WO2005068678A1 - Heat treatment method for aluminum die-cast product - Google Patents

Heat treatment method for aluminum die-cast product Download PDF

Info

Publication number
WO2005068678A1
WO2005068678A1 PCT/JP2005/000355 JP2005000355W WO2005068678A1 WO 2005068678 A1 WO2005068678 A1 WO 2005068678A1 JP 2005000355 W JP2005000355 W JP 2005000355W WO 2005068678 A1 WO2005068678 A1 WO 2005068678A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum die
cast product
cooling
heat treatment
die
Prior art date
Application number
PCT/JP2005/000355
Other languages
French (fr)
Japanese (ja)
Inventor
Jo Asada
Nobuhiro Miyamoto
Original Assignee
Ryobi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd. filed Critical Ryobi Ltd.
Publication of WO2005068678A1 publication Critical patent/WO2005068678A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to a method for heat-treating an aluminum die-cast product, and more particularly to a method for heat-treating an aluminum die-cast product that suppresses the occurrence of heat treatment distortion in T6 treatment.
  • the body frame of the vehicle is a structural material, it is required to have strength and ductility. For this reason, the body frame is made by extruding a 6000 series aluminum alloy, or by pressing a pressed material and an A1-Si-Mg alloy such as AC4CH alloy by rivets or welding. Can be The members constituting the vehicle body frame are generally subjected to the above-described T4 treatment or T6 treatment in order to improve the mechanical properties.
  • the die casting method is suitable for mass-producing components having complicated shapes at low cost.
  • a product formed by the usual die casting method contains a large amount of gas inside, and when the product is heated to a high temperature, a large number of protrusions are generated on the surface of the product due to expansion of the gas, resulting in a defective product. . Therefore, in order to perform the above T4 or T6 treatment, a special die casting method that controls the amount of gas contained in the product is required.
  • a die casting method there are a vacuum die casting method in which the inside of the mold cavity is evacuated and depressurized, and a non-porous die casting method in which the air in the cavity is replaced with oxygen.
  • a body frame using the die casting method has already been put to practical use.
  • Aluminum die cast body frames are often plate-like with a thickness of about 2-3 mm and a length exceeding lm.
  • a design in which ribs are arranged on the body frame is usually used.
  • a body frame is formed by joining an aluminum die-cast product with another member.
  • the dimensional accuracy of the product should be kept within ⁇ 0.5 or less and ⁇ 1.0 Omm or less.
  • Heat treatment distortion varies widely from product to product, and no technology has been established to predict the shape after deformation due to heat treatment distortion. Therefore, in order to satisfy such dimensional accuracy, the aluminum die cast product after the heat treatment is straightened by using a die press or a normal.
  • the solution temperature of the A1-Si-Mg alloy for die casting typified by ADC3 alloy is set at about 500 ° C-540 ° C, which is higher than the melting temperature of the strengthened precipitate MgSi.
  • the yield stress of a material decreases with increasing temperature of the material.
  • the yield stress of aluminum alloys drops significantly above 400 ° C. Therefore, after the solution treatment at a temperature of 500 ° C or higher, the yield stress of the alloy is extremely low, and is permanently set with relatively small stress until the temperature decreases to about 400 ° C during the cooling process by quenching. It is in a state where distortion occurs.
  • the stress that causes permanent set in an aluminum die-cast product is generated by a temperature difference inside the aluminum die-cast product.
  • substances expand with increasing temperature . Therefore, if there is a portion having a different temperature in the material, a difference occurs in the amount of expansion, and this causes an internal stress. When the internal stress exceeds the yield stress, permanent distortion occurs in the material. Permanent strain occurs in the high temperature part where the yield stress is lower.
  • the temperature difference inside the aluminum die cast product during the quenching process there are several causes for the temperature difference inside the aluminum die cast product during the quenching process.
  • One major cause is, for example, that the thickness of the product varies from location to location.
  • the product is provided with the ribs and the like, and the cooling is delayed as the ribs and the like are provided. As the cooling rate increases and the quenching process increases, the temperature difference increases, and heat treatment distortion, which is permanent distortion, occurs.
  • cooling water used for quenching Another major cause is the boiling phenomenon of cooling water used for quenching.
  • hot water of about 60 ° C is used as cooling water for quenching aluminum-palladium die-cast products.
  • heat of vaporization for boiling is supplied from the high-temperature die-cast product to the hot water.
  • a portion of the hot water in contact with the product is heated and boiled.
  • the partial heat of the die cast product that supplied the heat of vaporization is taken away.
  • boiling does not occur uniformly in the entire hot water in contact with the product surface, the degree of cooling differs depending on the location, which causes a temperature distribution in the product.
  • film boiling refers to boiling when a relatively hot substance comes into contact with water and the entire surface of the substance undergoes a transformation from water to water vapor.
  • Nucleate boiling refers to boiling that occurs when a relatively low-temperature substance comes into contact with water, and nucleates at protruding parts such as dust adhering to the substance surface and corners provided on the substance surface.
  • nucleate boiling occurs selectively at the tips of protruding parts such as ribs provided on the product, so this part is cooled particularly strongly, causing a temperature difference inside the product and causing permanent distortion. Appreciable heat treatment distortion occurs.
  • heat treatment distortion occurs after heat treatment in order to satisfy the desired dimensional accuracy.
  • Aluminum die-casting products are corrected using a die press or a hammer. Correction after heat treatment is a factor that increases the manufacturing cost of products, and correction may not be possible in some cases. Therefore, heat treatment methods that minimize the occurrence of heat treatment distortion have been devised.
  • One of them is a method using a glycol-based organic synthetic polymer as a quenching agent. This quenching agent dissolves uniformly in water at room temperature, but becomes insoluble above the cloud point and separates hydraulically.
  • this aqueous solution is used as a cooling medium for quenching
  • a high-temperature aluminum die-cast product enters the solution
  • the solution in contact with the product surface locally exceeds the cloud point.
  • a film-like polymer compound is formed.
  • This polymer in the form of a film protects the entire product from quenching water as a cooling medium for quenching and prevents excessive cooling by nucleate boiling.
  • the temperature of the solution in contact with the product surface falls below the cloud point over time, the high molecular compound is re-dissolved and the product is rapidly cooled.
  • the cloud point is adjusted to about 80 ° C.
  • quenching is performed by forced air cooling from both surfaces or one surface of an aluminum alloy sheet product using a gas or a gas-liquid mixture. There is a way. Since quenching by gas does not cause a boiling phenomenon, it is possible to suppress the occurrence of heat treatment distortion, which tends to cause a temperature distribution inside the product.
  • Patent Document 1 Japanese Patent Publication No. 2003-517100 (page 8 to page 22, FIG. 3)
  • an object of the present invention is to provide a heat treatment method for an aluminum die-cast product that does not require a large-scale facility, is excellent in mass productivity, and can produce a die-cast product satisfying desired dimensional accuracy and strength.
  • the present invention provides a solution treatment step in which an aluminum die-cast product is subjected to a solution treatment, and a method in which the aluminum die-cast product undergoes a boiling phenomenon by using a cooling means after the solution treatment step.
  • An object of the present invention is to provide a method of heat treating an aluminum die-cast product having a quenching step and an artificial aging step of artificially aging the aluminum die-cast product after the quenching step.
  • the cooling means used in the cooling step is a liquid bath containing a liquid mixture of lead-bismuth, and in the cooling step, cooling may be performed by immersing the aluminum die-cast product in the liquid bath.
  • cooling may be performed by immersing the aluminum die-cast product in the liquid bath.
  • the cooling means used in the cooling step is an intermediate furnace, and the intermediate furnace is a fluidized bed furnace using alumina powder as a medium.
  • the aluminum die-cast product is placed in the fluidized bed furnace. Is preferably maintained for a predetermined period of time for cooling.
  • the temperature of the aluminum die-cast product is reduced by using a cooling means after the solution treatment step so that the aluminum die-cast product does not cause a boiling phenomenon. Since a cooling step of cooling to 450 ° C or less is performed, heat treatment distortion can be suppressed to ⁇ 0.5 or less and ⁇ 1.0 Omm or less, and a die-cast product having high dimensional accuracy can be manufactured. Also, by quenching within 120 seconds after the solution treatment step, it is possible to obtain the mechanical properties required for the body frame and the like. Therefore, an aluminum die-cast product can be used for a vehicle body frame or the like that requires high dimensional accuracy and mechanical characteristics.
  • the cooling means used in the cooling step is a liquid bath containing a liquid mixture of lead-bismuth, and in the cooling step, the aluminum bath is added to the liquid bath. Cooling is performed by immersing the product, so that a large number of die-cast products can be heat-treated at once, and the heat treatment method for aluminum die-cast products is as powerful as a continuous furnace. Mass production can be increased without the need for equipment.
  • the displacement amount of the aluminum die-cast product after heat treatment that is, the amount of heat treatment distortion
  • the cooling means used in the cooling step is an intermediate furnace, and the intermediate furnace is a fluidized bed furnace using alumina powder as a medium.
  • the aluminum die-cast products were cooled in a fluidized bed furnace by holding them for a predetermined time. Mass production can be improved without requiring large and powerful equipment such as a continuous furnace.
  • the amount of displacement of the aluminum die-cast product after the heat treatment that is, the amount of the distortion of the heat treatment.
  • the amount of the distortion of the heat treatment can be set to a very low value of ⁇ 0.5 mm or less, and very high dimensional accuracy can be obtained. Therefore, aluminum die-cast products can be mass-produced without performing a process for correcting heat treatment distortion.
  • FIG. 1 is a graph showing the relationship between the temperature of an aluminum die-cast product during quenching and the amount of displacement of the aluminum die-cast product.
  • FIG. 2 A graph showing the relationship between the quenching delay time and the hardness after aging treatment of an aluminum die-cast product that also has A1-Si-Mg alloy strength.
  • FIG. 3 is a schematic diagram showing a method for heat-treating an aluminum die-cast product according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the relationship between elapsed time and temperature in a method for heat-treating an aluminum die-cast product according to the first embodiment, which was performed to manufacture the material 1 of the present invention.
  • FIG. 5 is a schematic diagram showing a relationship between elapsed time and temperature in a heat treatment method for an aluminum die-cast product performed to manufacture comparative materials 1 and 2.
  • FIG. 6 shows a method for heat-treating an aluminum die-cast product according to the first embodiment of the present invention.
  • FIG. 3 is a front view showing the shapes and dimensions of the present invention material 1, comparative material 1, and comparative material 2 used in a tensile test for testing the effect.
  • FIG. 7 is a schematic view showing a heat treatment method for an aluminum die-cast product according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the relationship between elapsed time and temperature in a method of heat-treating an aluminum die-cast product according to a second embodiment for manufacturing the material 2 of the present invention.
  • FIG. 9 is a schematic diagram showing the relationship between elapsed time and temperature in a method of heat-treating an aluminum die-cast product performed to manufacture comparative material 3.
  • FIG. 10 is a schematic view showing a heat treatment method for an aluminum die-cast product according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the relationship between elapsed time and temperature in a method for heat-treating an aluminum die-cast product according to a third embodiment, which was performed to manufacture the inventive material 4 and the inventive material 6.
  • FIG. 12 is a schematic diagram showing the relationship between elapsed time and temperature in a method of heat-treating an aluminum die-cast product performed to manufacture comparative material 4.
  • the heat treatment method for an aluminum die-cast product according to the first to third embodiments described below is a heat treatment method applied to an aluminum die-cast product manufactured by a die casting method using an aluminum alloy. Yes, they are performed in the order of solution treatment step, cooling step, quenching step, artificial aging step and force.
  • a large number of aluminum die-cast products are maintained at a temperature of 500 ° C-550 ° C for several hours. Heat to form a solution.
  • the temperature of the aluminum die-cast product is cooled to 450 ° C or less using a cooling device after the solution treatment process is completed.
  • the cooling device used is an intermediate furnace provided with a stirrer capable of keeping the inside at an atmosphere at a predetermined intermediate temperature for a predetermined period of time and mounting a large number of die-cast products inside.
  • the A large number of die-casting products are held in a force in the intermediate furnace for a predetermined period of time, so that the 500-540 ° C force, which is the temperature at which the solution is solidified, is cooled to 450 ° C or less.
  • the cooling device corresponds to a cooling means.
  • a number of aluminum die-cast products that have undergone the cooling step are quenched by immersing them in warm water at a predetermined temperature within 120 seconds after the solution treatment step is completed.
  • a number of aluminum die-cast products that have undergone the quenching process are subjected to artificial aging by holding them in an aging furnace for a predetermined time. The inside of the aging furnace is maintained at a predetermined temperature between 100 ° C and 200 ° C.
  • the temperature of the aluminum die-cast product was cooled to 450 ° C or lower using a force cooling device, and an intermediate furnace was used as a cooling device.
  • Die-cast products can be cooled at the same time without boiling. For this reason, it is possible to produce a die-cast product having high strength and high dimensional accuracy with a heat treatment distortion of ⁇ 1.0 Omm or less with excellent mass productivity.
  • a large-scale facility such as a continuous furnace is not required for performing a heat treatment method for an aluminum die-cast product, which is advantageous in terms of capital investment and installation area.
  • Cooling the temperature of the aluminum die-cast product to 450 ° C or less within 120 seconds after the completion of the solution casting process can also be achieved by natural air cooling.
  • the solution treatment if a large amount of die-cast products are allowed to cool outside the solution furnace by batch processing, the temperature difference between the product that first came out of the solution furnace and the product that came out of the solution furnace later. Therefore, the variation in mechanical properties after heat treatment increases.
  • the intermediate furnace since the intermediate furnace is used, it is possible to prevent such variation from increasing.
  • the grounds for cooling the aluminum die-cast product to 450 ° C or lower and quenching within 120 seconds after the solution treatment step is completed will be described.
  • the solution temperature of the A1-Si-Mg-based alloy for die casting represented by the ADC3 alloy is 500 ° C to 540 ° C. If the aluminum die-cast product is quenched as it is at such a high temperature, the high-temperature aluminum alloy has a remarkably low yield stress, and is likely to cause permanent heat treatment distortion. On the other hand, if the temperature of the aluminum die-cast product at the time of quenching is low, the generated distortion is small. [0034] As shown in Fig.
  • the average value and the variation of the displacement amount due to the heat treatment distortion decrease as the quenching temperature, that is, the temperature of the aluminum die-cast product at the start of quenching decreases.
  • the quenching temperature that is, the temperature of the aluminum die-cast product at the start of quenching decreases.
  • the displacement of all products at each quenching temperature is 1.Omm or less when the quenching temperature force is 50 ° C or less.
  • the displacement of all products becomes 0.5 mm or less when the quenching temperature is 350 ° C or less. Therefore, when high dimensional accuracy is required as in the case of a vehicle body frame, it is necessary to reduce the quenching temperature to 50 ° C or less (preferably 350 ° C or less).
  • the quenching delay time must be within 120 seconds in order for the hardness to be 75 to 80. From the above, in order to manufacture an aluminum die cast product that can be used as a body frame, etc., after the product solution treatment process is completed, the temperature of the aluminum die cast product is cooled to 450 ° C or less, and the solution process is performed. It can be seen that it is necessary to quench the aluminum die-cast product within 120 seconds after.
  • an aluminum alloy having the same composition as the material 1 of the present invention was used to produce an aluminum die-cast product having the same shape as the material 1 of the present invention, and the aluminum die-cast product according to the first embodiment was manufactured.
  • a heat treatment method different from the heat treatment method was used.
  • the difference between the heat treatment method and the heat treatment method for an aluminum die-cast product according to the first embodiment is that (1) a quenching step is performed without performing a cooling step after a solution treatment step; (2) After the quenching process, only the artificial aging process at 130 ° C for 3 hours was performed in the aging furnace, as shown in Fig. 5.
  • an aluminum alloy having the same composition as the material 1 of the present invention was used to produce an aluminum die-cast product having the same shape as the material 1 of the present invention, and the aluminum-die-cast product of the first embodiment was manufactured.
  • a heat treatment method different from the heat treatment method was used. Heat treatment method for aluminum die cast product according to the first embodiment in heat treatment method and The difference is that (1) the quenching step was performed without performing the cooling step after the solution treatment step, and (2) the artificial aging step at 130 ° C for 3 hours in an aging furnace after the quenching step.
  • the comparative material 1 and the comparative material 2 have a maximum displacement of 2-3 mm.
  • the displacement was suppressed to 1. Omm or less, which indicates that high dimensional accuracy was obtained.
  • the tensile test was performed using an Instron type testing machine by cutting a test piece from the above three types of heat-treated materials into a shape shown in Fig. 6 with a thickness of 2.5 ⁇ 0.1mm. This was performed using The unit of the dimension shown in Fig. 6 is "mm (millimeter)". The strain rate was measured at room temperature at 5 mmZ min. The test results are as shown in Table 3, and the numerical values of the test results are the values obtained by measuring three types of the present invention material 1, comparative material 1, and comparative material 2, each of which is a total of 15 measurements. , The average value for each type.
  • the material 1 of the present invention has mechanical properties required for a vehicle body frame and the like in any of tensile strength, 0.2% strength, and elongation at break. RU
  • the heat treatment method for an aluminum die-cast product according to the second embodiment uses a liquid bath containing a lead-bismuth (Pb-Bi) synthetic liquid without using an intermediate furnace as a cooling device used in the cooling step.
  • the only difference from the heat treatment method for an aluminum die-cast product according to the first embodiment is that cooling is performed by immersing the aluminum die-cast product in the liquid bath. Except for this, it is the same as the heat treatment method for an aluminum die-cast product according to the first embodiment.
  • a test was conducted to test the effect of the heat treatment method for an aluminum die-cast product according to the second embodiment.
  • the displacement amount was measured and the tensile test was performed using two materials of the present invention material 2 and the comparative material 3 and a total of ten pieces each having five pieces.
  • the material 2 of the present invention an aluminum alloy having the same composition as that of the material 1 of the present invention was used to produce an aluminum die-cast product having a general thickness of 2.5 mm, a width of 160 mm, and a length of 240 mm. A die-cast product that had been subjected to a heat treatment method was used.
  • an aluminum alloy having the same composition as the material 2 of the present invention was used to produce an aluminum die-cast product having the same shape as the material 2 of the present invention, and the aluminum die-cast product according to the second embodiment was manufactured.
  • a heat treatment method different from the heat treatment method was used. The only difference between the heat treatment method and the heat treatment method for aluminum die-cast products according to the second embodiment is that the quenching step was performed without performing the cooling step after the solution treatment step. As shown.
  • test pieces cut out from the above two types of heat-treated materials in the same shape as the test pieces used in the tensile test in the first embodiment were used.
  • the test was performed using an Instron type testing machine in the same manner as in the tensile test.
  • the strain rate was measured at room temperature at 5 mmZmin.
  • the test results are as shown in Table 5, and the numerical values of the test results are the average of the values obtained by measuring two samples of the present invention material 2 and comparative material 3, five of each, and a total of ten measurements. Value.
  • the material 2 of the present invention exhibited any of tensile strength, 0.2% power resistance, and elongation at break. In addition, it has the mechanical properties required for the body frame and the like.
  • the heat treatment method for an aluminum die-cast product according to the third embodiment uses a fluidized-bed furnace using alumina powder as a medium as an intermediate furnace of a cooling device used in a cooling process, and in the cooling process, the aluminum die-cast product is placed in the fluidized-bed furnace. Only the point that cooling is performed by holding the aluminum die for a predetermined time is different from the heat treatment method for an aluminum die-cast product according to the first embodiment. Except for this, the method is the same as the heat treatment method for the aluminum die-cast product according to the first embodiment.
  • a fluidized bed furnace is a method in which a metal container (retort) is filled with a fluidized heating medium such as alumina powder, and a dispersion plate force gas placed below the retort is blown into the metal container to heat the metal container.
  • a heat treatment furnace that heats non-heat treated material with a fluidized bed in which the fluid expands and fluidizes, and the force acts like a liquid.
  • a large-scale facility such as a continuous furnace is not required for performing a heat treatment method of an aluminum die-cast product, which is advantageous in terms of capital investment and installation area.
  • a heat treatment method for an aluminum die-cast product can be performed at low cost.
  • the displacement amount was measured and the tensile test was performed using 25 specimens of 5 specimens each of 5 specimens of the present invention 3, 4 present invention, 5 present invention, 6 present invention, and 4 comparative materials.
  • the displacement was measured using the inventive material 3 and the comparative material 4, and the tensile test was performed using the inventive material 4, the inventive material 5, the inventive material 6, and the comparative material 4.
  • the material 3 of the present invention five disk-shaped products each having a thickness of 2 mm and a diameter of 150 mm made of a rolled plate of 6061 alloy were prepared, and were arranged in parallel at 10 mm intervals.
  • thermo treatment method of an aluminum die-cast product according to the third embodiment ie, a solution treatment step, a cooling step and a quenching step of the heat treatment method of an aluminum die-cast product according to the third embodiment.
  • a heat treatment method for performing the above was used.
  • the reason why the artificial aging process is not performed on the material 3 of the present invention is that the material 3 of the present invention is used only for a test for measuring the amount of displacement, and is not used for a test for examining mechanical properties such as a tensile test.
  • the presence or absence of the artificial aging process has almost no effect on the displacement of aluminum die-cast products.
  • the inventive material 3 is not an aluminum die-cast product, in the displacement measurement test, the displacement is almost the same regardless of whether a rolled plate of 6061 alloy or an aluminum die-cast product is used. Therefore, inexpensive rolled 6061 alloy plates were used instead of aluminum die-cast products.
  • the material 4 of the present invention and the material 6 of the present invention are made of an aluminum alloy having the same composition as the material 1 of the present invention, and are formed of a substantially rectangular flat aluminum die-cast having a thickness of 3 mm, a width of 100 mm and a length of 300 mm. Cut the manufactured product by 10 mm in the length direction, cut out 15 pieces each for 5 of the present invention, 5 for the present invention, and 5 for the 6 present invention.
  • the heat treatment method for the aluminum die-cast product according to the third embodiment was used.
  • the heat treatment method of the aluminum die-cast product performed to manufacture the inventive material 3—the present invention 6 is described in more detail with reference to FIGS.
  • a fluidized bed furnace as an intermediate furnace, which is a cooling device maintained at an ambient temperature of 250 ° C, and hold it for 7 seconds in it.
  • the retort size of the fluidized bed furnace is 250 mm in diameter and 300 mm in depth.
  • the retort was filled with 150 kg of alumina powder.
  • the particle size of the aluminum powder is # 150.
  • the gas blown from the dispersing plate flowed at 86 L (liter) Zmin as the atmosphere.
  • the product was also taken out of the fluidized bed furnace and quenched by quenching in hot water at 60 ° C. The process was performed. The temperature of the product immediately before quenching in warm water was 350 ° C. After the quenching process, an artificial aging process was performed in an aging furnace at 140 ° C for 3 hours.
  • the above is the heat treatment method performed when manufacturing the material 4 of the present invention.
  • the inventive material 5 and the inventive material 6 differ from the inventive material 4 only in that the aging furnace temperature in the artificial aging process is 160 ° C and 180 ° C, respectively. Identical.
  • the heat treatment method performed to manufacture the material 3 of the present invention does not include an artificial aging step! Only the point ⁇ differs from the heat treatment method performed to produce the material 4 of the present invention.
  • the comparative material 4 an aluminum alloy having the same composition as the material 4 of the present invention 4 and the material 6 of the present invention was used.
  • the difference between the heat treatment method and the heat treatment method for an aluminum die-cast product according to the third embodiment is that (1) a quenching step is performed without a cooling step after a solution treatment step, and (2) ) After the quenching process, only the artificial aging process at 130 ° C for 3 hours was performed in the aging furnace, as shown in Fig. 12.
  • the average value of the displacement amount of the comparative material 4 was 5.52 mm.
  • the average value of the displacement amount was as small as 0.20 mm, and it was found that an extremely high dimensional accuracy was obtained.
  • the tensile test was performed using the same four types of heat-treated materials of the present invention material 4, the present invention material 5, the present invention material 6, and the comparative material 4 as the test pieces used in the tensile test in the first embodiment. Using a test piece cut out in a shape, the test was performed using an Instron type testing machine in the same manner as in the tensile test in the first embodiment. The strain rate was measured at 5 mmZmin at room temperature.
  • test results are as shown in Table 7, and the numerical values of the test results were measured for four types of the present invention material 4, the present invention material 5, the present invention material 6, and the comparative material 4, a total of 20 for each of 5 types. This is the average of the values for each type.
  • the materials of the present invention 4 and the present invention 6 have different tensile strengths, 0.2% resistance to fracture, and elongation at break, which are required for the vehicle body frame and the like. With the characteristic nature.
  • the method of heat-treating an aluminum die-cast product according to the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made within the scope described in the claims.
  • an intermediate furnace, a fluidized-bed furnace, or a liquid bath containing a lead-bismuth alloy liquid is used as a cooling device.
  • a cooling device that performs cooling using steam as a medium may be used.
  • the heat treatment method for an aluminum die-cast product of the present invention is extremely useful particularly in the field of heat treatment for performing T6 treatment on an aluminum die-cast product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

In a heat treatment method for an aluminum die-cast product, a solution treatment process, a cooling process, a quenching process, and an aging process are performed, in that order. In the solution treatment process, a large number of aluminum die-cast products are subjected to a solution treatment. In the cooling process, the temperature of the aluminum products is cooled to below 450°C after the solution treatment process by using an intermediate furnace. In the quenching process, the aluminum die-cast products are quenched within 120 seconds after the solution treatment process. In the aging process, an artificial aging treatment is applied to the large number of the aluminum die-cast products came out through the quenching process. The heat treatment process described above for an aluminum die-cast product does not require large-scale facilities and is capable of producing die-cast products excellent in mass-productivity and capable of achieving high dimensional accuracy and strength.

Description

明 細 書  Specification
アルミニウムダイカスト製品の熱処理方法  Heat treatment method for aluminum die cast products
技術分野  Technical field
[0001] 本発明はアルミニウムダイカスト製品の熱処理方法に関し、特に、 T6処理における 熱処理歪みの発生を抑えるアルミニウムダイカスト製品の熱処理方法に関する。 背景技術  The present invention relates to a method for heat-treating an aluminum die-cast product, and more particularly to a method for heat-treating an aluminum die-cast product that suppresses the occurrence of heat treatment distortion in T6 treatment. Background art
[0002] 近年、車等の輸送手段の軽量化を目的として、従来は鋼材で作られて!/ヽた車体フ レームのアルミニウム合金への置き換えが進んで 、る。アルミニウム合金を大別する と、展伸材用合金と铸物用合金とに分かれるが、アルミニウム合金の特性に基づき大 別すれば、非熱処理型合金と熱処理型合金とに分けることができる。熱処理型合金 とは時効硬化性合金のことをいい、時効硬化性合金には、固溶限以上の温度でカロ 熱処理後急冷して均質状態を常温に持ち込む処理、即ち焼入れ処理を行った後、 常温にて放置して自然時効によって硬化するもの (T4処理)と、焼入れ処理を行った 後に、 100°C— 200°Cの適当な温度で適当時間焼戻しして高い硬さを得るもの (T6 処理)とがある。  [0002] In recent years, in order to reduce the weight of transportation means such as cars, the replacement of body frames conventionally made of steel materials with aluminum alloys has been progressing. When aluminum alloys are roughly classified, they are divided into wrought alloys and metal alloys. However, if they are roughly classified based on the properties of aluminum alloys, they can be classified into non-heat-treated alloys and heat-treated alloys. Heat-treatable alloys are age-hardenable alloys.Aging-hardenable alloys are heat treated at a temperature above the solid solubility limit and then quenched to bring the homogeneous state to room temperature. One that is left to stand at room temperature to cure by natural aging (T4 treatment), and one that obtains high hardness by quenching and then tempering at an appropriate temperature of 100 ° C-200 ° C for an appropriate time (T6 Processing).
[0003] 輸送手段の車体フレームは構造材料であるため強度と延性が要求される。このた め、車体フレームは、 6000系アルミニウム合金の押し出し型材や、プレス材と AC4C H合金に代表される A1— Si— Mg系合金の铸物をリベットや溶接で接合することによつ て作られる。車体フレームを構成する部材は、機械的性質を改善するために、上述 の T4処理あるいは T6処理が施されるのが一般的である。  [0003] Since the body frame of the vehicle is a structural material, it is required to have strength and ductility. For this reason, the body frame is made by extruding a 6000 series aluminum alloy, or by pressing a pressed material and an A1-Si-Mg alloy such as AC4CH alloy by rivets or welding. Can be The members constituting the vehicle body frame are generally subjected to the above-described T4 treatment or T6 treatment in order to improve the mechanical properties.
[0004] 一方、ダイカスト法は、複雑な形状の部品を安価に大量生産するのに適している。  [0004] On the other hand, the die casting method is suitable for mass-producing components having complicated shapes at low cost.
このため、上述のように押し出し型材や、プレス材ゃ、铸物を互いに接合することによ り製造されていた車体フレームを、ダイカスト法により一体成形することにより、接合に 力かっていた費用も含めて大幅にコストを低減することができる。ダイカスト法におい ては、 ADC3に代表される A1— Si— Mg系の合金が利用されるのが一般的である。こ れらの合金は、 AC4CH合金と同様に T4処理あるいは T6処理を施すことによって、 はじめて車体フレームに要求される機械的性質を満足するようになる。 [0005] 通常のダイカスト法により成形された製品は内部に多量のガスを含有しており、製 品を高温に加熱すると、ガスの膨張によって製品の表面に多数の突起が生じて不良 品となる。このため、上述した T4処理あるいは T6処理を施すためには、製品内部に 含有されるガス量を抑制する特殊なダイカスト法が必要である。このようなダイカスト 法としては、金型のキヤビティ内を排気減圧する真空ダイカスト法や、キヤビティの空 気を酸素に置換する無孔性ダイカスト法がある。 For this reason, the above-mentioned extruded die, and the body frame, which had been manufactured by bonding the pressed materials ゃ and 铸 to each other, were integrally molded by the die casting method. Thus, the cost can be significantly reduced. In the die casting method, an A1-Si-Mg alloy represented by ADC3 is generally used. These alloys, when subjected to T4 or T6 treatment in the same manner as AC4CH alloy, can satisfy the mechanical properties required for the body frame for the first time. [0005] A product formed by the usual die casting method contains a large amount of gas inside, and when the product is heated to a high temperature, a large number of protrusions are generated on the surface of the product due to expansion of the gas, resulting in a defective product. . Therefore, in order to perform the above T4 or T6 treatment, a special die casting method that controls the amount of gas contained in the product is required. As such a die casting method, there are a vacuum die casting method in which the inside of the mold cavity is evacuated and depressurized, and a non-porous die casting method in which the air in the cavity is replaced with oxygen.
[0006] ダイカスト法を利用した車体フレームは既に実用化されている。アルミニウムダイ力 スト製の車体フレームは、厚さが 2— 3mm程度で長さが lmを越える板状のものが多 い。また、車体フレームに剛性を持たせるため、車体フレームにリブを配置したデザィ ンとするのが普通である。このような薄肉大面積の板状の製品を溶体ィ匕し焼入れ処 理すると、強度の高い製品を得られる反面、大きな熱処理歪みを生ずる。  [0006] A body frame using the die casting method has already been put to practical use. Aluminum die cast body frames are often plate-like with a thickness of about 2-3 mm and a length exceeding lm. In addition, in order to make the body frame rigid, a design in which ribs are arranged on the body frame is usually used. When such a thin, large-area plate-shaped product is subjected to solution quenching and quenching, a product having high strength can be obtained, but large heat treatment distortion occurs.
[0007] アルミニウムダイカスト製品を他の部材と接合することにより車体フレームを構成す る。しかし、このように車体フレームの接合を行うためは、製品の寸法精度は ±0. 5以 下一 ± 1. Omm以下に抑えられるべきである。熱処理歪みは製品ごとにばらつきが 大きぐ熱処理歪みによる変形が生じた後の形状を予測する技術は確立されていな い。このため、このような寸法精度を満足するために、熱処理後のアルミニウムダイ力 スト製品は、金型プレスやノヽンマーを用いて矯正される。  [0007] A body frame is formed by joining an aluminum die-cast product with another member. However, in order to join the body frame in this way, the dimensional accuracy of the product should be kept within ± 0.5 or less and ± 1.0 Omm or less. Heat treatment distortion varies widely from product to product, and no technology has been established to predict the shape after deformation due to heat treatment distortion. Therefore, in order to satisfy such dimensional accuracy, the aluminum die cast product after the heat treatment is straightened by using a die press or a normal.
[0008] ここで、熱処理歪みの発生のメカニズムにつ 、て説明する。溶体化処理及び焼入 れ処理を行う熱処理方法にお 、て発生する歪みの大半は、焼入れの冷却過程で生 ずる。 ADC3合金に代表されるダイカスト用 A1— Si— Mg系合金の溶体ィ匕温度は、強 化析出物である Mg Siの溶解温度以上の温度である 500°C— 540°C程度に設定さ  [0008] Here, the mechanism of occurrence of heat treatment distortion will be described. In the heat treatment method of performing the solution treatment and the quenching treatment, most of the strain generated in the cooling process of quenching. The solution temperature of the A1-Si-Mg alloy for die casting typified by ADC3 alloy is set at about 500 ° C-540 ° C, which is higher than the melting temperature of the strengthened precipitate MgSi.
2  2
れる。一般に、物質の降伏応力は物質の温度の上昇とともに低下する。アルミニウム 合金の降伏応力は 400°C以上では極端に低下する。従って、 500°C以上の温度で 溶体化処理した後、焼入れ処理による冷却過程で 400°C程度に低下するまでの間 は、合金の降伏応力はきわめて低ぐ比較的小さな応力で永久歪みたる熱処理歪み を生じる状態にある。  It is. Generally, the yield stress of a material decreases with increasing temperature of the material. The yield stress of aluminum alloys drops significantly above 400 ° C. Therefore, after the solution treatment at a temperature of 500 ° C or higher, the yield stress of the alloy is extremely low, and is permanently set with relatively small stress until the temperature decreases to about 400 ° C during the cooling process by quenching. It is in a state where distortion occurs.
[0009] アルミニウムダイカスト製品に永久歪みを生じさせる応力は、アルミニウムダイカスト 製品内部の温度差によって発生する。一般的に物質は温度の上昇とともに膨張する 。したがって、物質内に温度の異なる部分があると膨張量に差が生じ、このことによつ て内部応力が発生する。内部応力が降伏応力を上回ったとき物質に永久歪みが発 生する。永久歪みが発生するのは、より降伏応力の低い高温の部分である。 [0009] The stress that causes permanent set in an aluminum die-cast product is generated by a temperature difference inside the aluminum die-cast product. In general, substances expand with increasing temperature . Therefore, if there is a portion having a different temperature in the material, a difference occurs in the amount of expansion, and this causes an internal stress. When the internal stress exceeds the yield stress, permanent distortion occurs in the material. Permanent strain occurs in the high temperature part where the yield stress is lower.
[0010] アルミニウムダイカスト製品の焼入れ処理中に製品内部に温度差が生じるのにはい くつかの原因がある。一つの大きな原因としては、例えば、製品の肉厚が場所によつ て異なることである。前述のように製品にはリブ等が設けられており、リブ等が設けら れた肉厚の厚 、部分ほど冷却が遅れる。冷却速度の速 、焼入れ処理ほどその温度 差は大きくなり、永久歪みたる熱処理歪みが発生する。  [0010] There are several causes for the temperature difference inside the aluminum die cast product during the quenching process. One major cause is, for example, that the thickness of the product varies from location to location. As described above, the product is provided with the ribs and the like, and the cooling is delayed as the ribs and the like are provided. As the cooling rate increases and the quenching process increases, the temperature difference increases, and heat treatment distortion, which is permanent distortion, occurs.
[0011] もう一つの大きな原因は焼入れ処理に用いられる冷却水の沸騰現象である。アルミ -ゥムダイカスト製品の焼入れ処理には、 60°C程度の温水が冷却水として用いられ るのが一般的である。焼入れ処理で高温のアルミニウムダイカスト製品が冷却水に浸 漬させられると、沸騰を起こすための気化熱が高温のダイカスト製品から温水へと供 給される。このことにより製品に接する温水の部分が熱せられて沸騰する。この際、気 化熱を供給したダイカスト製品の部分力 熱が奪われる。  [0011] Another major cause is the boiling phenomenon of cooling water used for quenching. In general, hot water of about 60 ° C is used as cooling water for quenching aluminum-palladium die-cast products. When a high-temperature aluminum die-cast product is immersed in cooling water during the quenching process, heat of vaporization for boiling is supplied from the high-temperature die-cast product to the hot water. As a result, a portion of the hot water in contact with the product is heated and boiled. At this time, the partial heat of the die cast product that supplied the heat of vaporization is taken away.
[0012] 沸騰は、製品表面に接する温水全体に均一に起こらないため、場所によって冷却 の度合いが異なり、これが製品内に温度分布を生じさせる原因となる。沸騰には膜沸 騰と核沸騰との 2種類がある。膜沸騰は、比較的高温の物質が水に接したとき、物質 の表面全体で水力も水蒸気への変態が起こることによる沸騰をいう。核沸騰は、比較 的低温の物質が水に接したときに起こる沸騰をいい、物質表面に付着した塵や物質 表面に設けられた角部等の突出した部分において核発生する。アルミニウムダイカス ト製品の焼入れでは、製品に設けられたリブなどの突出した部分の先端で選択的に 核沸騰が起こるため、この部分が特に強く冷却され、製品内に温度差を生じ、永久歪 みたる熱処理歪みが発生する。  [0012] Because boiling does not occur uniformly in the entire hot water in contact with the product surface, the degree of cooling differs depending on the location, which causes a temperature distribution in the product. There are two types of boiling, film boiling and nucleate boiling. Film boiling refers to boiling when a relatively hot substance comes into contact with water and the entire surface of the substance undergoes a transformation from water to water vapor. Nucleate boiling refers to boiling that occurs when a relatively low-temperature substance comes into contact with water, and nucleates at protruding parts such as dust adhering to the substance surface and corners provided on the substance surface. In quenching aluminum die cast products, nucleate boiling occurs selectively at the tips of protruding parts such as ribs provided on the product, so this part is cooled particularly strongly, causing a temperature difference inside the product and causing permanent distortion. Appreciable heat treatment distortion occurs.
[0013] 前述のように、所望の寸法精度を満足するために熱処理後に熱処理歪みの発生し て!、るアルミニウムダイカスト製品は、金型プレスやハンマーを用いて矯正して 、たが 、このような熱処理後の矯正は、製品の製造コストを増加する要因となり、また、矯正 が不可能な場合もあるため、熱処理歪みの発生をできるだけ抑える熱処理方法が考 案されている。 [0014] そのひとつがグリコール系の有機合成高分子を焼入剤として用いる方法である。こ の焼入剤は常温の水に均一に溶解するが、曇点を超えると不溶性となり水力 分離 する。この水溶液を、焼入れを行うための冷却媒体として用いた場合には、高温のァ ルミ-ゥムダイカスト製品が溶液に入ったときに、製品表面に接する溶液が局所的に 曇点を越えるため、製品表面に膜状の高分子化合物が形成される。この膜状の高分 子化合物が、製品全体を焼入れの冷却媒体たる焼入れ水から保護して、核沸騰によ る過度の冷却を阻止する。その後、時間が経過して製品表面に接する溶液の温度が 曇点以下に下がると、高分子化合物は再溶解して製品を急冷させる。曇点は約 80 °Cになるように調整される。 [0013] As described above, heat treatment distortion occurs after heat treatment in order to satisfy the desired dimensional accuracy. Aluminum die-casting products are corrected using a die press or a hammer. Correction after heat treatment is a factor that increases the manufacturing cost of products, and correction may not be possible in some cases. Therefore, heat treatment methods that minimize the occurrence of heat treatment distortion have been devised. [0014] One of them is a method using a glycol-based organic synthetic polymer as a quenching agent. This quenching agent dissolves uniformly in water at room temperature, but becomes insoluble above the cloud point and separates hydraulically. When this aqueous solution is used as a cooling medium for quenching, when a high-temperature aluminum die-cast product enters the solution, the solution in contact with the product surface locally exceeds the cloud point. Thus, a film-like polymer compound is formed. This polymer in the form of a film protects the entire product from quenching water as a cooling medium for quenching and prevents excessive cooling by nucleate boiling. Thereafter, when the temperature of the solution in contact with the product surface falls below the cloud point over time, the high molecular compound is re-dissolved and the product is rapidly cooled. The cloud point is adjusted to about 80 ° C.
[0015] しかし、このような焼入剤の使用は歪みを低減するが、処理後に洗浄工程を必要と し、また、廃材の処理が必要となる。  [0015] However, the use of such a quenching agent reduces distortion, but requires a cleaning step after the treatment, and also requires disposal of waste material.
[0016] その他の方法としては、特表 2003— 517100号公報に記載されているような、気体 あるいは気液混合物を利用して、アルミニウム合金板製品の両面又は片面から強制 空冷することにより焼入れする方法がある。気体による焼入れは沸騰現象を生じさせ ないため、製品内部の温度分布が生じにくぐ熱処理歪みの発生を抑えることができ る。  [0016] As another method, as described in JP-T-2003-517100, quenching is performed by forced air cooling from both surfaces or one surface of an aluminum alloy sheet product using a gas or a gas-liquid mixture. There is a way. Since quenching by gas does not cause a boiling phenomenon, it is possible to suppress the occurrence of heat treatment distortion, which tends to cause a temperature distribution inside the product.
特許文献 1 :特表 2003— 517100号公報(8頁一 22頁、図 3)  Patent Document 1: Japanese Patent Publication No. 2003-517100 (page 8 to page 22, FIG. 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] しかし、特表 2003— 517100号公報記載の方法では、アルミニウム合金板製品の 両面又は片面力 強制空冷するため、多数の製品を重ねて配置させて焼入れを行う ことができない。このため 1回の焼入れで処理される製品の数が制限され、著しく量 産性を損ねる。量産性を向上するには連続炉の形式をとることが必要となり、この場 合には設備が大がかりとなる。これでは設備投資と設置面積の点で問題である。  [0017] However, in the method described in JP-T-2003-517100, the aluminum alloy sheet product is subjected to forced air cooling on both sides or one side, so that it is not possible to quench a large number of products in an overlapping manner. This limits the number of products that can be processed in a single quench and significantly impairs mass productivity. In order to improve mass productivity, it is necessary to adopt a continuous furnace type, in which case the equipment becomes large. This is a problem in terms of capital investment and installation area.
[0018] そこで、本発明は、大がかりな設備を必要とせず、量産性に優れ、所望の寸法精度 及び強度を満たすダイカスト製品を製造することができるアルミニウムダイカスト製品 の熱処理方法を提供することを目的とする。  Accordingly, an object of the present invention is to provide a heat treatment method for an aluminum die-cast product that does not require a large-scale facility, is excellent in mass productivity, and can produce a die-cast product satisfying desired dimensional accuracy and strength. And
課題を解決するための手段 [0019] 上記目的を達成するために、本発明は、アルミニウムダイカスト製品を溶体ィ匕処理 する溶体化処理工程と、該溶体化処理工程の後に冷却手段を用いて該アルミニウム ダイカスト製品が沸騰現象を起こさな 、ようにして該アルミニウムダイカスト製品の温 度を 450°C以下に冷却する冷却工程と、該冷却工程を経た該アルミニウムダイカスト 製品を、該溶体化処理工程後 120秒以内に水で焼入れする焼入れ工程と、該焼入 れ工程を経た該アルミニウムダイカスト製品を人工時効処理する人工時効工程とを 有するアルミニウムダイカスト製品の熱処理方法を提供している。 Means for solving the problem [0019] In order to achieve the above object, the present invention provides a solution treatment step in which an aluminum die-cast product is subjected to a solution treatment, and a method in which the aluminum die-cast product undergoes a boiling phenomenon by using a cooling means after the solution treatment step. A cooling step of cooling the temperature of the aluminum die-cast product to 450 ° C. or lower, and quenching the aluminum die-cast product after the cooling step with water within 120 seconds after the solution treatment step. An object of the present invention is to provide a method of heat treating an aluminum die-cast product having a quenching step and an artificial aging step of artificially aging the aluminum die-cast product after the quenching step.
[0020] ここで、該冷却工程で用いる該冷却手段は鉛ビスマス合金融液が入った液体浴槽 であり、該冷却工程では該液体浴槽に該アルミニウムダイカスト製品を浸漬すること により冷却を行うことが好ま 、。  Here, the cooling means used in the cooling step is a liquid bath containing a liquid mixture of lead-bismuth, and in the cooling step, cooling may be performed by immersing the aluminum die-cast product in the liquid bath. Like,.
[0021] または、該冷却工程で用いる該冷却手段は中間炉であり、該中間炉はアルミナ粉 末を媒体とする流動層炉力 なり、該冷却工程では該流動層炉内に該アルミニウム ダイカスト製品を所定時間保持することにより冷却を行うことが好ましい。  [0021] Alternatively, the cooling means used in the cooling step is an intermediate furnace, and the intermediate furnace is a fluidized bed furnace using alumina powder as a medium. In the cooling step, the aluminum die-cast product is placed in the fluidized bed furnace. Is preferably maintained for a predetermined period of time for cooling.
発明の効果  The invention's effect
[0022] 本発明の請求項 1記載のアルミニウムダイカスト製品の熱処理方法によれば、溶体 化処理工程の後に冷却手段を用いてアルミニウムダイカスト製品が沸騰現象を起こさ ないようにしてアルミニウムダイカスト製品の温度を 450°C以下に冷却する冷却工程 を行うようにしたため、熱処理歪みを ±0. 5以下一 ± 1. Omm以下に抑えることがで き、高い寸法精度を有するダイカスト製品を製造することができる。また、溶体化処理 工程の後 120秒以内に焼入れすることにより、車体フレーム等に必要な機械的特性 を得ることができる。このため、高い寸法精度及び機械的特性が要求される車体フレ ーム等に、アルミニウムダイカスト製品を用いることができる。  According to the heat treatment method for an aluminum die-cast product according to claim 1 of the present invention, the temperature of the aluminum die-cast product is reduced by using a cooling means after the solution treatment step so that the aluminum die-cast product does not cause a boiling phenomenon. Since a cooling step of cooling to 450 ° C or less is performed, heat treatment distortion can be suppressed to ± 0.5 or less and ± 1.0 Omm or less, and a die-cast product having high dimensional accuracy can be manufactured. Also, by quenching within 120 seconds after the solution treatment step, it is possible to obtain the mechanical properties required for the body frame and the like. Therefore, an aluminum die-cast product can be used for a vehicle body frame or the like that requires high dimensional accuracy and mechanical characteristics.
[0023] 本発明の請求項 2記載のアルミニウムダイカスト製品の熱処理方法によれば、冷却 工程で用いる冷却手段は鉛ビスマス合金融液が入った液体浴槽であり、冷却工程で は液体浴槽にアルミニウムダイカスト製品を浸漬することにより冷却を行うようにしたた め、多数のダイカスト製品に対して一度に熱処理を行うことができ、アルミニウムダイ カスト製品の熱処理方法のために連続炉のような大が力りな設備を必要とせずに、量 産性を高めることができる。 [0024] また、アルミニウムダイカスト製品の温度を溶体ィ匕処理工程の後 120秒以内に 350 °C以下にすることができるので、熱処理後のアルミニウムダイカスト製品の変位量、即 ち、熱処理歪みの量を ±0. 5mm以下といった非常に低い値とすることができ、非常 に高い寸法精度を得ることができる。このため、熱処理歪みの矯正のための工程を行 わずに、アルミニウムダイカスト製品を大量生産することができる。 According to the method for heat-treating an aluminum die-cast product according to claim 2 of the present invention, the cooling means used in the cooling step is a liquid bath containing a liquid mixture of lead-bismuth, and in the cooling step, the aluminum bath is added to the liquid bath. Cooling is performed by immersing the product, so that a large number of die-cast products can be heat-treated at once, and the heat treatment method for aluminum die-cast products is as powerful as a continuous furnace. Mass production can be increased without the need for equipment. [0024] Further, since the temperature of the aluminum die-cast product can be lowered to 350 ° C or less within 120 seconds after the solution annealing process, the displacement amount of the aluminum die-cast product after heat treatment, that is, the amount of heat treatment distortion, is reduced. Can be set to a very low value of ± 0.5 mm or less, and very high dimensional accuracy can be obtained. Therefore, aluminum die-cast products can be mass-produced without performing a process for correcting heat treatment distortion.
[0025] 本発明の請求項 3記載のアルミニウムダイカスト製品の熱処理方法によれば、冷却 工程で用いる冷却手段は中間炉であり、中間炉はアルミナ粉末を媒体とする流動層 炉力 なり、冷却工程では流動層炉内にアルミニウムダイカスト製品を所定時間保持 することにより冷却を行うようにしたため、多数のダイカスト製品に対して一度に熱処 理を行うことができ、アルミニウムダイカスト製品の熱処理方法のために連続炉のよう な大が力りな設備を必要とせずに、量産性を高めることができる。  [0025] According to the method for heat-treating an aluminum die-cast product according to claim 3 of the present invention, the cooling means used in the cooling step is an intermediate furnace, and the intermediate furnace is a fluidized bed furnace using alumina powder as a medium. In order to cool a large number of die-cast products at once, the aluminum die-cast products were cooled in a fluidized bed furnace by holding them for a predetermined time. Mass production can be improved without requiring large and powerful equipment such as a continuous furnace.
[0026] また、アルミニウムダイカスト製品の温度を溶体ィ匕処理工程の後 120秒以内に 350 °C以下にすることができるので、熱処理後のアルミニウムダイカスト製品の変位量、即 ち、熱処理歪みの量を ±0. 5mm以下といった非常に低い値とすることができ、非常 に高い寸法精度を得ることができる。このため、熱処理歪みの矯正のための工程を行 わずに、アルミニウムダイカスト製品を大量生産することができる。  [0026] Further, since the temperature of the aluminum die-cast product can be lowered to 350 ° C or less within 120 seconds after the solution annealing process, the amount of displacement of the aluminum die-cast product after the heat treatment, that is, the amount of the distortion of the heat treatment. Can be set to a very low value of ± 0.5 mm or less, and very high dimensional accuracy can be obtained. Therefore, aluminum die-cast products can be mass-produced without performing a process for correcting heat treatment distortion.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]焼入れ時のアルミニウムダイカスト製品の温度とアルミニウムダイカスト製品の変 位量との関係を示したグラフ。  FIG. 1 is a graph showing the relationship between the temperature of an aluminum die-cast product during quenching and the amount of displacement of the aluminum die-cast product.
[図 2]A1— Si— Mg系合金力もなるアルミニウムダイカスト製品の、焼入遅れ時間と時効 処理後の硬さとの関係を示すグラフ。  [Figure 2] A graph showing the relationship between the quenching delay time and the hardness after aging treatment of an aluminum die-cast product that also has A1-Si-Mg alloy strength.
[図 3]本発明の第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法を 示す概略図。  FIG. 3 is a schematic diagram showing a method for heat-treating an aluminum die-cast product according to the first embodiment of the present invention.
[図 4]本発明材 1を製造するために行われた第 1の実施の形態によるアルミニウムダイ カスト製品の熱処理方法における経過時間と温度との関係を示す概略図。  FIG. 4 is a schematic diagram showing the relationship between elapsed time and temperature in a method for heat-treating an aluminum die-cast product according to the first embodiment, which was performed to manufacture the material 1 of the present invention.
[図 5]比較材 1、比較材 2を製造するために行われたアルミニウムダイカスト製品の熱 処理方法における経過時間と温度との関係を示す概略図。  FIG. 5 is a schematic diagram showing a relationship between elapsed time and temperature in a heat treatment method for an aluminum die-cast product performed to manufacture comparative materials 1 and 2.
[図 6]本発明の第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法の 効果を試す引張試験に用いられる本発明材 1、比較材 1、比較材 2の形状及び寸法 を示す正面図。 FIG. 6 shows a method for heat-treating an aluminum die-cast product according to the first embodiment of the present invention. FIG. 3 is a front view showing the shapes and dimensions of the present invention material 1, comparative material 1, and comparative material 2 used in a tensile test for testing the effect.
[図 7]本発明の第 2の実施の形態によるアルミニウムダイカスト製品の熱処理方法を 示す概略図。  FIG. 7 is a schematic view showing a heat treatment method for an aluminum die-cast product according to a second embodiment of the present invention.
[図 8]本発明材 2を製造するために行われた第 2の実施の形態によるアルミニウムダイ カスト製品の熱処理方法における経過時間と温度との関係を示す概略図。  FIG. 8 is a schematic diagram showing the relationship between elapsed time and temperature in a method of heat-treating an aluminum die-cast product according to a second embodiment for manufacturing the material 2 of the present invention.
[図 9]比較材 3を製造するために行われたアルミニウムダイカスト製品の熱処理方法 における経過時間と温度との関係を示す概略図。  FIG. 9 is a schematic diagram showing the relationship between elapsed time and temperature in a method of heat-treating an aluminum die-cast product performed to manufacture comparative material 3.
[図 10]本発明の第 3の実施の形態によるアルミニウムダイカスト製品の熱処理方法を 示す概略図。  FIG. 10 is a schematic view showing a heat treatment method for an aluminum die-cast product according to a third embodiment of the present invention.
[図 11]本発明材 4一本発明材 6を製造するために行われた第 3の実施の形態による アルミニウムダイカスト製品の熱処理方法における経過時間と温度との関係を示す概 略図。  FIG. 11 is a schematic diagram showing the relationship between elapsed time and temperature in a method for heat-treating an aluminum die-cast product according to a third embodiment, which was performed to manufacture the inventive material 4 and the inventive material 6.
[図 12]比較材 4を製造するために行われたアルミニウムダイカスト製品の熱処理方法 における経過時間と温度との関係を示す概略図。  FIG. 12 is a schematic diagram showing the relationship between elapsed time and temperature in a method of heat-treating an aluminum die-cast product performed to manufacture comparative material 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本発明の第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法につい て図 1乃至図 5を参照しながら説明する。以下に説明する第 1一第 3の実施の形態に よるアルミニウムダイカスト製品の熱処理方法は、 、ずれもアルミニウム合金を用いて ダイカスト法により铸造されたアルミニウムダイカスト製品に対して施される熱処理方 法であり、それぞれ溶体化処理工程と、冷却工程と、焼入れ工程と、人工時効工程と 力 の順番で行われる。  [0028] A method for heat-treating an aluminum die-cast product according to the first embodiment of the present invention will be described with reference to FIGS. The heat treatment method for an aluminum die-cast product according to the first to third embodiments described below is a heat treatment method applied to an aluminum die-cast product manufactured by a die casting method using an aluminum alloy. Yes, they are performed in the order of solution treatment step, cooling step, quenching step, artificial aging step and force.
[0029] 第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法における溶体ィ匕 処理工程では、多数のアルミニウムダイカスト製品を、その温度が数時間 500°C— 5 50°Cに保持されるように加熱して溶体ィ匕させる。冷却工程では、溶体化処理工程が 終了して力も冷却装置を用いてアルミニウムダイカスト製品の温度を 450°C以下に冷 却する。用いられる冷却装置は、内部を所定の中間温度の雰囲気に所定時間保つ ことができ、内部に多数のダイカスト製品を載置できる力ごが設けられた中間炉であ る。多数のダイカスト製品は、中間炉内の力ごに所定時間保持されることにより、溶体 化されている温度である 500°C— 540°C力も 450°C以下へと冷却される。冷却装置 は冷却手段に相当する。 [0029] In the solution annealing process in the method for heat-treating an aluminum die-cast product according to the first embodiment, a large number of aluminum die-cast products are maintained at a temperature of 500 ° C-550 ° C for several hours. Heat to form a solution. In the cooling process, the temperature of the aluminum die-cast product is cooled to 450 ° C or less using a cooling device after the solution treatment process is completed. The cooling device used is an intermediate furnace provided with a stirrer capable of keeping the inside at an atmosphere at a predetermined intermediate temperature for a predetermined period of time and mounting a large number of die-cast products inside. The A large number of die-casting products are held in a force in the intermediate furnace for a predetermined period of time, so that the 500-540 ° C force, which is the temperature at which the solution is solidified, is cooled to 450 ° C or less. The cooling device corresponds to a cooling means.
[0030] 焼入れ工程では、冷却工程を経た多数のアルミニウムダイカスト製品を、溶体化処 理工程が終了してから 120秒以内に、所定の温度の温水中に浸漬することにより焼 入れを行う。人工時効工程では、焼入れ工程を経た多数のアルミニウムダイカスト製 品を、所定時間時効炉内に保持することにより人工時効処理する。時効炉内は 100 °C一 200°Cの間の所定の温度に維持される。  [0030] In the quenching step, a number of aluminum die-cast products that have undergone the cooling step are quenched by immersing them in warm water at a predetermined temperature within 120 seconds after the solution treatment step is completed. In the artificial aging process, a number of aluminum die-cast products that have undergone the quenching process are subjected to artificial aging by holding them in an aging furnace for a predetermined time. The inside of the aging furnace is maintained at a predetermined temperature between 100 ° C and 200 ° C.
[0031] 溶体ィ匕処理工程が終了して力 冷却装置を用いてアルミニウムダイカスト製品の温 度を 450°C以下に冷却するようにし、冷却装置として中間炉を用いたため、中間炉内 で多数のダイカスト製品を同時に、沸騰現象を起こさないようにして冷却することがで きる。このため、高い強度を有し、熱処理歪みの量が ± 1. Omm以下の寸法精度の 高いダイカスト製品を、優れた量産性をもって生産することができる。また、アルミ-ゥ ムダイカスト製品の熱処理方法を行うために連続炉のような大が力りな設備を必要と せず、設備投資と設置面積とにおいて有利である。  [0031] After the solution shading process step was completed, the temperature of the aluminum die-cast product was cooled to 450 ° C or lower using a force cooling device, and an intermediate furnace was used as a cooling device. Die-cast products can be cooled at the same time without boiling. For this reason, it is possible to produce a die-cast product having high strength and high dimensional accuracy with a heat treatment distortion of ± 1.0 Omm or less with excellent mass productivity. In addition, a large-scale facility such as a continuous furnace is not required for performing a heat treatment method for an aluminum die-cast product, which is advantageous in terms of capital investment and installation area.
[0032] また、溶体ィ匕処理工程が終了してから 120秒以内にアルミニウムダイカスト製品の 温度を 450°C以下に冷却することは、自然空冷でも達成できる。しかし、溶体化処理 後に、大量のダイカスト製品を一括処理により溶体化炉外で放冷すると、先に溶体化 炉外に出た製品と後から溶体ィ匕炉外に出た製品との温度差が大きいため、熱処理 後の機械的性質のばらつきが大きくなる。しかし、本実施の形態では、中間炉を用い たため、このようなばらつきが大きくなることを防止することができる。  [0032] Cooling the temperature of the aluminum die-cast product to 450 ° C or less within 120 seconds after the completion of the solution casting process can also be achieved by natural air cooling. However, after the solution treatment, if a large amount of die-cast products are allowed to cool outside the solution furnace by batch processing, the temperature difference between the product that first came out of the solution furnace and the product that came out of the solution furnace later. Therefore, the variation in mechanical properties after heat treatment increases. However, in the present embodiment, since the intermediate furnace is used, it is possible to prevent such variation from increasing.
[0033] ここで、アルミニウムダイカスト製品の温度を 450°C以下に冷却し、溶体化処理工程 が終了してから 120秒以内に焼入れする根拠について説明する。前述のように、 AD C3合金に代表されるダイカスト用 A1— Si— Mg系合金の溶体ィ匕温度は、 500°C— 54 0°Cである。アルミニウムダイカスト製品がこのような高温のときにそのまま焼入れする と、高温のアルミニウム合金は降伏応力が著しく低いため、永久歪みたる熱処理歪み を生じやすい。これに対し、焼入れする時点でのアルミニウムダイカスト製品の温度 が低くなつていれば、発生する歪みは小さい。 [0034] 図 1に示されるように、熱処理歪みによる変位量の平均値及びばらつきは、焼入れ 温度、即ち、焼入れを開始する時点でのアルミニウムダイカスト製品の温度の低下と ともに減少する。図 1には、 300。C、 350。C、 400。C、 425°C, 450°C, 475°C, 500 °Cの 7種類の焼入れ温度で、それぞれの焼入れ温度につき同一形状で 5個ずつ計 3 5個のサンプルを焼入れしたときの変位及びばらつきの絶対値が示されて 、るが、そ れぞれの焼入れ温度におけるすべての製品の変位が 1. Omm以下となるのは焼入 れ温度力 50°C以下のときであることが分かる。 [0033] Here, the grounds for cooling the aluminum die-cast product to 450 ° C or lower and quenching within 120 seconds after the solution treatment step is completed will be described. As described above, the solution temperature of the A1-Si-Mg-based alloy for die casting represented by the ADC3 alloy is 500 ° C to 540 ° C. If the aluminum die-cast product is quenched as it is at such a high temperature, the high-temperature aluminum alloy has a remarkably low yield stress, and is likely to cause permanent heat treatment distortion. On the other hand, if the temperature of the aluminum die-cast product at the time of quenching is low, the generated distortion is small. [0034] As shown in Fig. 1, the average value and the variation of the displacement amount due to the heat treatment distortion decrease as the quenching temperature, that is, the temperature of the aluminum die-cast product at the start of quenching decreases. In Figure 1, 300. C, 350. C, 400. C, 425 ° C, 450 ° C, 475 ° C, 500 ° C, 7 kinds of quenching temperature, displacement and variation when quenching a total of 35 samples of 5 samples of the same shape at each quenching temperature However, it can be seen that the displacement of all products at each quenching temperature is 1.Omm or less when the quenching temperature force is 50 ° C or less.
[0035] また、すべての製品の変位が 0. 5mm以下となるのは焼入れ温度が 350°C以下の ときであることが分かる。そこで、車体フレームのように高い寸法精度が要求される場 合には、焼入れ温度力 50°C以下 (好ましくは 350°C以下)となるようにしてやる必要 力 Sあることが分力ゝる。  [0035] Further, it can be seen that the displacement of all products becomes 0.5 mm or less when the quenching temperature is 350 ° C or less. Therefore, when high dimensional accuracy is required as in the case of a vehicle body frame, it is necessary to reduce the quenching temperature to 50 ° C or less (preferably 350 ° C or less).
[0036] 500°Cから 540°Cで溶体化処理した後に 450°C以下で焼入れするためには、その 間に何らかの冷却工程が必要である。この冷却工程として沸騰を伴う方法を用いると 永久歪みたる熱処理歪みが発生するため好ましくない。  [0036] In order to quench at 450 ° C or lower after performing a solution treatment at 500 ° C to 540 ° C, some cooling step is required during the process. It is not preferable to use a method involving boiling as the cooling step because heat treatment distortion, which is permanent distortion, occurs.
[0037] また、図 2に示されるように、冷却に時間が力かり過ぎると強化析出物が過剰に成長 、粗大化して機械的性質を損なう。本発明をするにあたり、 A1— Si— Mg系合金力ゝらな るアルミニウムダイカスト製品の焼入遅れ時間の限界を確認するために、焼入遅れ時 間と時効処理後の硬さとの関係を調査した力 その結果が図 2に示されるとおりであり 、車体フレームとして利用される機械的性質を満足する硬さは、ロックウェル Fスケー ノレで 75乃至 80である。  [0037] Further, as shown in Fig. 2, if cooling takes too much time, the strengthened precipitate grows excessively, becomes coarse and deteriorates mechanical properties. In carrying out the present invention, the relationship between the quenching delay time and the hardness after aging treatment was investigated in order to confirm the limit of the quenching delay time of aluminum die-cast products made of A1-Si-Mg based alloys. The resulting force is as shown in FIG. 2, and the hardness that satisfies the mechanical properties used as the body frame is 75 to 80 for Rockwell F Scanneret.
[0038] そこで、硬さが 75乃至 80となるためには、図 2に示されるグラフより、焼入遅れ時間 を 120秒以内としなければならないことが分かる。以上より、車体フレーム等として利 用可能なアルミニウムダイカスト製品を製造するためには、製品の溶体化処理工程が 終了した後、アルミニウムダイカスト製品の温度を 450°C以下に冷却し、溶体化処理 工程の後 120秒以内にアルミニウムダイカスト製品を焼入れすることが必要であること が分かる。  [0038] Therefore, it can be seen from the graph shown in FIG. 2 that the quenching delay time must be within 120 seconds in order for the hardness to be 75 to 80. From the above, in order to manufacture an aluminum die cast product that can be used as a body frame, etc., after the product solution treatment process is completed, the temperature of the aluminum die cast product is cooled to 450 ° C or less, and the solution process is performed. It can be seen that it is necessary to quench the aluminum die-cast product within 120 seconds after.
[0039] 次に、第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法の効果を 試す試験を行った。試験では、本発明材 1、比較材 1の 2種類についてはそれぞれ 5 個ずつ、比較材 2については 6個の計 16個を用いて、変位量の測定と引張試験と行 つた。本発明材 1としては、以下の表 1に示される組成のアルミニウム合金を用いて一 般肉厚 2. 5mm、幅 350mm、長さ 500mmのアルミニウムダイカスト製品を铸造し、 第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法を行ったものを用 いた。 Next, a test was conducted to test the effect of the heat treatment method for an aluminum die-cast product according to the first embodiment. In the test, 5 specimens were obtained for each of the two materials The displacement amount was measured and the tensile test was carried out using 16 pieces each, 6 pieces each for the comparative material 2. As the material 1 of the present invention, an aluminum die-cast product having a general thickness of 2.5 mm, a width of 350 mm, and a length of 500 mm was manufactured using an aluminum alloy having the composition shown in Table 1 below, according to the first embodiment. An aluminum die-cast product that had been subjected to a heat treatment method was used.
[表 1]
Figure imgf000012_0001
[table 1]
Figure imgf000012_0001
wt.%  wt.%
[0040] 本発明材 1を製造するために行われたアルミニウムダイカスト製品の熱処理方法は 、より詳細には図 3及び図 4に示されるように、アルミニウムダイカスト製品に対して溶 体化炉で 500°C、 3時間の溶体化処理工程を行った後、雰囲気温度 150°Cに保った 中間炉内に移し、その中で 90秒間保持することにより冷却工程を行った。その後、中 間炉カも製品を取り出して 60°Cの温水中に焼入れることにより焼入れ工程を行った。 温水中に焼入れる直前の製品の温度は場所によって差がある力 330°C— 400°C の範囲であった。そして、焼入れ工程の後、時効炉で 180°C、 3時間の人工時効ェ 程を行った。 [0040] The method of heat-treating the aluminum die-cast product performed to manufacture the material 1 of the present invention is described in more detail in FIG. 3 and FIG. After performing a solution treatment process at 3 ° C for 3 hours, the solution was transferred to an intermediate furnace maintained at an ambient temperature of 150 ° C, and kept therein for 90 seconds to perform a cooling process. After that, the product was taken out of the intermediate furnace and quenched in hot water at 60 ° C to perform the quenching process. The temperature of the product immediately before quenching in hot water ranged from 330 ° C to 400 ° C with varying forces. After the quenching process, an artificial aging process was performed in an aging furnace at 180 ° C for 3 hours.
[0041] 比較材 1としては、本発明材 1と同一組成のアルミニウム合金を用いて、本発明材 1 と同一形状のアルミニウムダイカスト製品を铸造し、第 1の実施の形態によるアルミ- ゥムダイカスト製品の熱処理方法とは異なる熱処理方法を行ったものを用いた。熱処 理方法における第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法と の相違点は、(1)溶体ィ匕処理工程の後に、冷却工程を行わずに焼き入れ工程を行 つた点、及び、(2)焼入れ工程の後、時効炉で 130°C、 3時間の人工時効工程を行 つた点のみであり、図 5に示されるとおりである。  As a comparative material 1, an aluminum alloy having the same composition as the material 1 of the present invention was used to produce an aluminum die-cast product having the same shape as the material 1 of the present invention, and the aluminum die-cast product according to the first embodiment was manufactured. A heat treatment method different from the heat treatment method was used. The difference between the heat treatment method and the heat treatment method for an aluminum die-cast product according to the first embodiment is that (1) a quenching step is performed without performing a cooling step after a solution treatment step; (2) After the quenching process, only the artificial aging process at 130 ° C for 3 hours was performed in the aging furnace, as shown in Fig. 5.
[0042] 比較材 2としては、本発明材 1と同一組成のアルミニウム合金を用いて、本発明材 1 と同一形状のアルミニウムダイカスト製品を铸造し、第 1の実施の形態によるアルミ- ゥムダイカスト製品の熱処理方法とは異なる熱処理方法を行ったものを用いた。熱処 理方法における第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法と の相違点は、(1)溶体ィ匕処理工程の後に、冷却工程を行わずに焼き入れ工程を行 つた点、(2)焼入れ工程の後、時効炉で 130°C 3時間の人工時効工程を行った点 、及び(3)焼入れ工程では、 60°Cの温水に代えて 30°Cのグリコール水溶液、即ち、 熱処理剤を溶解した水溶液を用いた点のみであり、図 5に示されるとおりである。 変位量の測定は、本発明材 1、比較材 1、比較材 2について、それぞれ任意に選ん だ 6箇所における肉厚に垂直な方向の変位を測定した。測定した製品の数は、本発 明材 1、比較材 1、比較材 2の 3種類、計 16個全てである。各条件での変位の測定結 果を表 2に示す。 As a comparative material 2, an aluminum alloy having the same composition as the material 1 of the present invention was used to produce an aluminum die-cast product having the same shape as the material 1 of the present invention, and the aluminum-die-cast product of the first embodiment was manufactured. A heat treatment method different from the heat treatment method was used. Heat treatment method for aluminum die cast product according to the first embodiment in heat treatment method and The difference is that (1) the quenching step was performed without performing the cooling step after the solution treatment step, and (2) the artificial aging step at 130 ° C for 3 hours in an aging furnace after the quenching step. And (3) in the quenching process, the only difference was that a 30 ° C glycol aqueous solution, that is, an aqueous solution in which a heat treatment agent was dissolved, was used instead of the 60 ° C hot water, as shown in FIG. It is. In the measurement of the amount of displacement, the displacement in the direction perpendicular to the wall thickness of each of the present invention material 1, the comparative material 1 and the comparative material 2 was measured at six locations arbitrarily selected. The total number of products measured was three in total: 1 for the invention, 1 for the comparison, and 2 for the comparison. Table 2 shows the measurement results of the displacement under each condition.
[表 2] 測定箇所番号 [Table 2] Measurement location numbers
5式料 ¾  5 formula fee ¾
1 2 3 4 5 6  1 2 3 4 5 6
本発明材 1  Invention material 1
1 - 0.29 -0.71 0.13 0.52 -0.26 -0.24  1-0.29 -0.71 0.13 0.52 -0.26 -0.24
2 0.13 -0.51 0.02 0.35 0.25 0.33 2 0.13 -0.51 0.02 0.35 0.25 0.33
3 -0.06 -0.42 0.42 0.75 0.98 0.463 -0.06 -0.42 0.42 0.75 0.98 0.46
4 0.06 -0.62 0.01 0.57 0.22 0.104 0.06 -0.62 0.01 0.57 0.22 0.10
5 0.1 1 -0.27 0.39 0.49 0.74 0.42 絶対値の最大 0.29 0.71 0.42 0.75 0.98 0.46 比較材 1 5 0.1 1 -0.27 0.39 0.49 0.74 0.42 Maximum absolute value 0.29 0.71 0.42 0.75 0.98 0.46 Comparative material 1
1 0.08 - 0.46 0.10 0.1 1 -0.86 -0.64  1 0.08-0.46 0.10 0.1 1 -0.86 -0.64
2 0.15 -0.72 -0.34 0.27 -0.26 0.05 2 0.15 -0.72 -0.34 0.27 -0.26 0.05
3 0.43 0.1 1 1 .06 0.32 3.29 1.993 0.43 0.1 1 1 .06 0.32 3.29 1.99
4 0.01 -0.71 0.20 0.79 - 0.25 -0.27 4 0.01 -0.71 0.20 0.79-0.25 -0.27
5 0.12 -0.48 0.02 0.21 -0.10 0.00 絶対値の最大 0.43 0.72 1.06 0.79 3.29 1.99 比較材 2  5 0.12 -0.48 0.02 0.21 -0.10 0.00 Maximum absolute value 0.43 0.72 1.06 0.79 3.29 1.99 Comparative material 2
1 -0.10 -0.20 - 0.40 -0.60 -0.70 -0.30  1 -0.10 -0.20-0.40 -0.60 -0.70 -0.30
2 0.06 0.27 0.66 0.22 0.99 0.56 2 0.06 0.27 0.66 0.22 0.99 0.56
3 0.00 -0.30 0.88 1.93 0.27 一 0.10 3 0.00 -0.30 0.88 1.93 0.27 one 0.10
4 -0.10 0.02 0.03 0.01 0.06 0.03 4 -0.10 0.02 0.03 0.01 0.06 0.03
5 -0.00 -0.10 0.00 -0.20 0.00 0.035 -0.00 -0.10 0.00 -0.20 0.00 0.03
6 0.25 -0.20 0.39 0.12 0.72 0.51 絶対値の最大 0.25 0.30 0.88 1.93 0.99 0.56 [0044] 表 2に示されるように、比較材 1、比較材 2では最大で 2— 3mmの変位を生じている 。これに対し、本発明材 1では 1. Omm以下の変位に抑えられており、高い寸法精度 を得ていることが分かる。 6 0.25 -0.20 0.39 0.12 0.72 0.51 Maximum absolute value 0.25 0.30 0.88 1.93 0.99 0.56 [0044] As shown in Table 2, the comparative material 1 and the comparative material 2 have a maximum displacement of 2-3 mm. On the other hand, in the material 1 of the present invention, the displacement was suppressed to 1. Omm or less, which indicates that high dimensional accuracy was obtained.
[0045] また、引張試験は、上述の 3種類の熱処理材から試験片を、厚さ 2. 5 ±0. 1mmで 図 6に示される形状に切出したものを用いて、インストロン型試験機を用いて行った。 図 6に示される寸法の単位は「mm (ミリメートル)」である。なお、歪み速度は 5mmZ minで室温で測定した。試験結果は、表 3に示されるとおりであり、試験結果の数値 は、本発明材 1、比較材 1、比較材 2の 3種類、それぞれ 5つずつ計 15個について測 定を行った値の、各種類における平均値である。  [0045] The tensile test was performed using an Instron type testing machine by cutting a test piece from the above three types of heat-treated materials into a shape shown in Fig. 6 with a thickness of 2.5 ± 0.1mm. This was performed using The unit of the dimension shown in Fig. 6 is "mm (millimeter)". The strain rate was measured at room temperature at 5 mmZ min. The test results are as shown in Table 3, and the numerical values of the test results are the values obtained by measuring three types of the present invention material 1, comparative material 1, and comparative material 2, each of which is a total of 15 measurements. , The average value for each type.
[表 3]  [Table 3]
Figure imgf000014_0001
Figure imgf000014_0001
[0046] 表 3に示されるように、本発明材 1は、引張強度、 0. 2%耐カ、破断延びのいずれ にお 、ても車体フレーム等に必要とされる機械的性質を備えて 、る。 As shown in Table 3, the material 1 of the present invention has mechanical properties required for a vehicle body frame and the like in any of tensile strength, 0.2% strength, and elongation at break. RU
[0047] 次に、本発明の第 2の実施の形態によるアルミニウムダイカスト製品の熱処理方法 について図 7乃至図 9を参照しながら説明する。第 2の実施の形態によるアルミニウム ダイカスト製品の熱処理方法は、冷却工程で用いる冷却装置として中間炉を用いず に、鉛ビスマス (Pb— Bi)合金融液が入った液体浴槽を用い、冷却工程では当該液 体浴槽にアルミニウムダイカスト製品を浸漬することにより冷却を行う点のみが、第 1 の実施の形態によるアルミニウムダイカスト製品の熱処理方法とは異なる。これ以外 については、第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法と同 一である。  Next, a heat treatment method for an aluminum die-cast product according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 9. The heat treatment method for an aluminum die-cast product according to the second embodiment uses a liquid bath containing a lead-bismuth (Pb-Bi) synthetic liquid without using an intermediate furnace as a cooling device used in the cooling step. The only difference from the heat treatment method for an aluminum die-cast product according to the first embodiment is that cooling is performed by immersing the aluminum die-cast product in the liquid bath. Except for this, it is the same as the heat treatment method for an aluminum die-cast product according to the first embodiment.
[0048] 冷却装置として鉛ビスマス合金融液が入った液体浴槽を用いたため、液体浴槽内 で多数のダイカスト製品を同時に、沸騰現象を起こさないようにして安定して 120秒 以内に 500°Cから 350°C以下に冷却することができる。このため、 350°C以下に冷却 したアルミニウムダイカスト製品を、溶体化処理工程の後 120秒以内に焼入れするこ とが可能となるので、高い強度を有し、熱処理歪みの量が ±0. 5mm以下の寸法精 度の高いダイカスト製品を、優れた量産性をもって生産することができる。また、熱処 理後の機械的性質のばらつきが大きくなることを防止することができる。また、アルミ -ゥムダイカスト製品の熱処理方法を行うために連続炉のような大が力りな設備を必 要とせず、設備投資と設置面積とにおいて有利である。 [0048] Since a liquid bath containing a lead-bismuth mixed liquid was used as a cooling device, a large number of die-cast products were simultaneously stabilized within 500 seconds within 500 seconds in a liquid bath without causing a boiling phenomenon. It can be cooled below 350 ° C. For this reason, aluminum die-cast products cooled to 350 ° C or less should be quenched within 120 seconds after the solution treatment step. Therefore, it is possible to produce a die-cast product having a high strength and a high dimensional accuracy with a heat treatment distortion of ± 0.5 mm or less with excellent mass productivity. In addition, it is possible to prevent variations in mechanical properties after the heat treatment from increasing. In addition, large-scale equipment such as a continuous furnace is not required to perform the heat treatment method for aluminum-die casting products, which is advantageous in terms of capital investment and installation area.
[0049] 次に、第 2の実施の形態によるアルミニウムダイカスト製品の熱処理方法の効果を 試す試験を行った。試験では、本発明材 2、比較材 3の 2種類、それぞれ 5つずつ計 10個を用いて、変位量の測定と引張試験と行った。本発明材 2としては、本発明材 1 と同一組成のアルミニウム合金を用いて一般肉厚 2. 5mm、幅 160mm、長さ 240m mのアルミニウムダイカスト製品を铸造し、第 2の実施の形態によるアルミニウムダイ力 スト製品の熱処理方法を行ったものを用いた。  Next, a test was conducted to test the effect of the heat treatment method for an aluminum die-cast product according to the second embodiment. In the test, the displacement amount was measured and the tensile test was performed using two materials of the present invention material 2 and the comparative material 3 and a total of ten pieces each having five pieces. As the material 2 of the present invention, an aluminum alloy having the same composition as that of the material 1 of the present invention was used to produce an aluminum die-cast product having a general thickness of 2.5 mm, a width of 160 mm, and a length of 240 mm. A die-cast product that had been subjected to a heat treatment method was used.
[0050] 本発明材 2を製造するために行われたアルミニウムダイカスト製品の熱処理方法は 、より詳細には図 7及び図 8に示されるように、アルミニウムダイカスト製品に対して溶 体ィ匕炉で 500°C、 3時間の溶体化処理工程を行った後、冷却装置を構成し 255°Cに 保った Pb力 4. 5質量%、Biが 55. 5質量%の合金融液浴槽中に浸漬し、その中で 30秒間保持して冷却工程を行った。その後、中間炉カゝら製品を取り出して 60°Cの温 水中に焼入れることにより焼入れ工程を行った。温水中に焼入れる直前の製品の温 度は 350°Cであった。そして、焼入れ工程の後、時効炉で 140°C、 3時間の人工時 効工程を行った。  [0050] The method of heat-treating the aluminum die-cast product performed to manufacture the material 2 of the present invention is described in more detail in FIG. 7 and FIG. After performing a solution treatment process at 500 ° C for 3 hours, a cooling device was constructed and immersed in a synthetic liquid bath with a Pb power of 4.5% by mass and a Bi of 55.5% by mass maintained at 255 ° C. Then, the cooling process was performed by holding the sample for 30 seconds. After that, the product was removed from the intermediate furnace and quenched in hot water at 60 ° C to perform the quenching process. The temperature of the product immediately before quenching in warm water was 350 ° C. After the quenching process, an artificial aging process was performed in an aging furnace at 140 ° C for 3 hours.
[0051] 比較材 3としては、本発明材 2と同一組成のアルミニウム合金を用いて、本発明材 2 と同一形状のアルミニウムダイカスト製品を铸造し、第 2の実施の形態によるアルミ- ゥムダイカスト製品の熱処理方法とは異なる熱処理方法を行ったものを用いた。熱処 理方法における第 2の実施の形態によるアルミニウムダイカスト製品の熱処理方法と の相違点は、溶体化処理工程の後に冷却工程を行わずに焼き入れ工程を行った点 のみであり、図 9に示されるとおりである。  As a comparative material 3, an aluminum alloy having the same composition as the material 2 of the present invention was used to produce an aluminum die-cast product having the same shape as the material 2 of the present invention, and the aluminum die-cast product according to the second embodiment was manufactured. A heat treatment method different from the heat treatment method was used. The only difference between the heat treatment method and the heat treatment method for aluminum die-cast products according to the second embodiment is that the quenching step was performed without performing the cooling step after the solution treatment step. As shown.
[0052] 変位量の測定は、本発明材 2、比較材 3につ 、て、それぞれ任意に選んだ 3箇所に おける肉厚に垂直な方向の変位を測定した。測定した製品の数は、本発明材 2、比 較材 3の 2種類、それぞれ 5つずつ計 10個全てである。各条件での変位の測定結果 を表 4に示す。 [0052] For the measurement of the amount of displacement, the displacement in the direction perpendicular to the wall thickness was arbitrarily measured at three locations of the material 2 of the present invention and the material 3 of the comparative example. The number of products measured was two for the material of the present invention 2 and the comparative material 3, a total of ten for each of five. Measurement results of displacement under each condition Are shown in Table 4.
[表 4]  [Table 4]
Figure imgf000016_0001
Figure imgf000016_0001
[0053] 表 4に示されるように、比較材 3の変位量に対して本発明材 2では、変位量は 3分の 1程度に抑えられており、極めて高 ヽ寸法精度を得て ヽることが分かる。 [0053] As shown in Table 4, in the present invention material 2, the displacement amount was suppressed to about one third of the displacement amount of the comparative material 3, and extremely high dimensional accuracy was obtained. You can see that.
[0054] また、引張試験は、上述の 2種類の熱処理材から、第 1の実施の形態における引張 試験で用いた試験片と同一形状で切出した試験片を用いて、第 1の実施の形態に おける引張試験と同様にインストロン型試験機を用いて行った。なお、歪み速度は 5 mmZminで室温で測定した。試験結果は、表 5に示されるとおりであり、試験結果の 数値は、本発明材 2、比較材 3の 2種類、それぞれ 5つずつ計 10個について測定を 行った値の、各種類における平均値である。  In the tensile test, the test pieces cut out from the above two types of heat-treated materials in the same shape as the test pieces used in the tensile test in the first embodiment were used. The test was performed using an Instron type testing machine in the same manner as in the tensile test. The strain rate was measured at room temperature at 5 mmZmin. The test results are as shown in Table 5, and the numerical values of the test results are the average of the values obtained by measuring two samples of the present invention material 2 and comparative material 3, five of each, and a total of ten measurements. Value.
[表 5]
Figure imgf000016_0002
[Table 5]
Figure imgf000016_0002
[0055] 表 5に示されるように、本発明材 2は、引張強度、 0. 2%耐カ、破断延びのいずれ にお 、ても車体フレーム等に必要とされる機械的性質を備えて 、る。 [0055] As shown in Table 5, the material 2 of the present invention exhibited any of tensile strength, 0.2% power resistance, and elongation at break. In addition, it has the mechanical properties required for the body frame and the like.
[0056] 次に、本発明の第 3の実施の形態によるアルミニウムダイカスト製品の熱処理方法 について図 10乃至図 12を参照しながら説明する。第 3の実施の形態によるアルミ- ゥムダイカスト製品の熱処理方法は、冷却工程で用いる冷却装置の中間炉としてァ ルミナ粉末を媒体とする流動層炉を用い、冷却工程では流動層炉内にアルミニウム ダイカスト製品を所定時間保持することにより冷却を行う点のみが、第 1の実施の形 態によるアルミニウムダイカスト製品の熱処理方法とは異なる。これ以外については、 第 1の実施の形態によるアルミニウムダイカスト製品の熱処理方法と同一である。  Next, a heat treatment method for an aluminum die-cast product according to the third embodiment of the present invention will be described with reference to FIGS. 10 to 12. The heat treatment method for an aluminum die-cast product according to the third embodiment uses a fluidized-bed furnace using alumina powder as a medium as an intermediate furnace of a cooling device used in a cooling process, and in the cooling process, the aluminum die-cast product is placed in the fluidized-bed furnace. Only the point that cooling is performed by holding the aluminum die for a predetermined time is different from the heat treatment method for an aluminum die-cast product according to the first embodiment. Except for this, the method is the same as the heat treatment method for the aluminum die-cast product according to the first embodiment.
[0057] ここで、流動層炉とは、金属容器 (レトルト)にアルミナ粉末等の流動熱媒体を充填 し、このレトルト下部に置かれた分散板力 ガスを吹込み金属容器を加熱するとアル ミナが膨張,流動化し、あた力も液体のように挙動する流動層によって非熱処理材を 熱処理する熱処理炉である。  [0057] Here, a fluidized bed furnace is a method in which a metal container (retort) is filled with a fluidized heating medium such as alumina powder, and a dispersion plate force gas placed below the retort is blown into the metal container to heat the metal container. This is a heat treatment furnace that heats non-heat treated material with a fluidized bed in which the fluid expands and fluidizes, and the force acts like a liquid.
[0058] 冷却装置を構成する中間炉としてアルミナ粉末を媒体とする流動層炉を用いたた め、液体浴槽内で多数のダイカスト製品を同時に、沸騰現象を起こさないようにして 安定して 120秒以内に 500°Cから 350°C以下に冷却することができる。このため、 35 0°C以下に冷却したアルミニウムダイカスト製品を溶体ィ匕処理工程の後 120秒以内に 焼入れすることが可能となり、高い強度を有し、熱処理歪みの量が ±0. 5mm以下の 寸法精度の高 、ダイカスト製品を、優れた量産性をもって生産することができる。  [0058] Since a fluidized bed furnace using alumina powder as a medium was used as an intermediate furnace constituting the cooling device, a large number of die cast products were simultaneously and stably kept in a liquid bath for 120 seconds without causing a boiling phenomenon. It can be cooled from 500 ° C to below 350 ° C. For this reason, it becomes possible to quench the aluminum die-cast product cooled to 350 ° C or less within 120 seconds after the solution treatment process, has high strength, and has a heat treatment strain of ± 0.5 mm or less. Die casting products with high dimensional accuracy can be produced with excellent mass productivity.
[0059] また、熱処理後の機械的性質のばらつきが大きくなることを防止することができる。  [0059] Further, it is possible to prevent the variation in mechanical properties after the heat treatment from increasing.
また、アルミニウムダイカスト製品の熱処理方法を行うために連続炉のような大がかり な設備を必要とせず、設備投資と設置面積とにおいて有利である。更に、 Pb-Bi等 を用いる必要がな 、ため、安価でアルミニウムダイカスト製品の熱処理方法を行うこと ができる。  In addition, a large-scale facility such as a continuous furnace is not required for performing a heat treatment method of an aluminum die-cast product, which is advantageous in terms of capital investment and installation area. Furthermore, since it is not necessary to use Pb-Bi or the like, a heat treatment method for an aluminum die-cast product can be performed at low cost.
[0060] 次に、第 3の実施の形態によるアルミニウムダイカスト製品の熱処理方法の効果を 試す試験を行った。試験では、本発明材 3、本発明材 4、本発明材 5、本発明材 6、 比較材 4の 5種類、それぞれ 5つずつ計 25個を用いて、変位量の測定と引張試験と 行った。変位量の測定は本発明材 3と比較材 4とを用いて行い、引張試験は本発明 材 4、本発明材 5、本発明材 6、及び比較材 4を用いて行った。 [0061] 本発明材 3としては、 6061合金の圧延板からなる厚さ 2mm、直径 150mmの円盤 形状の製品を 5枚用意し、 10mm間隔で平行に並べたまま、第 3の実施の形態によ るアルミニウムダイカスト製品の熱処理方法のうちの人工時効工程のみを有しない熱 処理方法、即ち、第 3の実施の形態によるアルミニウムダイカスト製品の熱処理方法 のうちの溶体化処理工程と冷却工程と焼入れ工程とを行う熱処理方法を行ったもの を用いた。 Next, a test was conducted to test the effect of the heat treatment method for an aluminum die-cast product according to the third embodiment. In the test, the displacement amount was measured and the tensile test was performed using 25 specimens of 5 specimens each of 5 specimens of the present invention 3, 4 present invention, 5 present invention, 6 present invention, and 4 comparative materials. Was. The displacement was measured using the inventive material 3 and the comparative material 4, and the tensile test was performed using the inventive material 4, the inventive material 5, the inventive material 6, and the comparative material 4. As the material 3 of the present invention, five disk-shaped products each having a thickness of 2 mm and a diameter of 150 mm made of a rolled plate of 6061 alloy were prepared, and were arranged in parallel at 10 mm intervals. Of the heat treatment method of an aluminum die-cast product according to the third embodiment, ie, a solution treatment step, a cooling step and a quenching step of the heat treatment method of an aluminum die-cast product according to the third embodiment. A heat treatment method for performing the above was used.
[0062] なお、本発明材 3について人工時効工程を行わないのは、本発明材 3は変位量の 測定の試験にのみに用いられ、引張試験等の機械的特性を調べる試験に用いられ ず、人工時効工程の有無は、アルミニウムダイカスト製品の変位量にはほとんど影響 を与えないからである。また、本発明材 3はアルミニウムダイカスト製品ではないが、 変位量の測定の試験においては、 6061合金の圧延板を使用してもアルミニウムダイ カスト製品を使用しても、変位量はほとんど同じであるため、安価な 6061合金の圧延 板をアルミニウムダイカスト製品に代えて使用した。  [0062] The reason why the artificial aging process is not performed on the material 3 of the present invention is that the material 3 of the present invention is used only for a test for measuring the amount of displacement, and is not used for a test for examining mechanical properties such as a tensile test. On the other hand, the presence or absence of the artificial aging process has almost no effect on the displacement of aluminum die-cast products. In addition, although the inventive material 3 is not an aluminum die-cast product, in the displacement measurement test, the displacement is almost the same regardless of whether a rolled plate of 6061 alloy or an aluminum die-cast product is used. Therefore, inexpensive rolled 6061 alloy plates were used instead of aluminum die-cast products.
[0063] また、本発明材 4一本発明材 6としては、本発明材 1と同一組成のアルミニウム合金 を用いて、厚さ 3mm、幅 100mm、長さ 300mmの略長方形状の平板のアルミニウム ダイカスト製品を铸造したものを、その長さ方向に 10mmずつ、本発明材 4用、本発 明材 5用、本発明材 6用としてそれぞれ 5個ずつ計 15個切取り、この切取ったものに つ!、て、第 3の実施の形態によるアルミニウムダイカスト製品の熱処理方法を行ったも のを用いた。  The material 4 of the present invention and the material 6 of the present invention are made of an aluminum alloy having the same composition as the material 1 of the present invention, and are formed of a substantially rectangular flat aluminum die-cast having a thickness of 3 mm, a width of 100 mm and a length of 300 mm. Cut the manufactured product by 10 mm in the length direction, cut out 15 pieces each for 5 of the present invention, 5 for the present invention, and 5 for the 6 present invention. The heat treatment method for the aluminum die-cast product according to the third embodiment was used.
[0064] 本発明材 3—本発明 6を製造するために行われたアルミニウムダイカスト製品の熱 処理方法は、より詳細には図 10及び図 11に示されるように、アルミニウムダイカスト 製品に対して溶体化炉で 500°C、 3時間の溶体化処理工程を行った後、雰囲気温度 250°Cに保った冷却装置たる中間炉としての流動層炉内に移し、その中で 7秒間保 持することにより冷却工程を行った。流動層炉のレトルトのサイズは直径 250mm、深 さ 300mmである。レトルトには 150kgのアルミナ粉末を充填した。アルミ粉末の粒度 は # 150である。分散板から吹込むガスは大気として、 86L (リットル) Zminの流量 を流した。  [0064] The heat treatment method of the aluminum die-cast product performed to manufacture the inventive material 3—the present invention 6 is described in more detail with reference to FIGS. After performing a solution treatment process at 500 ° C for 3 hours in a gasification furnace, transfer to a fluidized bed furnace as an intermediate furnace, which is a cooling device maintained at an ambient temperature of 250 ° C, and hold it for 7 seconds in it. To perform a cooling step. The retort size of the fluidized bed furnace is 250 mm in diameter and 300 mm in depth. The retort was filled with 150 kg of alumina powder. The particle size of the aluminum powder is # 150. The gas blown from the dispersing plate flowed at 86 L (liter) Zmin as the atmosphere.
[0065] その後、流動層炉カも製品を取り出して 60°Cの温水中に焼入れることにより焼入れ 工程を行った。温水中に焼入れる直前の製品の温度は 350°Cであった。そして、焼 入れ工程の後、時効炉で 140°C、 3時間の人工時効工程を行った。以上が本発明材 4を製造する際に行われる熱処理方法である。本発明材 5、本発明材 6は、人工時効 工程における時効炉の温度がそれぞれ 160°C、 180°Cである点のみ本発明材 4とは 異なっており、これ以外は本発明材 4と同一である。また、前述のように、本発明材 3 を製造するために行われた熱処理方法は、人工時効工程が行われな!/ヽ点のみが、 本発明材 4を製造するために行われた熱処理方法とは異なる。 [0065] Thereafter, the product was also taken out of the fluidized bed furnace and quenched by quenching in hot water at 60 ° C. The process was performed. The temperature of the product immediately before quenching in warm water was 350 ° C. After the quenching process, an artificial aging process was performed in an aging furnace at 140 ° C for 3 hours. The above is the heat treatment method performed when manufacturing the material 4 of the present invention. The inventive material 5 and the inventive material 6 differ from the inventive material 4 only in that the aging furnace temperature in the artificial aging process is 160 ° C and 180 ° C, respectively. Identical. Further, as described above, the heat treatment method performed to manufacture the material 3 of the present invention does not include an artificial aging step! Only the point ヽ differs from the heat treatment method performed to produce the material 4 of the present invention.
[0066] 比較材 4としては、本発明材 4一本発明材 6と同一組成のアルミニウム合金を用いて 、本発明材 3、本発明材 4一本発明材 6とそれぞれ同一形状のアルミニウムダイカスト 製品を铸造し、第 3の実施の形態によるアルミニウムダイカスト製品の熱処理方法と は異なる熱処理方法を行ったものを用いた。熱処理方法における第 3の実施の形態 によるアルミニウムダイカスト製品の熱処理方法との相違点は、(1)溶体化処理工程 の後に、冷却工程を行わずに焼き入れ工程を行った点、及び、(2)焼入れ工程の後 、時効炉で 130°C、 3時間の人工時効工程を行った点のみであり、図 12に示されると おりである。 [0066] As the comparative material 4, an aluminum alloy having the same composition as the material 4 of the present invention 4 and the material 6 of the present invention was used. A heat treatment method different from the heat treatment method for the aluminum die-cast product according to the third embodiment was used. The difference between the heat treatment method and the heat treatment method for an aluminum die-cast product according to the third embodiment is that (1) a quenching step is performed without a cooling step after a solution treatment step, and (2) ) After the quenching process, only the artificial aging process at 130 ° C for 3 hours was performed in the aging furnace, as shown in Fig. 12.
[0067] 変位量の測定は、本発明材 3、比較材 4の任意に選んだ外周部 1力所における変 位量と中心部における変位量とを、板の面に垂直な方向において測定した。測定し た製品の数は、本発明材 3、比較材 4の 2種類、それぞれ 5つずつ計 10個全てである 。各条件での当該外周部における変位量と中心部における変位量との差の値を表 6 に示す。  [0067] In the measurement of the displacement, the displacement at the one-point of the outer peripheral portion and the displacement at the center of the material 3 of the present invention and the comparative material 4 were measured in the direction perpendicular to the plane of the plate. . The number of products measured was two for the material 3 of the present invention and the material 4 for the comparison, five for each, and a total of ten products. Table 6 shows the difference between the amount of displacement at the outer periphery and the amount of displacement at the center under each condition.
[表 6]  [Table 6]
Figure imgf000019_0001
Figure imgf000019_0001
単 Til : mm  Single Til: mm
[0068] 表 6に示されるように、比較材 4の変位量の平均値は 5. 52mmである。これに対し て本発明材 3では、変位量の平均値は 0. 20mmと小さく、極めて高い寸法精度を得 ていることが分かる。 また、引張試験は、上述の本発明材 4、本発明材 5、本発明材 6、比較材 4の 4種類 の熱処理材から、第 1の実施の形態における引張試験で用いた試験片と同一形状で 切出した試験片を用いて、第 1の実施の形態における引張試験と同様にインストロン 型試験機を用いて行った。なお、歪み速度は 5mmZminで室温で測定した。試験 結果は、表 7に示されるとおりであり、試験結果の数値は、本発明材 4、本発明材 5、 本発明材 6、比較材 4の 4種類、それぞれ 5つずつ計 20個について測定を行った値 の、各種類における平均値である。 [0068] As shown in Table 6, the average value of the displacement amount of the comparative material 4 was 5.52 mm. On the other hand, in the case of the material 3 of the present invention, the average value of the displacement amount was as small as 0.20 mm, and it was found that an extremely high dimensional accuracy was obtained. The tensile test was performed using the same four types of heat-treated materials of the present invention material 4, the present invention material 5, the present invention material 6, and the comparative material 4 as the test pieces used in the tensile test in the first embodiment. Using a test piece cut out in a shape, the test was performed using an Instron type testing machine in the same manner as in the tensile test in the first embodiment. The strain rate was measured at 5 mmZmin at room temperature. The test results are as shown in Table 7, and the numerical values of the test results were measured for four types of the present invention material 4, the present invention material 5, the present invention material 6, and the comparative material 4, a total of 20 for each of 5 types. This is the average of the values for each type.
[表 7]  [Table 7]
Figure imgf000020_0001
Figure imgf000020_0001
[0070] 表 7に示されるように、本発明材 4一本発明 6は、引張強度、 0. 2%耐カ、破断延び の 、ずれにお 、ても車体フレーム等に必要とされる機械的性質を備えて 、る。 [0070] As shown in Table 7, the materials of the present invention 4 and the present invention 6 have different tensile strengths, 0.2% resistance to fracture, and elongation at break, which are required for the vehicle body frame and the like. With the characteristic nature.
[0071] 本発明によるアルミニウムダイカスト製品の熱処理方法は、上述した実施の形態に 限定されず、特許請求の範囲に記載した範囲で種々の変形や改良が可能である。 例えば、本実施の形態によるアルミニウムダイカスト製品の熱処理方法では、冷却装 置として、中間炉、流動層炉、鉛ビスマス合金融液が入った液体浴槽が用いられた 力 これらに限定されない。例えば、スティームを媒体として冷却を行う冷却装置を用 いてもよい。  [0071] The method of heat-treating an aluminum die-cast product according to the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made within the scope described in the claims. For example, in the heat treatment method for an aluminum die-cast product according to the present embodiment, an intermediate furnace, a fluidized-bed furnace, or a liquid bath containing a lead-bismuth alloy liquid is used as a cooling device. For example, a cooling device that performs cooling using steam as a medium may be used.
産業上の利用可能性  Industrial applicability
[0072] 本発明のアルミニウムダイカスト製品の熱処理方法は、特に、アルミニウムダイカスト 製品に対して T6処理を行う熱処理の分野において極めて有用である。 [0072] The heat treatment method for an aluminum die-cast product of the present invention is extremely useful particularly in the field of heat treatment for performing T6 treatment on an aluminum die-cast product.

Claims

請求の範囲 The scope of the claims
[1] アルミニウムダイカスト製品を溶体化処理する溶体化処理工程と、  [1] a solution treatment step of solution treating an aluminum die-cast product;
該溶体ィヒ処理工程の後に冷却手段を用いて該アルミニウムダイカスト製品が沸騰 現象を起こさないようにして該アルミニウムダイカスト製品の温度を 450°C以下に冷却 する冷却工程と、  A cooling step of cooling the temperature of the aluminum die-cast product to 450 ° C. or less by using cooling means after the solution immersion treatment step so that the aluminum die-cast product does not cause a boiling phenomenon;
該冷却工程を経た該アルミニウムダイカスト製品を、該溶体化処理工程後 120秒以 内に水で焼入れする焼入れ工程と、  A quenching step of quenching the aluminum die-cast product having passed through the cooling step with water within 120 seconds after the solution treatment step;
該焼入れ工程を経た該アルミニウムダイカスト製品を人工時効処理する人工時効 工程とを有することを特徴とするアルミニウムダイカスト製品の熱処理方法。  An artificial aging step of artificially aging the aluminum die-cast product after the quenching step.
[2] 該冷却工程で用いる該冷却手段は鉛ビスマス合金融液が入った液体浴槽であり、 該冷却工程では該液体浴槽に該アルミニウムダイカスト製品を浸漬することにより冷 却を行うことを特徴とする請求項 1記載のアルミニウムダイカスト製品の熱処理方法。 [2] The cooling means used in the cooling step is a liquid bath containing a lead-bismuth combined liquid, and in the cooling step, cooling is performed by immersing the aluminum die-cast product in the liquid bath. The method for heat-treating an aluminum die-cast product according to claim 1.
[3] 該冷却工程で用 、る該冷却手段は中間炉であり、該中間炉はアルミナ粉末を媒体 とする流動層炉力 なり、該冷却工程では該流動層炉内に該アルミニウムダイカスト 製品を所定時間保持することにより冷却を行うことを特徴とする請求項 1記載のアルミ[3] The cooling means used in the cooling step is an intermediate furnace. The intermediate furnace is a fluidized bed furnace using alumina powder as a medium. In the cooling step, the aluminum die-casting product is placed in the fluidized bed furnace. 2. The aluminum according to claim 1, wherein the cooling is performed by holding for a predetermined time.
-ゥムダイカスト製品の熱処理方法。 -Heat treatment method for PMM die cast products.
PCT/JP2005/000355 2004-01-15 2005-01-14 Heat treatment method for aluminum die-cast product WO2005068678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004008201A JP2005200702A (en) 2004-01-15 2004-01-15 Method of heat treating aluminum die-cast product
JP2004-008201 2004-01-15

Publications (1)

Publication Number Publication Date
WO2005068678A1 true WO2005068678A1 (en) 2005-07-28

Family

ID=34792213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000355 WO2005068678A1 (en) 2004-01-15 2005-01-14 Heat treatment method for aluminum die-cast product

Country Status (2)

Country Link
JP (1) JP2005200702A (en)
WO (1) WO2005068678A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445898B (en) * 2008-12-26 2010-06-02 成都银河动力股份有限公司 Low temperature heat processing method of single feeder head eutectic Al-Si alloy piston material
CN101880843A (en) * 2010-07-12 2010-11-10 成都银河动力股份有限公司 Aluminum alloy piston fog quenching heat treatment process and device thereof
CN105543740A (en) * 2015-12-14 2016-05-04 百色学院 Heat processing technology for improving corrosion resistant performance of aluminum alloy
CN107523768A (en) * 2017-08-04 2017-12-29 大连热处理有限公司 A kind of two-stage time effect processing method for aluminium alloy
CN111705245A (en) * 2020-07-13 2020-09-25 西安工业大学 Heat treatment method of die-casting aluminum alloy material
CN112058985A (en) * 2020-07-28 2020-12-11 深圳新顿科技有限公司 Light alloy plate stamping heat treatment process and stamping device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261039A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Production method and production device for precipitation hardening type alloy
CN103695817B (en) * 2013-12-12 2016-02-17 南京航空航天大学 One can synchronously to be quenched heat forming technology by heat-treatable aluminum alloy
CN103691793B (en) * 2013-12-20 2015-12-30 中南大学 One-step forming method of aging-strengthening aluminum alloy integral wall plate based on autoclave
CN104561855A (en) * 2014-07-23 2015-04-29 霍山汇能汽车零部件制造有限公司 Heat treatment process for 4032 aluminum alloy
CN104190777B (en) * 2014-09-26 2016-06-29 中南大学 A kind of once-forming method of the integral panel of aluminium alloy without ageing strengthening based on autoclave
CN104438481B (en) * 2014-11-28 2016-04-06 中南大学 A kind of preparation method of deep camber aluminium alloy integral panel component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290726A (en) * 1999-04-08 2000-10-17 Dowa Mining Co Ltd Method for cooling steel
JP2002105611A (en) * 2000-09-26 2002-04-10 Ahresty Corp Method for manufacturing automobile part by die casting
JP2003231956A (en) * 2002-02-12 2003-08-19 Sky Alum Co Ltd PROCESS FOR MANUFACTURING Al-Mg-Cu ALUMINUM ALLOY PLATE FOR FABRICATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290726A (en) * 1999-04-08 2000-10-17 Dowa Mining Co Ltd Method for cooling steel
JP2002105611A (en) * 2000-09-26 2002-04-10 Ahresty Corp Method for manufacturing automobile part by die casting
JP2003231956A (en) * 2002-02-12 2003-08-19 Sky Alum Co Ltd PROCESS FOR MANUFACTURING Al-Mg-Cu ALUMINUM ALLOY PLATE FOR FABRICATION

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445898B (en) * 2008-12-26 2010-06-02 成都银河动力股份有限公司 Low temperature heat processing method of single feeder head eutectic Al-Si alloy piston material
CN101880843A (en) * 2010-07-12 2010-11-10 成都银河动力股份有限公司 Aluminum alloy piston fog quenching heat treatment process and device thereof
CN105543740A (en) * 2015-12-14 2016-05-04 百色学院 Heat processing technology for improving corrosion resistant performance of aluminum alloy
CN105543740B (en) * 2015-12-14 2017-10-03 百色学院 Improve the Technology for Heating Processing of corrosive protection of aluminium alloy corrosion energy
CN107523768A (en) * 2017-08-04 2017-12-29 大连热处理有限公司 A kind of two-stage time effect processing method for aluminium alloy
CN111705245A (en) * 2020-07-13 2020-09-25 西安工业大学 Heat treatment method of die-casting aluminum alloy material
CN112058985A (en) * 2020-07-28 2020-12-11 深圳新顿科技有限公司 Light alloy plate stamping heat treatment process and stamping device

Also Published As

Publication number Publication date
JP2005200702A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
WO2005068678A1 (en) Heat treatment method for aluminum die-cast product
CN110022999B (en) System and method for manufacturing thick gauge aluminum alloy articles
KR101827498B1 (en) Method of Forming a Component of Complex Shape from Sheet Material
CN110453122A (en) High-intensitive 7XXX aluminium alloy and preparation method
CN104388777A (en) High-strength aluminum alloy slab and manufacturing method thereof
JP3843368B2 (en) Aluminum alloy plate for battery case with excellent resistance to high temperature blistering and method for producing the same
JP4852754B2 (en) Magnesium alloy for drawing, press forming plate material made of the alloy, and method for producing the same
JP4780601B2 (en) Magnesium alloy plate excellent in press formability and manufacturing method thereof
CN110193530B (en) Method for manufacturing curved molded article using aluminum alloy
JP5329746B2 (en) Aluminum alloy sheet for warm forming
JP2004360024A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY MATERIAL
TWI434939B (en) Aluminium alloy and process of preparation thereof
JPS623225B2 (en)
JP4476787B2 (en) Method for producing magnesium alloy sheet with excellent press formability
RU2351674C2 (en) Thick-walled plate made of aluminium alloy with high tensile and low sensitivity to quenching (versions) and method of its manufacturing (versions)
EP2868760B1 (en) Aluminum alloy sheet for blow molding and production method therefor
JP2011231359A (en) High strength 6000-series aluminum alloy thick plate, and method for producing the same
JP2002544392A (en) Manufacturing method for painted molded products
JP2011063868A (en) Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component
KR100510012B1 (en) High strength and high thermal conductive Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article
JP3763088B2 (en) Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same
JP2009030106A (en) Aluminum alloy panel and manufacturing method therefor
JP2007039714A (en) Aluminum alloy sheet for high temperature high speed forming, and method of high temperature high speed forming using it
JP2010202956A (en) Thermal treatment method of aluminum alloy casting and aluminum alloy casting
JPH05279822A (en) Production of aluminum alloy material for forming excellent in hardenability of coating/baking, formability, and shape freezability

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase