JP2019059019A - Vitrified superabrasive grain wheel - Google Patents

Vitrified superabrasive grain wheel Download PDF

Info

Publication number
JP2019059019A
JP2019059019A JP2018244379A JP2018244379A JP2019059019A JP 2019059019 A JP2019059019 A JP 2019059019A JP 2018244379 A JP2018244379 A JP 2018244379A JP 2018244379 A JP2018244379 A JP 2018244379A JP 2019059019 A JP2019059019 A JP 2019059019A
Authority
JP
Japan
Prior art keywords
wheel
vitrified
pores
pore
superabrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018244379A
Other languages
Japanese (ja)
Other versions
JP6763937B2 (en
Inventor
淳二 樫木
Junji Kashiki
淳二 樫木
陽一 青木
Yoichi Aoki
陽一 青木
松本 進
Susumu Matsumoto
進 松本
恵理子 吉岡
Eriko Yoshioka
恵理子 吉岡
和志 中塩
Kazuyuki Nakashio
和志 中塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURE GRINDING WHEEL CO
Kure Grinding Wheel Co Ltd
Original Assignee
KURE GRINDING WHEEL CO
Kure Grinding Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURE GRINDING WHEEL CO, Kure Grinding Wheel Co Ltd filed Critical KURE GRINDING WHEEL CO
Priority to JP2018244379A priority Critical patent/JP6763937B2/en
Publication of JP2019059019A publication Critical patent/JP2019059019A/en
Application granted granted Critical
Publication of JP6763937B2 publication Critical patent/JP6763937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a vitrified superabrasive grain wheel which has a durability, can improve the quality of a wafer and so on after processing, and has excellent grinding performance.SOLUTION: A vitrified superabrasive grain wheel having a superabrasive grain layer in which superabrasive grains are combined by a vitrified bond. The wheel includes spherical pores which are located on the superabrasive grain layer while being dispersed and have an average pore diameter of 250-600 μm, and an average value of a ratio (a/b) of a minor axis a to a major axis b of the spherical pore is 0.5-1.0. The vitrified superabrasive grain wheel having pores is used for grinding of various kinds of wafers of silicone, sapphire, a compound semiconductor or the like.SELECTED DRAWING: Figure 1

Description

本発明は、シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられる超砥粒をビトリファイドボンドによって結合した、有気孔のビトリファイドボンド超砥粒ホイールに関するものである。   The present invention relates to a vitrified bonded superabrasive wheel having pores, in which superabrasive particles used for grinding processing of various wafers such as silicon, sapphire and compound semiconductor are bonded by a vitrified bond.

研削及び研磨用砥石の主たる種類としてボンド別に分類するとビトリファイド砥石、レジノイド砥石、メタル砥石及び電着砥石に分けられる。その中でも、ビトリファイド砥石は、切れ味がよく、耐久性が高くかつドレス性がよいため広く利用されている。   If it classify | categorizes according to a bond as a main kind of grindstones for grinding and polishing, it will be divided into vitrified grindstone, resinoid grindstone, a metal grindstone, and an electrodeposition grindstone. Among them, the vitrified grindstone is widely used because of its good sharpness, high durability and good dressability.

さらに良好な切れ味を持続するため、ビトリファイドボンドホイールの中に気孔形成材を入れる技術が公開されている。具体的には超砥粒ビトリファイドホイールであって、平均気孔径が0.1〜15μmの小径気孔と、平均気孔径が20〜200μmの球状の大径気孔を含む旨が記載されている(特許文献1)。   In order to maintain even better sharpness, a technology for putting a pore forming material in a vitrified bonded wheel is disclosed. Specifically, it is described that it is a superabrasive vitrified wheel and includes small pores having an average pore diameter of 0.1 to 15 μm and spherical large pores having an average pore diameter of 20 to 200 μm (patented) Literature 1).

同じくビトリファイドボンド砥石で砥粒平均粒径40〜160μmを使用し、130超〜1300μmの気孔 形成材を使用したビトリファイドボンド砥石が開示されている。(特許文献2)   Similarly, a vitrified bonded grinding wheel is disclosed which uses an average grain size of 40 to 160 μm as a vitrified bonded grinding wheel and uses a pore-forming material of 130 to 1300 μm. (Patent Document 2)

特開2012−152881号公報JP, 2012-152881, A 特開平8−57768号公報JP-A-8-57768

しかしながら、昨今の技術の発達に伴って、各種ウエハーの品質要求が上がった上に、加工コストの低減が求められており、従来の技術では対応できず、より研削性能の優れたビトリファイドボンド超砥粒ホイールが求められている。したがって、本発明は、耐久性があり、かつ加工後のウエハーの品質を向上させることができ、研削性能の優れたビトリファイドボンド超砥粒ホイールを提供することを課題とする。   However, along with the recent development of technology, quality requirements for various wafers have been raised, and reduction in processing costs is required, and vitrified bond superabrasives with better grinding performance can not be coped with by conventional techniques. Grain wheels are required. Therefore, an object of the present invention is to provide a vitrified superabrasive grain wheel which is durable, can improve the quality of a processed wafer, and has excellent grinding performance.

本発明者等は上記課題に鑑み、ビトリファイドボンド超砥粒ホイールにおいて、従来の技術に囚われず球状の大径気孔を従来の上限平均気孔径200μmを超えたより大径の平均気孔径が250〜600μmの範囲である球状の気孔を分散させることにより、意外にも従来のビトリファイドボンド超砥粒ホイールの研削性能を上回ることを見出した。さらに、当該超砥粒ホイールに適合するビトリファイドボンドの開発を行い、球状の所定寸法径の気孔形成材と当該ビトリファイドボンドとを組み合わせることにより、予想を上回る研削性能を発揮するビトリファイドボンド超砥粒ホイールを見出すことにより本発明を完成した。   In view of the above problems, the inventors of the present invention have made the vitrified bonded super-abrasive particle wheel have a larger diameter average pore diameter of 250 to 600 μm larger than the conventional upper limit average pore diameter of 200 μm regardless of the prior art. It has been found that the grinding performance of conventional vitrified bonded superabrasive wheels is surprisingly surpassed by dispersing spherical pores which are in the range of. Furthermore, a vitrified bond superabrasive wheel that exhibits grinding performance that exceeds expectations by performing development of a vitrified bond that is compatible with the superabrasive wheel, and combining the vitrified bond with a spherical pore-shaped material with a predetermined size diameter. The present invention is completed by finding

すなわち、本発明は、超砥粒をビトリファイドボンドによって結合した超砥粒層を有するビトリファイドボンド超砥粒ホイールであって、前記超砥粒層に分散して配置された平均気孔径が250〜600μmの球状の気孔を含み、前記球状の気孔の短径aと長径bの比(a/b)の平均値が0.5以上1.0以下であり、シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられることを特徴とする、有気孔のビトリフ
ァイドボンド超砥粒ホイールにある。
That is, the present invention is a vitrified bonded superabrasive particle wheel having a superabrasive particle layer in which superabrasive particles are bonded by a vitrified bond, and the average pore diameter dispersedly disposed in the superabrasive particle layer is 250 to 600 μm. And the average value of the ratio (a / b) of the minor axis a to the major axis b of the spherical pores is 0.5 or more and 1.0 or less, and various wafers such as silicon, sapphire and compound semiconductors The present invention relates to a vitrified bonded superabrasive wheel having pores, which is characterized in that it is used for the grinding process of the present invention.

また、本発明で使用するビトリファイドボンドは、55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のB、1〜6wt%のRO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)、及び4〜10wt%のRO(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)からなる組成を有する。 Also, vitrified bond used in the present invention, SiO 2 of 55~70wt%, 5~15wt% of Al 2 O 3, 15~25wt% of B 2 O 3, 1~6wt% of RO (RO is CaO, It has a composition comprising MgO and at least one of BaO, and 4 to 10 wt% of R 2 O (where R 2 O is selected from at least one of K 2 O, Na 2 O and Li 2 O).

さらに、前記ROはKO、NaO及びLiOを含み、該NaOがRO全量に対して5〜30wt%、LiOがRO全量に対して20〜45wt%、KOがRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有されることを特徴とする。 Furthermore, said R 2 O contains K 2 O, Na 2 O and Li 2 O, said Na 2 O is 5 to 30 wt% with respect to the total amount of R 2 O, and Li 2 O is 20 with respect to the total amount of R 2 O ~45wt%, K 2 O is 20 to 45 wt% with respect to R 2 O total amount, and each of K 2 O and Li 2 O is characterized in that it is contained more than Na 2 O.

本発明のビトリファイドボンド超砥粒ホイールは大幅な耐久性向上をもたらし、また各種ウエハーの加工において大幅な作業効率の向上及び品質向上をもたらすことができる。以下、これらの効果を「本発明の効果」と称することがある。   The vitrified bonded superabrasive wheel of the present invention can provide a significant improvement in durability, and can also provide a significant improvement in working efficiency and quality in processing of various types of wafers. Hereinafter, these effects may be referred to as “effects of the present invention”.

図1は、実施例1で得られたホイールの断面拡大写真である(SEM写真 ×50倍)。FIG. 1 is a cross-sectional enlarged photograph of a wheel obtained in Example 1 (SEM photograph × 50 times). 図2は、比較例1で得られたホイールの断面拡大写真である(SEM写真 ×50倍)。FIG. 2 is an enlarged sectional view of a cross section of the wheel obtained in Comparative Example 1 (SEM photograph × 50 times). 図3は、実施例1で得られたホイールの砥粒と結合剤の断面拡大写真である(SEM写真 ×2000倍)。FIG. 3 is an enlarged sectional view of the abrasive grains and the binder of the wheel obtained in Example 1 (SEM photograph × 2000 times). 図4は、比較例1で得られたホイールの砥粒と結合剤の断面拡大写真である(SEM写真 ×2000倍)。FIG. 4 is an enlarged sectional view of the abrasive grains and the binder of the wheel obtained in Comparative Example 1 (SEM photograph × 2000 times).

上述したように、本発明は超砥粒をビトリファイドボンドによって結合した超砥粒層を有するビトリファイドボンド超砥粒ホイールであって、前記超砥粒層に分散して配置された平均気孔径が250〜600μmの球状の気孔を含み、前記球状の気孔の短径aと長径bの比(a/b)の平均値が0.5以上1.0以下であり、シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられることを特徴とする、有気孔のビトリファイドボンド超砥粒ホイールにある。   As described above, the present invention is a vitrified bonded superabrasive particle wheel having a superabrasive particle layer in which superabrasive particles are bonded by vitrified bond, and the average pore diameter dispersedly disposed in the superabrasive particle layer is 250 And the average ratio of the minor diameter a to major diameter b (a / b) of the spherical pores is 0.5 or more and 1.0 or less, such as silicon, sapphire, compound semiconductor, etc. It is a porous, vitrified bonded superabrasive wheel characterized in that it is used for grinding of various wafers.

球状の気孔径が平均気孔径250μmを下回ると耐久性が低下し、かつ面粗度が粗くなる。また、球状の気孔径が平均気孔径600μmを上回るとホイールにクラックが発生し正常なホイールの製造ができなくなる。球状の気孔径の平均気孔径は250〜600μmが好ましいが、250〜500μmがより好ましく、300μm〜400μmが最も好ましい。気孔を形成するのに使用される気孔形成材は所定の寸法に気孔を形成することができればどのような物質でも使用できるが、有機質の物質で樹脂材料などが好適に使用される。   When the spherical pore diameter is less than the average pore diameter of 250 μm, the durability decreases and the surface roughness becomes rough. In addition, when the spherical pore diameter exceeds the average pore diameter of 600 μm, the wheel is cracked and the normal wheel can not be manufactured. The average pore diameter of the spherical pore diameter is preferably 250 to 600 μm, more preferably 250 to 500 μm, and most preferably 300 μm to 400 μm. The pore-forming material used to form the pores may be any substance as long as it can form pores in a predetermined size, but an organic substance is preferably used such as a resin material.

気孔を形成するのに使用される気孔形成材は有機質の物質が望ましいが無機質の中空体も使用でき、球状の気孔形成材が好ましい。その場合、気孔形成材の径は、平均気孔径250〜600μmが好ましく、250〜500μmがより好ましく、300μm〜400μmが最も好ましい。気孔形成材の具体例には、例えば、アルミナバルーン、ムライトバルーン、カーボン等がある。本発明において、球状とは、断面が略円形または略楕円形であり、その短径aと長径bの比a/bの平均値(以下、「真球度」という。)が0.5以
上1以下のものを指す。従って、厳密な真球状、楕円球状などの、断面が数学的に厳密な円または楕円になる様な立体形状を、要求するものではない。本発明において用いられる気孔形成材の真球度は、0.5〜1.0であり、0.8〜1.0であることが好ましく、0.9〜1.0であることがより好ましい。
The pore-forming material used to form the pores is preferably an organic substance, but an inorganic hollow body can also be used, and a spherical pore-forming material is preferred. In that case, the average pore diameter is preferably 250 to 600 μm, more preferably 250 to 500 μm, and most preferably 300 μm to 400 μm. Specific examples of the pore forming material include, for example, an alumina balloon, a mullite balloon, carbon and the like. In the present invention, the term "spherical" means that the cross section is substantially circular or elliptical, and the average value of the ratio a / b of the minor axis a to the major axis b (hereinafter referred to as "sphericity") is 0.5 or more. 1 or less. Therefore, it does not require a solid shape such as an exact spherical shape or an elliptical spherical shape such that the cross section is a mathematically exact circle or an ellipse. The sphericity of the pore-forming material used in the present invention is 0.5 to 1.0, preferably 0.8 to 1.0, and more preferably 0.9 to 1.0. .

尚、ビトリファイドボンド超砥粒ホイールは、前述した気孔形成材により形成した相対的に大径の気孔の他に自然に発生する相対的に小径のいわゆる自然気孔が発生する。これは使用する砥粒の粒径と相関関係があり、使用する砥粒の粒径が大きいと大きな自然気孔が発生し、使用する砥粒の粒径が小さいと小さな自然気孔が発生する傾向にある。通常、自然気孔の平均気孔は、使用する砥粒の平均粒径とほぼ同じ径となる傾向にある。本明細書中では、本発明の気孔形成材により形成された相対的に大径の気孔を大径気孔と称することがある。   In the vitrified bonded superabrasive grain wheel, in addition to the relatively large diameter pores formed by the pore forming material described above, so-called natural pores of relatively small diameter naturally generated are generated. This has a correlation with the particle size of the abrasive used, and when the particle size of the abrasive used is large, large natural pores are generated, and when the particle size of the abrasive used is small, small natural pores are generated. is there. Usually, the average pore size of natural pores tends to be substantially the same as the average particle size of the abrasive used. In the present specification, the relatively large diameter pores formed by the pore-forming material of the present invention may be referred to as large diameter pores.

以下、本発明に好適に使用されるビトリファイドボンドの詳細を説明する。   Hereinafter, details of the vitrified bond preferably used in the present invention will be described.

本発明で使用されるビトリファイドボンドは、ホウケイ酸ガラス系のボンドであり、その化学組成は、55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のB、1〜6wt%のRO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)、及び4〜10wt%のRO(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)が使用される。 Vitrified bond used in the present invention is the bond of the glass borosilicate, its chemical composition, SiO 2 of 55~70wt%, 5~15wt% of Al 2 O 3, 15~25wt% of B 2 O 3 , 1 to 6 wt% of RO (RO is selected from at least one of CaO, MgO and BaO), and 4 to 10 wt% of R 2 O (R 2 O is K 2 O, Na 2 O and Li 2 O) (Selected from at least one type) is used.

O内の各成分の比率については、NaOはRO全量に対して5〜30wt%、LiOはRO全量に対して20〜45wt%、KOはRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有される。 Regarding the ratio of each component in R 2 O, Na 2 O is 5 to 30 wt% with respect to the total amount of R 2 O, Li 2 O is 20 to 45 wt% with respect to the total amount of R 2 O, and K 2 O is R 2 It is 20 to 45 wt% with respect to the total amount of O, and each of K 2 O and Li 2 O is contained more than Na 2 O.

SiOが55wt%より低いと熱膨張係数が上がりかつ軟化点が下がりすぎる。70wt%より高いと軟化点が上がりすぎて砥粒の保持力が不足し、さらにホウケイ酸ガラス質の安定性がなくなり分相現象が発生する。 When SiO 2 is lower than 55 wt%, the thermal expansion coefficient is increased and the softening point is lowered too much. If it is higher than 70% by weight, the softening point is excessively raised, the holding power of the abrasive grains is insufficient, and furthermore, the stability of the borosilicate glass is lost and a phase separation phenomenon occurs.

Alが5wt%より低いと軟化点が下がりすぎかつホウケイ酸ガラス質の安定性がなくなり分相現象が発生し、15wt%より高いと軟化点が上がりすぎ砥粒の保持力が不足する。 If the content of Al 2 O 3 is less than 5 wt%, the softening point is too low, the stability of the borosilicate glass is lost and phase separation occurs, and if it is more than 15 wt%, the softening point is too high and the retention of abrasive grains is insufficient .

は15wt%より低いと軟化点が上がり流動性が不足し砥粒の保持力が低下する。25wt%より高いと軟化点が下がりすぎ、ホイールの内部にガス等が発生し正常なホイールが製造できなくなり、かつホウケイ酸ガラス質の安定性がなくなり分相現象が発生し正常なホイールが製造できなくなり、かつ研削性能が低下する。 When the content of B 2 O 3 is lower than 15 wt%, the softening point is increased, the fluidity is insufficient, and the retention of the abrasive grains is reduced. If it is higher than 25 wt%, the softening point is too low, gas etc. is generated inside the wheel and normal wheel can not be manufactured, and stability of borosilicate glass is lost and phase separation phenomenon occurs and normal wheel can be manufactured. And the grinding performance is reduced.

RO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)が1wt%より低いと軟化点が上がりすぎボンドの流動性が不足し、6wt%より高いと軟化点が下がりすぎる。   When RO (RO is selected from at least one of CaO, MgO and BaO) is lower than 1 wt%, the softening point is too high, the fluidity of the bond is insufficient, and when it is higher than 6 wt%, the softening point is too low.

O(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)が4%より低いと軟化点が上がりすぎボンドの流動性が不足し、10wt%より高いと熱膨張係数が上がりすぎる。 When R 2 O (R 2 O is selected from at least one of K 2 O, Na 2 O and Li 2 O) is lower than 4%, the softening point is too high and the fluidity of the bond is insufficient, and when it is higher than 10 wt% Thermal expansion coefficient is too high.

さらに発明者等はRO成分の中のKO、NaO及びLiOの相対割合に着目した。一般的にRO中はNaOの使用割合が多い。これは取り扱いのしやすさや入手が容易(コストも関係する)であることに起因する。本発明では、好ましくは、NaOは少なく、その代わりLiOとKOの2物質がNaOより多くなることである。具体
的にはNaOがRO全量に対して5〜30wt%、LiOがRO全量に対して20〜45wt%、KOがRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有される。各成分のこのような相対割合を採用することにより、砥粒保持力がさらに増加し研削性能が向上する等の利点が得られる。
Furthermore, the inventors focused on the relative proportions of K 2 O, Na 2 O and Li 2 O in the R 2 O component. Generally, the proportion of Na 2 O used is large in R 2 O. This is due to ease of handling and availability (also related to cost). In the present invention, preferably, Na 2 O is low, and instead, two substances, Li 2 O and K 2 O, are more than Na 2 O. 5-30 wt% in particular Na 2 O is relative R 2 O total amount, 20~45wt% Li 2 O is relative R 2 O total amount, 20 to 45 wt K 2 O is relative R 2 O total amount %, And each of K 2 O and Li 2 O is contained more than Na 2 O. By adopting such relative proportions of the respective components, it is possible to obtain advantages such as a further increase in the abrasive holding power and an improvement in the grinding performance.

従来から大径気孔として知られている上限平均気孔径200μm(例えば、特許文献1)を超えて平均気孔径250〜600μmの範囲の球状の気孔を有するビトリファイド超砥粒ホイールを使用したら、意外にも従来のビトリファイド超砥粒ホイールよりも研削性能が上回った。さらにビトリファイド超砥粒ホイールに適合するビトリファイドボンドの開発を行い、本発明で使用する球状の大型気孔形成材とビトリファイドボンドをあわせると発明者等の予想を遙かに上回る研削性能を発揮するビトリファイド超砥粒ホイールを得ることができた。   If a vitrified superabrasive wheel having spherical pores with an average pore diameter in the range of 250 to 600 μm exceeding the upper limit average pore diameter of 200 μm (for example, Patent Document 1) conventionally known as large diameter pores is used surprisingly Also the grinding performance is better than the conventional vitrified superabrasive wheel. Furthermore, a vitrified bond suitable for a vitrified superabrasive wheel is developed, and when combined with the spherical large pore-forming material used in the present invention and the vitrified bond, a vitrified super that demonstrates grinding performance far exceeding the inventors' expectation. An abrasive wheel could be obtained.

理論に拘束されることを意図しないが、本発明に係るビトリファイド超砥粒ホイールがこのように優れた研削性能を示すことができるのは下記のようなことによることが考えられる。   While not intending to be bound by theory, it is conceivable that the vitrified superabrasive wheel according to the present invention can exhibit such excellent grinding performance as follows.

球状の気孔形成材は特に有機質の場合、焼成中温度が上昇するに従って有機質であるので分解、燃焼又は焼失し、その箇所が気孔となるが、これは固体から気体に変化することである。この燃焼は200℃程度から始まり400〜500℃で完了するのが一般的であるが、これをホイール中に含有させた場合、ホイール中からその燃焼、分解又は焼失気体が抜けきるのは最高保留温度に近い温度であると考えられる。つまり固体から気体に変化することで体積は膨張し、この圧力で回りの砥粒とボンドを含んだ層へ押す力が働くと考えられる。これにボンドの軟化が始まると砥粒とボンドの層が押されて密に結合することになり、その結果、砥粒の保持力が向上しホイールの研削性能の向上に至ったと考えられる。さらにボンドの溶融を支配するROの配合量が最適であることも見出した。これによりなお一層の本発明の効果が発揮されると考えられる。 In the case of an organic substance, the spherical pore-forming material decomposes, burns or burns off as it becomes organic as the temperature rises during firing, and the site becomes pores, which is a change from solid to gas. This combustion generally starts at about 200 ° C. and is completed at 400 to 500 ° C. However, when this is contained in the wheel, the combustion, decomposition or burnt-out gas can escape from the wheel at the highest retention It is considered to be a temperature close to the temperature. In other words, it is thought that the volume expands by changing from solid to gas, and this pressure acts on the layer containing the surrounding abrasive grains and bonds. In this case, when the softening of the bond starts, the abrasive grains and the bond layer are pressed to be intimately bonded, and as a result, it is considered that the retention of the abrasive grains is improved and the grinding performance of the wheel is improved. Furthermore, it was also found that the compounding amount of R 2 O that controls the melting of the bond is optimal. It is believed that this will further enhance the effects of the present invention.

球状の大径気孔が平均気孔径250μmより小さくなると、固体から気体に変わる量が少なくなるので上記の砥粒とボンドを含んだ層へ押す力は大きな球状の大径気孔を使用するより力が小さく上記のような密の結合が得られないと考えられる。   When the large spherical pores become smaller than the average pore diameter of 250 μm, the amount of solid to gas changes, so the above-mentioned pressing force on the layer containing the abrasive grains and the bond is stronger than using large spherical large pores. It is considered small and intimate as described above can not be obtained.

さらに特別に大径気孔形成材の含有量を少なくしないかぎり大径気孔形成材の粒子間距離が少なくなる。すると固体から気体になるとき隣の大径気孔とつながり砥粒とボンドを含んだ層を押す力がさらに弱まると考えられる。   Furthermore, the interparticle distance of the large diameter pore forming material is reduced unless the content of the large diameter pore forming material is particularly reduced. Then, when it changes from a solid to a gas, it is considered that the large diameter pores and the adjacent ones will be connected to further weaken the pressing force on the layer containing abrasive grains and bonds.

大径気孔が平均気孔径600μmより大きくなると、砥粒とボンドを含んだ層を押す力が強すぎ、隣の大径気孔、その距離は小さな大径気孔と使用するより遠くなるにも関わらず、となりの気孔とつながるがその力が強すぎるため、ホイールのクラックに発展すると考えられる。   When the large pores become larger than the average pore diameter of 600 μm, the pressing force on the layer containing the abrasive grains and the bond is too strong, and the next large pores, the distance becomes smaller despite the use of the smaller large pores. However, it is thought that it leads to cracks in the wheel because its strength is too strong, leading to pores in the vicinity.

本発明で使用できる砥粒に関し、本発明の効果がより効果的に発現するのは、使用する砥粒の平均粒径が小さいとき、具体的には平均粒径45μm以下の時である。したがって、本発明に使用される超砥粒(ダイヤモンド、CBN等)の粒度範囲は、平均粒度表示600μmの粗目粒度〜平均径1μmより小さい平均粒径を有する細目砥粒(サブミクロン砥粒とも言う)、具体的には80nmの範囲で使用できるが、好ましくは45μm〜80nm、より好ましくは40μm〜80nm、さらに好ましくは35μm〜80nmである。45μmを超えると好ましくない。何故なら、前述したように、ビトリファイドボンドは気孔形成材で強制的に発現させた気孔と共に自然に発生する自然気孔も存在する。これは使用する砥粒の平均粒径と同じ位の平均気孔径になることが当業者では知られているが
、使用する砥粒の粒径が大きいと同じ程度の自然気孔が発現するが、この自然気孔の径が大きいと強制的に気孔形成した球状の大径気孔が焼成中に固体から気体に変化し、これがホイール中から抜けるときにこれらの大きな自然気孔中を通ってホイール外に抜けるので本発明の効果を充分に得ることができず好ましくないからである。
With regard to the abrasive that can be used in the present invention, the effect of the present invention is more effectively exhibited when the average particle diameter of the abrasive used is small, specifically, when the average particle diameter is 45 μm or less. Accordingly, the particle size range of the superabrasive particles (diamond, CBN, etc.) used in the present invention is also referred to as a fine abrasive particle (submicron abrasive particle) having an average particle diameter of coarse particle diameter of 600 μm to an average particle diameter of 1 μm. Specifically, it can be used in the range of 80 nm, preferably 45 μm to 80 nm, more preferably 40 μm to 80 nm, and still more preferably 35 μm to 80 nm. It is unpreferable if it exceeds 45 micrometers. Because, as described above, vitrified bonds also exist naturally occurring as well as pores spontaneously developed in the pore forming material. It is known to those skilled in the art that the average pore diameter is as high as the average particle diameter of the abrasive used, but the same degree of natural porosity develops as the particle diameter of the abrasive used is larger, When the diameter of this natural pore is large, the forcibly formed spherical large diameter pore changes from solid to gas during firing, and when it leaves the wheel, it escapes from the wheel through these large natural pores. Therefore, the effects of the present invention can not be sufficiently obtained, which is not preferable.

球状の気孔形成材を使用するのは無定形の気孔形成材を使用するのに比べて粒子間の凝集が起こりにくくホイール中に均一に分散するので、上記のホイール中の砥粒とボンドを含んだ層を押す力が均一となる。また大型の気孔形成材で得られた気孔同士が凝集し特別に大きな気孔径の箇所が発生することが避けられるので前記の効果がより現れる、またホイールのクラック発生という不具合が避けられるという利点がある。また研削時に研削性能のバラつきが少なくなるという利点もある。   Since the use of spherical pore formers is less likely to cause cohesion between particles compared to the use of amorphous pore formers, they are uniformly dispersed in the wheel, and thus contain abrasive grains and bonds in the above wheel. The force pushing the stratum is even. Further, since it is possible to avoid that the pores obtained by the large pore-forming material are aggregated and the occurrence of a location of a particularly large pore diameter, the above effect is more exhibited, and a defect such as a crack generation of the wheel is avoided. is there. There is also the advantage that the variation in grinding performance is reduced during grinding.

本発明の効果は球状の平均気孔径250〜600μmの範囲で、ビトリファイドボンドで、ROはNaOがRO全量に対して5〜30wt%、LiOがRO全量に対して25〜45wt%、KOがRO全量に対して、25〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有されることで大幅な研削性能の向上があり、これらのROの割合を採用することでより大きな効果が出ることが見出された。 Range effect of the average pore diameter 250~600μm spherical present invention, in a vitrified bond, R 2 O is 5-30 wt% Na 2 O is relative R 2 O total amount, Li 2 O within R 2 O total amount On the other hand, 25 to 45 wt%, K 2 O is 25 to 45 wt% with respect to the total amount of R 2 O, and each of K 2 O and Li 2 O is contained in a larger amount than Na 2 O. There is an improvement in performance and it has been found that adopting these proportions of R 2 O produces a greater effect.

尚、無機質の気孔形成材もあるが、本発明の趣旨を脱しない限り使用できる。無機質の気孔形成材には、例えば、アルミナバルーン、ムライトバルーン、カーボン等がある。   Although there is also an inorganic pore-forming material, it can be used as long as the purpose of the present invention is not deviated. Examples of the inorganic pore-forming material include an alumina balloon, a mullite balloon, carbon and the like.

平均気孔径が250〜600μmの範囲内であれば、異なる径の気孔形成材の混合であっても、本発明の趣旨を逸脱しない限りは好適に使用できる。   If the average pore diameter is in the range of 250 to 600 μm, even if it is a mixture of pore forming materials of different diameters, it can be suitably used without departing from the spirit of the present invention.

本発明のビトリファイドボンド超砥粒ホイールは、好ましくは、砥粒体積率が5〜40%、好ましくは砥粒体積率が10〜35%である。気孔体積率は球状の大径気孔と自然気孔を合せて40〜90%である。その内訳は気孔形成材による気孔の割合は15%〜65%である。15%を下回ると本発明の効果である焼成中砥粒とボンドを含んだ層を押す力が不足し本発明の効果が発現しない。65%より多いとホイールにクラックが生じる。自然気孔による気孔の割合は15%〜35%である。15%を下回ると必然的に成型圧力が高い設計となり、成型後ホイールにクラックが生じる、又は気孔形成材にワレが生じる可能性があり本発明の効果が発現しない可能性がある。35%より多いと成型後から焼成までのホイールの取り扱いが困難となり製造上支障が生じる。さらに気孔形成材による気孔の割合は、25%〜60%、がさらに好ましい。30%〜55%がより好ましい。自然気孔と球状の大径気孔を合せて40〜80%がより好ましい。ボンド率は、100から砥粒体積率及び気孔体積率を引いた値である。   The vitrified bonded superabrasive grain wheel of the present invention preferably has an abrasive grain volume ratio of 5 to 40%, preferably 10 to 35%. The pore volume ratio is 40 to 90% in total of spherical large diameter pores and natural pores. The breakdown is that the ratio of pores by the pore former is 15% to 65%. If it is less than 15%, the force for pressing the layer containing the abrasive grains and the bond during firing which is the effect of the present invention is insufficient, and the effect of the present invention is not exhibited. If it is more than 65%, the wheel is cracked. The proportion of pores by natural pores is 15% to 35%. If it is less than 15%, the design is inevitably high in molding pressure, cracks may occur in the wheel after molding, or cracks may occur in the pore-forming material, and the effects of the present invention may not be exhibited. If it is more than 35%, the handling of the wheel from molding to baking becomes difficult, which causes problems in production. Furthermore, the ratio of pores by the pore-forming material is more preferably 25% to 60%. 30% to 55% is more preferable. 40 to 80% of the natural pores and the spherical large pores are more preferable. The bond ratio is a value obtained by subtracting the abrasive particle volume ratio and the pore volume ratio from 100.

本発明のホイールは、主には超砥粒であるダイヤモンド砥粒を単独で使用されるが、本発明の効果が発揮される限り、これを他の砥材と組み合わせて使用することもできる。ダイヤモンド砥粒と共に使用できる他の砥粒には、他の超砥粒である立方晶窒化ホウ素砥粒、超砥粒以外ではアルミナ系砥粒、炭化珪素系砥粒、シリカ、酸化セリウム及びムライト等からなる群から選択される1種類以上の砥粒が含まれる。前記の超砥粒以外の砥粒は超砥粒と共に使用される。これらは例示列挙であり、本発明の目的を逸脱しない限りここに列挙されていない他の砥粒を使用してもよい。   The wheel of the present invention is mainly used as a diamond abrasive, which is a superabrasive, alone, but may be used in combination with other abrasives as long as the effects of the present invention are exhibited. Other abrasives that can be used with the diamond abrasive include cubic superabrasive cubic boron nitride abrasives, other than superabrasives, alumina based abrasives, silicon carbide based abrasives, silica, cerium oxide, mullite, etc. And one or more types of abrasive grains selected from the group consisting of Abrasive grains other than the above-mentioned superabrasive grains are used together with superabrasive grains. These are exemplary lists, and other abrasives not listed here may be used without departing from the object of the present invention.

本発明のビトリファイドボンド超砥粒ホイールは下記のようにして製造することができる。   The vitrified bonded superabrasive wheel of the present invention can be manufactured as follows.

すなわち、本発明に係るビトリファイド超砥粒ホイールは当業者が一般的に認識している手順で製造することができる。その一例を示すと:
1. 砥粒、ボンド、1次結合剤(バインダーとも呼ぶ)等、を所定重量計量する。
2. 計量された物質を均一になるまで混合する(混合原料と呼ぶ)。
3. 混合原料を所定重量計量し、成型金型に充填する。
4. 所定圧力をかけ、所定寸法とする。
5. 成型金型から取り出し焼成温度の最高保留温度より低い温度に設定した加熱雰囲気器に一定時間入れる。
6. 焼成する。例えば、焼成温度は最高保留温度で600〜900℃の範囲である。
7. 焼成後所定寸法に仕上げてホイールとする。
That is, the vitrified superabrasive wheel according to the present invention can be manufactured by procedures generally recognized by those skilled in the art. Here is an example:
1. Abrasive grains, bonds, primary binders (also referred to as binders), etc. are weighed by a predetermined weight.
2. Mix the weighed materials until uniform (called mixed ingredients).
3. The mixed material is weighed to a predetermined weight and filled into a molding die.
4. A predetermined pressure is applied to obtain a predetermined size.
5. Take out from the mold and place in a heating atmosphere set at a temperature lower than the maximum holding temperature of the firing temperature for a certain period of time.
6. Baking. For example, the firing temperature is in the range of 600 to 900 ° C. at the maximum holding temperature.
7. After firing, it is finished to a predetermined size and made into a wheel.

ここに挙げた手順は一例であり、製造条件等により当業者が通常持っている技術的常識の範囲内で適宜変更することができる。   The procedure mentioned here is an example, and it can be suitably changed within the limits of technical common knowledge which those skilled in the art usually have according to manufacturing conditions etc.

以下、本発明の実施例を比較例とともに説明するが、これらは本発明の実施可能性及び有用性を例証するものであり、本発明の構成を何ら限定する意図はない。   Examples of the present invention will be described below together with comparative examples, but these illustrate the feasibility and utility of the present invention and are not intended to limit the configuration of the present invention.

ビトリファイドボンド超砥粒ホイールの製造
下記のようにして本発明のビトリファイドボンド超砥粒ホイール及び比較ビトリファイドボンド超砥粒ホイールを製造した(テストホイール)。
Preparation of Vitrified Bonded Superabrasive Wheel A vitrified bonded superabrasive wheel of the present invention and a comparative vitrified bonded superabrasive wheel were manufactured as follows (test wheel).

すなわち、砥粒としては、平均粒径2μmのダイヤモンド砥粒を用い、気孔形成材として材質は樹脂で球状のものを用い粒径は各テスト条件で変更した。ビトリファイドボンドを13.7容量%と、ダイヤモンド砥粒を13.7容量%とし、気孔形成材による気孔と自然気孔を合せて72.6容量%となるように調整し、公知のバインダーを加えて混合した後、チップ状の成型体にプレスで成型し、温度800℃で焼成を行った。焼成後、チップ状の成形体を所定寸法に仕上げてホイール片とした。
φ200×30T×φ40(mm)の台金にホイール片を接着しセグメント式ホイールを作成した。
That is, as the abrasive grains, diamond abrasive grains having an average particle diameter of 2 μm were used, and as the pore forming material, the material was spherical resin and the particle diameter was changed under each test condition. Adjust the vitrified bond to 13.7% by volume and the diamond abrasives to 13.7% by volume, adjust the total of the pores by the pore-forming material and the natural pores to 72.6% by volume, and add a known binder After mixing, they were formed into a chip-like molded body by a press and fired at a temperature of 800 ° C. After firing, the chip-like compact was finished to a predetermined size to obtain a wheel piece.
A piece of wheel was bonded to a base of φ 200 × 30 T × φ 40 (mm) to make a segmented wheel.

上記の製造方法で使用するテスト用ビトリファイドボンド1〜7の組成を下記の表1に示す。   The compositions of test vitrified bonds 1 to 7 used in the above manufacturing method are shown in Table 1 below.

上記のテスト用ボンドと、平均粒径15μm、75μm及び700μmの気孔形成材とを使用して比較ホイールを作成し、平均粒径300μm及び500μmの気孔形成材を使用して本発明のホイールを製造した。表2〜4にテスト用ボンドと気孔形成材との組合せを示す。   A comparative wheel is made using the test bond described above and a pore former of average particle size 15 μm, 75 μm and 700 μm, and a wheel of the present invention is manufactured using a pore former of 300 μm and 500 μm average diameter. did. Tables 2 to 4 show combinations of the test bond and the pore former.

本テスト組合せはボンド化学成分でSiO、Al及びBの成分割合を変
化させたものである。比較例1はSiO、Al及びBは特許請求範囲内で
、比較例2〜比較例4は上記3成分のどれかが特許請求範囲外である。
This test combination is a bond chemical component in which the component ratio of SiO 2 , Al 2 O 3 and B 2 O 3 is changed. In Comparative Example 1, SiO 2 , Al 2 O 3 and B 2 O 3 are within the scope of claims, and in Comparative Examples 2 to 4, any of the above three components is outside the scope of claims.

使用する気孔形成材の平均粒径の表示は、購入メーカーの称呼である。以下も同様である。   The indication of the average particle size of the pore-forming material used is the name of the purchasing manufacturer. The same applies to the following.

本テストはボンドについては比較例1と同じであるが、球状の気孔形成材の平均粒径を変化させたものである。   This test is the same as Comparative Example 1 for bonding, but the average particle diameter of the spherical pore-forming material is changed.

研削試験
研削試験の条件は次のとおりであった。
Grinding Test The conditions of the grinding test were as follows.

砥石寸法:φ200×35T×φ40(mm) 、カップ型砥石
被削材: シリコンウエハー(200mm(直径)×0.7mm(厚み)20枚研削
研削液: 蒸留水、流量:12リットル/分
研削盤: 東芝機械社製縦軸平面研削盤、型式UVG−380B
ドレッシング条件:
ドレッサ: WA#4000
砥石回転数: 3822min−1
ドレス切り込み:20μm/min
研削条件:
研削方式: 湿式インフィード研削
砥石回転数: 3822min−1
テーブル回転数:121min−1
取り代:30μm
スパークアウト:10秒
評価項目:ホイール消耗量(μm)、仕上げ面粗さRa(μm)
但し、評価結果は比較例1を100とした相対値で示す。
Grinding wheel size: φ200 × 35T × φ40 (mm), cup-shaped grinding material: Silicon wafer (200 mm (diameter) × 0.7 mm (thickness) 20 sheets Grinding liquid: Distilled water, flow rate: 12 liters / min Grinding machine : Toshiba Machine Co., Ltd. vertical axis surface grinding machine, model UVG-380B
Dressing conditions:
Dresser: WA # 4000
Grinding wheel rotational speed: 3822 min -1
Dress incision: 20 μm / min
Grinding condition:
Grinding method: Wet in-feed grinding Wheel rotational speed: 3822 min -1
Table rotation speed: 121 min -1
Cutting allowance: 30 μm
Spark out: 10 seconds Evaluation item: Wheel consumption (μm), surface roughness Ra (μm)
However, the evaluation result is shown by a relative value with Comparative Example 1 being 100.

ホイール消耗量は、研削前とシリコンウエハー20枚研削後のホイールの寸法変化量を研削盤の機械座標の変化量にて算出した。     The amount of wheel wear was calculated as the amount of dimensional change of the wheel before grinding and after grinding of 20 silicon wafers using the amount of change in machine coordinates of the grinder.

仕上げ面粗さRaは、シリコンウエハー20枚研削後のシリコンウエハー20枚目の研削面を(株)小坂製作所製SP−81DS2(接触式)で測定した。     The finished surface roughness Ra was measured on a ground surface of the 20th silicon wafer after grinding 20 silicon wafers with SP-81DS2 (contact type) manufactured by Kosaka Corporation.

算術平均粗さ Raとは、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の式によって求められる値をマイクロメートル(μm)で表したものをいう。
Arithmetic mean roughness Ra extracts only a reference length from the roughness curve in the direction of the mean line, takes the X axis in the direction of the mean line of this sampling portion, and takes the Y axis in the direction of longitudinal magnification. When a curve is represented by y = f (x), it means what represented the value calculated by the following formula in micrometers (μm).

比較例1のホイール耐久性を100として、他の例の値はその相対値で示す。           Assuming that the wheel durability of Comparative Example 1 is 100, the values of the other examples are shown by their relative values.

仕上げ面粗さRaは100を基準に値が大きい方が面粗さの値が低く、改善効
果が高いことを示す。
The larger the value of the finished surface roughness Ra based on 100, the lower the value of the surface roughness, and the higher the improvement effect.

試験結果
以下の表5〜7にテストホイールの研削試験結果を示す。
Test Results Tables 5 to 7 below show the results of grinding tests on the test wheel.

球状の気孔径及びアスペクト比はホイール作成後の値である。   The spherical pore diameter and aspect ratio are values after the wheel is made.

この算出は、焼成後のホイールの表面を研磨して、その断面観察を行うことに測定する。研磨完了後にホイールの表面に露出した気孔部分100ヶ所について、短径aと長径bを測定し、その比a/ bの平均値を真球度とする。以下も同様である。   This calculation is measured by polishing the surface of the wheel after firing and observing its cross section. The minor diameter a and the major diameter b are measured for 100 pore portions exposed on the surface of the wheel after completion of polishing, and the average value of the ratio a / b is taken as sphericity. The same applies to the following.

比較例1と比較例2(それぞれ、テストボンド−1およびテストボンド−2を使用)の場合、ROの含有量は同じであるが、比較例2は比較例1よりSiOを少なくし、その分AlとBを増量したものであるが、それら化学成分の増減によりボンドの軟化は同程度であったが、ホイール耐久性と面粗さは比較例1に劣るものであった。 In the case of Comparative Example 1 and Comparative Example 2 (using Test Bond-1 and Test Bond-2 respectively), the content of R 2 O is the same, but Comparative Example 2 has less SiO 2 than Comparative Example 1. Although the amount of Al 2 O 3 and B 2 O 3 was increased by that amount, the softening of the bond was at the same level by the increase and decrease of these chemical components, but the wheel durability and surface roughness were inferior to Comparative Example 1 It was a thing.

比較例3(テストボンド−3)は比較例1よりBを増量し、その分SiOの量を減量させたものであるが軟化は比較例1より大きくなった。ホイール耐久性と面粗さは比較例1より劣るものであった。 Comparative Example 3 (test bond-3) increases B 2 O 3 more than Comparative Example 1 and decreases the amount of SiO 2 correspondingly, but the softening became larger than Comparative Example 1. The wheel durability and the surface roughness were inferior to those of Comparative Example 1.

比較例4(テストボンド−4)は比較例1よりAlとSiOを減量し、その分Bの量を増量させたものであるが、比較例1に比べて面粗さは改善されたがホイール耐久性は劣っていた。 Comparative Example 4 (Test Bond-4) reduces Al 2 O 3 and SiO 2 from Comparative Example 1 and increases the amount of B 2 O 3 by that amount. Was improved but the wheel durability was inferior.

上記の結果より、SiO、Al及びBは55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のBの範囲のいずれかが外れると、研削性能は劣ることが分かる。 From the above results, SiO 2 , Al 2 O 3 and B 2 O 3 are either 55-70 wt% SiO 2 , 5-15 wt% Al 2 O 3 , or 15-25 wt% B 2 O 3 . When it comes off, it is understood that the grinding performance is inferior.

球状の気孔が、14.0μm、71.3μm、314.2μmと大きくなるにしたがっ
て、研削性能が向上し、特に、314.2μmの場合に研削性能が顕著に向上したことが
分かる。
The grinding performance is improved as the size of the spherical pores is increased to 14.0 μm, 71.3 μm and 314.2 μm, and it is understood that the grinding performance is remarkably improved particularly in the case of 314.2 μm.

驚いたことに、球状気孔が200μmをこえて314.2μmの気孔の場合、ホイール耐久性が顕著に増加し面粗さも向上した、つまりウエハーの品質が顕著に向上するという結果となることが分かる。   Astonishingly, it can be seen that in the case where the spherical pores exceed 200 μm and the pores are 314.2 μm, the durability of the wheel is significantly increased and the surface roughness is improved, that is, the quality of the wafer is significantly improved. .

実施例2はRO量では、NaOの割合が一番多く実施例1よりLiOを増量したもの(テストボンド−5)でホイール耐久性は20%(向上)であった。 In Example 2, the ratio of Na 2 O was the largest in the amount of R 2 O, and the wheel durability was 20% (improved), with Li 2 O being increased more than Example 1 (Test Bond-5).

実施例3はNaOの割合が一番多く実施例1よりKOの割合を増量したもの(テストボンド−6)で、ホイール耐久性は18%(向上)であった。これらは実施例1と同程度の効果が認められた。 In Example 3, the ratio of Na 2 O was the largest and the ratio of K 2 O was increased more than in Example 1 (Test Bond-6), and the wheel durability was 18% (improved). The same effect as in Example 1 was observed.

実施例4はNaOの割合が少なく実施例1よりKO及びLiOの割合を増量したもの(テストボンド−7)であるが、ホイール耐久性は49%の向上で、面粗さも7%の向上で当業者の予想を遙かに超えて大幅な研削性能の向上を達成し、かつウエハーの面粗さが小さくなったことより、ウエハーの品質向上にも顕著な効果があった。 In Example 4, the proportion of Na 2 O is small and the proportion of K 2 O and Li 2 O is increased compared to Example 1 (Test Bond-7), but the wheel durability is improved by 49%, and the surface is rough. With a 7% improvement, we achieved a significant improvement in grinding performance far beyond the expectation of those skilled in the art, and the reduction in wafer surface roughness has a significant effect on wafer quality improvement. The

実施例5、実施例6は球状の気孔形成材を実施例4より大きなものを使用したが(実施例5は、300μm/500μm=1:1の混合した気孔形成材を使用;実施例6は、500μmの気孔形成材を使用)、これも実施例4と同様に当業者の予想を遙か超えて大幅
な研削性能の向上を達成し、かつウエハーの面粗さが小さくなったことより、ウエハーの品質向上にも顕著な効果があった。
Example 5 uses a spherical pore-forming material larger than Example 4 (Example 5 uses a mixed pore-forming material of 300 μm / 500 μm = 1: 1; Example 6) (Using a pore-forming material of 500 μm), which also achieved a significant improvement in grinding performance far beyond the expectation of those skilled in the art as in Example 4 and also reduced wafer surface roughness, There was also a remarkable effect on the quality improvement of the wafer.

比較例9で球状の気孔形成材700μmを使用したがホイールにクラックが発生し、ビトリファイドボンド超砥粒ホイールとして使用できない不適格品となった。   In Comparative Example 9, a spherical pore-forming material of 700 μm was used, but a crack occurred in the wheel, resulting in an unacceptable product that can not be used as a vitrified bonded superabrasive wheel.

球状の気孔形成材と実際のホイール気孔径との関係
測定したホイール:比較例1 実施例1
気孔形成材の径 :75μm 300μm
球状の気孔径及びアスペクト比の算出は、焼成後のホイールの表面を研磨して、その断面観察を行うことに測定する。研磨完了後にホイールの表面に露出した気孔部分100ヶ所について、短径aと長径bを測定し、その比a/bの平均値を真球度とする。
Relationship between Spherical Pore Forming Material and Actual Wheel Pore Diameter Measured Wheel: Comparative Example 1 Example 1
Diameter of pore forming material: 75 μm 300 μm
Calculation of spherical pore diameter and aspect ratio is measured by polishing the surface of the wheel after firing and observing the cross section. The minor diameter a and the major diameter b are measured for 100 pore portions exposed on the surface of the wheel after completion of polishing, and the average value of the ratio a / b is taken as sphericity.

以上の結果となったが、実施例1は比較例1と異なりホイール製造前の径より大きくなったことが見出された。   Although the above results were obtained, it was found that Example 1 was larger than the diameter before wheel manufacture, unlike Comparative Example 1.

有機質の球状の気孔形成材が固体から気体に変化することで体積は膨張し、この圧力で回りの砥粒とボンドを含んだ層へ押す力が働き、これにボンドの軟化が始まると砥粒と結合剤の層が押されて密に結合することになり結果砥粒の保持力が向上し良好なホイールの発明に至ったと考えられる。これに対して比較例1は元の気孔形成材の直径より小さくなっており、本発明の効果は発現していないことを確認した。   When the organic spherical pore-forming material changes from solid to gas, the volume expands, and a pressure is exerted on the layer containing the surrounding abrasive grains and bonds at this pressure, and when the softening of the bonds starts, the abrasive grains It is believed that the layer of the binder and the layer of the binder are pressed to form a tight bond, and as a result, the retention of the abrasive grains is improved, resulting in the invention of a good wheel. On the other hand, Comparative Example 1 was smaller than the diameter of the original pore-forming material, and it was confirmed that the effect of the present invention was not exhibited.

以下、添付の図面について詳細な説明をする。   Hereinafter, the attached drawings will be described in detail.

図1〜図4にホイールの気孔の状態を示す拡大写真を添付する。   The enlarged photograph which shows the state of the pore of a wheel is attached to FIGS.

図1の実施例1では気孔が均一に分散しているのに対して、図2の比較例1では気孔がくっついている多くの箇所も見受けられ少なくとも均一ではない。図3は実施例1の気孔の間にある砥粒と結合剤の状態を示している。図4は比較例1の気孔の間にある砥粒と結合剤の状態を示している。比較例1は組織状態が砥粒の形状が明確に観察できる箇所がほとんどであった。大きな凹凸があるのは試料の仕上げ平面化を行う際、砥粒と結合剤が不規則に脱落したためと考える。このことは研削時でも同じことが起こると考えられるので、ホイールでの砥粒保持力は弱いと考える。実施例1は自然気孔の近辺部分では比較例1と同じような砥粒の形状が明確に観察できる箇所があったが、それ以外の箇所では砥粒の形状が観察できない箇所があった。これは砥粒と結合剤が密に結合している状態である。その箇所は大きな凹凸がなく、試料の仕上げ平面化を行う際、砥粒と結合剤が不規則に脱落しなかったためと考えられ、研削時砥粒の大きな脱落はない。このことは砥粒と結合剤の層が押されて密に結合することにより砥粒の保持力が向上したことが裏付けられる。従って比較例1は実施例1の効果は発現しなかったことが裏付けられる。
本発明は以下の実施態様を含む。
(1)超砥粒をビトリファイドボンドによって結合した超砥粒層を有するビトリファイドボンド超砥粒ホイールであって、
前記超砥粒層に分散して配置された平均気孔径が250〜600μmの球状の気孔を含み、前記球状の気孔の短径aと長径bの比(a/b)の平均値が0.5以上1.0以下であり、
シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられることを特徴とする、有気孔のビトリファイドボンド超砥粒ホイール。
(2)前記ビトリファイドボンドは、55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のB、1〜6wt%のRO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)、及び4〜10wt%のRO(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)が使用されることを特徴とする(1)に記載の有気孔のビトリファイドボンド超砥粒ホイール。
(3)前記ROがKO、NaO及びLiOを含み、
前記NaOがRO全量に対して5〜30wt%、LiOがRO全量に対して20〜45wt%、KOがRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有されることを特徴とする(2)に記載の有気孔のビトリファイドボンド超砥粒ホイール。
本発明は以下の他の実施態様を含む。
(1)超砥粒をビトリファイドボンドによって結合した超砥粒層を有するビトリファイドボンド超砥粒ホイールであって、
前記超砥粒層に分散して配置された気孔であって、気孔形成材に基づく平均気孔径が250〜600μmの球状の気孔を含み、前記球状の気孔の短径aと長径bの比(a/b)の平均値が0.5以上1.0以下であり、
シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられることを特徴とする、有気孔のビトリファイドボンド超砥粒ホイール。
(2)前記ビトリファイドボンドは、55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のB、1〜6wt%のRO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)、及び4〜10wt%のRO(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)が使用されることを特徴とする(1)に記載の有気孔のビトリファイドボンド超砥粒ホイール。
(3)前記ROがKO、NaO及びLiOを含み、
前記NaOがRO全量に対して5〜30wt%、LiOがRO全量に対して20〜45wt%、KOがRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有されることを特徴とする(2)に記載の有気孔のビトリファイドボンド超砥粒ホイール。
While the pores are dispersed uniformly in Example 1 of FIG. 1, in Comparative Example 1 of FIG. 2, many locations where the pores are attached are also found and are not at least uniform. FIG. 3 shows the state of the abrasive and the binder between the pores of Example 1. FIG. 4 shows the state of the abrasive and the binder between the pores of Comparative Example 1. In Comparative Example 1, almost all the places where the structure state can clearly observe the shape of the abrasive grains were found. The large unevenness is considered to be due to the irregular dropping of the abrasive grains and the binder at the time of finish planarization of the sample. Since this is considered to occur also at the time of grinding, it is considered that the abrasive holding power at the wheel is weak. In Example 1, in the vicinity of natural pores, there was a place where the shape of the abrasive grain similar to Comparative Example 1 could be clearly observed, but in the other places, there were places where the shape of the abrasive grain could not be observed. This is a state in which the abrasive grains and the binder are intimately bonded. There is no large unevenness in the portion, and it is considered that the abrasive grains and the binder did not irregularly fall off when the sample is finished and flattened, and there is no large fall off of the abrasive grains during grinding. This is supported by the fact that the holding power of the abrasive grains is improved by pressing and intimately bonding the abrasive grains and the layer of the binder. Therefore, it is supported that Comparative Example 1 did not express the effect of Example 1.
The present invention includes the following embodiments.
(1) A vitrified bonded super-abrasive wheel having a super-abrasive layer in which super-abrasives are bonded by vitrified bonding,
The super-abrasive grain layer includes spherical pores having an average pore diameter of 250 to 600 μm, and the average particle diameter of the spherical pores is a ratio of minor axis a to major axis b (a / b) of 0. 5 or more and 1.0 or less,
A porous, vitrified bonded superabrasive wheel, which is used for grinding processing of various wafers such as silicon, sapphire and compound semiconductors.
(2) the vitrified bond, SiO 2 of 55~70wt%, 5~15wt% of Al 2 O 3, 15~25wt% of B 2 O 3, 1~6wt% of RO (RO is CaO, MgO and BaO And 4 to 10 wt% of R 2 O (where R 2 O is selected from at least one of K 2 O, Na 2 O and Li 2 O) The porous vitrified bonded superabrasive wheel according to 1).
(3) The R 2 O contains K 2 O, Na 2 O and Li 2 O,
5-30 wt% the Na 2 O is relative R 2 O total amount, 20~45wt% Li 2 O is relative R 2 O total amount, K 2 O is 20 to 45 wt% with respect to R 2 O total amount And each of K 2 O and Li 2 O is contained in a larger amount than Na 2 O. The voided vitrified bonded superabrasive wheel according to (2), characterized in that
The present invention includes the following other embodiments.
(1) A vitrified bonded super-abrasive wheel having a super-abrasive layer in which super-abrasives are bonded by vitrified bonding,
The pores are dispersed and disposed in the superabrasive grain layer, and include spherical pores having an average pore diameter of 250 to 600 μm based on the pore forming material, and the ratio of the minor diameter a to the major diameter b of the spherical pores ( The average value of a / b) is 0.5 or more and 1.0 or less,
A porous, vitrified bonded superabrasive wheel, which is used for grinding processing of various wafers such as silicon, sapphire and compound semiconductors.
(2) the vitrified bond, SiO 2 of 55~70wt%, 5~15wt% of Al 2 O 3, 15~25wt% of B 2 O 3, 1~6wt% of RO (RO is CaO, MgO and BaO And 4 to 10 wt% of R 2 O (where R 2 O is selected from at least one of K 2 O, Na 2 O and Li 2 O) The porous vitrified bonded superabrasive wheel according to 1).
(3) The R 2 O contains K 2 O, Na 2 O and Li 2 O,
5-30 wt% the Na 2 O is relative R 2 O total amount, 20~45wt% Li 2 O is relative R 2 O total amount, K 2 O is 20 to 45 wt% with respect to R 2 O total amount And each of K 2 O and Li 2 O is contained in a larger amount than Na 2 O. The voided vitrified bonded superabrasive wheel according to (2), characterized in that

Claims (4)

超砥粒をビトリファイドボンドによって結合した超砥粒層を有するビトリファイドボンド超砥粒ホイールであって、
前記超砥粒層に分散して配置された気孔であって、有機質の気孔形成材を用いて形成された平均気孔径が300μmを超えて、600μm以下の球状の気孔を含み、前記球状の気孔の短径aと長径bの比(a/b)の平均値が0.5以上1.0以下であり、
シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられることを特徴とする、有気孔のビトリファイドボンド超砥粒ホイール。
A vitrified bonded superabrasive wheel having a super abrasive layer in which super abrasives are bonded by a vitrified bond,
The pores are dispersed and disposed in the superabrasive layer, and the spherical pores having an average pore diameter of 300 μm or more and 600 μm or less formed using an organic pore-forming material The average value of the ratio (a / b) of the minor diameter a to the major diameter b is 0.5 or more and 1.0 or less,
A porous, vitrified bonded superabrasive wheel, which is used for grinding processing of various wafers such as silicon, sapphire and compound semiconductors.
前記ビトリファイドボンドは、55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のB、1〜6wt%のRO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)、及び4〜10wt%のRO(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)が使用されることを特徴とする請求項1に記載の有気孔のビトリファイドボンド超砥粒ホイール。 The vitrified bond, SiO 2 of 55~70wt%, 5~15wt% of Al 2 O 3, 15~25wt% of B 2 O 3, 1~6wt% of RO (RO is CaO, at least one of MgO and BaO And 4 to 10 wt% of R 2 O (where R 2 O is selected from at least one of K 2 O, Na 2 O and Li 2 O). A porous, vitrified bonded superabrasive wheel as described. 前記ROがKO、NaO及びLiOを含み、
前記NaOがRO全量に対して5〜30wt%、LiOがRO全量に対して20〜45wt%、KOがRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有されることを特徴とする請求項2に記載の有気孔のビトリファイドボンド超砥粒ホイール。
R 2 O includes K 2 O, Na 2 O and Li 2 O,
5-30 wt% the Na 2 O is relative R 2 O total amount, 20~45wt% Li 2 O is relative R 2 O total amount, K 2 O is 20 to 45 wt% with respect to R 2 O total amount , And each of K 2 O and Li 2 O is contained in a larger amount than Na 2 O. The voided vitrified bonded superabrasive grain wheel according to claim 2, characterized in that
超砥粒をビトリファイドボンドによって結合した超砥粒層を有するビトリファイドボンド超砥粒ホイールであって、
前記超砥粒層に分散して配置された気孔であって、気孔形成材に基づく平均気孔径が250〜600μmの球状の気孔を含み、前記球状の気孔の短径aと長径bの比(a/b)の平均値が0.5以上1.0以下であり、
前記ビトリファイドボンド超砥粒ホイールは、シリコン、サファイヤおよび化合物半導体等の各種ウエハーの研削加工に用いられ、
前記ビトリファイドボンドは、55〜70wt%のSiO、5〜15wt%のAl、15〜25wt%のB、1〜6wt%のRO(ROはCaO、MgO及びBaOの少なくとも一種から選ばれる)、及び4〜10wt%のRO(ROはKO、NaO及びLiOの少なくとも一種から選ばれる)が使用され、
前記ROがKO、NaO及びLiOを含み、
前記NaOがRO全量に対して5〜30wt%、LiOがRO全量に対して20〜45wt%、KOがRO全量に対して20〜45wt%であり、かつKO及びLiOの各々はNaOより多く含有されることを特徴とする有気孔のビトリファイドボンド超砥粒ホイール。
A vitrified bonded superabrasive wheel having a super abrasive layer in which super abrasives are bonded by a vitrified bond,
The pores are dispersed and disposed in the superabrasive grain layer, and include spherical pores having an average pore diameter of 250 to 600 μm based on the pore forming material, and the ratio of the minor diameter a to the major diameter b of the spherical pores ( The average value of a / b) is 0.5 or more and 1.0 or less,
The vitrified bonded superabrasive wheel is used to grind various wafers such as silicon, sapphire and compound semiconductors.
The vitrified bond, SiO 2 of 55~70wt%, 5~15wt% of Al 2 O 3, 15~25wt% of B 2 O 3, 1~6wt% of RO (RO is CaO, at least one of MgO and BaO And 4 to 10 wt% of R 2 O (R 2 O is selected from at least one of K 2 O, Na 2 O and Li 2 O),
R 2 O includes K 2 O, Na 2 O and Li 2 O,
5-30 wt% the Na 2 O is relative R 2 O total amount, 20~45wt% Li 2 O is relative R 2 O total amount, K 2 O is 20 to 45 wt% with respect to R 2 O total amount And a porous vitrified bonded superabrasive wheel characterized in that each of K 2 O and Li 2 O is contained more than Na 2 O.
JP2018244379A 2018-12-27 2018-12-27 Vitrified Super Abrasive Wheel Active JP6763937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018244379A JP6763937B2 (en) 2018-12-27 2018-12-27 Vitrified Super Abrasive Wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018244379A JP6763937B2 (en) 2018-12-27 2018-12-27 Vitrified Super Abrasive Wheel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016075435A Division JP2017185575A (en) 2016-04-04 2016-04-04 Vitrified superabrasive grain wheel

Publications (2)

Publication Number Publication Date
JP2019059019A true JP2019059019A (en) 2019-04-18
JP6763937B2 JP6763937B2 (en) 2020-09-30

Family

ID=66177958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018244379A Active JP6763937B2 (en) 2018-12-27 2018-12-27 Vitrified Super Abrasive Wheel

Country Status (1)

Country Link
JP (1) JP6763937B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281174A (en) * 1990-03-09 1991-12-11 Noritake Co Ltd Porous grinding stone having huge blow hole
JP2003527974A (en) * 2000-03-23 2003-09-24 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive tools bonded with vitrified binder
WO2005072912A1 (en) * 2004-01-28 2005-08-11 Kure-Norton Co., Ltd. Method for producing vitrified diamond whetstone
JP2011525431A (en) * 2008-06-23 2011-09-22 サンーゴバン アブレイシブズ,インコーポレイティド High porosity vitrified superabrasive product and manufacturing method
JP2012200831A (en) * 2011-03-28 2012-10-22 Allied Material Corp Super abrasive grain wheel and method of grinding using the same
JP2015506851A (en) * 2011-12-30 2015-03-05 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article and method for forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281174A (en) * 1990-03-09 1991-12-11 Noritake Co Ltd Porous grinding stone having huge blow hole
JP2003527974A (en) * 2000-03-23 2003-09-24 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive tools bonded with vitrified binder
WO2005072912A1 (en) * 2004-01-28 2005-08-11 Kure-Norton Co., Ltd. Method for producing vitrified diamond whetstone
JP2011525431A (en) * 2008-06-23 2011-09-22 サンーゴバン アブレイシブズ,インコーポレイティド High porosity vitrified superabrasive product and manufacturing method
JP2012200831A (en) * 2011-03-28 2012-10-22 Allied Material Corp Super abrasive grain wheel and method of grinding using the same
JP2015506851A (en) * 2011-12-30 2015-03-05 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article and method for forming the same

Also Published As

Publication number Publication date
JP6763937B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US8771390B2 (en) High porosity vitrified superabrasive products and method of preparation
JP6431586B2 (en) Abrasive article and method for forming the same
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP5414706B2 (en) Superabrasive wheel and grinding method using the same
TW201741077A (en) Ceramic bonded super-abrasive grinding wheel comprising spherical pores having an average pore diameter of 250 to 600 [mu]m that are dispersedly disposed in the super-abrasive layer
JPS63256364A (en) Porous grindstone of super abrasive grain
KR20180134025A (en) Vitrified super abrasive grain wheel
JP5419173B2 (en) Super abrasive wheel and grinding method using the same
TWI589405B (en) A superabrasive grain wheel using a ceramic bonding agent, and a method of manufacturing a wafer using the same
JP6763937B2 (en) Vitrified Super Abrasive Wheel
JP5640064B2 (en) Vitrified bond superabrasive wheel and method of grinding a wafer using the same
JP7197499B2 (en) Vitrified Bond Superabrasive Wheel
JP2009107077A (en) Porous vitrified bond grindstone
JP2008137126A (en) Resinoid grinding wheel
JPH0857768A (en) Vitrified bond grinding wheel for heavy grinding
JPS63256365A (en) Porous grindstone
JPH10138148A (en) Vitrified extra-abrasive grain grinding wheel
JP7420603B2 (en) Low porosity vitrified grinding wheel containing diamond abrasive grains
JP3281605B2 (en) Vitrified bond whetstone and method of manufacturing the same
JP2003094341A (en) Metal bond super abrasive grain grinding wheel
KR200387818Y1 (en) Resin bonded wheel exhibiting the high performance for wafer grinding
KR200360739Y1 (en) Resin bonded wheel for wafer grinding
JPH04322972A (en) Binder material for diamond abrasive grain
JPH1094967A (en) Porous superabrasive grain metal bond grinding wheel superior in cutting property, and manufacture of the same
KR20050120534A (en) Resin bonded wheel for wafer grinding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6763937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250