WO2004097796A1 - 音声符号化装置、音声復号化装置及びこれらの方法 - Google Patents

音声符号化装置、音声復号化装置及びこれらの方法 Download PDF

Info

Publication number
WO2004097796A1
WO2004097796A1 PCT/JP2004/006294 JP2004006294W WO2004097796A1 WO 2004097796 A1 WO2004097796 A1 WO 2004097796A1 JP 2004006294 W JP2004006294 W JP 2004006294W WO 2004097796 A1 WO2004097796 A1 WO 2004097796A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
term prediction
signal
information
decoding
Prior art date
Application number
PCT/JP2004/006294
Other languages
English (en)
French (fr)
Inventor
Kaoru Sato
Toshiyuki Morii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/554,619 priority Critical patent/US7299174B2/en
Priority to EP04730659A priority patent/EP1619664B1/en
Priority to CA2524243A priority patent/CA2524243C/en
Publication of WO2004097796A1 publication Critical patent/WO2004097796A1/ja
Priority to US11/872,359 priority patent/US7729905B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters

Definitions

  • Speech coding apparatus speech decoding apparatus, and methods thereof
  • the present invention relates to a speech encoding device, a speech decoding device, and a method thereof used in a communication system that encodes and transmits a speech / tone signal.
  • the coding of voice signals is used in order to make effective use of transmission line capacity such as radio waves and storage media.
  • Decoding technology is indispensable, and many speech coding and decoding methods have been developed so far. Among them, the CELP speech coding Z decoding scheme has been put into practical use as the mainstream scheme.
  • the CELP speech encoding device encodes input speech based on a speech model stored in advance. Specifically, the digitized audio signal is divided into frames of about 2 Oms, the linear prediction analysis of the audio signal is performed for each frame, the linear prediction coefficient and the linear prediction residual vector are obtained, and the linear prediction coefficient and The linear prediction residual vectors are individually coded.
  • the conventional CELP type speech coding / decoding scheme mainly stores models of speech sounds.
  • a bucket loss occurs depending on a network condition. Therefore, even if a part of the encoded information is lost, a voice is transmitted from the remaining part of the encoded information. It is desirable to be able to decode musical tones.
  • a variable rate communication system in which the bit rate is changed according to the communication capacity, when the communication capacity decreases, a part of the encoded information is It is desirable that it is easy to reduce the load on the communication capacity by transmitting only data.
  • scalable coding technology has recently attracted attention as a technology capable of decoding speech and musical sounds using all of the coded information or only a part of the coded information. Conventionally, several scalable encoding schemes have been disclosed.
  • the scalable encoding method generally includes a base layer and an enhancement layer, and each layer has a hierarchical structure with the base layer being the lowest layer. Then, in each layer, encoding is performed on a residual signal that is a difference between an input signal and an output signal of a lower layer. With this configuration, it is possible to decode the voice / music signal using only the encoded information of all the layers or the encoded information of the lower layer.
  • a CELP-type voice coding / decoding method is used as the coding method of the base layer and the enhancement layer, so that a corresponding amount is required for both the calculation amount and the coding information. Disclosure of the invention
  • An object of the present invention is to provide a speech encoding device, a speech decoding device, and a method thereof that can realize scalable encoding with a small amount of calculation and a small amount of encoded information.
  • the purpose of this is to improve the quality of the decoded signal by providing an extended layer for long-term prediction and making a long-term prediction of the residual signal in the extended layer using the long-term correlation properties of speech and musical tones. This is achieved by reducing the amount of computation by obtaining the long-term prediction lag using the long-term prediction information of the base layer.
  • FIG. 1 is a block diagram showing a configuration of a speech coding apparatus Z speech decoding apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing an internal configuration of the base layer coding section according to the above-described embodiment
  • FIG. 3 is a diagram for explaining a process of determining a signal generated from an adaptive excitation codebook by the parameter determining unit ⁇ of the basic layer encoding unit according to the above-described embodiment.
  • Block diagram showing the internal configuration of the basic layer decoding unit according to
  • FIG. 5 is a block diagram showing an internal configuration of the enhancement layer coding section according to the above embodiment
  • FIG. 6 is a block diagram showing the internal configuration of the enhancement layer decoding section according to the above embodiment
  • FIG. 7 is a block diagram showing an internal configuration of an extended layer encoding unit according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram showing the internal configuration of the enhancement layer decoding section according to the above embodiment.
  • FIG. 9 is a block diagram showing a configuration of an audio signal transmitting device and an audio signal receiving device according to Embodiment 3 of the present invention.
  • Hierarchical speech coding is a speech coding method that encodes the residual signal (difference between the input signal of the lower layer and the decoded signal of the lower layer) by long-term prediction and outputs coded information. This is a method in which multiple layers exist in the upper layer to form a hierarchical structure.
  • hierarchical audio decoding The method is a method in which there are a plurality of speech decoding methods for decoding the residual signal in the upper layer, forming a P-layer structure.
  • the base layer is a voice 'music coding / decoding method existing in the lowest layer.
  • the speech / musical sound coding Z decoding method existing in a layer higher than the base layer is defined as an enhancement layer.
  • FIG. 1 is a block diagram showing a configuration of a speech coding apparatus / speech decoding apparatus according to Embodiment 1 of the present invention.
  • a speech encoding apparatus 100 includes a base layer encoding section 101, a basic layer decoding section 102, an adding section 103, and an enhancement layer encoding section 104. And a multiplexing unit 105. Also, speech decoding apparatus 150 mainly includes a demultiplexing section 151, a base layer decoding section 152, an enhancement layer decoding section 153, and an adding section 154. Be composed.
  • the basic layer coding unit 101 receives a voice signal, encodes the input signal using a CELP type voice coding method, and decodes the basic layer coded information obtained by coding into the basic layer. Output to the multiplexing unit 105 as well as to the multiplexing unit 102.
  • Base layer decoding section 102 decodes base layer encoded information using a CELP type speech decoding method, and outputs a base layer decoded signal obtained by decoding to addition section 103. I do. Further, base layer decoding section 102 outputs the pitch lag to enhancement layer coding section 104 as long-term prediction information of the base layer.
  • the “long-term prediction information” is information representing a long-term correlation of a voice / sound signal.
  • the “pitch lag” is position information specified by the base layer, and will be described later in detail.
  • the adder 103 adds the basic layer decoded signal output from the base layer decoder 102 to the input signal after inverting the polarity, and adds the result, and expands the residual signal as the addition result. Output to the extension layer encoding unit 104.
  • the extended layer encoding unit 104 calculates the long-term prediction coefficient using the long-term prediction information output from the basic layer decoding unit 102 and the residual signal output from the adding unit 103, and calculates the long-term prediction coefficient.
  • the prediction coefficient is encoded, and the extended layer encoded information obtained by the encoding is output to the multiplexing unit 105.
  • the multiplexing unit 105 multiplexes the base layer coding information output from the base layer coding unit 101 and the extended layer coding information output from the enhancement layer coding unit 104. And outputs the multiplexed information to the multiplex separator 151 via the transmission line.
  • the multiplexing / demultiplexing section 151 separates the multiplexed information transmitted from the audio coder 100 into basic layer encoded information and extended layer encoded information, and separates the basic layer encoded information. Information is output to base layer decoding section 15 2, and the separated enhancement layer encoded information is output to enhancement layer decoding section 15 3.
  • the base layer decoding unit 152 decodes the base layer encoded information using a CELP type speech decoding method, and outputs a base layer decoded signal obtained by decoding to the adding unit 154. I do. Further, base layer decoding section 152 outputs pitch lag to enhancement layer decoding section 1553 as long-term prediction information of the base layer. Enhancement layer decoding section 153 uses the long-term prediction information to decode the enhancement layer coded information, and outputs an enhancement layer decoded signal obtained by decoding to addition section 154.
  • the addition section 154 adds the base layer decoded signal output from the base layer decoding section 152 to the enhancement layer decoded signal output from the enhancement layer decoding section 153, and performs addition.
  • the resulting voice / tone signal is output to a post-processing device.
  • the input signal of base layer coding section 101 is input to preprocessing section 200.
  • the pre-processing unit 200 performs high-pass filter processing for removing DC components and subsequent encoding processing. It performs waveform shaping and pre-emphasis to improve processing performance, and outputs the processed signal (Xin) to the LPC analyzer 201 and adder 204.
  • the LPC analysis unit 201 performs a linear prediction analysis using Xin, and outputs an analysis result (linear prediction coefficient) to the LPC quantization unit 202.
  • the LPC quantizer 202 performs a quantization process on the linear prediction coefficient (LPC) output from the LPC analyzer 201, outputs the quantized LPC to the synthesis filter 203, and represents the quantized LPC.
  • the code (L) is output to the multiplexing unit 2 13.
  • the synthesis filter 203 generates a synthesized signal by performing filter synthesis on a driving sound source output from an adder 210 described later using a filter coefficient based on the quantized LPC, and generates the synthesized signal. Output to adder 204.
  • the adder 204 calculates the error signal by inverting the polarity of the synthesized signal and adding the inverted signal to Xin, and outputs the error signal to the auditory weighting unit 211.
  • the adaptive excitation codebook 205 stores in the buffer the excitation signal output by the adder 210 in the past, and the past excitation specified by the signal output from the parameter determination unit 212.
  • One frame sample is cut out from the sound source signal sample as an adaptive sound source vector and output to the multiplier 208.
  • Quantization gain generation section 206 outputs adaptive excitation gain and fixed excitation gain specified by the signal output from parameter determination section 212 to multipliers 208 and 209, respectively.
  • the fixed excitation codebook 2 07 multiplies the fixed excitation vector obtained by multiplying the pulse excitation vector having a shape specified by the signal output from the parameter determination unit 2 12 by the spreading vector. To the container 209.
  • the multiplier 208 multiplies the quantized adaptive excitation gain output from the quantization gain generator 206 by the adaptive excitation vector output from the adaptive excitation codebook 205 to adder 2 1 Output to 0.
  • the multiplier 209 converts the quantized fixed excitation gain output from the quantization gain generation section 206 into the fixed excitation vector output from the fixed excitation codebook 207. And output to adder 210.
  • the adder 210 inputs the adaptive sound source vector after the gain multiplication and the fixed sound source vector from the multiplier 208 and the multiplier 209, respectively, and performs vector calculation and calorie calculation on these.
  • the resulting excitation is output to synthesis filter 203 and adaptive excitation codebook 205. Note that the driving excitation input to adaptive excitation codebook 205 is stored in a buffer.
  • the auditory weighting unit 211 performs auditory weighting on the error signal output from the calo calculator 204, calculates the distortion between 3 ⁇ 4n and the composite signal in the auditory weighting area, and determines the parameter. Output to 2 1 2
  • the parameter determination unit 2 12 2 calculates the adaptive excitation vector, the fixed excitation vector, and the quantization gain that minimize the coding distortion output from the auditory weighting unit 2 1 1, respectively, into the adaptive excitation codebook 205, An adaptive excitation vector code (A), an excitation gain code (G), and a fixed excitation vector code (F) indicating the selection result are selected from the fixed excitation codebook 2007 and the quantization gain generation unit 206. Output to multiplexing section 2 1 3.
  • the adaptive source vector code (A) is a code corresponding to the pitch lag.
  • the multiplexing section 2 13 receives the code (L) representing the quantized LPC from the LPC quantization section 202 and the code (A) representing the adaptive excitation vector and the fixed excitation A code (F) representing a vector and a code (G) representing a quantization gain are input, and these information are multiplexed and output as base layer coding information.
  • a buffer 301 is a buffer provided in the adaptive excitation codebook 205
  • a position 302 is a cutout position of an adaptive sound source vector
  • a vector 303 is a cutout adaptive excitation vector It is.
  • the numerical values “4 1” and “2 96” correspond to the lower and upper limits of the range in which the cutout position 302 is moved.
  • the range to move the cutout position 302 is set to the code (A) representing the adaptive sound source vector.
  • the length can be set to a range of “25 6” (for example, 41 to 2966).
  • the range in which the cutout position 302 is driven can be set arbitrarily.
  • the parameter determination unit 2 12 moves the cutout position 302 within the set range, and cuts out the adaptive sound source vector 303 by the length of each frame. Then, the parameter determination unit 2 12 obtains the cutout position 3 02 at which the encoding distortion output from the auditory weighting unit 2 11 is minimized.
  • the buffer cutout position 302 obtained by the parameter determination unit 212 is the "pitch lag".
  • the basic layer coding information input to the base layer decoding unit 102 (152) is converted into individual codes (L, A, G, F) by the demultiplexing unit 401. Separated.
  • the separated LPC code (L) is output to LPC decoding section 402, the separated adaptive excitation vector code (A) is output to adaptive excitation codebook 405, and the separated excitation gain Code (G) is output to quantization gain generating section 406, and the separated fixed excitation vector code (F) is output to fixed excitation codebook 407.
  • the decoding unit 402 decodes the LPC from the code (L) output from the demultiplexing unit 401 and outputs it to the synthesis filter 403.
  • the adaptive excitation codebook 405 extracts one frame sample from the past driving excitation signal sample specified by the code (A) output from the demultiplexing unit 401 as an adaptive sound source vector and multiplies it. Output to container 4 08. Also, adaptive excitation codebook 405 outputs the pitch lag to extended layer encoding section 104 (enhanced layer decoding section 153) as long-term prediction information.
  • the quantization gain generation section 406 decodes the adaptive excitation vector gain and the fixed excitation vector gain specified by the excitation gain code (G) output from the demultiplexing section 401 and multipliers 406. 8 and the multiplier 409.
  • Fixed excitation codebook 407 generates a fixed excitation vector specified by the code (F) output from multiplexing / demultiplexing section 401, and outputs the generated fixed excitation vector to multiplier 409.
  • the multiplier 408 multiplies the adaptive sound source vector by the adaptive sound source vector gain and outputs the result to the adder 410.
  • the multiplier 409 multiplies the fixed sound source vector by the fixed sound source vector gain and outputs the result to the adder 410.
  • the adder 410 adds the adaptive sound source vector after the gain multiplication output from the multipliers 408 and 409 and the fixed sound source vector to generate a driving sound source vector, and generates the driving sound source vector. To the synthesis filter 403 and the adaptive excitation codebook 405.
  • the synthesis filter 4003 performs filter synthesis using the driving sound source vector output from the adder 410 as a driving signal and the filter coefficient decoded by the LPC decoding section 402, and synthesizes.
  • the resulting signal is output to the post-processing unit 404.
  • the post-processing unit 404 processes the signal output from the synthesis filter 403 to improve the subjective quality of speech, such as formant emphasis and pitch emphasis, and the subjective quality of stationary noise. It performs processing to improve it and outputs it as a base layer decoded signal.
  • enhancement layer coding section 104 of FIG. 1 will be described using the block diagram of FIG.
  • the enhancement layer encoding unit 104 divides the residual signal by N samples (N is a natural number), and performs encoding for each frame with N samples as one frame.
  • the residual signal is represented as e (0) to e (X-l)
  • the frame to be encoded is represented as e (n) to e (n + N-l).
  • X is the length of the residual signal
  • N is equivalent to the length of the frame.
  • n is a sample located at the head of each frame, and n corresponds to an integer multiple of N.
  • the method of predicting and generating a signal of a certain frame from signals generated in the past is called long-term prediction. Filters that perform long-term prediction are called pitch filters, comb filters, and so on. In FIG.
  • a long-term prediction lag instruction section 501 receives long-term prediction information t obtained by the basic layer decoding section 102, obtains a long-term prediction lag T of an enhancement layer based on the information, and stores this in a long-term prediction signal storage. Output to section 502.
  • the long-term prediction lag T can be obtained by the following equation (1).
  • D is the sampling frequency of the enhancement layer
  • d is the sampling frequency of the base layer, and so on. .
  • the long-term prediction signal storage unit 502 includes a buffer that stores a long-term prediction signal generated in the past. If the length of the buffer is M, the buffer consists of the long-term predicted signal sequences s (n-M-1) to s (n-1) generated in the past.
  • the long-term prediction signal storage unit 502 receives the long-term prediction lag T from the long-term prediction lag instruction unit 501, the long-term prediction signal s is traced back by the long-term prediction lag T from the series of past long-term prediction signals stored in the buffer. (n ⁇ T) to s (n ⁇ T + N ⁇ 1) are cut out and output to the long-term prediction coefficient calculation unit 503 and the long-term prediction signal generation unit 506.
  • the long-term predicted signal storage unit 502 receives the long-term predicted signals s (n) to s (n + N-1) from the long-term predicted signal generation unit 506, and updates the buffer according to the following equation (2).
  • the long-term prediction signal can be extracted by multiplying the long-term prediction lag ⁇ by an integer until it is longer than the frame length ⁇ .
  • the signal can be extracted by repeating the long-term prediction signal s (n-T) to s (n-T + N-1) which is traced back by the long-term prediction lag ⁇ and applying the frame length N.
  • the long-term prediction coefficient calculation unit 503 calculates the residual signals e (n) to e (n + N—1) and the length S (nT) to s (nT + N-1), and using these, a long-term prediction coefficient] 3 is calculated by the following equation (3), Output to 504. Equation (3)
  • the long-term prediction coefficient encoding unit 504 encodes the long-term prediction coefficient ⁇ , outputs enhancement layer coded information obtained by encoding to the long-term prediction coefficient decoding unit 505, and performs enhancement layer decoding via a transmission path. Output to the conversion unit 153.
  • a coding method of the long-term prediction coefficient j8 a method of performing scalar quantization or the like is known.
  • Long-term prediction coefficient decoding section 505 decodes the enhancement layer encoded information, and outputs the decoded long-term prediction coefficient q obtained by this to long-term prediction signal generation section 506.
  • the long-term prediction signal generation unit 506 receives the decoded long-term prediction coefficient] 3q and the long-term prediction signals s (nT) to s (nT + N-1), and uses them to calculate the long-term prediction
  • the prediction signals s (n) to s (n + N-1) are calculated and output to the long-term prediction signal storage unit 502.
  • enhancement layer decoding section 153 in FIG. 1 will be described using the block diagram in FIG.
  • long-term prediction lag instructing section 601 obtains long-term prediction lag T of the enhancement layer using long-term prediction information output from base layer decoding section 152, and outputs this to long-term prediction signal storage section 602. .
  • the long-term prediction signal storage unit 602 includes a buffer that stores a long-term prediction signal generated in the past. If the length of the buffer is M, the buffer was created in the past. S (nM-1) to s (n-1).
  • the long-term prediction signal storage unit 602 receives the long-term prediction lag T from the long-term prediction lag instruction unit 601
  • the long-term prediction signal s is traced back from the series of past long-term prediction signals stored in the buffer by the long-term prediction lag T.
  • (nT) to s (nT + N ⁇ 1) are cut out and output to the long-term prediction signal generation unit 604.
  • the long-term predicted signal storage section 602 receives the long-term predicted signals s (n) to s (n + N-1) from the long-term predicted signal generation section 604 and updates the buffer according to the above equation (2).
  • Long-term prediction coefficient decoding section 603 decodes the enhancement layer coded information, and outputs a decoded long-term prediction coefficient ⁇ q obtained by the decoding to long-term prediction signal generation section 604.
  • the long-term prediction signal generation unit 604 receives the decoded long-term prediction coefficient] 3q and the long-term prediction signals s (nT) to s (nT + N-1), and uses them to calculate the long-term prediction
  • the prediction signals s (n) to s (n + N-1) are calculated and output to the long-term prediction signal storage unit 602 and the addition unit 153 as enhancement layer decoded signals.
  • the above is the description of the internal configuration of enhancement layer decoding section 153 in FIG.
  • the extended layer for long-term prediction is provided, and the residual signal is subjected to long-term prediction in the extended layer by using the long-term correlation properties of speech and musical tones. It is possible to effectively encode / decode voice / musical sound signals and reduce the amount of calculation.
  • the coding information can be reduced by obtaining the long-term prediction lag using the long-term prediction information of the base layer instead of encoding and decoding the long-term prediction lag.
  • the base layer coding information by decoding the base layer coding information, only the decoded signal of the base layer can be obtained.
  • the CELP type speech coding / decoding method a part of the coding information is obtained. It is possible to realize a function (scalable encoding) that can decode voices' musical tones.
  • the long-term correlation of voice A frame with the highest correlation with the frame is cut out from the buffer, and the signal of the current frame is expressed using the cut-out frame signal.
  • a method of cutting out the frame with the highest correlation with the current frame from the buffer In the case where there is no information indicating the long-term correlation such as pitch lag, etc., of speech and musical sounds, the autocorrelation function between the extracted frame and the current frame is changed while changing the extraction position when extracting the frame from the buffer. Therefore, it is necessary to search for the frame having the highest correlation, and the amount of calculation required for the search becomes very large, but the extraction position is determined using the pitch lag obtained by the base layer coding unit 101. By uniquely defining it, it is possible to significantly reduce the amount of calculation required when performing normal long-term prediction.
  • the long-term prediction information output from the base layer decoding unit is a pitch lag.
  • the present invention is not limited to this. Any information that has a long-term correlation can be used as long-term prediction information.
  • the long-term prediction signal storage unit 502 cuts out the long-term prediction signal from the buffer is described as the long-term prediction lag ⁇ . Is a minute number and can be set arbitrarily).
  • the present invention can be applied to the case where even a small error occurs in the long-term prediction lag ⁇ , the same operation and effect as in the present embodiment can be obtained. be able to.
  • the long-term prediction signal storage unit 502 receives the long-term prediction lag ⁇ ⁇ from the long-term prediction lag instructing unit 501, and obtains the long-term prediction signal s by going back by ⁇ + ⁇ from the past long-term prediction signal sequence stored in the buffer.
  • the long-term prediction signal storage unit 602 decodes the code ⁇ information of ⁇ to obtain ⁇ , and also uses the long-term prediction lag ⁇ to calculate the long-term prediction signal s ( ⁇ - ⁇ - ⁇ ) Cut out s ( ⁇ - ⁇ - ⁇ + ⁇ -1). ... Equation (5)
  • the long-term prediction coefficient calculation unit 503 stores the long-term prediction signals s (n—T) to s (nT + N- 1) is newly provided with a function of converting from the time domain into the frequency domain and a function of converting the residual signal into a frequency parameter
  • the long-term predicted signal generation unit 506 has the long-term predicted signal s (n) to s (n + N -A function to reversely convert (1) from the frequency domain to the time domain is newly provided.
  • the long-term predicted signal generation unit 604 is newly provided with a function of inversely transforming the long-term predicted signals s (n) to s (n + N-1) from the frequency domain to the time domain.
  • the bits of the redundant bits to be allocated to the coded information (A) output from the base layer coding unit 101 and the coded information (B) output from the enhancement layer coding unit 104 are The weight distribution can be assigned to the encoded information (A).
  • Embodiment 2 describes a case where encoding / decoding of a difference between a residual signal and a long-term prediction signal (long-term prediction residual signal) is performed.
  • Speech coding apparatus has the same configuration as that in FIG. 1, and differs only in the internal configuration of enhancement layer coding section 104 and enhancement layer decoding section 153.
  • FIG. 7 is a block diagram showing an internal configuration of enhancement layer coding section 104 according to the present embodiment. Note that, in FIG. 7, the same components as those in FIG. 5 are denoted by the same reference numerals as in FIG. 5, and description thereof will be omitted.
  • the extended layer coding unit 104 in FIG. 7 is different from the adding unit 701, the long-term prediction residual signal coding unit 702, the coded information multiplexing unit 703, and the long-term prediction residual signal decoding unit.
  • a configuration in which an adder 704 and an adder 705 are added is adopted.
  • the long-term prediction signal generation section 506 outputs the calculated long-term prediction signals s (n) to s (n + N-1) to the addition sections 701 and 705.
  • the adder 701 inverts the polarity of the long-term prediction signals s (n) to s (n + N-1) to obtain the residual signals e (n) to e (n + N ⁇ 1), and outputs the long-term prediction residual signal p (n) to p (n + N ⁇ 1) as a result of the addition to the long-term prediction residual signal encoding unit 702.
  • the long-term prediction residual signal encoding unit 702 encodes the long-term prediction residual signals ⁇ ( ⁇ ) to ⁇ ( ⁇ + N-l), and encodes information obtained by encoding (hereinafter, “long-term prediction Is output to the coded information multiplexing unit 703 and the long-term prediction residual signal decoding unit 704.
  • the quantization of the long-term prediction residual signal is vector quantization.
  • the encoding method of (n) to p (n + N-1) will be described using an example in which vector quantization is performed with 8 bits.
  • a code book in which 256 kinds of code vectors created in advance are stored is prepared inside the long-term prediction residual signal encoding unit 702.
  • This code vector CODE (k) (0) —CODE (k) (N- l) is an N-length vector.
  • K is the index of the code vector, and takes a value from 0 to 255.
  • the long-term prediction residual signal encoding unit 702 calculates the long-term prediction residual signal p (n) ⁇ ! Calculate the square error er between (n + N-1) and the code vector CODE (k) (0) -CODE (k) (N-1). '"Expression (7)
  • the long-term prediction residual signal encoding unit 702 determines the value of k that minimizes the square error er as long-term prediction residual encoding information.
  • the coded information multiplexing section 703 multiplexes the extended layer coded information input from the long-term prediction coefficient coding section 504 and the long-term predicted residual coded information input from the long-term prediction residual signal coding section 702. Then, the multiplexed information is output to the extended layer decoding section 153 via the transmission path.
  • Long-term prediction residual signal decoding section 704 decodes long-term prediction residual coded information, and decodes long-term prediction residual signal P q (n) :: pq (n + N-1) to the adder 705.
  • the adder 705 includes the long-term prediction signals s (n) to s (n + N-1) input from the long-term prediction signal generation unit 506 and the decoded long-term prediction residual input from the long-term prediction residual signal decoding unit 704.
  • Signal P q (n) ⁇ ! Adds q (n + N-1) and outputs the addition result to the long-term prediction signal storage unit 502.
  • the long-term prediction signal storage unit 502 updates the buffer according to the following equation (8).
  • enhancement layer decoding section 153 Next, the internal configuration of enhancement layer decoding section 153 according to the present embodiment will be described using the block diagram of FIG. In FIG. 8, the same components as those in FIG. 6 are denoted by the same reference numerals as those in FIG. 6, and description thereof will be omitted.
  • the enhancement layer decoding section 153 in FIG. 8 has a configuration in which an encoded information separation section 8001, a long-term prediction residual signal decoding section 802, and an addition section 803 are added, as compared with FIG.
  • the coded information separating section 801 separates the multiplexed coded information received from the transmission line into enhanced layer coded information and long-term prediction residual coded information, and Output to prediction coefficient decoding section 603, and outputs long-term prediction residual coding information to long-term prediction residual signal decoding section 802.
  • the long-term prediction residual signal decoding unit 802 decodes the long-term prediction residual coded information to obtain a decoded long-term prediction residual signal Pq (n) to pq (n + N—1). Output to adder 803.
  • the adding section 803 includes the long-term prediction signals s (n) to s (n + N ⁇ 1) input from the long-term prediction signal generation section 604 and the decoded long-term prediction residual input from the long-term prediction residual signal decoding section 802. Signal pq (n) ⁇ ! ) Q (n + N— 1), and outputs the addition result to the long-term prediction signal storage section 602, and outputs the addition result as an enhancement layer decoding signal.
  • enhancement layer decoding section 153 The above is the description of the internal configuration of enhancement layer decoding section 153 according to the present embodiment.
  • the present invention is not limited to an encoding method, and includes, for example, shape-gain VQ, division VQ, transform Encoding may be performed by VQ or multi-stage VQ.
  • shape-gain VQ 13 bits and a shape of 8 bits and a gain of 5 bits.
  • two types of codebooks a shape codebook and a gain codebook, are prepared.
  • the shape code book consists of 256 shape code vectors, and the shape code vectors SCODE (k 1) (0) to SCODE (k 1) (N-1) are vectors of length N.
  • k 1 is the index of the shape code vector and takes a value from 0 to 255.
  • the gain code puck is composed of 32 types of gain codes, and the gain code GCODE (k 2) takes a scalar value.
  • k 2 is an index of the gain code, and takes a value from 0 to 31.
  • the long-term prediction residual signal encoding unit 702 calculates the gain gain and the shape solid of the long-term prediction residual signal p (n) to p (n + M-1) by the following equation (9). (N-1), and the gain error gainer between the gain gain and the gain code GCODE (k 2) and the shape vector
  • shapeer ⁇ (shape (i) one SCODE (i)) 2
  • the long-term prediction residual signal encoding unit 702 obtains a value of k2 that minimizes the gain error gainer and a value of k1 that minimizes the square error shapper, and calculates these values. It is long-term prediction residual coding information.
  • the first divided codepook consists of 16 types of first divided code vectors SPCODE (k3) (0) to SPCODE (k3) (N / 2-1), and the second divided codepook SPCODE (k4) ( 0) to SPCODE (k 4) (N / 2-1) consist of 16 kinds of second divided code vector force, and each code vector is a vector of length N / 2.
  • k 3 is the index of the first divided code vector, and takes a value from 0 to 15.
  • K4 is the index of the second divided code vector and takes a value from 0 to 15.
  • the long-term prediction residual signal encoding unit 702 calculates the long-term prediction residual signal by the following equation (11)!) (N) to p (n + N-1) is divided into the first split vector spl (0) to spl (N / 2-1) and the second split vector sp 2 (0) to sp 2 (N / 2-1).
  • the long-term prediction residual signal encoding unit 702 calculates the value of k 3 that minimizes the square error spliterl and k 4 that minimizes the square error spliter2. And these values are used as long-term prediction residual coding information.
  • a conversion codebook consisting of 256 conversion code vectors is prepared, and the conversion code vectors TCODE (k5) (0) to TCODE (k5) (N / 2-1) are vectors of length N. It is.
  • k 5 is an index of the transform code vector, and takes a value from 0 to 255.
  • the long-term prediction residual signal coding unit 702 performs a discrete Fourier transform on the long-term prediction residual signal p (n) ⁇ : p (n + N—1) according to the following equation (13), and performs a transform vector tp (0) To tp (N— 1) and the conversion vector tp (0) to tp (N—1) and the conversion code vector TCODE (k 5) (0) -TCODE (k 5) (N / 2— Find the square error transer with 1). (H --- N-1)... Equation (13)
  • the long-term prediction residual signal encoding unit 702 obtains the value of k5 that minimizes the square error transer, and calculates this value. Is long-term prediction residual coding information.
  • the first-stage codepook consists of 32 types of first-stage codevectors PHC0DE1 (k 6) (0) to PHCODE 1 (k6) (N — 1), and the second-stage codepook has 256 types of second-stage code vectors PHCODE 2 ( k7) (0) ⁇ ; PHCODE2 (k7) (N-1), where each code vector is a vector of length N.
  • k 6 is the index of the first-stage code vector, and takes a value from 0 to 31.
  • K7 is the index of the second-stage code vector, and takes a value from 0 to 255.
  • the long-term prediction residual signal encoding unit 702 calculates the long-term prediction residual signal p (n) ⁇ ! ) Find the square error phaser 1 between (n + N- 1) and the first-stage code vector PHCODE 1 (k 6) (0) to PHC0DE 1 (k 6) (N— 1). Find the value of k6, and call this value kmax.
  • the long-term prediction residual signal encoding unit 702 calculates the error vector ep (0) ⁇ ep ( N-1), and the error vectors ep (0) to ep (N-1) and the second-stage code vector PHCODE 2 (k 7) (0) to PHC0DE2 (k 7) Find the square error phaser 2 with (N-1), find the value of k7 that minimizes the square error phaseer 2, and use this value and k max as long-term prediction residual encoding information.
  • FIG. 9 is a block diagram showing a configuration of an audio signal transmitting device and an audio signal receiving device including the audio encoding device and the audio decoding device described in Embodiment 12 above.
  • an audio signal 901 is converted into an electric signal by an input device 902 and output to an AZD conversion device 903.
  • the AZD conversion device 903 converts the (analog) signal output from the input device 902 into a digital signal, and outputs the signal to the speech coding device 904.
  • the speech encoding device 904 implements the speech encoding device 100 shown in FIG. 1, encodes the digital speech signal output from the AZD conversion device 903, and encodes the encoded information into the RF modulation device 900. 5 Output.
  • the RF modulator 905 converts the speech coded information output from the speech coder 904 into a signal to be transmitted on a propagation medium such as radio waves and outputs the signal to the transmission antenna 906.
  • the transmitting antenna 906 transmits the output signal output from the RF modulator 905 as a radio wave (RF signal).
  • the RF signal 907 in the figure represents a radio wave (RF signal) transmitted from the transmitting antenna 906.
  • the above is the configuration and operation of the audio signal transmitting device.
  • the RF signal 908 is received by the receiving antenna 909 and output to the RF demodulator 910. Note that the RF signal 908 in the figure represents a radio wave received by the receiving antenna 909, and becomes exactly the same as the RF signal 907 unless signal attenuation or noise superposition occurs in the propagation path.
  • the RF demodulator 910 demodulates the voice coded information from the RF signal output from the receiving antenna 909, and outputs the coded information to the voice coder 911.
  • the audio decoding device 911 implements the audio decoding device 150 shown in FIG. 1, decodes the audio signal from the audio encoded information output from the RF demodulation device 910, and performs DZA conversion. 1 2 Output.
  • the D / A conversion device 9 1 2 is the digital output from the audio decoding device 9 1 1
  • the audio signal is converted into an analog electric signal and output to the output device 9 13.
  • the output device 913 converts the electrical signal into air vibration and outputs it as sound waves so that it can be heard by the human ear.
  • reference numeral 914 represents the output sound wave. The above is the configuration and operation of the audio signal receiving device.
  • the present invention it is possible to effectively encode z-decode a speech / tone signal having a wide frequency band with a small amount of encoded information, and to reduce the amount of computation. it can.
  • the encoded information can be reduced.
  • decoding the basic layer encoded information it is possible to obtain only the decoded signal of the basic layer.
  • even a part of the encoded information can be used to produce a speech or a musical tone.
  • a function that can be decoded (scalable coding) can be realized.
  • the present invention is suitable for use in a speech encoding device and a speech decoding device used in a communication system that encodes and transmits speech / musical tone signals.

Abstract

基本レイヤ符号化部101は入力信号を符号化し基本レイヤ符号化情報を得る。基本レイヤ復号化部102は基本レイヤ符号化情報を復号化し基本レイヤ復号化信号及び長期予測情報(ピッチラグ)を得る。加算部103は入力信号に基本レイヤ復号化信号を極性反転して加算し残差信号を得る。拡張レイヤ符号化部104は長期予測情報及び残差信号を用いて算出した長期予測係数を符号化し拡張レイヤ符号化情報を得る。基本レイヤ復号化部152は基本レイヤ符号化情報を復号化し基本レイヤ復号化信号及び長期予測情報を得る。拡張レイヤ復号化部153は長期予測情報を利用して拡張レイヤ符号化情報を復号化し拡張レイヤ復号化信号を得る。加算部154は基本レイヤ復号化信号と拡張レイヤ復号化信号とを加算し音声・楽音信号を得る。これにより、少ない計算量及び符号化情報量でスケーラブル符号化を実現することができる。

Description

明 細 書 音声符号化装置、 音声復号化装置及びこれらの方法 技術分野
本発明は、 音声 ·楽音信号を符号化して伝送する通信システムに使用される 音声符号化装置、 音声復号化装置及びこれらの方法に関する。 背景技術
ディジタ /レ無線通信や、 インターネット通信に代表されるパケット通信、 あ るいは音声蓄積などの分野においては、 電波などの伝送路容量や記憶媒体の有 効利用を図るため、 音声信号の符号化 Z復号化技術が不可欠であり、 これまで に多くの音声符号化 復号化方式が開発されてきた。 その中で、 C E L P方式 の音声符号化 Z複号化方式が主流の方式として実用化されている。
C E L P方式の音声符号化装置は、 予め記憶された音声モデルに基づいて入 力音声をコード化する。 具体的には、 ディジタル化された音声信号を 2 O ms 程度のフレームに区切り、 フレーム毎に音声信号の線形予測分析を行い、 線形 予測係数と線形予測残差べクトルを求め、 線形予測係数と線形予測残差べクト ルをそれぞれ個別に符号化する。
低ビットレートの通信を実行するためには、 記憶できる音声モデルの量が限 られるため、 従来の C E L Pタイプの音声符号化ノ複号化方式では、 主に発声 音のモデルを記憶している。
また、 インターネット通信のようなバケツトを伝送する通信システムでは、 ネットワークの状態によりバケツト損失が起こるため、 符号化情報の一部が欠 損した場合であっても符号化情報の残りの一部から音声、 楽音を複号化できる ことが望ましい。 同様に、 通信容量に応じてビットレートを変化させる可変レ ート通信システムにおいては、 通信容量が低下した場合、 符号化情報の一部の みを伝送することにより通信容量の負担を軽減させることが容易であることが 望ましい。 このように、 符号化情報の全てもしくは符号化情報の一部のみを用 いて音声、 楽音を復号化できる技術として、 最近、 スケーラブル符号化技術が 注目を浴ぴている。 従来にもいくつかのスケーラプル符号化方式が開示されて いる。
スケーラプル符号化方式は、一般的に、基本レイヤと拡張レイヤとからなり、 各レイヤは、 基本レイヤを最も下位のレイヤとし、 階層構造を形成している。 そして、 各レイヤでは、 より下位のレイヤの入力信号と出力信号との差である 残差信号について符号化が行われる。 この構成により、 全レイヤの符号化情報 もしくは下位レイヤの符号化情報のみを用いて、 音声 ·楽音信号を復号化する ことができる。
しかしながら、 従来のスケーラブル符号化方式では、 基本レイヤおよび拡張 レイャの符号化方式として C E L Pタイプの音声符号化 復号化方式を用いる ため、 計算量、 符号ィ匕情報共に相応の量が必要となる。 発明の開示
本発明の目的は、 少ない計算量及び符号化情報量でスケーラブル符号化を実 現することができる音声符号化装置、 音声復号化装置及びこれらの方法を提供 することである。
この目的は、 長期予測を行う拡張レイヤを設け、 音声'楽音の長期的な相関 の性質を利用して拡張レイヤにおいて残差信号の長期予測を行うことにより復 号化信号の品質の向上を図り、 基本レイヤの長期予測情報を利用して長期予測 ラグを求めることにより演算量の削減を図ることにより達成される。 図面の簡単な説明
図 1は、 本発明の実施の形態 1に係る音声符号化装置 Z音声復号化装置の構 成を示すプロック図、 図 2は、 上記実施の形態に係る基本レイヤ符号化部の内部構成を示すプロッ ク図、
図 3は、 上記実施の形態に係る基本レイャ符号化部の內のパラメータ決定部 が適応音源符号帳から生成される信号を決定する処理を説明するための図、 図 4は、 上記実施の形態に係る基本レイャ復号化部の内部構成を示すプロッ ク図、
図 5は、 上記実施の形態に係る拡張レイヤ符号化部の内部構成を示すプロッ ク図、
図 6は、 上記実施の形態に係る拡張レイヤ復号化部の内部構成を示すプロッ ク図、
図 7は、 本発明の実施の形態 2に係る拡張レイャ符号化部の内部構成を示す ブロック図、
図 8は、 上記実施の形態に係る拡張レイヤ複号化部の内部構成を示すプロッ ク図、 及び、
図 9は、 本発明の実施の形態 3係る音声信号送信装置 音声信号受信装置の 構成を示すプロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。 なお、 以下の 各本実施の形態では、 基本レイヤと拡張レイヤとで構成される二階層の音声符 号ィ匕 Z複号化方法において拡張レイヤで長期予測を行う場合について説明する。 ただし、 本発明は階層について制限はなく、 三階層以上の階層的な音声符号化
Z復号化方法において下位レイヤの長期予測情報を利用して上位レイヤで長期 予測を行う場合についても適用することができる。 階層的な音声符号化方法と は、 残差信号 (下位レイャの入力信号と下位レイャの複号化信号との差) を長 期予測によって符号化して符号化情報を出力する音声符号化方法が上位レイャ に複数存在して階層構造を成している方法である。 また、 階層的な音声復号化 方法とは、 残差信号を復号化する音声複号化方法が上位レイヤに複数存在して P皆層構造を成している方法である。 ここで、 最下のレイヤに存在する音声'楽 音符号化 復号化方法を基本レイヤとする。 また、 基本レイヤより上位レイヤ に存在する音声 ·楽音符号化 Z復号化方法を拡張レイヤとする。
また、 本宪明の各実施の形態では、 基本レイヤが C E L Pタイプの音声符号 化 Z複号化を行う場合を例にして説明する。
(実施の形態 1 )
図 1は、 本発明の実施の形態 1に係る音声符号化装置/音声複号化装置の構 成を示すプロック図である。
図 1において、 音声符号化装置 1 0 0は、 基本レイヤ符号化部 1 0 1と、 基 本レイヤ復号化部 1 0 2と、 加算部 1 0 3と、 拡張レイヤ符号化部 1 0 4と、 多重化部 1 0 5とから主に構成される。 また、 音声復号化装置 1 5 0は、 多重 化分離部 1 5 1と、 基本レイヤ復号化部 1 5 2と、 拡張レイヤ複号化部 1 5 3 と、 加算部 1 5 4とから主に構成される。
基本レイャ符号化部 1 0 1は、 音声'楽音信号を入力し、 C E L Pタイプの 音声符号化方法を用いて入力信号を符号化し、 符号化によって求められる基本 レイヤ符号化情報を基本レイヤ複号化部 1 0 2に出力するとともに、 多重化部 1 0 5に出力する。
基本レイヤ復号化部 1 0 2は、 C E L Pタイプの音声複号化方法を用いて基 本レイヤ符号化情報を復号化し、 復号化によって求められる基本レイヤ復号ィ匕 信号を加算部 1 0 3に出力する。 また、 基本レイヤ複号化部 1 0 2は、 ピッチ ラグを基本レイヤの長期予測情報として拡張レイヤ符号化部 1 0 4に出力する。 ここで、 「長期予測情報」 とは、 音声 ·楽音信号が有する長期的な相関を表 す情報である。 また、 「ピッチラグ」 とは、 基本レイヤで特定される位置情報 であり、 詳細な説明は後述する。
加算部 1 0 3は、 入力信号に、 基本レイヤ復号化部 1 0 2から出力された基 本レイャ復号化信号を極性反転してから加算し、 加算結果である残差信号を拡 張レイヤ符号化部 1 0 4に出力する。
拡張レイャ符号化部 1 0 4は、 基本レイャ復号化部 1 0 2より出力された長 期予測情報及び加算部 1 0 3より出力された残差信号を用いて長期予測係数を 算出し、 長期予測係数を符号化し、 符号化によつて求められる拡張レイャ符号 化情報を多重化部 1 0 5に出力する。
多重化部 1 0 5は、 基本レイヤ符号化部 1 0 1から出力された基本レイヤ符 号化情報と、 拡張レイャ符号化部 1 0 4から出力された拡張レイャ符号化情報 と、 を多重ィヒして多重化情報として伝送路を介して多重ィヒ分離部 1 5 1に出力 する。
多重化分離部 1 5 1は、音声符号化装置 1 0 0から伝送された多重化情報を、 基本レイャ符号化情報と拡張レイャ符号化情報とに分離し、 分離された基本レ ィャ符号化情報を基本レイヤ復号化部 1 5 2に出力し、 また、 分離された拡張 レイヤ符号化情報を拡張レイヤ復号化部 1 5 3に出力する。
基本レイヤ複号化部 1 5 2は、 C E L Pタイプの音声複号化方法を用いて基 本レイヤ符号化情報を復号化し、 復号化によって求められる基本レイヤ復号化 信号を加算部 1 5 4に出力する。 また、 基本レイヤ復号化部 1 5 2は、 ピッチ ラグを基本レイヤの長期予測情報として拡張レイヤ復号化部 1 5 3に出力する。 拡張レイヤ複号化部 1 5 3は、 長期予測情報を利用して拡張レイヤ符号化情 報を複号化し、 復号化によって求められる拡張レイヤ復号化信号を加算部 1 5 4に出力する。
加算部 1 5 4は、 基本レイヤ複号化部 1 5 2から出力された基本レイヤ復号 化信号と拡張レイヤ復号ィヒ部 1 5 3から出力された拡張レイヤ復号化信号とを 加算し、 加算結果である音声 ·楽音信号を後工程の装置に出力する。
次に、 図 1の基本レイャ符号化部 1 0 1の内部構成を図 2のブロック図を用 いて説明する。
基本レイヤ符号化部 1 0 1の入力信号は、 前処理部 2 0 0に入力される。 前 処理部 2 0 0は、 D C成分を取り除くハイパスフィルタ処理や後続する符号ィ匕 処理の性能改善につながるような波形整形処理やプリエンファシス処理を行い、 これらの処理後の信号 (Xin) を L P C分析部 2 0 1および加算器 2 0 4に出 力する。
L P C分析部 2 0 1は、 Xinを用いて線形予測分析を行い、 分析結果 (線形 予測係数) を L P C量子化部 2 0 2へ出力する。 L P C量子化部 2 0 2は、 L P C分析部 2 0 1から出力された線形予測係数(L P C)の量子化処理を行い、 量子化 L P Cを合成フィルタ 2 0 3へ出力するとともに量子化 L P Cを表す符 号 (L) を多重化部 2 1 3へ出力する。
合成フィルタ 2 0 3は、 量子化 L P Cに基づくフィルタ係数により、 後述す る加算器 2 1 0から出力される駆動音源に対してフィルタ合成を行うことによ り合成信号を生成し、 合成信号を加算器 2 0 4へ出力する。
加算器 2 0 4は、 合成信号の極性を反転させて Xinに加算することにより誤 差信号を算出し、 誤差信号を聴覚重み付け部 2 1 1へ出力する。 ' 適応音源符号帳 2 0 5は、 過去に加算器 2 1 0によって出力された駆動音源 信号をバッファに記憶しており、 パラメータ決定部 2 1 2から出力された信号 によって特定される過去の駆動音源信号サンプルから 1フレーム分のサンプル を適応音源べクトルとして切り出して乗算器 2 0 8へ出力する。
量子化利得生成部 2 0 6は、 パラメータ決定部 2 1 2から出力された信号に よって特定される適応音源利得と固定音源利得とをそれぞれ乗算器 2 0 8と 2 0 9へ出力する。
固定音源符号帳 2 0 7は、 パラメータ決定部 2 1 2から出力された信号によ つて特定される形状を有するパルス音源べクトルに拡散べクトルを乗算して得 られた固定音源べグトルを乗算器 2 0 9へ出力する。
乗算器 2 0 8は、 量子化利得生成部 2 0 6から出力された量子化適応音源利 得を、 適応音源符号帳 2 0 5から出力された適応音源べクトルに乗じて、 加算 器 2 1 0へ出力する。 乗算器 2 0 9は、 量子化利得生成部 2 0 6から出力され た量子化固定音源利得を、 固定音源符号帳 2 0 7から出力された固定音源べク トルに乗じて、 加算器 2 1 0へ出力する。
加算器 2 1 0は、 利得乗算後の適応音源べクトルと固定音源べクトルとをそ れぞれ乗算器 2 0 8と乗算器 2 0 9から入力し、 これらをベクトルカ卩算し、 カロ 算結果である駆動音源を合成フィルタ 2 0 3および適応音源符号帳 2 0 5へ出 力する。 なお、 適応音源符号帳 2 0 5に入力された駆動音源は、 バッファに記 憶される。
聴覚重み付け部 2 1 1は、 カロ算器 2 0 4から出力された誤差信号に対して聴 覚的な重み付けをおこない、聴覚重み付け領域での ¾nと合成信号との歪みを 算出し、 パラメータ決定部 2 1 2へ出力する。
パラメータ決定部 2 1 2は、 聴覚重み付け部 2 1 1から出力された符号化歪 みを最小とする適応音源べクトル、 固定音源べクトル及び量子化利得を、 各々 適応音源符号帳 2 0 5、 固定音源符号帳 2 0 7及び量子化利得生成部 2 0 6か ら選択し、 選択結果を示す適応音源べクトル符号 (A) 、 音源利得符号 (G) 及び固定音源べクトル符号 (F ) を多重化部 2 1 3に出力する。 なお、 適応音 源ベクトル符号 (A) は、 ピッチラグに対応する符号である。
多重化部 2 1 3は、 L P C量子化部 2 0 2から量子化 L P Cを表す符号(L ) を入力し、 パラメータ決定部 2 1 2から適応音源べクトルを表す符号 (A) 、 固定音源べクトルを表す符号 (F ) および量子化利得を表す符号 (G) を入力 し、 これらの情報を多重化して基本レイヤ符号化情報として出力する。
以上が、 図 1の基本レイヤ符号化部 1 0 1の内部構成の説明である。
次に、 図 3を用いて、 パラメータ決定部 2 1 2が、 適応音源符号帳 2 0 5か ら生成される信号を決定する処理を簡単に説明する。 図 3において、 バッファ 3 0 1は適応音源符号帳 2 0 5が備えるバッファであり、 位置 3 0 2は適応音 源べクトルの切り出し位置であり、 ベクトル 3 0 3は、 切り出された適応音源 ベクトルである。 また、 数値 「4 1」 、 「2 9 6」 は、 切り出し位置 3 0 2を 動かす範囲の下限と上限とに対応している。
切り出し位置 3 0 2を動かす範囲は、 適応音源べクトルを表す符号 (A) に 割り当てるビット数を 「8」 とする場合、 「2 5 6」 の長さの範囲 (例えば、 4 1〜2 9 6 ) に設定することができる。 また、 切り出し位置 3 0 2を動力す 範囲は、 任意に設定することができる。
パラメータ決定部 2 1 2は、 切り出し位置 3 0 2を設定された範囲内で動か し、適応音源べクトル 3 0 3をそれぞれフレームの長さだけ切り出す。そして、 パラメータ決定部 2 1 2は、 聴覚重み付け部 2 1 1から出力される符号化歪み が最小となる切り出し位置 3 0 2を求める。
このように、 パラメータ決定部 2 1 2によって求められるバッファの切り出 し位置 3 0 2が 「ピッチラグ」 である。
次に、 図 1の基本レイヤ複号化部 1 0 2 ( 1 5 2 ) の内部構成について図 4 を用いて説明する。
図 4において、 基本レイヤ復号化部 1 0 2 ( 1 5 2 ) に入力された基本レイ ャ符号化情報は、 多重化分離部 4 0 1によって個々の符号 (L、 A、 G、 F ) に分離される。 分離された L P C符号 (L ) は L P C復号化部 4 0 2に出力さ れ、 分離された適応音源ベク トル符号 (A) は適応音源符号帳 4 0 5に出力さ れ、 分離された音源利得符号 (G) は量子化利得生成部 4 0 6に出力され、 分 離された固定音源べクトル符号 (F ) は固定音源符号帳 4 0 7へ出力される。
?じ復号化部4 0 2は、 多重化分離部 4 0 1から出力された符号 (L ) か ら L P Cを復号し、 合成フィルタ 4 0 3に出力する。
適応音源符号帳 4 0 5は、 多重化分離部 4 0 1から出力された符号 (A) で 指定される過去の駆動音源信号サンプルから 1フレーム分のサンプルを適応音 源ベク トルとして取り出して乗算器 4 0 8へ出力する。 また、 適応音源符号帳 4 0 5は、 ピッチラグを長期予測情報として拡張レイャ符号化部 1 0 4 (拡張 レイヤ復号化部 1 5 3 ) に出力する。
量子化利得生成部 4 0 6は、 多重化分離部 4 0 1から出力された音源利得符 号 (G) で指定される適応音源ベク トル利得と固定音源ベク トル利得を復号し 乗算器 4 0 8及び乗算器 4 0 9へ出力する。 固定音源符号帳 4 0 7は、 多重化分離部 4 0 1から出力された符号 (F ) で 指定される固定音源べクトルを生成し、 乗算器 4 0 9へ出力する。
乗算器 4 0 8は、 適応音源べクトルに適応音源べク トル利得を乗算して、 加 算器 4 1 0へ出力する。 乗算器 4 0 9は、 固定音源べクトルに固定音源べクト ル利得を乗算して、 加算器 4 1 0へ出力する。
加算器 4 1 0は、 乗算器 4 0 8 , 4 0 9から出力された利得乗算後の適応音 源べク トルと固定音源べクトルの加算を行って駆動音源べクトルを生成し、 こ れを合成フィルタ 4 0 3及び適応音源符号帳 4 0 5に出力する。
合成フィルタ 4 0 3は、 加算器 4 1 0から出力された駆動音源べクトルを駆 動信号として、 L P C復号ィヒ部 4 0 2によって復号されたフィルタ係数を用い て、 フィルタ合成を行い、 合成した信号を後処理部 4 0 4へ出力する。
後処理部 4 0 4は、 合成フィルタ 4 0 3から出力された信号に対して、 ホル マント強調やピッチ強調といったような音声の主観的な品質を改善する処理や、 定常雑音の主観的品質を改善する処理などを施し、 基本レイヤ復号化信号とし て出力する。
以上が、 図 1の基本レイヤ複号化部 1 0 2 ( 1 5 2 ) の内部構成の説明であ る。
次に、 図 1の拡張レイヤ符号化部 1 0 4の内部構成について図 5のブロック 図を用いて説明する。
拡張レイヤ符号化部 1 0 4では、 残差信号を Nサンプルずつ区切り (Nは自 然数) 、 Nサンプルを 1フレームとしてフレーム毎に符号化を行う。 以下、 残 差信号を e ( 0 ) 〜e (X - l ) と表し、符号化の対象となるフレームを e ( n ) 〜e ( n + N—l ) と表すこととする。 ここで、 Xは残差信号の長さであり、 Nはフレームの長さに相当する。 また、 nは各フレームの先頭に位置するサン プルであり、 nは Nの整数倍に相当する。 なお、 あるフレームの信号を過去に 生成された信号から予測して生成する方法は長期予測と呼ばれる。 また、 長期 予測を行うフィルタはピッチフィルタ、 コムフィルタ等と呼ばれる。 図 5において、 長期予測ラグ指示部 501は、 基本レイャ復号化部 102で 求められる長期予測情報 tを入力し、 これに基づいて拡張レイヤの長期予測ラ グ Tを求め、 これを長期予測信号記憶部 502に出力する。 なお、 基本レイヤ と拡張レイヤとの間でサンプリング周波数の違いが生じる場合、 長期予測ラグ Tは、 以下の式 (1) により求めることができる。 なお、 式 (1) において、 Dは拡張レイヤのサンプリング周波数、 dは基本レイヤのサンプリング周波数 、あ。。
T = DX t/d …式(1)
長期予測信号記憶部 502は、 過去に生成された長期予測信号を記憶するバ ッファを備える。 バッファの長さを Mとした場合、 バッファは過去に生成され た長期予測信号の系列 s (n-M- 1) 〜s (n-1) で構成される。 長期予 測信号記憶部 502は、 長期予測ラグ指示部 501より長期予測ラグ Tを入力 すると、 バッファに記憶されている過去の長期予測信号の系列から長期予測ラ グ Tだけ遡った長期予測信号 s (n— T) 〜s (n— T + N— 1)を切り出し、 これを長期予測係数計算部 503及び長期予測信号生成部 506に出力する。 また、 長期予測信号記憶部 502は、 長期予測信号生成部 506から長期予測 信号 s (n) 〜s (n+N— 1) を入力し、 以下の式 (2) によりバッファの 更新を行う。 s(i) =s (i+N) (i=n—M—l, ·'·,η—1) …^ )
s(i) =s(i) (i=n—M-l, - ' ·,η - 1) 、 なお、 長期予測ラグ Τがフレーム長 Νより短く、 長期予測信号記憶部 502 が長期予測信号を切り出すことができない場合、 長期予測ラグ Τをフレーム長 Νより長くなるまで整数倍することにより長期予測信号を切り出すことができ る。 あるいは、 長期予測ラグ Τだけ遡った長期予測信号 s (n-T) 〜s (n -T + N- 1) を繰り返して、 フレーム長 Nの長さまで充当させることにより 切り出すことができる。
長期予測係数計算部 503は、 残差信号 e (n) 〜e (n + N— 1) 及び長 期予測信号 s (n-T) 〜s (n-T + N- 1) を入力し、 これらを用いて以 下の式 (3) により、 長期予測係数 ]3を算出し、 これを長期予測係数符号化部 504に出力する。 式 (3)
Figure imgf000013_0001
長期予測係数符号化部 504は、 長期予測係数 βを符号化し、 符号化によつ て求められる拡張レイヤ符号化情報を長期予測係数復号化部 505に出力し、 伝送路を介して拡張レイヤ復号化部 153に出力する。 なお、 長期予測係数 j8 の符号化方法として、 スカラ量子化により行う方法等が知られている。
長期予測係数複号化部 505は、 拡張レイヤ符号化情報を復号化し、 これに よって求められる復号化長期予測係数 qを長期予測信号生成部 506に出力 する。
長期予測信号生成部 506は、 復号化長期予測係数 ]3 q及び長期予測信号 s (n-T) 〜s (n-T + N- 1) を入力し、 これらを用いて以下の式 (4) により、 長期予測信号 s (n) 〜s (n+N-1) を算出し、 これを長期予測 信号記憶部 502に出力する。
s (n +i) = AXs (n - T+l) (i=0,'-',N - 1) ■■■式(4) 以上が、 図 1の拡張レイヤ符号化部 104の内部構成の説明である。
次に、 図 1の拡張レイヤ復号化部 153の内部構成について図 6のブロック 図を用いて説明する。
図 6において、 長期予測ラグ指示部 601は、 基本レイヤ復号化部 152か ら出力された長期予測情報を用いて拡張レイヤの長期予測ラグ Tを求め、 これ を長期予測信号記憶部 602に出力する。
長期予測信号記憶部 602は、 過去に生成された長期予測信号を記憶するバ ッファを備える。 バッファの長さを Mとした場合、 バッファは過去に生成され た長期予測信号の系列 s (n-M- 1) 〜s (n— 1) で構成される。 長期予 測信号記憶部 602は、 長期予測ラグ指示部 601より長期予測ラグ Tを入力 すると、 バッファに記憶されている過去の長期予測信号の系列から長期予測ラ グ Tだけ遡つた長期予測信号 s (n-T)〜s (n-T + N- 1)を切り出し、 これを長期予測信号生成部 604に出力する。 また、 長期予測信号記憶部 60 2は、長期予測信号生成部 604から長期予測信号 s (n)〜s (n + N-1) を入力し、 上記式 (2) によりバッファの更新を行う。
長期予測係数複号化部 603は、 拡張レイヤ符号化情報を複号化し、 複号化 によつて求められる複号化長期予測係数 β qを長期予測信号生成部 604に出 力する。
長期予測信号生成部 604は、 復号化長期予測係数 ]3 q及び長期予測信号 s (n-T)〜s (n-T + N- 1) を入力し、 これらを用いて上記式 (4) に より、 長期予測信号 s (n) 〜s (n+N- 1) を算出し、 これを長期予測信 号記憶部 602及び加算部 153に拡張レイヤ復号化信号として出力する。 以上が、 図 1の拡張レイヤ復号化部 153の内部構成の説明である。
このように、 長期予測を行う拡張レイヤを設け、 音声 '楽音の長期的な相関 の性質を利用して残差信号を拡張レイヤにおいて長期予測することにより、 少 ない符号化情報で周波数帯域の広い音声■楽音信号を効果的に符号化ノ復号化 することができ、 また、 演算量の削減を図ることができる。
このとき、 長期予測ラグを符号化ノ復号化するのではなく、 基本レイヤの長 期予測情報を利用して長期予測ラグを求めることにより、 符号化情報の削減を 図ることができる。
また、 基本レイヤ符号ィ匕情報を復号ィ匕することによって、 基本レイヤの復号 化信号のみを得ることができ、 C E L Pタイプの音声符号化/複号化方法にお いて、 符号化情報の一部からでも音声'楽音を復号化できる機能 (スケ一ラブ ル符号化) を実現することができる。
また、 長期予測においては、 音声 ·楽音が有する長期的な相関を利用し、 現 フレ^ "ムとの相関が最も高いフレームをバッファから切り出し、 切り出したフ レームの信号を用いて現フレームの信号を表現する。 しかしながら、 現フレ ムとの相関が最も高いフレームをバッファから切り出す手段において、 ピッチ ラグなどの音声■楽音が有する長期的な相関を表わす情報が無い場合には、 パ ッファからフレームを切り出す際の切り出し位置を変化させながら、 切り出し たフレームと現フレームとの自己相関関数を計算し、 最も相関が高くなるフレ ームを探索する必要があり、探索に掛かる計算量は非常に大きくなつてしまう。 ところが、 基本レイヤ符号化部 101で求めたピッチラグを用いて切り出し 位置を一意に定めることにより、 通常の長期予測を行う際に掛かる計算量を大 幅に削減することができる。
なお、 本実施の形態で説明した拡張レイヤ長期予測方法では、 基本レイヤ復 号化部より出力される長期予測情報がピッチラグである場合について説明した is 本発明はこれに限られず、 音声 ·楽音が有する長期的な相関を表す情報で あれば長期予測情報として用いることができる。
また、 本実施の形態では、 長期予測信号記憶部 502がバッファから長期予 測信号を切り出す位置を長期予測ラグ τとする場合について説明したが、 これ を長期予測ラグ T付近の位置 Τ+α ( は微小な数であり、 任意に設定可能) とする場合についても本発明は適用することができ、 長期予測ラグ τに微小な 誤差が生じる場合でも本実施の形態と同様の作用 ·効果を得ることができる。 例えば、 長期予測信号記憶部 502は、 長期予測ラグ指示部 501より長期 予測ラグ Τを入力し、 バッファに記憶されている過去の長期予測信号の系列か ら Τ+ αだけ遡った長期予測信号 s (n—T— a;)〜 s (η— Τ—α+Ν— 1) を切り出し、 以下の式 (5) を用いて判定値 Cを算出し、 判定値 Cが最大とな る αを求め、 これを符号化する。 復号化を行う場合、 長期予測信号記憶部 60 2は、 αの符号ィヒ情報を復号化してひを求め、 また、 長期予測ラグ Τを用いて 長期予測信号 s (η-Τ-α) 〜s (η-Τ-α+Ν- 1) を切り出す。 …式 (5)
Figure imgf000016_0001
また、 本実施の形態では、 音声 ·楽音信号を用いて長期予測を行う場合につ いて説明したが、 MDCT、 QMF等の直交変換を用いて音声'楽音信号を時 間領域から周波数領域へ変換し、 変換後の信号 (周波数パラメータ) を用いて 長期予測を行う場合についても本発明は適用することができ、 本実施の形態と 同様の作用■効果を得ることができる。 例えば、 音声 ·楽音信号の周波数パラ メータで拡張レイヤ長期予測を行う場合には、 図 5において、 長期予測係数計 算部 503に、 長期予測信号 s (n— T) 〜s (n-T + N- 1) を時間領域 から周波数領域へ変換する機能及び残差信号を周波数パラメータへ変換する機 能を新たに設け、長期予測信号生成部 506に、長期予測信号 s (n)〜 s (n + N- 1)を周波数領域から時間領域へ逆変換する機能を新たに設ける。また、 図 6において、 長期予測信号生成部 604に、 長期予測信号 s (n) 〜s (n + N- 1) を周波数領域から時間領域へ逆変換する機能を新たに設ける。 また、 通常の音声,楽音符号化 複号化方法では、 伝送路において誤り検出 もしくは誤り訂正に用いる冗長ビットを符号化情報に付加させて、 冗長ビット を含む符号化情報を伝送することが一般的であるが、 本発明では、 基本レイヤ 符号化部 1 0 1より出力される符号化情報 (A) と拡張レイヤ符号化部 104 より出力される符号化情報 (B) とに割り当てる冗長ビットのビッ ト配分を符 号化情報 (A) に重みを付けて振り分けることができる。
(実施の形態 2)
実施の形態 2では、 残差信号と長期予測信号との差 (長期予測残差信号) の 符号化/復号化を行う場合について説明する。
本実施の形態の音声符号化装置 Z音声復号化装置は、 構成が図 1と同様であ り、 拡張レイヤ符号化部 1 04及び拡張レイヤ複号化部 1 5 3の内部構成のみ が異なる。 図 7は、 本実施の形態に係る拡張レイヤ符号化部 1 04の内部構成を示すブ ロック図である。 なお、 図 7において、 図 5と共通する構成部分には図 5と同 一符号を付して説明を省略する。
図 7の拡張レイャ符号化部 1 04は、 図 5と比較して、 加算部 70 1、 長期 予測残差信号符号化部 702、 符号化情報多重化部 703、 長期予測残差信号 復号化部 704及び加算部 705を追加した構成を採る。
長期予測信号生成部 506は、 算出した長期予測信号 s ( n ) 〜 s (n+N - 1 ) を加算部 70 1及び加算部 705に出力する。
加算部 70 1は、 以下の式 (6) に示すように、 長期予測信号 s (n) 〜s (n+N-1) の極性を反転させて残差信号 e (n) 〜e (n+N— 1) に加 算し、 加算結果である長期予測残差信号 p (n) 〜p (n+N- 1) を長期予 測残差信号符号化部 702に出力する。
p (n +i) =e (n +i) s (n +i) (ί=0,···,Ν-1) ■■■式(6)
長期予測残差信号符号化部 702は、 長期予測残差信号 ρ (η) 〜ρ (η + N- l) の符号化を行い、 符号化によって求められる符号化情報 (以下、 「長 期予測残差符号化情報」 という) を符号化情報多重化部 703及び長期予測残 差信号復号化部 704に出力する。 なお、 長期予測残差信号の符号化は、 ベタ トル量子化が一般的である。
ここで、 長期予測残差信号!) (n) 〜p (n+N- 1) の符号化方法につい て 8ビットでベクトル量子化を行う場合を例に説明する。 この場合、 長期予測 残差信号符号化部 702の内部には、 予め作成された 256種類のコードべク トルが格納されたコードプックが用意される。このコードべクトル CODE ( k ) (0) —CODE (k) (N- l) は、 Nの長さのべクトルである。 また、 kは コードべクトルのインデクスであり、 0から 25 5までの値をとる。 長期予測 残差信号符号化部 702は、 以下の式 (8) により長期予測残差信号 p (n) 〜!) (n+N- 1) とコードベクトル CODE (k) (0) -CODE (k) (N - 1) との二乗誤差 er を求める。 ' "式 (7)
Figure imgf000018_0001
そして、 長期予測残差信号符号化部 702は、 二乗誤差 erが最小となる k の値を長期予測残差符号化情報として決定する。
符号化情報多重化部 703は、 長期予測係数符号化部 504より入力した拡 張レイャ符号化情報と、 長期予測残差信号符号化部 702より入力した長期予 測残差符号化情報を多重化し、 多重化後の情報を伝送路を介して拡張レイャ復 号化部 153に出力する。
長期予測残差信号複号化部 704は、 長期予測残差符号化情報の複号化を行 い、 復号化によって求められた復号化長期予測残差信号 P q (n) 〜: p q (n +N-1) を加算部 705に出力する。
加算部 705は、 長期予測信号生成部 506より入力した長期予測信号 s (n) 〜s (n+N-1) と長期予測残差信号復号化部 704より入力した復 号化長期予測残差信号 P q (n) 〜!) q (n+N-1) とを加算し、 加算結果 を長期予測信号記憶部 502に出力する。 この結果、 長期予測信号記憶部 50 2は、 以下の式 (8) によりバッファの更新を行う。 s(i) =s (i+N) (i=n一 - -· η - Ν - 1) 1 .
s(i) =s (i+N) +p, (i-N) (i=n—N, -· η-1) J …式( 8 )
s(i) =s(i) (i=n—M-l, ' ' -,n-l) 以上が、 本実施の形態に係る拡張レイヤ符号化部 104の内部構成の説明で ある。
次に、 本実施の形態に係る拡張レイヤ復号化部 153の内部構成について、 図 8のプロック図を用いて説明する。 なお、 図 8において、 図 6と共通する構 成部分には図 6と同一符号を付して説明を省略する。
図 8の拡張レイヤ複号化部 153は、 図 6と比較して、 符号化情報分離部 8 01、 長期予測残差信号復号化部 802及び加算部 803を追加した構成を採 る。 符号化情報分離部 801は、 伝送路より受信した多重化されている符号化情 報を、 拡張レイヤ符号化情報と長期予測残差符号化情報とに分離し、 拡張レイ ャ符号化情報を長期予測係数復号化部 603に出力し、 長期予測残差符号化情 報を長期予測残差信号複号化部 802に出力する。
長期予測残差信号復号化部 802は、 長期予測残差符号化情報を複号化して 複号化長期予測残差信号 P q (n) 〜p q (n + N— 1) を求め、 これを加算 部 803に出力する。
加算部 803は、 長期予測信号生成部 604より入力した長期予測信号 s (n) 〜s (n+N— 1) と長期予測残差信号復号化部 802より入力した復 号化長期予測残差信号 p q (n) 〜!) q (n+N— 1) とを加算し、 加算結果 を長期予測信号記憶部 602に出力し、 加算結果を拡張レイヤ複号化信号とし て出力する。
以上が、 本実施の形態に係る拡張レイヤ復号化部 153の内部構成の説明で ある。
このように、 残差信号と長期予測信号との差 (長期予測残差信号) を符号化 ノ復号化することにより、 上記実施の形態 1よりもさらに高品質な復号化信号 を得ることができる。
なお、 本実施の形態では、 ベクトル量子化により長期予測残差信号の符号化 を行う場合について説明したが、 本発明は符号化方法に制限はなく、 例えば、 形状-利得 V Q、分割 V Q、変換 V Q、多段階 V Qにより符号化を行ってもよい。 以下、 13ビットで形状 8ビット、利得 5ビットの形状-利得 V Qにより符号 化を行う場合について説明する。この場合、コードブックは形状コードブック、 利得コードプックの二種類が用意される。 形状コードプックは 256種類の形 状コードべクトルから成り、 形状コードべクトル SCODE (k 1) (0) 〜 SCODE (k 1) (N- 1) は、 Nの長さのベク トルである。 ここで、 k 1は 形状コードべクトルのインデクスであり、 0から 255までの値をとる。また、 利得コードプックは 32種類の利得コードから成り、 利得コード GCODE ( k 2) はスカラの値をとる。 ここで、 k 2は利得コードのインデクスであり、 0 から 31までの値をとる。長期予測残差信号符号化部 702は、以下の式( 9 ) により長期予測残差信号 p (n)〜p (n+M-1) の利得 gainと形状べタト ル shape (0) 〜shape (N- 1) を求め、 以下の式 (10) により利得 gain と利得コード GCODE (k 2) との利得誤差 gainer と、 形状べクトル shape
(0)〜shape(N— 1)と形状コードべクトル SCODE(k 1) (0)〜SCODE
(k 1) (N- 1) との二乗誤差 shapeerとを求める。 gain= J∑p(n+i)
…式 (9)
shape(i)= ^0=0, . , ·'Ν-1) gainer: \ gatn- GCODE (K2>\
n_ 2 …式(10)
shapeer=∑ (shape (i)一 SCODE (i))2
i=0 そして、 長期予測残差信号符号化部 702は、 利得誤差 gainerが最小とな る k 2の値と二乗誤差 shapperが最小となる k 1の値とを求め、 これらの求め た値を長期予測残差符号化情報とする。
次に、 8ビットで分割 VQにより符号化を行う場合について説明する。 この 場合、 コードブックは第 1分割コードプック、 第 2分割コードプックの二種類 が用意される。 第 1分割コードプックは 16種類の第 1分割コ一ドべクトル SPCODE (k 3) (0) 〜SPCODE (k 3) (N/2- 1) から成り、 第 2 分割コードプック SPCODE (k 4) (0)〜SPCODE (k 4) (N/2-1) は 16種類の第 2分割コードべクトノレ力 ら成り、 それぞれコードべクトルは N /2の長さのベクトルである。 ここで、 k 3は第 1分割コードべクトルのィン デクスであり、 0から 15までの値をとる。 また、 k4は第 2分割コードべク トルのインデクスであり、 0から 15までの値をとる。 長期予測残差信号符号 化部 702は、 以下の式 (11) により長期予測残差信号!) (n) 〜p (n + N— 1) を、 第 1分割べクトノレ s p l (0) 〜s p l (N/2-1) と第 2分 割べクトル s p 2 (0) 〜s p 2 (N/2-1) とに分割し、 以下の式(12) により第 1分割ベクトル s p 1 (0) 〜s p l (N/2-1) と第 1分割コー ドべクトル SPCODE (k 3) (0) -SPCODE (k 3) (N/2-1) との 二乗誤差 spliterlと、 第 2分割べクトル s p 2 (0) ~ s p 2 (N/2-1) と第 2分割コードブック SPCODE (k 4) (0) 〜SPCODE (k 4) (N/
2-1) との二乗誤差 spHter 2とを求める。 spfi) =p (n+1) (i=0, · ' -,Ν/2-1) •式(11)
sp/i) =ρ (η+Ν/2+i) (i=0, . - ·,Ν/2-1) spliter= ∑ (spfi SPCODE, ( J
N/2-1/ , (X4) 、 \2 ,式(12)
spliter= ∑ (sp2(i)SPCODE2 (i)J そして、長期予測残差信号符号化部 702は、 二乗誤差 spliterlが最小とな る k 3の値と二乗誤差 spliter2が最小となる k 4の値とを求め、 これらの求め た値を長期予測残差符号化情報とする。
次に、 8ビットで離散フーリエ変換を用いた変換 VQにより符号化を行う場 合について説明する。 この場合、 256種類の変換コードベクトルから成る変 換コードブックが用意され、 変換コードベクトル TCODE (k 5) (0) 〜 TCODE (k 5) (N/2 - 1) は Nの長さのベクトルである。 ここで、 k 5 は変換コードベクトルのインデクスであり、 0から 255までの値をとる。 長 期予測残差信号符号化部 702は、 以下の式 (13) により長期予測残差信号 p (n) 〜: p (n+N— 1) を離散フーリエ変換して変換ベクトル tp (0) 〜 tp (N— 1) を求め、 以下の式 (14) により変換ベクトル tp (0) 〜tp (N — 1) と変換コードベクトル TCODE (k 5) (0) -TCODE (k 5) (N /2— 1) との二乗誤差 transerを求める。 (H---N-1) …式(13)
Figure imgf000021_0001
transer= ¾ (tp(i)-TCODE (i))2 …式( 14) そして、 長期予測残差信号符号化部 702は、 二乗誤差 transerが最小とな る k 5の値を求め、 この値を長期予測残差符号化情報とする。
次に、 13ビットで一段目 5ビット、 二段目 8ビットの二段 V Qにより符号 化を行う場合について説明する。 この場合、 一段目コードプック、 二段目コー ドプックの二種類のコードブックを用意する。 一段目コードプックは 32種類 の一段目コードベクトル PHC0DE1 (k 6) ( 0 )〜PHCODE 1 ( k 6 ) (N — 1) から成り、 二段目コードプックは 256種類の二段目コードベクトル PHCODE 2 (k 7) (0) 〜; PHCODE2 (k 7) (N— 1) から成り、 それ ぞれコードベクトルは Nの長さのベクトルである。 ここで、 k 6は一段目コー ドベクトルのインデクスであり、 0から 31までの値をとる。 また、 k 7は二 段目コードベクトルのインデクスであり、 0から 255までの値をとる。 長期 予測残差信号符号化部 702は、 以下の式 (15) により長期予測残差信号 p (n) 〜!) (n+N- 1) と一段目コードベクトル PHCODE 1 (k 6) (0) 〜PHC0DE 1 (k 6) (N— 1 ) との二乗誤差 phaseer 1を求め、 二乗誤差 phaseer 1が最小となる k 6の値を求め、 この値を kmaxとする。
phaseer尸∑ ( tp(i) - TCODE (i) ) '■■式( 15 ) そして、 長期予測残差信号符号化部 702は、 以下の式 (16) により誤差 ベタトル ep (0) ~ep (N-1) を求め、 以下の式 (17) により誤差べクト ル ep (0) 〜ep (N-1) と二段目コードベクトル PHCODE 2 (k 7) (0) 〜PHC0DE2 (k 7) (N-1) との二乗誤差 phaseer 2を求め、 二乗誤差 phaseer 2が最小となる k 7の値を求め、 この値と k maxとを長期予測残差符 号化情報とする。 ep (i) =p (n +i) -PHCODE, (、i) (i=0, ' ' ·,Ν-1)■ · ·式( 16) phaseer = Ni(ep(i)-PHCODE2 (i)) ' 式(1 7)
(実施の形態 3 )
図 9は、 上記実施の形態 1 2で説明した音声符号化装置及び音声復号化装 置を含む音声信号送信装置および音声信号受信装置の構成を示すプロック図で ある。
図 9において、 音声信号 9 0 1は入力装置 9 0 2によって電気的信号に変換 され AZD変換装置 9 0 3に出力される。 AZD変換装置 9 0 3は入力装置 9 0 2から出力された (アナログ) 信号をディジタ 信号に変換し音声符号化装 置 9 0 4 出力する。 音声符号化装置 9 0 4は、 図 1に示した音声符号化装置 1 0 0を実装し、 AZD変換装置 9 0 3から出力されたディジタル音声信号を 符号化し符号化情報を R F変調装置 9 0 5 出力する。 R F変調装置 9 0 5は 音声符号化装置 9 0 4から出力された音声符号化情報を電波等の伝播媒体に載 せて送出するための信号に変換し送信アンテナ 9 0 6 出力する。 送信アンテ ナ 9 0 6は R F変調装置 9 0 5から出力された出力信号を電波 (R F信号) と して送出する。 なお、 図中の R F信号 9 0 7は送信アンテナ 9 0 6から送出さ れた電波 (R F信号) を表す。 以上が音声信号送信装置の構成および動作であ る。
R F信号 9 0 8は受信アンテナ 9 0 9によって受信され R F復調装置 9 1 0 に出力される。 なお、 図中の R F信号 9 0 8は受信アンテナ 9 0 9に受信され た電波を表し、 伝播路において信号の減衰や雑音の重畳がなければ R F信号 9 0 7と全く同じものになる。
R F復調装置 9 1 0は受信アンテナ 9 0 9から出力された R F信号から音声 符号化情報を復調し音声複号化装置 9 1 1 出力する。 音声復号化装置 9 1 1 は、 図 1に示した音声復号化装置 1 5 0を実装し、 R F復調装置 9 1 0から出 力された音声符号化情報から音声信号を復号し DZA変換装置 9 1 2 出力す る。 D/A変換装置 9 1 2は音声復号化装置 9 1 1から出力されたディジタル 音声信号をアナログの電気的信号に変換し出力装置 9 1 3へ出力する。
出力装置 9 1 3は電気的信号を空気の振動に変換し音波として人間の耳に聴 こえるように出力する。なお、図中、参照符号 9 1 4は出力された音波を表す。 以上が音声信号受信装置の構成およぴ動作である。
無線通信システムにおける基地局装置おょぴ通信端末装置に、 上記のような 音声信号送信装置および音声信号受信装置を備えることにより、 高品質な復号 化信号を得ることができる。
以上説明したように、 本発明によれば、 少ない符号化情報で周波数帯域の広 い音声 ·楽音信号を効果的に符号化 z復号化することができ、 また、 演算量の 削減を図ることができる。 また、 基本レイヤの長期予測情報を利用して長期予 測ラグを求めることにより、 符号化情報を削減することができる。 また、 基本 レイャ符号化情報を復号化することによって、 基本レイャの復号化信号のみを 得ることができ、 C E L Pタイプの音声符号化 復号化方法において、 符号化 情報の一部からでも音声'楽音を復号化できる機能 (スケーラブル符号化) を 実現することができる。
本明細書は、 2 0 0 3年 4月 3 0日出願の特願 2 0 0 3 - 1 2 5 6 6 5に基 づくものである。 この内容をここに含めておく。 産業上の利用可能性
本発明は、 音声 ·楽音信号を符号化して伝送する通信システムに使用される 音声符号化装置、 音声複号化装置に用いるに好適である。

Claims

請 求 の 範 囲
1 .入力信号を符号化して第 1符号化情報を生成する基本レイャ符号化手段と、 前記第 1符号化情報を複号化して第 1復号化信号を生成するとともに、 音声- 楽音が有する長期的な相関を表す情報である長期予測情報を生成する基本レイ ャ復号化手段と、 前記入力信号と前記第 1復号化信号との差分である残差信号 を求める加算手段と、 前記長期予測情報及び前記残差信号を用いて長期予測係 数を算出し、 前記長期予測係数を符号化して第 2符号化情報を生成する拡張レ ィャ符号化手段と、 を具備する音声符号化装置。
2 . 基本レイヤ復号化手段は、 駆動音源信号サンプルから切り出された適応音 源べクトルの切り出し位置を示す情報を長期予測情報とする請求項 1記載の音 声符号化装置。
3 . 拡張レイヤ符号化手段は、 前記長期予測情報に基づいて拡張レイヤの長期 予測ラグを求める手段と、 バッファに記憶されている過去の長期予測信号系列 から前記長期予測ラグだけ遡った長期予測信号を切り出す手段と、 前記残差信 号及び前記長期予測信号を用いて長期予測係数を算出する手段と、 前記長期予 測係数を符号化することにより前記拡張レイャ符号化情報を生成する手段と、 前記拡張レイャ符号化情報を複号化して複号化長期予測係数を生成する手段と、 前記複号化長期予測係数及び前記長期予測信号を用いて新たな長期予測信号を 算出し、 前記新たな長期予測信号を用いて前記バッファを更新する手段と、 を 有する請求項 1記載の音声符号化装置。
4. 拡張レイヤ符号化手段は、 前記残差信号と前記長期予測信号との差分であ る長期予測残差信号を求める手段と、 前記長期予測残差信号を符号化すること により長期予測残差符号化情報を生成する手段と、 前記長期予測残差符号化情 報を復号化して複号化長期予測残差信号算出する手段と、 前記新たな長期予測 信号と前記復号化長期予測残差信号とを加算し、 加算結果を用いて前記バッフ ァを更新する手段と、 をさらに有する請求項 3記載の音声符号化装置。
5 . 請求項 1記載の音声符号化装置から第 1符号化情報及び第 2符号化情報を 受信して音声を復号化する音声復号化装置であって、
前記第 1符号化情報を復号化して第 1復号化信号を生成するとともに、 音 声■楽音が有する長期的な相関を表す情報である長期予測情報を生成する基本 レイャ復号化手段と、 前記長期予測情報を用いて前記第 2符号化情報を復号化 して第 2復号化信号を生成する拡張レイャ複号化手段と、 前記第 1復号化信号 と前記第 2復号化信号とを加算し、 加算結果である音声 ·楽音信号を出力する 加算手段と、 を具備する音声復号化装置。
6 . 基本レイヤ復号化手段は、 駆動音源信号サンプルから切り出された適応音 源べクトルの切り出し位置を示す情報を長期予測情報とする請求項 5記載の音 声複号化装置。
7 . 拡張レイヤ複号化手段は、 前記長期予測情報に基づいて拡張レイヤの長期 予測ラグを求める手段と、 バッファに記憶されている過去の長期予測信号系列 から長期予測ラグだけ遡った長期予測信号を切り出す手段と、 前記拡張レイヤ 符号化情報を複号化して復号化長期予測係数を求める手段と、 前記復号化長期 予測係数及び長期予測信号を用いて長期予測信号を算出し、 前記長期予測信号 を用いて前記バッファを更新する手段と、 を有し、 前記長期予測信号を拡張レ ィャ復号化信号とする請求項 5記載の音声復号化装置。
8 . 拡張レイヤ複号化手段は、 前記長期予測残差符号化情報を復号化して復号 化長期予測残差信号を求める手段と、 前記長期予測信号と前記復号化長期予測 残差信号とを加算する手段と、 を有し、 前記加算結果を拡張レイヤ複号化信号 とする請求項 7記載の音声復号化装置。
9 . 音声符号化装置を具備する音声信号送信装置であって、
前記音声符号化装置は、 入力信号を符号化して第 1符号化情報を生成する基 本レイャ符号化手段と、 前記第 1符号化情報を復号化して第 1複号化信号を生 成するとともに、 音声.楽音が有する長期的な相関を表す情報である長期予測 情報を生成する基本レイャ復号化手段と、 前記入力信号と前記第 1複号化信号 との差分である残差信号を求める加算手段と、 前記長期予測情報及び前記残差 信号を用いて長期予測係数を算出し、 前記長期予測係数を符号化して第 2符号 化情報を生成する拡張レイヤ符号ィヒ手段と、 を具備する。
1 0 . 請求項 1記載の音声符号化装置から第 1符号化情報及び第 2符号化情報 を受信して音声を復号化する音声復号化装置を具備する音声信号受信装置であ つて、
前記第 1符号化情報を復号化して第 1復号化信号を生成するとともに、 音 声 ·楽音が有する長期的な相関を表す情報である長期予測情報を生成する基本 レイャ復号化手段と、 前記長期予測情報を用いて前記第 2符号化情報を復号化 して第 2復号化信号を生成する拡張レイャ復号化手段と、 前記第 1複号化信号 と前記第 2複号化信号とを加算し、 加算結果である音声■楽音信号を出力する 加算手段と、 を具備する。
1 1 . 入力信号を符号化して第 1符号化情報を生成する工程と、 前記第 1符号 化情報を復号化して第 1複号化信号を生成するとともに、 音声■楽音が有する 長期的な相関を表す情報である長期予測情報を生成する工程と、 前記入力信号 と前記第 1複号化信号との差分である残差信号を求める工程と、 前記長期予測 情報及び前記残差信号を用いて長期予測係数を算出し、 前記長期予測係数を符 号化して第 2符号化情報を生成する工程と、 を具備する音声符号化方法。
1 2 . 請求項 1 1記載の音声符号化方法で生成された第 1符号化情報及び第 2 符号化情報を用いて音声を復号化する音声復号化方法であって、
前記第 1符号化情報を復号化して第 1復号化信号を生成するとともに、 音 声■楽音が有する長期的な相関を表す情報である長期予測情報を生成する工程 と、 前記長期予測情報を用いて前記第 2符号化情報を復号化して第 2復号化信 号を生成する工程と、 前記第 1復号化信号と前記第 2復号化信号とを加算し、 加算結果である音声 ·楽音信号を出力する工程と、を具備する音声復号化方法。
PCT/JP2004/006294 2003-04-30 2004-04-30 音声符号化装置、音声復号化装置及びこれらの方法 WO2004097796A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/554,619 US7299174B2 (en) 2003-04-30 2004-04-30 Speech coding apparatus including enhancement layer performing long term prediction
EP04730659A EP1619664B1 (en) 2003-04-30 2004-04-30 Speech coding apparatus, speech decoding apparatus and methods thereof
CA2524243A CA2524243C (en) 2003-04-30 2004-04-30 Speech coding apparatus including enhancement layer performing long term prediction
US11/872,359 US7729905B2 (en) 2003-04-30 2007-10-15 Speech coding apparatus and speech decoding apparatus each having a scalable configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-125665 2003-04-30
JP2003125665 2003-04-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/554,619 A-371-Of-International US7299174B2 (en) 2003-04-30 2004-04-30 Speech coding apparatus including enhancement layer performing long term prediction
US11/872,359 Continuation US7729905B2 (en) 2003-04-30 2007-10-15 Speech coding apparatus and speech decoding apparatus each having a scalable configuration

Publications (1)

Publication Number Publication Date
WO2004097796A1 true WO2004097796A1 (ja) 2004-11-11

Family

ID=33410232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006294 WO2004097796A1 (ja) 2003-04-30 2004-04-30 音声符号化装置、音声復号化装置及びこれらの方法

Country Status (6)

Country Link
US (2) US7299174B2 (ja)
EP (1) EP1619664B1 (ja)
KR (1) KR101000345B1 (ja)
CN (2) CN101615396B (ja)
CA (1) CA2524243C (ja)
WO (1) WO2004097796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043811A1 (en) * 2005-10-12 2007-04-19 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding audio data and extension data

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496500B1 (en) * 2003-07-09 2007-02-28 Samsung Electronics Co., Ltd. Bitrate scalable speech coding and decoding apparatus and method
WO2005064594A1 (ja) * 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. 音声・楽音符号化装置及び音声・楽音符号化方法
JP4733939B2 (ja) * 2004-01-08 2011-07-27 パナソニック株式会社 信号復号化装置及び信号復号化方法
US7701886B2 (en) * 2004-05-28 2010-04-20 Alcatel-Lucent Usa Inc. Packet loss concealment based on statistical n-gram predictive models for use in voice-over-IP speech transmission
JP4771674B2 (ja) * 2004-09-02 2011-09-14 パナソニック株式会社 音声符号化装置、音声復号化装置及びこれらの方法
BRPI0515551A (pt) * 2004-09-17 2008-07-29 Matsushita Electric Ind Co Ltd aparelho de codificação de áudio, aparelho de decodificação de áudio, aparelho de comunicação e método de codificação de áudio
WO2006035705A1 (ja) * 2004-09-28 2006-04-06 Matsushita Electric Industrial Co., Ltd. スケーラブル符号化装置およびスケーラブル符号化方法
EP1881488B1 (en) * 2005-05-11 2010-11-10 Panasonic Corporation Encoder, decoder, and their methods
KR100754389B1 (ko) * 2005-09-29 2007-08-31 삼성전자주식회사 음성 및 오디오 신호 부호화 장치 및 방법
US8069035B2 (en) * 2005-10-14 2011-11-29 Panasonic Corporation Scalable encoding apparatus, scalable decoding apparatus, and methods of them
WO2007102782A2 (en) * 2006-03-07 2007-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for audio coding and decoding
WO2007105586A1 (ja) * 2006-03-10 2007-09-20 Matsushita Electric Industrial Co., Ltd. 符号化装置および符号化方法
US20090276210A1 (en) * 2006-03-31 2009-11-05 Panasonic Corporation Stereo audio encoding apparatus, stereo audio decoding apparatus, and method thereof
US20090164211A1 (en) * 2006-05-10 2009-06-25 Panasonic Corporation Speech encoding apparatus and speech encoding method
EP2040251B1 (en) 2006-07-12 2019-10-09 III Holdings 12, LLC Audio decoding device and audio encoding device
US7461106B2 (en) 2006-09-12 2008-12-02 Motorola, Inc. Apparatus and method for low complexity combinatorial coding of signals
EP2099026A4 (en) * 2006-12-13 2011-02-23 Panasonic Corp POST-FILTER AND FILTERING METHOD
CN101206860A (zh) * 2006-12-20 2008-06-25 华为技术有限公司 一种可分层音频编解码方法及装置
CN101246688B (zh) 2007-02-14 2011-01-12 华为技术有限公司 一种对背景噪声信号进行编解码的方法、系统和装置
JP4871894B2 (ja) * 2007-03-02 2012-02-08 パナソニック株式会社 符号化装置、復号装置、符号化方法および復号方法
EP2116998B1 (en) * 2007-03-02 2018-08-15 III Holdings 12, LLC Post-filter, decoding device, and post-filter processing method
US20080249783A1 (en) * 2007-04-05 2008-10-09 Texas Instruments Incorporated Layered Code-Excited Linear Prediction Speech Encoder and Decoder Having Plural Codebook Contributions in Enhancement Layers Thereof and Methods of Layered CELP Encoding and Decoding
EP2165328B1 (en) * 2007-06-11 2018-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encoding and decoding of an audio signal having an impulse-like portion and a stationary portion
CN101075436B (zh) * 2007-06-26 2011-07-13 北京中星微电子有限公司 带补偿的音频编、解码方法及装置
US8576096B2 (en) 2007-10-11 2013-11-05 Motorola Mobility Llc Apparatus and method for low complexity combinatorial coding of signals
US8527265B2 (en) * 2007-10-22 2013-09-03 Qualcomm Incorporated Low-complexity encoding/decoding of quantized MDCT spectrum in scalable speech and audio codecs
US8209190B2 (en) 2007-10-25 2012-06-26 Motorola Mobility, Inc. Method and apparatus for generating an enhancement layer within an audio coding system
EP2224432B1 (en) * 2007-12-21 2017-03-15 Panasonic Intellectual Property Corporation of America Encoder, decoder, and encoding method
US7889103B2 (en) 2008-03-13 2011-02-15 Motorola Mobility, Inc. Method and apparatus for low complexity combinatorial coding of signals
US8639519B2 (en) 2008-04-09 2014-01-28 Motorola Mobility Llc Method and apparatus for selective signal coding based on core encoder performance
US8249142B2 (en) * 2008-04-24 2012-08-21 Motorola Mobility Llc Method and apparatus for encoding and decoding video using redundant encoding and decoding techniques
KR20090122143A (ko) * 2008-05-23 2009-11-26 엘지전자 주식회사 오디오 신호 처리 방법 및 장치
FR2938688A1 (fr) * 2008-11-18 2010-05-21 France Telecom Codage avec mise en forme du bruit dans un codeur hierarchique
US8200496B2 (en) 2008-12-29 2012-06-12 Motorola Mobility, Inc. Audio signal decoder and method for producing a scaled reconstructed audio signal
US8219408B2 (en) 2008-12-29 2012-07-10 Motorola Mobility, Inc. Audio signal decoder and method for producing a scaled reconstructed audio signal
US8140342B2 (en) 2008-12-29 2012-03-20 Motorola Mobility, Inc. Selective scaling mask computation based on peak detection
US8175888B2 (en) 2008-12-29 2012-05-08 Motorola Mobility, Inc. Enhanced layered gain factor balancing within a multiple-channel audio coding system
CN101771417B (zh) * 2008-12-30 2012-04-18 华为技术有限公司 信号编码、解码方法及装置、系统
JPWO2010103854A1 (ja) * 2009-03-13 2012-09-13 パナソニック株式会社 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法
CN102239518B (zh) 2009-03-27 2012-11-21 华为技术有限公司 编码和解码方法及装置
CN102414990A (zh) * 2009-05-29 2012-04-11 日本电信电话株式会社 编码装置、解码装置、编码方法、解码方法及其程序
CN102081927B (zh) * 2009-11-27 2012-07-18 中兴通讯股份有限公司 一种可分层音频编码、解码方法及系统
US8442837B2 (en) 2009-12-31 2013-05-14 Motorola Mobility Llc Embedded speech and audio coding using a switchable model core
US8423355B2 (en) 2010-03-05 2013-04-16 Motorola Mobility Llc Encoder for audio signal including generic audio and speech frames
US8428936B2 (en) 2010-03-05 2013-04-23 Motorola Mobility Llc Decoder for audio signal including generic audio and speech frames
US9767823B2 (en) 2011-02-07 2017-09-19 Qualcomm Incorporated Devices for encoding and detecting a watermarked signal
US9767822B2 (en) 2011-02-07 2017-09-19 Qualcomm Incorporated Devices for encoding and decoding a watermarked signal
NO2669468T3 (ja) * 2011-05-11 2018-06-02
CN103124346B (zh) * 2011-11-18 2016-01-20 北京大学 一种残差预测的确定方法及系统
CN108962270B (zh) * 2012-05-23 2023-03-17 日本电信电话株式会社 解码方法、解码装置以及记录介质
US9129600B2 (en) 2012-09-26 2015-09-08 Google Technology Holdings LLC Method and apparatus for encoding an audio signal
PL2981963T3 (pl) 2013-04-05 2017-06-30 Dolby Int Ab Urządzenie kompandujące i sposób redukcji szumu kwantyzacji stosujący zaawansowane rozszerzenie spektralne
ES2665599T3 (es) * 2013-04-05 2018-04-26 Dolby International Ab Codificador y descodificador de audio
KR20160070147A (ko) * 2013-10-18 2016-06-17 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 결정론적 및 잡음 유사 정보를 사용하는 오디오 신호의 인코딩 및 오디오 신호의 디코딩을 위한 개념
AU2014336356B2 (en) 2013-10-18 2017-04-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Concept for encoding an audio signal and decoding an audio signal using speech related spectral shaping information

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573099A (ja) * 1991-09-17 1993-03-26 Oki Electric Ind Co Ltd コード励振線形予測符号化方式
JPH05249999A (ja) * 1991-10-21 1993-09-28 Toshiba Corp 学習型音声符号化装置
JPH06102900A (ja) * 1992-09-18 1994-04-15 Fujitsu Ltd 音声符号化方式および音声復号化方式
JPH0854900A (ja) * 1994-08-09 1996-02-27 Yamaha Corp ベクトル量子化による符号化復号化方式
JPH08147000A (ja) * 1994-11-18 1996-06-07 Yamaha Corp ベクトル量子化による符号化復号方式
JPH08211895A (ja) * 1994-11-21 1996-08-20 Rockwell Internatl Corp ピッチラグを評価するためのシステムおよび方法、ならびに音声符号化装置および方法
JPH08328595A (ja) * 1995-05-30 1996-12-13 Sanyo Electric Co Ltd 音声符号化装置
JPH10177399A (ja) * 1996-10-18 1998-06-30 Mitsubishi Electric Corp 音声符号化方法、音声復号化方法及び音声符号化復号化方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US197833A (en) * 1877-12-04 Improvement in sound-deadening cases for type-writers
US171771A (en) * 1876-01-04 Improvement in corn-planters
JPS62234435A (ja) * 1986-04-04 1987-10-14 Kokusai Denshin Denwa Co Ltd <Kdd> 符号化音声の復号化方式
DE3883519T2 (de) * 1988-03-08 1994-03-17 Ibm Verfahren und Einrichtung zur Sprachkodierung mit mehreren Datenraten.
US5671327A (en) 1991-10-21 1997-09-23 Kabushiki Kaisha Toshiba Speech encoding apparatus utilizing stored code data
US5797118A (en) * 1994-08-09 1998-08-18 Yamaha Corporation Learning vector quantization and a temporary memory such that the codebook contents are renewed when a first speaker returns
US5781880A (en) 1994-11-21 1998-07-14 Rockwell International Corporation Pitch lag estimation using frequency-domain lowpass filtering of the linear predictive coding (LPC) residual
US5864797A (en) 1995-05-30 1999-01-26 Sanyo Electric Co., Ltd. Pitch-synchronous speech coding by applying multiple analysis to select and align a plurality of types of code vectors
US5751901A (en) * 1996-07-31 1998-05-12 Qualcomm Incorporated Method for searching an excitation codebook in a code excited linear prediction (CELP) coder
JP3134817B2 (ja) * 1997-07-11 2001-02-13 日本電気株式会社 音声符号化復号装置
KR100335611B1 (ko) * 1997-11-20 2002-10-09 삼성전자 주식회사 비트율 조절이 가능한 스테레오 오디오 부호화/복호화 방법 및 장치
AU6725500A (en) 1999-08-23 2001-03-19 Matsushita Electric Industrial Co., Ltd. Voice encoder and voice encoding method
US6604070B1 (en) * 1999-09-22 2003-08-05 Conexant Systems, Inc. System of encoding and decoding speech signals
US7020605B2 (en) * 2000-09-15 2006-03-28 Mindspeed Technologies, Inc. Speech coding system with time-domain noise attenuation
US6856961B2 (en) * 2001-02-13 2005-02-15 Mindspeed Technologies, Inc. Speech coding system with input signal transformation
DE60230856D1 (de) * 2001-07-13 2009-03-05 Panasonic Corp Audiosignaldecodierungseinrichtung und audiosignalcodierungseinrichtung
FR2840070B1 (fr) * 2002-05-23 2005-02-11 Cie Ind De Filtration Et D Equ Procede et dispositif permettant d'effectuer une detection securisee de la pollution de l'eau

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573099A (ja) * 1991-09-17 1993-03-26 Oki Electric Ind Co Ltd コード励振線形予測符号化方式
JPH05249999A (ja) * 1991-10-21 1993-09-28 Toshiba Corp 学習型音声符号化装置
JPH06102900A (ja) * 1992-09-18 1994-04-15 Fujitsu Ltd 音声符号化方式および音声復号化方式
JPH0854900A (ja) * 1994-08-09 1996-02-27 Yamaha Corp ベクトル量子化による符号化復号化方式
JPH08147000A (ja) * 1994-11-18 1996-06-07 Yamaha Corp ベクトル量子化による符号化復号方式
JPH08211895A (ja) * 1994-11-21 1996-08-20 Rockwell Internatl Corp ピッチラグを評価するためのシステムおよび方法、ならびに音声符号化装置および方法
JPH08328595A (ja) * 1995-05-30 1996-12-13 Sanyo Electric Co Ltd 音声符号化装置
JPH10177399A (ja) * 1996-10-18 1998-06-30 Mitsubishi Electric Corp 音声符号化方法、音声復号化方法及び音声符号化復号化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043811A1 (en) * 2005-10-12 2007-04-19 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding audio data and extension data
KR100851972B1 (ko) * 2005-10-12 2008-08-12 삼성전자주식회사 오디오 데이터 및 확장 데이터 부호화/복호화 방법 및 장치
US8055500B2 (en) 2005-10-12 2011-11-08 Samsung Electronics Co., Ltd. Method, medium, and apparatus encoding/decoding audio data with extension data

Also Published As

Publication number Publication date
CN101615396A (zh) 2009-12-30
US7299174B2 (en) 2007-11-20
US7729905B2 (en) 2010-06-01
EP1619664B1 (en) 2012-01-25
US20060173677A1 (en) 2006-08-03
US20080033717A1 (en) 2008-02-07
EP1619664A4 (en) 2010-07-07
CN101615396B (zh) 2012-05-09
KR101000345B1 (ko) 2010-12-13
CA2524243C (en) 2013-02-19
KR20060022236A (ko) 2006-03-09
EP1619664A1 (en) 2006-01-25
CA2524243A1 (en) 2004-11-11
CN100583241C (zh) 2010-01-20
CN1795495A (zh) 2006-06-28

Similar Documents

Publication Publication Date Title
WO2004097796A1 (ja) 音声符号化装置、音声復号化装置及びこれらの方法
EP1768105B1 (en) Speech coding
JP3747492B2 (ja) 音声信号の再生方法及び再生装置
JP4958780B2 (ja) 符号化装置、復号化装置及びこれらの方法
WO2003091989A1 (en) Coding device, decoding device, coding method, and decoding method
JP4445328B2 (ja) 音声・楽音復号化装置および音声・楽音復号化方法
JP2003223189A (ja) 音声符号変換方法及び装置
US20040111257A1 (en) Transcoding apparatus and method between CELP-based codecs using bandwidth extension
JP3144009B2 (ja) 音声符号復号化装置
JP4578145B2 (ja) 音声符号化装置、音声復号化装置及びこれらの方法
JP3888097B2 (ja) ピッチ周期探索範囲設定装置、ピッチ周期探索装置、復号化適応音源ベクトル生成装置、音声符号化装置、音声復号化装置、音声信号送信装置、音声信号受信装置、移動局装置、及び基地局装置
JP2004302259A (ja) 音響信号の階層符号化方法および階層復号化方法
JP4373693B2 (ja) 音響信号の階層符号化方法および階層復号化方法
JP3576485B2 (ja) 固定音源ベクトル生成装置及び音声符号化/復号化装置
JP4287840B2 (ja) 符号化装置
JPH11259098A (ja) 音声符号化/復号化方法
JP2002073097A (ja) Celp型音声符号化装置とcelp型音声復号化装置及び音声符号化方法と音声復号化方法
JP3063087B2 (ja) 音声符号化復号化装置及び音声符号化装置ならびに音声復号化装置
JP2005215502A (ja) 符号化装置、復号化装置、およびこれらの方法
JP3232728B2 (ja) 音声符号化方法
JP3017747B2 (ja) 音声符号化装置
JP2003015699A (ja) 固定音源符号帳並びにそれを用いた音声符号化装置及び音声復号化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2524243

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004730659

Country of ref document: EP

Ref document number: 1219/MUMNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020057020680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004814149X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004730659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057020680

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006173677

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10554619

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554619

Country of ref document: US