WO2005071057A1 - Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device - Google Patents

Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device Download PDF

Info

Publication number
WO2005071057A1
WO2005071057A1 PCT/JP2005/001164 JP2005001164W WO2005071057A1 WO 2005071057 A1 WO2005071057 A1 WO 2005071057A1 JP 2005001164 W JP2005001164 W JP 2005001164W WO 2005071057 A1 WO2005071057 A1 WO 2005071057A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
magnetic
pulse
magnetic field
living
Prior art date
Application number
PCT/JP2005/001164
Other languages
French (fr)
Japanese (ja)
Inventor
Naofumi Tokutomi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004014108A external-priority patent/JP2004290180A/en
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2005071057A1 publication Critical patent/WO2005071057A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture

Definitions

  • the present invention relates to a magnetic or electric field stimulator for applying electrical stimulation to living cells, tissues, and the like, a method for promoting or suppressing the growth of living cells, tissues, and the like, and creation of a degenerative disease model for living cells, tissues, and the like.
  • the present invention is to promote or suppress the growth of living cells, tissues, etc. by applying a specific electrical stimulus to a living cell, tissue, etc. used in an experiment in a laboratory or the like via a magnetic field or an electric field.
  • Magnetic or electric field stimulating device, and a method of promoting or suppressing the growth of living cells and tissues using the magnetic or electric field stimulating device, and a model of a degenerative disease of living cells and tissues using the magnetic or electric field stimulating device About how to create.
  • the present invention relates to a method for transplanting a tissue in a living body.
  • the present invention relates to a method for accommodating the function of an organ or a tissue which constantly generates an electric signal and to which the constituent cells are receiving the electric signal with each other, or the function of a cell constituting the organ or the tissue, preferably the function of a myocardial tissue.
  • a culture vessel with a microchip electrode array bottom surface was developed to perform a long-term culture test under specified culture conditions, but depending on the type of cells, fixation in the culture vessel may occur.
  • the properties were not always good. Particularly when culturing neuronal cells, its poor fixation has been a problem.
  • some organs for example, cells constituting the tissue itself such as myocardium, nerves, and skeletal muscle have unique characteristics in vivo. It is hard to say that attempts to transplant myocardium, which is an organ in which cells are constantly receiving electrical input from the electrical environment specific to the organ by performing electrical activity, especially the heart, have been sufficiently successful. Disclosure of the invention
  • the present invention has been made in order to solve the above problems, and an object of the present invention is to provide a method for growing living cells or living tissues (hereinafter, also referred to as “living cells, etc.”). It is an object of the present invention to provide a magnetic or electric field stimulator which does not change the liquidity of a culture solution or decrease the degree of cell fixation even when electrical stimulation is applied to living cells or the like for a long period of time. Another object of the present invention is to provide a method for promoting, suppressing or impairing the growth and function of living cells and the like using the magnetic or electric field stimulator. Still another object of the present invention is to provide a method for creating a model of a degenerative disease such as a living cell using the magnetic or electric field stimulator.
  • the inventor of the present invention has intensively studied the importance of growth or suppression of living cells and the like, induction of degenerative pathologies, and particularly of excitatory reception when electrical stimulation is applied for a long period of time.
  • the present inventors have developed an apparatus and a method capable of applying an electrical stimulus while minimizing the amount of current supply as a result, and have completed the present invention.
  • a pulse current supply means for generating a pulse current and adjusting the current characteristics of the pulse current, and a pulse magnetic field or a pulse electric field from the pulse current supplied from the pulse current supply means
  • a pulse magnetic field or pulse electric field supply means for supplying the pulse magnetic field or pulse electric field from outside the culture vessel to living cells or living tissue in the culture vessel.
  • An electric field stimulator is provided.
  • the pulse current supply means is an electric circuit including at least a power supply, a switch, and a logic IC.
  • the pulse magnetic field or electric field supply means generates the pulse magnetic field or pulse electric field, and supplies a magnetic field or electric field stimulation probe for supplying the pulse magnetic field or electric field to a living cell or a living tissue; and A magnetic or electric field stimulating stage for storage.
  • the magnetic or electric field stimulating probe is a single or multiple magnetic field stimulating coils or electric field stimulating conductive plates.
  • the magnetic field or electric field stimulating probe generates an eddy current or a capacitive current in the culture vessel by supplying a pulsed magnetic field or an electric field into the culture vessel.
  • it further has an eddy current detection probe for detecting an eddy current in the culture vessel.
  • the culture container can be fitted in the pulse magnetic field or electric field supply means.
  • it is used to promote, suppress or impair the growth and function of living cells or living tissue.
  • the magnetic field or electric field stimulation probe selectively supplies a pulsed magnetic field to a predetermined cell group or a predetermined site of a living cell or a living tissue to promote or suppress the growth of the living cell or the living tissue. It is to make it.
  • the pulsed magnetic field or electric field stimulation probe determines the supply frequency of the stimulation pulse at a timing that mimics the appearance frequency of the main waveform of an electroencephalogram, an electrocardiogram, an electromyogram, a gastric electrogram, an electroretinogram, or a synaptic current.
  • a current noise with a frequency equal to or higher than the frequency of the high-frequency noise obtained by passing these bioelectric signals through a low cut filter (10 Hz) as a burst current cluster It is characterized in that it is included in a pulse and used for stimulation.
  • the pulse current supply means is an electric signal generator capable of generating a current and a voltage having a predetermined function waveform.
  • the magnetic or electric field stimulating probe has a shape that can correspond to the well arrangement of a multiwell plate.
  • the magnetic field or electric field stimulation probe generates a pulse magnetic field by changing a magnetic flux density of an energized pulse current.
  • said magnetic or electric field stimulation probe is said burst current cluster
  • a pulse electric field is generated by supplying a pulse current consisting of
  • the magnetic field or electric field stimulating device of the present invention has a structure having a pulse current supply means and a pulse magnetic field or pulse electric field supply means. Therefore, the magnetic or electric field stimulating apparatus of the present invention has a simple structure and is easy to manufacture.
  • the magnetic or electric field stimulator of the present invention can be easily attached and detached since the culture vessel containing the living cells and the like can be fitted into the pulsed magnetic field or pulse electric field supply means, and furthermore, the living cells and the like can be used.
  • an eddy current or a capacitive current (pulse signal) having a desired intensity and waveform is supplied to the living cells from outside the culture vessel without directly contacting the cells, so that the living cells grow in the culture process. And denaturation can be adjusted appropriately.
  • an eddy current or a capacitive current (pulse signal) having a desired intensity, waveform, or the like can be supplied from a magnetic or electric field stimulating probe to a specific cell group such as a living cell or the like. It can be selectively generated at a specific site to promote or suppress the growth of living cells or tissue cells.
  • Another object of the present invention is to provide a method for promoting or suppressing the growth of a living cell or a living tissue, a method for promoting or suppressing the function of a living cell or a living tissue, and a living cell using the magnetic or electric field stimulator.
  • it can be achieved by a method characterized by acclimatization of cell function to promote the function of living tissue. According to the method of this effort, the growth of living cysts, etc. is promoted without directly contacting the electrodes as in the conventional stimulator, or the growth of living cells and living tissues is suppressed by damaging the living cells, etc. can do.
  • Another object of the present invention is to create a biological cell or biological tissue degenerative disease model by degenerating normal biological cells or biological tissues, preferably neural cells or neural tissues using the magnetic or electric field stimulator. This is achieved by a method for creating a model of a degenerative disease of a living cell or living tissue, characterized by the above feature.
  • an organ or a tissue which constantly generates a bioelectric signal of a living body, and the constituent cells receive the electric signal with each other, or a cell constituting the same is used in a range of 0.5 to 500 Hz. , 1 O mV ⁇ : pulsed electric signal of 10 V, or 0.5 ⁇ 500 HZ, pulsed magnetic signal input of 0.1 mT ⁇ lO OmT, characterized by culturing with "F” Provides methods for acclimating the function of organs or tissues or the cells that compose them It is.
  • the organ is the heart.
  • the tissue is myocardium.
  • the functional acclimation is performed before transplanting the organ or tissue.
  • a specimen for drug efficacy evaluation and toxicity test comprising a tissue or a cell adapted to function by the above method.
  • FIG. 1 is a schematic diagram showing one embodiment of the magnetic or electric field stimulating device of the present invention.
  • FIG. 2 is an explanatory diagram showing a circuit arrangement of an electric circuit in the magnetic or electric field stimulating device of the present invention.
  • FIG. 3 is an explanatory diagram showing a circuit device using a logic IC in the magnetic or electric field stimulating device of the present invention.
  • FIG. 4 is an explanatory view showing a preferred embodiment of a magnetic or electric field stimulation probe and a magnetic or electric field stimulation stage in the present invention.
  • (Ii) A diagram showing different modes of the magnetic field or electric field stimulation probe and the magnetic field or electric field stimulation stage.
  • (II) Magnetic field or electric field It is a figure which shows the area
  • FIG. 5 is a diagram showing a state in which the magnetic field or electric field stimulator of the present invention is used to apply magnetic field stimulation to nerve cells to promote growth.
  • ( ⁇ ) is a diagram showing the results when culturing was performed by applying a magnetic field stimulation.
  • ( ⁇ ) is a diagram showing the results when culture was performed without applying magnetic field stimulation.
  • FIG. 6 is a diagram showing a state in which a magnetic field is applied to a nerve cell using the magnetic field or electric field stimulator of the present invention to suppress growth.
  • is a diagram showing a state of a nerve cell before applying a magnetic field stimulation.
  • is a diagram showing a state of a nerve cell after applying a magnetic field stimulation.
  • C is a diagram showing a state of a nerve cell after a magnetic field stimulation is applied by limiting a range of a magnetic field to a local area by a minimum coil and a metal shield.
  • FIG. 7 shows the eddy current generated in the culture vessel using the magnetic or electric field stimulator of the present invention.
  • FIG. 4 is an explanatory diagram showing an embodiment of a detection probe for measuring the measurement.
  • A It is a front view of the probe for eddy current measurement.
  • B It is the schematic explanatory drawing of the probe for eddy current measurement.
  • FIG. 8 shows the resting membrane potential of the cultured mouse sensory nerve measured under current clamp conditions using the patch clamp method.
  • Figure 9 shows prevention of cubsaicin-induced neuronal cell death by pulsed magnetic field stimulation pretreatment. You.
  • FIG. 10 shows the contraction frequency of each ventricular muscle cluster to electrical stimulation (upper photo) and the contraction pattern of the typical magnetic stimulation group cluster to 2 Hz and 5 Hz electrical stimulation (lower trace).
  • FIG. 11 shows the contraction frequency of ventricular muscle clusters cultured in the presence of pulsed magnetic field stimulation in response to electrical stimulation.
  • FIG. 12 is a schematic diagram showing an example of an apparatus used in the adaptation method of the present invention.
  • FIG. 13 is a photograph of one example of cardiomyocytes cultured by the adaptation method of the present invention.
  • a magnetic field or electric field stimulator of the present invention a method for promoting or suppressing the growth of living cells and the like using the magnetic field or electric field stimulator, and a method for preparing a degenerative disease model of a living cell or a living tissue Will be described in detail.
  • FIG. 1 is a schematic view showing a preferred embodiment of the magnetic or electric field stimulating device of the present invention.
  • reference numeral 1 denotes a magnetic field or electric field intensifying device main body
  • reference numeral 2 denotes a pulse current supply means
  • reference numeral 3 denotes a pulse magnetic field or pulse electric field supply means
  • reference numeral 4 denotes a magnetic field or stimulation probe
  • reference numeral 5 denotes a magnetic field or Electric field stimulation stage
  • 6 is a culture vessel
  • 7 is a power supply
  • 8 is a switch
  • 9 is a logic IC
  • 10 is a light emitting element
  • 11 is an electrolytic capacitor
  • 12 is a transistor
  • 13 is a transistor.
  • reference numeral 14 denotes a culture medium
  • reference numeral 15 denotes a living cell or a living tissue
  • reference numeral 16 denotes a power supply switching switch
  • reference numeral 17 denotes a magnetic field or electric field stimulation switching switch.
  • the pulse current supply means 2 has at least a power supply 7, a switch 8 and a logic IC 9, as shown in FIGS. 1 and 2, and preferably further includes a light emitting element 10, an electrolytic capacitor 11 and a transistor 12.
  • the pulse magnetic field or pulse electric field supply means 3 is composed of a magnetic or electric field stimulating probe 4 and a magnetic or electric field stimulating stage 5.
  • the magnetic field or electric field stimulating device of the present invention comprises a pulse current supply means 2 and a pulse magnetic field or pulse electric field supply means 3.
  • the pulse current supply means 2 is not particularly limited as long as it can generate a pulse current and can adjust the intensity and frequency of the pulse current.
  • the pulse current supply means 2 is preferably an electric signal generator capable of generating a current and a voltage having a predetermined function waveform. As shown in FIG. 1, at least a power supply 7, a switch 8 and a logic IC 9 are provided.
  • the present invention is achieved by magnetic field stimulation using a coil and (2) electric field stimulation between conductive plates sandwiching a culture vessel above and below, that is, capacitive current stimulation in which the space between two plates is regarded as a capacitor. Is done.
  • a conductive material such as a silver electrode is brought into monopolar contact with the culture medium instead of the conductive plate on the top of the culture vessel, and the cell and tissue growth layer and the bottom material of the culture vessel are combined into a single condenser.
  • the capacitive current stimulation of (2) the DC component of the current is completely removed, so that there is no change in liquidity due to electrolysis or the like. That is, the same effect as non-contact stimulation can be expected.
  • the waveform, intensity, cycle, energizing time, and the like of the pulse current supplied from the pulse current supply means 2 in the magnetic field or electric field stimulator of the present invention can be appropriately adjusted according to the magnetic field stimulation described later.
  • the power supply 7 may be either a power supply by an electric supply device or a power supply by batteries.
  • batteries a dry battery or a button battery is preferable.
  • the rechargeable battery such as a nickel-powered dominant battery, an electric double layer capacitor and a lithium battery may be used as well as a disposable battery such as a mercury battery or lithium.
  • the power supply 7 is an electricity supply
  • DC power supplies such as CZD C switching power supplies, A CZD C converters and various power transformer products are preferred.
  • the switch 8 is the same as the normal switch in the magnetic field or electric field stimulator 1. It is a device that controls the on / off control of the luster current.
  • the switch 8 may be a switch that is mechanically switched by a human operation, or may be a switch using a piezoelectric element, for example, in which current can be automatically turned on / off by pressure.
  • the pulse current supply means 2 may include a plurality of switches. For example, as shown in FIGS. 1 and 2, in addition to the toggle switch 8, a power supply switch 16 and a magnetic field or electric field stimulation switch May have 17.
  • the logic IC 9 may use an integrated circuit (IC) in which a series of work instructions is set or a series of work instructions can be given by a program, such as a general-purpose IC or a programmable IC. it can.
  • IC integrated circuit
  • the logic IC 9 has a role of changing the magnitude of the pulse current injected into the coil or the conductive plate on the time axis.
  • a large current pulse is to be injected into the coil to generate a high output magnetic field, or a very low or high frequency burst current cluster of 10 Hz or higher is applied to the conductive plate to stimulate with a capacitive current. If you want to inject in a pulse,
  • a power supply for injecting the large current pulse or the burst current cluster pulse is provided separately from the pulse current supply means 2, and a relay circuit driven by the pulse current obtained from the current supply means 2 supplies a current from the separate power supply to the coil.
  • the supply path may be opened and closed.
  • An example of a relay circuit is the PhotoMOS relay AQV-102 (maximum 60V (600mA)), and multiple relay circuits can be used in parallel.
  • a relay circuit It is opened and closed by a relay circuit, and the current supplied to the coil or conductive plate from the separate power supply is formed by a CR oscillation circuit, LC oscillation circuit, crystal oscillation circuit, crystal oscillation module, PLL synthesizer, digital synthesizer in addition to DC. 10 Hz
  • a relay circuit It is opened and closed by a relay circuit, and the current supplied to the coil or conductive plate from the separate power supply is formed by a CR oscillation circuit, LC oscillation circuit, crystal oscillation circuit, crystal oscillation module, PLL synthesizer, digital synthesizer in addition to DC. 10 Hz
  • the above-described rectangular wave or sine wave burst current can be used.
  • the logic IC 9 includes general-purpose logic ICs, PLDs (programmable logic devices), CPLDs (complex programmable logic devices), and FPGAs (field programmable gate arrays) custom ICs.
  • the general-purpose logic IC includes a CMOS type and a bipolar type, and is preferably a CMOS type.
  • Logic IC 9 is readily available on site.
  • the logic IC 5 may further include a peripheral element such as a capacitor.
  • the magnetic field or electric field stimulating apparatus of the present invention is set so that the pulse current adjusted by the logic IC 9 flows to the pulse magnetic field or pulse electric field supply means 3.
  • the pulse current is preferably such that the voltage (intensity), the frequency of occurrence (cycle), the generation pattern (waveform), and the like can be changed as a series of protocols by the logic IC 9 according to the purpose of the experiment.
  • One way to implement such a modifiable stimulus protocol is to write and erase the protocol in Logic IC9.
  • the method of forming the pulse current supply means 2 is not particularly limited, and examples thereof include a method of applying a conductive paint on a printed circuit board and printing the same on a printed circuit board, and a method of welding a thin conductive wire or the like. it can. Among them, a method of printing on a substrate is preferable from the viewpoint of making a circuit compact.
  • the pulse magnetic field or pulse electric field supply means 3 constituting the magnetic field or electric field stimulator of the present invention generates a pulse magnetic field or pulse electric field from the pulse current supplied from the pulse current supply means 2, and converts the pulse magnetic field or pulse electric field to It can be supplied to living cells or living tissues in the culture vessel from outside the culture vessel.
  • the present invention is achieved by magnetic field stimulation using a coil and (2) electric field stimulation between conductive plates sandwiching a culture vessel at the top and bottom, that is, capacitive current stimulation in which the space between two plates is regarded as a capacitor. Is done.
  • a conductive material such as a silver electrode is monopolarly contacted with the medium instead of the conductive plate on the top of the culture vessel, and the layer where cells and tissues grow and the bottom material of the culture vessel are placed. It is also possible to consider a single capacitor and perform stronger capacitive current stimulation. In either case, with the capacitive current stimulation of (2), the DC component of the current is completely removed, and there is no change in liquidity due to electrolysis or the like. That is, the same effect as non-contact stimulation can be expected.
  • the “pulse magnetic field” refers to a pulse-like magnetic field generated when the pulse current supplied from the pulse current supply unit 2 is changed, for example, in a coil by changing the magnetic flux density.
  • the “pulse electric field” refers to a pulse-like electric field generated by a pulse current supplied from the pulse / current supply means 2.
  • the pulsed magnetic field or pulsed electric field supply means 3 does not directly contact the electrode or the like with the medium outside the culture vessel, that is, outside the culture vessel, A pulse magnetic field or a pulsed electric field is supplied to the living cells in the culture vessel from the bottom of the cell to generate an eddy current or a capacity current in the culture vessel, and the eddy current or the capacity current is applied to the living cells as a pulse signal. Can be supplied.
  • the liquid properties of the culture medium in the culture vessel do not change even when a long-term electric stimulus is applied as compared with the conventional stimulator, and There is the merit that there is no influence of the electrode material and good adhesion of living cells can be obtained.
  • the pulse magnetic field or pulse electric field supplied from the pulse magnetic field or pulse electric field supply means 3 can be appropriately determined according to the waveform, intensity, cycle, duration, etc. of the pulse current supplied from the pulse current supply means 2. it can.
  • a pulse magnetic field or pulse electric field waveform a triangle, rectangle, or other various function waveforms (for example, sine waveform, exponential function waveform, etc.) can be selected according to the pulse current waveform. Preferably, there is.
  • the intensity of the pulsed magnetic field can be appropriately determined according to two culture purposes, that is, growth promotion and growth suppression (damage) of living cells and the like.
  • the intensity of the pulsed magnetic field is from 0.1 to 10 mT, preferably from 0.3 to 3 mT, and more preferably from 0.05 to 3 mT. 1.5 mT preferable.
  • the intensity of the pulse magnetic field is 0.05 to 500 mT, preferably 1 to 100 mT, and more preferably 3 to 3 OmT. Is more preferable.
  • the cycle of the pulsed magnetic field is, for example, from 0.001 to 1000 Hz, preferably from 0.005 to 100 Hz, and more preferably from 0.01 to LOHz.
  • the duration of the pulsed magnetic field is, for example, 1 microsecond to 10 seconds, preferably 5 microseconds to 1 second, and more preferably 0.1 millisecond to 0.1 second.
  • the intensity of the pulse electric field is, for example, 1 microvolt—100 volts, preferably 1 millivolt—10 volts, and more preferably 30 millivolts—3 volts.
  • the cycle of the pulsed electric field is, for example, 0.001 to 1000 Hz, preferably 0.005 to: L0OHz, and more preferably 0.011 to: LOHz.
  • the duration of the pulsed electric field is, for example, 1 microsecond to 10 seconds, preferably 5 microseconds to 1 second, and more preferably 0.1 millisecond to 0.1 second. Les ,.
  • Eddy current is an eddy current generated by electromagnetic induction in a direction that cancels the change in magnetic flux density due to the pulse magnetic field when a pulse magnetic field is supplied to the culture medium in the culture vessel.
  • the capacity current is the electric field stimulation between the conductive plates sandwiching the culture vessel from above and below, that is, the fluctuating current that passes through the capacity between the two plates, which is regarded as a capacitor.
  • a conductive material such as a silver electrode is brought into monopolar contact with the culture medium instead of the conductive plate on the top, and the layer where cells and tissues grow and the material on the bottom of the culture vessel are regarded as one capacitor, and pass through its capacity. It is a stronger fluctuating current.
  • the eddy current can be generated in the culture vessel 6 in accordance with the pulse of the pulse current supplied from the pulse current supply means 2.
  • the intensity of the eddy current is It can be appropriately determined according to the strength of the pulse magnetic field supplied from 3 and the resistance in the culture vessel.
  • the intensity of the eddy current can be measured, for example, using various eddy current detection probes including a conductive member 71 and a measuring lead wire 72 as shown in FIG.
  • the capacity current is a burst current cluster formed by a pulse current of the pulse current supplied from the pulse current supply means 2 directly or by another power source in the culture vessel 6 as a burst current cluster based on the duration and frequency of the pulse. Can be generated.
  • the intensity of the capacitance current can be directly measured with an oscilloscope or the like.
  • the pulse magnetic field or pulse electric field supply means 3 preferably includes a magnetic field or electric field stimulation probe 4 and a magnetic field or electric field stimulation stage 5 as shown in FIG.
  • the magnetic field or electric field stimulating probe 4 is not particularly limited as long as it can supply a pulsed magnetic field or a pulsed electric field to living cells or the like and generate an eddy current or a capacitive current in the culture vessel.
  • the magnetic field or electric field stimulation probe 4 preferably has a structure of a single or a plurality of magnetic field stimulation coils 13 or an electric field magnetic field stimulation coil as shown in FIG.
  • the two magnetic field stimulating coils 13, 13, 13 have a structure that allows the N pole and the S pole to contact the bottom of the culture vessel 6. That, even more preferred.
  • the magnetic field stimulation coil has an inductance of 1 H or less, preferably about 1 ⁇ m to 50 O mH.
  • the material of the magnetic field stimulating coil 13 examples include ferrite and magnetic particles.
  • the magnetic field stimulating coil 13 has a core coated with a magnetic material such as a ferrite type, an amorphous type, a metal compact, or a permalloy. It's coil.
  • the material of the electric field stimulation conductive plate is not particularly limited as long as it is conductive such as metal such as aluminum, copper, and iron, or conductive resin and conductive rubber.
  • the size, shape, number, and the like of the magnetic or electric field stimulation probes 4 can be appropriately determined according to the size, shape, and the like of the culture vessel 6 to be used.
  • the magnetic or electric field stimulating probe 4 preferably has a shape compatible with the well arrangement of the multiwell plate. Further, as shown in FIG. 4 (A), for example, a magnetic or electric field stimulation probe 4 for local stimulation using a small double coil and a wide area using a coil having a large diameter of 1 mm, as shown in FIG.
  • a probe 42 for stimulating a magnetic or electric field that can stimulate a magnetic or electric field can be formed.
  • the local double stimulus magnetic field or electric field stimulating probe 41 provides a local magnetic field or electric field.
  • the single coil type magnetic field or electric field stimulation probe 42 can supply a pulse magnetic field or an electric field over a wide range.
  • a pulsed magnetic field or a pulsed electric field can be selectively supplied to a predetermined cell group or a predetermined tissue site by the magnetic field or electric field stimulating probe 4, whereby local (for example, lxl 0 2 to 9 xl 0 m 2 , preferably 9 x 10 2 to 2.5 x 1
  • the range of “m 2 ” can promote or suppress the growth of living cells, etc.
  • the size, shape, thickness, etc. of the magnetic or electric field stimulation stage 5 are not particularly limited, It is preferable to have a size, shape, etc. that can accommodate, or preferably place, one or more culture vessels 6.
  • the material of the magnetic or electric field stimulating stage 5 is not particularly limited, but simplicity of processing and material Acrylic resin is preferred from the viewpoint of cost.
  • the size and shape of the culture vessel 6 can be freely selected according to the size and shape of the magnetic or electric field stimulation stage 5.
  • the culture vessel 6 is a commercially available 35 mm
  • Petri dishes of 6 mm, 90 mm, and 150 mm, a 6- to 4-84 mass well plate, a tissue culture tube having a diameter of 10 to 30 mm, and various square dishes can be used.
  • it is a multiwell plate.
  • the culture vessel 6 can be fitted in the pulse magnetic field supply means 3, preferably in the magnetic or electric field stimulating stage 4.
  • magnetic field stimulation or electric field stimulation can be independently supplied to the wells of the well plate.
  • the culture vessel is preferably made of a plastic that is excellent in transparency so that the cultured living cells and the like can be easily observed and is not easily damaged during handling, and is particularly preferably made of an acrylic resin having high transparency and excellent rigidity.
  • the culture vessel 6 can be filled with the medium 14 therein.
  • the medium 14 is usually prepared by adding various amino acids such as L-Arg, L-Cys, L-Gln, and L-His in physiological saline containing metal ions such as Na, Mg, and Ca.
  • a medium containing various vitamins, for example, folic acid, pantothenic acid, nicotinamide, pyridoxal, riboflavin and the like can be used as a liquid medium as it is, or as a gel medium to which collagen or the like is added.
  • Medium 14 contains various cytokines and growth factors conventionally proposed in tissue culture, such as interleukins, neurotropins, platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor. It is preferable to add the compound in an amount ranging from Ong Zml to ⁇ ⁇ ⁇ g / m 1.
  • the medium 14 may be a gel medium or a liquid medium.
  • the original tissue various original tissues used as known cells or tissues can be used.
  • the “living body” such as a living cell to which an electric stimulus (eddy current) is given by the magnetic or electric field stimulating device of the present invention includes humans, mammals such as dogs, cats, horses, pigs, sheep, mice, rats, etc. In addition to birds, reptiles, amphibians, fish, bacteria, viruses, and other microorganisms and plants.
  • the “tissue” to be stimulated by the magnetic or electric field stimulating device of the present invention includes all tissues of living organisms, fl containers, and some of them.
  • central nervous system peripheral god Meridian, bone, cartilage, joints, lymph vessels, blood vessels, heart (myocardium, valves), lungs, liver, spleen, pancreas, esophagus, stomach, small intestine, large intestine, kidney, bladder, ovaries, ovaries, testes, diaphragm, Muscles, tendons, skin, eyes, nose, trachea, tongue, lips, nails, hair, etc.
  • the tissue used in the magnetic field or electric field stimulator of the present invention is a tissue in which excitatory electrical stimulation is resident in a living body, such as the heart, skeletal muscle, smooth muscle, peripheral nerve, and brain. Tissue such as the central nervous system.
  • the pulse current supply means 2 is a monitoring device for monitoring the supply state of the pulse current supplied to the magnetic field stimulation coil 13 immediately below the culture vessel 6 or the electric field stimulation conductive plate. Can be further provided.
  • a light emitting element (LED) 10 or the like is preferably provided as shown in a preferred embodiment of the present invention.
  • the light emitting element 10 preferably used in the magnetic field or electric field stimulating device of the present invention is an element capable of converting a pulse current into light when the pulse current flows in the pulse current supply means 2.
  • the intensity can be expressed as the intensity of light. Therefore, the light emitting element 10 plays a role in visually recognizing the supply state of the pulse magnetic field or the pulse electric field supplied to the culture medium in the culture vessel 6.
  • a light emitting element 10 for example, a light emitting diode or the like is preferably used.
  • the circuit arrangement of the logic IC 9, the power supply 7, the switch 8, the monitoring device (optical element 10), and the coil 13 of the pulse current supply means 2 in the magnetic or electric field stimulating device of the present invention is not particularly limited.
  • the magnetic field: X can be appropriately determined according to the shape, size, and the like of the electric field stimulation stage 5.
  • the magnetic or electric field stimulating device 1 of the present invention can have a circuit arrangement as shown in FIGS. 3 (A) to 3 (C).
  • FIG. 3A shows a circuit arrangement when the logic IC 9 is a CMOS IC (74HC).
  • the current generated from the power supply 7 is converted into a pulse current having a desired waveform in the CMOS-based IC, and is adjusted to a desired current intensity, cycle, and conduction time by an electrolytic capacitor or a resistor as a peripheral element.
  • the adjusted pulse current is The light is supplied to the coil while being monitored by the light emitting element (LED) 10.
  • FIG. 3B shows a circuit arrangement in a case where all peripheral elements are included in the logic IC 9.
  • the circuit arrangement shown in FIG. 3 (B) has an advantage that the space occupied by peripheral elements can be omitted, which can contribute to downsizing of the device.
  • FIG. 3 (C) shows a circuit arrangement in a case where all the peripheral elements are incorporated in the logic IC 9 and the switch 8 is a logic switch.
  • the use of the logic switch shown in FIG. 3 (C) is a feather touch switch, which is a light touch, which is particularly preferable.
  • the method for manufacturing the magnetic or electric field stimulating device of the present invention is not particularly limited.
  • a coil or conductive plate applied to a normal single vessel, a coil or conductive applied to a stimulation circuit and a multi-well plate is used.
  • the raw plate arrangement and the stimulating circuit can be integrally formed as a single microchip by a semiconductor technology as much as possible, and a coil or a conductive plate can be additionally constructed.
  • the magnetic or electric field stimulator of the present invention is preferably used to promote or suppress the growth of living cells and the like. More preferably, the magnetic or electric field stimulating probe in the magnetic or electric field stimulating device of the present invention is provided by selectively supplying a pulsed magnetic field of a predetermined intensity to a predetermined cell group or a predetermined site such as a living cell. It is used to promote or suppress the growth of living cells and the like.
  • a pulse magnetic field or a pulse electric field preset according to the purpose of an experiment is changed to an eddy current or a capacitive current (pulse signal).
  • the magnetic or electric field stimulator of the present invention can be used for a method of promoting or suppressing the function of a living cell or a living tissue, and a method characterized by acclimation of a cell function as the promotion of the function of a living cell or a living tissue. .
  • the magnetic or electric field stimulating device of the present invention can be used in a method of denaturing normal living cells or living tissues to create a degenerative disease model of living cells or the like.
  • This The biodegenerative disease model obtained by such a method can be used for the study of various disease models, and will be useful in future studies on pathogenesis.
  • the present invention relates to a method for acclimating the function of an organ or a tissue or cells constituting the same.
  • the function acclimatization method of the present invention will be described in detail.
  • Living organisms to be subjected to the method for acclimating the function of the present invention include humans, mammals such as dogs, cats, horses, pigs, sheep, mice, rats, etc., birds, reptiles, amphibians, fish, bacteria, viruses, etc.
  • This concept encompasses microorganisms and plants.
  • animals having nerves and hearts, preferably mammals, and particularly preferably humans are targeted.
  • the organs / tissues to be subjected to the function acclimation method in the present invention include all tissues and organs of a living body.
  • organs, tissues or tissues in which excitable electrical stimulation is resident in the living body such as the central nervous system such as the heart, skeletal muscle, smooth muscle, peripheral nerves, and the brain, especially the heart and the periphery Targets central nervous tissue.
  • the central nervous system such as the heart, skeletal muscle, smooth muscle, peripheral nerves, and the brain, especially the heart and the periphery Targets central nervous tissue.
  • the tissues to be functionally adapted for transplantation include, among the above-mentioned tissues and organs of the living body, cardiac muscles that form a part of an organ constantly exposed to a bioelectric signal specific to the organ, that is, special cardiac muscles Of particular interest is native myocardial tissue.
  • the organs, tissues, or cells that are adapted to function in the present invention are not limited to those extracted and collected from a living body.
  • differentiation from stem cells such as embryonic stem cells (ES cells), hematopoietic stem cells, and mesenchymal stem cells ⁇
  • stem cells such as embryonic stem cells (ES cells), hematopoietic stem cells, and mesenchymal stem cells ⁇
  • ES cells embryonic stem cells
  • hematopoietic stem cells hematopoietic stem cells
  • mesenchymal stem cells
  • fibrous tissue obtained by culturing it is also possible to use a fibrous tissue obtained by culturing.
  • An organ, tissue or cell that is adapted for transplantation according to the present invention is an organ, tissue, or tissue extracted from a part of a living body, for example, a mammalian organ such as a transgenic pig in which MHC is adapted to that of a human. Or it can be a cell.
  • the tissue to be functionally adapted in the present invention may be, for example, a tissue obtained by growing cells collected from a living body, for example, a mammal, for example, a human in inVitro.
  • the tissue obtained by the above method is subjected to functional adaptation under culture conditions.
  • This adaptation is performed by placing the organ, tissue or cell of interest in a container containing the medium.
  • the function acclimation means that an organ, tissue or cell cultured or proliferated or removed for transplantation is used as a source of electrical excitation of a living body in the same manner as an original organ or tissue. This refers to the operation of exposing to an electrically stimulated atmosphere for a certain period so that it can be adapted to the conditions.
  • functions in this project will be collectively referred to as “function acclimation”.
  • various amino acids such as L-arginine, L-cystine, and L-glutamine are added to physiological saline containing metal ions such as Na, Mg, and Ca. , L-histidine, and various vitamins such as folic acid, pantothenic acid, nicotinamide, pyridoxal, riboflavin, etc., preferably as an Eag1e MEM medium or Du1becco & Smodified medium.
  • a culture medium and the like available from Funorade can be used.
  • the temperature for acclimatizing the subject usually ranges from 10 ° C (degrees C) to 45 ° C (degrees 0, preferably 30 ° C (degrees C) to 37 (degrees C).
  • cytokines conventionally proposed for tissue regeneration in the above medium such as interleukins, neurotropins, platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor, from 1 ng / m1 to 100 ng It is preferable to mix in an amount in the range of / m 1.
  • an electric signal is given to the object during the function acclimation.
  • the electrical signal is a pulsed electrical signal or a pulsed magnetic signal.
  • the electric signal may be given continuously or intermittently.
  • a pulse of 0.5 to 50 HZ, preferably 1 to 10 HZ, 10 mV to 10 V, preferably 100 mV to 1 V is applied by bringing the electrode into contact with the culture medium Z or the function acclimation target. It is necessary to provide an electrical signal.
  • the electric acupuncture stimulus is initially set to a low voltage, and the intensity is gradually increased.
  • the device for applying an electric current is preferably connected to a function generator capable of changing the current in a pulsed manner at regular intervals, that is, generating a pulsed current.
  • Another way to provide an electrical signal to the subject to be acclimated is to apply the electric signal to the subject to be acclimated, preferably the container containing the subject to be acclimated, by changing the magnetic field, preferably the magnetic flux density, as shown in Figure 12.
  • an electric wire is wound in a coil shape, as is known by an electromagnet, and a container containing an object to be transplanted, preferably an object to be functionalized, is placed in the center thereof.
  • a current preferably a pulse current
  • the intensity of the eddy current in the object to be functionalized can be changed in a pulse manner, that is, given as a pulse signal.
  • This latter method is more preferable because the stimulation can be performed without bringing a foreign object such as an electrode into contact with the object to be adapted.
  • the magnetic signal given to the object to be functionalized is 0.5 to 50 Hz, preferably:! It is necessary to use a pulse signal in the range of ⁇ 10 Hz, 0.1 mT to 10 mT, preferably 0.5 mT to 5 mT.
  • Another way to apply an electrical signal to the subject to be acclimated is to apply the object to be acclimated, preferably a container containing the subject to be acclimated, to an electric field, preferably a burst current cluster, as shown in Figure 12.
  • an electric field preferably a burst current cluster
  • a method of generating a capacitive current inside an object to be functionalized by placing it in an electric field that can be given in a state can also be mentioned.
  • the electric field that can apply the above-mentioned burst current cluster in a pulse form is, for example, a container containing an object to be transplanted, preferably an object to be functionalized, between the upper and lower two conductive plates, and the electric current between the plates.
  • a pulsed burst current cluster can be provided to provide a capacitive current within the subject to be functionally adapted.
  • the latter method is more preferable because stimulation can be performed without bringing a foreign object such as an electrode into contact with an object to be adapted.
  • a conductive material such as a silver electrode is brought into monopolar contact with the culture medium instead of the conductive plate at the top of the culture vessel, the DC component of the current can be completely removed. As if sex changes were eliminated as much as possible With the formula, the intensity of the capacitance current can be increased.
  • the frequency of the burst current is 10 Hz or more, the frequency of the current pulse is 5 to 50 H, preferably 1 to 10 Hz, and the intensity is preferably 1 microvolt to 100 volts, 5 millibonoreto to 10 volts, and 30 milliports. ⁇ 3 volts force S more preferred.
  • a mixed sample of sensory nerve cells and Schwann cells was cultured in the same manner as in Example 1 except that no magnetic field stimulation was given. The results are shown in FIG. 5 (B).
  • the specimen cultured with magnetic field stimulation (Fig. 5 (A) was compared with the specimen cultured without magnetic field stimulation (Fig. 5 (B)).
  • Significant neurite outgrowth and branching and proliferation of Schwann cells were observed.
  • the magnetic field stimulator of the present invention has good fixation of Schwann cells and nerve cells in the medium, greatly promotes growth of Schwann cells and nerve cells, and thereby enhances neurite outgrowth. It can be seen that branching can be promoted.
  • Example 2 Temperature 37 ° (, humidity 99%, under the conditions of C0 2 concentration of 5% by using a magnetic field stimulator of the present invention, for the purpose of growth inhibition (cytotoxicity grant) in a mixed sample of sensory neurons and Schwann cells
  • Figure 6 shows the results of applying the electrical stimulation under the conditions (3 mT, duration 20 ms ec, 50 Hz) for 3 days.
  • Fig. 8 shows the results.
  • Control group (control), group impaired by pulsed magnetic field stimulation (impared).
  • a of FIG. 8 shows the measurement result of the resting membrane potential of the cultured sensory nerve of the mouse under the condition of the membrane current fixation by the patch clamp technique.
  • FIG. 8 shows normal (control) and resting membrane potential 0 from the impaired sensory nerve (disorder) produced by applying pulse magnetic field stimulation (3 mT, .3 msec duration, 5 Hz) for 3 days.
  • MP control group
  • -59.7 ⁇ 2.5 mV mean and SEM
  • n 7
  • FIG. A of FIG. 9 shows the neuronal cell death (arrow head) of the control sensory nerve after 3 days in the medium containing 10 / zM capsaicin (CAPS).
  • 0 shows the survival rate of cultured sensory nerves on each day after capsaicin treatment.
  • Example 5 Frequency of contraction of each ventricular muscle cluster to 5 Hz electrical stimulation and contraction pattern of typical magnetic stimulation group cluster to 2 Hz and 5 Hz electrical stimulation
  • the purpose of the present invention is to promote growth of a mixed sample of ventricular myocytes and fibroblasts using the magnetic field stimulator of the present invention under the conditions of a temperature of 37 ° C (degree C), a humidity of 99% and a CO 2 concentration of 5%.
  • the cells were cultured while applying magnetic field stimulation (1-3 mT, 3 msec, 5-10 Hz) under the conditions described above for 7 days.
  • the results are shown in FIG.
  • changes in the response of the functionalized myocardium to electrical stimulation and the recovery of function by magnetic stimulation were evaluated using a video camera attached to a phase-contrast microscope. Seconds of video data were acquired and stored, and heart rate was measured and tabulated. (result)
  • Example 6 (Observation of function-conditioned cells) Contraction frequency of ventricular muscle clusters cultured in the presence of pulsed magnetic field stimulation in response to electrical stimulation
  • the heart rate of the activated myocardium decreases from the original heart rate of the mouse (48.6 to 738 times Z minutes, that is, 8.1 to 12.3 HZ).
  • the stimulus responsiveness to electrical stimulation ie, the frequency of stimuli that could be followed by cultured cardiomyocytes, was reduced to 2 to 5 Hz (control group (14d without magnetic stimulation)).
  • ventricular muscle clusters (magnetic stimulation 7d / 14d) cultured in the presence of pulsed magnetic field stimulation (l-3mT, 3msec, 5-10Hz) for 7 out of 14 days recovered responsiveness to high frequency stimulation And was able to follow the electrical stimulation of 7 HZ.
  • Figure 13 shows an enlarged photo of a cardiomyocyte cluster in culture.
  • the magnetic or electric field stimulating device of the present invention is capable of applying a desired pulsed magnetic field or pulsed electric field to living cells and the like in a culture vessel to generate an eddy current or a capacitive current in the culture vessel.
  • the stimulator that can be used is simple in structure, easy to manufacture, and inexpensive.
  • the magnetic or electric field stimulating device of the present invention can easily attach and detach a culture container to which magnetic or electric field stimulation is to be applied, and can locally apply magnetic or electric field stimulation to desired living cells and the like, and furthermore, cultivate A magnetic or electric field stimulator that does not come into direct contact with the medium in the container. Therefore, with the magnetic or electric field stimulating device of the present invention, it is possible to apply magnetic field or electric field stimulation to desired living cells for a long period of time without changing the characteristics of the culture medium in the culture vessel. Of the medium can be improved.
  • a method in which a pulsed magnetic field or a pulsed electric field is controlled to apply electric stimulation to a living cell or the like to promote or suppress the growth of the living cell or the like.
  • a pulse signal preferably an eddy current or a capacitance current preset according to the purpose of the experiment is applied to the original tissue or the like from the outside of the culture vessel without directly contacting the original tissue or the like.
  • a normal living cell or living tissue preferably a nerve cell or a nerve tissue is degenerated by the magnetic or electric field stimulating device of the present invention, so that a living cell or living tissue degenerative disease model can be easily created.
  • the organs or tissues accustomed to the excitatory input by the function acclimatization method of the present invention or the cells constituting them are adapted to the bioelectric signal, for example, they are transplanted immediately after transplantation and In this case, even if a bioelectric signal is received, excitatory conduction can be performed in cooperation with surrounding tissues.
  • myocardial tissue it has extremely higher adaptability than a transplant prepared by a conventional method, and can prevent the transplant from becoming a source of arrhythmia or the like as much as possible.
  • tissues or cells treated by the function acclimatization method of the present invention particularly myocardial tissues and myocardial cells, always maintain a stimulus tracking ability close to physiological conditions. As a result, it can be used as a more reliable sample for drug evaluation and toxicity testing of cardiovascular drugs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

A magnetic or electric field stimulating device not changing liquidity of the culture solution and not lowering the anchoring rate of cells even if living cells are electrically stimulated for a long time during the growth progress of the living cells, a method for promoting or restraining growth of living cells using the magnetic or electric field stimulating device, and a method for creating a degenerative disease model of a living cell. The magnetic or electric field stimulating device is characterized by having pulse current supply means for generating a pulse current and adjusting the current characteristic of the pulse current and pulse magnetic or electric field supply means for producing a pulse magnetic or electric field by means of the pulse current supplied from the pulse current supply means and supplying the pulse magnetic or electric field to the living cells or living tissue in a cultivator from the outside of the cultivator.

Description

明細書  Specification
磁場又は電場刺激装置及びその磁場又は電場刺激装置を用いた生体細胞若しくは 生体組織の成長及び機能の促進、 抑制又は障害方法 技術分野 FIELD OF THE INVENTION Field of the invention
本発明は、 生体細胞、 組織等に電気刺激を与えるための磁場又は電場刺激装置、 生体細胞、 ,袓織等の成長促進又は抑制方法、 及ぴ生体細胞、 組織等の変性疾患モ デルの作成方法に関する。 より詳しくは、 本発明は、 研究所等において実験で用 いられる生体細胞、 組織等に磁場又は電場を介して特定の電気刺激を与えること により生体細胞、 組織等の成長を促進又は抑制させることのできる磁場又は電場 刺激装置、 及びその磁場又は電場刺激装置を用いた生体細胞、 組織等の成長促進 又は抑制方法、 並びに前記磁場又は電場刺激装置を用いた生体細胞、 組織等の変 性疾患モデルの作成方法に関する。  The present invention relates to a magnetic or electric field stimulator for applying electrical stimulation to living cells, tissues, and the like, a method for promoting or suppressing the growth of living cells, tissues, and the like, and creation of a degenerative disease model for living cells, tissues, and the like. About the method. More specifically, the present invention is to promote or suppress the growth of living cells, tissues, etc. by applying a specific electrical stimulus to a living cell, tissue, etc. used in an experiment in a laboratory or the like via a magnetic field or an electric field. Magnetic or electric field stimulating device, and a method of promoting or suppressing the growth of living cells and tissues using the magnetic or electric field stimulating device, and a model of a degenerative disease of living cells and tissues using the magnetic or electric field stimulating device About how to create.
さらに本発明は、 生体での組織の移植方法に関する。 本発明は特に、 常時電気 信号を発生し、 構成細胞が互いに電気信号を受けている臓器、 または組織、 ある いはこれらを構成する細胞の機能馴化方法、 好ましくは心筋組織の機能馴化方法 に関する。 背景技術  Further, the present invention relates to a method for transplanting a tissue in a living body. In particular, the present invention relates to a method for accommodating the function of an organ or a tissue which constantly generates an electric signal and to which the constituent cells are receiving the electric signal with each other, or the function of a cell constituting the organ or the tissue, preferably the function of a myocardial tissue. Background art
生体細胞、 糸且織等の成育における興奮現象の重要性、 あるいは異常興奮による てんかん性痴呆や低酸素脳症のような変性疾患の病態発現のメカニズム解析と治 療法開発において、 生体の培養細胞、 培養組織等に長期間、 電気刺激を導入する システムの研究は、 効果的な in vitro病態モデルとして重要である。  The importance of excitatory phenomena in the growth of living cells, itokori, etc., or the analysis of the pathogenesis of degenerative diseases such as epileptic dementia and hypoxic encephalopathy due to abnormal excitement, Research on systems that introduce electrical stimulation into tissues for a long time is important as an effective in vitro disease state model.
従来より、 生体の培養細胞、 組織等に長期間に亘り電気刺激を与える試みが行 われてレヽる » ( 1列 J 、 Wang Q, et al. "Osteogenesis of electrically stimulated bone cell mediated in part by calcium ions" Clin. Orthop. 1998 March; (348) p259- 268を参照) 、 培養細胞、 組織等に電極を直接接触させ た場合、 培養溶液の液性変化、 さらには電極材料の影響が現われるという問題が あった。 この問題は、 特に長期間電気刺激を与えた場合に顕著であり、 長期間の 電気刺激試験では電極と培養溶液とを非接触状態で行うこと、 叉は直流成分とし ての通電量を極力小さくすることが必要である。 Conventionally, attempts have been made to apply electric stimulation to living cells or tissues for a long period of time. »(1 row J, Wang Q, et al." Osteogenesis of electrically stimulated bone cell mediated in part by calcium ions "Clin. Orthop. 1998 March; (348) p259-268), and the electrodes are brought into direct contact with cultured cells, tissues, etc. In such a case, there is a problem that the liquid properties of the culture solution change and further, the influence of the electrode material appears. This problem is particularly remarkable when electrical stimulation is applied for a long period of time.In a long-term electrical stimulation test, the electrode and the culture solution are not in contact with each other, or the amount of electricity as a DC component is minimized. It is necessary to.
一方、 マイクロチップによる電極列底面を有する培養容器は、 所定の培養条件 下で長期に亘り培養試験を行うために開発されたものであるが、 細胞の種類によ つてはその培養容器内における定着性が必ずしも良好とはいえなかった。 特に神 経細胞を培養する場合、 その定着性の悪さは問題と されていた。  On the other hand, a culture vessel with a microchip electrode array bottom surface was developed to perform a long-term culture test under specified culture conditions, but depending on the type of cells, fixation in the culture vessel may occur. The properties were not always good. Particularly when culturing neuronal cells, its poor fixation has been a problem.
このような培養細胞、 組織等に対して、 培養溶液の液性変化や細胞の定着度の 悪さの欠点を克服した電気刺激装置の開発は、 生理学、 薬理学、 生化学のみなら ず、 再生医学やゲノム科学を遂行している研究施設から極めて大きなニーズがあ る。  For such cultured cells and tissues, the development of an electrical stimulator that overcomes the drawbacks of a change in the liquid properties of the culture solution and the poor degree of cell fixation is not only in physiology, pharmacology and biochemistry, but also in regenerative medicine. And labs that perform genomic sciences have extremely large needs.
一方、 再生医学の進歩により、 胚幹細胞、 造血幹細胞、 間葉系幹細胞、 更に成 熟細胞組織中に僅かに存在する組織特有の幹細胞あるいは残存組織そのものを用 いて、 多くの組織が再生されるようになった。 このことは、 臓器移植のためのド ナー不足という問題の解決に新たな可能性をもたらすものである。 今後の課題と して、 (1 ) 組織再生のための細胞の増殖、 分化効率の向上と、 (2 ) 移植のた めの再生組織の機能面からの適合性強化が挙げられる。  On the other hand, advances in regenerative medicine have enabled many tissues to be regenerated using embryonic stem cells, hematopoietic stem cells, mesenchymal stem cells, and even stem cells unique to tissues that are slightly present in mature cell tissues or the residual tissues themselves. Became. This opens up new possibilities for solving the problem of donor shortage for organ transplantation. Future challenges include (1) improving cell proliferation and differentiation efficiency for tissue regeneration, and (2) enhancing the functional compatibility of regenerated tissue for transplantation.
これらのうち、 課題 ( 2 ) の再生組織の適合性の強化については、 現在、 一部 の臓器、 例えば、 心筋、 神経、 骨格筋のようなその組織を構成する細胞自体が生 体内で特有の電気活動を行って、 臓器特有の電気的環境から常に細胞が電気的入 力を受けている臓器、 特に心臓を構成する心筋移植の試みは、 充分に成功してい るとは言いがたい。 発明の開示  Among these, regarding the enhancement of the compatibility of regenerative tissue, which is the subject (2), at present, some organs, for example, cells constituting the tissue itself such as myocardium, nerves, and skeletal muscle have unique characteristics in vivo. It is hard to say that attempts to transplant myocardium, which is an organ in which cells are constantly receiving electrical input from the electrical environment specific to the organ by performing electrical activity, especially the heart, have been sufficiently successful. Disclosure of the invention
本発明は上記課題を解決するためになされたものであり、 本発明の目的は、 生 体細胞又は生体組織 (以下、 「生体細胞等」 ともいう。 ) の成長過程において、 長期に亘り生体細胞等に電気刺激を与えても、 培養溶液の液性変化や細胞の定着 度が低下することのない磁場又は電場刺激装置を提供することにある。 また、 本 発明のもう一つの目的は、 前記磁場又は電場刺激装置を用いて生体細胞等の成長 及び機能を促進、 抑制又は障害する方法を提供することにある。 さらに本発明の もう一つの目的は、 前記磁場又は電場刺激装置を用いた生体細胞等の変性疾患モ デルの作成方法を提供することにある。 The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a method for growing living cells or living tissues (hereinafter, also referred to as “living cells, etc.”). It is an object of the present invention to provide a magnetic or electric field stimulator which does not change the liquidity of a culture solution or decrease the degree of cell fixation even when electrical stimulation is applied to living cells or the like for a long period of time. Another object of the present invention is to provide a method for promoting, suppressing or impairing the growth and function of living cells and the like using the magnetic or electric field stimulator. Still another object of the present invention is to provide a method for creating a model of a degenerative disease such as a living cell using the magnetic or electric field stimulator.
本発明のさらに別の目的は、 生体の定常的に生体電気信号を発生し、 構成細胞 が互いに電気信号を受ける臓器、 または組織、 あるいはこれらを構成する細胞の 活性を維持もしくは取り戻す方法を提供することである。 本発明のさらに別の目 的は、 そのようにして機能馴化された臓器、 または組織あるいは構成する細胞を 医薬品の薬効評価および毒性試験のための検体として提供することである。  Still another object of the present invention is to provide a method for constantly generating a bioelectric signal of a living body and maintaining or regaining the activity of an organ or a tissue in which constituent cells receive an electric signal from each other or cells constituting the same. That is. Yet another object of the present invention is to provide the organ or tissue or the cells constituting the function-adapted as such as a specimen for evaluating the efficacy and toxicity of a drug.
本発明者は、 長期間電気刺激を与えた場合における生体細胞等の成長又は抑制、 変性病態誘導、 特に興奮受容の重要性について鋭意検討し、 生体細胞等と非接触 の状態、 叉は直流成分としての通電量を極力小さくした状態で電気刺激を与える ことのできる装置及び方法を開発し、 本発明を完成するに至った。  The inventor of the present invention has intensively studied the importance of growth or suppression of living cells and the like, induction of degenerative pathologies, and particularly of excitatory reception when electrical stimulation is applied for a long period of time. The present inventors have developed an apparatus and a method capable of applying an electrical stimulus while minimizing the amount of current supply as a result, and have completed the present invention.
すなわち、 本発明によれば、 パルス電流を発生させ、 かつパルス電流の電流特 性を調整するためのパルス電流供給手段と、 前記パルス電流供給手段より供給さ れたパルス電流からパルス磁場又はパルス電場を発生させ、 該パルス磁場又はパ ルス電場を培養容器の外部から前記培養容器内の生体細胞又は生体組織に供給す るためのパルス磁場又はパルス電場供給手段とを有することを特徴とする磁場又 は電場刺激装置が提供される。  That is, according to the present invention, a pulse current supply means for generating a pulse current and adjusting the current characteristics of the pulse current, and a pulse magnetic field or a pulse electric field from the pulse current supplied from the pulse current supply means And a pulse magnetic field or pulse electric field supply means for supplying the pulse magnetic field or pulse electric field from outside the culture vessel to living cells or living tissue in the culture vessel. An electric field stimulator is provided.
好ましくは、 前記パルス電流供給手段は、 少なくとも電源、 スィッチ及ぴロジ ック I Cを含む電気回路である。  Preferably, the pulse current supply means is an electric circuit including at least a power supply, a switch, and a logic IC.
好ましくは、 前記パルス磁場又は電場供給手段は、 前記パルス磁場又はパルス 電場を発生させ、 該パルス磁場又は電場を生体 ¾3胞又は生体組織に供給するため の磁場又は電場刺激プローブと、 前記培養容器を収納するための磁場又は電場刺 激ステージとを有する。 好ましくは、 前記磁場又は電場刺激プローブが単一又は複数の磁場刺激コィル 又は電場刺激導電性プレートである。 Preferably, the pulse magnetic field or electric field supply means generates the pulse magnetic field or pulse electric field, and supplies a magnetic field or electric field stimulation probe for supplying the pulse magnetic field or electric field to a living cell or a living tissue; and A magnetic or electric field stimulating stage for storage. Preferably, the magnetic or electric field stimulating probe is a single or multiple magnetic field stimulating coils or electric field stimulating conductive plates.
好ましくは、 前記磁場または電場刺激プローブが、 培養容器内にパルス磁場ま たは電場を供給することにより、 培養容器内に渦電流叉は容量電流を発生させる ものである。  Preferably, the magnetic field or electric field stimulating probe generates an eddy current or a capacitive current in the culture vessel by supplying a pulsed magnetic field or an electric field into the culture vessel.
好ましくは、 さらに、 培養容器内の渦電流を検出するための渦電流検出プロ一 ブを有する。  Preferably, it further has an eddy current detection probe for detecting an eddy current in the culture vessel.
好ましくは、 前記培養容器は、 前記パルス磁場又は電場供給手段内に嵌着可能 である。  Preferably, the culture container can be fitted in the pulse magnetic field or electric field supply means.
好ましくは、 生体細胞若しくは生体糸且織の成長及び機能を促進、 抑制又は障害 するために用いられる。  Preferably, it is used to promote, suppress or impair the growth and function of living cells or living tissue.
好ましくは、 前記磁場又は電場刺激プローブは、 パルス磁場を生体細胞又は生 体組織の所定の細胞群若しくは所定の部位に選択的に供給して、 生体細胞又は生 体組織の成長を促進させ又は抑制させるためのものである。  Preferably, the magnetic field or electric field stimulation probe selectively supplies a pulsed magnetic field to a predetermined cell group or a predetermined site of a living cell or a living tissue to promote or suppress the growth of the living cell or the living tissue. It is to make it.
好ましくは、 前記パルス磁場又は電場刺激プローブは、 脳波, 心電図, 筋電図, 胃電図, 網膜電図, 又はシナプス電流の主要波形の出現頻度を模倣したタイミン グで刺激パルスの供給頻度を決定したり、 叉はこれらの生体電気信号等をロー力 ット(Low cut) フィルター(10 Hz)に通して得られる高周波ノイズの周波数と同 等もしくはそれ以上の周波数の電流ノイズをパースト電流クラスターとしてパル ス内に含んで、 刺激に用いることを特徴とする。  Preferably, the pulsed magnetic field or electric field stimulation probe determines the supply frequency of the stimulation pulse at a timing that mimics the appearance frequency of the main waveform of an electroencephalogram, an electrocardiogram, an electromyogram, a gastric electrogram, an electroretinogram, or a synaptic current. Or a current noise with a frequency equal to or higher than the frequency of the high-frequency noise obtained by passing these bioelectric signals through a low cut filter (10 Hz) as a burst current cluster. It is characterized in that it is included in a pulse and used for stimulation.
好ましくは、 前記パルス電流供給手段が、 所定の関数波形の電流と電圧とを発 生し得る電気信号発生装置である。  Preferably, the pulse current supply means is an electric signal generator capable of generating a current and a voltage having a predetermined function waveform.
好ましくは、 前記磁場又は電場刺激プローブは、 マルチウエルプレートのゥェ ル配列に対応可能な形状を有する。  Preferably, the magnetic or electric field stimulating probe has a shape that can correspond to the well arrangement of a multiwell plate.
好ましくは、 前記磁場又は電場刺激プローブは、 通電されたパルス電流を磁束 密度を変化させることによりパルス磁場を発生させるものである。  Preferably, the magnetic field or electric field stimulation probe generates a pulse magnetic field by changing a magnetic flux density of an energized pulse current.
好ましくは、 前記磁場又は電場刺激プローブは、 前記バースト電流クラスター から成るパルス電流を供給することによりパルス電場を発生させるものである。 本発明の磁場又は電場刺激装置は、 パルス電流供給手段とパルス磁場又はパル ス電場供給手段とを有する構造である。 このため、 本発明の磁場又は電場刺激装 置であれば、 構造が簡単で装置の作製も容易である。 また、 本発明の磁場又は電 場刺激装置は、 生体細胞等を入れた培養容器がパルス磁場又はパルス電場供給手 段内に嵌着可能であるため、 簡単に着脱作業が行え、 しかも生体細胞等に直接接 触させることなく、 培養容器の外部から生体細胞等に所望の強度、 波形等を有す る渦電流叉は容量電流 (パルス信号) を供給して、 培養過程において生体細胞等 の成長や変性を適宜調整できる。 さらに、 本発明の磁場又は電場刺激装置であれ ば、 磁場又は電場刺激プローブから所望の強度、 波形等を有する渦電流叉は容量 電流 (パルス信号) を生体細胞等の特定の細胞群若しく は特定の部位に選択的に 発生させ、 生体細胞又は組織細胞の成長を促進させ又は抑制させることができる。 また、 本発明のもう一つの目的は、 前記磁場又は電場刺激装置を用いた、 生体 細胞若しくは生体組織の成長促進又は抑制方法、 生体細胞若しくは生体組織の機 能の促進又は抑制方法、 並びに生体細胞若しくは生体組織の機能の促進として細 胞機能馴化を特徴とする方法により達成される。 本努明の方法によれば、 従来の 刺激装置のように直接電極を接触させることなく生体糸田胞等の成長を促進、 又は 生体細胞等に損傷を与えて生体細胞及び生体組織の成長を抑制することができる。 また、 本発明のもう一つの目的は、 前記磁場又は電場刺激装置を用いて正常な 生体細胞又は生体組織、 好ましくは神経細胞又は神経組織を変性させて生体細胞 又は生体組織変性疾患モデルを作成することを特徴とする生体細胞又は生体組織 の変性疾患モデルの作成方法により達成される。 Preferably, said magnetic or electric field stimulation probe is said burst current cluster A pulse electric field is generated by supplying a pulse current consisting of The magnetic field or electric field stimulating device of the present invention has a structure having a pulse current supply means and a pulse magnetic field or pulse electric field supply means. Therefore, the magnetic or electric field stimulating apparatus of the present invention has a simple structure and is easy to manufacture. In addition, the magnetic or electric field stimulator of the present invention can be easily attached and detached since the culture vessel containing the living cells and the like can be fitted into the pulsed magnetic field or pulse electric field supply means, and furthermore, the living cells and the like can be used. An eddy current or a capacitive current (pulse signal) having a desired intensity and waveform is supplied to the living cells from outside the culture vessel without directly contacting the cells, so that the living cells grow in the culture process. And denaturation can be adjusted appropriately. Furthermore, according to the magnetic or electric field stimulating device of the present invention, an eddy current or a capacitive current (pulse signal) having a desired intensity, waveform, or the like can be supplied from a magnetic or electric field stimulating probe to a specific cell group such as a living cell or the like. It can be selectively generated at a specific site to promote or suppress the growth of living cells or tissue cells. Another object of the present invention is to provide a method for promoting or suppressing the growth of a living cell or a living tissue, a method for promoting or suppressing the function of a living cell or a living tissue, and a living cell using the magnetic or electric field stimulator. Alternatively, it can be achieved by a method characterized by acclimatization of cell function to promote the function of living tissue. According to the method of this effort, the growth of living cysts, etc. is promoted without directly contacting the electrodes as in the conventional stimulator, or the growth of living cells and living tissues is suppressed by damaging the living cells, etc. can do. Another object of the present invention is to create a biological cell or biological tissue degenerative disease model by degenerating normal biological cells or biological tissues, preferably neural cells or neural tissues using the magnetic or electric field stimulator. This is achieved by a method for creating a model of a degenerative disease of a living cell or living tissue, characterized by the above feature.
さらに本発明によれば、 生体の定常的に生体電気信号を発生し、 構成細胞が互 いに電気信号を受ける臓器、 または組織、 あるいはこれらを構成する細胞を、 0 . 5〜5 0 0 H Z、 1 O mV〜: 1 0 Vのパルス電気信号、 または、 0 . 5〜5 0 0 H Z、 0 . l mT〜l 0 O m Tのパルス磁気信号入力" Fで培養することを特徴と する臓器、 または組織、 あるいはこれらを構成する細胞の機能馴化方法が提供さ れる。 Further, according to the present invention, an organ or a tissue which constantly generates a bioelectric signal of a living body, and the constituent cells receive the electric signal with each other, or a cell constituting the same, is used in a range of 0.5 to 500 Hz. , 1 O mV ~: pulsed electric signal of 10 V, or 0.5 ~ 500 HZ, pulsed magnetic signal input of 0.1 mT ~ lO OmT, characterized by culturing with "F" Provides methods for acclimating the function of organs or tissues or the cells that compose them It is.
好ましくは、 ϋ器は心臓である。  Preferably, the organ is the heart.
好ましくは、 組織は心筋である。  Preferably, the tissue is myocardium.
好ましくは、 機能馴化を、 臓器、 または組織を移植する前に行う。  Preferably, the functional acclimation is performed before transplanting the organ or tissue.
さらに本発明によれば、 上記の方法で機能馴化された組織、 または細胞からな る薬効評価およぴ毒性試験用検体が提供される。 図面の簡単な説明  Further, according to the present invention, there is provided a specimen for drug efficacy evaluation and toxicity test comprising a tissue or a cell adapted to function by the above method. Brief Description of Drawings
図 1は、 本発明の磁場又は電場刺激装置の一実施例を示す概要図である。  FIG. 1 is a schematic diagram showing one embodiment of the magnetic or electric field stimulating device of the present invention.
図 2は、 本発明の磁場又は電場刺激装置における電気回路の回路配置を示す説 明図である。  FIG. 2 is an explanatory diagram showing a circuit arrangement of an electric circuit in the magnetic or electric field stimulating device of the present invention.
図 3は、 本発明の磁場又は電場刺激装置におけるロジック I Cを用いた回路酉己 置を示す説明図である。  FIG. 3 is an explanatory diagram showing a circuit device using a logic IC in the magnetic or electric field stimulating device of the present invention.
図 4は、 本発明における磁場又は電場刺激プローブ及ぴ磁場又は電場刺激ステ ージの好適な一実施例を示す説明図である。 (Α) 磁場又は電場刺激プローブ及 び磁場又は電場刺激ステージの異なる態様を示す図である。 (Β ) 磁場又は電場 検出素材 (マダナビューヮ) を用いた磁場又は電場の及ぶ領域を示す図である。 図 5は、 本発明の磁場又は電場刺激装置を用いて神経細胞に磁場刺激を与え、 成長を促進した場合の状態を表す図である。 (Α) 磁場刺激を与えて培養した場 合における結果を示す図である。 (Β ) 磁場刺激を与えないで培養した場合にお ける結果を示す図である。  FIG. 4 is an explanatory view showing a preferred embodiment of a magnetic or electric field stimulation probe and a magnetic or electric field stimulation stage in the present invention. (Ii) A diagram showing different modes of the magnetic field or electric field stimulation probe and the magnetic field or electric field stimulation stage. (II) Magnetic field or electric field It is a figure which shows the area | region which a magnetic field or an electric field reaches using the detection material (Madanaview II). FIG. 5 is a diagram showing a state in which the magnetic field or electric field stimulator of the present invention is used to apply magnetic field stimulation to nerve cells to promote growth. (Α) is a diagram showing the results when culturing was performed by applying a magnetic field stimulation. (Β) is a diagram showing the results when culture was performed without applying magnetic field stimulation.
図 6は、 本発明の磁場又は電場刺激装置を用いて神経細胞に磁場刺激を与え、 成長を抑制した場合の状態を表す図である。 (Α) 磁場刺激を与える前の神経細 胞の状態を示す図である。 (Β ) 磁場刺激を与えた後の神経細胞の状態を示す図 である。 (C ) 極小コイルと金属遮蔽により磁場の及ぶ範囲を局所に限定して磁 場刺激与えた後の神経細胞の状態を示す図である。  FIG. 6 is a diagram showing a state in which a magnetic field is applied to a nerve cell using the magnetic field or electric field stimulator of the present invention to suppress growth. (Α) is a diagram showing a state of a nerve cell before applying a magnetic field stimulation. (Β) is a diagram showing a state of a nerve cell after applying a magnetic field stimulation. (C) is a diagram showing a state of a nerve cell after a magnetic field stimulation is applied by limiting a range of a magnetic field to a local area by a minimum coil and a metal shield.
図 7は、 本発明の磁場又は電場刺激装置を用いて培養容器内に発生する渦電流 を測定するための検出プローブの態様を示す説明図である。 (A) 渦電流測定用 プローブの正面図である。 (B ) 渦電流測定用プローブの概略説明図である。 上記における図中の符号は、 以下を示す。 FIG. 7 shows the eddy current generated in the culture vessel using the magnetic or electric field stimulator of the present invention. FIG. 4 is an explanatory diagram showing an embodiment of a detection probe for measuring the measurement. (A) It is a front view of the probe for eddy current measurement. (B) It is the schematic explanatory drawing of the probe for eddy current measurement. The symbols in the above figures indicate the following.
1 磁場刺激装置  1 Magnetic field stimulator
2 パルス電流供給手段  2 Pulse current supply means
3 パルス磁場供給手段  3 Pulse magnetic field supply means
4 磁場刺激プローブ  4 Magnetic field stimulation probe
5 磁場刺激ステージ  5 Magnetic field stimulation stage
6 培養容器  6 Culture vessel
7 電源  7 Power supply
8 スィッチ (トルダスィッチ)  8 Switch (Toldaswitch)
9 ロジック I C 9 Logic I C
1 0 発光素子 (モニタリング装置)  10 Light emitting device (monitoring device)
1 1 電解コンデンサー 1 1 Electrolytic capacitor
1 2 トランジスタ 1 2 transistor
1 3 磁場刺激コイル 1 3 Magnetic field stimulation coil
1 4 培地 1 4 Medium
1 5 生体細胞又は生体組織  15 Biological cells or tissues
1 6 電源切替スィツチ  1 6 Power switch
1 7 磁場刺激切替スィッチ  1 7 Magnetic field stimulation switch
4 1 局所刺激用微小ダブルコイル型磁場刺激プローブ  4 1 Small double coil type magnetic field stimulation probe for local stimulation
4 2 広域刺激用シンダルコィル型磁場刺激プローブ 4 2 Syndal coil type magnetic field stimulation probe for wide area stimulation
7 1 導電性部材 7 1 Conductive material
7 2 測定用リ一ド線 7 2 Lead wire for measurement
図 8は、 パッチクランプ法を用いて膜電流固定(current clamp)条件下に測定 されたマウス培養知覚神経の静止膜電位を示す。  FIG. 8 shows the resting membrane potential of the cultured mouse sensory nerve measured under current clamp conditions using the patch clamp method.
図 9は、 パルス磁場刺激前処置によるカブサイシン誘発神経細胞死の予防を示 す。 Figure 9 shows prevention of cubsaicin-induced neuronal cell death by pulsed magnetic field stimulation pretreatment. You.
図 1 0は、 電気刺激に対する各心室筋クラスターの収縮頻度 (上写真) と典型 的磁気刺激群クラスターの 2Hz および 5Hz 電気刺激に対する収縮パターン (下 トレース) を示す。  FIG. 10 shows the contraction frequency of each ventricular muscle cluster to electrical stimulation (upper photo) and the contraction pattern of the typical magnetic stimulation group cluster to 2 Hz and 5 Hz electrical stimulation (lower trace).
図 1 1は、 パルス磁場刺激の存在下で培養した心室筋クラスターの電気刺激に 対する収縮頻度を示す。  FIG. 11 shows the contraction frequency of ventricular muscle clusters cultured in the presence of pulsed magnetic field stimulation in response to electrical stimulation.
図 1 2は、 は本発明の馴化方法で用いられる装置の 1例を示した概略図である。 図 1 3は、 本発明の馴化方法で培養中の心筋細胞の 1例の写真である。 発明を実施するための最良の形態  FIG. 12 is a schematic diagram showing an example of an apparatus used in the adaptation method of the present invention. FIG. 13 is a photograph of one example of cardiomyocytes cultured by the adaptation method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の磁場叉は電場刺激装置、 該磁場叉は電場刺激装置を用いた生 体細胞等の成長促進又は成長抑制方法、 及ぴ生体細胞又は生体組織の変性疾患モ デルの作成方法につき詳細に説明する。  Hereinafter, a magnetic field or electric field stimulator of the present invention, a method for promoting or suppressing the growth of living cells and the like using the magnetic field or electric field stimulator, and a method for preparing a degenerative disease model of a living cell or a living tissue Will be described in detail.
先ず、 本発明の磁場叉は電場刺激装置の構成について、 図面を参酌しながら以 下に説明する。  First, the configuration of the magnetic field or electric field stimulator of the present invention will be described below with reference to the drawings.
図 1は、 本発明の磁場又は電場刺激装置の好適な一実施例を示した概略図であ る。 図 1において、 符号 1は磁場又は電場审 ϋ激装置本体、 符号 2はパルス電流供 給手段、 符号 3はパルス磁場又はパルス電場供給手段、 符号 4は磁場又は刺激プ ローブ、 符号 5は磁場又は電場刺激ステージ、 符号 6は培養容器、 符号 7は電源、 符号 8はスィッチ、 符号 9はロジック I C、 符号 1 0は発光素子、 符号 1 1は電 解コンデンサー、 符号 1 2はトランジスタ、 符号 1 3はコイル叉は導電性プレー ト、 符号 1 4は培地、 符号 1 5は生体細胞又は生体組織、 符号 1 6は電源切替ス イッチ、 符号 1 7は磁場又は電場刺激切替スィッチをそれぞれ表す。  FIG. 1 is a schematic view showing a preferred embodiment of the magnetic or electric field stimulating device of the present invention. In FIG. 1, reference numeral 1 denotes a magnetic field or electric field intensifying device main body, reference numeral 2 denotes a pulse current supply means, reference numeral 3 denotes a pulse magnetic field or pulse electric field supply means, reference numeral 4 denotes a magnetic field or stimulation probe, and reference numeral 5 denotes a magnetic field or Electric field stimulation stage, 6 is a culture vessel, 7 is a power supply, 8 is a switch, 9 is a logic IC, 10 is a light emitting element, 11 is an electrolytic capacitor, 12 is a transistor, 13 is a transistor. Denotes a coil or conductive plate, reference numeral 14 denotes a culture medium, reference numeral 15 denotes a living cell or a living tissue, reference numeral 16 denotes a power supply switching switch, and reference numeral 17 denotes a magnetic field or electric field stimulation switching switch.
パルス電流供給手段 2は、 図 1及び図 2に示されるように、 少なくとも電源 7、 スィッチ 8及びロジック I C 9を有し、 好ましくは発光素子 1 0、 電解コンデン サー 1 1及びトランジスタ 1 2をさらに有する。 一方、 パルス磁場又はパルス電 場供給手段 3は、 磁場又は電場刺激プローブ 4と磁場又は電場刺激ステージ 5と を有する。 The pulse current supply means 2 has at least a power supply 7, a switch 8 and a logic IC 9, as shown in FIGS. 1 and 2, and preferably further includes a light emitting element 10, an electrolytic capacitor 11 and a transistor 12. Have. On the other hand, the pulse magnetic field or pulse electric field supply means 3 is composed of a magnetic or electric field stimulating probe 4 and a magnetic or electric field stimulating stage 5. Have
次に、 本発明の磁場又は電場刺激装置について具体的に説明する。  Next, the magnetic or electric field stimulator of the present invention will be specifically described.
本発明の磁場又は電場刺激装置は、 パルス電流供給手段 2とパルス磁場又はパル ス電場供給手段 3とからなる。 パルス電流供給手段 2は、 パルス電流を発生させ、 かつパルス電流の強度、 頻度等を調整できるものであれば特に制限はない。 パル ス電流供給手段 2は、 好ましくは所定の関数波形の電流と電圧とを発生し得る電 気信号発生装置であり、 図 1に示されるように、 少なくとも電源 7、 スィッチ 8 及ぴロジック I C 9を有する電気回路であり、 さらに好ましくは発光素子 1 0、 電解コンデンサー 1 1及びトランジスタ 1 2を装備する。 The magnetic field or electric field stimulating device of the present invention comprises a pulse current supply means 2 and a pulse magnetic field or pulse electric field supply means 3. The pulse current supply means 2 is not particularly limited as long as it can generate a pulse current and can adjust the intensity and frequency of the pulse current. The pulse current supply means 2 is preferably an electric signal generator capable of generating a current and a voltage having a predetermined function waveform. As shown in FIG. 1, at least a power supply 7, a switch 8 and a logic IC 9 are provided. An electric circuit having a light emitting element 10, an electrolytic capacitor 11, and a transistor 12.
本発明はコイルを用いた磁場刺激と (2 ) 培養容器を上下で挟んだ導電性プレ ート間の電場刺激、 すなわち 2つのプレート間の空間をコンデンサーと見なした 容量電流刺激によつて達成される。  The present invention is achieved by magnetic field stimulation using a coil and (2) electric field stimulation between conductive plates sandwiching a culture vessel above and below, that is, capacitive current stimulation in which the space between two plates is regarded as a capacitor. Is done.
( 2 ) の変法として、 培養容器上部の導電性プレートの代わりに銀電極などの 導電性素材を培地に単極接触させ、 細胞や組織の生育する層と培養容器底面素材 を 1つのコンデンサーと見なし、 より強い容量電流刺激を行うことも可能である。 いずれの場合にも、 (2 ) の容量電流刺激では、 電流の直流成分は完全に除去 されるので、 電気分解等による液性変化は全く起こらない。 すなわち、 非接触性 刺激と同等の効果を期待できる。  As a modification of (2), a conductive material such as a silver electrode is brought into monopolar contact with the culture medium instead of the conductive plate on the top of the culture vessel, and the cell and tissue growth layer and the bottom material of the culture vessel are combined into a single condenser. Considering, it is also possible to perform stronger capacitive current stimulation. In either case, with the capacitive current stimulation of (2), the DC component of the current is completely removed, so that there is no change in liquidity due to electrolysis or the like. That is, the same effect as non-contact stimulation can be expected.
本発明の磁場又は電場刺激装置におけるパルス電流供給手段 2から供給される パルス電流の波形、 強度、 サイクル、 通電時間等については、 後述する磁場刺激 に対応して適宜調整することができる。  The waveform, intensity, cycle, energizing time, and the like of the pulse current supplied from the pulse current supply means 2 in the magnetic field or electric field stimulator of the present invention can be appropriately adjusted according to the magnetic field stimulation described later.
パルス電流供給手段 2において、 電源 7は、 電気供給装置による電源又は電池 類による電源のいずれであってもよい。 電池類の場合、 乾電池やポタン電池であ ることが好ましい。 ポタン電池は、 水銀電池又はリチウムのような使い捨て型の 電池はもちろん、 ニッケル一力ドミニゥム電池、 電気二重層コンデンサー、 リチ ゥム蓄電池等の再充電可能な蓄電池であってもよい。  In the pulse current supply means 2, the power supply 7 may be either a power supply by an electric supply device or a power supply by batteries. In the case of batteries, a dry battery or a button battery is preferable. The rechargeable battery such as a nickel-powered dominant battery, an electric double layer capacitor and a lithium battery may be used as well as a disposable battery such as a mercury battery or lithium.
一方、 電源 7が電気供給装置である場合、 電気供給装置は A Cアダプター、 A CZD Cスイッチング電源、 A CZD Cコンバーター、 各種電源トランス製品の ような直流電源であることが好ましい。 On the other hand, if the power supply 7 is an electricity supply, DC power supplies such as CZD C switching power supplies, A CZD C converters and various power transformer products are preferred.
パルス電流供給手段 2において、 スィッチ 8は、 通常のスィッチと同様、 磁場 又は電場刺激装置 1のパルス電流供給手段 2におけるノ、。ルス電流をオンノオフ制 御する装置である。 スィッチ 8は、 人が操作することにより機械的に切り替わる スィツチであってもよいし、 圧力により電流が自動的にオン/オフ制御可能な、 例えば圧電素子を用いたスィッチであってもよい。 さらに、 パルス電流供給手段 2は、 複数のスィッチを含んでいてもよく、 例えば、 図 1及び図 2に示されるよ うに、 トグルスィツチ 8の他に、 電源切り替えスィツチ 1 6や磁場又は電場刺激 切替スィッチ 1 7を有していてもよい。  In the pulse current supply means 2, the switch 8 is the same as the normal switch in the magnetic field or electric field stimulator 1. It is a device that controls the on / off control of the luster current. The switch 8 may be a switch that is mechanically switched by a human operation, or may be a switch using a piezoelectric element, for example, in which current can be automatically turned on / off by pressure. Further, the pulse current supply means 2 may include a plurality of switches. For example, as shown in FIGS. 1 and 2, in addition to the toggle switch 8, a power supply switch 16 and a magnetic field or electric field stimulation switch May have 17.
パルス電流供給手段 2において、 ロジック I C 9は、 汎用 I Cやプログラマブ ル I Cのように、 一連の作業指示が設定され又はプログラムにより一連の作業指 示を与え得る集積回路 (I C) を用いることができる。 本発明の磁場又は電場刺 激装置では、 ロジック I C 9は、 コイル叉は導電性プレートに注入するパルス電 流の大きさを時間軸で変化させる役割を有する。  In the pulse current supply means 2, the logic IC 9 may use an integrated circuit (IC) in which a series of work instructions is set or a series of work instructions can be given by a program, such as a general-purpose IC or a programmable IC. it can. In the magnetic field or electric field stimulating device of the present invention, the logic IC 9 has a role of changing the magnitude of the pulse current injected into the coil or the conductive plate on the time axis.
高出力磁場を発生させる目的で、 コイルに大きな電流パルスを注入したい場合、 叉は、 容量性電流で刺激すべく導電性プレートに 1 0 Hz 以上の超低周波叉は高 周波のバースト電流クラスターをパルス状に注入したい場合、  If a large current pulse is to be injected into the coil to generate a high output magnetic field, or a very low or high frequency burst current cluster of 10 Hz or higher is applied to the conductive plate to stimulate with a capacitive current. If you want to inject in a pulse,
その大電流パルス叉はバースト電流クラスターパルス注入用の電源をパルス電流 供給手段 2とは別に設け、 電流供給手段 2より得られたパルス電流で駆動するリ レー回路をもって該別電源からコイルへの電流供給経路を開閉する様式であって もよい。 リ レー回路の例としては、 PhotoMOS リ レー AQV— 1 0 2 (最大 60V (600mA) ) を挙げることができ、 このリ レー回路は複数個を並列して使用す ることもできる。 A power supply for injecting the large current pulse or the burst current cluster pulse is provided separately from the pulse current supply means 2, and a relay circuit driven by the pulse current obtained from the current supply means 2 supplies a current from the separate power supply to the coil. The supply path may be opened and closed. An example of a relay circuit is the PhotoMOS relay AQV-102 (maximum 60V (600mA)), and multiple relay circuits can be used in parallel.
リレー回路により開閉され、 該別電源からコイル叉は導電性プレートに供給され る電流は直流以外に、 CR発振回路、 LC発振回路、 水晶発振回路、 水晶発振モ ジュール、 PLL シンセサイザ、 デジタルシンセサイザによって形成された 1 0 Hz 以上の矩型波または正弦波のバースト電流を用いることができる。 It is opened and closed by a relay circuit, and the current supplied to the coil or conductive plate from the separate power supply is formed by a CR oscillation circuit, LC oscillation circuit, crystal oscillation circuit, crystal oscillation module, PLL synthesizer, digital synthesizer in addition to DC. 10 Hz The above-described rectangular wave or sine wave burst current can be used.
ロジック I C 9としては、 例えば、 汎用ロジック I C、 P L D (プログラマブ ル ロジック ディバイス) 、 C P L D (コンプレックス プログラマブル ロジ ック ディバイス) 、 F P G A (フィールド プログラマブル ゲート アレイ) カスタム I C等の公知のものを挙げることができる。 汎用ロジック I Cには CM O S系のものとバイポーラ系のものとがあるが、 C MO S系のものであることが 好ましい。 ロジック I C 9は巿場で容易に入手できる。 ロジック I C 5は、 さら にコンデンサ一等の周辺素子を有していてもよい。  Known examples of the logic IC 9 include general-purpose logic ICs, PLDs (programmable logic devices), CPLDs (complex programmable logic devices), and FPGAs (field programmable gate arrays) custom ICs. . The general-purpose logic IC includes a CMOS type and a bipolar type, and is preferably a CMOS type. Logic IC 9 is readily available on site. The logic IC 5 may further include a peripheral element such as a capacitor.
本発明の磁場又は電場刺激装置は、 ロジック I C 9により調整されたパルス電 流をパルス磁場又はパルス電場供給手段 3に流すように設定されている。 このパ ルス電流は、 ロジック I C 9により実験の目的に応じて、 電圧 (強度) 、 発生の 頻度 (サイクル) 、 発生パターン (波形) 等を一連のプロトコールとして変更可 能であることが好ましい。 このような変更可能な刺激のプロトコールを実現する 方法としては、 ロジック I C 9へのプロトコールの書き込みと消去がある。  The magnetic field or electric field stimulating apparatus of the present invention is set so that the pulse current adjusted by the logic IC 9 flows to the pulse magnetic field or pulse electric field supply means 3. The pulse current is preferably such that the voltage (intensity), the frequency of occurrence (cycle), the generation pattern (waveform), and the like can be changed as a series of protocols by the logic IC 9 according to the purpose of the experiment. One way to implement such a modifiable stimulus protocol is to write and erase the protocol in Logic IC9.
パルス電流供給手段 2の形成方法は特に限定されないが、 例えば、 プリント基 板上に導電性塗料を塗布してプリント基板上にプリント印刷する方法、 あるいは 細い導線等を溶接する方法などを挙げることができる。 中でも基板上にプリント 印刷する方法が回路をコンパクトにできる観点から好ましい。  The method of forming the pulse current supply means 2 is not particularly limited, and examples thereof include a method of applying a conductive paint on a printed circuit board and printing the same on a printed circuit board, and a method of welding a thin conductive wire or the like. it can. Among them, a method of printing on a substrate is preferable from the viewpoint of making a circuit compact.
本発明の磁場又は電場刺激装置を構成するパルス磁場又はパルス電場供給手段 3は、 パルス電流供給手段 2より供給されたパルス電流からパルス磁場又はパル ス電場を発生させ、 該パルス磁場又はパルス電場を培養容器の外部から該培養容 器内の生体細胞又は生体組織に供給することができる。  The pulse magnetic field or pulse electric field supply means 3 constituting the magnetic field or electric field stimulator of the present invention generates a pulse magnetic field or pulse electric field from the pulse current supplied from the pulse current supply means 2, and converts the pulse magnetic field or pulse electric field to It can be supplied to living cells or living tissues in the culture vessel from outside the culture vessel.
本発明はコイルを用いた磁場刺激と (2 ) 培養容器を上下で挟んだ導電性プレー ト間の電場刺激、 すなわち 2つのプレート間の空間をコンデンサーと見なした容 量電流刺激によつて達成される。 The present invention is achieved by magnetic field stimulation using a coil and (2) electric field stimulation between conductive plates sandwiching a culture vessel at the top and bottom, that is, capacitive current stimulation in which the space between two plates is regarded as a capacitor. Is done.
( 2 ) の変法として、 培養容器上部の導電性プレートの代わりに銀電極などの導 電性素材を培地に単極接触させ、 細胞や組織の生育する層と培養容器底面素材を 1つのコンデンサーと見なし、 より強い容量電流刺激を行うことも可能である。 いずれの場合にも、 (2 ) の容量性電流刺激では、 電流の直流成分は完全に除去 されるので、 電気分解等による液性変化は全く起こらない。 すなわち、 非接触性 刺激と同等の効果を期待できる。 As a modification of (2), a conductive material such as a silver electrode is monopolarly contacted with the medium instead of the conductive plate on the top of the culture vessel, and the layer where cells and tissues grow and the bottom material of the culture vessel are placed. It is also possible to consider a single capacitor and perform stronger capacitive current stimulation. In either case, with the capacitive current stimulation of (2), the DC component of the current is completely removed, and there is no change in liquidity due to electrolysis or the like. That is, the same effect as non-contact stimulation can be expected.
なお、 本明細書において 「パルス磁場」 とは、 パルス電流供給手段 2より供給 されたパルス電流を、 例えばコイル内で磁束密度を変化させた場合に発生するパ ルス状の磁場をいう。 また、 「パルス電場」 とは、 パ /レス電流供給手段 2より供 給されたパルス電流により発生するパルス状の電場をいう。  In this specification, the “pulse magnetic field” refers to a pulse-like magnetic field generated when the pulse current supplied from the pulse current supply unit 2 is changed, for example, in a coil by changing the magnetic flux density. Further, the “pulse electric field” refers to a pulse-like electric field generated by a pulse current supplied from the pulse / current supply means 2.
本発明の磁場又は電場刺激装置では、 パルス磁場又はパルス電場供給手段 3に より培養容器の外部、 すなわち培養容器内の培地に電極等を直接接触させること なく、 培養容器の外側、 好ましくは培養容器の底部から培養容器内の生体細胞等 にパルス磁場又はパルス電場を供給し、 培養容器内で渦電流叉は容量電流を発生 させて、 該渦電流叉は容量電流をパルス信号として生体細胞等に供給することが できる。 このため、 本発明の磁場又は電場刺激装置であれば、 従来の刺激装置と 比較して長期間の電気刺激を与えても培養容器内の培地の液性は変化することな く、 かつ培地に対する電極材料の影響が全くなく、 しかも良好な生体細胞等の定 着性が得られるというメリットがある。  In the magnetic or electric field stimulating device of the present invention, the pulsed magnetic field or pulsed electric field supply means 3 does not directly contact the electrode or the like with the medium outside the culture vessel, that is, outside the culture vessel, A pulse magnetic field or a pulsed electric field is supplied to the living cells in the culture vessel from the bottom of the cell to generate an eddy current or a capacity current in the culture vessel, and the eddy current or the capacity current is applied to the living cells as a pulse signal. Can be supplied. Therefore, with the magnetic or electric field stimulator of the present invention, the liquid properties of the culture medium in the culture vessel do not change even when a long-term electric stimulus is applied as compared with the conventional stimulator, and There is the merit that there is no influence of the electrode material and good adhesion of living cells can be obtained.
パルス磁場又はパルス電場供給手段 3から供給されるパルス磁場又はパルス電 場は、 パルス電流供給手段 2より供給されたパルス電流の波形、 強度、 サイクル、 持続時間等に対応して適宜決定することができる。 例えば、 パルス磁場又はパル ス電場の波形については、 パルス電流の波形に対応して、 三角形、 矩形、 その他 の各種関数波形 (例えば、 サイン波形、 指数関数波形など) などを選択でき、 矩 形であることが好ましい。  The pulse magnetic field or pulse electric field supplied from the pulse magnetic field or pulse electric field supply means 3 can be appropriately determined according to the waveform, intensity, cycle, duration, etc. of the pulse current supplied from the pulse current supply means 2. it can. For example, for a pulse magnetic field or pulse electric field waveform, a triangle, rectangle, or other various function waveforms (for example, sine waveform, exponential function waveform, etc.) can be selected according to the pulse current waveform. Preferably, there is.
また、 パルス磁場の強度は、 生体細胞等の成長促進と成長抑制 (損傷) の二つ の培養目的に応じて適宜決定することができる。 例え 、 生体細胞等の成長促進 を目的として培養する場合、 パルス磁場の強度は 0 . O l〜1 0 m Tであり、 0 . 0 3〜3 mTであることが好ましく、 0 . 0 5〜1 . 5 m Tであることがさらに 好ましい。 一方、 生体細胞等の成長抑制 (損傷) を目的として培養する場合、 パ ルス磁場の強度は 0. 05〜500mTであり、 1〜 100 mTであることが好 ましく、 3〜3 OmTであることがさらに好ましい。 In addition, the intensity of the pulsed magnetic field can be appropriately determined according to two culture purposes, that is, growth promotion and growth suppression (damage) of living cells and the like. For example, when culturing for the purpose of promoting the growth of living cells and the like, the intensity of the pulsed magnetic field is from 0.1 to 10 mT, preferably from 0.3 to 3 mT, and more preferably from 0.05 to 3 mT. 1.5 mT preferable. On the other hand, when culturing for the purpose of suppressing growth (damage) of living cells, the intensity of the pulse magnetic field is 0.05 to 500 mT, preferably 1 to 100 mT, and more preferably 3 to 3 OmT. Is more preferable.
また、 パルス磁場のサイクルについては、 例えば、 0. 001〜1000Hz であり、 0. 005〜; 100Hzであることが好ましく、 0. 01〜: L OHzで あることがさらに好ましい。 また、 パルス磁場の持続時間は、 例えば、 1 マイ クロ秒〜 10秒であり、 5マイクロ秒〜 1秒であることが好ましく、 0. 1ミリ 秒〜 0. 1秒であることがさらに好ましい。  The cycle of the pulsed magnetic field is, for example, from 0.001 to 1000 Hz, preferably from 0.005 to 100 Hz, and more preferably from 0.01 to LOHz. The duration of the pulsed magnetic field is, for example, 1 microsecond to 10 seconds, preferably 5 microseconds to 1 second, and more preferably 0.1 millisecond to 0.1 second.
また、 パルス電場の強度は、 例えば、 1マイクロポルトー 100ボルトであり 1ミリボルトー 10ポルトであることが好ましく、 30ミリボルトー 3ボルトで あることがさらに好ましい。  Further, the intensity of the pulse electric field is, for example, 1 microvolt—100 volts, preferably 1 millivolt—10 volts, and more preferably 30 millivolts—3 volts.
また、 パルス電場のサイクルについては、 例えば、 0. 001〜1000Hz であり、 0. 005〜: L 0 OH zであることが好ましく、 0. 01〜: L OHzで あることがさらに好ましい。 また、 パルス電場の持続時間は、 例えば、 1 マイ クロ秒〜 10秒であり、 5マイクロ秒〜 1秒であることが好ましく、 0. 1ミリ 秒〜 0. 1秒であることがさらに好ましレ、。  The cycle of the pulsed electric field is, for example, 0.001 to 1000 Hz, preferably 0.005 to: L0OHz, and more preferably 0.011 to: LOHz. The duration of the pulsed electric field is, for example, 1 microsecond to 10 seconds, preferably 5 microseconds to 1 second, and more preferably 0.1 millisecond to 0.1 second. Les ,.
パルス磁場又はパルス電場供給手段 3から供給されたパルス磁場により培養容 器 6内では渦電流叉は容量電流を発生させることができる。 渦電流とは、 培養容 器内の培地にパルス磁場を供給した場合に、 そのパルス磁場による磁束密度の変 化を打ち消す方向に電磁誘導により発生する渦状の電流のことである。 一方、 容 量電流とは、 培養容器を上下から挟んだ導電性プレート間の電場刺激、 すなわち 2つのプレート間の空間をコンデンサーと見なした容量を通過する変動電流のこ とであり、 培養容器上部の導電性プレートの代わりに銀電極などの導電性素材を 培地に単極接触させ、 細胞や組織の生育する層と培養容器底面素材を 1つのコン デンサ一と見なし、 その容量を通過する、 より強い変動電流のことでる。 渦電流 は、 培養容器 6内においてパルス電流供給手段 2より供給されるパルス電流のパ ルスに対応して発生させることができる。 渦電流の強度は、 パルス磁場供給手段 3より供給されるパルス磁場の強度と培養容器内の抵抗とに対応して適宜決定す ることができる。 渦電流の強度は、 例えば、 図 7に示されるような導電性部材 7 1と測定用リード線 7 2とかなる各種の渦電流検出プローブを用いて測定するこ とができる。 一方、 容量電流は、 培養容器 6内においてパルス電流供給手段 2よ り供給されるパルス電流のパルスで直接もしくは別電源で形成したパース ト電流 を該パルスの持続時間と頻度でバースト電流クラスタ一として発生させることが できる。 容量電流の強度はオシロスコープ等で直接測定することができる。 パルス磁場又はパルス電場供給手段 3は、 好ましくは、 図 1に示されるように 磁場又は電場刺激プローブ 4と磁場又は電場刺激ステージ 5とからなる。 磁場又 は電場刺激プローブ 4は、 生体細胞等にパルス磁場叉はパルス電場を供給し、 培 養容器内で渦電流叉は容量電流を発生できるものであれば特に制限はない。 磁場 又は電場刺激プローブ 4は、 好ましくは図 2に示されるような単一又は複数の磁 場刺激コイル 1 3又は電場磁場刺激コイルの構造を有する場合である。 特に磁場 刺激プローブ 4がダブルコイル構造を有する場合、 2つの磁場刺激コイル 1 3, 1 3, は、 N極と S極とを培養容器 6の底部に接触させることができるような構 造を有することがさらに好ましレ、。 磁場刺激コィ /レ 1 3に必要な性能としては、 1 H以下、 好ましくは 1 μ Η〜5 0 O mH程度のインダクタンスを有しているこ とが好ましい。 An eddy current or a capacitive current can be generated in the culture vessel 6 by the pulse magnetic field or the pulse magnetic field supplied from the pulse electric field supply means 3. Eddy current is an eddy current generated by electromagnetic induction in a direction that cancels the change in magnetic flux density due to the pulse magnetic field when a pulse magnetic field is supplied to the culture medium in the culture vessel. On the other hand, the capacity current is the electric field stimulation between the conductive plates sandwiching the culture vessel from above and below, that is, the fluctuating current that passes through the capacity between the two plates, which is regarded as a capacitor. A conductive material such as a silver electrode is brought into monopolar contact with the culture medium instead of the conductive plate on the top, and the layer where cells and tissues grow and the material on the bottom of the culture vessel are regarded as one capacitor, and pass through its capacity. It is a stronger fluctuating current. The eddy current can be generated in the culture vessel 6 in accordance with the pulse of the pulse current supplied from the pulse current supply means 2. The intensity of the eddy current is It can be appropriately determined according to the strength of the pulse magnetic field supplied from 3 and the resistance in the culture vessel. The intensity of the eddy current can be measured, for example, using various eddy current detection probes including a conductive member 71 and a measuring lead wire 72 as shown in FIG. On the other hand, the capacity current is a burst current cluster formed by a pulse current of the pulse current supplied from the pulse current supply means 2 directly or by another power source in the culture vessel 6 as a burst current cluster based on the duration and frequency of the pulse. Can be generated. The intensity of the capacitance current can be directly measured with an oscilloscope or the like. The pulse magnetic field or pulse electric field supply means 3 preferably includes a magnetic field or electric field stimulation probe 4 and a magnetic field or electric field stimulation stage 5 as shown in FIG. The magnetic field or electric field stimulating probe 4 is not particularly limited as long as it can supply a pulsed magnetic field or a pulsed electric field to living cells or the like and generate an eddy current or a capacitive current in the culture vessel. The magnetic field or electric field stimulation probe 4 preferably has a structure of a single or a plurality of magnetic field stimulation coils 13 or an electric field magnetic field stimulation coil as shown in FIG. In particular, when the magnetic field stimulating probe 4 has a double coil structure, the two magnetic field stimulating coils 13, 13, 13 have a structure that allows the N pole and the S pole to contact the bottom of the culture vessel 6. That, even more preferred. As the performance required for the magnetic field stimulation coil / recorder 13, it is preferable that the magnetic field stimulation coil has an inductance of 1 H or less, preferably about 1 μm to 50 O mH.
磁場刺激コイル 1 3の材料としては、 例えばフェライト、 磁性粒子などを挙げ ることができ、 好ましくはコアをフェライ ト系、 ァモルフォス系、 金属圧粉、 パ 一マロイ等の磁性体で被覆した磁場刺激コィルである。  Examples of the material of the magnetic field stimulating coil 13 include ferrite and magnetic particles. Preferably, the magnetic field stimulating coil 13 has a core coated with a magnetic material such as a ferrite type, an amorphous type, a metal compact, or a permalloy. It's coil.
一方、 電場刺激導電性プレートの材料としては、 アルミニウム、 銅、 鉄等の金 属、 叉は導電性樹脂、 導電性ゴム等、 導電性があるものであれば特に制限はない。 磁場又は電場刺激プローブ 4の大きさ、 形状、 本数などは、 使用される培養容 器 6の大きさ、 形状等に応じて適宜決定することができる。 磁場又は電場刺激プ ローブ 4は、 好ましくはマルチウヱルプレートのゥエル配列に対応可能な形状を 有する。 さらに磁場又は電場刺激プローブ 4は、 例えば、 図 4 (A) に示されるように、 微小のダブルコイルを用いて局所刺激用の磁場又は電場刺激プローブ 4 1ゃ径の 大きなコイルを用いた広範囲な磁場又は電場刺激を可能とするシング/レ磁場又は 電場刺激用プローブ 4 2を形成することができる。 例えば、 図 4 ( B ) の磁場又 は電場検出素材 (マグナビュヮ一) から分かるように、 局所刺激用微小ダブルコ ィル型磁場又は電場刺激プローブ 4 1では、 局所的に磁場又は電場を供給するこ とができ、 またシングルコイル型の磁場又は電場刺激プローブ 4 2では広範囲に 亘りパルス磁場又はパルス電場を供給することができる。 本発明の磁場又は電場 刺激装置では、 磁場又は電場刺激プローブ 4によりパルス磁場又はパルス電場を 所定の細胞群又は所定の組織部位に選択的に供給することができ、 これにより局 所的 (例えば、 l x l 0 2〜9 x l 0 m2の範囲、 好ましくは 9 x 1 02〜2 . 5 x 1On the other hand, the material of the electric field stimulation conductive plate is not particularly limited as long as it is conductive such as metal such as aluminum, copper, and iron, or conductive resin and conductive rubber. The size, shape, number, and the like of the magnetic or electric field stimulation probes 4 can be appropriately determined according to the size, shape, and the like of the culture vessel 6 to be used. The magnetic or electric field stimulating probe 4 preferably has a shape compatible with the well arrangement of the multiwell plate. Further, as shown in FIG. 4 (A), for example, a magnetic or electric field stimulation probe 4 for local stimulation using a small double coil and a wide area using a coil having a large diameter of 1 mm, as shown in FIG. A probe 42 for stimulating a magnetic or electric field that can stimulate a magnetic or electric field can be formed. For example, as can be seen from the magnetic field or electric field detecting material (Magnevu-Iu) in Fig. 4 (B), the local double stimulus magnetic field or electric field stimulating probe 41 provides a local magnetic field or electric field. In addition, the single coil type magnetic field or electric field stimulation probe 42 can supply a pulse magnetic field or an electric field over a wide range. In the magnetic field or electric field stimulating device of the present invention, a pulsed magnetic field or a pulsed electric field can be selectively supplied to a predetermined cell group or a predetermined tissue site by the magnetic field or electric field stimulating probe 4, whereby local (for example, lxl 0 2 to 9 xl 0 m 2 , preferably 9 x 10 2 to 2.5 x 1
05「m2の範囲) に生体細胞等の成長を促進させ又は抑制させることができる。 磁場又は電場刺激ステージ 5は、 その大きさ、 形状、 厚さ等には特に制限はな いが、 単一又は複数の培養容器 6を収納、 好ましくは载置できる大きさ、 形状等 を有することが好ましい。 磁場又は電場刺激ステージ 5の材質については、 特に 制限はないが、 加工の容易さと材料の費用の観点からアクリル樹脂であることが 好ましい。 0 5 The range of “m 2 ” can promote or suppress the growth of living cells, etc. The size, shape, thickness, etc. of the magnetic or electric field stimulation stage 5 are not particularly limited, It is preferable to have a size, shape, etc. that can accommodate, or preferably place, one or more culture vessels 6. The material of the magnetic or electric field stimulating stage 5 is not particularly limited, but simplicity of processing and material Acrylic resin is preferred from the viewpoint of cost.
培養容器 6は、 磁場又は電場刺激ステージ 5の大きさ及ぴ形状に合わせて、 そ の大きさ及び形状を自由に選択できる。 例えば、 培養容器 6は、 市販の 3 5 mm、 The size and shape of the culture vessel 6 can be freely selected according to the size and shape of the magnetic or electric field stimulation stage 5. For example, the culture vessel 6 is a commercially available 35 mm
6 O mm, 9 0 mm, 1 5 0 mmのペトリディッシュ、 6穴〜 3 8 4穴マスレチウ エルプレート、 及び直径 1 0〜 3 0 mmの組織培養チューブ、 各種スクェアディ ッシュを用いることができる。 好ましくは、 マルチウエルプレートである。 本発 明の磁場又は電場刺激装置では、 培養容器 6はパルス磁場供給手段 3内に、 好ま しくは磁場又は電場刺激ステージ 4内に嵌着可能であり、 さらに上記の種々のぺ トリディッシュ、 マルチウエルプレートのゥエルに対して独立して磁場刺激又は 電場刺激を供給できることが好ましい。 Petri dishes of 6 mm, 90 mm, and 150 mm, a 6- to 4-84 mass well plate, a tissue culture tube having a diameter of 10 to 30 mm, and various square dishes can be used. Preferably, it is a multiwell plate. In the magnetic or electric field stimulator of the present invention, the culture vessel 6 can be fitted in the pulse magnetic field supply means 3, preferably in the magnetic or electric field stimulating stage 4. Preferably, magnetic field stimulation or electric field stimulation can be independently supplied to the wells of the well plate.
培養容器 6の材質は、 ガラス、 プラスチック等、 種々の材料が使用可能である。 培養容器は、 培養した生体細胞等を観察しやすいよう透明性に優れ、 かつ取り扱 い時に破損しにくいプラスチック製が好ましく、 特に高透明で剛性に優れたァク リル樹脂製が好ましい。 Various materials such as glass and plastic can be used as the material of the culture vessel 6. The culture vessel is preferably made of a plastic that is excellent in transparency so that the cultured living cells and the like can be easily observed and is not easily damaged during handling, and is particularly preferably made of an acrylic resin having high transparency and excellent rigidity.
培養容器 6は、 その中に培地 1 4を充填できる。 培地 1 4は、 通常は、 N a、 M g、 C a等の金属イオンを含んだ生理食塩水に各種アミノ酸、 例えば L一 A r g、 L一 C y s、 L— G l n、 L— H i s及ぴ各種ビタミン、 例えば、 葉酸、 パ ントテン酸、 ニコチンアミド、 ピリ ドキサール、 リボフラビン等を含んだ培地等 をそのまま液体培地として、 あるいはコラーゲン等を添加したゲル状培地として 用いることができる。  The culture vessel 6 can be filled with the medium 14 therein. The medium 14 is usually prepared by adding various amino acids such as L-Arg, L-Cys, L-Gln, and L-His in physiological saline containing metal ions such as Na, Mg, and Ca. A medium containing various vitamins, for example, folic acid, pantothenic acid, nicotinamide, pyridoxal, riboflavin and the like can be used as a liquid medium as it is, or as a gel medium to which collagen or the like is added.
培地 1 4には従来から組織の培養において提案されている各種サイトカイン類 や増殖因子類、 例えばインターロイキン類、 ニューロトロピン類、 血小板由来成 長因子、 上皮成長因子、 線維芽細胞成長因子を 0 . O l n g Zm lから Ι Ο Ο μ g /m 1の範囲の量で配合することが好ましい。 また培地 1 4は、 ゲル状培地及 ぴ液体培地のレ、ずれであってもよい。  Medium 14 contains various cytokines and growth factors conventionally proposed in tissue culture, such as interleukins, neurotropins, platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor. It is preferable to add the compound in an amount ranging from Ong Zml to Ι Ο μg / m 1. The medium 14 may be a gel medium or a liquid medium.
本発明の磁場又は電場刺激装置を用いて生体細胞等の成長を促進又は抑制する ように培養する場合、 図 2に示されるように、 培地 1 4には、 生体細胞又は生体 組織 1 5 (以下 「原組織等」 という。 ) を培地表面又は培地中に装入する。 この 原組織等としては、 公知の細胞又は組織として用いられている各種の原組織等を 使用することが可能である。 例えば、 原糸且織等を構成する細胞 (群) 及ぴその幹 細胞 (群) 、 原組織等を培養すべき組織の一部、 培養すべき組織に類似した組織、 胚細胞、 E S細胞等であってもよレ、。  When culture is performed using the magnetic or electric field stimulator of the present invention so as to promote or suppress the growth of living cells or the like, as shown in FIG. ) Is placed on or in the medium. As the original tissue, various original tissues used as known cells or tissues can be used. For example, the cells (group) constituting the raw silk and the like and the stem cells (group), a part of the tissue to be cultured with the original tissue, the tissue similar to the tissue to be cultured, embryo cells, ES cells, etc. It may be.
本発明の磁場又は電場刺激装置により電気刺激 (渦電流) が与えられる生体細 胞等の 「生体」 とは、 人間をはじめ、 犬、 ねこ、 馬、 豚、 羊、 マウス、 ラット等 の哺乳動物のほか、 鳥類、 爬虫類、 両生類、 魚類、 細菌、 ウィルス等の微生物、 植物をも包含する概念である。  The “living body” such as a living cell to which an electric stimulus (eddy current) is given by the magnetic or electric field stimulating device of the present invention includes humans, mammals such as dogs, cats, horses, pigs, sheep, mice, rats, etc. In addition to birds, reptiles, amphibians, fish, bacteria, viruses, and other microorganisms and plants.
また、 本発明の磁場又は電場刺激装置により刺激を与える 「組織」 には、 生体 のあらゆる組織、 fl蔵器、 それらの一部が包含される。 例えば、 中枢神経、 末梢神 経、 骨、 軟骨、 関節、 リンパ管、 血管、 心臓 (心筋、 弁) 、 肺、 肝臓、 脾臓、 す い臓、 食道、 胃、 小腸、 大腸、 腎臓、 膀胱、 子宫、 卵巣、 精巣、 横隔膜、 筋肉、 腱、 皮膚、 眼、 鼻、 気管、 舌、 唇、 爪、 毛髪等それらの 1部をいう。 本発明の磁 場叉は電場刺激装置で用いられる組織は、 これらの臓器、 組織の中でも生体内で 興奮性の電気刺激が常在する組織、 例えば心臓、 骨格筋、 平滑筋、 末梢神経、 脳 等の中枢神経等の組織を主な対象とすることができる。 The “tissue” to be stimulated by the magnetic or electric field stimulating device of the present invention includes all tissues of living organisms, fl containers, and some of them. For example, central nervous system, peripheral god Meridian, bone, cartilage, joints, lymph vessels, blood vessels, heart (myocardium, valves), lungs, liver, spleen, pancreas, esophagus, stomach, small intestine, large intestine, kidney, bladder, ovaries, ovaries, testes, diaphragm, Muscles, tendons, skin, eyes, nose, trachea, tongue, lips, nails, hair, etc. The tissue used in the magnetic field or electric field stimulator of the present invention is a tissue in which excitatory electrical stimulation is resident in a living body, such as the heart, skeletal muscle, smooth muscle, peripheral nerve, and brain. Tissue such as the central nervous system.
本発明の磁場又は電場刺激装置では、 パルス電流供給手段 2が培養容器 6の直 下の磁場刺激コイル 1 3又は電場刺激導電性プレートへ供給されるパルス電流の 供給状況を監視するためのモニタリング装置をさらに有することができる。 モニ タリング装置として、 例えば本発明の好適な実施例で示されるように発光素子 ( L E D) 1 0などが設けられていることが好ましい。  In the magnetic field or electric field stimulation device of the present invention, the pulse current supply means 2 is a monitoring device for monitoring the supply state of the pulse current supplied to the magnetic field stimulation coil 13 immediately below the culture vessel 6 or the electric field stimulation conductive plate. Can be further provided. As the monitoring device, for example, a light emitting element (LED) 10 or the like is preferably provided as shown in a preferred embodiment of the present invention.
本発明の磁場又は電場刺激装置において好ましく用いられる発光素子 1 0は、 パルス電流がパルス電流供給手段 2内に流れると、 このパルス電流を光に変換可 能とする素子であり、 流れるパルス電流の強弱が光の強弱として表すことができ る。 このため、 発光素子 1 0は、 培養容器 6内の培地へ供給されるパルス磁場又 はパルス電場の供給状況を目で認識できる役割を果たす。 このような発光素子 1 0として、 例えば、 発光ダイオード等が用いられることが好ましい。  The light emitting element 10 preferably used in the magnetic field or electric field stimulating device of the present invention is an element capable of converting a pulse current into light when the pulse current flows in the pulse current supply means 2. The intensity can be expressed as the intensity of light. Therefore, the light emitting element 10 plays a role in visually recognizing the supply state of the pulse magnetic field or the pulse electric field supplied to the culture medium in the culture vessel 6. As such a light emitting element 10, for example, a light emitting diode or the like is preferably used.
本発明の磁場又は電場刺激装置におけるパルス電流供給手段 2のロジック I C 9、 電源 7、 スィッチ 8、 モニタリング装置 ( 光素子 1 0 ) 及ぴコイル 1 3の 回路配置は特に限定されるものではなく、 磁場: Xは電場刺激ステージ 5の形状、 大きさ等に応じて適宜決定することができる。 例えば、 本発明の磁場又は電場刺 激装置 1は、 図 3 (A) 〜 (C ) に示されるよ うな回路配置をとることが可能で める。  The circuit arrangement of the logic IC 9, the power supply 7, the switch 8, the monitoring device (optical element 10), and the coil 13 of the pulse current supply means 2 in the magnetic or electric field stimulating device of the present invention is not particularly limited. The magnetic field: X can be appropriately determined according to the shape, size, and the like of the electric field stimulation stage 5. For example, the magnetic or electric field stimulating device 1 of the present invention can have a circuit arrangement as shown in FIGS. 3 (A) to 3 (C).
図 3 (A) は、 ロジック I C 9が CMO S系 I C ( 7 4 H C ) である場合の回 路配置を示す。 電源 7から発生した電流は CM O S系 I Cにおいて、 所望の波形 のパルス電流に変換され、 さらに周辺素子である電解コンデンサーや抵抗により 所望の電流強度、 サイクル、 通電時間に調整される。 調整されたパルス電流は、 発光素子 (L E D) 1 0でモニタリングされながらコイルへ供給される。 FIG. 3A shows a circuit arrangement when the logic IC 9 is a CMOS IC (74HC). The current generated from the power supply 7 is converted into a pulse current having a desired waveform in the CMOS-based IC, and is adjusted to a desired current intensity, cycle, and conduction time by an electrolytic capacitor or a resistor as a peripheral element. The adjusted pulse current is The light is supplied to the coil while being monitored by the light emitting element (LED) 10.
図 3 ( B ) は、 周辺素子がすべてロジック I C 9の中に盛り込まれている場合 の回路配置を示す。 図 3 ( B ) で示される回路配置では、 周辺素子の占有スぺー スが省けるため、 装置の小型化に寄与できるというメリットがある。  FIG. 3B shows a circuit arrangement in a case where all peripheral elements are included in the logic IC 9. The circuit arrangement shown in FIG. 3 (B) has an advantage that the space occupied by peripheral elements can be omitted, which can contribute to downsizing of the device.
図 3 ( C ) は、 周辺素子をすベてロジック I C 9の中に盛り込み、 さらにスイツ チ 8がロジックスィッチとなっている場合の回路配置を示す。 図 3 ( C ) で示さ れるロジックスィッチを使用すると、 フェザータツチのスィッチとなるため、 軽 ぃタツチとなり、 特に好ましい。 FIG. 3 (C) shows a circuit arrangement in a case where all the peripheral elements are incorporated in the logic IC 9 and the switch 8 is a logic switch. The use of the logic switch shown in FIG. 3 (C) is a feather touch switch, which is a light touch, which is particularly preferable.
本発明の磁場又は電場刺激装置の製造方法は、 特に限定されるものではないが、 例えば、 通常の単一容器適用のコイル又は導電性プレートと、 刺激回路及びマル チウヱルプレート適用のコイル又は導電 1~生プレート配列と、 刺激回路とを可能な 限り半導体技術により一つのマイクロチップとして一体形成し、 コイル又は導電 性プレートを追加して構築することができる。  The method for manufacturing the magnetic or electric field stimulating device of the present invention is not particularly limited. For example, a coil or conductive plate applied to a normal single vessel, a coil or conductive applied to a stimulation circuit and a multi-well plate is used. The raw plate arrangement and the stimulating circuit can be integrally formed as a single microchip by a semiconductor technology as much as possible, and a coil or a conductive plate can be additionally constructed.
本発明の磁場又は電場刺激装置は、 好ましくは生体細胞等の成長を促進又は抑 制するために用いられる。 さらに好ましくは、 本発明の磁場又は電場刺激装置に おける磁場又は電場刺激プローブは、 所定の強度のパルス磁場を生体細胞等のう ち所定の細胞群若しくは所定の部位に選択的に供給することにより、 生体細胞等 の成長を促進させ又は抑制させるために用いられる。 本発明の磁場又は電場刺激 装置を生体細胞等の成長促進又は抑制方法に用いると、 実験の目的に応じて予め 設定されたパルス磁場叉はパルス電場を渦電流叉は容量電流 (パルス信号) とし て原組織に与えることができ、 興奮入力により発生し得る細胞内カルシウムィォ ン濃度変動を考慮した生体細胞等の成長を促進又は抑制することができる。  The magnetic or electric field stimulator of the present invention is preferably used to promote or suppress the growth of living cells and the like. More preferably, the magnetic or electric field stimulating probe in the magnetic or electric field stimulating device of the present invention is provided by selectively supplying a pulsed magnetic field of a predetermined intensity to a predetermined cell group or a predetermined site such as a living cell. It is used to promote or suppress the growth of living cells and the like. When the magnetic field or electric field stimulator of the present invention is used for a method of promoting or suppressing the growth of living cells, a pulse magnetic field or a pulse electric field preset according to the purpose of an experiment is changed to an eddy current or a capacitive current (pulse signal). To promote the growth of living cells or the like in consideration of intracellular calcium ion concentration fluctuations that may occur due to excitation input.
さらに本発明の磁場又は電場刺激装置は、 生体細胞若しくは生体組織の機能の 促進又は抑制方法、 並びに生体細胞若しくは生体組織の機能の促進として細胞機 能馴化を特徴とする方法にも用いることができる。  Furthermore, the magnetic or electric field stimulator of the present invention can be used for a method of promoting or suppressing the function of a living cell or a living tissue, and a method characterized by acclimation of a cell function as the promotion of the function of a living cell or a living tissue. .
さらに本発明の磁場又は電場刺激装置は、 正常な生体細胞又は生体組織を変性 させて生体細胞等の変性疾患モデルを作成する方法で用いることができる。 この ような方法で得られた生体変性疾患モデルは、 種々の疾患モデルの研究に活用で きるため、 今後の病態誘導の研究において有用である。 Furthermore, the magnetic or electric field stimulating device of the present invention can be used in a method of denaturing normal living cells or living tissues to create a degenerative disease model of living cells or the like. this The biodegenerative disease model obtained by such a method can be used for the study of various disease models, and will be useful in future studies on pathogenesis.
さらに本発明は、 臓器、 または組織、 あるいはこれらを構成する細胞の機能馴 化方法に関する。 以下、 本発明の機能馴化方法について詳細に説明する。  Furthermore, the present invention relates to a method for acclimating the function of an organ or a tissue or cells constituting the same. Hereinafter, the function acclimatization method of the present invention will be described in detail.
本発明の機能馴化方法の対象とする生体とは、 人間を始め、 犬、 ねこ、 馬、 豚、 羊、 マウス、 ラット等の哺乳動物をはじめ、 鳥類、 爬虫類、 両生類、 魚類、 細菌、 ウィルス等の微生物、 植物をも包含する概念である。 これらのうちでは、 神経及 ぴ心臓を有する動物、 好ましくは哺乳類、 特に好ましくは人間を対象とする。 本発明で機能馴化方法の対象とされる臓器 ·組織としては、 生体のあらゆる組 織、 臓器を包含する。 これらのなかでは特に、 生体内で興奮性の電気刺激が常在 する臓器、 組織または組織、 例えば心臓、 骨格筋、 平滑筋、 末梢神経、 脳等の中 枢神経、 とりわけ心臓と末梢おょぴ中枢の神経組織を対象とする。  Living organisms to be subjected to the method for acclimating the function of the present invention include humans, mammals such as dogs, cats, horses, pigs, sheep, mice, rats, etc., birds, reptiles, amphibians, fish, bacteria, viruses, etc. This concept encompasses microorganisms and plants. Among these, animals having nerves and hearts, preferably mammals, and particularly preferably humans are targeted. The organs / tissues to be subjected to the function acclimation method in the present invention include all tissues and organs of a living body. Among these, in particular, organs, tissues or tissues in which excitable electrical stimulation is resident in the living body, such as the central nervous system such as the heart, skeletal muscle, smooth muscle, peripheral nerves, and the brain, especially the heart and the periphery Targets central nervous tissue.
本発明において移植のために機能馴化する組織としては、 上記生体の組織、 臓 器のうち、 常時臓器特有の生体電気信号に晒されている臓器の一部を形成する心 筋、 すなわち特殊心筋と固有心筋組織を特に対象とする。  In the present invention, the tissues to be functionally adapted for transplantation include, among the above-mentioned tissues and organs of the living body, cardiac muscles that form a part of an organ constantly exposed to a bioelectric signal specific to the organ, that is, special cardiac muscles Of particular interest is native myocardial tissue.
本発明で機能馴化するための臓器、 組織、 あるいは細胞は、 生体から摘出 ·採 取したものに限定されず、 例えば、 胚幹細胞 (E S細胞) 、 造血幹細胞、 間葉系 幹細胞等の幹細胞から分化 ·培養して得た糸且織も、 用いることができる。  The organs, tissues, or cells that are adapted to function in the present invention are not limited to those extracted and collected from a living body. For example, differentiation from stem cells such as embryonic stem cells (ES cells), hematopoietic stem cells, and mesenchymal stem cells · It is also possible to use a fibrous tissue obtained by culturing.
本発明で移植のために機能馴化する臓器、 組織、 または細胞は、 生体、 例えば MH Cを人間のそれに適合させたトランスジヱニックブタ等の哺乳類の臓器の一 部から摘出した臓器、 組織、 または細胞でありうる。  An organ, tissue or cell that is adapted for transplantation according to the present invention is an organ, tissue, or tissue extracted from a part of a living body, for example, a mammalian organ such as a transgenic pig in which MHC is adapted to that of a human. Or it can be a cell.
本発明で機能馴化するための組織は、 例えば生体、 例えば哺乳動物、 例えば人 間から採取した細胞を i n V i t r oで増殖させて得た組織でありうる。  The tissue to be functionally adapted in the present invention may be, for example, a tissue obtained by growing cells collected from a living body, for example, a mammal, for example, a human in inVitro.
本発明では、 上記方法で得た組織を培養条件下で機能馴化を行なう。 この機能 馴化は、 対象の臓器、 組織または細胞を、 培地を含有する容器に入れて行なう。 なお、 本発明における機能馴化とは、 移植用に培養 ·増殖させたあるいは摘出 した臓器、 組織または細胞が、 本来の臓器、 組織と同様に生体の電気的興奮入力 に適応できるように、 一定期間電気的刺激雰囲気内に晒す操作をいう。 なお、 以 後、 本案件におけるこれらの操作を一括して 「機能馴化」 という。 In the present invention, the tissue obtained by the above method is subjected to functional adaptation under culture conditions. This adaptation is performed by placing the organ, tissue or cell of interest in a container containing the medium. In the present invention, the function acclimation means that an organ, tissue or cell cultured or proliferated or removed for transplantation is used as a source of electrical excitation of a living body in the same manner as an original organ or tissue. This refers to the operation of exposing to an electrically stimulated atmosphere for a certain period so that it can be adapted to the conditions. Hereafter, these operations in this project will be collectively referred to as “function acclimation”.
本発明の機能馴化方法において用いることのできる培地としては、 通常は Na、 Mg、 C a等の金属イオンを含んだ生理食塩水に各種アミノ酸、 例えば L—アル ギニン, L—シスチン, L—グルタミン, L—ヒスチジン、 及ぴ各種ビタミ ン、 例えば葉酸、 パントテン酸、 ニコチンアミ ド、 ピリ ドキサール、 リボフラビ ン等を含んだ培地、 好ましくは E a g 1 eの MEM培地あるいは Du 1 b e c c o&Smo d i f i e d 培地としてバイオフノレイド社から入手できる培地等 を用いることができる。  As the medium that can be used in the method for acclimating the function of the present invention, usually, various amino acids such as L-arginine, L-cystine, and L-glutamine are added to physiological saline containing metal ions such as Na, Mg, and Ca. , L-histidine, and various vitamins such as folic acid, pantothenic acid, nicotinamide, pyridoxal, riboflavin, etc., preferably as an Eag1e MEM medium or Du1becco & Smodified medium. A culture medium and the like available from Funorade can be used.
対象を機能馴化するための温度は、 通常 10°C (度 C)から 45°C (度 0、 好ま しくは 30°C (度 C)から 37で(度 C)の範囲である。  The temperature for acclimatizing the subject usually ranges from 10 ° C (degrees C) to 45 ° C (degrees 0, preferably 30 ° C (degrees C) to 37 (degrees C).
上記培地に従来から組織の再生において提案されている各種サイトカイン類、 例えばインターロイキン類, ニューロトロピン類, 血小板由来成長因子, 上皮成 長因子, 線維芽細胞成長因子を 1 n g/m 1から 100 n g/m 1の範囲の量で 配合することが好ましい。  Various cytokines conventionally proposed for tissue regeneration in the above medium, such as interleukins, neurotropins, platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor, from 1 ng / m1 to 100 ng It is preferable to mix in an amount in the range of / m 1.
本発明の機能馴化方法では、 機能馴化中に対象に対して電気信号を与える。 電 気信号はパルス電気信号もしくはパルス磁気信号であることが好ましレ、。 機能馴 化する際、 電気信号は連続的に与えてもよいし、 断続的に与えてもよい。  In the function acclimatization method of the present invention, an electric signal is given to the object during the function acclimation. Preferably, the electrical signal is a pulsed electrical signal or a pulsed magnetic signal. When adapting the function, the electric signal may be given continuously or intermittently.
対象に電気信号を与える方法としては、 培地おょぴ Zまたは機能馴化対象に電 極を接触させて 0. 5〜50HZ、 好ましくは 1〜10HZ、 10mV〜10V、 好ましくは 100mV〜l Vのパルス電気信号を与えることが必要である。  As a method of giving an electric signal to the subject, a pulse of 0.5 to 50 HZ, preferably 1 to 10 HZ, 10 mV to 10 V, preferably 100 mV to 1 V is applied by bringing the electrode into contact with the culture medium Z or the function acclimation target. It is necessary to provide an electrical signal.
本発明における機能馴化方法においては、 電気白勺刺激は、 最初は低電圧とし、 徐々に強度を増加させるようにすることが好ましレ、。  In the function acclimatization method of the present invention, it is preferable that the electric acupuncture stimulus is initially set to a low voltage, and the intensity is gradually increased.
上記方法において与える電流は、 パルス信号として流すことが必要である。 こ のため、 上記方法において電気流を与える装置は、 一定の間隔で電流をパルス状 に変化させうる、 すなわちパルス電流を発生させうるファンクションジエネレー ターと連結されていること好ましい。 機能馴化すべき対象に電気信号を与える他の方法としては、 図 1 2に示したよ うに機能馴化すべき対象、 好ましくは機能馴化すべき対象の入った容器を磁場、 好ましくは磁束密度を変動させうる磁場におき、 磁場の磁束密度を変化させるこ とにより機能馴化すべき対象内部に渦電流を発生させる方法を挙げることもでき る。 The current given in the above method needs to flow as a pulse signal. For this reason, in the above method, the device for applying an electric current is preferably connected to a function generator capable of changing the current in a pulsed manner at regular intervals, that is, generating a pulsed current. Another way to provide an electrical signal to the subject to be acclimated is to apply the electric signal to the subject to be acclimated, preferably the container containing the subject to be acclimated, by changing the magnetic field, preferably the magnetic flux density, as shown in Figure 12. There is a method of generating an eddy current inside a target to be functionalized by changing the magnetic flux density of the magnetic field when the magnetic field is changed.
上記の磁束密度を変動させうる磁場としては、 例えば電磁石で知られているよ うに電線をコイル状にまき、 その中心部に移植すべき対象、 好ましくは機能馴化 すべき対象の入った容器を置き、 コイルに電流、 好ましくはパルス電流を与えて コィル内の磁束密度を変化させることにより機能馴化すべき対象内の渦電流の強 度をパルス的に変化させる、 すなわちパルス信号として与えることができる。 こ の後者の方法は機能馴化すべき対象に電極等の異物を接触させることなく刺激が 可能である点からより好ましい。  As the magnetic field capable of changing the magnetic flux density, for example, an electric wire is wound in a coil shape, as is known by an electromagnet, and a container containing an object to be transplanted, preferably an object to be functionalized, is placed in the center thereof. By applying a current, preferably a pulse current, to the coil to change the magnetic flux density in the coil, the intensity of the eddy current in the object to be functionalized can be changed in a pulse manner, that is, given as a pulse signal. This latter method is more preferable because the stimulation can be performed without bringing a foreign object such as an electrode into contact with the object to be adapted.
このとき機能馴化すべき対象に与える磁気信号は 0 . 5〜5 0 H Z、 好ましく は:!〜 1 0 H Z、 0 . 1 m T〜 1 O m T、 好ましくは 0 . 5 mT〜5 m T範囲の パルス信号とすることが必要である。  At this time, the magnetic signal given to the object to be functionalized is 0.5 to 50 Hz, preferably:! It is necessary to use a pulse signal in the range of ~ 10 Hz, 0.1 mT to 10 mT, preferably 0.5 mT to 5 mT.
機能馴化すべき対象に電気信号を与える他の方法としては、 図 1 2に示したよ うに機能馴化すべき対象、 好ましくは機能馴化すべき対象の入った容器を電場、 好ましくはバースト電流クラスターをパルス状に与えうる電場におくことにより 機能馴化すべき対象内部に容量電流を発生させる方法を挙げることもできる。 上記のバースト電流クラスターをパルス状に与えうる電場としては、 例えば上 下 2枚の導電性プレート間に移植すべき対象、 好ましくは機能馴化すべき対象の 入った容器を置き、 プレート間に該電流、 好ましくはパルス状のバース ト電流ク ラスターを与えて機能馴化すベき対象内に容量電流を与えることができる。 この 後者の方法は機能馴化すべき対象に電極等の異物を接触させることなく刺激が可 能である点からより好ましい。 また、 培養容器上部の導電性プレートの代わりに 銀電極などの導電性素材を培地に単極接触させると、 電流の直流成分は完全に除 去できるので、 非接触性刺激に準じた様式すなわち液性変化等を極力排除した様 式で、 容量電流の強度を上げることができる。 またバースト電流の周波数は 10 Hz 以上、 電流パルスの周波数は 5〜50H 、 好ましくは l〜1 0Hz、 強度は 1 マイクロボルト〜 100ボルト、 5ミリボノレト〜 10ボルトであることが好まし く、 30ミリポルト〜 3ボルトであること力 Sさらに好ましレ、。 Another way to apply an electrical signal to the subject to be acclimated is to apply the object to be acclimated, preferably a container containing the subject to be acclimated, to an electric field, preferably a burst current cluster, as shown in Figure 12. A method of generating a capacitive current inside an object to be functionalized by placing it in an electric field that can be given in a state can also be mentioned. The electric field that can apply the above-mentioned burst current cluster in a pulse form is, for example, a container containing an object to be transplanted, preferably an object to be functionalized, between the upper and lower two conductive plates, and the electric current between the plates. Preferably, a pulsed burst current cluster can be provided to provide a capacitive current within the subject to be functionally adapted. The latter method is more preferable because stimulation can be performed without bringing a foreign object such as an electrode into contact with an object to be adapted. When a conductive material such as a silver electrode is brought into monopolar contact with the culture medium instead of the conductive plate at the top of the culture vessel, the DC component of the current can be completely removed. As if sex changes were eliminated as much as possible With the formula, the intensity of the capacitance current can be increased. The frequency of the burst current is 10 Hz or more, the frequency of the current pulse is 5 to 50 H, preferably 1 to 10 Hz, and the intensity is preferably 1 microvolt to 100 volts, 5 millibonoreto to 10 volts, and 30 milliports. ~ 3 volts force S more preferred.
実施例 Example
以下に、 本発明の好適な実施例を示す。 なお、 下の実施例に示される材料、 使 用量、 割合、 手順等は、 本発明の趣旨を逸脱しない限り適宜変更することができ る。 したがって、 本発明の範囲は以下に示ず具体例により限定的に解釈されるべ きものではない。 実施例 1  Hereinafter, preferred embodiments of the present invention will be described. The materials, usage amounts, ratios, procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below. Example 1
温度 37°C (度 0、 湿度 99%、 C02濃度 5%の条件下で、 本発明の磁場刺 激装置を用いて知覚神経細胞とシュヮン細 J3包の混合標本に成長促進を目的とした 条件の磁場刺激 ( 0. 03 mT、 持続時間 1 ms e c、 0. 6H z) を 10日間 与えながら培養した。 結果を図 5 (A) に す。 比較例 1 Temperature 37 ° C (degrees 0, humidity 99%, under the conditions of C0 2 concentration of 5% growth promoted mixed sample of sensory neurons and Shuwan fine J3 follicles using a magnetic field stimulation device of the present invention for the purpose The cells were cultured under magnetic field stimulation (0.03 mT, duration 1 ms ec, 0.6 Hz) for 10 days under the conditions shown in Fig. 5 (A).
磁場刺激を与えなかったことを除き、 実施例 1と同様の方法で知覚神経細胞と シュワン細胞の混合標本を培養した。 結果を図 5 (B) に示す。  A mixed sample of sensory nerve cells and Schwann cells was cultured in the same manner as in Example 1 except that no magnetic field stimulation was given. The results are shown in FIG. 5 (B).
図 5 (A) (B) に示されるように、 磁場刺激を与えて培養した標本 (図 5 (A) ) では、 磁場刺激を与えないで培養した標本 (図 5 (B) ) と比べると、 顕著な神経突起の伸張及び分枝とシュヮン細胞の増殖が見られた。 このことから、 本発明の磁場刺激装置であれば、 シュヮン細胞と神経細胞の培地での定着性がよ く、 シュヮン細胞及び神経細胞の成長を大幅に促進し、 かつそれにより神経突起 の伸張と分岐とを促進できることが分かる。 実施例 2 温度 37° ( 、 湿度 99%、 C02濃度 5%の条件下で、 本発明の磁場刺激装置 を用いて、 知覚神経細胞とシュワン細胞の混合標本に成長抑制 (細胞障害付与) を目的とした条件の電気刺激 ( 3 mT、 持続時間 20ms e c、 50Hz) を 3 日間与えた結果を図 6に示す。 As shown in Figs. 5 (A) and 5 (B), the specimen cultured with magnetic field stimulation (Fig. 5 (A)) was compared with the specimen cultured without magnetic field stimulation (Fig. 5 (B)). Significant neurite outgrowth and branching and proliferation of Schwann cells were observed. From this, the magnetic field stimulator of the present invention has good fixation of Schwann cells and nerve cells in the medium, greatly promotes growth of Schwann cells and nerve cells, and thereby enhances neurite outgrowth. It can be seen that branching can be promoted. Example 2 Temperature 37 ° (, humidity 99%, under the conditions of C0 2 concentration of 5% by using a magnetic field stimulator of the present invention, for the purpose of growth inhibition (cytotoxicity grant) in a mixed sample of sensory neurons and Schwann cells Figure 6 shows the results of applying the electrical stimulation under the conditions (3 mT, duration 20 ms ec, 50 Hz) for 3 days.
図 6に示されるように、 磁場刺激前の状態 (図 6 (A) ) と比べて、 磁場刺激 後には神経突起を中心に遅発 I1生のネクローシス (壌死) が見られた (図 6 (B) ) 。 また極小コイルと金属遮蔽により、 磁場の及ぶ範囲を局所に限定して 磁場刺激を行うと、 髄鞘を形成していたシュワン細胞にのみ選択的にネクローシ ス (壌死) を起こさせることが可能で、 神経突起を露出した状態すなわち脱髄現 象を起こさせることに成功した (図 6 (C) ) 。 これより、 本発明の磁場刺激装 置であれば、 シュヮン細胞に選択的な変性モデルを容易に作製することができる。 実施例 3 :パッチクランプ法を用いて膜電流固定(current clamp)条件下に測定 されたマウス培養知覚神経の静止膜電位(resting membrane potential) As shown in FIG. 6, compared with the previous field stimulation condition (FIG. 6 (A)), after the magnetic field stimulation Osohatsu I 1 Raw necrosis around the neurites (壌死) was observed (Fig. 6 (B)). In addition, when a magnetic field is stimulated by limiting the range of the magnetic field to a local area using a micro coil and metal shielding, it is possible to selectively cause necrosis (loose death) only in the Schwann cells that had formed myelin. Thus, we succeeded in causing the neurites to be exposed, that is, to cause demyelination (Fig. 6 (C)). Thus, the magnetic field stimulating device of the present invention can easily produce a denaturation model selective for Schwann cells. Example 3: Resting membrane potential of cultured mouse sensory nerves measured under current clamp conditions using the patch clamp method
(方法)  (Method)
温度 37°C (度 C)、 湿度 99%、 C02濃度 5%の条件下で、 本発明の磁場刺 激装置を用いて知覚神経細胞とシュヮン細胞の混合標本に機能障害を目的とした 条件の磁場刺激 (3mT、 持続時間 3ms e c、 5 Hz) を 3日間与えながら培 養した。 結果を図 8に示す。 Temperature 37 ° C (degrees C), humidity 99% C0 2 under the conditions of 5% strength, conditions that a dysfunction in a mixed sample of sensory neurons and Shuwan cells using magnetic stimulation apparatus of the present invention for the purpose The cells were cultured while applying magnetic field stimulation (3 mT, duration 3 ms ec, 5 Hz) for 3 days. Fig. 8 shows the results.
(結果)  (Result)
結果を図 8に示す。  Fig. 8 shows the results.
対照群(control), パルス磁場刺激により機能を障害された群(impared).  Control group (control), group impaired by pulsed magnetic field stimulation (impared).
図 8の Aは、 パッチクランプ技術による膜電流固定条件下におけるマウスの培 養知覚神経の静止膜電位の測定結果を示す。  A of FIG. 8 shows the measurement result of the resting membrane potential of the cultured sensory nerve of the mouse under the condition of the membrane current fixation by the patch clamp technique.
図 8の Bは、 正常(対照)、 及ぴパルス磁場刺激(3mT, .3msec duration, 5Hz) を 3日間与えることにより作製した障害知覚神経(障害)からの静止膜電位 0 を示す。 MP (対照群) =-59.7 ±2.5 mV (mean and S.E. M. ), (n=7) B in FIG. 8 shows normal (control) and resting membrane potential 0 from the impaired sensory nerve (disorder) produced by applying pulse magnetic field stimulation (3 mT, .3 msec duration, 5 Hz) for 3 days. MP (control group) = -59.7 ± 2.5 mV (mean and SEM), (n = 7)
MP (障害群) =- 8·4±3.1 mV (mean and S.E.M. ), (n=7) 実施例 4 :パルス磁場刺激前処置による力プサイシン誘発神経細胞死の予防 (方法) MP (disordered group) = -8.4 ± 3.1 mV (mean and S.E.M.), (n = 7) Example 4: Prevention of force-psycin-induced neuronal death by pretreatment with pulsed magnetic field (method)
温度 3 7°C (度 、 湿度 9 9%、 CO2濃度 5%の条件下で、 本発明の磁場刺 激装置を用いて知覚神経細胞とシュヮン細胞の混合標本に成長促進を目的とした 条件の磁場刺激 ( 0. 3 mT、 持続時間 3ixi s e c、 0. 5H z) を 7日間与え ながら培養した。 結果を図 9に示す。 Temperature 3 7 ° C (degrees, humidity 9 9% CO 2 under the conditions of 5% strength, condition for the purpose of growth promotion in a mixed sample of sensory neurons and Shuwan cells using magnetic stimulation apparatus of the present invention The cells were cultured for 7 days under magnetic field stimulation (0.3 mT, duration 3ixi sec, 0.5Hz), and the results are shown in Fig. 9.
(結果)  (Result)
結果を図 9に示す。 図 9の Aは、 1 0 /zMカブサイシン (CAPS) 含有培地中 における 3日後の対照知覚神経の神経細胞死 (矢印頭)を示す。 図 9の Bは、 対 照細胞 (黒四角) と、 パルス磁場刺激 (0.3 mT, 3msec, 0.5Hz) で予め 3日間 処理した被験細胞 (白四角) (各群につき n = 3 0) における 1 0 カプサイ シン処理後の各日数における培養知覚神経の生存率を示す。 実施例 5 : 5Hz の電気刺激に対する各心室筋クラスターの収縮頻度と典型的磁 気刺激群クラスターの 2Hz および 5Hz電気刺激に対する収縮パターン  The results are shown in FIG. A of FIG. 9 shows the neuronal cell death (arrow head) of the control sensory nerve after 3 days in the medium containing 10 / zM capsaicin (CAPS). B in Fig. 9 shows the results for the control cells (solid squares) and the test cells (open squares) (n = 30 for each group) that had been treated with pulsed magnetic field stimulation (0.3 mT, 3 msec, 0.5 Hz) for 3 days. 0 shows the survival rate of cultured sensory nerves on each day after capsaicin treatment. Example 5: Frequency of contraction of each ventricular muscle cluster to 5 Hz electrical stimulation and contraction pattern of typical magnetic stimulation group cluster to 2 Hz and 5 Hz electrical stimulation
(方法)  (Method)
温度 3 7 °C (度 C)、 湿度 9 9 %、 C O2濃度 5 %の条件下で、 本発明の磁場刺 激装置を用いて心室筋細胞と繊維芽細胞の混合標本に成長促進を目的とした条件 の磁場刺激 (1- 3mT, 3msec, 5-10Hz) を 7 日間与えながら培養した。 結果を図 1 0に示す。 以下の実施例、 比較例における機能馴化心筋の電気刺激に対する応 答性の変化と磁気刺激による機能回復にっレ、ては、 位相差顕微鏡に取り付けたビ デォカメラを用いて 1例ごとに 3 5秒間の動画データを取得保存し、 心拍数の測 定と集計を行った。 (結果) The purpose of the present invention is to promote growth of a mixed sample of ventricular myocytes and fibroblasts using the magnetic field stimulator of the present invention under the conditions of a temperature of 37 ° C (degree C), a humidity of 99% and a CO 2 concentration of 5%. The cells were cultured while applying magnetic field stimulation (1-3 mT, 3 msec, 5-10 Hz) under the conditions described above for 7 days. The results are shown in FIG. In the following examples and comparative examples, changes in the response of the functionalized myocardium to electrical stimulation and the recovery of function by magnetic stimulation were evaluated using a video camera attached to a phase-contrast microscope. Seconds of video data were acquired and stored, and heart rate was measured and tabulated. (result)
結果を図 1 0に示す。 矢印は電気刺激 ( 0. 8mA/mm, 3msec, various frequency) の開始点を示す。 実施例 6 : (機能馴化細胞の観察) パルス磁場刺激の存在下で培養した心室筋ク ラスターの電気刺激に対する収縮頻度  The results are shown in FIG. Arrows indicate the starting point of electrical stimulation (0.8 mA / mm, 3 msec, various frequencies). Example 6: (Observation of function-conditioned cells) Contraction frequency of ventricular muscle clusters cultured in the presence of pulsed magnetic field stimulation in response to electrical stimulation
(方法)  (Method)
1 4日のうち 7日間、 パルス磁場刺激 (1- 3mT, 3msec, 5- 10Hz) の存在下に 培養した心室筋クラスター (磁気刺激 7d/14d ) と対照群 (磁気刺激なし 14d ) の電気刺激(0. 8mA/匪, 3msec, various frequency-横軸) 〖こ対する収縮 頻度 (縦軸) を測定した。  Electrical stimulation of ventricular muscle clusters (magnetic stimulation 7d / 14d) and control group (14d without magnetic stimulation) cultured in the presence of pulsed magnetic field stimulation (1-3 mT, 3 msec, 5-10 Hz) for 7 days out of 14 days (0.8 mA / band, 3 msec, various frequency-horizontal axis) 収縮 The contraction frequency (vertical axis) was measured.
(結果)  (Result)
結果を図 1 1に示す。 磁気刺激を与えた場合に、 収縮頻度が増大することが分 かる。  The results are shown in FIG. It can be seen that the frequency of contraction increases when magnetic stimulation is given.
(機能馴化結果)  (Function acclimation results)
培養の時間経過とともに、 活性化心筋の 、拍数が、 本来のマウスの心拍数 (4 8 6 〜 7 3 8回 Z分、 すなわち 8 . 1 〜 1 2 . 3 H Z ) から低下し、 さらに培養 二週間目には電気刺激に対する刺激応答性、 すなわち培養した心筋細胞の追従可 能な刺激頻度が 2 〜 5 H zにまで低下した (対照群 (磁気刺激なし 14d ) ) 。 一方、 1 4 日のうち 7日間、 パルス磁場刺激 (l-3mT, 3msec, 5- 10Hz) の存在 下に培養した心室筋クラスター (磁気刺激 7d/14d ) では高頻度刺激に対する応 答性が回復し、 7 H Zの上記電気刺激に追従可能であった。  As the culture time elapses, the heart rate of the activated myocardium decreases from the original heart rate of the mouse (48.6 to 738 times Z minutes, that is, 8.1 to 12.3 HZ). In the second week, the stimulus responsiveness to electrical stimulation, ie, the frequency of stimuli that could be followed by cultured cardiomyocytes, was reduced to 2 to 5 Hz (control group (14d without magnetic stimulation)). On the other hand, ventricular muscle clusters (magnetic stimulation 7d / 14d) cultured in the presence of pulsed magnetic field stimulation (l-3mT, 3msec, 5-10Hz) for 7 out of 14 days recovered responsiveness to high frequency stimulation And was able to follow the electrical stimulation of 7 HZ.
図 1 3に培養中の心筋細胞クラスターの拡大写真を示す 産業上の利用可能性 Figure 13 shows an enlarged photo of a cardiomyocyte cluster in culture.
本発明の磁場又は電場刺激装置は、 所望のパルス磁場叉はパルス電場を培養容 器内の生体細胞等に与え、 培養容器内で渦電流叉は容量電流を発生させることの できる刺激装置としては、 構造が簡単で製作も容易かつ安価である。 また本発明 の磁場又は電場刺激装置は、 磁場刺激又は電場刺激を与えるべき培養容器の着脱 が簡単であり、 所望の生体細胞等に局所的に磁場刺激又は電場刺激を与えること ができ、 しかも培養容器内の培地と直接接触することのない磁場又は電場刺激装 置である。 したがって、 本発明の磁場又は電場刺激装置であれば、 培養容器内の 培地の特性を変化させずに長期間に亘り所望の生体細胞に磁場刺激又は電場刺激 を与えることができ、 かつ生体細胞等の培地に対する定着性を向上させることが できる。 The magnetic or electric field stimulating device of the present invention is capable of applying a desired pulsed magnetic field or pulsed electric field to living cells and the like in a culture vessel to generate an eddy current or a capacitive current in the culture vessel. The stimulator that can be used is simple in structure, easy to manufacture, and inexpensive. In addition, the magnetic or electric field stimulating device of the present invention can easily attach and detach a culture container to which magnetic or electric field stimulation is to be applied, and can locally apply magnetic or electric field stimulation to desired living cells and the like, and furthermore, cultivate A magnetic or electric field stimulator that does not come into direct contact with the medium in the container. Therefore, with the magnetic or electric field stimulating device of the present invention, it is possible to apply magnetic field or electric field stimulation to desired living cells for a long period of time without changing the characteristics of the culture medium in the culture vessel. Of the medium can be improved.
また、 本発明の磁場又は電場刺激装置を用いれば、 パルス磁場叉はパルス電場 を制御することにより生体細胞等に電気刺激を与えて生体細胞等の成長を促進又 は抑制する方法を提供することができる。 特に、 本発明の磁場又は電場刺激装置 を用いて生体細胞等を成長させると、 従来の糸且織の培養装置では静置か、 せいせ い攪拌下で培養できたに過ぎないのに対し、 本発明ではパルス信号、 好ましくは 実験の目的に応じて予め設定された渦電流叉は容量電流を原組織等に直接接触さ せることなく、 培養容器の外部から原組織等に与えて、 渦電流叉は容量電流を介 する興奮入力により発生し得る細胞内カルシウムイオン濃度変動を考慮した生体 細胞等の成長を促進させ又は抑制させることができる。 さらに本発明の磁場又は 電場刺激装置により正常な生体細胞又は生体組織、 好ましくは神経細胞又は神経 組織を変性させて生体細胞又は生体組織変性疾患モデルを簡単に作成することが できる。  Further, by using the magnetic field or electric field stimulating device of the present invention, a method is provided in which a pulsed magnetic field or a pulsed electric field is controlled to apply electric stimulation to a living cell or the like to promote or suppress the growth of the living cell or the like. Can be. In particular, when a living cell or the like is grown using the magnetic or electric field stimulating device of the present invention, the conventional cultivation device for itoganori can only be cultivated under static agitation, whereas the conventional cultivation device for itogan tissue can be used. In the present invention, a pulse signal, preferably an eddy current or a capacitance current preset according to the purpose of the experiment is applied to the original tissue or the like from the outside of the culture vessel without directly contacting the original tissue or the like. Can promote or suppress the growth of living cells and the like in consideration of fluctuations in intracellular calcium ion concentration that may be generated by an excitation input via a capacitive current. Furthermore, a normal living cell or living tissue, preferably a nerve cell or a nerve tissue is degenerated by the magnetic or electric field stimulating device of the present invention, so that a living cell or living tissue degenerative disease model can be easily created.
また本発明の機能馴化方法で興奮性入力に慣らされた臓器、 または組織、 ある いはこれらを構成する細胞は、 生体電気信号に馴らされているため、 例えば、 移 植後直ちに移植されて臓器において生体電気信号を受けても周囲組織と協調した 興奮伝導を行うことができる。 特に心筋組織の移植において、 従来の方法で作成 された移植体より極めて高い適応能を有しかつ、 移植体が不整脈等の発生源とな ることを極力防止できる。 また、 本発明の機能馴化方法による処置を受けた組織、 または細胞、 特に心筋組織や心筋細胞は常に生理的条件に近い刺激追従能力を保 持しているので、 より信頼性の高い循環器作用薬の薬効評価おょぴ毒性試験用の 検体として利用することができる。 In addition, since the organs or tissues accustomed to the excitatory input by the function acclimatization method of the present invention or the cells constituting them are adapted to the bioelectric signal, for example, they are transplanted immediately after transplantation and In this case, even if a bioelectric signal is received, excitatory conduction can be performed in cooperation with surrounding tissues. In particular, in transplantation of myocardial tissue, it has extremely higher adaptability than a transplant prepared by a conventional method, and can prevent the transplant from becoming a source of arrhythmia or the like as much as possible. In addition, tissues or cells treated by the function acclimatization method of the present invention, particularly myocardial tissues and myocardial cells, always maintain a stimulus tracking ability close to physiological conditions. As a result, it can be used as a more reliable sample for drug evaluation and toxicity testing of cardiovascular drugs.

Claims

請求の範囲 The scope of the claims
1 . パルス電流を発生させ、 かつパルス電流の電流特性を調整するためのパ ルス電流供給手段と、 前記パルス電流供給手段より供給されたパルス電流からパ ルス磁場又はパノレス電場を発生させ、 該パルス磁場又はパルス電場を培養容器の 外部から前記培養容器内の生体細胞又は生体組織に供給するためのパルス磁場又 はパルス電場供給手段とを有することを特徴とする磁場又は電場刺激装置。 1. A pulse current supply means for generating a pulse current and adjusting the current characteristics of the pulse current; and generating a pulse magnetic field or a Panless electric field from the pulse current supplied from the pulse current supply means. A magnetic field or electric field stimulating device comprising: a pulse magnetic field or pulse electric field supply means for supplying a magnetic field or a pulse electric field from outside the culture container to living cells or living tissues in the culture container.
2 . 前記パノレス電流供給手段が、 少なくとも電源、 スィツチ及ぴロジック I Cを含む電気回路である請求項 1に記載の磁場又は電場刺激装置。  2. The magnetic field or electric field stimulating device according to claim 1, wherein the panelless current supply means is an electric circuit including at least a power supply, a switch, and a logic IC.
3 . 前記パノレス磁場又は電場供給手段が、 前記パルス磁場又はパルス電場を 発生させ、 該パノレス磁場又は電場を生体細胞又は生体組織に供給するための磁場 又は電場刺激プローブと、 前記培養容器を収納するための磁場又は電場刺激ステ 一ジとを有する請求項 1又は 2に記載の磁場又は電場刺激装置。  3. The panelless magnetic field or electric field supply means generates the pulse magnetic field or the pulsed electric field, and accommodates the magnetic field or electric field stimulating probe for supplying the panelless magnetic field or the electric field to a living cell or a living tissue, and accommodates the culture container. The magnetic or electric field stimulating device according to claim 1 or 2, further comprising a magnetic or electric field stimulating stage for performing the operation.
4 . 前記磁場又は電場刺激プローブが単一又は複数の磁場刺激コイル又は電 場刺激導電性プレートである請求項 3に記載の磁場又は電場刺激装置。  4. The magnetic or electric field stimulating device according to claim 3, wherein the magnetic or electric field stimulating probe is a single or a plurality of magnetic field stimulating coils or an electric field stimulating conductive plate.
5 . 前記磁場または電場刺激プローブが、 培養容器内にパルス磁場または電 場を供給することにより、 培養容器内に渦電流叉は容量電流を発生させるもので ある、 請求項 3又は 4に記載の磁場または電場刺激装置。  5. The magnetic field or electric field stimulating probe according to claim 3 or 4, wherein an eddy current or a capacitive current is generated in the culture vessel by supplying a pulse magnetic field or an electric field into the culture vessel. Magnetic or electric field stimulator.
6 . さらに、 培養容器内の渦電流を検出するための渦電流検出プローブを有 する、 '請求項 1力 ら 5のいずれか一項に記載の磁場または電場刺激装置。  6. The magnetic field or electric field stimulator according to any one of claims 1 to 5, further comprising an eddy current detection probe for detecting an eddy current in the culture vessel.
7 . 前記培養容器が、 前記パルス磁場又は電場供給手段内に嵌着可能な請求 項 1から 6のいずれか一項に記載の磁場又は電場刺激装置。  7. The magnetic field or electric field stimulator according to any one of claims 1 to 6, wherein the culture vessel can be fitted into the pulse magnetic field or electric field supply means.
8 . 生体細包若しくは生体組織の成長及ぴ機能を促進、 抑制又は障害するた めに用いられる請求項 1〜 7のいずれか一項に記載の磁場又は電場刺激装置。  8. The magnetic or electric field stimulator according to any one of claims 1 to 7, which is used for promoting, suppressing or impairing the growth and function of a biological packet or a biological tissue.
9 . 前記磁場又は電場刺激プローブが、 パルス磁場を生体細胞又は生体組織 の所定の細胞群若しくは所定の部位に選択的に供給して、 生体細胞又は生体組織 の成長を促進させ又は抑制させるためのものである請求項 8に記載の磁場又は電 場刺激装置。 9. The magnetic field or electric field stimulation probe for selectively supplying a pulsed magnetic field to a predetermined cell group or a predetermined site of a living cell or a living tissue to promote or suppress the growth of the living cell or the living tissue. 9. The magnetic field or electric field according to claim 8, wherein Field stimulator.
1 0 . 前記パルス磁場又は電場刺激プローブが、 脳波, 心電図, 筋電図, 胃 電図, 網膜電図, 又はシナプス電流等の主要波形の出現頻度を模倣したタイミン グで刺激用パルスの供給頻度を決定したり、 叉はこれらの生体電気信号をロー力 ット(Low cut) ブイノレター(1 0 Hz)に通して得られる高周波ノイズの周波数と 同等もしくはそれ以上の周波数の電流ノイズをパースト電流クラスタ一としてパ ルス内に含んで、 刺激に用いることを特徴とする、 請求項 1から 9の何れかに記 載の磁場又は電場刺激装置。  10. The pulse magnetic field or electric field stimulation probe supplies stimulation pulses at a timing that mimics the appearance frequency of the main waveforms such as electroencephalogram, electrocardiogram, electromyogram, electrogastrogram, retina electrogram, or synaptic current. Or by passing these bioelectric signals through a low-cut bino-letter (10 Hz) to reduce the current noise with a frequency equal to or higher than the frequency of the high-frequency noise to a burst current cluster. The magnetic or electric field stimulator according to any one of claims 1 to 9, wherein the stimulator is included in a pulse and used for stimulation.
1 1 . 請求項 1カゝら 1 0のいずれか一項に記載の磁場又は電場刺激装置を用 いた生体細胞若しくは生体組織の成長促進又は抑制方法。  11. A method for promoting or suppressing the growth of living cells or tissues using the magnetic or electric field stimulator according to any one of claims 1 to 10.
1 2 . 請求項 1カゝら 1 0のいずれか一項に記載の磁場又は電場刺激装置を用 いた生体細胞若しくは生体組織の機能の促進又は抑制方法。  12. A method for promoting or suppressing the function of a living cell or living tissue using the magnetic or electric field stimulator according to any one of claims 1 to 10.
1 3 . 請求項 1カゝら 1 0のいずれか一項に記載の磁場又は電場刺激装置を用 いた生体細胞若しくは生体組織の機能の促進として細胞機能馴化を特徴とする方 法。  13. A method characterized by acclimating a cell function as a function of promoting the function of a living cell or a living tissue using the magnetic or electric field stimulator according to any one of claims 1 to 10.
1 4 . 請求項 1カゝら 1 0のいずれか一項に記載の磁場又は電場刺激装置を用 いて正常な生体細胞又は生体 ¾a織を変性させて生体細胞又は生体組織変性疾患モ デルを作成することを特徴とする生体細胞又は生体組織の変性疾患モデルの作成 方法。  14. Using a magnetic or electric field stimulator according to any one of claims 1 to 10 to modify a normal living cell or living tissue to create a living cell or living tissue degenerative disease model. A method for preparing a model of a degenerative disease of a living cell or a living tissue, characterized by performing the following.
1 5 . 前記生体細胞又は生体組織が神経細胞又は神経組織である請求項 1 4 に記載の作成方法。  15. The method according to claim 14, wherein the living cell or living tissue is a nerve cell or nerve tissue.
1 6 . 生体の定常的に生体電気信号を発生し、 構成細胞が互いに電気信号を 受ける臓器、 または組織、 あるいはこれらを構成する細胞を、 0 . 5〜5 0 0 H Z、 1 O mV〜: L 0 Vのパルス電気信号、 または、 0 . 5〜5 0 0 H Z、 0 . 1 mT〜l 0 O m Tのパルス磁気信号入力下で培養することを特徴とする臓器、 ま たは組織、 あるいはこれらを構成する細胞の機能馴化方法。  16. Organs or tissues that constantly generate bioelectric signals in the living body, and the constituent cells receive each other's electric signals, or 0.5 to 500 Hz HZ, 1 OmV or more: An organ or tissue characterized in that it is cultured under a pulse electric signal of L 0 V or a pulse magnetic signal of 0.5 to 500 HZ, 0.1 mT to 100 mT; Alternatively, a method for acclimatizing the function of the cells constituting them.
1 7 . 臓器が心臓であることを特徴とする、 請求項 1 6に記載の細胞の機能 馴化方法。 17. The function of the cell according to claim 16, wherein the organ is a heart. Habituation method.
1 8 . 糸且織が、 心筋であることを特徴とする請求項 1 6に記載の細胞の機能 馴化方法。  18. The method according to claim 16, wherein the fibrous tissue is myocardium.
1 9 . 機能馴化を、 臓器、 または組織を移植する前に行う、 請求項 1 6から 1 8の何れかに記載の細胞の機能馴化方法。  19. The method according to any one of claims 16 to 18, wherein the function acclimation is performed before transplanting the organ or the tissue.
2 0 . 請求項 1 6から 1 9の何れかに記載の方法で機能馴化された組織、 ま たは細胞からなる薬効評価および毒性試験用検体。  20. A sample for evaluating the efficacy and toxicity of a tissue or a cell which has been functionalized by the method according to any one of claims 16 to 19.
PCT/JP2005/001164 2004-01-22 2005-01-21 Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device WO2005071057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004014108A JP2004290180A (en) 2003-03-10 2004-01-22 Magnetic field stimulation device, and method for promoting or inhibiting growth of living body cell or tissue using the magnetic field stimulating device
JP2004-014108 2004-01-22

Publications (1)

Publication Number Publication Date
WO2005071057A1 true WO2005071057A1 (en) 2005-08-04

Family

ID=34805407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001164 WO2005071057A1 (en) 2004-01-22 2005-01-21 Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device

Country Status (1)

Country Link
WO (1) WO2005071057A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694193B2 (en) 2009-03-03 2017-07-04 Technische Universiteit Eindhoven Device and method for treating cells
CN108554332A (en) * 2018-05-15 2018-09-21 中亚民生科技发展有限公司 The true quantum haulage capacity wave of N-S vectors is implanted into equipment
FR3090388A1 (en) * 2018-12-20 2020-06-26 Centre National De La Recherche Scientifique Device for exposing a biological sample to at least one electromagnetic field and corresponding system.
CN115029238A (en) * 2022-06-08 2022-09-09 哈尔滨医科大学 Experimental device and method for researching biological effect mechanism of pulsed magnetic field
WO2023110063A1 (en) * 2021-12-14 2023-06-22 Azyro Sa Apparatus for in-vitro influencing biological cellular material, and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125996A (en) * 1992-10-14 1994-05-10 Kanegafuchi Chem Ind Co Ltd Monocyte activation acceleration method by fluctuating magnetic field
JPH07194366A (en) * 1993-02-19 1995-08-01 Jasco Corp Operation chamber for electric cell manipulation apparatus
JP2003506695A (en) * 1999-06-21 2003-02-18 松下電器産業株式会社 Methods and apparatus for in vitro detection and characterization of mental activity using analysis of repetitive electrical activity in neuronal samples
JP2003144136A (en) * 2001-11-13 2003-05-20 Inst Of Physical & Chemical Res Cell stimulator and method for cell stimulation
JP2003274940A (en) * 2002-03-26 2003-09-30 Kumamoto Technology & Industry Foundation Method for growing cultured cell or tissue
JP2004089018A (en) * 2002-08-29 2004-03-25 Japan Science & Technology Corp Electrical stimulator and method for promoting or suppressing growth of biological cell or biological tissue using the same electrical stimulator
JP2004147517A (en) * 2002-10-29 2004-05-27 Hitachi Ltd Apparatus for transfecting gene
JP2004290180A (en) * 2003-03-10 2004-10-21 Japan Science & Technology Agency Magnetic field stimulation device, and method for promoting or inhibiting growth of living body cell or tissue using the magnetic field stimulating device
JP2004305120A (en) * 2003-04-08 2004-11-04 Kumamoto Technology & Industry Foundation Method for acclimatizing function of internal organ, tissue or cell constituting these

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125996A (en) * 1992-10-14 1994-05-10 Kanegafuchi Chem Ind Co Ltd Monocyte activation acceleration method by fluctuating magnetic field
JPH07194366A (en) * 1993-02-19 1995-08-01 Jasco Corp Operation chamber for electric cell manipulation apparatus
JP2003506695A (en) * 1999-06-21 2003-02-18 松下電器産業株式会社 Methods and apparatus for in vitro detection and characterization of mental activity using analysis of repetitive electrical activity in neuronal samples
JP2003144136A (en) * 2001-11-13 2003-05-20 Inst Of Physical & Chemical Res Cell stimulator and method for cell stimulation
JP2003274940A (en) * 2002-03-26 2003-09-30 Kumamoto Technology & Industry Foundation Method for growing cultured cell or tissue
JP2004089018A (en) * 2002-08-29 2004-03-25 Japan Science & Technology Corp Electrical stimulator and method for promoting or suppressing growth of biological cell or biological tissue using the same electrical stimulator
JP2004147517A (en) * 2002-10-29 2004-05-27 Hitachi Ltd Apparatus for transfecting gene
JP2004290180A (en) * 2003-03-10 2004-10-21 Japan Science & Technology Agency Magnetic field stimulation device, and method for promoting or inhibiting growth of living body cell or tissue using the magnetic field stimulating device
JP2004305120A (en) * 2003-04-08 2004-11-04 Kumamoto Technology & Industry Foundation Method for acclimatizing function of internal organ, tissue or cell constituting these

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TORRICELLI P. ET AL: "Biomimetic PMMA-based bone substitutes:A comparative in vitro evaluation of the effects of pulsed electromagnetic field exposure", J.BIOMED.MATER.RES.A., vol. 64, no. 1, 2003, pages 182 - 188, XP002989513 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694193B2 (en) 2009-03-03 2017-07-04 Technische Universiteit Eindhoven Device and method for treating cells
CN108554332A (en) * 2018-05-15 2018-09-21 中亚民生科技发展有限公司 The true quantum haulage capacity wave of N-S vectors is implanted into equipment
CN108554332B (en) * 2018-05-15 2024-03-08 中亚民生科技发展有限公司 N-S vector true quantum traction energy wave implantation equipment
FR3090388A1 (en) * 2018-12-20 2020-06-26 Centre National De La Recherche Scientifique Device for exposing a biological sample to at least one electromagnetic field and corresponding system.
WO2023110063A1 (en) * 2021-12-14 2023-06-22 Azyro Sa Apparatus for in-vitro influencing biological cellular material, and use thereof
CN115029238A (en) * 2022-06-08 2022-09-09 哈尔滨医科大学 Experimental device and method for researching biological effect mechanism of pulsed magnetic field

Similar Documents

Publication Publication Date Title
Thrivikraman et al. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective
Koch et al. Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation
Rusinov The dominant focus: Electrophysiological investigations
Potter et al. Closing the loop: stimulation feedback systems for embodied MEA cultures
AU2016200322A1 (en) Apparatus and methods for controlling cellular development
CN101415462A (en) Self-contained electromagnetic cerebrofacial area treatment apparatus and method for using same
US8401635B2 (en) Device and method using integrated neuronal cells and an electronic device
WO2005071057A1 (en) Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device
CN113941378A (en) Multi-cavity electrophysiological micro-nano detection-based neural organoid chip and detection method
Lee et al. The response of L5 pyramidal neurons of the PFC to magnetic stimulation from a micro-coil
O’Hara-Wright et al. Bioelectric potential in next-generation organoids: electrical stimulation to enhance 3D structures of the central nervous system
JP2006271907A (en) Apparatus for stimulating living body, iontophoretic apparatus or the like, and program for stimulating living body and program for iontophoretic apparatus or the like
JP2004290180A (en) Magnetic field stimulation device, and method for promoting or inhibiting growth of living body cell or tissue using the magnetic field stimulating device
Dedola et al. Ultrasound stimulations induce prolonged depolarization and fast action potentials in leech neurons
Kim et al. An implantable electrical bioreactor for enhancement of cell viability
WO2003012029A2 (en) Method for selective enhancement of cell growth
JP4214742B2 (en) Electrical stimulation device and method for promoting or inhibiting growth of biological cells or biological tissue using the electrical stimulation device
Meyer et al. Magnetic stimulation and depression of mammalian networks in primary neuronal cell cultures
Stieglitz Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems
Funke Transcranial magnetic stimulation of rodents: repetitive transcranial magnetic stimulation—a noninvasive way to induce neural plasticity in vivo and in vitro
JP2003274940A (en) Method for growing cultured cell or tissue
JP2007209233A (en) Electro-stimulator generating morbid electric signal and/or bio-electric signal
JP2004305120A (en) Method for acclimatizing function of internal organ, tissue or cell constituting these
Yu et al. Vertically aligned carbon nanofiber neural chip for interfacing with neurological system
Aubier et al. Mixed Focused UltraSound (FUS)/fluorescence imaging platform for characterization of the spatial-temporal dynamics of FUS-evoked calcium fluxes in an in vitro human cell model

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase