-166475 and US Pat. No. 5,528,118 corresponding thereto. You may escape to the floor (earth). To the extent permitted by national law of the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are incorporated by reference into this specification.
[0055] レチクルステージの移動により発生する反力は、特開平 8-330224号公報及びこ れに対応する米国特許 5, 874, 820号に記載されているように、フレーム部材を用 いて機械的に床(大地)に逃がしてもよい。本国際出願で指定した指定国(又は選択 した選択国)の国内法令で許される限りにおいて、上記公報及び対応する米国特許 における開示を援用して本明細書の記載の一部とする。  [0055] The reaction force generated by the movement of the reticle stage can be measured mechanically by using a frame member as described in JP-A-8-330224 and the corresponding US Patent 5,874,820. You may escape to the floor (ground). To the extent permitted by national law in the designated country (or selected elected country) specified in this international application, the disclosures in the above publications and corresponding US patents are hereby incorporated by reference.
[0056] また、本発明が適用される露光装置は、本願特許請求の範囲に挙げられた各構成 要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保 つように、組み立てることで製造される。これら各種精度を確保するために、この組立 の前後には、各種光学系については光学的精度を達成するための調整、各種機械 系につレ、ては機械的精度を達成するための調整、各種電気系につレ、ては電気的精 度を達成するための調整が行われる。各種サブシステムから露光装置への組立工程 は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管 接続等が含まれる。この各種サブシステムから露光装置への組立工程の前に、各サ ブシステム個々の組立工程があることはいうまでもなレ、。各種サブシステムの露光装 置への組立工程が終了したら、総合調整が行われ、露光装置全体としての各種精度 が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたタリー ンルームで行うことが望ましレ、。 [0056] Further, the exposure apparatus to which the present invention is applied controls various subsystems including the respective constituent elements recited in the claims of the present application while maintaining predetermined mechanical accuracy, electrical accuracy, and optical accuracy. So, it is manufactured by assembling. To ensure these various precisions, before and after this assembly, adjustments to achieve optical precision for various optical systems, adjustments to achieve mechanical precision for various mechanical systems, and adjustments to achieve mechanical precision, Adjustments are made to achieve electrical accuracy for various electrical systems. The assembly process from the various subsystems to the exposure apparatus involves mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping between the various subsystems. Connections are included. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure equipment is completed, comprehensive adjustments are made to ensure the various precisions of the entire exposure equipment. It is desirable that the exposure apparatus be manufactured in a tallied room where the temperature, cleanliness, etc. are controlled.
また、半導体デバイス等のマイクロデバイスは、図 8に示すように、マイクロデバイス の機能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル) を製作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述 した実施形態の露光装置 EXによりマスクのパターンを基板に露光する基板処理ステ ップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ 工程を含む) 205、検查ステップ 206等を経て製造される。  As shown in FIG. 8, a microdevice such as a semiconductor device has a step 201 for designing the function and performance of the microdevice, a step 202 for fabricating a mask (reticle) based on the design step, and a device substrate. Step 203 of manufacturing a certain substrate, substrate processing step 204 of exposing a mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, device assembling step (including dicing step, bonding step, package step) 205, inspection製造 Manufactured through Step 206 etc.

Claims

請求の範囲 The scope of the claims
[I] 所定の面精度を有する領域が形成された板部材を支持する方法において、  [I] In a method for supporting a plate member on which an area having a predetermined surface accuracy is formed,
前記板部材の一端部のみを支持することを特徴とする板部材の支持方法。  A method for supporting a plate member, wherein only one end of the plate member is supported.
[2] 前記一端部と前記領域との間に前記一端部からの変形の伝達を抑制する緩衝部 を設けることを特徴とする請求項 1に記載の板部材の支持方法。  [2] The method of supporting a plate member according to claim 1, wherein a buffering portion for suppressing transmission of deformation from the one end is provided between the one end and the region.
[3] 前記緩衝部は、前記領域と前記一端部とを離隔させるスリットであることを特徴とす る請求項 2に記載の板部材の支持方法。 3. The method of supporting a plate member according to claim 2, wherein the buffer section is a slit that separates the area from the one end.
[4] 前記緩衝部は、前記領域と前記一端部とを連結する弾性ヒンジであることを特徴と する請求項 2又は請求項 3に記載の板部材の支持方法。 4. The method according to claim 2, wherein the buffer is an elastic hinge connecting the region and the one end.
[5] 所定の面精度を有する領域が形成された板部材を支持する方法において、 [5] In a method for supporting a plate member on which an area having a predetermined surface accuracy is formed,
前記領域と前記板部材における被固定領域との間に、前記被固定領域からの変形 の伝達を抑制する緩衝部を設けることを特徴とする板部材の支持方法。  A method of supporting a plate member, comprising: providing a buffer between the region and a fixed region of the plate member for suppressing transmission of deformation from the fixed region.
[6] 前記緩衝部は、前記領域と前記被固定領域とを離隔させるスリットであることを特徴 とする請求項 5に記載の板部材の支持方法。 6. The method according to claim 5, wherein the buffer is a slit that separates the region from the fixed region.
[7] 前記緩衝部は、前記領域と前記被固定領域とを連結する弾性ヒンジであることを特 徴とする請求項 5又は請求項 6に記載の板部材の支持方法。 7. The method according to claim 5, wherein the buffer is an elastic hinge that connects the area and the fixed area.
[8] 前記板部材における被固定領域と狭い隙間を介して対向する面を有する部材を配 置して、前記板部材の振動を抑制することを特徴とする請求項 1から請求項 7のうち いずれか一項に記載の板部材の支持方法。 [8] The method according to any one of [1] to [7], wherein a member having a surface facing a fixed region of the plate member via a narrow gap is disposed to suppress vibration of the plate member. The method for supporting a plate member according to claim 1.
[9] 所定の面精度を有する領域が形成された板部材と、前記板部材を支持する台座と を備える板部材支持装置において、 [9] In a plate member supporting device including: a plate member having an area having a predetermined surface accuracy formed thereon; and a pedestal supporting the plate member.
前記板部材の一端部のみを前記台座に固定して支持することを特徴とする板部材 支持装置。  A plate member supporting device, wherein only one end of the plate member is fixed and supported on the pedestal.
[10] 前記一端部と前記領域との間に前記一端部からの変形の伝達を抑制する緩衝部 を設けることを特徴とする請求項 9に記載の板部材支持装置。  10. The plate member supporting device according to claim 9, wherein a buffer for suppressing the transmission of deformation from the one end is provided between the one end and the region.
[II] 前記緩衝部は、前記領域と前記一端部とを離隔させるスリットであることを特徴とす る請求項 10に記載の板部材支持装置。  [II] The plate member supporting apparatus according to claim 10, wherein the buffer section is a slit for separating the area from the one end.
[12] 前記緩衝部は、前記領域と前記一端部とを連結する弾性ヒンジであることを特徴と する請求項 10又は請求項 11に記載の板部材支持装置。 [12] The buffer is an elastic hinge connecting the region and the one end. The plate member supporting device according to claim 10 or 11, wherein
[13] 所定の面精度を有する領域が形成された板部材と、前記板部材を支持する台座と を備える板部材支持装置にぉレ、て、 [13] A plate member supporting device including a plate member having an area having a predetermined surface accuracy and a pedestal supporting the plate member,
前記領域と前記板部材における被固定領域との間に、前記被固定領域からの変形 の伝達を抑制する緩衝部を設けることを特徴とする板部材支持装置。  A plate member supporting device, comprising: a buffering portion that suppresses transmission of deformation from the fixed region between the region and a fixed region of the plate member.
[14] 前記緩衝部は、前記領域と前記被固定領域とを離隔させるスリットであることを特徴 とする請求項 13に記載の板部材支持方法。 14. The plate member supporting method according to claim 13, wherein the buffer section is a slit that separates the area from the fixed area.
[15] 前記緩衝部は、前記領域と前記被固定領域とを連結する弾性ヒンジであることを特 徴とする請求項 13又は請求項 14に記載の板部材支持方法。 15. The plate member supporting method according to claim 13, wherein the buffer section is an elastic hinge connecting the area and the fixed area.
[16] 前記板部材における被固定領域と狭い隙間を介して対向する対向面を前記台座 に設けることを特徴とする請求項 9から請求項 15のうちいずれか一項に記載の板部 材支持装置。 [16] The plate member support according to any one of [9] to [15], wherein an opposing surface facing the fixed region of the plate member via a narrow gap is provided on the pedestal. apparatus.
[17] 前記板部材は、セラミックス或いはガラスにより形成されることを特徴とする請求項 9 から請求項 16のうちいずれか一項に記載の板部材支持装置。  17. The plate member supporting device according to claim 9, wherein the plate member is formed of ceramic or glass.
[18] 戴置面に板状体を戴置して移動可能な移動部材を有するステージ装置において、 前記移動部材上に請求項 1から請求項 5のうちいずれか一項に記載の方法を用い た板部材支持装置、或いは請求項 9から請求項 17のうちいずれか一項に記載の板 部材支持装置を備えることを特徴とするステージ装置。 [18] In a stage device having a movable member that can move the plate-shaped body on the mounting surface, the method according to any one of claims 1 to 5 is performed on the movable member. 18. A stage device comprising the plate member support device according to claim 9, or the plate member support device according to any one of claims 9 to 17.
[19] 前記板状体と前記板部材支持装置に支持される板部材の高平面度領域とは、同 一高さに配置されることを特徴とする請求項 18に記載のステージ装置。 19. The stage device according to claim 18, wherein the plate-like body and the high flatness region of the plate member supported by the plate member supporting device are arranged at the same height.
[20] マスクを保持するマスクステージと、基板を保持する基板ステージとを有し、前記マ スクに形成されたパターンを前記基板に露光する露光装置において、 [20] An exposure apparatus having a mask stage for holding a mask and a substrate stage for holding a substrate, and exposing a pattern formed on the mask to the substrate.
前記マスクステージと前記基板ステージの少なくとも一方に、請求項 18又は請求項 Claim 18 or Claim 18, wherein at least one of the mask stage and the substrate stage is provided.
19に記載のステージ装置を用いることを特徴とする露光装置。 20. An exposure apparatus using the stage apparatus according to 19.
[21] リソグラフイエ程を含むデバイスの製造方法にぉレ、て、前記リソグラフイエ程にぉレヽ て請求項 20に記載の露光装置を用いることを特徴とするデバイスの製造方法。 [21] A method for manufacturing a device, comprising using the exposure apparatus according to claim 20 in a method for manufacturing a device including a lithographic process.
[22] 基板ステージに載置された基板に所定のパターンを形成するための表示素子用の 露光装置であって、 前記基板ステージが、所定の面精度を有する領域が形成された板部材と該板部材 を支持する台座とを備え、前記板部材は、該板部材の一端部のみが前記台座に固 定されて支持されてレ、ることを特徴とする露光装置。 [22] An exposure apparatus for a display element for forming a predetermined pattern on a substrate mounted on a substrate stage, The substrate stage includes a plate member on which a region having a predetermined surface accuracy is formed, and a pedestal supporting the plate member, wherein the plate member has only one end of the plate member fixed to the pedestal. An exposure apparatus, wherein the exposure apparatus is supported.
マスクステージに載置されたマスクに形成されたパターンを基板ステージに載置さ れた基板上に転写する表示素子用の露光装置であって、  An exposure apparatus for a display element for transferring a pattern formed on a mask mounted on a mask stage onto a substrate mounted on a substrate stage, comprising:
前記マスクステージと前記基板ステージの少なくとも一方が、所定の面精度を有す る領域が形成された板部材と該板部材を支持する台座とを備え、前記板部材は、該 板部材の一端部のみが前記台座に固定されて支持されていることを特徴とする露光 装置。  At least one of the mask stage and the substrate stage includes a plate member in which a region having a predetermined surface accuracy is formed, and a pedestal supporting the plate member, wherein the plate member includes an end portion of the plate member. An exposure apparatus, wherein only the pedestal is fixedly supported by the pedestal.
PCT/JP2005/001224 2004-01-29 2005-01-28 Method and device for supporting plate member, stage device, exposure device, and method of manufacturing device WO2005074015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517518A JPWO2005074015A1 (en) 2004-01-29 2005-01-28 Plate member support method, plate member support apparatus, stage apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-021456 2004-01-29
JP2004021456 2004-01-29

Publications (1)

Publication Number Publication Date
WO2005074015A1 true WO2005074015A1 (en) 2005-08-11

Family

ID=34823793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001224 WO2005074015A1 (en) 2004-01-29 2005-01-28 Method and device for supporting plate member, stage device, exposure device, and method of manufacturing device

Country Status (3)

Country Link
JP (1) JPWO2005074015A1 (en)
TW (1) TW200534424A (en)
WO (1) WO2005074015A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129212A (en) * 2005-10-11 2007-05-24 Asml Netherlands Bv Lithographic apparatus
JP2008270491A (en) * 2007-04-19 2008-11-06 Canon Inc Stage apparatus, exposure apparatus, and method for manufacturing device
JP2008311298A (en) * 2007-06-12 2008-12-25 Tokyo Electron Ltd Placing stand and plasma treatment apparatus using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161832A (en) * 1987-12-18 1989-06-26 Nikon Corp Projection aligner
JPH056850A (en) * 1991-02-07 1993-01-14 Nikon Corp Aligner
JPH0519157A (en) * 1991-07-12 1993-01-29 Canon Inc Reflection mirror supporting device and positioning device using the same
JPH09283398A (en) * 1996-04-09 1997-10-31 Nikon Corp Sample stage, reflection mirror-holder and exposing apparatus
JPH10284415A (en) * 1997-04-10 1998-10-23 Nikon Corp Imaging position detecting apparatus and manufacture of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161832A (en) * 1987-12-18 1989-06-26 Nikon Corp Projection aligner
JPH056850A (en) * 1991-02-07 1993-01-14 Nikon Corp Aligner
JPH0519157A (en) * 1991-07-12 1993-01-29 Canon Inc Reflection mirror supporting device and positioning device using the same
JPH09283398A (en) * 1996-04-09 1997-10-31 Nikon Corp Sample stage, reflection mirror-holder and exposing apparatus
JPH10284415A (en) * 1997-04-10 1998-10-23 Nikon Corp Imaging position detecting apparatus and manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129212A (en) * 2005-10-11 2007-05-24 Asml Netherlands Bv Lithographic apparatus
JP4541338B2 (en) * 2005-10-11 2010-09-08 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
JP2008270491A (en) * 2007-04-19 2008-11-06 Canon Inc Stage apparatus, exposure apparatus, and method for manufacturing device
JP2008311298A (en) * 2007-06-12 2008-12-25 Tokyo Electron Ltd Placing stand and plasma treatment apparatus using the same

Also Published As

Publication number Publication date
JPWO2005074015A1 (en) 2007-09-13
TW200534424A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
US8508718B2 (en) Wafer table having sensor for immersion lithography
KR102211380B1 (en) Transfer system, exposure apparatus, transfer method, exposure method, device manufacturing method, and suction apparatus
JP5109661B2 (en) Exposure apparatus and exposure method
US7433050B2 (en) Exposure apparatus and exposure method
JP5024043B2 (en) Measuring system
WO2001027978A1 (en) Substrate, stage device, method of driving stage, exposure system and exposure method
KR20040007448A (en) Holding device, holding method, exposure device, and device manufacturing method
WO2009084199A1 (en) Exposure device, exposure method, and device manufacturing method
JP2004014915A (en) Stage apparatus and aligner
JP2001307983A (en) Stage device and aligner
WO2005074015A1 (en) Method and device for supporting plate member, stage device, exposure device, and method of manufacturing device
JP2003324053A (en) Stage device and exposure device
US20040145751A1 (en) Square wafer chuck with mirror
TW514983B (en) Stage device and exposure device
JP2006066589A (en) Stage device and exposure equipment, device-manufacturing method and method of driving stage device
JP2002175963A (en) Stage system and method of controlling position thereof, and aligner and method of exposure
JP2007311597A (en) Interferometer system, stage apparatus, and exposure apparatus
JP2004153092A (en) Aligner
JP2001345256A (en) Stage device and aligner
JP2005331009A (en) Vibration control device and exposing device
JP2004119695A (en) Projection optical equipment and aligner
JP2006349488A (en) Interferometer system, stage device, exposure device, and device manufacturing method
JP2013218017A (en) Mobile device, exposure device, device manufacturing method and flat panel display manufacturing method, and mobile system
WO2007145165A1 (en) Stage apparatus, exposure apparatus and device manufacturing method
JP2001110717A (en) Stage and stage contrl method, and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517518

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase