JPH06125996A - Monocyte activation acceleration method by fluctuating magnetic field - Google Patents

Monocyte activation acceleration method by fluctuating magnetic field

Info

Publication number
JPH06125996A
JPH06125996A JP4276232A JP27623292A JPH06125996A JP H06125996 A JPH06125996 A JP H06125996A JP 4276232 A JP4276232 A JP 4276232A JP 27623292 A JP27623292 A JP 27623292A JP H06125996 A JPH06125996 A JP H06125996A
Authority
JP
Japan
Prior art keywords
magnetic field
monocytes
ifn
fluctuating magnetic
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4276232A
Other languages
Japanese (ja)
Inventor
Kohei Fukaya
浩平 深谷
Toshio Yuta
敏夫 勇田
Takashi Murabayashi
俊 村林
Ayumi Kendo
歩 見藤
Hiroshi Miyazaki
浩 宮崎
Sadami Sekiguchi
定美 関口
Tsuneo Takahashi
恒夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4276232A priority Critical patent/JPH06125996A/en
Publication of JPH06125996A publication Critical patent/JPH06125996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Treatment Devices (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PURPOSE:To accelerate activation of monocytes of mammals, and improve antiviral property of the monocytes by getting the monocytes with IFN-gamma, and applying a fluctuating magnetic field to the monocytes in activating the monocytes. CONSTITUTION:In accelerating monocytes of mammals using IFN-gamma as glycoprotein of a low molecular weight secreted by production of lymphocytes by stimulation of mitogen to achieve some protecting effect or have relation to an immunity mechanism in curing virus infection or cancer, the monocytes are put to get in contact with the INF-gamma, and a fluctuating magnetic field is applied to them. The monocytes are of human periperal blood, and a pulse magnetic field is used as the fluctuating magnetic field, where its frequency, average magnetic field strength, and maximum magnetic field strength are set at 0.1-10000Hz, 1X10<-6>-1T, and 1X10<-5>-10T respectively. By stimulation of a small quantity of IFN-gamma, therefore, the monocytes can be activated securely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変動磁場を使用して、
単球を活性化させる方法に関する。さらに詳しくは、単
球をIFN−γと接触させ、同時に変動磁場をかけて、
該単球を活性化させる方法に関する。
FIELD OF THE INVENTION The present invention uses a varying magnetic field to
It relates to a method of activating monocytes. More specifically, the monocytes are brought into contact with IFN-γ, and a varying magnetic field is applied at the same time,
It relates to a method of activating the monocytes.

【0002】[0002]

【従来の技術】IFN−γは、マイトジェンの刺激によ
り、リンパ球が産生し、分泌される低分子量の糖タンパ
ク質である。IFN−γは、ウイルス感染に対してなん
らかの防御効果を発揮することや免疫機構に関与してい
ることが知られている。
2. Description of the Related Art IFN-γ is a low molecular weight glycoprotein produced and secreted by lymphocytes upon stimulation with mitogen. It is known that IFN-γ exerts some protective effect against viral infection and is involved in the immune mechanism.

【0003】現在、ウイルス感染の治療あるいは癌の治
療のために、IFN−γを患者に直接投与することや患
者から採取した細胞を活性化することが行われている。
しかし、IFN−γは、副作用が強いため、十分な治療
効果を得るために多量に投与したり使用したりすること
が困難な場合が多い。さらに、個体によってはIFN−
γに感受性が低い場合もある。従って、より少量のIF
N−γで確実に細胞の活性化を行わせる手段が望まれて
いる。
Currently, in order to treat viral infection or cancer, IFN-γ is directly administered to a patient or cells collected from the patient are activated.
However, since IFN-γ has strong side effects, it is often difficult to administer or use a large amount of IFN-γ in order to obtain a sufficient therapeutic effect. Furthermore, depending on the individual, IFN-
It may be less sensitive to γ. Therefore less IF
A means for reliably activating cells with N-γ is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の欠点
を解決しようとするもので、その目的は、変動磁場を用
いることによって、少量のIFN−γによる刺激によっ
て単球の活性化が確実に行われるような方法を提供する
ことにある。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks, and its purpose is to ensure activation of monocytes by stimulation with a small amount of IFN-γ by using a variable magnetic field. The purpose is to provide a method such as

