高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デ ュプレクサ、および通信機装置 High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
技術分野 Technical field
[0001] この発明は、マイクロ波やミリ波等の高周波領域において利用される高周波用誘電 体磁器組成物、ならびにそれを用いて構成される誘電体共振器、誘電体フィルタ、 誘電体デュプレクサ、および通信機装置に関する。 The present invention relates to a high-frequency dielectric ceramic composition used in a high-frequency region such as a microwave and a millimeter wave, and a dielectric resonator, a dielectric filter, a dielectric duplexer, and a dielectric resonator formed using the same. The present invention relates to a communication device.
背景技術 Background art
[0002] マイクロ波やミリ波等の高周波領域にお!ヽて、誘電体共振器や回路基板等を構成 する材料として、誘電体磁器が広く利用されている。 [0002] Dielectric ceramics are widely used as materials for forming dielectric resonators, circuit boards, and the like in high-frequency regions such as microwaves and millimeter waves.
[0003] このような高周波用誘電体磁器力 特に誘電体共振器や誘電体フィルタ等の用途 に向けられる場合、要求される誘電特性としては、(1)誘電体中では電磁波の波長 力 S 1Z( E 1/2)に短縮されるので、小型化の要求への対応として比誘電率(ε )が高 いこと、(2)誘電損失が小さい、すなわち Q値が高いこと、(3)共振周波数の温度安 定性が優れている、すなわち共振周波数の温度係数( τ )が OppmZ°C付近である f [0003] Such dielectric ceramics for high frequencies, particularly when used for applications such as dielectric resonators and dielectric filters, require the following dielectric properties: (1) the wavelength of electromagnetic waves in a dielectric S 1Z (E 1/2 ) to meet the demand for miniaturization, high dielectric constant (ε), (2) low dielectric loss, that is, high Q value, (3) resonance The temperature stability of the frequency is excellent, that is, the temperature coefficient (τ) of the resonance frequency is around OppmZ ° C.
こと等が挙げられる。 And the like.
[0004] ここで τ は、 25°Cにおける共振周波数 (f )と、 55°Cにおける共振周波数 (f )の f 25 55 値とを用いて、共振周波数温度曲線を直線近似したときの傾き(1次微係数)を表わ すものであり、その値は τ = (f f ) /[f ' (55°〇— 25°C) ]の式によって求められ f 55 25 25 [0004] Here, τ is a slope (直線) obtained by linearly approximating the resonance frequency temperature curve using the resonance frequency (f) at 25 ° C and the f2555 value of the resonance frequency (f) at 55 ° C. The first derivative), and its value is calculated by the formula of τ = (ff) / [f '(55 ° 〇—25 ° C)].
る。 The
[0005] 従来、上述したような要求を満たし得る高周波用誘電体磁器組成物として、例えば 特許文献 1に記載の Ba (Mg、 Co、 Ta、 Nb) 0系や特許文献 2に記載の Ba (Mg、 C Conventionally, as a dielectric ceramic composition for high frequency that can satisfy the above-mentioned requirements, for example, Ba (Mg, Co, Ta, Nb) 0 system described in Patent Document 1 or Ba (Mg, Co, Ta, Nb) 0 described in Patent Document 2 Mg, C
3 Three
o、 Ta、 Nb) 0に Al O、 Cr O、 Y O、 Mn Oを添加した系等が、既に多数提案さ o, Ta, Nb) Many systems have already been proposed, including AlO, CrO, YO, and MnO added to 0.
3 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3
れている。 It is.
特許文献 1 :特開昭 61-224211号公報 Patent Document 1: JP-A-61-224211
特許文献 2:特公平 5 - 15006号公報 Patent Document 2: Japanese Patent Publication No. 5-15006
発明の開示
発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0006] 近年、電子機器の低損失化、かつ小型化の要求が高まり、誘電体共振器や誘電体 フィルタ等の用途に向けられる高周波用誘電体磁器に要求される誘電特性に関して [0006] In recent years, there has been an increasing demand for lower loss and smaller size of electronic devices, and the dielectric characteristics required for high-frequency dielectric porcelain for applications such as dielectric resonators and dielectric filters have been increased.
、より優れたものが必要とされるようになつている。特に、高周波領域で使用しても、高 い ε 、高い Q値、および高い温度安定性( τ力 SOppmZ°C付近)を併せ持つ材料に 対する要求が高まってきて 、る。 There is a need for better things. In particular, there is an increasing demand for a material having high ε, high Q value, and high temperature stability (τ force near SOppmZ ° C) even when used in the high frequency range.
[0007] ここで、特許文献 1および特許文献 2に記載された組成系を有する誘電体磁器組 成物 ίま、 ε 力 S約 26一 32であり、 直(1GHz)力約 120, 000一 150, 000であり、 τ は 0 ± 6ppmZ°C付近で制御できる、優れた高周波用誘電体材料である。 [0007] Here, a dielectric porcelain composition having a composition system described in Patent Document 1 and Patent Document 2 has an ε force of about 26 to 32 and a direct (1 GHz) force of about 120,000 to 1 It is 150,000, and τ is an excellent high frequency dielectric material that can be controlled near 0 ± 6ppmZ ° C.
[0008] し力しながら、近年の通信技術の進歩に伴い、それを支えるための高性能な高周 波用電子部品が必要となっており、そのような高周波用電子部品の開発に不可欠な 、従来よりさらに優れた特性を示す高周波用誘電体材料が求められている。 [0008] However, with the recent advancement of communication technology, high-performance electronic components for high frequency are needed to support it, and it is indispensable for the development of such electronic components for high frequency. There is a need for a high-frequency dielectric material exhibiting even better characteristics than before.
[0009] この発明の目的は、上記課題を解決するためになされたもので、マイクロ波やミリ波 等の高周波領域で使用しても、高い ε と高い Q値を有し、また τの絶対値が小さい r f [0009] An object of the present invention is to solve the above problems, and has a high ε and a high Q value even when used in a high frequency region such as a microwave or a millimeter wave, and has an absolute value of τ. Small value rf
、高周波用誘電体磁器組成物を提供することにある。また、この発明は、この高周波 用誘電体磁器組成物を用いた誘電体共振器、誘電体フィルタ、誘電体デュプレクサ Another object of the present invention is to provide a high frequency dielectric ceramic composition. Further, the present invention provides a dielectric resonator, a dielectric filter, and a dielectric duplexer using the dielectric ceramic composition for high frequencies.
