JPH07194366A - Operation chamber for electric cell manipulation apparatus - Google Patents

Operation chamber for electric cell manipulation apparatus

Info

Publication number
JPH07194366A
JPH07194366A JP5070674A JP7067493A JPH07194366A JP H07194366 A JPH07194366 A JP H07194366A JP 5070674 A JP5070674 A JP 5070674A JP 7067493 A JP7067493 A JP 7067493A JP H07194366 A JPH07194366 A JP H07194366A
Authority
JP
Japan
Prior art keywords
flat plate
electrodes
nucleic acid
spacer
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5070674A
Other languages
Japanese (ja)
Other versions
JP2565463B2 (en
Inventor
Tadaaki Hibi
忠明 日比
Hiromi Kano
広美 狩野
Kiyoji Sugiura
己代治 杉浦
Takeshi Kazami
武 風見
Shigeyuki Kimura
茂行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO NOGYO SEIBUTSU SHIGEN KENKYUSHO
Jasco Corp
Original Assignee
NORIN SUISANSYO NOGYO SEIBUTSU SHIGEN KENKYUSHO
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO NOGYO SEIBUTSU SHIGEN KENKYUSHO, Jasco Corp filed Critical NORIN SUISANSYO NOGYO SEIBUTSU SHIGEN KENKYUSHO
Priority to JP5070674A priority Critical patent/JP2565463B2/en
Publication of JPH07194366A publication Critical patent/JPH07194366A/en
Application granted granted Critical
Publication of JP2565463B2 publication Critical patent/JP2565463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain a manipulation chamber useful for an electric cell manipulation apparatus capable of effectively performing the cell fusion and the introduction of nucleic acid. CONSTITUTION:This manipulation chamber is produced by preparing a flat plate spacer having a cut space corresponding to the space to be used in the cell fusion or the introduction of nucleic acid and a pair of flat plate electrodes for sandwiching the flat plate spacer and sandwiching the flat plate spacer with the electrodes by the aid of a pressing means to facilitate the assembling and disassembling of the plates. The distance between the electrodes and the capacity of the chamber are arbitrarily selected by preparing plural flat plate spacers having different size, thickness and cut space volume and plural flat plate electrodes having different size and combining a flat plate spacer and a pair of flat plate electrodes selected from the above spacers and electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気的方法による細胞
融合と核酸導入を効果的に行うための電気的細胞操作装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric cell manipulator for effectively performing cell fusion and nucleic acid introduction by an electric method.

【0002】[0002]

【従来の技術】細胞融合法としては主にポリエチレング
リコール(PEG)を用いる化学的融合法が用いられて
いるが、この方法では(i)PEGは細胞に対して強い
毒性を持っている、(ii)融合するにあたり最適な諸
条件を見出すのに手間がかかる、(iii)融合に際し
て高度な技術が要求され、特定の技術に習熟した人にし
か使えない、(iv)融合効率が低い等の欠点を有して
いる。これに対して、電気的細胞融合法は、高度な技術
が不要で、簡単に効率よく融合させることができ、細胞
に与える毒性がなく、高活性をもったままの状態で細胞
を融合させることができるという利点がある。電気的細
胞融合法は、1981年西ドイツのZimmerman
nが確立したものであり、その原理は次の通りである。
すなわち、平行電極間に交流電圧をかけそこに細胞を導
入すると、細胞は電流密度の高い方へ引き寄せられ数珠
状にならぶ。この状態で数μsec〜数十μsec単位
の直流パルス電流を電極間にかけることにより細胞膜の
電気伝導度が瞬間的に低下し膜を構成する脂質二重層の
過逆的乱れとその再構成が行われ、その結果細胞融合が
起こるものである。従来、この電気的融合法には、
(a)微小電極法、(b)平行電極法、(c)上記Zi
mmermann等の方法等が知られているが、(a)
は融合効率が低く、手間がかかるという欠点があり、
(b)は融合率が低い(1〜3%)が、一度に大量の細
胞融合(プロトプラスト)を扱え、融合細胞が電極に付
着しないなどの利点がある。また、(c)は、(a)、
(b)に比べ融合率が高いため、最も実用的な方法とし
て利用されているが、融合細胞が電極表面に付着するた
め、融合細胞を傷つけることなく回収するための電極材
料を如何に開発するか及び融合細胞をいかに大量にしか
も迅速に作成するかが重要な課題とされていた。一方、
電気的核酸導入法は、1982年にNeumann等に
より開発された方法で細胞と核酸とを混合して電極に懸
濁した後、これに数μsec〜数十μsecの直流パル
ス電位を印加することによって核酸を細胞内に導入する
方法であるが、この場合にも、導入効率を高めることが
重要な課題であった。
2. Description of the Related Art As a cell fusion method, a chemical fusion method using polyethylene glycol (PEG) is mainly used. In this method, (i) PEG has a strong toxicity to cells ( ii) It takes time and effort to find the optimal conditions for fusion, (iii) advanced technology is required for fusion, and it can be used only by those who are familiar with specific technology, (iv) low fusion efficiency, etc. It has drawbacks. On the other hand, the electrical cell fusion method does not require advanced technology, can be easily and efficiently fused, does not cause toxicity to cells, and fuses cells while maintaining high activity. The advantage is that The electrical cell fusion method was introduced in 1981 by Zimmerman in West Germany.
n is established, and its principle is as follows.
That is, when an AC voltage is applied between the parallel electrodes to introduce cells into the cells, the cells are attracted to the side having a higher current density and are arranged in a bead shape. In this state, by applying a direct current pulse current of several μsec to several tens of μsec between the electrodes, the electrical conductivity of the cell membrane is instantaneously decreased, and the reversible disorder of the lipid bilayer constituting the membrane and its reconstitution are performed. That is, cell fusion occurs as a result. Conventionally, in this electrical fusion method,
(A) Microelectrode method, (b) Parallel electrode method, (c) Zi
Although methods such as mmmermann are known, (a)
Has the drawback of low fusion efficiency and time-consuming
(B) has a low fusion rate (1 to 3%), but has an advantage that a large amount of cell fusion (protoplast) can be handled at one time and the fused cells do not adhere to the electrode. Also, (c) is (a),
Since it has a higher fusion rate than (b), it is used as the most practical method, but since fused cells adhere to the electrode surface, how to develop an electrode material for recovering fused cells without damaging them It has been an important subject how to produce fused cells in large quantities and rapidly. on the other hand,
The electrical nucleic acid introduction method is a method developed by Neumann et al. In 1982, in which cells and nucleic acids are mixed and suspended in an electrode, and then a direct current pulse potential of several μsec to several tens μsec is applied to the mixture. Although this is a method of introducing a nucleic acid into cells, in this case as well, increasing the introduction efficiency was an important issue.

【0003】[0003]

【発明が解決しようとする課題】本発明は細胞融合と核
酸導入ができる電気的細胞操作装置の従来の平行電極及
び操作チャンバーの諸欠点、すなわち、i)融合率や導
入率が低い、ii)融合細胞を傷つける、iii)細胞
が電極に付着する、iv)融合細胞を大量、迅速に作成
できない等の問題点を一挙に解決するための新規な操作
チャンバーを提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has various drawbacks of conventional parallel electrodes and operation chambers of an electric cell manipulation device capable of cell fusion and nucleic acid introduction, namely, i) low fusion rate and introduction rate, ii) The purpose of the present invention is to provide a new operation chamber for solving problems such as damage to fused cells, iii) cells attached to electrodes, and iv) inability to produce fused cells in large quantities and rapidly. is there.

【0004】[0004]

【課題を解決するための手段】本発明者達は電極材料と
操作チャンバーの構造について研究を重ねた結果、電気
分解を起こしにくい化学的に安定な物質を用い、細胞サ
イズに比較して表面の凹凸がほとんど無視できる程度の
鏡面状態を有する平板電極を作成した。操作チャンバー
は、細胞融合及び核酸導入に用いるスペース部分を切り
取った平板スペーサーをこの二枚の平板電極で挟む構造
にすることにより従来の欠点を克服した電気的細胞操作
装置のための電極を提供することに成功したものであ
る。すなわち、本発明は電気的細胞融合又は核酸導入に
用いるチャンバーの二つの電極に、電圧と周期を制御可
能な発振器からの交流電位とパルス圧とパルス巾とパル
ス数を制御可能なパルス発振器からの直流パルス電位を
それぞれ印加して細胞融合又は核酸導入を行う電気的細
胞操作装置において、電極表面を細胞サイズに比較して
ほとんど無視できる程度に均一に平坦で、かつ電気分解
を起こしにくい化学的安定な物質で構成するもので、ご
れらの電極は、表面を鏡面研磨したガラス、石英、サフ
ァイヤ、プラスチック等の非金属材質や、アルミニウ
ム、ステンレス、銀等の金属材質等の平板基板に、金、
白金等の金属を蒸着したものを用いることを特徴とする
ものである。これらの電極としては、金属平板基板に、
金、白金、チタン等をメッキし表面を鏡面にした該金属
平板を電極としたものでも良く、あるいはまた白金、チ
タン、ステンレス等の金属平板を電解研磨し、該金属平
板を電極として用いても良い。また、機械加工もしくは
電解研磨した平板基板をイオンプレーティング加工し、
該加工を施した基板を電極として用いても良い。
As a result of repeated studies on the structure of the electrode material and the operation chamber, the present inventors have used a chemically stable substance that is unlikely to cause electrolysis, and A flat plate electrode having a mirror surface state in which unevenness is almost negligible was prepared. The operation chamber has a structure in which a flat plate spacer having a space portion used for cell fusion and nucleic acid introduction is sandwiched between the two flat plate electrodes to provide an electrode for an electric cell operation device that overcomes the conventional drawbacks. It was a successful one. That is, the present invention relates to two electrodes of a chamber used for electrical cell fusion or nucleic acid introduction, in which an AC potential from an oscillator capable of controlling voltage and cycle, a pulse pressure, a pulse width, and a pulse oscillator capable of controlling the number of pulses are controlled. In an electric cell manipulation device that applies cell fusion or nucleic acid introduction by applying DC pulse potentials respectively, the electrode surface is chemically flat and almost even compared to the cell size to a level that is almost negligible, and chemically stable against electrolysis. These electrodes are made of a non-metallic material such as glass, quartz, sapphire, or plastic whose surface is mirror-polished, or a flat substrate made of a metallic material such as aluminum, stainless, or silver. ,
It is characterized by using a vapor-deposited metal such as platinum. As these electrodes, on a flat metal substrate,
The metal flat plate having a mirror-finished surface plated with gold, platinum, titanium or the like may be used as the electrode, or the metal flat plate of platinum, titanium, stainless steel or the like may be electrolytically polished and the metal flat plate may be used as the electrode. good. Ion-plating a flat plate that has been machined or electropolished,
The processed substrate may be used as an electrode.

【0005】本発明の操作チャンバーの構造は、細胞融
合又は核酸導入に用いるスペースに該当する部分を切り
取った平板スペ−サーと、該平板スペーサーを挟む二枚
の平板電極を、組立て分解が容易に出来るように圧着手
段で圧着した構成となっている。大きさ、厚さ、切り取
ったスペースが異なった複数の平板スペーサーと、大き
さの異なった複数の平板電極を用意し、該平板スペーサ
ーを挟む二枚の該平板電極を組立てることにより、電極
間の距離及びチャンバー容量を可変に出来るものであ
る。
The structure of the operation chamber of the present invention is such that a plate spacer having a portion corresponding to a space used for cell fusion or nucleic acid introduction and a plate electrode sandwiching the plate spacer are easily assembled and disassembled. It is configured to be crimped by crimping means so that it can be performed. By preparing a plurality of flat plate spacers having different sizes, thicknesses and cut spaces and a plurality of flat plate electrodes having different sizes, and assembling two flat plate electrodes sandwiching the flat plate spacer, The distance and chamber volume can be made variable.

【0006】[0006]

【実施例】本発明の具体例を第1図に模式的に示す。操
作チャンバーは、平板スペ−サー3と、それを挟む電極
1、2から構成されている。電極1、2に交流発振器4
及びパルス発振器5がつながれており、交流の周期、電
圧及びパルス電圧、パルス巾はオシロスコープ6でモニ
ターする。この装置を利用した電気的細胞融合の過程を
第2図を用いて説明する。上欄には、電極に印加するシ
グナルシーケンスを、下欄には、それに対応する細胞融
合の過程を模式的に示す。
EXAMPLE A concrete example of the present invention is schematically shown in FIG. The operation chamber is composed of a flat plate spacer 3 and electrodes 1 and 2 sandwiching it. AC oscillator 4 on electrodes 1 and 2
And a pulse oscillator 5 are connected, and the AC cycle, voltage and pulse voltage, and pulse width are monitored by the oscilloscope 6. The process of electrical cell fusion using this device will be described with reference to FIG. The upper column shows the signal sequence applied to the electrodes, and the lower column schematically shows the corresponding cell fusion process.

【0007】過程(1)では電極に電圧が印加されてい
ない。この状態で細胞を第1図の平板電極1、2に挟ま
れたスペーサー3のチャンバー内に導入する。過程
(2)では発振器4(第1図)からの交流成分の電位の
印加により細胞が数珠状に配列する。過程(3)では直
流パルスにより細胞接触面で細胞膜の一時崩壊が起き
る。過程(4)では細胞膜の再構成にともなって細胞融
合が起こる。従来電気細胞操作装置に使用されている電
極及びチャンバーは第3図に示すように各種のタイプが
ある。a)は、白金線を平行にしたもの。b)は、円の
中心の電極とこれを同心円上に囲む電極を配置したも
の。c)は、大量の融合細胞を得る様に電極を配列した
もの、d)は、異なった種類の雑種融合細胞作成のも
の。これらに使用されている電極は、白金線白金板
ステンレス板等でありいずれも表面が平滑な鏡面状で
ないため電場電流が不均一になり、かつその表面に細胞
が付着する欠点を有していた。
In step (1), no voltage is applied to the electrodes. In this state, the cells are introduced into the chamber of the spacer 3 sandwiched between the plate electrodes 1 and 2 in FIG. In the process (2), cells are arranged in a beaded pattern by applying the potential of the AC component from the oscillator 4 (FIG. 1). In the process (3), the direct current pulse causes a temporary collapse of the cell membrane at the cell contact surface. In the process (4), cell fusion occurs with the reconstitution of the cell membrane. As shown in FIG. 3, there are various types of electrodes and chambers conventionally used in electric cell manipulation devices. a) is a parallel platinum wire. In b), the electrode at the center of the circle and the electrodes surrounding it concentrically are arranged. c) is an array of electrodes so as to obtain a large amount of fused cells, and d) is a hybrid fused cell of a different type. The electrodes used for these were platinum wire, platinum plate, stainless steel plate, etc., and all had the disadvantage that the electric field current was non-uniform because the surface was not a smooth mirror surface, and cells adhered to the surface. .

【0008】本発明に於いては、電気分解を起こしにく
い物質の表面を鏡面状にした平行平板電極を用い操作チ
ャンバーの構造を工夫することにより、電場そのものが
均質になるとともに細胞が電極表面に付着せず電場に均
一にさらされた細胞が高い融合率を示すことが認められ
た。実施例においては、ガラス基板に金蒸着した二枚の
電極でスペーサーをサンドイッチし、クリップで圧着し
ている。二枚の電極には電極線をつけ電位が印加され
る。
In the present invention, by devising the structure of the operation chamber by using a parallel plate electrode in which the surface of a substance which is less likely to undergo electrolysis is mirror-finished, the electric field itself becomes homogeneous and cells are brought into contact with the electrode surface. It was observed that cells that were not attached and were uniformly exposed to the electric field showed a high fusion rate. In the example, a spacer is sandwiched between two electrodes vapor-deposited with gold on a glass substrate, and they are pressure-bonded with clips. Electrodes are attached to the two electrodes and a potential is applied.

【0009】スペーサーは、厚さ200μmで、中央部
分を切り取ってあるポリビニルクロライド板を用いてい
る。10mm×10mmに切り取ってある部分と両電極
にはさまれた部分が細胞操作のためのスペースになる。
電極間隔及び操作チャンバーの容量は、スペーサーの厚
みを変えることにより調整可能であり、また電極のサイ
ズも自由に大きく出来る。上記の操作チャンバーを用
い、第1図に示される装置で細胞融合並びに核酸導入の
実験を行った。
As the spacer, a polyvinyl chloride plate having a thickness of 200 μm and a central portion cut off is used. The part cut out to 10 mm × 10 mm and the part sandwiched between both electrodes become a space for cell manipulation.
The electrode interval and the capacity of the operating chamber can be adjusted by changing the thickness of the spacer, and the size of the electrode can be freely increased. Experiments of cell fusion and nucleic acid introduction were carried out using the above-mentioned operation chamber and the apparatus shown in FIG.

【0010】1.実験方法 (1)供試材料;タバコ葉肉プロトプラスト(品種;キ
サンチNN)およびタバコモザイクウイルス(TMV)
−RNAを供試した。 (2)細胞融合法:プロトプラストを約2×10/m
lで100μMCaCl−0.5Mマンニトールに懸
濁し、電極間隔200μmの上記チャンバー内で、周波
数500KHzで電圧400V/cm〜500V/cm
の交流を電極間に印加し細胞を配向配列させた後、0.
6kV/cm〜1.0kV/cmの電位でパルス巾50
μsecの直流パルスを1回与えた。 (3)核酸導入法:細胞融合法の場合と同じように、プ
ロトプラストを約2×10/mlで100μMCaC
−0.5Mマンニトールに懸濁し、10μg/ml
TMV−RNAを添加した後、交流成分の電極への印加
をせずに、0.6kV/cm〜1.0kV/cmの電位
でパルス巾50μsecの直流パルスを数回印加した。
1. Experimental method (1) Test materials: tobacco mesophyll protoplasts (variety: xanthi NN) and tobacco mosaic virus (TMV)
-RNA was tested. (2) Cell fusion method: about 2 × 10 5 / m of protoplasts
in 100 μM CaCl 2 -0.5M mannitol at a voltage of 400 V / cm to 500 V / cm at a frequency of 500 KHz in the chamber having an electrode interval of 200 μm.
After alternating current is applied between the electrodes to orient the cells,
Pulse width 50 at a potential of 6 kV / cm to 1.0 kV / cm
A direct current pulse of μsec was applied once. (3) Nucleic acid introduction method: As in the case of the cell fusion method, protoplasts were added at about 2 × 10 5 / ml to 100 μM CaC.
was suspended in l 2-0.5 M mannitol, 10 [mu] g / ml
After adding TMV-RNA, a DC pulse having a pulse width of 50 μsec was applied several times at a potential of 0.6 kV / cm to 1.0 kV / cm without applying an AC component to the electrodes.

【0011】2.実験結果 (1)予備試験として融合に及ぼすパルス電圧の影響を
調べたところ、100μM Ca++存在下に、パル
ス電圧を上げると、400V/cmから融合率が上昇
し、850V/cmでは全プロトプラスト内重連配列し
たプロトプラストの約90%以上が融合した。それ以上
の電圧では破砕プロトプラストが増加するため、全体の
融合率は低下した(第5図)。 (2)本実験として本発明の操作チャンバーを用い、上
記最適条件下(850V/cmのパルス印加)で融合実
験を行ったところ、全プロトプラストの約46%が融合
した。 (3)タバコ葉肉プロトプラストとニンジン根部プロト
プラストを融合させたところ、両者の雑種融合プロトプ
ラストが形成された。 (4)核酸導入実験ではパルス印加後、プロトプラスト
をAoki and Takebe(1969)の培養
液中で、28℃、40時間培養し、蛍光抗体法によって
感染率を測定したところ、感染率はパルス電圧400V
/cmから上昇し、800V/cmでは全プロトプラス
トの約95%が感染した(第5図)。この際のプロトプ
ラスト生存率は、パルス処理前と同じく約95%であっ
た。
2. Experimental results (1) As a preliminary test, when the effect of pulse voltage on fusion was examined, when the pulse voltage was increased in the presence of 100 μM Ca ++, the fusion rate increased from 400 V / cm, and at 850 V / cm, within all protoplasts. About 90% or more of the protoplasts in the double sequence were fused. At higher voltage, the fragmentation protoplasts increased and the overall fusion rate decreased (Fig. 5). (2) When the fusion experiment was performed under the optimum conditions (pulse application of 850 V / cm) using the operation chamber of the present invention as this experiment, about 46% of all protoplasts were fused. (3) When tobacco mesophyll protoplasts and carrot root protoplasts were fused, hybrid fused protoplasts of both were formed. (4) In the nucleic acid introduction experiment, after pulse application, protoplasts were cultured in Aoki and Takebe (1969) culture solution at 28 ° C. for 40 hours, and the infection rate was measured by the fluorescent antibody method.
/ Cm, and at 800 V / cm, about 95% of all protoplasts were infected (Fig. 5). The protoplast survival rate at this time was about 95%, which was the same as before the pulse treatment.

【0012】[0012]

【発明の効果】電気的細胞操作装置に本発明による操作
チャンバーを用いることにより、高融合率が得られると
ともに融合細胞を全く傷付けることなく、しかも細胞が
電極に付着しない等の優れた効果が明らかになった。さ
らに本発明の電極を用いて核酸導入の実験をした結果、
電気的細胞融合と電気的核酸導入のための最適な電気的
条件がほぼ共通であることが明らかになった。更に植物
のプロトプラストにウイルスRNAを導入した結果、全
プロトプラストの約95%が感染し、従来法に比較して
極めて高い核酸導入率が得られたことから、本発明の操
作チャンバーが核酸導入にも非常に有効であることが判
明した。このことは、遺伝子組換を行ったDNAなどの
核酸を動植物及び微生物細胞に効率的に導入する方法と
しても極めて優れていることを示すものである。
EFFECTS OF THE INVENTION By using the operation chamber according to the present invention in the electrical cell operation device, a high fusion rate is obtained, and excellent effects such as no damage to the fused cells and no adhesion of the cells to the electrodes are revealed. Became. As a result of further experiment of nucleic acid introduction using the electrode of the present invention,
It was revealed that the optimum electrical conditions for electric cell fusion and electric nucleic acid introduction are almost common. Furthermore, as a result of introducing viral RNA into plant protoplasts, about 95% of all protoplasts were infected, and a very high nucleic acid introduction rate was obtained as compared with the conventional method. It turned out to be very effective. This shows that it is extremely excellent as a method for efficiently introducing genetically modified nucleic acid such as DNA into animal and plant cells and microbial cells.

【0013】[0013]

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明を用いる装置全体の概略図である。第
2図は、細胞融合の過程と電極間電位波形との関係を示
す模式図である。第3図は、種々の型をした操作チャン
バーの概略図である。第4図は、本発明による操作チャ
ンバーの構造図である。第5図は、本発明による実施例
としてプロトプラストの電気的融合率TMV−RNAに
よるプロトプラストの核酸導入率及びプロトプラスト破
砕率とパルス電圧との関係を示す図である。 1,2…電極、 3…スペーサー 4…交流発振器 5…パルス発振器 6…オシロスコープ。
FIG. 1 is a schematic view of the whole apparatus using the present invention. FIG. 2 is a schematic diagram showing the relationship between the cell fusion process and the interelectrode potential waveform. FIG. 3 is a schematic view of various types of operating chambers. FIG. 4 is a structural diagram of an operation chamber according to the present invention. FIG. 5 is a diagram showing the relationship between the electrofusion rate of protoplasts, the nucleic acid introduction rate of protoplasts by TMV-RNA, the protoplast crushing rate, and the pulse voltage as an example according to the present invention. 1, 2 ... Electrodes, 3 ... Spacers, 4 ... AC oscillator, 5 ... Pulse oscillator, 6 ... Oscilloscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 己代治 茨城県新治郡桜村並木4丁目1050番地926 棟104号室 (72)発明者 風見 武 茨城県新治郡新治村藤沢1616番地 (72)発明者 木村 茂行 東京都日野市西平山5−16−10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Miyoji Sugiura 4-chome, 1050, Namiki, Sakuramura, Shinji-gun, Ibaraki 926 Room 104 (72) Inventor Takeshi Kazami 1616, Fujisawa, Shinji-mura, Ibaraki (72) Invention Shigeyuki Kimura 5-16-10 Nishihirayama, Hino City, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気的細胞融合又は核酸誘導に用いるチャ
ンバーの二つの電極に、電圧と周期を制御可能な発振器
からの交流電位とパルス電圧とパルス巾とパルス数を制
御可能なパルス発振器からの直流パルス電位をそれぞれ
印加して細胞融合又は核酸導入を行う電気的細胞操作装
置に使用するための、細胞融合又は核酸導入に用いるス
ペース分を切り取った平板スペーサーと、該平板スペー
サーを挟む二枚の平板電極を、組立て分解できるように
圧接することを特徴とする操作チャンバー。
1. An AC potential from an oscillator capable of controlling a voltage and a period, a pulse voltage, a pulse width, and a pulse oscillator capable of controlling a pulse width and a pulse number are provided to two electrodes of a chamber used for electrical cell fusion or nucleic acid induction. A plate spacer for use in an electrical cell manipulation device for cell fusion or nucleic acid introduction by applying a DC pulse potential, respectively, and a flat plate spacer in which a space used for cell fusion or nucleic acid introduction is cut off, and two flat plate spacers sandwiching the flat plate spacer. An operation chamber characterized in that a flat plate electrode is press-contacted so that it can be assembled and disassembled.
【請求項2】平板スペーサーが大きさ、厚さ、切り取っ
たスペースが異なった複数の平板スペーサーであり、平
板電極が大きさの異なった平板電極であって、該平板ス
ペーサーを挟む二枚の該平板電極を組み立てることによ
り、電極間の距離及びチャンバー容量を容易に可変に出
来るものである請求項1記載の操作チャンバー。
2. The flat plate spacer is a plurality of flat plate spacers having different sizes, thicknesses, and cut spaces, and the flat plate electrode is a flat plate electrode having different sizes, and the two flat plate spacers sandwiching the flat plate spacer are sandwiched between the flat plate spacers. The operation chamber according to claim 1, wherein the distance between the electrodes and the chamber capacity can be easily changed by assembling the flat plate electrodes.
JP5070674A 1993-02-19 1993-02-19 Operating chamber for electrical cell manipulation device Expired - Lifetime JP2565463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5070674A JP2565463B2 (en) 1993-02-19 1993-02-19 Operating chamber for electrical cell manipulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5070674A JP2565463B2 (en) 1993-02-19 1993-02-19 Operating chamber for electrical cell manipulation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61190791A Division JPS6349065A (en) 1986-08-14 1986-08-14 Electrode for electrical cell operation apparatus and operation chamber

Publications (2)

Publication Number Publication Date
JPH07194366A true JPH07194366A (en) 1995-08-01
JP2565463B2 JP2565463B2 (en) 1996-12-18

Family

ID=13438439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5070674A Expired - Lifetime JP2565463B2 (en) 1993-02-19 1993-02-19 Operating chamber for electrical cell manipulation device

Country Status (1)

Country Link
JP (1) JP2565463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071057A1 (en) * 2004-01-22 2005-08-04 Japan Science And Technology Agency Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137090A (en) * 1984-07-27 1986-02-21 バイオテクノロジー アンド エクスペリメンタル リサーチ インコーポレーテツド Apparatus for fusing living cell by electricity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137090A (en) * 1984-07-27 1986-02-21 バイオテクノロジー アンド エクスペリメンタル リサーチ インコーポレーテツド Apparatus for fusing living cell by electricity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071057A1 (en) * 2004-01-22 2005-08-04 Japan Science And Technology Agency Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device

Also Published As

Publication number Publication date
JP2565463B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US5232856A (en) Electroporation device
Weaver Electroporation of biological membranes from multicellular to nano scales
JP4217618B2 (en) Nonlinear amplitude dielectrophoresis waveform for cell fusion
TWI375023B (en) A cellular microarray and its microfabrication method
RU2408006C2 (en) System with high impedance to generate electric fields and method of its use
Kim et al. A multi-channel electroporation microchip for gene transfection in mammalian cells
US4800163A (en) Flow chamber and electro-manipulator incorporating same
JPH05506605A (en) Manipulation of solid, semi-solid or liquid substances
US20130011899A1 (en) Cell fusion chamber, cell fusion device, and method for cell fusion using the same
JP3099049B2 (en) High-throughput electrodes for electrical cell fusion and electrical nucleic acid transfer
US20090000948A1 (en) Methods for Improving Efficiency of Cell Electroporation Using Dielectrophoreses
EP1093515B1 (en) Electrofusion chamber
US4830726A (en) Separation of large DNA molecules in alternating asymmetric electric fields
JP2565463B2 (en) Operating chamber for electrical cell manipulation device
JPS6349065A (en) Electrode for electrical cell operation apparatus and operation chamber
US6355485B1 (en) Electrofusion chamber
JP2004147517A (en) Apparatus for transfecting gene
JPH0687782B2 (en) Cell electroporation method and device
Neumann Electric gene transfer into culture cells
WO2009140161A1 (en) Electroporation of adherent cells with an array of closely spaced electrodes
AU2001241535A1 (en) Electrofusion chamber
JP2691230B2 (en) Flow chamber
CN108060078B (en) Gold-plated surface silicon nano-column electrode and application thereof
Raptis et al. In situ electroporation of large numbers of cells using minimal volumes of material
Saulis et al. Electroporation of biological membranes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term