WO2005069277A1 - 音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイクシステム - Google Patents

音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイクシステム Download PDF

Info

Publication number
WO2005069277A1
WO2005069277A1 PCT/JP2005/000510 JP2005000510W WO2005069277A1 WO 2005069277 A1 WO2005069277 A1 WO 2005069277A1 JP 2005000510 W JP2005000510 W JP 2005000510W WO 2005069277 A1 WO2005069277 A1 WO 2005069277A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
audio signal
vector
decoding
subband signals
Prior art date
Application number
PCT/JP2005/000510
Other languages
English (en)
French (fr)
Inventor
Yutaka Banba
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05703747A priority Critical patent/EP1748423A4/en
Priority to US10/597,215 priority patent/US20090024395A1/en
Publication of WO2005069277A1 publication Critical patent/WO2005069277A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/083Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being an excitation gain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L2019/0001Codebooks
    • G10L2019/0003Backward prediction of gain

Definitions

  • Audio signal encoding method Audio signal decoding method, transmitter, receiver, and wireless microphone system
  • the present invention relates to an audio signal encoding method for encoding an audio signal with low delay, and audio signal decoding for decoding an audio signal encoded based on this audio signal encoding method into an original audio signal.
  • a transmitter for encoding and transmitting the audio signal, and receiving the audio signal encoded based on the audio signal decoding method
  • the present invention relates to a receiver that decodes an audio signal, and a wireless microphone system including the transmitter and the receiver.
  • a subband adaptive differential pulse code modulation encoding method (hereinafter, referred to as an encoding method for encoding a speech signal with low delay and a decoding method for decoding the encoded speech signal into an original speech signal (hereinafter referred to as “encoding method”).
  • encoding method There are simply known a subband ADPCM coding method and a subband adaptive differential pulse code modulation decoding method (hereinafter simply referred to as a subband ADPCM decoding method).
  • a transmitter having a coding unit 204 for coding a speech signal based on a conventional subband ADPC coding method, and a decoding unit 215 for decoding the coded speech signal
  • the transmitter encoding unit 204 divides the audio signal into four bands as shown in FIG. 12, and reduces it at a thinning rate corresponding to the number of divisions.
  • Subband division filter bank 204a that generates four subband signals by sampling and the four subband signals generated by subband division filter bank 204a are coded according to the subband ADPCM coding method. It includes four ADP CM quantizers 220a-220d and a multiplexer 204c that multiplexes four encoded subband signals and incorporates them into the bit stream.
  • the decoding unit 215 of the receiver includes a demultiplexer 215a that extracts four code subband signals with a bitstream power, and four encoded subband signals from the conventional ADPC. Based on the M decoding method! 4 ADPCM inverse quantizers 230a to 230d to be decoded, and 4 subband signals decoded by 4 ADPCM inverse quantizers 230a to 230d And a sub-band synthesis filter bank 215c for up-sampling at a rate and synthesizing the audio signal.
  • the speech signal is divided into four bands, down-sampled at a bow ratio corresponding to the number of divisions, and the four subband signals are subband divided filter bank 204a. Generated by.
  • the four subband signals generated by subband division filter bank 204a are then encoded by four ADPCM quantizers 220a-220d based on the conventional ADPCM encoding method.
  • the four code subband signals encoded by the four ADPCM quantizers 220a through 220d are then incorporated into the bitstream by the multiplexer 204c.
  • the demultiplexer 215a extracts four code subband signals for the bitstream power.
  • the four code subband signals are decoded by the four ADPCM inverse quantum filters 230a to 230d.
  • the four subband signals are up-sampled at an interpolation rate corresponding to the number of divisions, and synthesized into an audio signal by the subband synthesis filter bank 215c (for example, see Patent Document 1).
  • Patent Document 1 JP 2002-330075 A
  • the present invention has been made to solve the conventional problems, and is about 1Z7 to 1Z8 of the original audio signal with a relatively low delay and without degrading the sound quality of the wideband audio signal.
  • Audio signal encoding method that can be compressed, based on this audio signal encoding method!
  • An audio signal decoding method capable of decoding an encoded audio signal into an original audio signal with relatively low delay, and encoding and transmitting an audio signal based on the audio signal encoding method!
  • a transmitter capable of receiving an audio signal encoded based on the audio signal decoding method, and decoding the original audio signal; and the transmitter and the receiver It aims at providing a wireless microphone system provided with.
  • the speech signal encoding method of the present invention includes a generation step of dividing a speech signal into a plurality of subbands, down-sampling according to the number of divisions, and generating a plurality of subband signals, and the plurality of subbands
  • the linear prediction coefficient is obtained from
  • the quantization bit allocation for each subband is made non-uniform allocation according to the frequency energy distribution and auditory characteristics of the speech signal to be encoded, and low delay due to the adaptation of the knock word is compatible.
  • vector quantization is performed, a low-delay speech code with good compression efficiency can be realized.
  • a codebook divided into at least two is used, and at least two It has a configuration that generates excitation vectors using the sum of codebooks.
  • a difference signal indicating a difference between a predicted value of the excitation signal gain obtained by the backward adaptation and a true excitation signal gain is generated. And / or a configuration for adaptive scalar quantization of the difference signal.
  • the backward prediction gain and the difference gain can be adaptively and accurately quantized.
  • the audio signal decoding method of the present invention divides an audio signal into a plurality of subbands, A plurality of subband signals using a generation step of generating a plurality of subband signals in accordance with the signal, and a combination analysis method for encoding the plurality of subband signal force vector indices.
  • a quantization step for quantizing wherein in the quantization step, the sound is generated from an encoded speech signal encoded by a speech signal encoding method in which a linear prediction coefficient is obtained from a past decoded signal by backward adaptation.
  • a speech signal decoding method for decoding into a voice signal wherein the vector index power includes a plurality of inverse quantization steps for inversely quantizing the vector index for decoding into the plurality of subband signals, A synthesis process for up-sampling the sub-band signal and synthesizing the band.
  • a knock word It has a configuration for obtaining the linear prediction coefficients from past decrypt signals by response! / Ru.
  • the speech signal decoding method of the present invention uses a codebook divided into at least two when the plurality of subband signals are vector-quantized in the quantization step, and the at least two An audio signal decoding method for decoding an audio signal from an encoded audio signal encoded by an audio signal encoding method that generates an excitation vector using a sum of codebooks, the inverse quantization In the process, an excitation vector is generated using a sum of vectors corresponding to two or more vector indexes.
  • decoded speech can be obtained using vector index data.
  • the speech signal decoding method of the present invention generates a difference signal indicating a difference between a predicted value of the excitation signal gain obtained by the backward adaptation and a true excitation signal gain in the quantization step.
  • the transmitter of the present invention divides an audio signal into a plurality of subbands, performs down-sampling according to the number of divisions, and generates a plurality of subband signals, and the plurality of subbands. And a quantization step of vector quantization of the plurality of subband signals using a synthesis analysis method in order to encode the signal index into the vector index.
  • the encoder includes a coding unit that generates a coded speech signal from a speech signal based on a speech signal coding method in which a linear prediction coefficient is obtained in the past.
  • the encoding unit divides the audio signal into a plurality of subbands, downsamples the audio signal according to the number of divisions, and generates a plurality of subband signals, and the plurality of subband signals.
  • the plurality of quantizers are configured to obtain past decoded signal power linear prediction coefficients by backward adaptation.
  • the transmitter of the present invention uses at least two codebooks when vectorizing the plurality of subband signals in the quantization step, and uses the codebook divided into at least two. Based on the speech signal encoding method that generates the excitation vector using the sum of the plurality of subband signals, the plurality of quantizers of the encoding unit at least performs vector quantization on the plurality of subband signals. A codebook divided into two is used, and an excitation vector is generated using the sum of at least two codebooks.
  • the transmitter of the present invention generates a difference signal indicating a difference between a predicted value of the excitation signal gain obtained by the backward adaptation and a true excitation signal gain,
  • the plurality of quantizers of the encoding unit are predicted values of the excitation signal gain obtained by the backward adaptation.
  • a true excitation signal gain a differential signal is generated, and the differential signal is adaptively scalar quantized.
  • the encoded audio signal can be transmitted. Multiplexed and can be transmitted.
  • the receiver of the present invention divides an audio signal into a plurality of subbands, performs downsampling according to the number of divisions, and generates a plurality of subband signals, and the plurality of subband signal cards. And a quantization step for vector quantization of the plurality of subband signals using a synthesis analysis method to encode the vector index. In the quantization step, past decoding is performed by applying a knock word.
  • the signal strength comprises a decoding unit for decoding a coded audio signal based on an audio signal decoding method for decoding an encoded audio signal encoded by an audio signal encoding method for obtaining a linear prediction coefficient.
  • the decoding key unit includes a plurality of inverse quantizers that dequantize the vector index in order to decode the vector index power into a plurality of subband signals. And a subband synthesis filter that upsamples the plurality of subband signals and performs band synthesis, and the plurality of inverse quantizers are configured to obtain past decoded signal power linear prediction coefficients by backward adaptation. Have.
  • the receiver of the present invention uses a codebook divided into at least two when the plurality of subband signals are vector-quantized, and a sum of the at least two codebooks.
  • Decoding the encoded speech signal based on the speech signal decoding method for decoding the encoded speech signal encoded by the speech signal encoding method that generates an excitation vector using V
  • the plurality of inverse quantizers of the decoding unit has a configuration for generating an excitation vector using a sum of vectors corresponding to two or more vector indexes! /
  • the receiver of the present invention generates a differential signal indicating a difference between an estimated value of the excitation signal gain obtained by the backward adaptation and a true excitation signal gain.
  • the encoded speech signal is decoded based on the speech signal decoding method for decoding the encoded speech signal encoded by the speech signal encoding method in which the differential signal is adaptively scalar quantized.
  • a plurality of inverse quantizers of the decoding unit, the predicted value of the excitation signal gain by backward adaptation and the inverse quantized excitation signal gain It has a configuration for obtaining the excitation signal gain by taking the sum with the residual.
  • the wireless microphone system of the present invention includes a generation step of dividing an audio signal into a plurality of subbands, down-sampling according to the division number, and generating a plurality of subband signals, and the plurality of subband signals.
  • a quantization step of vector-quantizing the plurality of subband signals using a synthesis analysis method for signing the force vector index, and in the quantization step, a past decoded signal is applied by backward adaptation.
  • a transmitter that generates an encoded audio signal from the audio signal, and transmits the encoded audio signal, wherein the encoding unit divides the audio signal into a plurality of subbands;
  • the subband division filter that generates a plurality of subband signals by down-sampling according to the number of divisions, and the plurality of subband signal forces using the analysis method based on the synthesis in order to encode the subband signal power into a vector index.
  • a plurality of quantizers that perform vector quantization on the subband signal of the first subband signal, and the plurality of quantizers obtain a past decoded signal power linear prediction coefficient by backward adaptation and are generated by the code unit.
  • a transmitter that transmits the encoded voice signal, and a receiver that receives the encoded voice signal transmitted from the transmitter.
  • an audio signal can be encoded with high compression efficiency, so that the radio transmission band can be used effectively and a multi-channel system can be easily constructed.
  • the receiver divides an audio signal into a plurality of subbands, down-samples according to the number of divisions, and generates a plurality of subband signals.
  • Coded speech encoded by the speech signal coding method in which linear prediction coefficients are obtained from the decoded signal A decoding unit for decoding an encoded audio signal based on an audio signal decoding method for decoding a signal, wherein the decoding unit decodes the vector for decoding into a plurality of subband signals such as a vector index car.
  • a plurality of dequantizers that dequantize the index; and a subband synthesis filter that up-samples the plurality of subband signals and performs band synthesis.
  • the plurality of dequantizers are adapted for backward adaptation. Thus, the past decoding signal power linear prediction coefficient is obtained.
  • the present invention provides low-delay and high-compression by providing subband dividing means that divides a wideband audio signal into a plurality of bands and a vector quantizer adapted to backward prediction of internal prediction coefficients and the like. It is possible to provide an audio signal encoding method, an audio signal decoding method, a transmitter, a receiver, and a wireless microphone system that have the effect of obtaining high-quality decoded audio while being efficient.
  • FIG. 1 is a block diagram of a wireless microphone system according to first to third embodiments of the present invention.
  • FIG. 2 is a block diagram of a transmitter of the wireless microphone system of the first to third embodiments of the present invention.
  • FIG. 3 is a block diagram of a receiver of the wireless microphone system according to the first to third embodiments of the present invention.
  • FIG. 4 is a block diagram of a compression code section of the transmitter of the wireless microphone system of the first to third embodiments of the present invention.
  • FIG. 5 is a block diagram of a compressed signal decoding unit of the receiver of the wireless microphone system according to the first to third embodiments of the present invention.
  • FIG. 6 is a block diagram of a quantizer for each subband in the compression code section of the transmitter of the wireless microphone system according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram of an inverse quantizer for each subband in a compression code section of the transmitter of the wireless microphone system according to the first embodiment of the present invention.
  • Fig. 8 is a block diagram of a quantizer for each subband in the compression code section of the transmitter of the wireless microphone system according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram of an inverse quantizer for each subband in a compression code section of a transmitter of a wireless microphone system according to a second embodiment of the present invention.
  • FIG. 10 is a block diagram of a quantizer for each subband in a compression code section of a transmitter of a wireless microphone system according to a third embodiment of the present invention.
  • FIG. 11 is a block diagram of an inverse quantizer for each subband in a compression code section of a transmitter of a wireless microphone system according to a third embodiment of the present invention.
  • FIG. 12 is a block diagram of a schematic configuration of a conventional subband ADPCM encoder.
  • VQ codebook A Vectnoreno uffa excitation VQ codebook A 73 Excitation VQ Codebook B
  • wireless microphone system 100 includes a transmitter 101 that encodes an audio signal and transmits the encoded audio signal, and a receiver that receives the encoded audio signal from transmitter 101. 102.
  • the transmitter 101 includes a microphone port 1 that converts audio into an analog audio signal, an audio signal amplifier 2 that amplifies the analog audio signal converted by the microphone 1, The analog audio signal amplified by the audio signal amplifier 2 is sampled at a predetermined sampling frequency and converted into a digital audio signal of a predetermined bit rate, and the analog digital converter 3 converts the analog audio signal.
  • the digital audio signal converted by the analog-to-digital converter 3 is encoded by a compression encoding unit 4 that encodes the encoded bit string at a low bit rate, and the compression encoding unit 4 converts the digital audio signal.
  • An error correction encoding unit 5 that encodes the code bit sequence into a code sequence that is resistant to transmission path errors, and an error correction code.
  • a high-frequency amplifier 7 that digitally modulates the signal, amplifies it to a required transmission output, and outputs it as an output signal, and a transmission antenna 8 that radiates the output signal amplified by the high-frequency amplifier 7 as a radio wave into space.
  • Transmitter 101 further includes a setting unit (not shown) that sets a bit rate in analog-to-digital conversion unit 3, a bit rate in compression encoding unit 4, a transmission channel in high-frequency amplification unit 7, and the setting unit. And a control unit (not shown) for controlling each unit in accordance with the set result.
  • a setting unit (not shown) that sets a bit rate in analog-to-digital conversion unit 3, a bit rate in compression encoding unit 4, a transmission channel in high-frequency amplification unit 7, and the setting unit.
  • a control unit (not shown) for controlling each unit in accordance with the set result.
  • the error correction code key unit 5 uses block coding, convolutional coding, interleaving, and the like to convert it into a code key sequence that is resistant to transmission path errors! / Speak.
  • the receiver 102 receives a radio wave radiated from the transmitter 101 as an input signal, and amplifies the input signal received by the reception antenna 9.
  • a high frequency amplifying unit 10 that converts the signal to a preset intermediate frequency signal; an intermediate frequency amplifying unit 11 that amplifies the intermediate frequency signal converted by the high frequency amplifying unit 10 and limits the signal to a preset frequency band;
  • the demodulation unit 12 that demodulates the transmission frame signal from the intermediate frequency signal amplified by the intermediate frequency amplification unit 11, detects the additional information from the transmission frame signal demodulated by the demodulation unit 12, and decodes the encoded sequence Channel code decoding unit 13 and error correction to coded sequence decoded by channel code decoding unit 13
  • An error correction unit 14 that performs processing and decodes into an encoded bit sequence, a compressed signal decoding unit 15 that decodes the encoded bit sequence decoded by the error correction unit 14 into a digital audio signal, and a compressed signal decoding unit 15
  • the receiver 102 further sets a reception channel, a bit rate of the compressed signal decoding unit 15 and the like (not shown), and controls each unit according to the setting result set by the setting unit ( (Not shown) with a control unit.
  • the digital effector unit 16 is adapted to perform digital effect processing such as howling suppression, equalizing, digital reverberation, etc. on the digital audio signal decoded by the compressed signal decoding unit 15! / RU
  • the compression encoding unit 4 of the transmitter 101 divides a wideband audio signal including a frequency component of 8 kHz or more into four parts, down-samples the audio signal according to the number of divisions, and Subband division filter bank 4a that generates two subband signals, and four subband signals based on a low-delay code-excited linear prediction (hereinafter simply referred to as LD-CELP) algorithm.
  • LD-CELP low-delay code-excited linear prediction
  • the vector quantization unit 4b includes four LD-CELP quantizers 20a to 20d that perform vector quantization on the four subband signals, respectively.
  • Each of the LD-CELP quantizers 20a to 20d is adapted to obtain a linear prediction coefficient for the past decoded signal power by means of knock word adaptation.
  • LD-CELP is an international standard for realizing voice signals in the telephone band at 16kbps, and is a low-delay code-excited linear prediction used in ITU-T recommendation "G.728". The Argo Rhythm.
  • downsampling is to resample a signal sampled at a certain frequency at a lower frequency.
  • upsampling means resampling a signal sampled at a certain frequency at a higher frequency.
  • the LD-CELP quantizer 20a includes a vector buffer 21 for buffering subband signals corresponding to the number of dimensions of the quantization vector, and an excitation whose gain is adjusted according to the noise vector.
  • a backward gain adaptor 24 that linearly predicts the gain from the vector, a gain multiplier 23 that multiplies the gain linearly predicted by the backward gain adaptor 24, and a signal multiplied by the gain by the gain multiplier 23.
  • the synthesis filter 2 5 that forms the signal, and the backward coefficient adaptor 26 that linearly predicts the filter coefficients of the synthesis filter 25 in the past and adaptively updates them, and the subband buffered in the vector buffer 21
  • An adder 29 that subtracts the signal calculated by the synthesis filter 25 and calculates a difference (residual signal), and a frequency weighting process on the residual signal calculated by the adder 29. Calculate the least mean square error so that the energy of the audio weighting filter 27 and the frequency weighted residual signal by the audio weighting filter 27 is minimized, and obtain the index number from the excitation VQ codebook 22 And a least mean square error calculator 28.
  • Each of the LD-CELP quantizers 20b, 20c, and 20d has a configuration similar to that of the LD-CELP quantizer 20a, and encodes a subband signal of each band! / Speak.
  • the LD-CELP quantizers 20a to 20d each output an index number to the multiplexer 4c.
  • the multiplexer 4c acquires the index number from the LD-CELP quantizers 20a to 20d and incorporates the acquired index number into the bit stream! /.
  • the compressed signal decoding unit 15 of the receiver 102 converts the bit stream as shown in FIG.
  • Demultiplexer 15a that decomposes into four subband index numbers, index number power of four subbands
  • Vector dequantization unit 15b that decodes four subband signals, and synthesizes four subband signals
  • a subband synthesis filter bank 15c for outputting signals.
  • the vector inverse quantization unit 15b has four LD-CELP inverse quantities. Have children 30a-30d!
  • LD-CELP inverse quantum amplifiers 30a to 30d are respectively an excitation VQ codebook 31, a gain multiplier 32, a knock word gain adaptor 33, a synthesis filter 34, and a backward coefficient adaptor. 35, and the index number power also decodes the subband signal! /.
  • sub-band signals corresponding to the number of dimensions of the quantization vector are buffered in the vector buffer 21.
  • the noise vector in the excitation VQ codebook 22 is multiplied by the gain multiplier 23 multiplied by the gain linearly predicted by the backward gain adaptor 24 from the previous gain-adjusted excitation vector, and is generated here.
  • the gain-adjusted excitation vector passes through the synthesis filter 25 to form a decoded signal.
  • the coefficients of the synthesis filter 25 are linearly predicted from the past decoded signal by the knock word coefficient adaptor 26 and adaptively updated.
  • the difference (residual signal) between the decoded speech and the input subband signal in the previous vector buffer 21 is calculated, and after frequency weighting processing by the perceptual weighting filter 27, the least mean square error calculator 28 calculates the residual signal.
  • the index of the excitation VQ code that minimizes energy is calculated. This index number is output from each of the LD-CELP quantizers 20a to 20d, and the index is combined into a bit stream by the multiplexer 4c and transmitted from the transmitter 101.
  • the sub-band signal is decoded by the LD-CELP dequantizers 30a to 30d for each sub-band by the demultiplexer 15a.
  • the decoded subband signal is interpolated with 0 by the subband synthesis filter bank 15c at an interpolation rate proportional to the number of subband divisions for each subband, and after subband synthesis filtering, the sum for each subband is calculated. Is taken and output as a decoded audio signal.
  • a wideband audio signal is converted into a plurality of audio signals.
  • the subband is divided into subbands and the redundancy to be encoded is eliminated.
  • the wireless microphone system includes a transmitter and a receiver.
  • the transmitter includes a microphone 1, an audio signal amplification unit 2, an analog-digital conversion unit 3, and a compression encoding unit. 4, an error correction coding unit 5, a line coding unit 6, a high frequency amplification unit 7, and a transmission antenna 8.
  • the compression encoding unit 4 of the transmitter divides a wideband audio signal including a frequency component of 8 kHz or more into four, down-samples according to the number of divisions, and generates four subband signals.
  • Subband splitting filter bank 4a and four subband signals are combined into a vector index based on the LD-CELP algorithm.
  • a vector quantization unit 4b that quantizes and outputs an index, and a multiplexer 4c that incorporates the index output by the vector quantization unit 4b into a sign bit string.
  • the vector quantization unit 4b includes four LD-CELP Has quantizers 40a through 40d!
  • the LD-CELP quantizers 40a to 40d include a vector buffer 41, an excitation VQ code book A42, an excitation VQ code book B43, a preselector 44, Complementary codebook A45, candidate codebook B46, adder 53, gain multiplier 47, backward gain adaptor 48, synthesis filter 49, backward coefficient adaptor 50, adder 5 4, An auditory weighting filter 51 and a least mean square error calculator 52 are provided.
  • the receiver is similar to the configuration of the receiver 102 of the wireless microphone system 100 of the first embodiment, and includes a reception antenna 9, a high frequency amplification unit 10, an intermediate frequency amplification unit 11, and a demodulation.
  • Unit 12 a line code decoding unit 13, an error correction unit 14, a compressed signal decoding unit 15, a digital effector unit 16, a digital / analog conversion unit 17, a voice amplification unit 18, and a speaker 19.
  • the receiver further sets a reception channel, a bit rate of the compressed signal decoding unit 15, and the like (not shown), and controls each unit according to the setting result set by the setting unit. And a control unit (not shown).
  • the compressed signal decoding unit 15 of the receiver includes a demultiplexer 15a that extracts the index of the four bands as well as the code string bit force, and the index power subband based on the index of the four bands based on the LD-CELP algorithm.
  • a vector dequantization unit 15b that decodes four band indexes into four subband signals using a decoding method that decodes the signal and synthesizes the four subband signals to generate a digital audio signal
  • the vector dequantization unit 15b includes four LD-CELP dequantizers 60a to 60d that perform vector dequantization on four subband signals, respectively. ing.
  • the LD-CELP inverse quantizers 60a to 60d respectively include an excitation VQ code book A61, an excitation VQ code book B62, an adder 67, a gain multiplier 63, A clock gain adaptor 64, a synthesis filter 65, and a knock word coefficient adaptor 66.
  • the input audio signal is bandpass filtered for each of several frequency bands by the subband division filter bank 4a, and down-sampled at a thinning rate proportional to the number of divisions. .
  • the previous subband signal is buffered in the vector buffer 41 by the number of quantized vector dimensions.
  • the preliminary selector 44 selects the candidate of the input signal and the input signal from the excitation VQ code book A42 and the excitation VQ code book B43, respectively.
  • the candidate code book A45 and the candidate code book B4 6 Stored in The preselection is a synthesis filter based on the target vector derived by subtracting the past zero input response from the input signal and the excitation VQ code vector (sum of vector elements from excitation VQ codebook A42 and excitation VQ codebook B43). And a correlation with the 0-state response excited by the auditory weighting filter 51 and further applied backward gain Use a quasi-optimal method that requires fewer operations than a synthetic analysis method, such as searching for combinations that increase the function.
  • the candidate codebook A45 and candidate codebook B46, which have been preselected in this way, are added together to become excitation vector candidates, and the optimal candidate codebook index number is calculated as the least mean square error by analysis using synthesis.
  • the synthesis by analysis is the same as in the first embodiment, and the sum excitation vector of candidate codebook A45 and candidate codebook B46 is generated, and then gain is multiplied by gain multiplier 47.
  • the gain is adaptively predicted from the past gain-adjusted excitation vector by the backside gain adaptor 48.
  • the gain-adjusted excitation vector is obtained through the synthesis filter 49 as decoded speech.
  • the coefficients of the synthesis filter 49 are adaptively updated by the backward coefficient adaptor 50.
  • the compressed signal decoding unit 15 of the receiver receives the previous VQ index, selects excitation candidate vectors from the same excitation VQ codebook A61 and excitation VQ codebook B62 as the encoder, and these two vectors.
  • the gain is adjusted by the gain multiplier 63 as an excitation vector, and a decoded subband signal is generated by the synthesis filter 65.
  • the prediction coefficients of the gain multiplier 63 and the synthesis filter 65 are adaptively updated by the backward gain adaptor 64 and the backward coefficient adaptor 66, respectively.
  • the decoded subband signal for each subband is decoded by the subband synthesis filter bank 15c.
  • High-quality decoding is performed by using a codebook divided into two or more, performing pre-selection to select a sub-optimal candidate code vector, and performing analysis by synthesis of a small number of selected candidate candidates. It is possible to obtain coding and decoding operations with less voice, memory usage, and computation.
  • the compression encoding unit 4 of the receiver receives a wideband audio signal including a frequency component of 8 kHz or more. Although it has been described that it has subband division filter bank 4a that divides into four subbands, downsamples according to the number of divisions, and generates four subband signals, subband division filter bank 4a Limited to dividing into 4 subbands It is not fixed.
  • the wireless microphone system includes a transmitter and a receiver.
  • the transmitter is similar to the configuration of the transmitter 101 of the wireless microphone system 100 of the first embodiment.
  • the microphone 1 the audio signal amplification unit 2, the analog-digital conversion unit 3, the compression encoding unit 4, an error correction coding unit 5, a line coding unit 6, a high frequency amplification unit 7, and a transmission antenna 8.
  • the compression encoding unit 4 of the transmitter divides a wideband audio signal including a frequency component of 8 kHz or more into four, down-samples according to the number of divisions, and generates four subband signals.
  • Subband splitting filter bank 4a and four subband signals are combined into a vector index based on the LD-CELP algorithm.
  • the LD-CELP quantizers 70a to 70d include a vector buffer 71, an excitation VQ code book A72, an excitation VQ code book B73, a preliminary selector 74, and a candidate code.
  • Book A75 candidate codebook B76, adaptive gain adder 77, gain multiplier 78, knock gain adaptor 79, synthesis filter 80, backward coefficient adaptor 81, and perceptual weighting filter 82 And a least mean square error calculator 83.
  • the receiver is similar to the configuration of the receiver 102 of the wireless microphone system of the first embodiment, and includes a reception antenna 9, a high frequency amplification unit 10, an intermediate frequency amplification unit 11, and a demodulation unit. 12, a line code decoding unit 13, an error correction unit 14, a compressed signal decoding unit 15, a digital effector unit 16, a digital / analog conversion unit 17, an audio amplification unit 18, and a speaker 19. ing.
  • the receiver further sets the reception channel, the bit rate of the compressed signal decoding unit 15, and the like. And a control unit (not shown) for controlling each unit according to the setting result set by the setting unit (not shown).
  • the compressed signal decoding unit 15 of the receiver includes a demultiplexer 15a that extracts the index of the four bands, and the index power subband based on the LD-CELP algorithm.
  • a vector dequantization unit 15b that decodes four band indexes into four subband signals using a decoding method that decodes the signal and synthesizes the four subband signals to generate a digital audio signal
  • the vector dequantization unit 15b includes four LD-CELP dequantizers 90a to 90d that perform vector dequantization on four subband signals, respectively. ing.
  • the LD-CELP inverse quantizers 90a to 90d include an excitation VQ code book A91, an excitation VQ code book B92, an adaptive gain adder 93, and a gain multiplier 94, respectively.
  • the input speech signal is bandpass filtered for each of several frequency bands by the subband division filter bank 4a, and thinned out at a thinning rate proportional to the number of divisions.
  • a plurality of subband signals are generated.
  • the previous subband signal is buffered by the vector buffer 71 for the number of quantized vector dimensions.
  • the preliminary selector 74 selects the input signal and the near vector candidate from the excitation VQ codebook A72 and excitation VQ codebook B73, respectively, and puts them in the candidate codebook A75 and candidate codebook B76. Stored.
  • Preselection is a synthesis filter of the target vector derived by subtracting the past zero input response from the input signal and the excitation VQ code vector (sum of vector elements from excitation VQ codebook A72 and excitation VQ codebook B73). 80 and perceptual weighting filter 82, and a multiplier that finds a combination that increases the cross-correlation with the 0-state response, with a gain of 78. It is better to use a sub-optimal method that requires fewer operations than the analysis method based on.
  • the candidate code book A75 and the candidate code book B76 which are preliminarily selected in this way are added together and become excitation vector candidates.
  • the ideal gain value is calculated for each candidate outside the excitation range, and the ideal gain value is further multiplied by the gain obtained by backward prediction, and the difference ideal gain value obtained by subtracting the gain to reduce the gain dynamic range is obtained.
  • Ask. The differential ideal gain value is quantized and encoded by adaptive scalar quantization by the adaptive gain adder 77. This quantized value is used in the synthesis analysis method, and is added to the output of the gain multiplier 78 and multiplied by the excitation vector, and this gain-adjusted excitation vector passes through the synthesis filter 80. As a result, decoded speech is generated and the difference from the outer buffer 71 is calculated.
  • the compressed signal decoding unit 15 of the receiver receives the previous excitation VQ index, selects an excitation candidate vector from the same excitation VQ codebook A91 and excitation VQ codebook B92 as the encoder, The sum of these two vectors is used as an excitation vector, and the gain is adjusted by an adaptive gain adder 93 and a gain multiplier 94 which are obtained in the same form as the compression encoding unit 4. Further, a decoded subband signal is generated by the synthesis filter 96 from the gain-adjusted excitation vector. The prediction coefficients of the gain multiplier 94 and the synthesis filter 96 are periodically updated by a backward gain adaptor 95 and a backward coefficient adaptor 97, respectively. The decoded subband signal for each subband is subjected to band synthesis filtering by the subband synthesis filter bank 15c to generate decoded speech.
  • the excitation candidate vector in the quantizer provided for each subband, the excitation candidate vector
  • a codebook divided into two or more is used, a preliminary selection is performed to select a sub-optimal candidate code vector, and an analysis method by synthesis is performed from a small number of selected candidate models.
  • the audio signal encoding method, the audio signal decoding method, the transmitter, the receiver, and the wireless microphone system according to the present invention have a low transmission information rate while having a low delay and a high compression efficiency. It is effective and is useful as a voice code for a wireless communication with severe transmission band restrictions and a real-time call system using wired communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 高品位、低遅延でありながら、高圧縮効率を実現することのできる音声信号符号化方法、音声信号復号化方法、送信機、受信機、ワイヤレスマイクシステムを提供する。  音声信号を複数のサブバンドに分割し、ダウンサンプリングし、複数のサブバンド信号を生成するサブバンド分割フィルタバンク4aと、複数のサブバンド信号をLD‐CELPに基いて符号化するLD‐CELP量子化器20a乃至20dと、符号化サブバンド信号からビットストリームを生成するマルチプレクサ4cとを備える。

Description

明 細 書
音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイ ャレスマイクシステム
技術分野
[0001] 本発明は、音声信号を低遅延で符号化する音声信号符号化方法、この音声信号 符号ィ匕方法に基づいて符号化された音声信号を元の音声信号に復号する音声信 号復号化方法、前記音声信号符号化方法に基づ!/ヽて音声信号を符号化して送信 する送信機、前記音声信号復号化方法に基づ ヽて符号化された音声信号を受信し て元の音声信号に復号する受信機、及び前記送信機と前記受信機とを備えるワイヤ レスマイクシステムに関するものである。
背景技術
[0002] 従来、低遅延で音声信号を符号化する符号化方法及び符号化された音声信号を 元の音声信号に復号する復号化方法として、サブバンド適応差分パルス符号変調符 号化方法 (以下単に、サブバンド ADPCM符号ィ匕方法と ヽぅ)及びサブバンド適応差 分パルス符号変調復号化方法 (以下単に、サブバンド ADPCM復号化方法と ヽぅ) が知られている。
[0003] 従来のサブバンド ADPC符号ィ匕方法に基いて音声信号を符号ィ匕する符号ィ匕部 20 4を有する送信機と、この符号化された音声信号を復号する復号化部 215を有する 受信機とを備えたワイヤレスマイクシステム 200にお ヽて、送信機の符号化部 204は 、図 12に示すように、音声信号を 4つの帯域に分割し、分割数に対応した間引き率 でダウンサンプリングして 4つのサブバンド信号を生成するサブバンド分割フィルタバ ンク 204aと、サブバンド分割フィルタバンク 204aによって生成された 4つのサブバン ド信号をサブバンド ADPCM符号ィ匕方法に基いてそれぞれ符号ィ匕する 4つの ADP CM量子化器 220a乃至 220dと、 4つの符号化サブバンド信号を多重化して、ビット ストリームに組み込むマルチプレクサ 204cとを備えている。
[0004] 一方、受信機の復号ィ匕部 215は、ビットストリーム力も 4つの符号ィ匕サブバンド信号 を取り出すデマルチプレクサ 215aと、 4つの符号化サブバンド信号を従来の ADPC M復号化方法に基!、て復号する 4つの ADPCM逆量子化器 230a乃至 230dと、 4 つの ADPCM逆量子化器 230a乃至 230dによって復号された 4つのサブバンド信 号を分割数に対応した補間率でアップサンプリングし、音声信号を合成するサブバン ド合成フィルタバンク 215cとを備えている。
[0005] 次に、送信機の符号化部 204及び受信機の復号化部 215の動作について説明す る。
[0006] 送信機の符号化部 204では、音声信号が 4つの帯域に分割され、分割数に対応し た間弓 Iき率でダウンサンプリングされ、 4つのサブバンド信号がサブバンド分割フィル タバンク 204aによって生成される。次いで、サブバンド分割フィルタバンク 204aによ つて生成された 4つのサブバンド信号が従来の ADPCM符号ィ匕方法に基いて 4つの ADPCM量子化器 220a乃至 220dによって符号化される。次いで、 4つの ADPCM 量子ィ匕器 220a乃至 220dによって符号ィ匕された 4つの符号ィ匕サブバンド信号がマル チプレクサ 204cによってビットストリームに組み込まれる。
[0007] 一方、受信機の復号ィ匕部 215では、ビットストリーム力も 4つの符号ィ匕サブバンド信 号がデマルチプレクサ 215aによって取り出される。次いで、 4つの ADPCM逆量子 ィ匕器 230a乃至 230dによって 4つの符号ィ匕サブバンド信号が復号される。次いで、 4 つのサブバンド信号が分割数に対応した補間率でアップサンプリングされ、サブバン ド合成フィルタバンク 215cによって音声信号に合成される(例えば、特許文献 1参照
) o
特許文献 1:特開 2002-330075号公報
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、従来の音声信号符号化方法および音声信号復号化方法では、 1フ レームあたりに割り当てるビット数を削減するために、 1Z4乃至 1Z5以上に音声信 号を圧縮した場合、音声信号の音質を著しく劣化させるという問題があった。
[0009] 本発明は、従来の問題を解決するためになされたもので、比較的低遅延で、広帯 域の音声信号の音質を劣化させることなぐ元の音声信号の 1Z7乃至 1Z8程度ま で圧縮することができる音声信号符号ィ匕方法、この音声信号符号ィ匕方法に基づ!、て 符号化された音声信号を比較的低遅延で元の音声信号に復号することができる音 声信号復号化方法、前記音声信号符号化方法に基づ!ヽて音声信号を符号化して 送信することができる送信機、前記音声信号復号化方法に基づ!ヽて符号化された音 声信号を受信して元の音声信号に復号することができる受信機、及び前記送信機と 前記受信機とを備えるワイヤレスマイクシステムを提供することを目的とする。
課題を解決するための手段
[0010] 本発明の音声信号符号化方法は、音声信号を複数のサブバンドに分割し、分割数 に応じてダウンサンプリングし、複数のサブバンド信号を生成する生成工程と、前記 複数のサブバンド信号力 ベクトルインデックスに符号ィ匕するために合成による分析 法を用いて前記複数のサブバンド信号をベクトル量子化する量子化工程とを含み、 前記量子化工程では、バックワード適応により過去の復号信号から線形予測係数を 求める構成を有している。
[0011] この構成により、サブバンド毎の量子化ビット割当を、符号化対象の音声信号の周 波数エネルギー分布や聴覚特性に合わせた不均一割当とすることや、ノ ックワード 適応による低遅延を両立しながらベクトル量子化するので、圧縮効率のよい、低遅延 な音声符号ィ匕を実現することができる。
[0012] 本発明の音声信号符号化方法は、前記量子化工程では、前記複数のサブバンド 信号をベクトル量子化するとき、少なくとも 2つに分割されたコードブックを使用し、前 記少なくとも 2つのコードブックの和を用いて励振ベクトルを生成する構成を有してい る。
[0013] この構成により、復号音声の音質劣化を最小限に抑えながら、演算量と使用メモリ 量を同時に削減することができる。
[0014] 本発明の音声信号符号化方法は、前記量子化工程では、前記バックワード適応に より求めた励振信号利得の予測値と、真の励振信号利得との差分を示す差分信号を 生成し、前記差分信号を適応スカラ量子化する構成を有して!/ヽる。
[0015] この構成により、バックワード予測利得と差分利得を適応的に精度良く量子化する ことができる。
[0016] 本発明の音声信号復号化方法は、音声信号を複数のサブバンドに分割し、分割数 に応じてダウンサンプリングし、複数のサブバンド信号を生成する生成工程と、前記 複数のサブバンド信号力 ベクトルインデックスに符号ィ匕するために合成による分析 法を用いて前記複数のサブバンド信号をベクトル量子化する量子化工程とを含み、 前記量子化工程では、バックワード適応により過去の復号信号から線形予測係数を 求めるようにした音声信号符号化方法で符号化された符号化音声信号から前記音 声信号に復号する音声信号復号化方法であって、前記ベクトルインデックス力 前記 複数のサブバンド信号に復号ィヒするために前記ベクトルインデックスを逆量子化する 複数の逆量子化工程と、前記複数のサブバンド信号をアップサンプリングし、帯域合 成する合成工程とを含み、前記逆量子化工程では、ノ ックワード適応により過去の復 号信号から線形予測係数を求める構成を有して!/ヽる。
[0017] この構成により、ノ ックワード適応により、短時間で、少ない情報量から、比較的音 質のょ 、復号音声を得ることができる。
[0018] 本発明の音声信号復号化方法は、前記量子化工程で、前記複数のサブバンド信 号をベクトル量子化するとき、少なくとも 2つに分割されたコードブックを使用し、前記 少なくとも 2つのコードブックの和を用いて励振ベクトルを生成するようにした音声信 号符号化方法で符号化された符号化音声信号から前記音声信号に復号する音声 信号復号化方法であって、前記逆量子化工程では、 2つ以上のベクトルインデックス に対応したベクトルの和を用いて励振ベクトルを生成する構成を有して ヽる。
[0019] この構成により、ベクトルインデックスデータを用いて復号音声を得ることができる。
[0020] 本発明の音声信号復号化方法は、前記量子化工程で、前記バックワード適応によ り求めた励振信号利得の予測値と、真の励振信号利得との差分を示す差分信号を 生成し、前記差分信号を適応スカラ量子化するようにした音声信号符号化方法で符 号化された符号化音声信号を前記音声信号に復号する音声信号復号化方法であつ て、前記逆量子化工程では、バックワード適応により励振信号利得の予測値と、逆量 子化した励振信号利得残差との和をとり、励振信号利得を求める構成を有している。
[0021] この構成により、精度の良い量子化利得値を得ることできる。
[0022] 本発明の送信機は、音声信号を複数のサブバンドに分割し、分割数に応じてダウ ンサンプリングし、複数のサブバンド信号を生成する生成工程と、前記複数のサブバ ンド信号カゝらベクトルインデックスに符号ィ匕するために合成による分析法を用いて前 記複数のサブバンド信号をベクトル量子化する量子化工程とを含み、前記量子化工 程では、ノ ックワード適応により過去の復号信号力 線形予測係数を求めるようにし た音声信号符号化方法に基いて音声信号から符号化音声信号を生成する符号ィ匕 部を備え、前記符号ィ匕音声信号を送信する送信機であって、前記符号化部は、前記 音声信号を複数のサブバンドに分割し、分割数に応じてダウンサンプリングし、複数 のサブバンド信号を生成するサブバンド分割フィルタと、前記複数のサブバンド信号 力もベクトルインデックスに符号ィ匕するために合成による分析法を用いて前記複数の サブバンド信号をベクトル量子化する複数の量子化器とを有し、前記複数の量子化 器は、バックワード適応により過去の復号信号力 線形予測係数を求める構成を有し ている。
[0023] この構成により、チャンネルあたりの伝送容量が小さくても、符号化した音声信号を 多重化して送信することができる。
[0024] 本発明の送信機は、前記量子化工程で、前記複数のサブバンド信号をベクトル量 子化するとき、少なくとも 2つに分割されたコードブックを使用し、前記少なくとも 2つ のコードブックの和を用いて励振ベクトルを生成するようにした前記音声信号符号ィ匕 方法に基いて、前記符号化部の複数の量子化器は、前記複数のサブバンド信号を ベクトル量子化するとき、少なくとも 2つに分割されたコードブックを使用し、前記少な くとも 2つのコードブックの和を用いて励振ベクトルを生成する構成を有している。
[0025] この構成により、チャンネルあたりの伝送容量が小さくても、符号化した音声信号を 多重化して送信することができる。
[0026] 本発明の送信機は、前記量子化工程では、前記バックワード適応により求めた励 振信号利得の予測値と、真の励振信号利得との差分を示す差分信号を生成し、前 記差分信号を適応スカラ量子化するようにした前記音声信号符号ィ匕方法に基 ヽて、 前記符号ィ匕部の複数の量子化器は、前記バックワード適応により求めた励振信号利 得の予測値と、真の励振信号利得との差分を示す差分信号を生成し、前記差分信 号を適応スカラ量子化する構成を有して!/ヽる。
[0027] この構成により、チャンネルあたりの伝送容量が小さくても、符号化した音声信号を 多重化して送信することができる。
[0028] 本発明の受信機は、音声信号を複数のサブバンドに分割し、分割数に応じてダウ ンサンプリングし、複数のサブバンド信号を生成する生成工程と、前記複数のサブバ ンド信号カゝらベクトルインデックスに符号ィ匕するために合成による分析法を用いて前 記複数のサブバンド信号をベクトル量子化する量子化工程とを含み、前記量子化工 程では、ノ ックワード適応により過去の復号信号力 線形予測係数を求めるようにし た音声信号符号化方法で符号化された符号化音声信号を復号する音声信号復号 化方法に基 、て符号ィ匕音声信号を復号する復号ィ匕部を備えた受信機であって、前 記復号ィ匕部は、ベクトルインデックス力 複数のサブバンド信号に復号ィ匕するために 前記ベクトルインデックスを逆量子化する複数の逆量子化器と、前記複数のサブバン ド信号をアップサンプリングし、帯域合成するサブバンド合成フィルタとを有し、前記 複数の逆量子化器は、バックワード適応により過去の復号信号力 線形予測係数を 求める構成を有している。
[0029] この構成により、チャンネルあたりの伝送容量の小さい回線を介して符号ィ匕音声信 号を受信し、遅延が少なぐ高品位な音声を復号することができる。
[0030] 本発明の受信機は、前記量子化工程では、前記複数のサブバンド信号をベクトル 量子化するとき、少なくとも 2つに分割されたコードブックを使用し、前記少なくとも 2 つのコードブックの和を用いて励振ベクトルを生成するようにした前記音声信号符号 化方法で符号化された符号ィ匕音声信号を復号する前記音声信号復号ィ匕方法に基 Vヽて符号化音声信号を復号する復号化部を備えた受信機であって、前記復号化部 の複数の逆量子化器は、 2つ以上のベクトルインデックスに対応したベクトルの和を 用いて励振ベクトルを生成する構成を有して!/、る。
[0031] この構成により、チャンネルあたりの伝送容量の小さい回線を介して符号ィ匕音声信 号を受信し、遅延が少なぐ高品位な音声を復号することができる。
[0032] 本発明の受信機は、前記量子化工程では、前記バックワード適応により求めた励 振信号利得の予測値と、真の励振信号利得との差分を示す差分信号を生成し、前 記差分信号を適応スカラ量子化するようにした前記音声信号符号ィ匕方法で符号化さ れた符号化音声信号を復号する前記音声信号復号化方法に基いて符号化音声信 号を復号する復号ィ匕部を備えた受信機であって、前記復号化部の複数の逆量子化 器は、バックワード適応により励振信号利得の予測値と、逆量子化した励振信号利 得残差との和をとり、励振信号利得を求める構成を有している。
[0033] この構成により、チャンネルあたりの伝送容量の小さい回線を介して符号ィ匕音声信 号を受信し、遅延が少なぐ高品位な音声を復号することができる。
[0034] 本発明のワイヤレスマイクシステムは、音声信号を複数のサブバンドに分割し、分 割数に応じてダウンサンプリングし、複数のサブバンド信号を生成する生成工程と、 前記複数のサブバンド信号力 ベクトルインデックスに符号ィ匕するために合成による 分析法を用いて前記複数のサブバンド信号をベクトル量子化する量子化工程とを含 み、前記量子化工程では、バックワード適応により過去の復号信号から線形予測係 数を求めるようにした音声信号符号化方法に基!ヽて音声信号から符号化音声信号 を生成する符号化部を備え、前記符号ィ匕音声信号を送信する送信機であって、前記 符号ィ匕部は、前記音声信号を複数のサブバンドに分割し、分割数に応じてダウンサ ンプリングし、複数のサブバンド信号を生成するサブバンド分割フィルタと、前記複数 のサブバンド信号力もベクトルインデックスに符号ィ匕するために合成による分析法を 用いて前記複数のサブバンド信号をベクトル量子化する複数の量子化器とを有し、 前記複数の量子化器は、バックワード適応により過去の復号信号力 線形予測係数 を求め、前記符号ィ匕部で生成された符号ィ匕音声信号を送信するようにした送信機と 、この送信機から送信された前記符号化音声信号を受信する受信機とを備える構成 を有している。
[0035] この構成により、高圧縮効率で音声信号を符号ィ匕することができるので、無線伝送 帯域の有効活用ができ、多チャンネルシステムの構築を容易に行うことができる。
[0036] 本発明のワイヤレスマイクシステムは、前記受信機が、音声信号を複数のサブバン ドに分割し、分割数に応じてダウンサンプリングし、複数のサブバンド信号を生成する 生成工程と、前記複数のサブバンド信号力 ベクトルインデックスに符号ィ匕するため に合成による分析法を用いて前記複数のサブバンド信号をベクトル量子化する量子 化工程とを含み、前記量子化工程では、ノ ックワード適応により過去の復号信号から 線形予測係数を求めるようにした音声信号符号ィ匕方法で符号化された符号ィ匕音声 信号を復号する音声信号復号化方法に基いて符号化音声信号を復号する復号ィ匕 部を備え、前記復号化部は、ベクトルインデックスカゝら複数のサブバンド信号に復号 化するために前記ベクトルインデックスを逆量子化する複数の逆量子化器と、前記複 数のサブバンド信号をアップサンプリングし、帯域合成するサブバンド合成フィルタと を有し、前記複数の逆量子化器は、バックワード適応により過去の復号信号力 線形 予測係数を求める構成を有して 、る。
[0037] この構成により、高圧縮効率で符号化された音声信号を復号することができるので 、無線伝送帯域の有効活用ができ、多チャンネルシステムの構築を容易に行うことが できる。
発明の効果
[0038] 本発明は、広帯域の音声信号を複数の帯域に分割するサブバンド分割手段と、内 部予測係数などをバックワード適応としたベクトル量子化器とを設けることにより、低 遅延、高圧縮効率でありながら、高品位な復号音声が得られるという効果を有する音 声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイク システムを提供することができるものである。
図面の簡単な説明
[0039] [図 1]図 1は、本発明の第 1乃至 3の実施の形態に係るワイヤレスマイクシステムのブ ロック図である。
[図 2]図 2は、本発明の第 1乃至 3の実施の形態のワイヤレスマイクシステムの送信機 のブロック図である。
[図 3]図 3は、本発明の第 1乃至 3の実施の形態のワイヤレスマイクシステムの受信機 のブロック図である。
[図 4]図 4は、本発明の第 1乃至 3の実施の形態のワイヤレスマイクシステムの送信機 の圧縮符号ィ匕部のブロック図である。
[図 5]図 5は、本発明の第 1乃至 3の実施の形態のワイヤレスマイクシステムの受信機 の圧縮信号復号ィ匕部のブロック図である。
[図 6]図 6は、本発明の第 1の実施の形態のワイヤレスマイクシステムの送信機の圧縮 符号ィ匕部における各サブバンドの量子化器のブロック図である。 [図 7]図 7は、本発明の第 1の実施の形態のワイヤレスマイクシステムの送信機の圧縮 符号ィ匕部における各サブバンドの逆量子化器のブロック図である。
[図 8]図 8は、本発明の第 2の実施の形態のワイヤレスマイクシステムの送信機の圧縮 符号ィ匕部におけるサブバンド毎の量子化器のブロック図である。
[図 9]図 9は、本発明の第 2の実施の形態のワイヤレスマイクシステムの送信機の圧縮 符号ィ匕部におけるサブバンド毎の逆量子化器のブロック図である。
[図 10]図 10は、本発明の第 3の実施の形態のワイヤレスマイクシステムの送信機の圧 縮符号ィ匕部におけるサブバンド毎の量子化器のブロック図である。
[図 11]図 11は、本発明の第 3の実施の形態のワイヤレスマイクシステムの送信機の圧 縮符号ィ匕部におけるサブバンド毎の逆量子化器のブロック図である。
[図 12]図 12は、従来のサブバンド ADPCM符号ィ匕装置の概略構成のブロック図であ る。
符号の説明
100 ワイヤレスマイクシステム
101 送信機
102 受信機
1 マイクロホン
2 音声信号増幅部
3 アナログデジタル変換部
4 圧縮符号化部
5 誤り訂正符号化部
6 回線符号化部
7 高周波増幅部
8 送信アンテナ
9 受信アンテナ
10 高周波変換器
11 中間周波増幅部
12 復調部 3 回線符号復号化部
4 誤り訂正部
5 圧縮信号復号化部
6 デジタルェフエクタ
7 デジタルアナログ変換部
8 音声増幅部
9 スピーカ
a サブバンド分割フィルタバンクb ベクトル量子化部
c マノレチプレクサ
5a デマルチプレクサ
5b ベクトル逆量子化部
5c サブノ ンド 1 成フ 'ィル:タノ ンク
0a、 20b、 20cゝ 20d LD -CELPS子化器0a,墨、 40c、 40d LD -CELPS子化器0a, 70bゝ 70c、 70d LD -CELPS子化器0a、 30b、 30c、 30d LD -CELP逆0a、 60b、 60c、 60d LD CELP逆0a、 90b、 90cゝ 90d LD CELP逆1 ベクトルバッファ
2 励振 VQコードブック
3 利得乗算器
4 バックワード利得適応器
5 合成フィルタ
6 バックワード係数適応器
7 聴覚重み付けフィルタ
8 最小二乗平均誤差算出器
9 加算器 励振 VQコードブック 利得乗算器
バックワード利得適応器 合成フィルタ
バックワード係数適応器 ベクトノレノ ッファ 励振 VQコードブック A 励振 VQコードブック B 予備選択器
候補コードブック A 候補コードブック B 利得乗算器
バックワード利得適応器 合成フィルタ
バックワード係数適応器 聴覚重み付けフィルタ 最小二乗平均誤差算出器 加算器
加算器
励振 VQコードブック A 励振 VQコードブック B 利得乗算器
バックワード利得適応器 合成フィルタ
バックワード係数適応器 加算器
ベクトノレノ ッファ 励振 VQコードブック A 73 励振 VQコードブック B
74 予備選択器
75 候補コードブック A
76 候補コードブック B
77 適応利得付加器
78 利得乗算器
79 バックワード利得適応器
80 合成フィルタ
81 バックワード係数適応器
82 聴覚重み付けフィルタ
83 最小二乗平均誤差算出器
84 加算器
85 加算器
91 励振 VQコードブック A
92 励振 VQコードブック B
93 適応利得付加器
94 利得乗算器
95 バックワード利得適応器
96 合成フィルタ
97 バックワード係数適応器
98 加算器
発明を実施するための最良の形態
[0041] (第 1の実施の形態)
以下、図 1乃至 6を参照し、本発明の第 1の実施の形態の送信機、受信機、及びヮ ィャレスマイクシステムについて説明する。
[0042] ワイヤレスマイクシステム 100は、図 1に示すように、音声信号を符号化し、符号化し た音声信号を送信する送信機 101と、符号化された音声信号を送信機 101から受信 する受信機 102とを備えている。 [0043] 送信機 101は、図 1及び 2に示すように、音声をアナログ音声信号に変換するマイク 口ホン 1と、マイクロホン 1によって変換されたアナログ音声信号を増幅する音声信号 増幅部 2と、音声信号増幅部 2によって増幅されたアナログ音声信号を所定のサンプ リング周波数でサンプリングし、所定のビットレートのデジタル音声信号に変換するァ ナログデジタル変換部 3と、アナログデジタル変換部 3によって変換されたデジタル音 声信号を圧縮するため、アナログデジタル変換部 3によって変換されたデジタル音声 信号を低ビットレートの符号化ビット列に符号化する圧縮符号化部 4と、圧縮符号ィ匕 部 4によって変換された符号ィ匕ビット列を伝送路誤りに対して耐性を持たせた符号ィ匕 列に符号化する誤り訂正符号化部 5と、誤り訂正符号化部 5によって符号化された符 号ィ匕列に受信側で必要な情報を付加し、伝送フレーム信号を生成する回線符号ィ匕 部 6と、回線符号化部 6によって生成された伝送フレーム信号にデジタル変調を施し 、所要の送信出力まで増幅し、出力信号として出力する高周波増幅部 7と、高周波 増幅部 7によって増幅された出力信号を電波として空間に放射する送信アンテナ 8と を備えている。
[0044] 送信機 101は、さらに、アナログデジタル変換部 3におけるビットレート、圧縮符号 化部 4におけるビットレート、高周波増幅部 7における送信チャンネルなどを設定する (図示しない)設定部と、設定部によって設定された結果に応じて各部を制御する(図 示しな 、)制御部とを備えて 、る。
[0045] 誤り訂正符号ィ匕部 5は、ブロック符号化、畳み込み符号化、インターリーブなどを用 Vヽて伝送路誤りに対して耐性を持たせた符号ィ匕列に変換するようになって!/ヽる。
[0046] 一方、受信機 102は、図 1及び 3に示すように、送信機 101から放射された電波を 入力信号として受信する受信アンテナ 9と、受信アンテナ 9によって受信された入力 信号を増幅し、予め設定された中間周波数の信号に変換する高周波増幅部 10と、 高周波増幅部 10によって変換された中間周波数の信号を増幅し、予め設定された 周波数帯域に制限する中間周波増幅部 11と、中間周波増幅部 11によって増幅され た中間周波数の信号から伝送フレーム信号を復調する復調部 12と、復調部 12によ つて復調された伝送フレーム信号から付加情報を検出し、符号化列を復号する回線 符号復号化部 13と、回線符号復号化部 13によって復号された符号化列に誤り訂正 処理を施し、符号化ビット列に復号する誤り訂正部 14と、誤り訂正部 14によって復号 された符号化ビット列からデジタル音声信号に復号する圧縮信号復号化部 15と、圧 縮信号復号ィ匕部 15によって復号されたデジタル音声信号にデジタルエフェクト処理 を施すデジタルエフヱクタ部 16と、デジタルエフヱクタ部 16によってデジタルエフエタ ト処理が施されたデジタル音声信号をアナログ音声信号に変換するデジタルアナ口 グ変換部 17と、デジタルアナログ変換部 17によって変換されたアナログ音声信号を 増幅する音声増幅部 18と、音声増幅部 18によって増幅されたアナログ音声信号か ら音声に変換し、拡声するスピーカ 19とを備えている。
[0047] 受信機 102は、さらに、受信チャンネル、圧縮信号復号化部 15のビットレート等を 設定する(図示しない)設定部と、設定部によって設定された設定結果に応じて各部 を制御する(図示しな 、)制御部とを備えて 、る。
[0048] デジタルェフエクタ部 16は、圧縮信号復号化部 15によって復号されたデジタル音 声信号に対して、ハウリング抑制、ィコライジング、デジタルリバーブ等のデジタルェ フエタト処理を施すようになって!/、る。
[0049] 送信機 101の圧縮符号化部 4は、図 4に示すように、 8kHz以上の周波数成分を含 む広帯域の音声信号を 4つに分割し、分割数に応じてダウンサンプリングし、 4つの サブバンド信号を生成するサブバンド分割フィルタバンク 4aと、 4つのサブバンド信号 を低遅延符号励振型線形予測(以下単に LD-CELPという)アルゴリズムに基いて複 数のサブバンド信号をベクトルインデックスに符号ィ匕するため合成による分析法を用 V、て 4つのサブバンド信号をベクトル量子化し、インデックスを出力するベクトル量子 化部 4bと、ベクトル量子化部 4bによって出力されたインデックスを符号ィ匕ビット列に 組み込むマルチプレクサ 4cとを有して!/、る。
[0050] ベクトル量子化部 4bは、 4つのサブバンド信号を夫々ベクトル量子化する 4つの LD -CELP量子化器 20a乃至 20dを有して!/、る。 LD-CELP量子化器 20a乃至 20dは、 夫々、ノ ックワード適応により過去の復号信号力も線形予測係数を求めるようになつ ている。
[0051] ここで、 LD-CELPとは、電話帯域の音声信号を 16kbpsで実現するための国際標 準であり、 ITU-T勧告「G. 728」に使用される低遅延符号励振型線形予測のァルゴ リズムである。
[0052] また、ダウンサンプリングとは、ある周波数でサンプリングされた信号をより低い周波 数で再サンプリングすることである。一方、アップサンプリングとは、ある周波数でサン プリングされた信号をより高い周波数で再サンプリングすることである。
[0053] LD-CELP量子化器 20aは、図 6に示すように、量子化ベクトルの次元数分のサブ バンド信号をバッファリングするベクトルバッファ 21と、雑音ベクトルに応じて利得調 整された励振ベクトルから利得を線形予測するバックワード利得適応器 24と、バック ワード利得適応器 24によって線形予測された利得を乗算する利得乗算器 23と、利 得乗算器 23によって利得が乗算された信号から復号信号を形成する合成フィルタ 2 5と、合成フィルタ 25のフィルタ係数を過去の復号信号力も線形予測し、適応的に更 新するバックワード係数適応器 26と、ベクトルバッファ 21にバッファリングされたサブ バンド信号カゝら合成フィルタ 25で算出された信号を減算し、差分 (残差信号)を算出 する加算器 29と、加算器 29で算出された残差信号に周波数重み付け処理を行う聴 覚重み付けフィルタ 27と、聴覚重み付けフィルタ 27で周波数重み付け処理された残 差信号のエネルギーが最小になるように最小二乗平均誤差を算出し、インデックス番 号を励振 VQコードブック 22から取得する最小二乗平均誤差算出器 28とを有してい る。
[0054] LD-CELP量子化器 20b、 20c、 20dは、夫々、 LD-CELP量子化器 20aと同様の 構成を有し、各帯域のサブバンド信号を符号ィ匕するようになって!/ヽる。
[0055] LD-CELP量子化器 20a乃至 20dは、夫々、インデックス番号をマルチプレクサ 4c に出力するようになっている。一方、マルチプレクサ 4cは、 LD-CELP量子化器 20a 乃至 20dからインデックス番号を取得し、取得したインデックス番号をビットストリーム に組み込むようになって!/、る。
[0056] 一方、受信機 102の圧縮信号復号ィ匕部 15は、図 5に示すように、ビットストリームを
4つのサブバンドのインデックス番号に分解するデマルチプレクサ 15aと、 4つのサブ バンドのインデックス番号力 4つのサブバンド信号を復号するベクトル逆量子化部 1 5bと、 4つのサブバンド信号を合成し、音声信号を出力するサブバンド合成フィルタ バンク 15cとを有している。また、ベクトル逆量子化部 15bは、 4つの LD-CELP逆量 子化器 30a乃至 30dを有して!/、る。
[0057] LD- CELP逆量子ィ匕器 30a乃至 30dは、夫々、励振 VQコードブック 31と、利得乗 算器 32と、ノ ックワード利得適応器 33と、合成フィルタ 34と、バックワード係数適応 器 35とを有し、インデックス番号力もサブバンド信号を復号するようになって!/、る。
[0058] 次に、図 6及び 7を参照し、以上のように構成されたワイヤレスマイクシステムの送信 機 101の圧縮符号化部 4の動作と、受信機 102の圧縮信号復号化部 15の動作につ いて説明する。
[0059] 送信機 101の圧縮符号化部 4では、量子化ベクトルの次元数分のサブバンド信号 がベクトルバッファ 21にバッファリングされる。次いで、励振 VQコードブック 22内の雑 音ベクトルを過去の利得調整された励振ベクトルよりバックワード利得適応器 24によ つて線形予測された利得が利得乗算器 23によって乗算され、ここで生成された利得 調整済みの励振ベクトルが合成フィルタ 25を通過することによって、復号信号が形成 される。合成フィルタ 25の係数は、ノ ックワード係数適応器 26によって、過去の復号 信号から線形予測され、適応的に更新される。復号音声と先のベクトルバッファ 21内 の入力サブバンド信号との差分 (残差信号)が計算され、聴覚重み付けフィルタ 27に よる周波数重み付け処理後、最小二乗平均誤差算出器 28にて残差信号のエネルギ 一が最小になる励振 VQコードのインデックスが計算される。このインデックス番号が LD-CELP量子化器 20a乃至 20dより各々出力され、マルチプレクサ 4cにてインデ ッタスがビットストリームにまとめられ送信機 101より送信される。
[0060] 一方、受信機 102の圧縮信号復号ィ匕部 15では、ビットストリームはデマルチプレク サ 15aにて各々のサブバンド毎の LD-CELP逆量子化器 30a乃至 30dにてサブバン ド信号が復号される。復号されたサブバンド信号は、各サブバンド毎に、サブバンド 合成フィルタバンク 15cにてサブバンド分割数に比例した補間率にて 0挿入補間され 、サブバンド合成フィルタリング後、サブバンド毎の和が取られ、復号音声信号として 出力される。
[0061] 以上のように本発明の第 1の実施の形態の音声信号符号化方法、音声信号復号 化方法、送信機、受信機、およびワイヤレスマイクシステムによれば、広帯域の音声 信号を複数のサブバンドに分割し、符号化対象の冗長性を排除した状態で、サブバ ンド信号をバックワード適応的にベクトル量子化することにより、低遅延で復号音声の 品質がよぐ圧縮効率のよい音声符号ィ匕及び復号ィ匕を実現することができる。
[0062] 次に、図 8および図 9を参照し、本発明の第 2の実施の形態の送信機、受信機、及 びワイヤレスマイクシステムにつ 、て説明する。
[0063] ワイヤレスマイクシステムは、第 1の実施の形態のワイヤレスマイクシステムの構成と 同様に、送信機と受信機とを備えている。
[0064] 送信機は、第 1の実施の形態のワイヤレスマイクシステム 100の送信機 101の構成 と同様に、マイクロホン 1と、音声信号増幅部 2と、アナログデジタル変換部 3と、圧縮 符号化部 4と、誤り訂正符号化部 5と、回線符号化部 6と、高周波増幅部 7と、送信ァ ンテナ 8とを備えている。
[0065] また、送信機の圧縮符号化部 4は、 8kHz以上の周波数成分を含む広帯域の音声 信号を 4つに分割し、分割数に応じてダウンサンプリングし、 4つのサブバンド信号を 生成するサブバンド分割フィルタバンク 4aと、 4つのサブバンド信号を LD-CELPァ ルゴリズムに基いて複数のサブバンド信号をベクトルインデックスに符号ィ匕するため 合成による分析法を用いて 4つのサブバンド信号をベクトル量子化し、インデックスを 出力するベクトル量子化部 4bと、ベクトル量子化部 4bによって出力されたインデック スを符号ィ匕ビット列に組み込むマルチプレクサ 4cとを含み、ベクトル量子化部 4bは、 4つの LD-CELP量子化器 40a乃至 40dを有して!/、る。
[0066] さらに、 LD-CELP量子化器 40a乃至 40dは、図 8に示すように、ベクトルバッファ 4 1と、励振 VQコードブック A42と、励振 VQコードブック B43と、予備選択器 44と、候 補コードブック A45と、候補コードブック B46と、加算器 53と、利得乗算器 47と、バッ クワード利得適応器 48と、合成フィルタ 49と、バックワード係数適応器 50と、加算器 5 4と、聴覚重み付けフィルタ 51と、最小二乗平均誤差算出器 52とを備えている。
[0067] 一方、受信機は、第 1の実施の形態のワイヤレスマイクシステム 100の受信機 102 の構成と同様に、受信アンテナ 9と、高周波増幅部 10と、中間周波増幅部 11と、復 調部 12と、回線符号復号部 13と、誤り訂正部 14と、圧縮信号復号化部 15と、デジタ ルエフヱクタ部 16と、デジタルアナログ変換部 17と、音声増幅部 18と、スピーカ 19と を備えている。 [0068] 受信機は、さらに、受信チャンネル、圧縮信号復号ィ匕部 15のビットレート等を設定 する(図示しない)設定部と、設定部によって設定された設定結果に応じて各部を制 御する(図示しな 、)制御部とを備えて 、る。
[0069] 受信機の圧縮信号復号ィ匕部 15は、符号ィ匕ビット列力も 4つの帯域のインデックスを 取り出すデマルチプレクサ 15aと、 4つの帯域のインデックスを LD-CELPァルゴリズ ムに基いてインデックス力 サブバンド信号を復号ィ匕する復号ィ匕方法を用いて 4つの 帯域のインデックスを 4つのサブバンド信号に復号するベクトル逆量子化部 15bと、 4 つのサブバンド信号を合成し、デジタル音声信号を生成するサブバンド合成フィルタ バンク 15cとを含み、ベクトル逆量子化部 15bは、符号ィ匕ビット列力 4つのサブバン ド信号に夫々ベクトル逆量子化する 4つの LD-CELP逆量子化器 60a乃至 60dを有 している。
[0070] LD-CELP逆量子化器 60a乃至 60dは、図 9に示すように、夫々、励振 VQコード ブック A61と、励振 VQコードブック B62と、加算器 67と、利得乗算器 63と、ノ ックヮ ード利得適応器 64と、合成フィルタ 65と、ノックワード係数適応器 66とを有している
[0071] 次に、図 8及び 9を参照し、以上のように構成されたワイヤレスマイクシステムの送信 機の圧縮符号ィ匕部 4の動作と、受信機の圧縮信号復号ィ匕部 15の動作について説明 する。
[0072] 送信機の圧縮符号化部 4では、入力音声信号を、サブバンド分割フィルタバンク 4a によって、いくつかの周波数帯域ごとにバンドパスフィルタリングされ、分割数に比例 した間引き率でダウンサンプリングされる。次いで、ベクトルバッファ 41にて先のサブ バンド信号が量子化ベクトル次元数分バッファリングされる。次に、予備選択器 44に お!、て、入力信号と近!、ベクトルの候補がそれぞれ励振 VQコードブック A42及び励 振 VQコードブック B43より選択され、候補コードブック A45及び候補コードブック B4 6に格納される。予備選択は、入力信号より過去の 0入力応答を引いて導き出される ターゲットベクトルと、励振 VQコードベクトル (励振 VQコードブック A42及び励振 VQ コードブック B43からのそれぞれのベクトル要素の和)を合成フィルタ 49及び聴覚重 み付けフィルタ 51で励振し、さらにバックワード利得をかけた 0状態応答との相互相 関が大きくなる組み合わせを探すような、合成による分析法よりも演算が少なぐ準最 適な方法を用いるとよ 、。このようにして予備選択された候補コードブック A45及び候 補コードブック B46は、足しあわされて、励振ベクトル候補となり、合成による分析法 により、最適な候補コードブックのインデックス番号が最小二乗平均誤差算出器 52に て選択される。分析による合成は、先の実施の形態 1と同じで、候補コードブック A45 と候補コードブック B46の和力 励振ベクトルが生成され、次いで、利得乗算器 47に よって利得が掛けられる。利得は過去の利得調整済みの励振ベクトルからバックヮー ド利得適応器 48により、適応的に予測される。また、利得調整済みの励振ベクトルは 合成フィルタ 49を通して復号音声が得られる。合成フィルタ 49の係数はバックワード 係数適応器 50により、適応的に更新される。
[0073] 一方、受信機の圧縮信号復号化部 15では、先の VQインデックスを受け、符号器と 同じ励振 VQコードブック A61及び励振 VQコードブック B62から励振候補ベクトルが 選択され、この二つのベクトルの和が励振ベクトルとして利得乗算器 63により利得調 整され、合成フィルタ 65によって復号サブバンド信号が生成される。利得乗算器 63 及び合成フィルタ 65の予測係数はそれぞれバックワード利得適応器 64及びバックヮ ード係数適応器 66によって適応的に更新される。それぞれのサブバンド毎の復号サ ブバンド信号は、サブバンド合成フィルタバンク 15cにて復号音声が生成される。
[0074] 以上説明したように、本発明の第 2の実施の形態の送信機、受信機、及びワイヤレ スマイクシステムによれば、サブバンド毎に設けられた量子化器において、励振候補 ベクトルに、 2つ以上に分割されたコードブックを使用し、予備選択を行って準最適な 候補コードベクトルを選定し、選定された少な 、候補カゝら合成による分析法を行うこと により、高品位な復号音声と、使用メモリ量と演算量が少ない符号化 '復号動作を得 ることがでさる。
[0075] なお、本発明の第 2の実施の形態の送信機、受信機、及びワイヤレスマイクシステ ムでは、受信機の圧縮符号化部 4は、 8kHz以上の周波数成分を含む広帯域の音声 信号を 4つのサブバンドに分割し、分割数に応じてダウンサンプリングし、 4つのサブ バンド信号を生成するサブバンド分割フィルタバンク 4aを備えていると説明したが、 サブバンド分割フィルタバンク 4aが音声信号を 4つのサブバンドに分割することを限 定するものではない。
[0076] 次に、図 10及び 11を参照し、本発明の第 3の実施の形態の送信機、受信機、及び ワイヤレスマイクシステムについて説明する。
[0077] ワイヤレスマイクシステムは、第 1の実施の形態のワイヤレスマイクシステムの構成と 同様に、送信機と受信機とを備えている。
[0078] 送信機は、第 1の実施の形態のワイヤレスマイクシステム 100の送信機 101の構成 と同様に、マイクロホン 1と、音声信号増幅部 2と、アナログデジタル変換部 3と、圧縮 符号化部 4と、誤り訂正符号化部 5と、回線符号化部 6と、高周波増幅部 7と、送信ァ ンテナ 8とを備えている。
[0079] また、送信機の圧縮符号化部 4は、 8kHz以上の周波数成分を含む広帯域の音声 信号を 4つに分割し、分割数に応じてダウンサンプリングし、 4つのサブバンド信号を 生成するサブバンド分割フィルタバンク 4aと、 4つのサブバンド信号を LD-CELPァ ルゴリズムに基いて複数のサブバンド信号をベクトルインデックスに符号ィ匕するため 合成による分析法を用いて 4つのサブバンド信号をベクトル量子化し、インデックスを 出力するベクトル量子化部 4bと、ベクトル量子化部 4bによって出力されたインデック スを符号ィ匕ビット列に組み込むマルチプレクサ 4cとを含み、ベクトル量子化部 4bは、 4つの LD-CELP量子化器 70a乃至 70dを有して!/、る。
[0080] さらに、 LD-CELP量子化器 70a乃至 70dは、図 10に示すように、ベクトルバッファ 71と、励振 VQコードブック A72と、励振 VQコードブック B73と、予備選択器 74と、 候補コードブック A75と、候補コードブック B76と、適応利得付加器 77と、利得乗算 器 78と、ノ ックワード利得適応器 79と、合成フィルタ 80と、バックワード係数適応器 8 1と、聴覚重み付けフィルタ 82と、最小二乗平均誤差算出器 83とを有している。
[0081] 一方、受信機は、第 1の実施の形態のワイヤレスマイクシステムの受信機 102の構 成と同様に、受信アンテナ 9と、高周波増幅部 10と、中間周波増幅部 11と、復調部 1 2と、回線符号復号部 13と、誤り訂正部 14と、圧縮信号復号化部 15と、デジタルエフ ェクタ部 16と、デジタルアナログ変換部 17と、音声増幅部 18と、スピーカ 19とを備え ている。
[0082] 受信機は、さらに、受信チャンネル、圧縮信号復号ィ匕部 15のビットレート等を設定 する(図示しない)設定部と、設定部によって設定された設定結果に応じて各部を制 御する(図示しな 、)制御部とを備えて 、る。
[0083] 受信機の圧縮信号復号ィ匕部 15は、符号ィ匕ビット列力も 4つの帯域のインデックスを 取り出すデマルチプレクサ 15aと、 4つの帯域のインデックスを LD-CELPァルゴリズ ムに基いてインデックス力 サブバンド信号を復号ィ匕する復号ィ匕方法を用いて 4つの 帯域のインデックスを 4つのサブバンド信号に復号するベクトル逆量子化部 15bと、 4 つのサブバンド信号を合成し、デジタル音声信号を生成するサブバンド合成フィルタ バンク 15cとを含み、ベクトル逆量子化部 15bは、符号ィ匕ビット列力 4つのサブバン ド信号に夫々ベクトル逆量子化する 4つの LD-CELP逆量子化器 90a乃至 90dを有 している。
[0084] LD- CELP逆量子化器 90a乃至 90dは、図 11に示すように、夫々、励振 VQコード ブック A91と、励振 VQコードブック B92と、適応利得付加器 93と、利得乗算器 94と、 ノ ックワード利得適応器 95と、合成フィルタ 96と、ノ ックワード係数適応器 97とを有 している。
[0085] 次に、図 10及び 11を参照し、以上のように構成されたワイヤレスマイクシステムの 送信機の圧縮符号ィ匕部 4の動作と、受信機の圧縮信号復号ィ匕部 15の動作について 説明する。
[0086] 送信機の圧縮符号ィ匕部 4では、入力音声信号をサブバンド分割フィルタバンク 4a によって、いくつかの周波数帯域ごとにバンドパスフィルタリングし、分割数に比例し た間引き率で間引きし、複数のサブバンド信号が生成される。先のサブバンド信号は ベクトルバッファ 71によって量子化ベクトル次元数分バッファリングされる。次に、予 備選択器 74にお ヽて、入力信号と近!ヽベクトルの候補がそれぞれ励振 VQコードブ ック A72及び励振 VQコードブック B73より選択され、候補コードブック A75及び候補 コードブック B76に格納される。予備選択は、入力信号より過去の 0入力応答を引い て導き出されるターゲットベクトルと、励振 VQコードベクトル (励振 VQコードブック A7 2及び励振 VQコードブック B73からのそれぞれのベクトル要素の和)を合成フィルタ 80及び聴覚重み付けフィルタ 82で励振し、さらに利得乗算器 78によってバックヮー ド利得を力 4ナた 0状態応答との相互相関が大きくなる組み合わせを探すような、合成 による分析法よりも演算が少なぐ準最適な方法を用いるとよい。このようにして予備 選択された候補コードブック A75及び候補コードブック B76は、足しあわされて、励 振ベクトル候補となる。さらに励振べ外ル候補ごとに、理想利得値を計算し、理想利 得値をさらにバックワード予測で求めた利得が掛けられ、利得で減算して利得ダイナ ミックレンジを小さくした差分理想利得値を求める。差分理想利得値は、適応利得付 加器 77で適応スカラ量子化により、量子化'符号化する。この量子化値は、合成によ る分析法で使用され、利得乗算器 78の出力と足しあわされたものが、励振ベクトルに 掛け合わされ、さらにこの利得調整された励振ベクトルは合成フィルタ 80を通すこと により、復号音声が生成され、べ外ルバッファ 71との差分が計算される。この差分値 に聴覚重み付けフィルタ 82によるフィルタリング後、最小二乗平均誤差算出器 83に て誤差が最も小さくなるような、候補コードブック A75及び候補コードブック B76の V Qインデックスが最終的に利得コードとともに圧縮符号ィ匕部 4の出力として、出力され る。
[0087] 一方、受信機の圧縮信号復号ィ匕部 15では、先の励振 VQインデックスを受け、符 号器と同じ励振 VQコードブック A91及び励振 VQコードブック B92から励振候補べ タトルが選択され、この二つのベクトルの和が励振ベクトルとして、圧縮符号化部 4と 同じ形態で求められる適応利得付加器 93及び利得乗算器 94にて利得調整される。 さらに利得調整された励振ベクトルは、合成フィルタ 96によって復号サブバンド信号 が生成される。利得乗算器 94及び合成フィルタ 96の予測係数はそれぞれバックヮー ド利得適応器 95及びバックワード係数適応器 97によって周期的に更新される。それ ぞれのサブバンド毎の復号サブバンド信号は、サブバンド合成フィルタバンク 15cに て帯域合成フィルタリングが行われ、復号音声が生成される。
[0088] 以上のように、本発明の第 3の実施の形態の送信機、受信機、及びワイヤレスマイ クシステムによれば、サブバンド毎に設けられた量子化器において、励振候補べタト ルに、 2つ以上に分割されたコードブックを使用し、予備選択を行って準最適な候補 コードベクトルを選定し、選定された少ない候補カゝら合成による分析法を行うこと、さら にはコードべクトルごとに最適なゲインを適応スカラ量子化することにより、高品位な 復号音声と、使用メモリ量と演算量が少な!ヽ音声符号化及び復号化を実現すること ができる。
産業上の利用可能性
以上のように、本発明にかかる音声信号符号化方法、音声信号復号化方法、送信 機、受信機、及びワイヤレスマイクシステムは、低遅延で高圧縮効率でありながら、伝 送情報レートが低いという効果を有し、伝送帯域制限の厳しい無線通信や、有線通 信でのリアルタイム通話システムなどの音声符号ィ匕等として有用である。

Claims

請求の範囲
[1] 音声信号を複数のサブバンドに分割し、分割数に応じてダウンサンプリングし、複 数のサブバンド信号を生成する生成工程と、前記複数のサブバンド信号力 ベクトル インデックスに符号ィ匕するために合成による分析法を用いて前記複数のサブバンド 信号をベクトル量子化する量子化工程とを含み、
前記量子化工程では、バックワード適応により過去の復号信号力 線形予測係数 を求めるようにしたことを特徴とする音声信号符号化方法。
[2] 前記量子化工程で、前記複数のサブバンド信号をベクトル量子化するとき、少なく とも 2つに分割されたコードブックを使用し、前記少なくとも 2つのコードブックの和を 用いて励振ベクトルを生成するようにしたことを特徴とする請求項 1に記載の音声信 号符号化方法。
[3] 前記量子化工程で、前記バックワード適応により求めた励振信号利得の予測値と、 真の励振信号利得との差分を示す差分信号を生成し、前記差分信号を適応スカラ 量子化するようにしたことを特徴とする請求項 1に記載の音声信号符号化方法。
[4] 音声信号を複数のサブバンドに分割し、分割数に応じてダウンサンプリングし、複 数のサブバンド信号を生成する生成工程と、前記複数のサブバンド信号力 ベクトル インデックスに符号ィ匕するために合成による分析法を用いて前記複数のサブバンド 信号をベクトル量子化する量子化工程とを含み、前記量子化工程では、バックワード 適応により過去の復号信号力 線形予測係数を求めるようにした音声信号符号ィ匕方 法で符号化された符号化音声信号から前記音声信号に復号する音声信号復号ィ匕 方法であって、
前記ベクトルインデックス力 前記複数のサブバンド信号に復号ィ匕するために前記 ベクトルインデックスを逆量子化する複数の逆量子化工程と、前記複数のサブバンド 信号をアップサンプリングし、帯域合成する合成工程とを含み、
前記逆量子化工程では、バックワード適応により過去の復号信号から線形予測係 数を求めるようにしたことを特徴とする音声信号復号ィ匕方法。
[5] 前記量子化工程で、前記複数のサブバンド信号をベクトル量子化するとき、少なく とも 2つに分割されたコードブックを使用し、前記少なくとも 2つのコードブックの和を 用いて励振ベクトルを生成するようにした音声信号符号化方法で符号化された符号 化音声信号から前記音声信号に復号する音声信号復号化方法であって、
前記逆量子化工程では、 2つ以上のベクトルインデックスに対応したベクトルの和を 用いて励振ベクトルを生成するようにしたことを特徴とする請求項 4に記載の音声信 号復号化方法。
[6] 前記量子化工程で、前記バックワード適応により求めた励振信号利得の予測値と、 真の励振信号利得との差分を示す差分信号を生成し、前記差分信号を適応スカラ 量子化するようにした音声信号符号ィ匕方法で符号化された符号ィ匕音声信号を前記 音声信号に復号する音声信号復号化方法であって、
前記逆量子化工程では、バックワード適応により励振信号利得の予測値と、逆量子 ィ匕した励振信号利得残差との和をとり、励振信号利得を求めるようにしたことを特徴と する請求項 4に記載の音声信号復号化方法。
[7] 音声信号を複数のサブバンドに分割し、分割数に応じてダウンサンプリングし、複 数のサブバンド信号を生成する生成工程と、前記複数のサブバンド信号力 ベクトル インデックスに符号ィ匕するために合成による分析法を用いて前記複数のサブバンド 信号をベクトル量子化する量子化工程とを含み、前記量子化工程では、バックワード 適応により過去の復号信号力 線形予測係数を求めるようにした音声信号符号ィ匕方 法に基!、て音声信号力も符号ィ匕音声信号を生成する符号ィ匕部を備え、前記符号ィ匕 音声信号を送信する送信機であって、
前記符号化部は、前記音声信号を複数のサブバンドに分割し、分割数に応じてダ ゥンサンプリングし、複数のサブバンド信号を生成するサブバンド分割フィルタと、前 記複数のサブバンド信号力 ベクトルインデックスに符号ィ匕するために合成による分 析法を用いて前記複数のサブバンド信号をベクトル量子化する複数の量子化器とを 有し、
前記複数の量子化器は、バックワード適応により過去の復号信号力 線形予測係 数を求めるようにしたことを特徴とする送信機。
[8] 前記符号化部の複数の量子化器は、前記量子化工程で、前記複数のサブバンド 信号をベクトル量子化するとき、少なくとも 2つに分割されたコードブックを使用し、前 記少なくとも 2つのコードブックの和を用いて励振ベクトルを生成するようにした前記 音声信号符号化方法に基いて、前記複数のサブバンド信号をベクトル量子化すると き、少なくとも 2つに分割されたコードブックを使用し、前記少なくとも 2つのコードブッ クの和を用いて励振ベクトルを生成するようにしたことを特徴とする請求項 7に記載の 送信機。
[9] 前記符号化部の複数の量子化器は、前記量子化工程では、前記バックワード適応 により求めた励振信号利得の予測値と、真の励振信号利得との差分を示す差分信 号を生成し、前記差分信号を適応スカラ量子化するようにした前記音声信号符号ィ匕 方法に基いて、前記バックワード適応により求めた励振信号利得の予測値と、真の励 振信号利得との差分を示す差分信号を生成し、前記差分信号を適応スカラ量子化 するようにしたことを特徴とする請求項 7に記載の送信機。
[10] 音声信号を複数のサブバンドに分割し、分割数に応じてダウンサンプリングし、複 数のサブバンド信号を生成する生成工程と、前記複数のサブバンド信号力 ベクトル インデックスに符号ィ匕するために合成による分析法を用いて前記複数のサブバンド 信号をベクトル量子化する量子化工程とを含み、前記量子化工程では、バックワード 適応により過去の復号信号力 線形予測係数を求めるようにした音声信号符号ィ匕方 法で符号化された符号ィ匕音声信号を復号する音声信号復号ィ匕方法に基いて符号 化音声信号を復号する復号ィ匕部を備えた受信機であって、
前記復号ィ匕部は、ベクトルインデックス力も複数のサブバンド信号に復号ィ匕するた めに前記ベクトルインデックスを逆量子化する複数の逆量子化器と、前記複数のサ ブバンド信号をアップサンプリングし、帯域合成するサブバンド合成フィルタとを有し 前記複数の逆量子化器は、バックワード適応により過去の復号信号力 線形予測 係数を求めるようにしたことを特徴とする受信機。
[11] 前記量子化工程では、前記複数のサブバンド信号をベクトル量子化するとき、少な くとも 2つに分割されたコードブックを使用し、前記少なくとも 2つのコードブックの和を 用いて励振ベクトルを生成するようにした音声信号符号化方法で符号化された符号 化音声信号を復号する音声信号復号化方法に基いて符号化音声信号を復号する 復号ィ匕部を備えた受信機であって、
前記復号化部の複数の逆量子化器は、 2つ以上のベクトルインデックスに対応した ベクトルの和を用いて励振ベクトルを生成するようにしたことを特徴とする請求項 10 に記載の受信機。
[12] 前記量子化工程では、前記バックワード適応により求めた励振信号利得の予測値 と、真の励振信号利得との差分を示す差分信号を生成し、前記差分信号を適応スカ ラ量子化するようにした音声信号符号化方法で符号化された符号化音声信号を復 号する音声信号復号ィ匕方法に基いて符号ィ匕音声信号を復号する復号ィ匕部を備えた 受信機であって、
前記復号化部の複数の逆量子化器は、バックワード適応により励振信号利得の予 測値と、逆量子化した励振信号利得残差との和をとり、励振信号利得を求めるように したことを特徴とする請求項 10または請求項 11に記載の受信機。
[13] 音声信号を複数のサブバンドに分割し、分割数に応じてダウンサンプリングし、複 数のサブバンド信号を生成する生成工程と、前記複数のサブバンド信号力 ベクトル インデックスに符号ィ匕するために合成による分析法を用いて前記複数のサブバンド 信号をベクトル量子化する量子化工程とを含み、前記量子化工程では、バックワード 適応により過去の復号信号力 線形予測係数を求めるようにした音声信号符号ィ匕方 法に基!、て音声信号力も符号ィ匕音声信号を生成する符号ィ匕部を備え、前記符号ィ匕 音声信号を送信する送信機であって、
前記符号化部は、前記音声信号を複数のサブバンドに分割し、分割数に応じてダ ゥンサンプリングし、複数のサブバンド信号を生成するサブバンド分割フィルタと、前 記複数のサブバンド信号力 ベクトルインデックスに符号ィ匕するために合成による分 析法を用いて前記複数のサブバンド信号をベクトル量子化する複数の量子化器とを 有し、
前記複数の量子化器は、バックワード適応により過去の復号信号力 線形予測係 数を求め、
前記符号化部で生成された符号化音声信号を送信するようにした送信機と、この 送信機から送信された前記符号化音声信号を受信する受信機とを備えることをことを 特徴とするワイヤレスマイクシステム。
前記受信機は、音声信号を複数のサブバンドに分割し、分割数に応じてダウンサン プリングし、複数のサブバンド信号を生成する生成工程と、前記複数のサブバンド信 号力 ベクトルインデックスに符号ィ匕するために合成による分析法を用いて前記複数 のサブバンド信号をベクトル量子化する量子化工程とを含み、前記量子化工程では 、バックワード適応により過去の復号信号力も線形予測係数を求めるようにした音声 信号符号化方法で符号化された符号化音声信号を復号する音声信号復号化方法 に基 、て符号ィ匕音声信号を復号する復号ィ匕部を備え、
前記復号ィ匕部は、ベクトルインデックス力も複数のサブバンド信号に復号ィ匕するた めに前記ベクトルインデックスを逆量子化する複数の逆量子化器と、前記複数のサ ブバンド信号をアップサンプリングし、帯域合成するサブバンド合成フィルタとを有し 前記複数の逆量子化器は、バックワード適応により過去の復号信号力 線形予測 係数を求めるようにしたことを特徴とする請求項 13に記載のワイヤレスマイクシステム
PCT/JP2005/000510 2004-01-19 2005-01-18 音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイクシステム WO2005069277A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05703747A EP1748423A4 (en) 2004-01-19 2005-01-18 AUDIO SIGNAL CODING METHOD, AUSIOSIGNAL DECODING METHOD, TRANSMITTER, RECEIVER AND WIRELESS MICROPHONE SYSTEM
US10/597,215 US20090024395A1 (en) 2004-01-19 2005-01-18 Audio signal encoding method, audio signal decoding method, transmitter, receiver, and wireless microphone system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004010040A JP2005202262A (ja) 2004-01-19 2004-01-19 音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイクシステム
JP2004-010040 2004-01-19

Publications (1)

Publication Number Publication Date
WO2005069277A1 true WO2005069277A1 (ja) 2005-07-28

Family

ID=34792293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000510 WO2005069277A1 (ja) 2004-01-19 2005-01-18 音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイクシステム

Country Status (5)

Country Link
US (1) US20090024395A1 (ja)
EP (1) EP1748423A4 (ja)
JP (1) JP2005202262A (ja)
CN (1) CN1910657A (ja)
WO (1) WO2005069277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077804B2 (en) * 2007-04-03 2011-12-13 Sony Corporation Transmitting apparatus, receiving apparatus and transmitting/receiving system for digital data

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101033994B1 (ko) 2005-09-05 2011-05-11 현대중공업 주식회사 선박항해기록장치용 음성 저장시스템
JP4876574B2 (ja) * 2005-12-26 2012-02-15 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2008058667A (ja) * 2006-08-31 2008-03-13 Sony Corp 信号処理装置および方法、記録媒体、並びにプログラム
RU2464650C2 (ru) * 2006-12-13 2012-10-20 Панасоник Корпорэйшн Устройство и способ кодирования, устройство и способ декодирования
CN101325059B (zh) * 2007-06-15 2011-12-21 华为技术有限公司 语音编解码收发方法及装置
US8644171B2 (en) * 2007-08-09 2014-02-04 The Boeing Company Method and computer program product for compressing time-multiplexed data and for estimating a frame structure of time-multiplexed data
US8190440B2 (en) * 2008-02-29 2012-05-29 Broadcom Corporation Sub-band codec with native voice activity detection
US8351724B2 (en) * 2009-05-08 2013-01-08 Sharp Laboratories Of America, Inc. Blue sky color detection technique
US20100322513A1 (en) * 2009-06-19 2010-12-23 Sharp Laboratories Of America, Inc. Skin and sky color detection and enhancement system
KR101388901B1 (ko) * 2009-06-24 2014-04-24 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 오디오 신호 디코더, 오디오 신호를 디코딩하는 방법 및 캐스케이드된 오디오 객체 처리 단계들을 이용한 컴퓨터 프로그램
US20110196673A1 (en) * 2010-02-11 2011-08-11 Qualcomm Incorporated Concealing lost packets in a sub-band coding decoder
KR101071540B1 (ko) * 2011-06-20 2011-10-11 (주)이어존 자동으로 페어링 되는 교실용 무선 마이크 시스템
CN102436819B (zh) * 2011-10-25 2013-02-13 杭州微纳科技有限公司 无线音频压缩、解压缩方法及音频编码器和音频解码器
US8924203B2 (en) 2011-10-28 2014-12-30 Electronics And Telecommunications Research Institute Apparatus and method for coding signal in a communication system
US9717440B2 (en) * 2013-05-03 2017-08-01 The Florida International University Board Of Trustees Systems and methods for decoding intended motor commands from recorded neural signals for the control of external devices or to interact in virtual environments
CN105094727B (zh) * 2014-05-23 2018-08-21 纬创资通股份有限公司 扩展屏幕模式下的应用程序运作方法以及平板计算机
US10418957B1 (en) * 2018-06-29 2019-09-17 Amazon Technologies, Inc. Audio event detection
US11451931B1 (en) 2018-09-28 2022-09-20 Apple Inc. Multi device clock synchronization for sensor data fusion
JP7150996B2 (ja) * 2019-01-13 2022-10-11 華為技術有限公司 ハイレゾリューションオーディオ符号化
USD881837S1 (en) * 2019-12-13 2020-04-21 Shenzhen Longxiang Intelligent Interconnection Technology Co., Ltd. Signal receiving device
CN115955250B (zh) * 2023-03-14 2023-05-12 燕山大学 一种高校科研数据采集管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612097A (ja) * 1992-06-29 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> 音声の予測符号化方法および装置
JPH0667696A (ja) * 1992-08-21 1994-03-11 Sony Corp 音声符号化方法
JPH09281995A (ja) * 1996-04-12 1997-10-31 Nec Corp 信号符号化装置及び方法
JPH09297597A (ja) * 1996-03-06 1997-11-18 Fujitsu Ltd 高能率音声伝送方法及び高能率音声伝送装置
JPH1097298A (ja) * 1996-09-24 1998-04-14 Sony Corp ベクトル量子化方法、音声符号化方法及び装置
JP2002032100A (ja) * 2000-05-26 2002-01-31 Lucent Technol Inc オーディオ信号を符号化する方法
JP2003032382A (ja) * 2001-07-19 2003-01-31 Hitachi Ltd 字幕付き音声通信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577488B9 (en) * 1992-06-29 2007-10-03 Nippon Telegraph And Telephone Corporation Speech coding method and apparatus for the same
JPH08190764A (ja) * 1995-01-05 1996-07-23 Sony Corp ディジタル信号処理方法、ディジタル信号処理装置及び記録媒体
SE504010C2 (sv) * 1995-02-08 1996-10-14 Ericsson Telefon Ab L M Förfarande och anordning för prediktiv kodning av tal- och datasignaler
GB2318029B (en) * 1996-10-01 2000-11-08 Nokia Mobile Phones Ltd Audio coding method and apparatus
JP3064947B2 (ja) * 1997-03-26 2000-07-12 日本電気株式会社 音声・楽音符号化及び復号化装置
JP3022462B2 (ja) * 1998-01-13 2000-03-21 興和株式会社 振動波の符号化方法及び復号化方法
US6370502B1 (en) * 1999-05-27 2002-04-09 America Online, Inc. Method and system for reduction of quantization-induced block-discontinuities and general purpose audio codec
JP2002330075A (ja) * 2001-05-07 2002-11-15 Matsushita Electric Ind Co Ltd サブバンドadpcm符号化方法、復号方法、サブバンドadpcm符号化装置、復号装置およびワイヤレスマイクロホン送信システム、受信システム
JP3922979B2 (ja) * 2002-07-10 2007-05-30 松下電器産業株式会社 伝送路符号化方法、復号化方法、及び装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612097A (ja) * 1992-06-29 1994-01-21 Nippon Telegr & Teleph Corp <Ntt> 音声の予測符号化方法および装置
JPH0667696A (ja) * 1992-08-21 1994-03-11 Sony Corp 音声符号化方法
JPH09297597A (ja) * 1996-03-06 1997-11-18 Fujitsu Ltd 高能率音声伝送方法及び高能率音声伝送装置
JPH09281995A (ja) * 1996-04-12 1997-10-31 Nec Corp 信号符号化装置及び方法
JPH1097298A (ja) * 1996-09-24 1998-04-14 Sony Corp ベクトル量子化方法、音声符号化方法及び装置
JP2002032100A (ja) * 2000-05-26 2002-01-31 Lucent Technol Inc オーディオ信号を符号化する方法
JP2003032382A (ja) * 2001-07-19 2003-01-31 Hitachi Ltd 字幕付き音声通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJIWARA H. ET AL: "Multi Media Joho Asshuku.", SHOHAN, KYORITSU SHUPPAN CO., LTD.,, 1 March 2000 (2000-03-01), pages 74 - 78, XP002992128 *
See also references of EP1748423A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077804B2 (en) * 2007-04-03 2011-12-13 Sony Corporation Transmitting apparatus, receiving apparatus and transmitting/receiving system for digital data

Also Published As

Publication number Publication date
EP1748423A4 (en) 2010-03-17
US20090024395A1 (en) 2009-01-22
CN1910657A (zh) 2007-02-07
EP1748423A1 (en) 2007-01-31
JP2005202262A (ja) 2005-07-28

Similar Documents

Publication Publication Date Title
WO2005069277A1 (ja) 音声信号符号化方法、音声信号復号化方法、送信機、受信機、及びワイヤレスマイクシステム
JP4506039B2 (ja) 符号化装置及び方法、復号装置及び方法、並びに符号化プログラム及び復号プログラム
EP1768105B1 (en) Speech coding
EP1881488B1 (en) Encoder, decoder, and their methods
WO2004097796A1 (ja) 音声符号化装置、音声復号化装置及びこれらの方法
WO2003091989A1 (en) Coding device, decoding device, coding method, and decoding method
CN103098126A (zh) 音频编码器、音频解码器及利用复预测处理多信道音频信号的相关方法
JPH08263096A (ja) 音響信号符号化方法及び復号化方法
US20080140393A1 (en) Speech coding apparatus and method
WO2008104463A1 (en) Split-band encoding and decoding of an audio signal
CN1918630B (zh) 量化信息信号的方法和设备
KR20090007396A (ko) 손실 인코딩된 데이터 스트림 및 무손실 확장 데이터 스트림을 이용하여 소스 신호를 무손실 인코딩하기 위한 방법 및 장치
EP1203370A1 (en) Method for improving the coding efficiency of an audio signal
JP2003323199A (ja) 符号化装置、復号化装置及び符号化方法、復号化方法
JP4603485B2 (ja) 音声・楽音符号化装置及び音声・楽音符号化方法
US6141640A (en) Multistage positive product vector quantization for line spectral frequencies in low rate speech coding
JPH1097295A (ja) 音響信号符号化方法及び復号化方法
JP3092653B2 (ja) 広帯域音声符号化装置及び音声復号装置並びに音声符号化復号装置
CN101689372B (zh) 信号分析装置、信号控制装置及其系统、方法
JPH07183857A (ja) 伝送システム
JP4373693B2 (ja) 音響信号の階層符号化方法および階層復号化方法
JP4287840B2 (ja) 符号化装置
EP1334485B1 (en) Speech codec and method for generating a vector codebook and encoding/decoding speech signals
JP2002169595A (ja) 固定音源符号帳及び音声符号化/復号化装置
JPH09507631A (ja) 差分コーディング原理を用いる送信システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10597215

Country of ref document: US

Ref document number: 200580002563.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005703747

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005703747

Country of ref document: EP