、および通信機装置を併せて提供することを目的として!/、る。 , And communicator devices together!
課題を解決するための手段 Means for solving the problem
[0010] この発明の請求項 1に記載の高周波用誘電体磁器組成物は、組成式: Ba{ (Mg C a o ) (Ta Nb ) } O (ただし、 wは磁器としての電気的中性を保つのに必要な正[0010] The dielectric ceramic composition for a high frequency wave according to claim 1 of the present invention has a composition formula: Ba {(MgCao) (TaNb)} O (where w is an electrical neutrality as a porcelain). Positive needed to keep
1 a X b 1— b 1-χ ν w 1 a X b 1— b 1-χ ν w
の数)で表わされる組成を有し、上記組成式における a、 b、 x、および vが、 0. l≤a≤ 0. 9、0. l≤b≤0. 9、0. 315≤x≤0. 345、 0. 98≤v≤l . 03の範囲内にある主 成分 100重量部に対して、 CuOおよび Zまたは CeOである副成分を、合計量で 0. A), b, x, and v in the above composition formula are 0.1 l≤a≤0.9, 0.l≤b≤0.9, 0.315≤x ≤0.345, 0.98≤v≤l.03 100 parts by weight of the main component in the range of CuO and Z or CeO as minor components in a total amount of 0.
2 2
001— 1. 0重量部含有することを特徴とするものである。 001-1.0 parts by weight.
[0011] また、この発明の請求項 2に記載の誘電体共振器は、誘電体磁器が入出力端子に 電磁界結合して作動するものである誘電体共振器であって、前記誘電体磁器は、請 求項 1に記載の高周波用誘電体磁器組成物からなることを特徴とするものである。 [0011] Further, the dielectric resonator according to claim 2 of the present invention is a dielectric resonator that operates by electromagnetically coupling a dielectric porcelain to an input / output terminal, wherein the dielectric porcelain operates. Is characterized by comprising the dielectric ceramic composition for high frequencies according to claim 1.
[0012] また、この発明の請求項 3に記載の誘電体フィルタは、請求項 2に記載の誘電体共
振器と、この誘電体共振器の入出力端子に接続される外部結合手段とを備えたこと を特徴とするものである。 [0012] Further, the dielectric filter according to claim 3 of the present invention is a dielectric filter according to claim 2. A vibrator and external coupling means connected to the input / output terminal of the dielectric resonator.
[0013] また、この発明の請求項 4に記載の誘電体デュプレクサは、少なくとも 2つの誘電体 フィルタと、前記誘電体フィルタのそれぞれに接続される入出力接続手段と、前記誘 電体フィルタに共通に接続されるアンテナ接続手段とを備える誘電体デュプレクサで あって、前記誘電体フィルタの少なくとも 1つが請求項 3に記載の誘電体フィルタであ ることを特徴とするちのである。 [0013] Furthermore, the dielectric duplexer according to claim 4 of the present invention has at least two dielectric filters, input / output connection means connected to each of the dielectric filters, and common to the dielectric filters. A dielectric duplexer comprising: an antenna connecting means connected to the dielectric filter, wherein at least one of the dielectric filters is the dielectric filter according to claim 3.
[0014] さらに、この発明の請求項 5に記載の通信機装置は、請求項 4に記載の誘電体デュ プレクサと、この誘電体デュプレクサの少なくとも 1つの入出力接続手段に接続される 送信用回路と、この送信用回路に接続される上述の入出力手段とは異なる、少なくと も 1つの入出力接続手段に接続される受信用回路と、前記誘電体デュプレクサのァ ンテナ接続手段に接続されるアンテナとを備えたことを特徴とするものである。 [0014] Further, according to a fifth aspect of the present invention, there is provided a communication device, comprising: the dielectric duplexer according to the fourth aspect; and a transmission circuit connected to at least one input / output connection means of the dielectric duplexer. And a receiving circuit connected to at least one input / output connecting means different from the above-mentioned input / output means connected to the transmitting circuit, and connected to an antenna connecting means of the dielectric duplexer. An antenna is provided.
発明の効果 The invention's effect
[0015] この発明によれば、組成式: Ba{ (Mg Co ) (Ta Nb ) } O (ただし、 wは磁器 According to the present invention, the composition formula: Ba {(MgCo) (TaNb)} O (where w is porcelain)
a 1 a x b 1 b 1-χ v w a 1 a x b 1 b 1-χ v w
としての電気的中性を保つのに必要な正の数)で表わされる組成を有し、上記組成 式における a、b、x、および V力 0. l≤a≤0. 9、 0. l≤b≤0. 9、 0. 315≤x≤0. 3 45、 0. 98≤v≤l. 03の範囲内【こある主成分 100重量咅 こ対して、 CuOおよび/ または CeOである副成分を、合計量で 0. 001—1. 0重量部含有するようにしている A, b, x, and V force in the above compositional formulas 0.1, 0.1, 0.1, and 0.1. ≤b≤0.9, 0.315≤x≤0.345, 0.98≤v≤l.03 [100 major components by weight] Ingredients are contained in a total amount of 0.001-1.0 parts by weight
2 2
ので、同一の主成分組成に対して副成分を含有していない場合、すなわち従来の誘 電体磁器組成物と比較して、 ε τの Therefore, when no sub-component is contained for the same main component composition, that is, as compared with the conventional dielectric ceramic composition,
rを低下させたり f 絶対値を大きくしたりすることなく without reducing r or increasing the absolute value of f
、 Q X f値を大きく向上させることができ、さらに優れたマイクロ波誘電特性を示す、高 周波用誘電体磁器組成物を得ることができる。 In addition, a QXf value can be greatly improved, and a high-frequency dielectric ceramic composition exhibiting more excellent microwave dielectric properties can be obtained.
[0016] したがって、例えば基地局、携帯電話、パーソナル無線機、衛星放送受信機等に 搭載される誘電体共振器を小型化し、誘電損失を小さいものとし、また共振周波数の 温度安定性を優れたものとすることができる。その結果、このような誘電体共振器を用 いれば、小型化され、かつ優れた特性を有する誘電体フィルタ、誘電体デュプレクサ 、および通信機装置を有利に構成することができる。 [0016] Therefore, for example, the dielectric resonator mounted on a base station, a mobile phone, a personal wireless device, a satellite broadcast receiver, and the like is reduced in size, the dielectric loss is reduced, and the temperature stability of the resonance frequency is improved. Things. As a result, by using such a dielectric resonator, it is possible to advantageously configure a dielectric filter, a dielectric duplexer, and a communication device having reduced size and excellent characteristics.
図面の簡単な説明
[0017] [図 1]この発明の高周波用誘電体磁器組成物を用いて構成される誘電体共振器 1の 基本的構造を図解的に示す断面図である。 Brief Description of Drawings FIG. 1 is a cross-sectional view schematically showing a basic structure of a dielectric resonator 1 formed by using the dielectric ceramic composition for high frequencies of the present invention.
[図 2]図 1に示した誘電体共振器を用いて構成される通信機装置の一例を示すブロッ ク図である。 FIG. 2 is a block diagram illustrating an example of a communication device configured using the dielectric resonator illustrated in FIG. 1.
符号の説明 Explanation of symbols
[0018] 1 誘電体共振器 [0018] 1 dielectric resonator
2 金属ケース 2 Metal case
3 支持台 3 Support
4 誘電体磁器 4 Dielectric porcelain
5、 6 結合ループ 5, 6 coupling loop
7、 8 同軸ケーブル 7, 8 Coaxial cable
10 通信機装置 10 Communication equipment
12 誘電体デュプレクサ 12 Dielectric duplexer
14 送信用回路 14 Transmission circuit
16 受信用回路 16 Receiver circuit
18 アンテナ 18 antenna
20 入力接続手段 20 Input connection means
22 出力接続手段 22 Output connection means
24 アンテナ接続手段 24 Antenna connection means
26、 28 誘電体フィルタ 26, 28 Dielectric filter
30 外部結合手段 30 External coupling means
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0019] まず、この発明の高周波用誘電体磁器組成物が適用される本発明の誘電体共振 器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置の一実施形態につい て説明する。 First, an embodiment of a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device of the present invention to which the dielectric ceramic composition for high frequencies of the present invention is applied will be described.
[0020] 図 1は、この発明の高周波用誘電体磁器組成物を用いて構成される本実施形態の 誘電体共振器の基本的構造を図解的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a basic structure of a dielectric resonator of the present embodiment constituted by using the dielectric ceramic composition for high frequencies of the present invention.
[0021] 誘電体共振器 1は、図 1に示すように金属ケース 2を備え、金属ケース 2内の空間に
は、支持台 3によって支持された柱状の誘電体磁器 4が配置されている。そして、同 軸ケーブル 7の中心導体と外導体との間に結合ループ 5を形成して入力端子とする。 また、同軸ケーブル 8の中心導体と外導体との間に結合ループ 6を形成して出力端 子とする。それぞれの端子は、外導体と金属ケース 2とが電気的に接合された状態で 、金属ケース 2によって保持されている。 The dielectric resonator 1 includes a metal case 2 as shown in FIG. A columnar dielectric porcelain 4 supported by a support base 3 is arranged. Then, a coupling loop 5 is formed between the center conductor and the outer conductor of the coaxial cable 7 to serve as an input terminal. Also, a coupling loop 6 is formed between the center conductor and the outer conductor of the coaxial cable 8 to serve as an output terminal. Each terminal is held by the metal case 2 with the outer conductor and the metal case 2 electrically connected.
[0022] 誘電体磁器 4は、入力端子および出力端子に電磁界結合して作動するもので、入 力端子力 入力された所定の周波数の信号だけが出力端子力 出力される。 The dielectric porcelain 4 operates by being electromagnetically coupled to the input terminal and the output terminal, and outputs only a signal of a predetermined frequency that is input to the input terminal.
[0023] このような誘電体共振器 1に備える誘電体磁器 4が、この発明の高周波用誘電体磁 器組成物から構成される。 The dielectric ceramic 4 provided in such a dielectric resonator 1 is made of the high frequency dielectric ceramic composition of the present invention.
[0024] なお、図 1に示した誘電体共振器 1は、基地局等で用いられる TE01 δモード共振 器であるが、この発明の高周波用誘電体磁器組成物は、他の ΤΕモード、 ΤΜモード 、および ΤΕΜモードなどを利用する誘電体共振器にも同様に適用することができる The dielectric resonator 1 shown in FIG. 1 is a TE01 δ mode resonator used in a base station or the like, but the high frequency dielectric ceramic composition of the present invention has another の mode, ΤΜ mode. Mode and ΤΕΜ mode can be applied to dielectric resonators as well.
[0025] 図 2は、上述した誘電体共振器 1を用いて構成される通信機装置の一例を示すブ ロック図である。 FIG. 2 is a block diagram illustrating an example of a communication device configured using the above-described dielectric resonator 1.
[0026] 図 2に示した通信機装置 10は、誘電体デュプレクサ 12、送信用回路 14、受信用回 路 16およびアンテナ 18を含む。 The communication device 10 shown in FIG. 2 includes a dielectric duplexer 12, a transmission circuit 14, a reception circuit 16, and an antenna 18.
[0027] 送信用回路 14は、誘電体デュプレクサ 12の入力接続手段 20に接続され、受信用 回路 16は、誘電体デュプレクサ 12の出力接続手段 22に接続される。 [0027] The transmission circuit 14 is connected to the input connection means 20 of the dielectric duplexer 12, and the reception circuit 16 is connected to the output connection means 22 of the dielectric duplexer 12.
[0028] また、アンテナ 18は、誘電体デュプレクサ 12のアンテナ接続手段 24に接続される [0028] The antenna 18 is connected to the antenna connection means 24 of the dielectric duplexer 12.
[0029] この誘電体デュプレクサ 12は、 2つの誘電体フィルタ 26、 28を含む。誘電体フィル タ 26、 28は、この発明の誘電体共振器に外部結合手段を接続して構成されるもので ある。図示の実施形態では、例えば図 1に示した誘電体共振器 1の入出力端子にそ れぞれ外部結合手段 30を接続して、誘電体フィルタ 26、 28のそれぞれが構成され る。そして、一方の誘電体フィルタ 26は、入力接続手段 20と他方の誘電体フィルタ 2 8との間に接続され、他方の誘電体フィルタ 28は、一方の誘電体フィルタ 26と出力接 続手段 22との間に接続される。
[0030] 次に、図 1に示した誘電体共振器 1に備える誘電体磁器 4のように、高周波領域に お!ヽて有利に用いられる、この発明の高周波用誘電体磁器組成物にっ 、て説明す る。 [0029] The dielectric duplexer 12 includes two dielectric filters 26 and 28. The dielectric filters 26 and 28 are configured by connecting external coupling means to the dielectric resonator of the present invention. In the illustrated embodiment, for example, the external coupling means 30 is connected to the input / output terminal of the dielectric resonator 1 shown in FIG. 1, respectively, to form the dielectric filters 26 and 28, respectively. One dielectric filter 26 is connected between the input connection means 20 and the other dielectric filter 28, and the other dielectric filter 28 is connected to the one dielectric filter 26 and the output connection means 22. Connected between. Next, like the dielectric ceramic 4 provided in the dielectric resonator 1 shown in FIG. 1, the high frequency dielectric ceramic composition of the present invention, which is advantageously used in a high frequency region, is used. I will explain.
[0031] この発明の高周波用誘電体磁器組成物は、組成式: Ba{ (Mg Co ) (Ta Nb ) a 1 a x b 1— b The high frequency dielectric porcelain composition of the present invention has a composition formula: Ba {(MgCo) (TaNb) a1axb1—b
} O (ただし、 wは磁器としての電気的中性を保つのに必要な正の数)で表わされ} O (where w is a positive number necessary to maintain electrical neutrality as porcelain)
1— X w 1—X w
る糸且成を有し、上記糸且成式における a、 b、 x、および カ 0. l≤a≤0. 9、 0. l≤b≤ 0. 9、0. 315≤x≤0. 345、 0. 98≤v≤l. 03の範囲内にある主成分 100重量部 に対して、 CuOおよび Zまたは CeOである副成分を、合計量で 0. 001—1. 0重量 A, b, x, and f in the above-mentioned formula.0.1.l≤a≤0.9, 0.l≤b≤0.9, 0.315≤x≤0. 345, 0.98≤v≤l. 03, 100 parts by weight of main component in the range of CuO and Z or CeO subcomponents in a total amount of 0.001-1.0 weight
2 2
部含有する。 Parts.
[0032] この発明にお 、て、上述のような特定的な組成を選んだ根拠となる実施例につ!、て 、以下に説明する。 [0032] In the present invention, an example which is the basis for selecting the specific composition as described above! This will be described below.
実施例 Example
[0033] まず、主成分の出発原料として、高純度の炭酸バリウム (BaCO )、酸化マグネシゥ First, high-purity barium carbonate (BaCO 3) and magnesium oxide
3 Three
ム(MgO)、炭酸コバルト(CoCO )、酸化タンタル (Ta O )、および酸化ニオブ(Nb (MgO), cobalt carbonate (CoCO), tantalum oxide (TaO), and niobium oxide (Nb
3 2 5 2 o )の各粉末を準備した。 3 25 2 o) were prepared.
5 Five
[0034] これらの出発原料粉末を、表 1一表 3に示す a、 b、 xおよび vが組成式: Ba{ (Mg C a o ) (Ta Nb ) } O (ただし、 wは磁器としての電気的中性を保つのに必要な正 [0034] In these starting material powders, a, b, x, and v shown in Table 1 and Table 3 have the composition formula: Ba {(MgCao) (TaNb)} O (where w is electric power as porcelain). Positive required to maintain neutrality
1 a X b 1— b 1-χ ν w 1 a X b 1— b 1-χ ν w
の数)で表わされる組成となるように調合し、調合後の出発原料粉末を、それぞれボ ールミルを用いて 16時間湿式混合して均一に分散させた後、脱水および乾燥処理 を施して調整粉末を得た。 ), And the prepared starting material powders are wet-mixed using a ball mill for 16 hours to disperse them uniformly, and then subjected to dehydration and drying treatments to prepare the adjusted powders. Got.
[0035] 得られた調整粉末を 1100— 1300°Cの温度で 3時間仮焼し、主成分原料粉末を調 製した。 [0035] The obtained adjusted powder was calcined at a temperature of 1100 to 1300 ° C for 3 hours to prepare a main component raw material powder.
[0036] 次に、副成分の出発原料として、高純度の酸化銅 (CuO)および酸ィ匕セリウム (Ce O )の各粉末をそれぞれ準備した。 Next, powders of high-purity copper oxide (CuO) and cerium oxide (Ce 2 O 3) were prepared as starting materials for the auxiliary components.
2 2
[0037] 前記主成分原料粉末 100重量部に対して、これらの副成分出発原料粉末が表 1一 表 3に示す重量部となるようにそれぞれ調合し、さらに適量のバインダをそれぞれ加 えて、これらを、再びボールミルを用いて 16時間湿式粉砕させた後、脱水および乾 燥処理を施してそれぞれの焼成用粉末を調製した。
[0038] そして、これらの焼成用粉末を、それぞれ 1. 47 X 102— 2. 45 X 102MPaの圧力 で円板状にプレス成形した後、これらの焼成用粉末を 1450— 1600°Cの温度で 4一 24時間、大気中あるいは高酸素濃度雰囲気中においてそれぞれ焼成し、表 1一表 3 に示した試料番号 1一 98の試料として直径 10mm、厚さ 5mmの円板状の焼結体を を得た。 [0037] Based on 100 parts by weight of the main component raw material powder, these auxiliary component starting raw material powders are prepared so as to have the weight parts shown in Table 1 and Table 3, respectively, and an appropriate amount of a binder is added thereto. Was again wet-pulverized using a ball mill for 16 hours, and then subjected to dehydration and drying treatment to prepare respective firing powders. [0038] Then, these calcined powders, respectively 1. 47 X 10 2 - 2. 45 after press-molded circular plate shape at a pressure of X 10 2 MPa, these firing powder 1450- 1600 ° C At a temperature of 4 to 24 hours in the air or in an atmosphere of high oxygen concentration to obtain a disc-shaped sinter having a diameter of 10 mm and a thickness of 5 mm as the sample No. 1-98 shown in Table 1 I got a body.
[0039] 試料番号 1一 98の試料に係る焼結体について、測定周波数 (f)を 6— 10GHzとし て、共振点ピークを両端短絡型誘電体共振器法にて測定し、 TE011モードにおける 共振点ピーク高さと試料寸法から各試料の ε をそれぞれ求めた。また、共振点ピー ク形状力も各試料の Q値をそれぞれ求め、その時の共振周波数により各試料の Q X f 値に換算した。さらに、各試料について、 TE01 δモードによるキヤビティ法にて共振 周波数をそれぞれ測定し、 25— 55°Cの温度範囲での τをそれぞれ測定した。 [0039] With respect to the sintered body of the sample No. 1-98, the measurement frequency (f) was set to 6 to 10 GHz, and the resonance point peak was measured by the dielectric resonator method with the both ends short-circuited. Ε of each sample was determined from the point peak height and the sample size. In addition, the peak force at the resonance point was obtained for the Q value of each sample, and converted to the QXf value of each sample according to the resonance frequency at that time. In addition, the resonance frequency of each sample was measured by the cavity method in the TE01 δ mode, and τ was measured in the temperature range of 25 to 55 ° C.
f f
[0040] 上述のようにして測定した、試料番号 1一 98の試料に係る焼結体に対応した ε、Q [0040] The ε and Q corresponding to the sintered body of the sample of Sample No. 118 measured as described above were used.
X f値、および τをそれぞれ表 1 Table 1 shows the X f value and τ respectively.
f 一表 3に示した。 f Shown in Table 3.
[0041] [表 1]
[Table 1]
試料 Ba { CMgaCo-, a) x (TabNb-, b) Λ J vOw CuO Ce02 比誘電率 値 共振周波数の温度係数 番"^ a b [重量部] [重量部] [GHz] r C]Sample Ba {CMg a Co-, a ) x (Ta b Nb-, b ) Λ J v O w CuO Ce0 2 Relative permittivity Temperature coefficient of resonance frequency No. “^ ab [parts by weight] [parts by weight] [GHz ] r C]
* 1 0 0.5 0.33 1.01 0 0 30.5 87,000 - 7-2 x 2 0 0.5 0.33 1.01 0.05 0 30.5 95,000 -7.3* 1 0 0.5 0.33 1.01 0 0 30.5 87,000-7-2 x 2 0 0.5 0.33 1.01 0.05 0 30.5 95,000 -7.3
* 3 0 0.5 0.33 1.01 0 0.05 30.5 91 ,000 - 7-2 x 0.1 0.5 0.33 1.01 0 0 30.0 103,000 -5.8* 3 0 0.5 0.33 1.01 0 0.05 30.5 91,000-7-2 x 0.1 0.5 0.33 1.01 0 0 30.0 103,000 -5.8
5 0.1 0.5 0.33 1.01 0.05 0 30.0 123,000 -5.85 0.1 0.5 0.33 1.01 0.05 0 30.0 123,000 -5.8
6 0.1 0.5 0.33 1.01 0 0.05 30.0 126,000 -5.9 7 0.25 0.5 0.33 1.01 0 0 29.5 121 ,000 - 2 06 0.1 0.5 0.33 1.01 0 0.05 30.0 126,000 -5.9 7 0.25 0.5 0.33 1.01 0 0 29.5 121 000-2 0
8 0.25 0.5 0.33 1.01 0.05 0 29.5 142,000 -2.28 0.25 0.5 0.33 1.01 0.05 0 29.5 142,000 -2.2
9 0.25 0.5 0.33 1.01 0 0.05 29.5 139,000 - 2 09 0.25 0.5 0.33 1.01 0 0.05 29.5 139,000-2 0
* 10 0.5 0.5 0.33 1.01 0 0 29.0 140,000 1.0* 10 0.5 0.5 0.33 1.01 0 0 29.0 140,000 1.0
1 1 0.5 0.5 0.33 1.01 0.05 0 29.0 152,000 1 01 1 0.5 0.5 0.33 1.01 0.05 0 29.0 152,000 1 0
12 0.5 0.5 0.33 1.01 0 0.05 29.0 150,000 0.912 0.5 0.5 0.33 1.01 0 0.05 29.0 150,000 0.9
13 0.5 0.5 0.33 1.01 0.025 0.025 29.0 152,000 1 -213 0.5 0.5 0.33 1.01 0.025 0.025 29.0 152,000 1 -2
* 14 0.75 0.5 0.33 1.01 0 0 28.5 159,000 4.2* 14 0.75 0.5 0.33 1.01 0 0 28.5 159,000 4.2
15 0.75 0.5 0.33 1.01 0.05 0 28.5 168,000 4.215 0.75 0.5 0.33 1.01 0.05 0 28.5 168,000 4.2
16 0.75 0.5 0.33 1.01 0 0.05 28.5 171 ,000 4.016 0.75 0.5 0.33 1.01 0 0.05 28.5 171 000 4.0
* 17 0.9 0.5 0.33 1.01 0 0 28.0 179,000 8.1* 17 0.9 0.5 0.33 1.01 0 0 28.0 179,000 8.1
18 0.9 0.5 0.33 1.01 0.05 0 28.0 185,000 8.018 0.9 0.5 0.33 1.01 0.05 0 28.0 185,000 8.0
19 0.9 0.5 0.33 1.01 0 0.05 28.0 188,000 8.2 20 1.0 0.5 0.33 1.01 0 0 27.5 80,000 8.819 0.9 0.5 0.33 1.01 0 0.05 28.0 188,000 8.2 20 1.0 0.5 0.33 1.01 0 0 27.5 80,000 8.8
* 21 1.0 0.5 0.33 1.01 0.05 0 27.5 89,000 8.8 22 1.0 0.5 0.33 1.01 0 0.05 27.5 93,000 8.7 23 0.5 0 0.33 1.01 0 0 34.0 81 ,000 7.5* 21 1.0 0.5 0.33 1.01 0.05 0 27.5 89,000 8.8 22 1.0 0.5 0.33 1.01 0 0.05 27.5 93,000 8.7 23 0.5 0 0.33 1.01 0 0 34.0 81,000 7.5
* 24 0.5 0 0.33 1.01 0.05 0 34.0 90,000 7.7 25 0.5 0 0.33 1.01 0 0.05 34.0 92,000 7.6* 24 0.5 0 0.33 1.01 0.05 0 34.0 90,000 7.7 25 0.5 0 0.33 1.01 0 0.05 34.0 92,000 7.6
* 26 0.5 0.1 0.33 1.01 0 0 33.0 120,000 6—6* 26 0.5 0.1 0.33 1.01 0 0 33.0 120,000 6-6
27 0.5 0-1 0.33 1.01 0.05 0 33.0 143,000 6.827 0.5 0-1 0.33 1.01 0.05 0 33.0 143,000 6.8
28 0.5 0.1 0.33 1.01 0 0.05 33.0 138,000 7 0 29 0.5 0.25 0.33 1.01 0 0 31.0 131 ,000 4.328 0.5 0.1 0.33 1.01 0 0.05 33.0 138,000 7 0 29 0.5 0.25 0.33 1.01 0 0 31.0 131,000 4.3
30 0.5 0.25 0.33 1.01 0.05 0 31.0 148,000 4.230 0.5 0.25 0.33 1.01 0.05 0 31.0 148,000 4.2
31 0.5 0.25 0.33 1.01 0 0.05 31.0 150,000 4.331 0.5 0.25 0.33 1.01 0 0.05 31.0 150,000 4.3
* 32 0.5 0.75 0.33 1.01 0 0 27.0 159,000 - 2 0* 32 0.5 0.75 0.33 1.01 0 0 27.0 159,000-20
33 0.5 0.75 0.33 1.01 0.05 0 27.0 171 ,000 -2.033 0.5 0.75 0.33 1.01 0.05 0 27.0 171 000 -2.0
34 0.5 0.75 0.33 1.01 0 0.05 27.0 170,000 - 2 0 35 0.5 0-9 0.33 1.01 0 0 25.0 182,000 -5.534 0.5 0.75 0.33 1.01 0 0.05 27.0 170,000-2 0 35 0.5 0-9 0.33 1.01 0 0 25.0 182,000 -5.5
36 0.5 0.9 0.33 1.01 0.05 0 25.0 192,000 -5.336 0.5 0.9 0.33 1.01 0.05 0 25.0 192,000 -5.3
37 0.5 0-9 0.33 1.01 0 0.05 25.0 188,000 -5.337 0.5 0-9 0.33 1.01 0 0.05 25.0 188,000 -5.3
* 38 0.5 1.0 0.33 1.01 0 0 24.0 196,000 - 6-1 39 0.5 1 0 0.33 1.01 0.05 0 24.0 198,000 -6.1* 38 0.5 1.0 0.33 1.01 0 0 24.0 196,000-6-1 39 0.5 1 0 0.33 1.01 0.05 0 24.0 198,000 -6.1
* 40 0.5 1.0 0.33 1.01 0 0.05 24.0 201 ,000 -5.9 2]
* 40 0.5 1.0 0.33 1.01 0 0.05 24.0 201,000 -5.9 2]
試料 CuO Ce 2 比誘電率 Qxf値 共振周波数の温度係数 番号 b [重量部] [重量部] ε r [GHz] f[ppm/ CSample CuO Ce 2 Dielectric constant Qxf value Temperature coefficient of resonance frequency No. b [parts by weight] [parts by weight] ε r [GHz] f [ppm / C
*41 0.5 0.5 0.31 1.01 0 0 28.0 69,000 -3.8* 41 0.5 0.5 0.31 1.01 0 0 28.0 69,000 -3.8
*42 0.5 0.5 0.31 1.01 0.05 0 28.0 75,000 - 3-9 43 0.5 0.5 0.31 1.01 0 0.05 28.0 78,000 - 3.9* 42 0.5 0.5 0.31 1.01 0.05 0 28.0 75,000-3-9 43 0.5 0.5 0.31 1.01 0 0.05 28.0 78,000-3.9
*44 CD 0.5 0.5 0.315 1.01 0 0 28.0 110,000 - 30* 44 CD 0.5 0.5 0.315 1.01 0 0 28.0 110,000-30
45 0.5 0.5 0.315 1.01 0.05 0 28.0 129,000 -3.045 0.5 0.5 0.315 1.01 0.05 0 28.0 129,000 -3.0
46 0.5 0.5 0.315 1.01 0 0.05 28.0 130,000 - 3-146 0.5 0.5 0.315 1.01 0 0.05 28.0 130,000-3-1
47 0.5 0.5 0.315 1.01 0.025 0.025 28.0 130,000 -3.247 0.5 0.5 0.315 1.01 0.025 0.025 28.0 130,000 -3.2
*48 0.5 〇 * 48 0.5 〇
0 0.5 0.32 1.01 0 0 28.5 119,000 -0.8 0 0.5 0.32 1.01 0 0 28.5 119,000 -0.8
49 0.5 0.5 0.32 1.01 0.05 0 28.5 135,000 -1.049 0.5 0.5 0.32 1.01 0.05 0 28.5 135,000 -1.0
50 0.5 0.5 0.32 1.01 0 0.05 28.5 136,000 - 1 0 51 0.5 0.5 0.34 1.01 0 0 29.0 150,000 2.850 0.5 0.5 0.32 1.01 0 0.05 28.5 136,000-1 0 51 0.5 0.5 0.34 1.01 0 0 29.0 150,000 2.8
52 0.5 0.5 0.34 1.01 0.05 0 29.0 158,000 2.852 0.5 0.5 0.34 1.01 0.05 0 29.0 158,000 2.8
53 0.5 0.5 0.34 1.01 0 0.05 29.0 165,000 2.953 0.5 0.5 0.34 1.01 0 0.05 29.0 165,000 2.9
*54 0.5 0.5 0.345 1.01 0 0 29.5 141,000 5.0* 54 0.5 0.5 0.345 1.01 0 0 29.5 141,000 5.0
55 0.5 0.5 0.345 1.01 0.05 0 29.5 165,000 5.155 0.5 0.5 0.345 1.01 0.05 0 29.5 165,000 5.1
56 0.5 0.5 0.345 1.01 0 0.05 29.5 162,000 4.956 0.5 0.5 0.345 1.01 0 0.05 29.5 162,000 4.9
57 0.5 0.5 0.345 1.01 0.025 0.025 29.5 168,000 4.957 0.5 0.5 0.345 1.01 0.025 0.025 29.5 168,000 4.9
*58 0.5 0.5 0.35 1. o01 0 0 29.5 81,000 6.1* 58 0.5 0.5 0.35 1.o01 0 0 29.5 81,000 6.1
*59 0.5 0.5 0.35 1.01 0.05 0 29.5 92,000 6.2* 59 0.5 0.5 0.35 1.01 0.05 0 29.5 92,000 6.2
*60 0.5 0.5 0.35 1.01 0 0.05 29.5 89,000 6.2* 60 0.5 0.5 0.35 1.01 0 0.05 29.5 89,000 6.2
*61 0.5 0.5 0.33 0.97 0 0 焼結せず * 61 0.5 0.5 0.33 0.97 0 0 Not sintered
*62 0.5 0.5 0.33 0.97 0.05 0 焼結せず * 62 0.5 0.5 0.33 0.97 0.05 0 Not sintered
*63 0.5 0.5 0.33 0.97 0 0.05 焼結せず * 63 0.5 0.5 0.33 0.97 0 0.05 Not sintered
*64 0.5 0.5 0.33 0.98 0 0 27.0 106,000 8.8 * 64 0.5 0.5 0.33 0.98 0 0 27.0 106,000 8.8
65 0.5 0.5 0.33 0.98 0.05 0 27.0 130,000 8.865 0.5 0.5 0.33 0.98 0.05 0 27.0 130,000 8.8
66 0.5 0.5 0.33 0.98 0 0.05 27.0 127,000 8.866 0.5 0.5 0.33 0.98 0 0.05 27.0 127,000 8.8
67 0.5 0.5 0.33 0.98 0.025 0.025 27.0 127,000 8.867 0.5 0.5 0.33 0.98 0.025 0.025 27.0 127,000 8.8
*68 0.5 0.5 0.33 0.99 0 0 28.0 110,000 6.2* 68 0.5 0.5 0.33 0.99 0 0 28.0 110,000 6.2
69 0.5 0.5 0.33 0.99 0.05 0 28.0 136,000 6—369 0.5 0.5 0.33 0.99 0.05 0 28.0 136,000 6-3
70 0.5 0.5 0.33 0.99 0 0.05 28.0 133,000 6.170 0.5 0.5 0.33 0.99 0 0.05 28.0 133,000 6.1
0.5 0.5 0.33 1.00 0 0 29.0 122,000 0.10.5 0.5 0.33 1.00 0 0 29.0 122,000 0.1
72 0.5 0.5 0.33 1 00 0.05 0 29.0 142,000 072 0.5 0.5 0.33 1 00 0.05 0 29.0 142,000 0
73 0.5 0.5 0.33 1.00 0 0.05 29.0 144,000 0.173 0.5 0.5 0.33 1.00 0 0.05 29.0 144,000 0.1
*74 0.5 0.5 0.33 1.02 0 0 29.0 130,000 5.9* 74 0.5 0.5 0.33 1.02 0 0 29.0 130,000 5.9
75 0.5 0.5 0.33 1.02 0.05 0 29.0 153,000 5.975 0.5 0.5 0.33 1.02 0.05 0 29.0 153,000 5.9
76 0.5 0.5 0.33 1.02 0 0.05 29.0 153,000 5.6 ΊΊ 0.5 0.5 0.33 1.03 0 0 28.0 105,000 9.176 0.5 0.5 0.33 1.02 0 0.05 29.0 153,000 5.6 ΊΊ 0.5 0.5 0.33 1.03 0 0 28.0 105,000 9.1
78 0.5 0.5 0.33 1.03 0.05 0 28.0 113,000 8.878 0.5 0.5 0.33 1.03 0.05 0 28.0 113,000 8.8
79 0-5 0.5 0.33 1.03 0 0.05 28.0 112,000 8.879 0-5 0.5 0.33 1.03 0 0.05 28.0 112,000 8.8
80 0.5 0.5 0.33 1.03 0.025 0.025 28.0 113,000 8.980 0.5 0.5 0.33 1.03 0.025 0.025 28.0 113,000 8.9
*81 0.5 0.5 0.33 1.04 0 0 27.5 72,000 11.2* 81 0.5 0.5 0.33 1.04 0 0 27.5 72,000 11.2
*82 0.5 0.5 0.33 1.04 0.05 0 27.5 79,000 11-2* 82 0.5 0.5 0.33 1.04 0.05 0 27.5 79,000 11-2
*83 0.5 0.5 0.33 1.04 0 0.05 27.5 79,000 11.1* 83 0.5 0.5 0.33 1.04 0 0.05 27.5 79,000 11.1
[0043] [表 3] [Table 3]
[0044] 表 1 表 3において、試料番号に *を付したものは、この発明の範囲外の試料であ る。
[0045] 表 1一表 3に示すように、主成分が組成式: Ba{ (Mg Co ) (Ta Nb ) } O (た a 1 a x b 1 b 1 - x v w だし、 wは磁器としての電気的中性を保つのに必要な正の数)で表わされる組成を有 し、上記糸且成式における a、 b、 x、および カ 0. l≤a≤0. 9、 0. l≤b≤0. 9、 0. 3 15≤x≤0. 345、 0. 98≤v≤l . 03の範囲内にある試料番号 4一 19、 26— 37、 44 一 57、 64— 80、および 84— 98に係る誘電体磁器糸且成物によれば、、 ε 力 25. 0— 3 3. 0と大きく、 Q X f値力 S100, 000以上と高く、 τの絶対値が 10ppm/°C以内と小 f [0044] In Table 1, in Table 3, samples numbered with * are samples outside the scope of the present invention. [0045] As shown in Table 1 and Table 3, the main component is a composition formula: Ba {(MgCo) (TaNb)} O (a 1 axb 1 b1-xvw, and w is an electric (A positive number necessary to maintain neutrality), and a, b, x, and f in the above Itokatsu formulas 0.l≤a≤0.9, 0.l≤b≤ Sample numbers in the range 0.9, 0.315≤x≤0.345, 0.98≤v≤l.03 4-1 19, 26--37, 44-57, 64--80, and 84-- According to the dielectric porcelain material according to 98, the ε force is as large as 25.0-33.0, the QX f-value force is as high as S100,000 or more, and the absolute value of τ is within 10 ppm / ° C. Small f
έ ヽ、優れたマイクロ波誘電特性を得ることができる。 έ Excellent microwave dielectric properties can be obtained.
[0046] 特に前記各試料に係る焼結体 (誘電体磁器組成物)にお ヽて、主成分 100重量部 に対して、 CuOおよび Ζまたは CeOである副成分を、合計量で 0. 001—1. 0重量 In particular, in the sintered body (dielectric ceramic composition) according to each of the samples, CuO and subcomponents of Ζ or CeO were added in a total amount of 0.001 to 100 parts by weight of the main component. —1.0 weight
2 2
部含有する、本発明の範囲内の試料である試料番号 5、 6、 8、 9、 11一 13、 15、 16 、 18、 19、 27、 28、 30、 31、 33、 34、 36、 37、 45— 47、 49、 50、 52、 53、 55—5 7、 65— 67、 69、 70、 72、 73、 75、 76、 78— 80、 84— 87、 89— 92、および試料 番号 94一 97に係る誘電体磁器組成物によれば、例えば試料番号 10 (従来の誘電 体磁器組成物)と試料番号 11一 13、および試料番号 84— 87との比較力も判るよう に、同一の主成分組成に対して副成分を含有していない場合と比較して、 ε を低下 させたり τ f Sample No. 5, 6, 8, 9, 11, 1-1, 13, 15, 16, 18, 19, 27, 28, 30, 31, 33, 34, 36, 37 , 45—47, 49, 50, 52, 53, 55—57, 65—67, 69, 70, 72, 73, 75, 76, 78—80, 84—87, 89—92, and sample number 94 According to the dielectric ceramic composition according to I-97, for example, as can be seen from the comparative power of Sample No. 10 (conventional dielectric ceramic composition), Sample Nos. Compared to the case where no subcomponent is contained, ε is reduced or τf
fの絶対値を大きくしたりすることなぐ Q X値を大きく向上させることができ Q X value can be greatly improved without increasing the absolute value of f
、さらに優れたマイクロ波誘電特性を得られることが判った。 It was found that even better microwave dielectric properties could be obtained.
[0047] これらに対して、この発明の範囲外にある試料について考察する。 [0047] In contrast, samples outside the scope of the present invention will be considered.
[0048] まず、 a< 0. 1、または a >0. 9の場合には、試料番号 1一 3と試料番号 20— 22に 示すように、それぞれの試料の Q X f値が 100, 000未満で、 Q X f値が低いことが判 つた o [0048] First, when a <0.1 or a> 0.9, as shown in Sample Nos. 13 and 20 to 22, the QX f value of each sample is less than 100,000. And found that the QX f-value was low.o
[0049] 次に、 b< 0. 1の場合には、試料番号 23— 25に示すように、それぞれの Q X f値が 100、 000未満で、 Q X f値が低いことが判った。他方、 b >0. 9の場合には、試料番 号 38— 40に示すように、それぞれの試料の ε 力 未満で、 ε が低いことが判った Next, when b <0.1, as shown in Sample Nos. 23 to 25, it was found that each Q Xf value was less than 100, 000 and the Q Xf value was low. On the other hand, when b> 0.9, as shown in Sample Nos. 38-40, it was found that ε was lower than the ε force of each sample.
[0050] 次に、 Xく 0. 315、または χ>0. 345の場合には、それぞれ試料番号 41一 43と試 料番号 58— 60に示すように、それぞれの試料の Q X f値が 100, 000未満で、 Q X f 値が低いことが判った。
[0051] 次に、 v< 0. 98の場合には、試料番号 61— 63に示すように、 1600°Cでも焼結せ ず、それぞれの試料の焼結性が低下していることが判った。他方、 ν> 1. 03の場合 には、試料番号 81— 83に示すように、それぞれの試料の Q X f値が 100, 000未満 となり、 Q X f値が低ぐまた τの絶対値が 10ppm/°Cを超えて、 ての絶対値が大き f f [0050] Next, when X is 0.315 or χ> 0.345, as shown in Sample Nos. 41-43 and 58-60, the QX f value of each sample is 100%. The QX f value was found to be low at less than, 000. Next, when v <0.98, as shown in Sample Nos. 61-63, it was found that sintering did not occur even at 1600 ° C., and the sinterability of each sample was reduced. Was. On the other hand, when ν> 1.03, as shown in sample numbers 81-83, the QX f value of each sample was less than 100,000, the QX f value was low, and the absolute value of τ was 10 ppm / Above ° C, large absolute value ff
いことが判った。 It turned out.
[0052] 次に、試料番号 88、 93、および試料番号 98に示す副成分の含有量が 1. 0重量部 を超える場合には、例えば試料番号 10 (従来の誘電体磁器組成物)と試料番号 88 の比較力も判るように、同一の主成分組成に対して副成分を含有して 、な 、場合、 すなわち従来の誘電体磁器組成物よりも Q X f値が低下することが判った。 [0052] Next, when the contents of the accessory components shown in Sample Nos. 88, 93 and 98 exceed 1.0 part by weight, for example, Sample No. 10 (conventional dielectric ceramic composition) and Sample No. 10 As can be seen from the comparative power of No. 88, it was found that the QXf value was lower than that of the conventional dielectric porcelain composition in the case where the subcomponent was contained with respect to the same main component composition.
[0053] なお、この発明の高周波用誘電体磁器組成物は、この発明の目的を損なわな ヽ範 囲内で、わずかな副成分をさらに含有させてもよい。例えば、 ZrO、 SiO、 Li 0、 B [0053] The dielectric ceramic composition for high frequencies of the present invention may further contain a small amount of subcomponents within a range that does not impair the object of the present invention. For example, ZrO, SiO, Li 0, B
2 2 2 2 2 2 2 2
O、 PbO、 Bi O、 MnO、 NiO、 Fe O、 Cr O、 V O等を 0. 01— 1. 00重量0 /0 O, PbO, Bi O, MnO , NiO, Fe O, Cr O, 0. The VO like 01- 1.00 wt 0/0
3 2 3 2 2 3 2 3 2 5 3 2 3 2 2 3 2 3 2 5
含有させることで、誘電体磁器の特性を劣化させることなぐ焼成温度を 20— 30°C低 下させることができる。
By containing it, the firing temperature can be lowered by 20-30 ° C without deteriorating the characteristics of the dielectric porcelain.