【0005】[0005]

【課題を解決するための手段】発明者らは、単球をIF
N−γで活性化させる際に、同時に変動磁場をかけるこ
とにより、従来では作用しないような少量のIFN−γ
で細胞が活性化されること、および従来と同量のIFN
−γで、単球の活性化が大幅に促進されることを見い出
し、本発明を完成するに至った。
SUMMARY OF THE INVENTION The inventors
By applying a fluctuating magnetic field at the same time when activating with N-γ, a small amount of IFN-γ that does not work conventionally is obtained.
Activation of cells and the same amount of IFN as before
It was found that -γ significantly promotes the activation of monocytes, and completed the present invention.

【0006】本発明の単球を活性化させる方法は、
(i)該単球をIFN−γと接触させる工程、および
(ii)該単球に変動磁場をかける工程、を包含する。
The method of activating monocytes of the present invention comprises:
(I) contacting the monocytes with IFN-γ, and (ii) applying a varying magnetic field to the monocytes.

【0007】好ましい実施態様においては、上記単球
は、ヒトの末梢血由来である。
[0007] In a preferred embodiment, the monocytes are derived from human peripheral blood.

【0008】好ましい実施態様においては、上記変動磁
場はパルス磁場である。
In a preferred embodiment, the varying magnetic field is a pulsed magnetic field.

【0009】好ましい実施態様においては、上記変動磁
場は、周波数0.1〜10000Hz、平均磁場強度1
×10-6〜1T、および最大磁場強度1×10-5〜10
Tである。
In a preferred embodiment, the fluctuating magnetic field has a frequency of 0.1 to 10000 Hz and an average magnetic field strength of 1
× 10 -6 to 1 T, and maximum magnetic field strength 1 × 10 -5 to 10
T.

【0010】本発明によって活性化が促進される単球
は、任意の哺乳類動物に由来する単球であり、好ましく
はヒト末梢血由来である。このような単球は、例えば、
生体の血液を採取し、この血液から単離精製することに
よって得られる。細胞の単離精製法としては、例えば、
密度勾配遠心分離法などの公知の任意の方法が用いられ
得る。
The monocytes whose activation is promoted by the present invention are monocytes derived from any mammal, preferably human peripheral blood. Such monocytes are, for example,
It is obtained by collecting blood of a living body and isolating and purifying it from this blood. As a cell isolation and purification method, for example,
Any known method such as a density gradient centrifugation method can be used.

【0011】本発明で、「単球が活性化」されるとは、
単球が、生理活性物質をより多く分泌するようになるこ
と、細菌や異物に対する細胞障害活性を有するようにな
ること、抗腫瘍活性を有するようになることなどをい
う。具体的には、単球の活性化は、例えば、細胞内カル
シウムの増加あるいは細胞のグルコース消費量の増加に
より測定され得る。
In the present invention, "monocyte activation" means that
It means that monocytes secrete more physiologically active substances, have cytotoxic activity against bacteria and foreign substances, and have antitumor activity. Specifically, monocyte activation can be measured, for example, by an increase in intracellular calcium or an increase in cellular glucose consumption.

【0012】本発明に用いられるIFN−γの由来は特
に限定されず、任意の生物に由来する天然のIFN−
γ、および遺伝子操作技術によって得られるIFN−γ
のいずれであってもよい。IFN−γは、適当な緩衝液
に溶解させるかあるいは担体に固定して用いられ得る。
IFN−γを単球に接触させるには、任意のあらゆる方
法が用いられ得る。例えば、IFN−γを緩衝液に溶解
させて用いる場合、その溶液と単離精製して得られた単
球を含む緩衝液とを混合し、適当にインキュベートさせ
る方法を用い得る。さらに担体に固定した単球に、IF
N−γ溶液を接触させることもできる。IFN−γを適
当な手段を用いて担体に固定して使用する場合、例えば
該IFN−γ固定担体を、単球を含む溶液に接触させる
方法を用い得る。本発明で用いる場合、IFN−γの使
用量は、IFN−γ溶液単独で単球の活性化を行う場合
よりも少量でよく、好ましくは、細胞1〜2×106
/mlを含む培養液あるいは体液に0.1IU/ml〜
300IU/mlの割合で使用する。
The origin of IFN-γ used in the present invention is not particularly limited, and natural IFN-derived from any organism is used.
γ, and IFN-γ obtained by genetic engineering techniques
Either of them may be used. IFN-γ can be used by dissolving it in an appropriate buffer or fixing it on a carrier.
Any method of contacting IFN-γ with monocytes can be used. For example, when IFN-γ is dissolved in a buffer and used, a method may be used in which the solution is mixed with a buffer containing monocytes obtained by isolation and purification, and the mixture is appropriately incubated. In addition, monocytes fixed on a carrier
It is also possible to contact the N-γ solution. When IFN-γ is immobilized on a carrier using an appropriate means and used, for example, a method of contacting the IFN-γ immobilized carrier with a solution containing monocytes can be used. When used in the present invention, the amount of IFN-γ used may be smaller than that in the case of activating monocytes with an IFN-γ solution alone, and preferably a culture containing 1 to 2 × 10 6 cells / ml. 0.1 IU / ml for liquid or body fluid
Use at a rate of 300 IU / ml.

【0013】本発明に用いられる変動磁場には、例えば
交流磁場、パルス磁場があり、特にパルス磁場のような
磁場が速く変化する変動磁場が好ましい。変動磁場は、
周波数0.1〜10000Hz、平均磁場強度1×10
-6〜1T、最大磁場強度1×10-5〜10Tであること
が好ましい。
The fluctuating magnetic field used in the present invention includes, for example, an alternating magnetic field and a pulse magnetic field, and a fluctuating magnetic field such as a pulse magnetic field in which the magnetic field changes rapidly is preferable. The fluctuating magnetic field is
Frequency 0.1-10000Hz, average magnetic field strength 1x10
It is preferable that the magnetic field intensity is −6 to 1 T and the maximum magnetic field strength is 1 × 10 −5 to 10 T.

【0014】本発明の単球の活性化法においては、さら
に必要に応じて、細胞活性促進剤を単球に作用させ得
る。好ましくはこの細胞活性促進剤はリポ多糖(LP
S)である。
In the method for activating monocytes of the present invention, a cell activity promoter may be allowed to act on monocytes, if necessary. Preferably, the cell activity promoter is lipopolysaccharide (LP
S).

【0015】本発明の単球の活性化法は、具体的には、
例えば以下のような方法である。
The method for activating monocytes of the present invention is specifically as follows.
For example, the following method is used.

【0016】まず、変動磁場発生装置として、例えば、
適当な直径を有するヘルムホルツコイル、変動磁場の波
形を制御するファンクションジェネレーターおよび該ジ
ェネレーターの出力を増幅して電流を発生させ得るパワ
ーサプライからなる装置を準備する。発生させる磁場
は、例えば周波数50〜100Hz、DUTY40〜6
0%、平均磁場強度2.2mT、最大磁場強度4.4m
Tのパルス磁場で有り得る。
First, as a variable magnetic field generator, for example,
A Helmholtz coil having an appropriate diameter, a function generator for controlling the waveform of the fluctuating magnetic field, and a power supply capable of amplifying the output of the generator to generate a current are prepared. The magnetic field to be generated is, for example, frequency 50 to 100 Hz, DUTY 40 to 6
0%, average magnetic field strength 2.2 mT, maximum magnetic field strength 4.4 m
It can be a pulsed magnetic field of T 2.

【0017】活性化される単球は、例えばヒトの末梢血
から得られる。この血液を採取し、密度勾配遠心法など
の方法によって目的の単球が単離精製される。単離精製
した単球は、適当な緩衝液あるいは培養液(例えば10
%FBS−RPMI1640培地)中に浮遊させるか、
またはプレートに付着させて培養液に浸しておく。
Activated monocytes are obtained, for example, from human peripheral blood. This blood is collected, and the target monocytes are isolated and purified by a method such as density gradient centrifugation. The isolated and purified monocytes may be used in an appropriate buffer or culture medium (for example, 10
% FBS-RPMI1640 medium), or
Alternatively, it is attached to the plate and immersed in the culture solution.

【0018】一方、IFN−γは、例えば上記単離精製
した単球を含む緩衝液あるいは培養液(例えば10%F
BS−RPMI1640培地)に溶解させて、適当な濃
度に調製しておく。上記のように調製された単球を含む
液とIFN−γの溶液とを適当な温度で、約60秒〜1
0時間、接触させると同時に、該溶液に上記変動磁場発
生装置を用いて、変動磁場を与える。このことにより単
球が活性化される。単球が活性化されたことは、細胞内
のカルシウム濃度が増加することによって確認され得
る。
On the other hand, IFN-γ is, for example, a buffer solution or culture solution (for example, 10% F) containing the isolated and purified monocytes.
BS-RPMI1640 medium) to prepare an appropriate concentration. The solution containing monocytes prepared as described above and the solution of IFN-γ are heated at a suitable temperature for about 60 seconds to 1 second.
Simultaneously with contact for 0 hours, a fluctuating magnetic field is applied to the solution using the fluctuating magnetic field generator. This activates monocytes. Monocyte activation can be confirmed by an increase in intracellular calcium concentration.

【0019】次に、この培養細胞から、IFN−γを取
り除く。単球がプレートに付着している場合、培養液を
取り除くことによってIFN−γを簡単に取り除くこと
が可能である。IFN−γ除去の後、必要であれば、L
PSを0.1ng/ml〜10mg/mlの濃度となる
ように加えて、単球と接触させる。接触させる時間は、
好ましくは1〜100時間、より好ましくは24〜80
時間である。LPSとの接触によって単球の抗腫瘍活性
が上昇する。この活性は、単球のグルコース消費量を測
定することによって検知され得る。グルコース消費量
は、当業者に公知の方法で測定される。
Next, IFN-γ is removed from the cultured cells. If monocytes are attached to the plate, IFN-γ can be easily removed by removing the culture medium. After removal of IFN-γ, if necessary, L
PS is added to a concentration of 0.1 ng / ml to 10 mg / ml and brought into contact with monocytes. The contact time is
Preferably 1 to 100 hours, more preferably 24 to 80 hours
It's time. Contact with LPS increases the antitumor activity of monocytes. This activity can be detected by measuring the glucose consumption of monocytes. Glucose consumption is measured by methods known to those skilled in the art.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいて説明する
が、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described below based on examples, but the present invention is not limited thereto.

【0021】(実施例1)ヒトの新鮮な末梢血から、密
度勾配遠心法により単球を単離精製した。この単球を5
%ヒトAB型血清−RPMI−1640中に細胞濃度1
×107個/mlとなるように調製し、ウェル中に0.
5mlずつ分注し、37℃、5%CO2条件下で30分
間インキュベートした。その後ウェルを温ハンクス溶液
でピペッティングして非付着細胞を取り除き、1mMFu
raII溶液(FuraII-AM(同仁化学研究所製)20μlとP
luronic F-127 4μlを加えたものをハンクス溶液で
2mlとする:10μMFuraII-AM)を0.5ml加
え、37℃、5%CO2で30分間インキュベートし
た。ウェル中のFuraII溶液を0.4ml取り除き、代わ
りにハンクス溶液を0.4ml加え(FuraII-AM濃度を
2μlにする)、さらに37℃、5%CO2の条件で3
0分間インキュベートした。インキュベート後、温ハン
クス溶液で3回洗浄し、ウェル中にHanks'を最終的に
0.5mlになるように加えてこれを測定用の試料とし
た。このようにして調製した細胞試料を37℃に温度設
定した細胞内カルシウムイオン濃度測定装置(CASALS:
オリンパス社製)の測定台上におき、ハンクス溶液を
0.2ml取り除いておいた。細胞試料に、37℃に保
温しておいたIFN−γを125IU/mlの濃度で含
むハンクス溶液0.2mlをウェルに加えるのと同時に
垂直方向から9度の角度を持った、周波数100Hz、
最大磁場強度4.4mT、平均磁場強度2.2mT、D
UTY50%のパルス磁場を与えた。この時のパルス磁
場は、直径22cmのヘルムホルツコイル、変動磁場の
波形を制御するファンクションジェネレーターおよびジ
ェネレーターの出力を増幅して電流を発生させることの
できるパワーサプライからなる装置によって発生させ
た。ヘルムホルツコイル内部では、磁場強度が上下2%
以内のほぼ一様なパルス磁場が得られた。IFN−γお
よび磁場を与えた直後からの細胞内カルシウムイオン濃
度の変化をCASALSによって観察した。
(Example 1) Monocytes were isolated and purified from fresh human peripheral blood by density gradient centrifugation. 5 this monocyte
% Human Serum AB Serum-RPMI-1640 with a cell concentration of 1
× 10 7 cells / ml, and 0.
5 ml aliquots were dispensed and incubated at 37 ° C. under 5% CO 2 for 30 minutes. The wells are then pipetted with warm Hanks solution to remove non-adherent cells and 1 mM Fu
raII solution (FuraII-AM (Dojindo Laboratories) 20 μl and P
4 μl of luronic F-127 was made up to 2 ml with Hanks solution: 0.5 ml of 10 μM FuraII-AM) was added and incubated for 30 minutes at 37 ° C., 5% CO 2 . Remove 0.4 ml of FuraII solution from the well, add 0.4 ml of Hank's solution instead (make the concentration of FuraII-AM 2 μl), and add 3% under the condition of 37 ° C. and 5% CO 2.
Incubated for 0 minutes. After the incubation, the plate was washed with a warm Hanks solution three times, and Hanks' was added to the well so that the final volume was 0.5 ml, and this was used as a sample for measurement. Cellular calcium ion concentration measuring device (CASALS:
It was placed on a measuring table (manufactured by Olympus) and 0.2 ml of the Hanks' solution was removed. To the cell sample, 0.2 ml of Hank's solution containing IFN-γ kept at 37 ° C. at a concentration of 125 IU / ml was added to the wells, and at the same time, an angle of 9 ° from the vertical direction, a frequency of 100 Hz,
Maximum magnetic field strength 4.4mT, average magnetic field strength 2.2mT, D
A pulse magnetic field of 50% UTY was applied. The pulsed magnetic field at this time was generated by a device including a Helmholtz coil having a diameter of 22 cm, a function generator controlling the waveform of the fluctuating magnetic field, and a power supply capable of amplifying the output of the generator to generate a current. Inside the Helmholtz coil, the magnetic field strength is up and down 2%.
A nearly uniform pulsed magnetic field within is obtained. Changes in intracellular calcium ion concentration immediately after applying IFN-γ and a magnetic field were observed by CASALS.

【0022】比較の為に変動磁場を与えなかったこと以
外は、上記と同様にして、調製し、同様の操作を施した
単球の細胞内カルシウムイオン濃度変化を測定した。代
表的な細胞(4つ)の中のカルシウム濃度変化を図1お
よび図2に示す。丸印、菱形、三角、および点線は、そ
れぞれ別々の細胞を表す。図1は変動磁場を与えなかっ
た場合の結果を示し、図2は変動磁場を与えた場合の結
果を示している。横軸の時間は、IFNを与えてからの
時間を表している。この結果から、変動磁場を与えると
細胞内へのカルシウム流入が時間的に早く起こり、流入
量も増えることが判る。
For the purpose of comparison, changes in intracellular calcium ion concentration of monocytes prepared and subjected to similar operations were measured in the same manner as above, except that a varying magnetic field was not applied. Changes in calcium concentration in representative cells (4) are shown in FIGS. 1 and 2. Circles, diamonds, triangles, and dotted lines represent separate cells. FIG. 1 shows the results when no fluctuating magnetic field was applied, and FIG. 2 shows the results when a fluctuating magnetic field was applied. The time on the horizontal axis represents the time after giving IFN. From this result, it is understood that when a fluctuating magnetic field is applied, calcium inflow into cells occurs earlier in time and the inflow amount increases.

【0023】(実施例2)ヒト末梢血から、密度勾配遠
心法により分離精製した単球を、培地中に2×106
/mlになるように加えた。この培地を4つの培養プレ
ートに400μlずつ分注し、37℃、5%CO2の条
件下で、2時間インキュベートして細胞をウェルに付着
させ、単球の標品を調製した。ヒト組換えIFN−γ
(Boehringer-Mannheim社製)をまず、10%FBS−
RPMI1640に溶解させ、それぞれのプレートに2
5IU/ml、50IU/ml、100IU/mlおよび200IU/mlに
なるように加え、すべてのプレートに水平方向のパルス
磁場を与えながら約9時間培養した。この時のパルス磁
場は、直径22cmのヘルムホルツコイル、変動磁場の
波形を制御するファンクションジェネレーターおよびジ
ェネレーターの出力を増幅して電流を発生させることの
できるパワーサプライからなる装置によって発生させ
た、周波数50Hz、DUTY50%のパルス磁場(最
大磁場強度4.4mT、平均磁場強度2.2mT)であ
った。ヘルムホルツコイル内部では、磁場強度が上下2
%以内のほぼ一様な変動磁場が得られた。
Example 2 Monocytes separated and purified from human peripheral blood by density gradient centrifugation were added to the medium at 2 × 10 6 cells / ml. 400 μl of this medium was dispensed into each of four culture plates and incubated at 37 ° C. under 5% CO 2 for 2 hours to allow cells to adhere to the wells to prepare a monocyte preparation. Human recombinant IFN-γ
(Boehringer-Mannheim), first, 10% FBS-
Dissolve in RPMI1640 and add 2 to each plate.
In addition to 5 IU / ml, 50 IU / ml, 100 IU / ml and 200 IU / ml, all plates were cultured for about 9 hours while applying a horizontal pulsed magnetic field. The pulsed magnetic field at this time was generated by a device including a Helmholtz coil having a diameter of 22 cm, a function generator for controlling the waveform of the fluctuating magnetic field, and a power supply capable of amplifying the output of the generator to generate a current, a frequency of 50 Hz, The pulse magnetic field was 50% DUTY (maximum magnetic field strength 4.4 mT, average magnetic field strength 2.2 mT). Inside the Helmholtz coil, the magnetic field strength is above and below 2
An almost uniform fluctuating magnetic field within% was obtained.

【0024】培養が終了した後、IFN−γを含む培養
液を取り除き、代わりにLPSを含有する緩衝液をすべ
てのプレートに50ng/mlの濃度になるように加え
て、37℃、5%CO2条件下で約60時間あるいは約
80時間培養した。60時間あるいは80時間の培養
後、それぞれの培養液中のグルコース濃度をユニキット
グルコースE(中外製薬社製)で測定し、間接的に抗腫
瘍活性を評価した。活性化インデックスは、以下の式に
より算出される。
After the culture was completed, the culture solution containing IFN-γ was removed, and instead, a buffer solution containing LPS was added to all the plates to a concentration of 50 ng / ml, and the mixture was incubated at 37 ° C. with 5% CO 2. The cells were cultured under the two conditions for about 60 hours or about 80 hours. After culturing for 60 hours or 80 hours, the glucose concentration in each culture solution was measured by Unikit Glucose E (manufactured by Chugai Pharmaceutical Co., Ltd.) to indirectly evaluate the antitumor activity. The activation index is calculated by the following formula.

【0025】[0025]

【化1】 [Chemical 1]

【0026】なお、コントロール中の残留グルコース量
は、IFN−γおよびLPSを加えずに同じ工程を経た
細胞の培養液中のグルコース量のことである。
The amount of residual glucose in the control is the amount of glucose in the culture solution of cells that have undergone the same steps without adding IFN-γ and LPS.

【0027】比較のために、変動磁場を与えなかったこ
と以外は上記と同様にして調製し、同様の操作を施した
単球のグルコース消費量も測定した。結果を表1に示
す。
For comparison, the glucose consumption of monocytes prepared in the same manner as above except that no variable magnetic field was applied and subjected to the same operation was also measured. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】この結果から、IFN−γの濃度が25IU
/mlのときに、変動磁場による細胞活性化の促進が顕著
であることが判る。
From this result, the concentration of IFN-γ was 25 IU.
It can be seen that the promotion of cell activation by the fluctuating magnetic field is remarkable when the amount is / ml.

【0030】(実施例3)実施例1の実験を別のヒトか
ら得られた細胞(末梢血由来)についても同様に行っ
た。ただし、IFN−γの濃度は、50IU/mlのみ
で、細胞濃度は、4×106個/mlおよび2×106
/mlの2種類で行った。結果を表2に示す。
Example 3 The experiment of Example 1 was similarly performed on cells (derived from peripheral blood) obtained from another human. However, the concentration of IFN-γ was 50 IU / ml only, and the cell concentration was 2 × 10 6 cells / ml and 2 × 10 6 cells / ml. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】この末梢血は、IFN−γのみの刺激に対
しては、感受性がなかったが、変動磁場を与えることに
よって、活性化された。
This peripheral blood was not sensitive to stimulation with IFN-γ alone, but was activated by applying a fluctuating magnetic field.

【0033】[0033]

【発明の効果】本発明によれば、変動磁場を使用して、
IFN−γと接触した単球の活性化を促進させる方法が
提供される。本発明の方法では、IFN−γの濃度が低
い場合でも、単球が十分に活性化され、さらに、IFN
−γのみでは、十分に活性化されない単球でも活性化さ
せることができる。
According to the present invention, a variable magnetic field is used,
Methods for promoting activation of monocytes contacted with IFN-γ are provided. According to the method of the present invention, monocytes are sufficiently activated even when the concentration of IFN-γ is low, and
-Γ alone can activate monocytes that are not sufficiently activated.

【図面の簡単な説明】[Brief description of drawings]

【図1】IFN−γのみで活性化させた、ヒト末梢血由
来の単球のカルシウムイオンの取り込みの経時的変化を
示すグラフである。
FIG. 1 is a graph showing the time course of calcium ion uptake by human peripheral blood-derived monocytes activated with IFN-γ alone.

【図2】IFN−γおよび変動磁場で活性化させた、ヒ
ト末梢血由来の単球のカルシウムイオンの取り込みの経
時的変化を示すグラフである。
FIG. 2 is a graph showing the time course of calcium ion uptake by human peripheral blood-derived monocytes activated with IFN-γ and a varying magnetic field.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 見藤 歩 北海道江別市野幌住吉町7−5 (72)発明者 宮崎 浩 北海道札幌市北区北20条西7丁目20登別荘 18号 (72)発明者 関口 定美 北海道札幌市南区真駒内上町5丁目6−3 (72)発明者 高橋 恒夫 北海道札幌市中央区宮の森1条6丁目4− 20−504 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ayumi Mito 7-5 Nopporo, Sumiyoshi-cho, Ebetsu-shi, Hokkaido (72) Inventor Hiroshi Miyazaki 7-20-20 Kita-ku Nishi, Kita-ku, Sapporo No. 18 Noboribetsu Villa (72) Inventor Satomi Sekiguchi 5-6-3, Makomanaikamimachi, Minami-ku, Sapporo, Hokkaido (72) Inventor Tsuneo Takahashi 1-6-6, Miyanomori, Chuo-ku, Sapporo, Hokkaido 4-20-504

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】哺乳類由来の単球を活性化させる方法であ
って、(i)該単球をIFN−γと接触させる工程、お
よび(ii)該単球に変動磁場をかける工程、を包含す
る、方法。
1. A method for activating a mammal-derived monocyte, which comprises the steps of (i) contacting the monocyte with IFN-γ, and (ii) applying a varying magnetic field to the monocyte. how to.
【請求項2】前記単球が、ヒトの末梢血由来である、請
求項1に記載の方法。
2. The method according to claim 1, wherein the monocytes are derived from human peripheral blood.
【請求項3】前記変動磁場が、パルス磁場である、請求
項1に記載の方法。
3. The method of claim 1, wherein the varying magnetic field is a pulsed magnetic field.
【請求項4】前記変動磁場が、周波数0.1〜1000
0Hz、平均磁場強度1×10-6〜1T、および最大磁
場強度1×10-5〜10Tである、請求項1に記載の方
法。
4. The fluctuating magnetic field has a frequency of 0.1 to 1000.
The method according to claim 1, wherein the magnetic field strength is 0 Hz, the average magnetic field strength is 1 × 10 −6 to 1 T, and the maximum magnetic field strength is 1 × 10 −5 to 10 T.
JP4276232A 1992-10-14 1992-10-14 Monocyte activation acceleration method by fluctuating magnetic field Pending JPH06125996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4276232A JPH06125996A (en) 1992-10-14 1992-10-14 Monocyte activation acceleration method by fluctuating magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4276232A JPH06125996A (en) 1992-10-14 1992-10-14 Monocyte activation acceleration method by fluctuating magnetic field

Publications (1)

Publication Number Publication Date
JPH06125996A true JPH06125996A (en) 1994-05-10

Family

ID=17566541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276232A Pending JPH06125996A (en) 1992-10-14 1992-10-14 Monocyte activation acceleration method by fluctuating magnetic field

Country Status (1)

Country Link
JP (1) JPH06125996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071057A1 (en) * 2004-01-22 2005-08-04 Japan Science And Technology Agency Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device
JP2008093453A (en) * 1997-02-27 2008-04-24 Catholic Univ Of America Protection of living system from adverse effect of stress

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093453A (en) * 1997-02-27 2008-04-24 Catholic Univ Of America Protection of living system from adverse effect of stress
WO2005071057A1 (en) * 2004-01-22 2005-08-04 Japan Science And Technology Agency Magnetic or electric field stimulating device and method for promoting, restraining, or obstructing growth and function of living cell or living tissue using the magnetic or electric field stimulating device

Similar Documents

Publication Publication Date Title
Comarmond et al. Direct-acting antiviral therapy restores immune tolerance to patients with hepatitis C virus–induced cryoglobulinemia vasculitis
Sieling et al. IL-12 regulates T helper type 1 cytokine responses in human infectious disease.
Ferreras et al. SARS-CoV-2-specific memory T lymphocytes from COVID-19 convalescent donors: identification, biobanking, and large-scale production for adoptive cell therapy
Jenkins et al. Dendritic cells activated with products released by schistosome larvae drive Th2-type immune responses, which can be inhibited by manipulation of CD40 costimulation
Wang et al. Regulation of CC chemokine receptor 5 and CD4 expression and human immunodeficiency virus type 1 replication in human macrophages and microglia by T helper type 2 cytokines
Wondimu et al. Protective role of interleukin-17 in murine NKT cell-driven acute experimental hepatitis
Cassano et al. The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand
KR20090126329A (en) Cd4+cd25+ regulatory t cells from human blood
Smits et al. The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells
US20110044958A1 (en) Activated mesenchymal stem cells for the prevention and repair of inflammatory states
Kawai et al. IL-33 drives the production of mouse regulatory T cells with enhanced in vivo suppressive activity in skin transplantation
US7964400B2 (en) Immune potentiating compositions of cancer cells
Klassen et al. The immunological properties of adult hippocampal progenitor cells
Corrigall et al. Lack of CD80 expression by fibroblast‐like synoviocytes leading to anergy in T lymphocytes
WO2012096851A1 (en) Compositions and methods of alteration of autoimmune diseases
Curran et al. Effect of interleukin 2 on Kupffer cell activation: Interleukin 2 primes and activates Kupffer cells to suppress hepatocyte protein synthesis in vitro
JPH06125996A (en) Monocyte activation acceleration method by fluctuating magnetic field
Walsh et al. Interleukin-1 modulates T6 expression on a putative intra-epithelial Langerhans cell precursor population
Santos-Mendoza et al. Thalidomide and its metabolites have no effect on human lymphocyte proliferation
AU2017268656B2 (en) Mesenchymal stem cells and uses therefor
AU785241B2 (en) Immune potentiating compositions
SU1730594A1 (en) Method of interleukin-1 determination in human monocytes
Converse et al. Effect of Cyclosporin and Interleukin‐2 on the Restoration of in Vitro Immune Responses to Cytomegalovirus
Bennett Glucocorticoid Induced Leucine Zipper: Gatekeeper for CD8+ T cell activation and anti-viral responses
Pudjohartono et al. Human tonsil organoids reveal innate pathways modulating humoral and cellular responses to ChAdOx1

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731