WO2005072912A1 - Method for producing vitrified diamond whetstone - Google Patents

Method for producing vitrified diamond whetstone Download PDF

Info

Publication number
WO2005072912A1
WO2005072912A1 PCT/JP2005/001124 JP2005001124W WO2005072912A1 WO 2005072912 A1 WO2005072912 A1 WO 2005072912A1 JP 2005001124 W JP2005001124 W JP 2005001124W WO 2005072912 A1 WO2005072912 A1 WO 2005072912A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
abrasive grains
diamond
vitrified
firing
Prior art date
Application number
PCT/JP2005/001124
Other languages
French (fr)
Japanese (ja)
Inventor
Shoso Yamaguchi
Original Assignee
Kure-Norton Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kure-Norton Co., Ltd. filed Critical Kure-Norton Co., Ltd.
Priority to JP2005517487A priority Critical patent/JP4768444B2/en
Priority to KR1020067014997A priority patent/KR101143437B1/en
Priority to CN2005800014588A priority patent/CN1905992B/en
Publication of WO2005072912A1 publication Critical patent/WO2005072912A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents

Definitions

  • the present invention relates to a method for producing a diamond grindstone bonded with a vitrified binder.
  • Japanese Patent Application Laid-Open No. 60-67078 discloses an aluminum phosphate-based binder with a firing temperature of 100 ° C. ° C, firing temperature 150-300 with the inorganic adhesive described in JP-A-2001-71268.
  • Japanese Patent Application Laid-Open No. 2002-18726 discloses a calcination temperature of 590 ° C. or the like with a Li ⁇ _ZnO-based binder.
  • Japanese Patent Publication No. 8-18254 discloses a method in which a powder of a vitreous binder having a softening point of 650 ° C or less is mixed. It is disclosed that the diamond abrasive grains are coated with a vitreous binder before the temperature reaches 650 ° C. or higher during firing, and thereafter firing at 650 ° C. or higher is disclosed.
  • Non-Patent Document 1 Machines and Tools, January 1985, p.156
  • Patent Document 1 JP-A-60-67078
  • Patent Document 2 JP 2001-71268 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-18726
  • Patent Document 4 Japanese Patent Publication No. 8-18254
  • the vitrified diamond grindstone fired in a nitrogen atmosphere has a problem in that the holding power of diamond abrasive grains is weak. That is, in general, a vitrified binder fired in a nitrogen atmosphere has lower strength than a vitrified binder fired in an air atmosphere. It is also known that diamond is generally inert and does not have very strong adhesion between diamond and other substances.It is particularly important that diamond does not have strong adhesion to glass, which mainly constitutes the vitrisulfide binder. This is the general perception of the trader.
  • vitrified diamond grinding wheel required the use of a large amount of binder to maintain the holding power of the diamond abrasive grains.As a result, the porosity of the grinding wheel was reduced, resulting in a poorly sharpened grinding wheel. There was a problem. For this reason, vitrified diamond whetstones are rarely used.
  • CBN abrasive grains diamond and CBN are collectively called superabrasive grains
  • CBN abrasive grains lose less weight due to heating than diamond, so Typically, it is fired in an air atmosphere (in some cases, a nitrogen atmosphere) at 650-950 ° C.
  • borosilicate glass is well used as a binder for CBN abrasive grains.
  • CBN abrasives are active on vitreous binders when compared to diamond abrasives.
  • thermal expansion coefficient matches moderately with that of CBN abrasive grains, it can be a good grinding stone.
  • Diamond abrasive grains also have the same coefficient of thermal expansion as CBN abrasive grains.
  • a glass component having a low softening point tends to have a high thermal expansion coefficient. It uses a monovalent alkali metal (Na, K, Li) as a typical component for softening glass, but it is not preferable to use a large amount because it increases the coefficient of thermal expansion of the vitrified binder. .
  • the softening point of borosilicate glass generally does not apply to the softening point of 650 ° C or lower required in Japanese Patent Publication No. 8-18254, and a typical example of borosilicate glass, Pyrex (registered trademark) trademark) glass, etc. have a problem with adhesion between the thermal expansion coefficient of 3. 2 X 10- 6 diamond abrasive grains and CBN abrasive grains matched forces softening point is higher temperatures the abrasive grains.
  • borosilicate glass undergoes phase separation depending on the heat treatment temperature, and phase separation occurs immediately after heat treatment, especially at low temperatures, and the separated SiO component becomes cristobalite crystals.
  • the above-mentioned prior art vitrisulfide binders cannot be used due to environmental problems. It can be fired at a low temperature of 650 ° C. or lower, but lacks the holding power of abrasive grains.
  • the present invention provides good sharpness and high durability by firing at 650 ° C or more in an air atmosphere, which was conventionally considered impossible by those skilled in the art.
  • An object of the present invention is to provide a method capable of manufacturing a certain vitrified diamond wheel.
  • the production method of the present invention for solving the above-mentioned problem is a method for producing a vitriide diamond grinding wheel, which comprises a step of firing a mixture of a vitrisulfide binder and diamond abrasive grains in an air atmosphere, It is characterized in that a mixture containing a vitrisulfide binder having a softening point higher than 650 ° C is fired in an air atmosphere at 700 ° C to 900 ° C.
  • the production method of the present invention is characterized in that 50 to 65 wt% of Si ⁇ , 5 to 15 wt% of A1 ⁇ , 15 to 25 wt% of B ⁇ , and 1 to 6 wt% of RO (RO is Ca ⁇ , MgO and It is preferable to use a vitrisulfide binder having a chemical composition of at least one selected from BaO force and 410% by weight of R0 (R ⁇ is at least one selected from K0, NaO and Li ⁇ force).
  • vitrifide binder by adding 110% by weight of ceramic fine powder.
  • the vitrifide binder used may be a liquid which is obtained by exposing a cylindrical pellet having a height Z diameter ratio of 0.79 formed from the vitrifide binder to a firing temperature.
  • the pellets have fluidity such that the ratio of the height Z diameter of the pellets becomes 0.1-0.6 by firing.
  • the production method of the present invention provides a method for producing a diamond abrasive coated with a metal or an inorganic material. It is preferred to use granules.
  • the mixture includes cubic boron nitride abrasive grains, alumina-based abrasive grains, silicon carbide-based abrasive grains, silica, cerium oxide, and mullite in addition to the diamond abrasive grains. It may further include one or more abrasive grains selected from the group.
  • the mixture may further include an organic powder or an inorganic hollow body as a pore-forming agent.
  • a vitrified binder having a softening point higher than 650 ° C is used, and firing is performed in an air atmosphere at 700 ° C to 900 ° C.
  • the durability of the vitrified diamond wheel is greatly improved, and the efficiency of various grinding operations is greatly improved.
  • FIG. 1 is a graph showing the results of thermogravimetric and differential thermal analysis by heating test 2.
  • FIG. 2 is a perspective view showing a diamond plate and a binder pad used for a fluidity and wettability test.
  • FIG. 3 is a photograph showing each binder pad after firing as a result of a fluidity and wettability test.
  • FIG. 4 is SEM photographs showing each surface of the untreated and heat-treated abrasive grains as a result of the heat treatment test of the abrasive grains.
  • Non-Patent Document 1 It was confirmed whether or not the burning out of the diamond shown in (Non-Patent Document 1) can be reproduced. Surprisingly, as shown in Example 1 below, no sudden weight loss occurs at 650 ° C. or higher. The residual rate was more than / o (it would completely disappear in non-patent literature). This is contrary to common knowledge that diamonds are rapidly burned out at 650 ° C or higher. Therefore, it was considered that firing could be performed in an air atmosphere at a firing temperature of 650 ° C or higher using diamond abrasives.
  • Patent Document 4 Japanese Patent Publication No. Hei 8-18254 (Patent Document 4), it is 900 if coated with a vitreous binder having a softening point of 650 ° C or less and baked with the diamond abrasive force shut off from air.
  • a vitreous binder having a softening point of 650 ° C or higher was used.
  • firing at 650 ° C or more, specifically 700-900 ° C, under an air atmosphere was possible.
  • the borosilicate glassy vitrified binder used in CBN abrasives etc. can be used favorably, and further studies have been made with a focus on this point.
  • the vitrisulfide binder used in the present invention includes a borosilicate glass-based binder, and its chemical composition is 50 to 65 wt% in consideration of the fluidity and thermal expansion coefficient of the binder.
  • the softening point is too low and the stability of the borosilicate glassy material is lost, causing a phase separation phenomenon, and if it is more than 15wt%, the softening point is too high and the diamond grains are retained. Lack of power.
  • R ⁇ at least one selected from the group consisting of R ⁇ CaO, Mg ⁇ and Ba% forces
  • R 0 (R ⁇ is at least one selected from K 0, Na O and Li ⁇ force) is less than 4 wt%, the softening point is too high, the fluidity of the binder is insufficient, and the If too large, the coefficient of thermal expansion will increase too much.
  • the vitrified binder may be powerful.
  • a fine ceramic material may be added in an amount of 11 Owt%.
  • lwt% or more is preferable to be 10wt% or less from the viewpoint of securing the preferable fluidity.
  • Representative examples of such additives include mullite, dinolecon, anoremina, cordierite, spodumene, lithium aluminum silicate-based crystals, and the like.
  • the softening point of the vitrifide binder is the temperature at which the elongation reaches lmm / min when a 0.55-0.75mm diameter, 235mm long fiber is heated at 4-6 ° CZ for a minute.
  • the viscosity is defined as about 10 7 ⁇ 6 Boys (Glass Dictionary Asakura Shoten, page 376, line 63 from the bottom).
  • the vitrisulfide binder to be used in the present invention has a softening point of 650 ° C or more, preferably 675 ° C or more, more preferably 700 ° C or more, and particularly preferably 750 ° C or more.
  • the setting of such a high soft point has the following advantages. That is, in order to reduce the softening point of the borosilicate glass-based vitrified binder to 650 ° C. or less, it is necessary to add a large amount of the softening promoting component R20 (R2), in which case the thermal expansion coefficient increases. In the firing conditions of the present invention, the properties of the borosilicate glass-based vitrified binder are energized.
  • the upper limit temperature of the softening point is up to a predetermined firing temperature, that is, 700 ° C or less, 725 ° C or less, 750 ° C or less, 800 ° C or less, 850 ° C or less, or 900 ° C. A lower temperature is better. If the predetermined upper limit is exceeded, the holding power of the diamond abrasive tends to be insufficient.
  • the fluidity of the vitrifide binder is important in determining the holding power between the diamond abrasive grains and the vitrifide binder. From this viewpoint, it is desirable that the vitrisulfide binder to be used in the present invention has a predetermined fluidity which can be confirmed by the following fluidity test.
  • a mold having a diameter of 25.4 mm is filled with 15 g of a vitrisulfide binder, and molded to a height of 20 mm.
  • the formed cylindrical pellet is placed on a ceramic, ceramics composite material or refractory which has a surface as smooth as possible without any irregularities and which does not deteriorate at a predetermined firing temperature.
  • the columnar pellets are fired at the same firing temperature as the grinding stone firing. Measure the diameter (largest part) and height of the cylindrical pellets taken out after firing, determine the height / diameter ratio of the pellets, and use this as the fluidity.
  • the height / diameter ratio of the fired pellets is It is preferable to use a vitrisulfide binder having a flowability in the range of 0.1 to 0.6. If the fluidity is less than 0.1, it is not suitable for producing a normal grinding wheel, and if it is more than 0.6, the abrasive holding power tends to decrease.
  • the fluidity is preferably 0.15-0.55 force S, more preferably 0.2-0.50.
  • the vitrified diamond grindstone of the present invention preferably has an abrasive grain volume ratio of 10 to 55% and a pore volume ratio of 1070%.
  • the binder ratio is a value obtained by subtracting the abrasive grain volume ratio and the pore volume ratio from 100.
  • an organic powder or an inorganic hollow body can be used as a pore-forming agent.
  • the organic pore-forming agent is adjusted to a predetermined particle size, is mixed with the grindstone raw material, and forms pores as cavities appearing as it disappears during firing.
  • the inorganic hollow body is a hollow glass or ceramic material, and desirably has a softening point higher than a predetermined firing temperature.
  • the used inorganic hollow body remains in the fired grindstone, and the hollow portion becomes a pore.
  • the type and amount of the pore-forming agent can be appropriately determined in consideration of the grinding conditions in which the grindstone is used.
  • a force capable of using diamond abrasive grains alone can be used in combination with another abrasive material.
  • Other abrasives that can be used together with diamond abrasives are mainly one selected from the group consisting of cubic boron nitride abrasives, alumina-based abrasives, silicon carbide-based abrasives, silica, cerium oxide, mullite, and the like.
  • the above abrasive grains are included. These are exemplifications, and unless otherwise deviated from the object of the present invention, they may be enumerated or other abrasive grains may be used.
  • the particle size range of the diamond abrasive used in the present invention is a force that can be used in a range of coarse particle size # 10000 (average diameter smaller than 1 ⁇ m) expressed by a particle size of 16/18.
  • a range S of # 5000 is preferred, a range force of 100/120 # 3000 is more preferred, and a range of 120/140 # 1000 is particularly preferred.
  • the diamond abrasive used in the present invention can use an abrasive whose surface is not coated. It is more preferable to use an abrasive whose surface is coated with a metal or an inorganic material. It is.
  • diamond abrasive grains are used as abrasives, and A grindstone is formed using a vitrified binder having a borosilicate glassy material and a softening point of 650 ° C or more, and fired in an air atmosphere at 700 to 900 ° C.
  • the diamond abrasive grains are not burned out, and a good vitrified diamond wheel can be manufactured.
  • known methods and conditions that are common technical knowledge in the art may be applied.
  • One skilled in the art would be able to implement any aspect of the invention by adding or changing timely conditions based on the disclosure of the invention.
  • the grindstone manufactured according to the present invention can be applied not only to cylindrical grinding but also to surface grinding and internal grinding.
  • the work material include carbide, silicon, alumina, carbide, nitride, sapphire, quartz, It can be used for grinding and polishing hard and brittle materials such as glass and ceramic materials.
  • the diamond abrasive grains were heated to a high temperature, and a decrease in weight due to heating was confirmed.
  • Non-Patent Document 1 The residual rate was considerably high at 5%, and did not completely disappear at 800 ° C at least as described in the prior art (Non-Patent Document 1). Regarding the heating time, the data in the non-patent literature, such as force S, which has a hold time of 3 hours, and this test, which is 7 hours, are more severe conditions. Nevertheless, the high value of the residual heat rate in the air atmosphere resulted in a sharp decrease in the residual heat rate in the air atmosphere, and diamond abrasive grains did not always completely disappear at 800 ° C. I understood.
  • thermogravimetric / differential thermal analyzer (TG / DTA6300, manufactured by Seiko Instruments Inc. (SII)
  • thermal analysis was performed on diamond abrasive grains of MBG600T mesh 230/270 manufactured by GE.
  • 0.05 g of the above-mentioned abrasive grains was placed in a cup-shaped platinum dish having a diameter of 5.2 mm and a height of 2.5 mm, the temperature was raised at 10 ° C./min, and the weight change was measured.
  • FIG. 1 shows the temperature dependence of TG (thermogravity) and DTA (differential heat) for the abrasive grains. As shown in the figure, the weight of the abrasive grains started to decrease at around 650 ° C, and at 900 ° C more than 80% disappeared.
  • test grindstone was manufactured using a predetermined vitrified binder and the above diamond abrasive grains, and the bending strength was measured.
  • baking in an air atmosphere was taken as Example 1
  • baking in a nitrogen atmosphere was taken as Comparative Example 1 (see Table 3).
  • Vb volume ratio
  • Vp pore volume ratio
  • each test whetstone was subjected to three-point bending strength at a distance between spans of 30 mm and a descent rate of 0.5 mm / min. Three averages were taken for each test piece.
  • Table 3 shows the firing conditions and results of this test.
  • the mixing ratio of the raw materials of the grinding stone used in the grinding test was 506 parts by weight of RVG230 / 270 (manufactured by GE), 494 parts by weight of silicon carbide abrasive (SiC) # 220, and had the chemical composition shown in Table 2 above.
  • An arc-shaped segment whetstone was fabricated for the grinding test.
  • Example 2 After drying the molded segment whetstone at 40 ° C. for 12 hours or more, 16 of them were fired in an air atmosphere of 850 ° C. (Example 2), and the remaining 16 were baked at 950 ° C. It was fired in a nitrogen atmosphere (Comparative Example 2).
  • Each of the baked segment whetstones was bonded onto a metal base having an outer circumference of 190 mm, a thickness of 10 mm, and a shaft hole of 50.8 mm, and was subjected to a finishing process.
  • a 1A1 type grinding wheel with dimensions was manufactured.
  • Polishing layer thickness including diamond 3.0 mm
  • the evaluation items for the grinding test are the grinding resistance, finished surface roughness, and grinding ratio defined below.
  • the grinding ratio is obtained from the work material removal volume Z grinding wheel consumption volume.
  • the power consumption of the grinding wheel motor is W, and it is obtained as 612XWZ peripheral speed (60Z100).
  • the said peripheral speed of a grindstone was used as peripheral speed.
  • the surface roughness of the finished surface of the grindstone to be tested is measured as the ten-point average roughness Rz.
  • the ten-point average roughness Rz is extracted from the roughness curve by the reference length in the direction of the average line, and the average linear force of the extracted portion is measured in the longitudinal magnification direction. It is calculated as the sum of the average of the absolute values of the altitudes Yp of the 5th peak from the highest peak and the average of the absolute values of the altitudes of the valleys of the 5th bottom from the lowest.
  • the classification was based on the standard length of 0.8 mm and the evaluation length of 4 mm.
  • Table 5 shows the results of the grinding test.
  • Example 2 As shown in Table 5, the grinding ratio of Example 2 was significantly higher than that of Comparative Example 2. The surface roughness of the second embodiment is also better.
  • the grinding wheel of Example 1 above has excellent bending strength and grinding performance because a predetermined vitrified binder has high fluidity and wettability on the surface of diamond abrasive grains during high-temperature firing in an air atmosphere. It is considered that strong adhesion was obtained between them. To verify this estimation, we tested the flowability and wettability of the vitrified binder, and performed a heat treatment test on diamond abrasive grains.
  • a vitrifide binder As shown in Fig. 2, on a diamond plate (MWSL5012 manufactured by Element Six) with a length of 5. Omm, an inner diameter of 4. Omm, and a thickness of 1.2 mm, a vitrifide binder with the chemical composition shown in Table 2 above The 3 mm square pad was placed, and baked under the same conditions as in the above bending strength test, that is, under an air atmosphere at 850 ° C. or a nitrogen atmosphere at 950 ° C.
  • FIG. 3 shows each binder pad after firing.
  • an air atmosphere at 850 ° C
  • the binder is well fluidized and well wet to the diamond plate.
  • Firing in a nitrogen atmosphere at 950 ° C. is less fluidized and less wet than in an air atmosphere.
  • the fired material in a nitrogen atmosphere could be easily peeled off from the diamond plate with a toe, but the fired material in an air atmosphere could not be peeled. From the results of this test, it was baked at high temperature in air atmosphere. It has been confirmed that the vitrisulfide binder has higher wettability to the diamond material and better adhesion than the nitrogen atmosphere.
  • the diamond abrasive grains of MBG600T mesh 230Z270 manufactured by GE were spread on a magnetic pad, and heated in an air atmosphere at 700 ° C. for 100 minutes. The reduction in abrasive weight was 4.94 wt%. The surface of the heated diamond abrasive grains was observed by SEM.
  • FIG. 4 shows SEM photographs of the surfaces of the heat-treated abrasive grains, the abrasive grains, and the heat-treated abrasive grains. It was found that the diamond abrasive grains after the heat treatment had fine irregularities formed on the surface thereof, which increased the surface area of the abrasive grains.
  • the abrasive grain surface exposed to the high-temperature air atmosphere partially heated by reacting with oxygen and burned to form submicron-sized irregularities.
  • the formed irregularities provide an adhesive force with an anchoring effect to the binder, thereby improving the abrasive grain holding power.
  • a small amount of metal is added as a catalyst to diamond abrasive grains during the production of abrasives.
  • a metal catalyst improves wettability and adhesion with a vitrified binder. It has been found to help improve.
  • the TG-DTA heating curve obtained in Heating Test 2 above suggests that a weight loss of 5-10 wt% occurs from around 650 ° C to 850 ° C, the firing temperature of this heat treatment test. In fact, in this heat treatment test, the diamond plate was burned off at around 650 ° C, and the metal catalyst was exposed.
  • the metal exposed on the diamond plate is oxidized by oxygen in an air atmosphere, it is considered that the molten vitrisulfide binder wets well on the diamond via the metal oxide catalyst and causes an adhesive reaction. In this way, it is considered that the molten vitrisulfide binder can flow the diamond plate through the exposed and oxidized metal catalyst, so that the flowability is promoted and the adhesiveness is improved. .
  • vitrification of the vitrisulfide binder is promoted in an air atmosphere, and the vitrified binder is more likely to adhere to the diamond surface than in a nitrogen atmosphere.
  • the wettability to be improved Therefore, in high-temperature firing in an air atmosphere, a very high adhesive strength is obtained due to the synergistic effect of the high wettability of the binder on the abrasive grain surface and the formation of irregularities on the abrasive grain surface, and the holding power of the abrasive grains is reduced. It is considered that an improved high-performance grinding wheel could be manufactured.
  • Example 3 For the grindstone of Example 3, a vitrisulfide binder having a chemical composition shown in Table 2 was used.
  • the binder was prepared by first fritting the chemical components other than mullite and then adding the required mullite fines.
  • the raw material containing the mixture was fired in an air atmosphere at 590 ° C. to produce a grindstone.
  • a vitrified binder prepared by subjecting a predetermined chemical component to melt fritting was used.
  • Table 6 summarizes the composition and other conditions of the binder in Comparative Examples 3 and 4.
  • Binder composition (w t 3 ⁇ 4
  • Firing temperature 7 0 or 5 9 O The bending strength of each grindstone was measured in the same manner as in Example 1 above. Table 7 shows the test results.
  • the reduction rate of the weight of the grindstone during baking was measured in Examples 3 and Comparative Examples 3 and 4, and the relationship between the above results and the strength of the grindstone was examined.
  • the reduction rate of the weight of the grindstone is calculated by calculating the weight of each grindstone before and after firing in the above manufacturing process and calculating by: (1-(weight of the grindstone after firing) / (weight of the grindstone before firing)) x 100. did. Table 8 shows the measurement results.
  • the binder used is fritted (and ceramic fine powder is added), it does not contain components that decrease during firing.
  • the same material is used for the primary binder of each grinding wheel. Therefore, the rate of decrease in the weight of the grindstone corresponds to the amount of diamond burned from the surface of each abrasive grain.
  • Example 3 had a reduction rate after firing of about 1% higher than Comparative Examples 3 and 4. That is, in the manufacturing process of Example 3, the diamond abrasive grains are easily burned off. This burning of the diamond occurs during the heating process to the firing temperature, and surprisingly, controlling the behavior of the binder and the change in the surface of the abrasive grains at the time of heating raises the wettability between them. It is considered to contribute to the improvement of the adhesiveness and adhesiveness, and can be specifically described as follows.
  • the amount of diamond burned off depends on the height of the softening point of the binder.
  • the vitrified binder used in Example 3 has a softening point of 800 ° C, and in the process of raising the firing temperature to a final temperature of 850 ° C, the firing temperature becomes 800 ° C.
  • most of the diamond abrasive surface can be exposed under an air atmosphere.
  • the surface of the diamond abrasive grains is gradually burned off in an air atmosphere, and irregularities are formed on the surface, and the metal component is exposed in the abrasive grains containing the metal catalyst.
  • the vitrified bond 1J starts flowing and spreads on the surface of the abrasive grains. Increased wetting of the grain surface results in high adhesion between the vitrified binder and the diamond abrasive.
  • the present invention differs from the prior art in that the use of a binder that softens at a relatively low temperature at which the diamond is not burned off protects the diamond abrasive from its burning. Begins to burn down by using a binder having a softening point higher than 650 ° C, causing moderate burnout of the abrasive grains in an air atmosphere, thereby causing the vitrified binder to bind to the diamond abrasive grains. It can improve wettability and adhesion. As a result, it is possible to manufacture a grindstone having good grinding performance with improved abrasive grain holding power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

Disclosed is a method for producing a durable vitrified diamond whetstone with good sharpening performance through firing at 650˚C or higher in the air atmosphere. Specifically, a method for producing a vitrified diamond whetstone comprising a step for firing a mixture of a vitrified binder and diamond abrasive grains in the air atmosphere is characterized in that the mixture contains a vitrified binder having a softening point higher than 650˚C and the mixture is fired at 700-900˚C in the air atmosphere.

Description

明 細 書  Specification
ビトリフアイドダイヤモンド砥石の製造方法  Method for manufacturing vitrified diamond wheel
技術分野  Technical field
[0001] 本発明は、ビトリフアイド結合剤で結合されたダイヤモンド砥石の製造方法に関する ものである。  The present invention relates to a method for producing a diamond grindstone bonded with a vitrified binder.
背景技術  Background art
[0002] 従来ビトリフアイドダイヤモンド砥石は窒素雰囲気下で焼成されていた。その理由は 、ダイヤモンド砥粒は空気中で加熱すれば 650°C以上の温度から急激に砥粒重量 が減少し 800°C近辺でダイヤモンド砥粒が焼失してしまうからである。これは空気中 の酸素と反応し、二酸化炭素ガスが発生し、要するに燃焼してしまうことが原因である と言われている(1985年 1月号機械と工具 P156 ;本データは R.C.DeVries"Technical information seriesし UDIC Boron Nitnde;handbook of Properties GE社 June 1972年よ り転用されている)。そのため、一般的にはビトリフアイドダイヤモンド砥石の焼成は 65 0°C以上の高温では非酸素雰囲気下、例えば窒素雰囲気下で行われていた。  [0002] Conventionally, a vitrified diamond grindstone has been fired in a nitrogen atmosphere. The reason is that if the diamond abrasive is heated in air, the weight of the abrasive sharply decreases from a temperature of 650 ° C or more, and the diamond abrasive is burned off at around 800 ° C. It is said that this is due to the reaction with oxygen in the air, the generation of carbon dioxide gas and, in short, the burning (Machine and Tools P156, January 1985; this data is from RCDeVries "Technical information series and UDIC Boron Nitnde; handbook of Properties GE, which has been diverted since June 1972.) Therefore, in general, sintering of vitrified diamond wheels is carried out in a non-oxygen atmosphere at a high temperature of 650 ° C or higher. For example, it was performed under a nitrogen atmosphere.
[0003] 一方、空気雰囲気若しくは非酸素雰囲気下で 650°C以下でビトリフアイドダイヤモ ンド砥石を焼成した例としては、特開昭 60—67078号公報ではリン酸アルミニウム系 結合剤で焼成温度 100°C、特開 2001 - 71268号公報では記載の無機接着剤で焼 成温度 150— 300。C、特開 2002—18726号公報では Li〇_ZnO系結合剤で焼成 温度 590°Cなどが開示されてレ、る。  [0003] On the other hand, as an example of firing a vitrified diamond grindstone at 650 ° C or lower in an air atmosphere or a non-oxygen atmosphere, Japanese Patent Application Laid-Open No. 60-67078 discloses an aluminum phosphate-based binder with a firing temperature of 100 ° C. ° C, firing temperature 150-300 with the inorganic adhesive described in JP-A-2001-71268. C, Japanese Patent Application Laid-Open No. 2002-18726 discloses a calcination temperature of 590 ° C. or the like with a Li〇_ZnO-based binder.
[0004] さらに、ビトリフアイドダイヤモンド砥石の空気雰囲気下の焼成に関する技術として は、特公平 8-18254号公報に軟ィ匕点 650°C以下のガラス質結合剤の粉末を混合し て成形した後、焼成時に温度が 650°C以上になる前にダイヤモンド砥粒をガラス質 結合剤で被覆されるようにし、その後 650°C以上で焼成することが開示されている。 非特許文献 1 :機械と工具 1985年 1月号 156頁 [0004] Further, as a technique relating to firing of a vitrified diamond grindstone in an air atmosphere, Japanese Patent Publication No. 8-18254 discloses a method in which a powder of a vitreous binder having a softening point of 650 ° C or less is mixed. It is disclosed that the diamond abrasive grains are coated with a vitreous binder before the temperature reaches 650 ° C. or higher during firing, and thereafter firing at 650 ° C. or higher is disclosed. Non-Patent Document 1: Machines and Tools, January 1985, p.156
特許文献 1 :特開昭 60 - 67078号公報  Patent Document 1: JP-A-60-67078
特許文献 2:特開 2001— 71268号公報  Patent Document 2: JP 2001-71268 A
特許文献 3:特開 2002 - 18726号公報 特許文献 4:特公平 8 - 18254号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 2002-18726 Patent Document 4: Japanese Patent Publication No. 8-18254
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力 ながら、窒素雰囲気で焼成されたビトリフアイドダイヤモンド砥石はダイヤモン ド砥粒の保持力が弱いという問題がある。すなわち、一般的には窒素雰囲気下で焼 成したビトリフアイド結合剤は、空気雰囲気下で焼成するビトリフアイド結合剤と比較し て強度が劣る。またダイヤモンドは一般的に不活性でありダイヤモンドと他の物質と の接着性があまり強くないことが知られており、特にビトリフアイド結合剤を主に構成 するガラスとの接着性が強くないことは当業者の一般的認識である。このため従来の ビトリフアイドダイヤモンド砥石はダイヤモンド砥粒の保持力を保っために多量の結合 剤を使用する必要があった力 それによつて砥石の気孔率が減少し切れ味の悪レヽ砥 石となるという問題があった。このためビトリフアイドダイヤモンド砥石はあまり使用され ていないのが現状である。  [0005] However, the vitrified diamond grindstone fired in a nitrogen atmosphere has a problem in that the holding power of diamond abrasive grains is weak. That is, in general, a vitrified binder fired in a nitrogen atmosphere has lower strength than a vitrified binder fired in an air atmosphere. It is also known that diamond is generally inert and does not have very strong adhesion between diamond and other substances.It is particularly important that diamond does not have strong adhesion to glass, which mainly constitutes the vitrisulfide binder. This is the general perception of the trader. For this reason, the conventional vitrified diamond grinding wheel required the use of a large amount of binder to maintain the holding power of the diamond abrasive grains.As a result, the porosity of the grinding wheel was reduced, resulting in a poorly sharpened grinding wheel. There was a problem. For this reason, vitrified diamond whetstones are rarely used.
[0006] また上記 3件の先行技術 (特許文献 1一 3)の例では、ダイヤモンド砥粒の重量減少 が起こらなレ、 650°C以下の焼成温度で焼成しており、砥石の強度が高くなく砥粒の 保持力が低いので耐久性のある砥石が得られず、せっかくのダイヤモンド砥粒の特 性を活かせていない。なお特公平 8— 18254号公報に記載されるようにガラス質成分 にガラスの軟ィ匕点を低下させるのに有効な成分である鉛成分を使用することも提案さ れているが、鉛は人体に非常に有害な成分であることから環境上の問題が取り沙汰 され、最近は鉛成分を使用したビトリフアイド砥石は使用されていない。  [0006] Further, in the above three examples of the prior art (Patent Documents 13 to 13), the diamond abrasive grains are fired at a firing temperature of 650 ° C or less, because the weight of the abrasive grains does not decrease. As a result, no durable grinding stone can be obtained due to the low holding power of the abrasive grains, and the characteristics of diamond abrasive grains are not fully utilized. As described in JP-B-8-18254, it has been proposed to use a lead component, which is an effective component for lowering the softening point of glass, as a vitreous component. Due to its extremely harmful effects on the human body, environmental problems have been raised. Recently, vitrified whetstones containing lead have not been used.
[0007] 他方、低軟ィヒ点ガラスとして上記 3件の先行技術に記載されてレ、るようなビトリフアイ ド結合剤を 650°C以上で焼成すると、結合剤の流動性が高くなり過剰な反応を起こし て砥石が膨れるといった現象が発生するため、砥石製造は不可能であると考えられ る。  [0007] On the other hand, when a vitrified binder as described in the above three prior arts as a low softening point glass is fired at 650 ° C or more, the fluidity of the binder increases and excess It is considered impossible to manufacture a grinding wheel because the reaction causes a phenomenon that the grinding wheel swells.
[0008] 砥粒の保持力を高めるためには、結合剤の流動性の他に結合剤の熱膨張係数が 重要である。この点、ダイヤモンドと同等に扱われ砥粒硬さがダイヤモンドに次いで 硬い CBN砥粒(ダイヤモンドと CBNを総称して超砥粒と呼ばれている。 )を使用する ことが考えられる。 CBN砥粒はダイヤモンドほど加熱による重量減少がなレ、ので一般 的には 650— 950°Cの空気雰囲気(場合により窒素雰囲気)で焼成されている。 CB N砥粒の結合剤としては一般的にホウケィ酸ガラスが良好に使用されている。 CBN 砥粒はダイヤモンド砥粒と比較した場合、ガラス質結合剤に対する活性はある。さら に CBN砥粒と熱膨張係数がほどよくマッチングしているので良好な砥石となり得る。 ダイヤモンド砥粒も CBN砥粒と同様な熱膨張係数であり、 CBN砥粒用ビトリフアイド 砥石と同様に熱膨張係数をマッチングさせないと砥粒保持力が良好なビトリフアイド ダイヤモンド砥石ができないものであるが、一般的には軟ィ匕点の低いガラス成分は熱 膨張係数が高い傾向にある。それはガラスを軟化させる代表的な成分として一価の アルカリ金属(Na、 K、 Li)を使用するが、これはビトリフアイド結合剤の熱膨張係数を 上げるものであるから多量に使用することは好ましくない。 [0008] In order to increase the holding power of the abrasive grains, the coefficient of thermal expansion of the binder is important in addition to the fluidity of the binder. In this regard, it is conceivable to use CBN abrasive grains (diamond and CBN are collectively called superabrasive grains), which are treated the same as diamond and have the second highest abrasive grain hardness after diamond. Generally, CBN abrasive grains lose less weight due to heating than diamond, so Typically, it is fired in an air atmosphere (in some cases, a nitrogen atmosphere) at 650-950 ° C. In general, borosilicate glass is well used as a binder for CBN abrasive grains. CBN abrasives are active on vitreous binders when compared to diamond abrasives. In addition, since the thermal expansion coefficient matches moderately with that of CBN abrasive grains, it can be a good grinding stone. Diamond abrasive grains also have the same coefficient of thermal expansion as CBN abrasive grains. Generally, a glass component having a low softening point tends to have a high thermal expansion coefficient. It uses a monovalent alkali metal (Na, K, Li) as a typical component for softening glass, but it is not preferable to use a large amount because it increases the coefficient of thermal expansion of the vitrified binder. .
[0009] 特公平 8—18254号公報では Pb成分により一価のアルカリ金属を代替している力 一価のアルカリ金属の量とガラス質結合剤の軟ィ匕点及び熱膨張係数の関係、それに より得られる切れ味のよい耐久性のあるビトリフアイドダイヤモンド砥石の製造につい ての示唆はない。 [0009] In Japanese Patent Publication No. 8-18254, the force of substituting a monovalent alkali metal with a Pb component is expressed as a relationship between the amount of the monovalent alkali metal and the softening point and thermal expansion coefficient of the vitreous binder. There is no suggestion for producing a sharper and more durable vitrified diamond wheel.
[0010] また一般的にホウケィ酸ガラスの軟化点は高ぐ特公平 8-18254号公報で要求さ れる 650°C以下の軟ィ匕点には当てはまらず、ホウケィ酸ガラスの代表例パイレックス( 登録商標)ガラスなどは熱膨張係数が 3. 2 X 10— 6とダイヤモンド砥粒及び CBN砥粒 とマッチングする力 軟化点は高い温度であり前記砥粒との接着性に問題がある。ま た一般的にホウケィ酸ガラスは熱処理温度により分相が生じやすぐ特に低温加熱 処理した場合に分相が発生し、分相した SiO成分はクリストバライト結晶となる。これ [0010] Further, the softening point of borosilicate glass generally does not apply to the softening point of 650 ° C or lower required in Japanese Patent Publication No. 8-18254, and a typical example of borosilicate glass, Pyrex (registered trademark) trademark) glass, etc. have a problem with adhesion between the thermal expansion coefficient of 3. 2 X 10- 6 diamond abrasive grains and CBN abrasive grains matched forces softening point is higher temperatures the abrasive grains. In general, borosilicate glass undergoes phase separation depending on the heat treatment temperature, and phase separation occurs immediately after heat treatment, especially at low temperatures, and the separated SiO component becomes cristobalite crystals. this
2  2
は 200— 300°Cにて急激な体積変化を生じるのでビトリフアイド結合剤にクラックを発 生させる。このためホウケィ酸ガラスは焼成温度 650°C以下では使用できない。  Causes a rapid volume change at 200-300 ° C, causing cracks in the vitrisulfide binder. For this reason, borosilicate glass cannot be used at a firing temperature of 650 ° C or lower.
[0011] 以上の点から、耐久性があり、切れ味のよいビトリフアイドダイヤモンド砥石を得るに は、ダイヤモンド砥粒との良好な接着性と熱膨張係数をマッチングさせることが必要 であり、これらを満たすビトリフアイド結合剤としては CBN砥粒と共に使用されている ホウケィ酸ガラスを使用したいところである力 窒素雰囲気焼成ではダイヤモンド砥粒 の保持力が不足するとレ、う問題がある。  [0011] In view of the above, in order to obtain a durable and sharp vitrified diamond grindstone, it is necessary to match good adhesion to diamond abrasive grains and coefficient of thermal expansion. The borosilicate glass used together with the CBN abrasive is desired to be used as the vitrified binder to be filled. If the holding power of the diamond abrasive is insufficient in the nitrogen atmosphere firing, there is a problem.
[0012] さらに上記の先行技術のビトリフアイド結合剤では、環境問題から使用できなレ、もの 、 650°C以下の低温で焼成できるが砥粒の保持力が不足しているものである。 [0012] Further, the above-mentioned prior art vitrisulfide binders cannot be used due to environmental problems. It can be fired at a low temperature of 650 ° C. or lower, but lacks the holding power of abrasive grains.
[0013] 要するに砥粒の保持力を向上させるには砥粒とビトリフアイド結合剤との熱膨張係 数のマッチング及び良好な流動性が必要であると考えられるが、ダイヤモンド砥粒の 場合、一般的に不活性で他の物質との接着性が悪ぐつまり化学反応による接着機 構が得られない。空気雰囲気では 650°C以上の加熱で急激な重量減少を起こすの で空気雰囲気では焼成できないとレ、う問題がある。 [0013] In short, in order to improve the holding power of the abrasive grains, it is considered that matching of the thermal expansion coefficient between the abrasive grains and the vitrified binder and good fluidity are necessary. It is inactive and has poor adhesion to other substances, that is, a bonding mechanism by a chemical reaction cannot be obtained. In an air atmosphere, heating at 650 ° C or more causes a rapid weight loss, so firing in an air atmosphere poses a problem.
[0014] また 650°C以下の低軟化点のビトリフアイド結合剤を使用する場合、 650°C以下の 焼成では熱膨張係数がマッチングしなレ、。また 650°C以上で前記結合剤を使用して 焼成すれば砥石の膨れが発生するという問題がある。 [0014] In addition, when a vitrified binder having a low softening point of 650 ° C or less is used, the thermal expansion coefficient does not match in firing at 650 ° C or less. Further, if the binder is fired at a temperature of 650 ° C. or higher, there is a problem that the grinding stones swell.
[0015] 本発明は、上記の諸題点に鑑み、従来当業者の認識によると不可能であると考え られていた空気雰囲気下で 650°C以上の焼成により、切れ味がよくさらに耐久性の あるビトリフアイドダイヤモンド砥石を製造できる方法を提供することを課題とする。[0015] In view of the above problems, the present invention provides good sharpness and high durability by firing at 650 ° C or more in an air atmosphere, which was conventionally considered impossible by those skilled in the art. An object of the present invention is to provide a method capable of manufacturing a certain vitrified diamond wheel.
〔発明の要旨〕 [Summary of the Invention]
[0016] 上記課題を解決するための本発明の製造方法は、ビトリフアイド結合剤とダイヤモン ド砥粒との混合物を空気雰囲気下で焼成する工程を含むビトリフアイドダイヤモンド 砥石の製造方法であって、 650°Cより高い軟ィ匕点を有するビトリフアイド結合剤を含 む混合物を 700°C— 900°Cの空気雰囲気下で焼成することを特徴とする。  [0016] The production method of the present invention for solving the above-mentioned problem is a method for producing a vitriide diamond grinding wheel, which comprises a step of firing a mixture of a vitrisulfide binder and diamond abrasive grains in an air atmosphere, It is characterized in that a mixture containing a vitrisulfide binder having a softening point higher than 650 ° C is fired in an air atmosphere at 700 ° C to 900 ° C.
[0017] また本発明の製造方法は、 50— 65wt%の Si〇、 5— 15wt%の A1〇、 15— 25w t%の B〇、 1一 6wt%の RO (ROは Ca〇、 MgO及び BaO力ら選ばれる少なくとも一 種)、および 4一 10wt%の R 0 (R〇は K 0、 Na O及び Li〇力 選ばれる少なくとも 一種)の化学組成を有するビトリフアイド結合剤を使用することが好ましレ、。  [0017] Further, the production method of the present invention is characterized in that 50 to 65 wt% of Si〇, 5 to 15 wt% of A1〇, 15 to 25 wt% of B〇, and 1 to 6 wt% of RO (RO is Ca〇, MgO and It is preferable to use a vitrisulfide binder having a chemical composition of at least one selected from BaO force and 410% by weight of R0 (R〇 is at least one selected from K0, NaO and Li〇 force). Masure,
[0018] また本発明の製造方法は、前記ビトリフアイド結合剤にセラミック微粉を 1一 10wt% 添加して使用することが好ましい。  Further, in the production method of the present invention, it is preferable to use the above-mentioned vitrifide binder by adding 110% by weight of ceramic fine powder.
[0019] また本発明の製造方法は、使用される前記ビトリフアイド結合剤は、該ビトリフアイド 結合剤から成型してなる高さ Z直径の比率 0. 79の円柱状ペレットを焼成温度に曝 す流動性テストにおいて、焼成によりペレットの高さ Z直径の比率が 0. 1-0. 6とな る流動性を有するものであることが好ましい。 [0019] Further, in the production method of the present invention, the vitrifide binder used may be a liquid which is obtained by exposing a cylindrical pellet having a height Z diameter ratio of 0.79 formed from the vitrifide binder to a firing temperature. In the test, it is preferable that the pellets have fluidity such that the ratio of the height Z diameter of the pellets becomes 0.1-0.6 by firing.
[0020] さらに本発明の製造方法は、金属または無機質材料で被覆されたダイヤモンド砥 粒を使用することが好ましい。 [0020] Further, the production method of the present invention provides a method for producing a diamond abrasive coated with a metal or an inorganic material. It is preferred to use granules.
[0021] また本発明の製造方法は、前記混合物が、前記ダイヤモンド砥粒に加えて、立方 晶窒化ホウ素砥粒、アルミナ系砥粒、炭化珪素系砥粒、シリカ、酸化セリウム及びム ライトからなる群から選択される 1種類以上の砥粒を更に含むとしてもよい。  [0021] In the production method of the present invention, the mixture includes cubic boron nitride abrasive grains, alumina-based abrasive grains, silicon carbide-based abrasive grains, silica, cerium oxide, and mullite in addition to the diamond abrasive grains. It may further include one or more abrasive grains selected from the group.
[0022] また本発明の製造方法は、前記混合物が、気孔形成剤として有機質粉体または無 機中空体を更に含むとしてもよい。  [0022] In the production method of the present invention, the mixture may further include an organic powder or an inorganic hollow body as a pore-forming agent.
発明の効果  The invention's effect
[0023] 本発明のビトリフアイドダイヤモンド砥石の製造方法は、軟化点が 650°Cより高い所 定のビトリフアイド結合剤を使用し、 700°C— 900°Cの空気雰囲気下で焼成するので 、従来の窒素雰囲気下で焼成する場合や低温軟化のビトリフアイド結合剤を使用す る場合と比較して、ビトリフアイドダイヤモンド砥石の大幅な耐久性向上をもたらし、ま た各種研削作業において大幅な作業効率の向上及び被削物の品質向上をもたらす 図面の簡単な説明  [0023] In the method for producing a vitrified diamond grinding wheel of the present invention, a vitrified binder having a softening point higher than 650 ° C is used, and firing is performed in an air atmosphere at 700 ° C to 900 ° C. Compared with conventional firing in a nitrogen atmosphere or using a low-temperature softening vitrified binder, the durability of the vitrified diamond wheel is greatly improved, and the efficiency of various grinding operations is greatly improved. Brief description of the drawings to improve the quality of the workpiece
[0024] [図 1]図 1は、加熱テスト 2による熱重量および示差熱分析の結果を示すグラフである  FIG. 1 is a graph showing the results of thermogravimetric and differential thermal analysis by heating test 2.
[図 2]図 2は、流動性および濡れ性テストに用いられるダイヤモンドプレートおよび結 合剤パッドを示す斜視図である。 FIG. 2 is a perspective view showing a diamond plate and a binder pad used for a fluidity and wettability test.
[図 3]図 3は、流動性および濡れ性テストの結果として、焼成後の各結合剤パッドを示 す写真である。  FIG. 3 is a photograph showing each binder pad after firing as a result of a fluidity and wettability test.
[図 4]図 4は、砥粒の熱処理テストの結果として、未処理および熱処理後の砥粒の各 表面を示す SEM写真である  [FIG. 4] FIG. 4 is SEM photographs showing each surface of the untreated and heat-treated abrasive grains as a result of the heat treatment test of the abrasive grains.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 先ず発明者は従来の技術常識にとらわれず、機械と工具 1985年 1月号 156頁 [0025] First, the inventor is not bound by the conventional common sense of the art.
(上記の非特許文献 1)に示されたダイヤモンドの焼失が再現できるかどうかを確認し た。下記実施例 1で示される通り意外にも 650°C以上で急激な重量減少が起こらず 8 50°Cでも 60。/o以上の残存率であった (非特許文献では完全に消失することになる) 。このこと力 、 650°C以上でダイヤモンドが急激に焼失するという技術常識とは異な り、ダイヤモンド砥粒を使用して焼成温度 650°C以上の空気雰囲気下で焼成可能で あると考えられた。 It was confirmed whether or not the burning out of the diamond shown in (Non-Patent Document 1) can be reproduced. Surprisingly, as shown in Example 1 below, no sudden weight loss occurs at 650 ° C. or higher. The residual rate was more than / o (it would completely disappear in non-patent literature). This is contrary to common knowledge that diamonds are rapidly burned out at 650 ° C or higher. Therefore, it was considered that firing could be performed in an air atmosphere at a firing temperature of 650 ° C or higher using diamond abrasives.
[0026] 例えば、特公平 8— 18254号公報(特許文献 4)によると 650°C以下の軟化点を持 つたガラス質結合剤で被覆しダイヤモンド砥粒力 空気を遮断した状態で焼成すれ ば 900°C近辺でも焼成は可能との記載がある。しかし、本発明者の実験の結果、上 述の通り空気雰囲気下であっても 650°C以上の焼成が可能であり、この発見に伴い 、軟化点が 650°C以上のビトリフアイド結合剤を使用し、空気雰囲気下で 650°C以上 、具体的には 700— 900°Cでの焼成が可能であることが見出された。そして既に述 ベた通り、 CBN砥粒などで使用されているホウケィ酸ガラス質ビトリフアイド結合剤が 良好に使用できる可能性があり、この点に着目して更に検討が進められた。  [0026] For example, according to Japanese Patent Publication No. Hei 8-18254 (Patent Document 4), it is 900 if coated with a vitreous binder having a softening point of 650 ° C or less and baked with the diamond abrasive force shut off from air. There is a description that firing is possible even at around ° C. However, as a result of experiments conducted by the present inventor, calcination at 650 ° C or higher is possible even in an air atmosphere as described above, and with this discovery, a vitrified binder having a softening point of 650 ° C or higher was used. However, it was found that firing at 650 ° C or more, specifically 700-900 ° C, under an air atmosphere was possible. And, as already mentioned, there is a possibility that the borosilicate glassy vitrified binder used in CBN abrasives etc. can be used favorably, and further studies have been made with a focus on this point.
[0027] 先ず本発明に好適に使用されるビトリフアイド結合剤の詳細を説明する。 First, the details of the vitrisulfide binder suitably used in the present invention will be described.
[0028] 本発明に使用されるビトリフアイド結合剤には、ホウケィ酸ガラス系の結合剤が含ま れ、その化学組成は、結合剤の流動性と熱膨張係数を考慮して、 50— 65wt%の Si O、 5— 15wt%の A1〇、 15— 25wt%の B〇、 1一 6wt%の RO (ROは Ca〇、 Mg[0028] The vitrisulfide binder used in the present invention includes a borosilicate glass-based binder, and its chemical composition is 50 to 65 wt% in consideration of the fluidity and thermal expansion coefficient of the binder. Si O, 5-15 wt% A1〇, 15-25 wt% B〇, 1-6 wt% RO (RO is Ca〇, Mg
O及び Ba〇力も選ばれる少なくとも一種)、及び 4一 10wt%の R〇(R Oは K 0、 NaO and Ba〇 forces are also selected), and 4 一 10wt% R〇 (R O is K 0, Na
〇及び Li Oから選ばれる少なくとも一種)が良好である。 (At least one selected from 〇 and Li 2 O) is good.
[0029] SiOが 50wt%より低いと熱膨張係数が上がりかつ軟化点が下がりすぎる。 65wt [0029] When SiO is lower than 50 wt%, the coefficient of thermal expansion increases and the softening point decreases too much. 65wt
%より多いと軟化点が上がりすぎてダイヤモンド砥粒の保持力が不足し、またホウケィ 酸ガラス質の安定性がなくなり分相現象が発生する。 If it is more than 10%, the softening point is too high, and the holding power of the diamond abrasive grains is insufficient, and the stability of the borosilicate glass is lost and the phase separation phenomenon occurs.
[0030] A1〇力 wt%より少ないと軟化点が下がりすぎかつホウケィ酸ガラス質の安定性 がなくなり分相現象が発生し、 15wt%より多いと軟ィ匕点が上がりすぎダイヤモンド砥 粒の保持力が不足する。 [0030] If the A1 strength is less than wt%, the softening point is too low and the stability of the borosilicate glassy material is lost, causing a phase separation phenomenon, and if it is more than 15wt%, the softening point is too high and the diamond grains are retained. Lack of power.
[0031] R〇(R〇 CaO、 Mg〇及び Ba〇力、ら選ばれる少なくとも一種)が 2wt%より少ない と軟化点が上がりすぎ結合剤の流動性が不足し、 6wt%より多いと軟ィ匕点が下がりす ぎる。 [0031] When R〇 (at least one selected from the group consisting of R〇 CaO, Mg〇 and Ba% forces) is less than 2 wt%, the softening point is too high and the fluidity of the binder is insufficient. The dagger point is too low.
[0032] R 0 (R〇は K 0、 Na O及び Li〇力 選ばれる少なくとも一種)が 4wt%より少な レ、と軟ィ匕点が上がりすぎ結合剤の流動性が不足し、 10wt%より多いと熱膨張係数が 上がりすぎる。 [0033] なお、上記ビトリフアイド結合剤に上記の成分以外の無機質元素又は調整材として 微粉のセラミック材料を添加しても力まわなレ、。例えば、微粉のセラミック材料を 1一 1 Owt%添加してもよい。添加効果の観点から lwt%以上が好ましぐ流動性を確保す るという観点から 10wt%以下であることが好ましい。そのような添加剤の代表例とし てはムライト、ジノレコン、ァノレミナ、コーディライト、スポジュメン、リチウムアルミニウムシ リケート系結晶等が挙げられる。 When R 0 (R〇 is at least one selected from K 0, Na O and Li〇 force) is less than 4 wt%, the softening point is too high, the fluidity of the binder is insufficient, and the If too large, the coefficient of thermal expansion will increase too much. It should be noted that even if an inorganic element other than the above-described components or a fine ceramic material as an adjusting material is added to the vitrified binder, the vitrified binder may be powerful. For example, a fine ceramic material may be added in an amount of 11 Owt%. From the viewpoint of the effect of addition, lwt% or more is preferable to be 10wt% or less from the viewpoint of securing the preferable fluidity. Representative examples of such additives include mullite, dinolecon, anoremina, cordierite, spodumene, lithium aluminum silicate-based crystals, and the like.
[0034] ビトリフアイド結合剤の軟化点は、 0. 55—0. 75mm φ、長さ 235mmのファイバー を 4一 6°CZ分で加熱したとき、伸びが lmm/分になったときの温度であり、粘度は 約 107·6ボイズと定義される(ガラスの辞典 朝倉書店 376頁下から 6 3行目)。 [0034] The softening point of the vitrifide binder is the temperature at which the elongation reaches lmm / min when a 0.55-0.75mm diameter, 235mm long fiber is heated at 4-6 ° CZ for a minute. The viscosity is defined as about 10 7 · 6 Boys (Glass Dictionary Asakura Shoten, page 376, line 63 from the bottom).
[0035] 本発明に使用すべきビトリフアイド結合剤は、その軟ィ匕点が 650°C以上、好ましくは 675°C以上、より好ましくは 700°C以上、特に好ましくは 750°C以上である。このよう な高い軟ィ匕点の設定は次の利点をもたらす。すなわち、ホウケィ酸ガラス系のビトリフ アイド結合剤の軟化点を 650°C以下にするには軟化促進成分 R20 (R2)を多く添カロ する必要があり、その場合、熱膨張係数が上がる。本発明の焼成条件では、ホウケィ 酸ガラス系のビトリフアイド結合剤の特性が活力される。  [0035] The vitrisulfide binder to be used in the present invention has a softening point of 650 ° C or more, preferably 675 ° C or more, more preferably 700 ° C or more, and particularly preferably 750 ° C or more. The setting of such a high soft point has the following advantages. That is, in order to reduce the softening point of the borosilicate glass-based vitrified binder to 650 ° C. or less, it is necessary to add a large amount of the softening promoting component R20 (R2), in which case the thermal expansion coefficient increases. In the firing conditions of the present invention, the properties of the borosilicate glass-based vitrified binder are energized.
[0036] 他方、軟ィ匕点の上限温度は所定焼成温度までであり、すなわち 700°C以下、 725 °C以下、 750°C以下、 800°C以下、 850°C以下、ないし 900°Cより低い温度にすると よい。それら所定の上限を越えるとダイヤモンド砥粒の保持力が不足しがちである。  [0036] On the other hand, the upper limit temperature of the softening point is up to a predetermined firing temperature, that is, 700 ° C or less, 725 ° C or less, 750 ° C or less, 800 ° C or less, 850 ° C or less, or 900 ° C. A lower temperature is better. If the predetermined upper limit is exceeded, the holding power of the diamond abrasive tends to be insufficient.
[0037] ビトリフアイド結合剤の流動性は、ダイヤモンド砥粒とビトリフアイド結合剤との保持 力を判断する上で重要である。この観点から本発明に使用すべきビトリフアイド結合 剤は、下記流動性テストで確認できる所定の流動性を有することが望ましレ、。  [0037] The fluidity of the vitrifide binder is important in determining the holding power between the diamond abrasive grains and the vitrifide binder. From this viewpoint, it is desirable that the vitrisulfide binder to be used in the present invention has a predetermined fluidity which can be confirmed by the following fluidity test.
[0038] 直径 25. 4mmの金型にビトリフアイド結合剤 15gを充填し、高さ 20mmで成型する 。その成型した円柱状ペレットを、表面に凹凸がなくかつできるだけ滑らかな板状で かつ所定焼成温度で変質しなレ、セラミックス、セラミックス複合材料または耐火物の 上に載せる。この円柱状ペレットを砥石焼成と同条件の焼成温度にて焼成する。焼 成後に取り出した円柱状ペレットの直径(一番大きい部分)と高さを測定し、ペレット の高さ/直径の比率を求め、これを流動性とする。  [0038] A mold having a diameter of 25.4 mm is filled with 15 g of a vitrisulfide binder, and molded to a height of 20 mm. The formed cylindrical pellet is placed on a ceramic, ceramics composite material or refractory which has a surface as smooth as possible without any irregularities and which does not deteriorate at a predetermined firing temperature. The columnar pellets are fired at the same firing temperature as the grinding stone firing. Measure the diameter (largest part) and height of the cylindrical pellets taken out after firing, determine the height / diameter ratio of the pellets, and use this as the fluidity.
[0039] 本発明では、上記流動性テストにおいて、焼成後のペレットの高さ/直径の比率が 0. 1—0· 6となる範囲の流動性を有するビトリフアイド結合剤を使用することが好まし レ、。流動性が 0. 1より小さいと正常な砥石の製造に適さず、また 0. 6より大きいと砥 粒保持力が減少しがちである。前記流動性は 0. 15-0. 55力 S好ましく、 0. 2— 0. 5 0がさらに好ましい。 In the present invention, in the above-mentioned fluidity test, the height / diameter ratio of the fired pellets is It is preferable to use a vitrisulfide binder having a flowability in the range of 0.1 to 0.6. If the fluidity is less than 0.1, it is not suitable for producing a normal grinding wheel, and if it is more than 0.6, the abrasive holding power tends to decrease. The fluidity is preferably 0.15-0.55 force S, more preferably 0.2-0.50.
[0040] 本発明のビトリフアイドダイヤモンド砥石は、好ましくは、砥粒体積率が 10— 55%、 気孔体積率が 10 70%である。その結合剤率は、 100から砥粒体積率及び気孔体 積率を引いた値である。高い気孔率の砥石を製造する場合、気孔形成剤として有機 質粉体又は無機中空体を使用することができる。有機質の気孔形成剤は、所定の粒 度に調整されて砥石原料と混合され、それが焼成中に消失することにより現れる空洞 部として気孔を形成するものである。また無機質中空体は、中空状のガラス又はセラ ミック質であり、所定焼成温度より高い軟ィ匕点を有することが望ましい。使用された無 機質中空体は、焼成された砥石中に残存し、その中空部分が気孔となるものである。 気孔形成剤の種類及び添加量は、砥石が使用される研削条件等を考慮して適宜決 めること力 Sできる。  [0040] The vitrified diamond grindstone of the present invention preferably has an abrasive grain volume ratio of 10 to 55% and a pore volume ratio of 1070%. The binder ratio is a value obtained by subtracting the abrasive grain volume ratio and the pore volume ratio from 100. When producing a grindstone having a high porosity, an organic powder or an inorganic hollow body can be used as a pore-forming agent. The organic pore-forming agent is adjusted to a predetermined particle size, is mixed with the grindstone raw material, and forms pores as cavities appearing as it disappears during firing. Further, the inorganic hollow body is a hollow glass or ceramic material, and desirably has a softening point higher than a predetermined firing temperature. The used inorganic hollow body remains in the fired grindstone, and the hollow portion becomes a pore. The type and amount of the pore-forming agent can be appropriately determined in consideration of the grinding conditions in which the grindstone is used.
[0041] 本発明の砥石の製造には、ダイヤモンド砥粒を単独で使用することができる力 こ れを他の砥材と組み合わせて使用することもできる。ダイヤモンド砥粒と共に使用で きる他の砥粒には、主に立方晶窒化ホウ素砥粒、アルミナ系砥粒、炭化珪素系砥粒 、シリカ、酸化セリウム及びムライト等からなる群から選択される 1種類以上の砥粒が 含まれる。これらは例示列挙であり、本発明の目的を逸脱しない限りここに列挙され てレヽなレ、他の砥粒を使用してもよレ、。  In the production of the grindstone of the present invention, a force capable of using diamond abrasive grains alone can be used in combination with another abrasive material. Other abrasives that can be used together with diamond abrasives are mainly one selected from the group consisting of cubic boron nitride abrasives, alumina-based abrasives, silicon carbide-based abrasives, silica, cerium oxide, mullite, and the like. The above abrasive grains are included. These are exemplifications, and unless otherwise deviated from the object of the present invention, they may be enumerated or other abrasive grains may be used.
[0042] 本発明に使用されるダイヤモンド砥粒の粒度範囲は、粒度表示 16/18の粗目粒 度一 # 10000 (平均径 1 μ mより小さレ、)の範囲で使用できる力 60/80— # 5000 の範囲力 S好ましく、 100/ 120 # 3000の範囲力より好ましく、 120/ 140 # 100 0の範囲が特に好ましい。  [0042] The particle size range of the diamond abrasive used in the present invention is a force that can be used in a range of coarse particle size # 10000 (average diameter smaller than 1 µm) expressed by a particle size of 16/18. A range S of # 5000 is preferred, a range force of 100/120 # 3000 is more preferred, and a range of 120/140 # 1000 is particularly preferred.
[0043] 本発明に使用されるダイヤモンド砥粒には、表面に被覆処理がなされていない砥 粒を使用できる力 ダイヤモンド砥粒表面に金属又は無機質材料で被覆された砥粒 を使用すればなお良好である。  [0043] The diamond abrasive used in the present invention can use an abrasive whose surface is not coated. It is more preferable to use an abrasive whose surface is coated with a metal or an inorganic material. It is.
[0044] 本発明の製造方法の好ましい態様では、ダイヤモンド砥粒を砥材とし、上記成分の ホウケィ酸ガラス質で軟ィ匕点が 650°C以上であるビトリフアイド結合剤を使用して砥石 を成型し、 700— 900°Cの空気雰囲気下で焼成する。本法によれば、意外にもダイ ャモンド砥粒の焼失がなく、良好なビトリフアイドダイヤモンド砥石を製造することがで きる。本明細書に開示されていない他の製造条件等の詳細は、当該技術分野にお レ、て技術常識となっている公知の方法、条件を適用すればよい。当業者によれば、 本発明の開示に基づいて適時条件を追加又は変更することにより本発明のあらゆる 態様を実施することができるであろう。 [0044] In a preferred embodiment of the production method of the present invention, diamond abrasive grains are used as abrasives, and A grindstone is formed using a vitrified binder having a borosilicate glassy material and a softening point of 650 ° C or more, and fired in an air atmosphere at 700 to 900 ° C. According to the present method, surprisingly, the diamond abrasive grains are not burned out, and a good vitrified diamond wheel can be manufactured. For details of other manufacturing conditions and the like that are not disclosed in this specification, known methods and conditions that are common technical knowledge in the art may be applied. One skilled in the art would be able to implement any aspect of the invention by adding or changing timely conditions based on the disclosure of the invention.
[0045] 本発明により製造された砥石は円筒研削のみならず、平面研削、内面研削にも応 用でき、被削材としては超硬、シリコン、アルミナ、炭化物、窒化物、サファイア、石英 、各種ガラス、セラミック材料などの硬脆性材料の研削研磨に使用できる。  [0045] The grindstone manufactured according to the present invention can be applied not only to cylindrical grinding but also to surface grinding and internal grinding. Examples of the work material include carbide, silicon, alumina, carbide, nitride, sapphire, quartz, It can be used for grinding and polishing hard and brittle materials such as glass and ceramic materials.
[0046] 以下、本発明の実施例を比較例とともに説明するが、これらは本発明の実施可能 性及び有用性を例証するものであり、本発明の構成を何ら限定する意図はない。 実施例  Hereinafter, examples of the present invention will be described together with comparative examples, but these exemplify the feasibility and usefulness of the present invention, and do not intend to limit the configuration of the present invention in any way. Example
[0047] [ダイヤモンド砥粒の加熱テスト]  [Heating test of diamond abrasive grains]
ダイヤモンド砥粒を高温に加熱し、加熱による重量減少を確認した。  The diamond abrasive grains were heated to a high temperature, and a decrease in weight due to heating was confirmed.
(加熱テスト 1)  (Heating test 1)
GE社製 MBG660 メッシュ 120Z140のダイヤモンド砥粒に対し下記の加熱テ ストを行った。  The following heating test was performed on the diamond abrasive grains of MBG660 mesh 120Z140 manufactured by GE.
加熱テストの条件  Heating test conditions
上記の砥粒 2gを白金ノレッボに入れ、空気雰囲気中で最高保留温度、 580°C、 63 0。C、 700°C、 800°C、 850。C、 950°Cで 7時間保持した後、カロ熱前とカロ熱後の重量 変化から加熱残存率を算出した。テスト結果を表 1に示す。  2 g of the above-mentioned abrasive grains are put in a platinum knorebo, and the maximum holding temperature is 580 ° C and 630 in an air atmosphere. C, 700 ° C, 800 ° C, 850. After holding at 950 ° C for 7 hours at C, the residual heating ratio was calculated from the weight change before and after the caloric heat. Table 1 shows the test results.
[0048] [表 1] テス ト温度 加熱残存率 (%) [Table 1] Test temperature Residual heating rate (%)
5 8 0 "C 9 8 . 0  5 8 0 "C 9 8 .0
6 3 0 V 9 1 . 3  6 3 0 V 9 1.3
7 0 0 °C 7 7 . 8  7 0 0 ° C 7 7.8
8 0 0 °C 7 2 . 5  800 ° C 7 2.5
8 5 0 °C 6 1 . 5  8.5 0 ° C 6 1.5
9 5 0。C 0 . 0  9 5 0. C 0.0
[0049] 表 1に示される通り、 950°Cで完全に焼失した力 800°Cで 72. 5%、 850°Cで 61. [0049] As shown in Table 1, the force completely burned off at 950 ° C 72.5% at 800 ° C and 61.50 at 850 ° C.
5%とかなり残存率であり、少なくとも先行技術 (非特許文献 1)に記載されているよう に 800°Cで完全に消滅することはなかった。加熱時間に関し、非特許文献のデータ 力、らは保留時間 3時間である力 S、本テストは 7時間であり本テストの方がより厳しい条 件である。それにもかかわらず空気雰囲気中での加熱残留率に高い値が得られたこ とから、ダイヤモンド砥粒は空気雰囲気中での加熱残存率が急激に減少し 800°Cで 完全消滅するとは限らないことが分かった。本テストにより、長い間技術常識となって レ、た事実に反し、上記ダイヤモンド砥粒を使用し空気雰囲気下で高温焼成すること が可能であり、これにより強度の高いビトリフアイドダイヤモンド砥石を製造できると考 えられた。  The residual rate was considerably high at 5%, and did not completely disappear at 800 ° C at least as described in the prior art (Non-Patent Document 1). Regarding the heating time, the data in the non-patent literature, such as force S, which has a hold time of 3 hours, and this test, which is 7 hours, are more severe conditions. Nevertheless, the high value of the residual heat rate in the air atmosphere resulted in a sharp decrease in the residual heat rate in the air atmosphere, and diamond abrasive grains did not always completely disappear at 800 ° C. I understood. By this test, contrary to the technical common sense for a long time, contrary to the fact that it is possible to fire at high temperature in an air atmosphere using the above-mentioned diamond abrasive, it is possible to produce a strong vitrified diamond wheel It was considered possible.
(加熱テスト 2)  (Heating test 2)
熱重量/示差熱分析装置(セイコーインスツルメンッ(株)(SII)製 TG/DTA6300 )を使用して、 GE社製 MBG600T メッシュ 230/270のダイヤモンド砥粒につい て熱分析を行った。前記の砥粒 0. 05gを、直径 5. 2mm、高さ 2. 5mmのカップ形 状の白金皿に投入して 10°C/minで昇温して、その重量変化を測定した。  Using a thermogravimetric / differential thermal analyzer (TG / DTA6300, manufactured by Seiko Instruments Inc. (SII)), thermal analysis was performed on diamond abrasive grains of MBG600T mesh 230/270 manufactured by GE. 0.05 g of the above-mentioned abrasive grains was placed in a cup-shaped platinum dish having a diameter of 5.2 mm and a height of 2.5 mm, the temperature was raised at 10 ° C./min, and the weight change was measured.
[0050] 図 1は前記砥粒について TG (熱重量)および DTA (示差熱)の温度依存性を示す 。同図で示されるように、 650°C近辺から砥粒重量の減少が始まり、 900°Cで 80%以 上が消失した。 FIG. 1 shows the temperature dependence of TG (thermogravity) and DTA (differential heat) for the abrasive grains. As shown in the figure, the weight of the abrasive grains started to decrease at around 650 ° C, and at 900 ° C more than 80% disappeared.
[砥石曲げ強度のテスト]  [Test of whetstone bending strength]
上記のテスト結果を受けて、所定のビトリフアイド結合剤と上記ダイヤモンド砥粒を 使用し、テスト砥石を製造し、曲げ強度を測定した。本テストでは、空気雰囲気での 焼成を実施例 1とし、窒素雰囲気中での焼成を比較例 1とする(表 3参照)。 テスト砥石の製造 In response to the above test results, a test grindstone was manufactured using a predetermined vitrified binder and the above diamond abrasive grains, and the bending strength was measured. In this test, baking in an air atmosphere was taken as Example 1, and baking in a nitrogen atmosphere was taken as Comparative Example 1 (see Table 3). Manufacture of test wheels
ビトリフアイド結合剤として、下記表 2の化学組成 (wt%)で、軟ィ匕点が 800°C、熱膨 張係数が 5. 5 X 10— 6のものを使用した。 As Bitorifuaido binder, the chemical composition of the following Table 2 (wt%),軟I匕点is 800 ° C, Netsu膨Zhang coefficients were from 5. 5 X 10- 6.
[表 2]  [Table 2]
Figure imgf000012_0001
Figure imgf000012_0001
[0052] 砥材の混合比は RVG230/270 (GE社製)を 1000重量部、ビトリフアイド結合剤 を 250重量部、一次結合剤 80重量部とし、砥粒体積率 (Vg) = 50、結合剤体積率( Vb) = 20、気孔体積率 (Vp) = 30の設定とした。上記の原材料を均一に混合した後 、金型に充填し 43 X 5 X 12 (mm)の直方体を成型した。 40°Cで 12時間乾燥した後 、所定の条件で焼成し、得られた各テスト砥石について下記の手順で曲げ強度を測 定した。 [0052] The mixing ratio of the abrasive was 1000 parts by weight of RVG230 / 270 (manufactured by GE), 250 parts by weight of vitrified binder, 80 parts by weight of primary binder, abrasive grain volume ratio (Vg) = 50, binder The volume ratio (Vb) was set to 20 and the pore volume ratio (Vp) was set to 30. After uniformly mixing the above-mentioned raw materials, they were filled in a mold to form a 43 × 5 × 12 (mm) rectangular parallelepiped. After drying at 40 ° C. for 12 hours, it was fired under predetermined conditions, and the bending strength of each of the obtained test whetstones was measured by the following procedure.
曲げ強度のテスト手順  Test procedure for bending strength
JIS規格(ファインセラミックスの曲げ強さ試験方法 R1601、 1995)に従い、各テスト 砥石をスパン間距離 30mm、荷重降下速度 0. 5mm/minにて 3点曲げ強度を行つ た。各テストピースについて 3つの平均値をとつた。  According to the JIS standard (Bending strength test method for fine ceramics R1601, 1995), each test whetstone was subjected to three-point bending strength at a distance between spans of 30 mm and a descent rate of 0.5 mm / min. Three averages were taken for each test piece.
[0053] 表 3に本テストの焼成条件と結果を示す。  Table 3 shows the firing conditions and results of this test.
[0054] [表 3] 焼成温度 焼成雰囲気 最高温度保留時間 曲げ強度(M P a ) 実施例 1 8 5 0 V 空気雰囲気 7時間 8 5 . 0 比較例 1 9 5 0で 窒素雰囲気 時間 3 3 . 6 [0055] 表 3に示される通り、実施例 1の空気雰囲気での高温焼成により、比較例 1の窒素 雰囲気下と比較して曲げ強度は 2倍以上となった。 [Table 3] Firing temperature Firing atmosphere Maximum temperature holding time Bending strength (MPa) Example 1 85 0 V Air atmosphere 7 hours 85.0 Comparative example 1 95 0 Nitrogen atmosphere time 33.6 [0055] As shown in Table 3, the high-temperature sintering in the air atmosphere of Example 1 increased the flexural strength twice or more as compared with that in Comparative Example 1 under the nitrogen atmosphere.
[研削テスト]  [Grinding test]
研削テストに使用される砥石の原材料の混合比は、 RVG230/270 (GE社製)を 506重量部、炭化珪素砥粒(SiC) # 220を 494重量部、上記の表 2の化学組成を持 つビトリフアイド結合剤を 250重量部、一次結合剤を 80重量部とし、ダイヤモンド抵粒 体積率 (Vg) = 25、炭化珪素砥粒体積率 (Vg) = 25、結合剤体積率 (Vb) = 20、お よび気孔体積率 Vp = 30に調整した。研削テストのために円弧形状のセグメント砥石 を作製した。具体的には、前記の原材料を均一に混合した後、金型に充填し、長さ 3 9. 41mm,厚み l lmm、幅 6mm、曲率が R= 95mmの寸法を有するセグメント砥石 を 32個成型した。  The mixing ratio of the raw materials of the grinding stone used in the grinding test was 506 parts by weight of RVG230 / 270 (manufactured by GE), 494 parts by weight of silicon carbide abrasive (SiC) # 220, and had the chemical composition shown in Table 2 above. 250 parts by weight of vitrisulfide binder and 80 parts by weight of primary binder, volume ratio of diamond grain (Vg) = 25, volume ratio of silicon carbide abrasive grains (Vg) = 25, volume ratio of binder (Vb) = 20 , And the pore volume ratio were adjusted to Vp = 30. An arc-shaped segment whetstone was fabricated for the grinding test. Specifically, after mixing the above-mentioned raw materials uniformly, it is filled in a mold and molded into 32 segment whetstones with dimensions of 39.41 mm in length, 11 mm in thickness, 6 mm in width and R = 95 mm in curvature. did.
[0056] 成型したセグメント砥石は、 40°Cで 12時間以上乾燥させた後、そのうち 16個を 85 0°Cの空気雰囲気で焼成し (実施例 2)、残りの 16個を 950°Cの窒素雰囲気(比較例 2)で焼成した。  After drying the molded segment whetstone at 40 ° C. for 12 hours or more, 16 of them were fired in an air atmosphere of 850 ° C. (Example 2), and the remaining 16 were baked at 950 ° C. It was fired in a nitrogen atmosphere (Comparative Example 2).
[0057] 焼成した各セグメント砥石は、外周 190mm、厚み 10mm、軸孔 50. 8mmの寸法を 有する金属台金上に接着し、仕上げ加工を行い、外周 200mm、厚み 10mm、軸孔 50. 8mmの寸法を有する 1A1タイプの砥石を製造した。  [0057] Each of the baked segment whetstones was bonded onto a metal base having an outer circumference of 190 mm, a thickness of 10 mm, and a shaft hole of 50.8 mm, and was subjected to a finishing process. A 1A1 type grinding wheel with dimensions was manufactured.
[0058] 表 4の条件で研削テストを行った。  [0058] A grinding test was performed under the conditions shown in Table 4.
[0059] [表 4] [Table 4]
砥石寸法 : Φ 2 0 0 ΧΤ 1 0 X115 0. 8 mm Whetstone dimensions: Φ 200 ΧΤ 1 0 X115 0.8 mm
ダイヤモンドを含む研磨層の厚み 3. 0 mm  Polishing layer thickness including diamond 3.0 mm
被削材 : 材質 S I C  Work material: Material S I C
寸法 2 1 0 X 1 0 mm  Dimensions 2 1 0 X 10 mm
研削盤 : 岡本工作機械横軸平面研削盤 C N C— 5 2 B  Grinding machine: Okamoto Machine Tool horizontal axis surface grinder C N C— 5 2 B
研削液 : クレカッ ト NS 2 0 1 (ソリュブルタイプ) 5 0倍希釈  Grinding fluid: Clecut NS201 (Soluble type) 50-fold dilution
ツル一イング、 ドレッシング条件  Tooling and dressing conditions
ドレッサー : G C 1 2 0 G V  Dresser: G C 120 G V
ドレッサー寸法 : Φ 1 2 5 XT 3 0 XH 5 0. 8 mm  Dresser dimensions: Φ 1 25 XT 3 0 XH 50.8 mm
砥石周速度 : 4. 7 5 m/ s (4 54 m"1) Wheel peripheral speed: 4.75 m / s (4 54 m " 1 )
ドレッサー周速度 : 6. 74m/ s ( 1 0 3 0 m— 最外周の速度 ドレッシングリード : 0. 9 8 mZ r e V  Dresser peripheral speed: 6.74m / s (1030m—outermost speed Dressing lead: 0.98mZ reV
ドレス切り込み : 0. 0 0 5 mm/p a s s  Dress cut: 0.0 5 mm / p a s s
ドレス回数 : 2回  Dress times: 2 times
研削条件  Grinding conditions
研削方式 : 湿式トラバース研削  Grinding method: wet traverse grinding
砥石周速度 : 2 5 s ( 2 3 8 8 m"1) Wheel peripheral speed: 25 s (2 3 8 8 m " 1 )
テーブル速度 : 0. 1 6 7 m/ s  Table speed: 0.16 7 m / s
テ一ブルクロス送り : 2 mmZp a s s  Table cross feed: 2 mmZp a s s
研削切込み : 4 0 iim/p a s s  Grinding depth of cut: 40 iim / p a s s
総切込み : 0. 4 8 X 2回 研削テストの評価項目は、下記で定義される研削抵抗、仕上げ面粗さ、及び研削 比とする。  Total depth of cut: 0.48 X 2 times The evaluation items for the grinding test are the grinding resistance, finished surface roughness, and grinding ratio defined below.
[研削比] [Grinding ratio]
研削比は、被削材除去体積 Z砥石消耗体積で求められる。  The grinding ratio is obtained from the work material removal volume Z grinding wheel consumption volume.
[研削動力]  [Grinding power]
砥石軸モーターの消費電力を Wとし、 612XWZ周速(60Z100)として求められ る。なお、周速として前記砥石周速度を使用した。  The power consumption of the grinding wheel motor is W, and it is obtained as 612XWZ peripheral speed (60Z100). In addition, the said peripheral speed of a grindstone was used as peripheral speed.
[仕上げ面粗さ Rz] [Finish surface roughness Rz]
JIS B0660(1998年)に従レ、、テストする砥石の仕上げ面における面粗度は、十 点平均粗さ Rzとして測定される。十点平均粗さ Rzは、粗さ曲線からその平均線の方 向に基準長さだけ抜き取り、この抜き取り部分の平均線力 縦倍率方向に測定し、最 も高い山頂から 5番目までの山頂の標高 Ypの絶対値の平均値と、最も低い谷底から 5番目までの谷底の標高 Υνの絶対値の平均値との和として求められる。本実施例で は、 Rzが 0· 50 μ ΐηを越え 10. Ο μ ΐη以下で、基準長さ 0· 8mm及び評価長さ 4mm の区分に従った。 In accordance with JIS B0660 (1998), the surface roughness of the finished surface of the grindstone to be tested is measured as the ten-point average roughness Rz. The ten-point average roughness Rz is extracted from the roughness curve by the reference length in the direction of the average line, and the average linear force of the extracted portion is measured in the longitudinal magnification direction. It is calculated as the sum of the average of the absolute values of the altitudes Yp of the 5th peak from the highest peak and the average of the absolute values of the altitudes of the valleys of the 5th bottom from the lowest. In the present example, when the Rz was greater than 0.5 μ μη and less than or equal to 10. μ μη, the classification was based on the standard length of 0.8 mm and the evaluation length of 4 mm.
[0061] 研削テストの結果を表 5に示す。  [0061] Table 5 shows the results of the grinding test.
[0062] [表 5]
Figure imgf000015_0001
[Table 5]
Figure imgf000015_0001
[0063] 表 5に示される通り、研削比は、実施例 2が比較例 2より大きく上回った。仕上面粗さ も実施例 2の方がよい。 [0063] As shown in Table 5, the grinding ratio of Example 2 was significantly higher than that of Comparative Example 2. The surface roughness of the second embodiment is also better.
[0064] 上記実施例 1の砥石が優れた曲げ強度と研削性能を有するのは、空気雰囲気下の 高温焼成時に所定のビトリフアイド結合剤がダイヤモンド砥粒の表面上で高い流動性 と濡れ性を持ち、それらの間に強い接着を得られたからであると考えられる。この推 測を実証するために、ビトリフアイド結合剤の流動性および濡れ性のテスト、さらには ダイヤモンド砥粒の熱処理テストを行った。  [0064] The grinding wheel of Example 1 above has excellent bending strength and grinding performance because a predetermined vitrified binder has high fluidity and wettability on the surface of diamond abrasive grains during high-temperature firing in an air atmosphere. It is considered that strong adhesion was obtained between them. To verify this estimation, we tested the flowability and wettability of the vitrified binder, and performed a heat treatment test on diamond abrasive grains.
合剤の ¾†牛および、濡れ'卜牛テス卜  Combination ¾ † cow and wet cow test
図 2に示すように、長さ 5. Omm、内径 4. Omm、厚さ 1. 2mmのダイヤモンドプレー ト(エレメントシックス社製 MWSL5012)上に、上記表 2に示した化学組成のビトリフ アイド結合剤の 3mm角パッドをのせ、上記曲げ強度テスト時と同様の条件、すなわち 、 850°Cでの空気雰囲気下または 950°Cでの窒素雰囲気下で焼成を行った。  As shown in Fig. 2, on a diamond plate (MWSL5012 manufactured by Element Six) with a length of 5. Omm, an inner diameter of 4. Omm, and a thickness of 1.2 mm, a vitrifide binder with the chemical composition shown in Table 2 above The 3 mm square pad was placed, and baked under the same conditions as in the above bending strength test, that is, under an air atmosphere at 850 ° C. or a nitrogen atmosphere at 950 ° C.
[0065] 図 3は、焼成後の各結合剤パッドを示す。 850°Cの空気雰囲気下での焼成では、 結合剤がよく流動化しており、ダイヤモンドプレートに対して良く濡れていることがわ 力る。 950°Cの窒素雰囲気による焼成では空気雰囲気の場合ほど流動化しておらず 、濡れも小さい。それらの接着力について確かめてみると、窒素雰囲気下での焼成 物は爪先でダイヤモンドプレートから簡単に剥離できたのに対し、空気雰囲気下での 焼成物は剥離できなかった。本テストの結果から、空気雰囲気中で高温焼成された ビトリフアイド結合剤は、窒素雰囲気の場合と比較して、ダイヤモンド材料に対する濡 れ性が高ぐ接着力も優れていることが確認された。 FIG. 3 shows each binder pad after firing. When fired in an air atmosphere at 850 ° C, it is clear that the binder is well fluidized and well wet to the diamond plate. Firing in a nitrogen atmosphere at 950 ° C. is less fluidized and less wet than in an air atmosphere. When examining their adhesive strength, the fired material in a nitrogen atmosphere could be easily peeled off from the diamond plate with a toe, but the fired material in an air atmosphere could not be peeled. From the results of this test, it was baked at high temperature in air atmosphere. It has been confirmed that the vitrisulfide binder has higher wettability to the diamond material and better adhesion than the nitrogen atmosphere.
ダイヤモンド砥粒の熱処理テスト  Heat treatment test of diamond abrasive
熱処理したダイヤモンド砥粒の表面を観察するテストを行った。 GE社製 MBG60 0T メッシュ 230Z270のダイヤモンド砥粒を磁性バッド上に広げ、 700°Cの空気雰 囲気下で 100分間加熱した。砥粒重量の減少は 4. 94wt%であった。加熱処理した ダイヤモンド砥粒の表面を SEMで観察した。  A test was performed to observe the surface of the heat treated diamond abrasive. The diamond abrasive grains of MBG600T mesh 230Z270 manufactured by GE were spread on a magnetic pad, and heated in an air atmosphere at 700 ° C. for 100 minutes. The reduction in abrasive weight was 4.94 wt%. The surface of the heated diamond abrasive grains was observed by SEM.
[0066] 図 4は、熱処理されてレ、なレ、砥粒と熱処理された砥粒の各表面の SEM写真を表す 。熱処理後のダイヤモンド砥粒は、その表面に微小な凹凸が形成されており、これに より砥粒の表面積が増大していることがわかった。  FIG. 4 shows SEM photographs of the surfaces of the heat-treated abrasive grains, the abrasive grains, and the heat-treated abrasive grains. It was found that the diamond abrasive grains after the heat treatment had fine irregularities formed on the surface thereof, which increased the surface area of the abrasive grains.
[0067] 高温の空気雰囲気に曝された砥粒表面は、酸素と加熱反応して部分的に燃焼し、 サブミクロンサイズの凹凸が形成されたと考えられる。理論に縛られるつもりはないが 、形成された凹凸により結合剤との間に投錨効果を伴う接着力が得られるので、これ により砥粒保持力が向上したと考えられる。  [0067] It is considered that the abrasive grain surface exposed to the high-temperature air atmosphere partially heated by reacting with oxygen and burned to form submicron-sized irregularities. Although not wishing to be bound by theory, it is believed that the formed irregularities provide an adhesive force with an anchoring effect to the binder, thereby improving the abrasive grain holding power.
[0068] カロえて、一般的にダイヤモンド砥粒には、砥材製造時に少量の金属が触媒として 添加されており、本発明においてそのような金属触媒はビトリフアイド結合剤との濡れ 性及び接着性を向上させることに役立つことが分かった。上記加熱テスト 2で得られ た TG—DTA加熱曲線によると、 650°C近辺から本熱処理テストの焼成温度である 8 50°Cまでに 5— 10wt%の重量減少を生じることが示唆される。実際に、本熱処理テ ストではダイヤモンドプレートには 650°C近辺力 ダイヤモンドの焼失が起こり金属触 媒の露出が見られた。ダイヤモンドプレート上に露出した金属は空気雰囲気下で酸 素により酸化されるので、溶融したビトリフアイド結合剤が酸化金属触媒を介してダイ ャモンド上に良く濡れ、またそれらが接着反応を起こすと考えられる。このように、溶 融したビトリフアイド結合剤は、露出して酸化した金属触媒を伝ってダイヤモンドプレ ートを流動することができるので、その流動性が促進され、接着性が向上したと考えら れる。  In general, a small amount of metal is added as a catalyst to diamond abrasive grains during the production of abrasives. In the present invention, such a metal catalyst improves wettability and adhesion with a vitrified binder. It has been found to help improve. The TG-DTA heating curve obtained in Heating Test 2 above suggests that a weight loss of 5-10 wt% occurs from around 650 ° C to 850 ° C, the firing temperature of this heat treatment test. In fact, in this heat treatment test, the diamond plate was burned off at around 650 ° C, and the metal catalyst was exposed. Since the metal exposed on the diamond plate is oxidized by oxygen in an air atmosphere, it is considered that the molten vitrisulfide binder wets well on the diamond via the metal oxide catalyst and causes an adhesive reaction. In this way, it is considered that the molten vitrisulfide binder can flow the diamond plate through the exposed and oxidized metal catalyst, so that the flowability is promoted and the adhesiveness is improved. .
[0069] さらに、上記の流動性テストで実証されたように空気雰囲気下ではビトリフアイド結 合剤のガラス化が促進され、窒素雰囲気下の場合と比較してダイヤモンド表面に対 する濡れ性が向上する。したがって、空気雰囲気下での高温焼成では、砥粒表面へ の結合剤の高い濡れ性と砥粒表面上の凹凸形成との相乗効果によって非常に高い 接着力が得られ、砥粒の保持力が改善された高性能な砥石を作製することができた と考えられる。 [0069] Further, as demonstrated in the above-mentioned fluidity test, vitrification of the vitrisulfide binder is promoted in an air atmosphere, and the vitrified binder is more likely to adhere to the diamond surface than in a nitrogen atmosphere. The wettability to be improved. Therefore, in high-temperature firing in an air atmosphere, a very high adhesive strength is obtained due to the synergistic effect of the high wettability of the binder on the abrasive grain surface and the formation of irregularities on the abrasive grain surface, and the holding power of the abrasive grains is reduced. It is considered that an improved high-performance grinding wheel could be manufactured.
先行 術の砥石 の比較テス卜  Comparison test of prior art whetstone
[曲げ強度]  [Bending strength]
砥石の製造方法は、上記の曲げ強度テストに記載したのと同じ手順に従った。  The method of manufacturing the whetstone followed the same procedure as described in the bending strength test above.
[0070] 実施例 3の砥石には、表 2に記載した化学組成のビトリフアイド結合剤を使用した。  [0070] For the grindstone of Example 3, a vitrisulfide binder having a chemical composition shown in Table 2 was used.
その結合剤は、先ずムライト以外の化学成分は溶融フリット化し、その後所定のムライ ト微粉を加えることにより調製した。  The binder was prepared by first fritting the chemical components other than mullite and then adding the required mullite fines.
[0071] 比較例 3として、特公平 8—18254号公報に記載されるように、軟化点 650°C未満 の結合剤を含む原材料を 700°Cの空気雰囲気下で焼成して砥石を作製した。  [0071] As Comparative Example 3, as described in JP-B-8-18254, a raw material containing a binder having a softening point of less than 650 ° C was fired in an air atmosphere at 700 ° C to produce a grindstone. .
[0072] 比較例 4として、特開 2002-18726号公報に記載されるように、 B O -ZnO系結  [0072] As Comparative Example 4, as described in JP-A-2002-18726, a B O -ZnO-based
2 3  twenty three
合剤を含む原材料を 590°Cの空気雰囲気下で焼成して砥石を作製した。  The raw material containing the mixture was fired in an air atmosphere at 590 ° C. to produce a grindstone.
[0073] 上記の各比較例では、所定の化学成分を溶融フリットィ匕することにより調製されたビ トリファイド結合剤を使用した。 In each of the above comparative examples, a vitrified binder prepared by subjecting a predetermined chemical component to melt fritting was used.
[0074] 表 6に、比較例 3および 4における結合剤の,組成および他の条件を纏めて示す。 [0074] Table 6 summarizes the composition and other conditions of the binder in Comparative Examples 3 and 4.
[0075] [表 6] 比較例 3 比較例 4 [Table 6] Comparative Example 3 Comparative Example 4
結合剤組成 (w t ¾  Binder composition (w t ¾
S i〇2 3 6 w t % 1 5 w t % S I_〇 2 3 6 wt% 1 5 wt %
A 1 20 3 7 4 A 1 2 0 3 7 4
B , 0 3 3 3 5 B, 0 3 3 3 5
Z n O 8 4 4  Z n O 8 4 4
P b〇 4 6 0  P b〇 4 6 0
N a 20 0 2 結合剤の軟化点 6 <3 5 °しに a整 N a 200 2 Softening point of binder 6 <35
焼成温度 7 0 o r 5 9 O : [0076] 各砥石について、上記実施例 1と同様に曲げ強度を測定した。表 7にテスト結果を 示す。 Firing temperature 7 0 or 5 9 O: The bending strength of each grindstone was measured in the same manner as in Example 1 above. Table 7 shows the test results.
[0077] [表 7] [0077] [Table 7]
Figure imgf000018_0001
Figure imgf000018_0001
[0078] [砥石重量の減少率の測定] [Measurement of Reduction Rate of Wheel Weight]
上記の実施例 3、比較例 3及び 4の砥石にっレ、て焼成時における砥石重量の減少 率を測定し、上記の結果の砥石強度との関係について考察した。砥石重量の減少率 は、上記製造工程における焼成前および焼成後の各砥石重量を測定し、計算式: (1 - (焼成後の砥石重量) / (焼成前の砥石重量 )) X 100により算出した。表 8に測定 結果を示す。  The reduction rate of the weight of the grindstone during baking was measured in Examples 3 and Comparative Examples 3 and 4, and the relationship between the above results and the strength of the grindstone was examined. The reduction rate of the weight of the grindstone is calculated by calculating the weight of each grindstone before and after firing in the above manufacturing process and calculating by: (1-(weight of the grindstone after firing) / (weight of the grindstone before firing)) x 100. did. Table 8 shows the measurement results.
[0079] [表 8]  [0079] [Table 8]
Figure imgf000018_0002
Figure imgf000018_0002
[0080] 使用された結合剤はフリット化(及びセラミック微粉添加)しているので焼成中に減 少する成分を含んでいない。また各砥石の一次結合剤には同一の物質を使用して いる。したがって、砥石重量の減少率は、各砥粒の表面からのダイヤモンドの焼失量 に相当する。 [0080] Since the binder used is fritted (and ceramic fine powder is added), it does not contain components that decrease during firing. The same material is used for the primary binder of each grinding wheel. Therefore, the rate of decrease in the weight of the grindstone corresponds to the amount of diamond burned from the surface of each abrasive grain.
[0081] 実施例 3の砥石は、焼成後の減少率が比較例 3及び比較例 4と比べて 1 %ほど高 レ、。すなわち、実施例 3の製造工程では、ダイヤモンド砥粒が焼失しやすい。このダ ィャモンドの焼失は、焼成温度への昇温過程で起こり、意外なことに、その昇温時の 結合剤の挙動及び砥粒表面の変化をコントロールすることがそれらの間の濡れ性及 び接着性の向上に寄与すると考えられ、具体的には以下のように説明することができ る。 [0081] The grindstone of Example 3 had a reduction rate after firing of about 1% higher than Comparative Examples 3 and 4. That is, in the manufacturing process of Example 3, the diamond abrasive grains are easily burned off. This burning of the diamond occurs during the heating process to the firing temperature, and surprisingly, controlling the behavior of the binder and the change in the surface of the abrasive grains at the time of heating raises the wettability between them. It is considered to contribute to the improvement of the adhesiveness and adhesiveness, and can be specifically described as follows.
[0082] ダイヤモンドの焼失量は、結合剤の軟ィ匕点の高さに依存する。例えば、実施例 3に 使用されたビトリフアイド結合剤は 800°Cの軟ィ匕点を持っており、焼成温度を最終温 度 850°Cまで上昇させる過程において、焼成温度が軟ィ匕点 800°Cを越えるまでは、 ダイヤモンド砥粒表面の大部分は空気雰囲気下に露出された状態であり得る。上記 の熱処理テストで示したように空気雰囲気下ではダイヤモンド砥粒表面は少しずつ 焼失しその表面に凹凸が形成され、金属触媒を含む砥粒では金属成分が露出する 。その後、焼成温度が結合剤の軟ィ匕点である 800°Cを超えると、ビトリフアイド結合斉 1J は流動し始めて砥粒表面上に拡がり、好ましくはビトリフアイド結合剤と酸化金属との 反応が起こり砥粒表面への濡れが高まり、その結果、ビトリフアイド結合剤とダイヤモ ンド砥粒との間に高い接着性が得られる。  [0082] The amount of diamond burned off depends on the height of the softening point of the binder. For example, the vitrified binder used in Example 3 has a softening point of 800 ° C, and in the process of raising the firing temperature to a final temperature of 850 ° C, the firing temperature becomes 800 ° C. Until C, most of the diamond abrasive surface can be exposed under an air atmosphere. As shown in the above heat treatment test, the surface of the diamond abrasive grains is gradually burned off in an air atmosphere, and irregularities are formed on the surface, and the metal component is exposed in the abrasive grains containing the metal catalyst. Thereafter, when the firing temperature exceeds 800 ° C, which is the softening point of the binder, the vitrified bond 1J starts flowing and spreads on the surface of the abrasive grains. Increased wetting of the grain surface results in high adhesion between the vitrified binder and the diamond abrasive.
[0083] 比較例 3及び比較例 4では、結合剤の軟化点はダイヤモンド砥粒が焼失し始める 6 50°Cより低いので、 650°Cでは溶融したビトリフアイド結合剤でダイヤモンド砥粒が被 覆され得る。このため砥粒表面は、高温空気雰囲気下に曝される機会が奪われるこ とになり、実施例 3に見られるような上記の利点が得られず、主としてこの相違に起因 して、表 8に示す曲げ強度の差が生じたものと考えられる。  [0083] In Comparative Examples 3 and 4, since the softening point of the binder is lower than 650 ° C at which the diamond abrasive grains start to burn off, at 650 ° C, the diamond abrasive grains are covered with the molten vitrisulfide binder. obtain. As a result, the surface of the abrasive grains is not given an opportunity to be exposed to a high-temperature air atmosphere, and the above-mentioned advantages as seen in Example 3 cannot be obtained. It is considered that the difference in bending strength shown in FIG.
[0084] 本テストの結果から、空気雰囲気下での焼成を行う場合にぉレ、て、所望の砥石を製 造するには実施例 3のように高い軟化点を有する結合剤の使用および充分に高い温 度での焼成が重要であることが示された。  [0084] From the results of this test, it was found that when firing in an air atmosphere was performed, the use of a binder having a high softening point as in Example 3 was sufficient to produce a desired grindstone. It was shown that firing at a high temperature was important.
[0085] 要するに本発明は、ダイヤモンドが焼失しない比較的低い温度で軟ィ匕する結合剤 を使用してダイヤモンド砥粒をその焼失から保護することを企図した従来の技術とは 異なり、ダイヤモンド砥粒が焼失し始める 650°Cよりも高い軟ィ匕点を有する結合剤を 使用することにより空気雰囲気下での砥粒の適度な焼失を引き起こし、これによつて ビトリフアイド結合剤のダイヤモンド砥粒への濡れ性および接着性を改善することがで きる。その結果、砥粒の保持力が向上した良好な研削性能を有する砥石を製造可能 にする。  [0085] In short, the present invention differs from the prior art in that the use of a binder that softens at a relatively low temperature at which the diamond is not burned off protects the diamond abrasive from its burning. Begins to burn down by using a binder having a softening point higher than 650 ° C, causing moderate burnout of the abrasive grains in an air atmosphere, thereby causing the vitrified binder to bind to the diamond abrasive grains. It can improve wettability and adhesion. As a result, it is possible to manufacture a grindstone having good grinding performance with improved abrasive grain holding power.

Claims

請求の範囲 The scope of the claims
[1] ビトリフアイド結合剤とダイヤモンド砥粒との混合物を空気雰囲気下で焼成する工程 を含むビトリフアイドダイヤモンド砥石の製造方法であって、 650。Cより高い軟ィ匕点を 有するビトリフアイド結合剤を含む混合物を 700°C 900°Cの空気雰囲気下で焼成 する工程を含む製造方法。  [1] A method for producing a vitrified diamond grindstone, comprising a step of firing a mixture of a vitrified binder and diamond abrasive grains in an air atmosphere, 650. A process comprising baking a mixture containing a vitrisulfide binder having a softening point higher than C in an air atmosphere at 700 ° C to 900 ° C.
[2] 50— 65wt%の SiO  [2] 50-65wt% SiO
2、 5 15wt%の A1〇  2,5 15wt% A1〇
2 3、 15 25wt%の B〇  2 3, 15 25wt% B〇
2 3、 1一 6wt%の 2 3, 1 1 6wt%
RO (ROは Ca〇、 Mg〇及び BaO力 選ばれる少なくとも一種)、および 4一 10wt% の R 0 (R Oは K 0、 Na〇及び Li〇から選ばれる少なくとも一種)の化学組成を有RO (RO is at least one selected from Ca〇, Mg〇 and BaO), and 4-10 wt% of R 0 (RO is at least one selected from K0, Na〇 and Li〇)
2 2 2 2 2 2 2 2 2 2
するビトリフアイド結合剤を使用することを特徴とする、請求項 1に記載の製造方法。  2. The method according to claim 1, wherein a vitrisulfide binder is used.
[3] 前記ビトリフアイド結合剤にセラミック微粉を 1一 10wt%添加して使用することを特 徴とする、請求項 1又は 2に記載の製造方法。  [3] The production method according to claim 1 or 2, characterized in that ceramic powder is added to the vitrisulfide binder in an amount of 110 wt%.
[4] 使用される前記ビトリフアイド結合剤は、該ビトリフアイド結合剤から成型してなる高さ /直径の比率 0. 79の円柱状ペレットを焼成温度に曝す流動性テストにおいて、焼 成によりペレットの高さ/直径の比率で 0· 1-0. 6となる流動性を有するものである ことを特徴とする、請求項 1一 3のいずれ力 1項に記載の製造方法。  [4] The vitrified binder used in the fluidity test of exposing a cylindrical pellet having a height / diameter ratio of 0.79 to a firing temperature, which is molded from the vitrisulfide binder, is subjected to calcination to obtain a pellet having a high height. The production method according to any one of claims 13 to 13, wherein the composition has fluidity such that the ratio of diameter / diameter is 0.1 to 0.6.
[5] 金属または無機質材料で被覆されたダイヤモンド砥粒を使用することを特徴とする 、請求項 1一 4のいずれか 1項に記載の製造方法。  [5] The production method according to any one of claims 14 to 14, wherein diamond abrasive grains coated with a metal or an inorganic material are used.
[6] 前記混合物が、前記ダイヤモンド砥粒に加えて、立方晶窒化ホウ素砥粒、アルミナ 系砥粒、炭化珪素系砥粒、シリカ、酸化セリウム及びムライトからなる群から選択され る 1種類以上の砥粒を更に含むことを特徴とする、請求項 1一 5のいずれ力、 1項に記 載の製造方法。  [6] The mixture is at least one selected from the group consisting of cubic boron nitride abrasive grains, alumina-based abrasive grains, silicon carbide-based abrasive grains, silica, cerium oxide, and mullite in addition to the diamond abrasive grains. 6. The method according to claim 1, further comprising abrasive grains.
[7] 前記混合物が、気孔形成剤として有機質粉体または無機中空体を更に含むことを 特徴とする、請求項 1一 6のいずれ力、 1項に記載の製造方法。  7. The production method according to claim 16, wherein the mixture further comprises an organic powder or an inorganic hollow body as a pore-forming agent.
PCT/JP2005/001124 2004-01-28 2005-01-27 Method for producing vitrified diamond whetstone WO2005072912A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005517487A JP4768444B2 (en) 2004-01-28 2005-01-27 Vitrified diamond grinding wheel manufacturing method
KR1020067014997A KR101143437B1 (en) 2004-01-28 2005-01-27 Method for producing vitrified diamond whetstone
CN2005800014588A CN1905992B (en) 2004-01-28 2005-01-27 Method for producing vitrified diamond whetstone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004019778 2004-01-28
JP2004-019778 2004-01-28

Publications (1)

Publication Number Publication Date
WO2005072912A1 true WO2005072912A1 (en) 2005-08-11

Family

ID=34823731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001124 WO2005072912A1 (en) 2004-01-28 2005-01-27 Method for producing vitrified diamond whetstone

Country Status (4)

Country Link
JP (1) JP4768444B2 (en)
KR (1) KR101143437B1 (en)
CN (1) CN1905992B (en)
WO (1) WO2005072912A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054905A (en) * 2005-08-23 2007-03-08 Noritake Super Abrasive:Kk Vitrified diamond wheel
WO2009102144A2 (en) * 2008-02-12 2009-08-20 Ehwa Diamond Industrial Co., Ltd. Glass composition for polishing wheel, polishing wheel using same and manufacturing method for same
JP2010184325A (en) * 2009-02-12 2010-08-26 Hitachi Koki Co Ltd Porous vitrified bond grindstone and method for manufacturing the same
JP2013154440A (en) * 2012-01-31 2013-08-15 Jtekt Corp Method for manufacturing vitrified bond grindstone and vitrified bond grindstone
JP2013154441A (en) * 2012-01-31 2013-08-15 Jtekt Corp Vitrified bond grindstone manufacturing method and vitrified bond grindstone
JP2018020438A (en) * 2011-12-30 2018-02-08 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive articles and method of forming the same
JP2019059019A (en) * 2018-12-27 2019-04-18 クレトイシ株式会社 Vitrified superabrasive grain wheel
WO2024034076A1 (en) * 2022-08-10 2024-02-15 住友電気工業株式会社 Superabrasive grain and grindstone
US12017328B2 (en) 2022-09-28 2024-06-25 Tokyo Diamond Tools Mfg. Co., Ltd. Synthetic grindstone, synthetic grindstone assembly, and method of manufacturing synthetic grindstone

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847121B1 (en) * 2006-12-28 2008-07-18 주식회사 실트론 Conditioner for grinding pad and chemical and mechanical polishing apparatus the same
KR101015405B1 (en) * 2008-08-18 2011-02-22 한국세라믹기술원 vitrified binder for grinding wheel, manufacturing method thereof and grinding wheel using the vitrified binder
DE102012017969B4 (en) * 2012-09-12 2017-06-29 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Agglomerate abrasive grain with embedded hollow microspheres
CN105463375A (en) * 2015-12-12 2016-04-06 中原工学院 Method for plating diamonds with silicon oxide
JP6192253B1 (en) * 2017-04-06 2017-09-06 龍司 大島 Cubic boron nitride particle-containing single crystalline diamond particles and method for producing the same
CN114750081B (en) * 2022-04-06 2024-04-02 郑州跃川超硬材料有限公司 Ceramic bond with air holes and preparation method thereof
JP7229610B1 (en) 2022-09-26 2023-02-28 株式会社東京ダイヤモンド工具製作所 Synthetic whetstone, synthetic whetstone assembly, and synthetic whetstone manufacturing method
JP7262864B1 (en) * 2022-09-28 2023-04-24 株式会社東京ダイヤモンド工具製作所 Synthetic whetstone, synthetic whetstone assembly, and synthetic whetstone manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251077A (en) * 1986-04-21 1987-10-31 Noritake Co Ltd Vitrifide grinding element
JPH08150567A (en) * 1994-11-24 1996-06-11 Mitsubishi Materials Corp Vitrified bond diamond grinding stone and its manufacture
JPH10138148A (en) * 1996-11-11 1998-05-26 Noritake Co Ltd Vitrified extra-abrasive grain grinding wheel
JP2003181764A (en) * 2001-12-19 2003-07-02 Noritake Co Ltd Method for manufacturing porous vitrified grinding stone and pore forming agent
JP2003527974A (en) * 2000-03-23 2003-09-24 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive tools bonded with vitrified binder
JP2004330320A (en) * 2003-05-01 2004-11-25 Kurenooton Kk Vitrified cbn abrasive-grain grinding wheel and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969483A (en) * 1982-10-07 1984-04-19 有限会社 日本グレ−ン研究所 Ceramic bond diamond grinding stone
TW371637B (en) * 1996-04-10 1999-10-11 Norton Co Vitreous grinding tool containing metal coated abrasive
JPH1015832A (en) * 1996-07-10 1998-01-20 Mitsui Kensaku Toishi Kk Binder for vitrified grinding wheel, manufacture of vitrified grinding wheel using the binder, and vitrified grinding wheel
US5711774A (en) * 1996-10-09 1998-01-27 Norton Company Silicon carbide abrasive wheel
JP3712832B2 (en) * 1997-06-05 2005-11-02 豊田バンモップス株式会社 Resinoid super abrasive wheel
JP3615084B2 (en) * 1999-05-11 2005-01-26 株式会社ノリタケカンパニーリミテド Vitrified grinding wheel manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251077A (en) * 1986-04-21 1987-10-31 Noritake Co Ltd Vitrifide grinding element
JPH08150567A (en) * 1994-11-24 1996-06-11 Mitsubishi Materials Corp Vitrified bond diamond grinding stone and its manufacture
JPH10138148A (en) * 1996-11-11 1998-05-26 Noritake Co Ltd Vitrified extra-abrasive grain grinding wheel
JP2003527974A (en) * 2000-03-23 2003-09-24 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive tools bonded with vitrified binder
JP2003181764A (en) * 2001-12-19 2003-07-02 Noritake Co Ltd Method for manufacturing porous vitrified grinding stone and pore forming agent
JP2004330320A (en) * 2003-05-01 2004-11-25 Kurenooton Kk Vitrified cbn abrasive-grain grinding wheel and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054905A (en) * 2005-08-23 2007-03-08 Noritake Super Abrasive:Kk Vitrified diamond wheel
WO2009102144A2 (en) * 2008-02-12 2009-08-20 Ehwa Diamond Industrial Co., Ltd. Glass composition for polishing wheel, polishing wheel using same and manufacturing method for same
WO2009102144A3 (en) * 2008-02-12 2009-11-05 이화다이아몬드공업 주식회사 Glass composition for polishing wheel, polishing wheel using same and manufacturing method for same
KR100948580B1 (en) * 2008-02-12 2010-03-18 이화다이아몬드공업 주식회사 Glass Composition for Grinding Wheel, Grinding Wheel Manufactured Using the Glass Composition and Method for Manufacturing Grinding Wheel
JP2010184325A (en) * 2009-02-12 2010-08-26 Hitachi Koki Co Ltd Porous vitrified bond grindstone and method for manufacturing the same
JP2018020438A (en) * 2011-12-30 2018-02-08 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive articles and method of forming the same
JP2013154440A (en) * 2012-01-31 2013-08-15 Jtekt Corp Method for manufacturing vitrified bond grindstone and vitrified bond grindstone
JP2013154441A (en) * 2012-01-31 2013-08-15 Jtekt Corp Vitrified bond grindstone manufacturing method and vitrified bond grindstone
JP2019059019A (en) * 2018-12-27 2019-04-18 クレトイシ株式会社 Vitrified superabrasive grain wheel
WO2024034076A1 (en) * 2022-08-10 2024-02-15 住友電気工業株式会社 Superabrasive grain and grindstone
US12017328B2 (en) 2022-09-28 2024-06-25 Tokyo Diamond Tools Mfg. Co., Ltd. Synthetic grindstone, synthetic grindstone assembly, and method of manufacturing synthetic grindstone

Also Published As

Publication number Publication date
CN1905992B (en) 2011-01-19
KR20060126742A (en) 2006-12-08
CN1905992A (en) 2007-01-31
JP4768444B2 (en) 2011-09-07
JPWO2005072912A1 (en) 2007-09-06
KR101143437B1 (en) 2012-05-22

Similar Documents

Publication Publication Date Title
WO2005072912A1 (en) Method for producing vitrified diamond whetstone
JP4865426B2 (en) Polishing tool and manufacturing method thereof
JP4119366B2 (en) Vitrified superabrasive machining tool and manufacturing method
JP3336015B2 (en) Manufacturing method of highly permeable whetstone
EP1280631B1 (en) Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
KR101763665B1 (en) Abrasive articles and method of forming same
WO2001070463A2 (en) Vitrified bonded abrasive tools
JPH01316174A (en) Vitrified super grain grindstone
JP3542520B2 (en) Vitrified whetstone
JP5697794B2 (en) Abrasive articles for high-speed grinding operations
JP6200462B2 (en) Abrasive articles for high-speed grinding operations
US20180257199A1 (en) Sintered vitrified superfinishing grindstone
JP4850055B2 (en) Vacuum chuck and vacuum suction device using the same
JPH0138628B2 (en)
JPH11188626A (en) Ceramics dress substrate
JPS6357188B2 (en)
JP3281605B2 (en) Vitrified bond whetstone and method of manufacturing the same
JP6763937B2 (en) Vitrified Super Abrasive Wheel
JP4846262B2 (en) Vitrified grinding wheel for glass ceramic surface finishing
JP3050371B2 (en) Superabrasive grindstone and method of manufacturing the same
JPS6257874A (en) Super abrasive grain grindstone
JPS62152677A (en) Manufacture of grindstone
JPS6263065A (en) Binder for vitrified grinding wheel and superfinishing grinding wheel
JPS62292365A (en) Ceramic carbide abrasive grain grindstone and its process
JPS6341709B2 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001458.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517487

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067014997

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067014997

Country of ref document: KR

122 Ep: pct application non-entry in european phase