JP2000290726A - Method for cooling steel - Google Patents

Method for cooling steel

Info

Publication number
JP2000290726A
JP2000290726A JP11101182A JP10118299A JP2000290726A JP 2000290726 A JP2000290726 A JP 2000290726A JP 11101182 A JP11101182 A JP 11101182A JP 10118299 A JP10118299 A JP 10118299A JP 2000290726 A JP2000290726 A JP 2000290726A
Authority
JP
Japan
Prior art keywords
gas
cooling
fluidized bed
solid fine
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11101182A
Other languages
Japanese (ja)
Other versions
JP3852652B2 (en
Inventor
Toshishiyun Kakehi
都志春 筧
Eijiyu Torasawa
英寿 十良沢
Takamoto Shijo
隆幹 四條
Fumitaka Abukawa
文隆 虻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP10118299A priority Critical patent/JP3852652B2/en
Publication of JP2000290726A publication Critical patent/JP2000290726A/en
Application granted granted Critical
Publication of JP3852652B2 publication Critical patent/JP3852652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method for steel which has excellent cooling capacity and no problem to the surroundings and improves the profitability by executing the cooling while supplying an endothermic type modified gas into fluidized bed composed of solid fine grains. SOLUTION: While supplying the endothermic type modified gas into the solid fine grains, the cooling of the steel is executed. Since the endothermic type modified gas utilizes gas produced from a gas modifying furnace attached to a heat treatment apparatus, the preparation of gas generation and supplying device, etc., for executing the fluidization of the solid fine grains are not necessary, and thus, this method is profitable. This endothermic modified gas contains of about 35% H2 gas besides about 40% N2 gas and has excellent cooling effect in comparison with only N2 gas. Further, as the solid fine grain, ceramic fine grain is used and therein, alumina is very desirable material because this has chemically and physically stability and high hardness and high sp. heat besides high heat resistance. Then, it is desirable that the gas flowing speed in the fluidized bed is 5 times to 30 times of the min. fluidized flowing speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、鋼の雰囲
気熱処理時における焼入れ等のための冷却方法に関し、
詳しくは、流動層を用いた鋼の冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method for, for example, quenching at the time of atmospheric heat treatment of steel.
More specifically, the present invention relates to a method of cooling steel using a fluidized bed.

【0002】[0002]

【従来の技術】前記鋼の雰囲気熱処理においては、鋼を
所定の温度に加熱及び保持して浸炭及び拡散を行った後
に焼入れ、すなわち、冷却が行われている。従来、該冷
却は、主に油やソルトにより行われている。
2. Description of the Related Art In the above-mentioned atmosphere heat treatment of steel, the steel is heated and held at a predetermined temperature, carburized and diffused, and then quenched, that is, cooled. Conventionally, the cooling is performed mainly with oil or salt.

【0003】前記油やソルトによる冷却は、冷却能力が
高く、焼入れ効果に優れており広く用いられている。し
かしながら、前記油やソルトを用いた冷却は、鋼の投入
冷却時の油煙発生による大気汚染や冷却処理完了後の脱
脂工程における洗浄水処理、さらに使用済の油やソルト
の廃棄処理等の環境問題を抱えるものであった。
[0003] Cooling with oil or salt is widely used because of its high cooling ability and excellent quenching effect. However, the cooling using the oil or the salt is an environmental problem such as air pollution due to generation of oil fumes at the time of cooling the steel, cooling water treatment in a degreasing process after completion of the cooling treatment, and disposal treatment of used oil and salt. It was something to have.

【0004】前記問題を解決するため、容器内に充填し
た固体微粒子にガスを供給して流動層を形成し、該流動
層中に鋼を投入することによって冷却処理することが行
われている。
[0004] In order to solve the above problem, a gas is supplied to solid fine particles filled in a container to form a fluidized bed, and cooling treatment is performed by introducing steel into the fluidized bed.

【0005】特開昭63−100124号公報には、窒
素等の不活性ガスによって固体微粒子を流動化させ、鋼
材を冷却等する熱処理装置が記載され、特開昭63−8
9615号公報、特開平1−201418号公報には、
Heガス、N2 ガス、解離アンモニアガスを用いて固体
微粒子を流動化させ、鋼合金物品等を冷却する方法が記
載されている。
JP-A-63-100124 describes a heat treatment apparatus for fluidizing solid fine particles with an inert gas such as nitrogen and cooling a steel material.
No. 9615, JP-A-1-201418,
A method of fluidizing solid fine particles using He gas, N 2 gas and dissociated ammonia gas to cool a steel alloy article or the like is described.

【0006】[0006]

【発明が解決しようとする課題】固体微粒子を流動化さ
せるガスとしては、従来の油以上の冷却効果をもたらす
2 ガスが有効であるが、加熱された鋼の投入時に爆発
の危険がある。また、Heガスを用いると不活性ガスの
ために爆発の危険はないが高価である。そこで、固体微
粒子の流動化に用いたHeガスを回収して再使用するこ
とも行われるが、回収装置及び再生装置が必要であり、
コスト的に必ずしも有利とは言えない。
As a gas for fluidizing solid fine particles, H 2 gas, which provides a cooling effect higher than that of conventional oils, is effective, but there is a danger of explosion when charged with heated steel. When He gas is used, there is no danger of explosion due to an inert gas, but it is expensive. Therefore, the He gas used for fluidizing the solid fine particles may be collected and reused, but a collecting device and a regenerating device are required.
It is not always advantageous in terms of cost.

【0007】さらに、安価で安全なN2 ガスを用いるこ
とも行われているが、該N2 ガスは冷却能力の点におい
て他のガスに比べると劣るため、焼入れ性の悪い鋼には
適用できない等の問題があった。
[0007] Furthermore, although cheap and safe N 2 gas is used, the N 2 gas is inferior to other gases in terms of cooling ability, so that it cannot be applied to steel having poor hardenability. And so on.

【0008】本発明は、前記事情に鑑み、為されたもの
で、冷却能力に優れ、環境に優しく、しかも経済的な鋼
の冷却方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide an economical and economical steel cooling method that is excellent in cooling capacity.

【0009】[0009]

【課題を解決するための手段】本願請求項1は、鋼の冷
却を固体微粒子からなる流動層中において吸熱型変成ガ
スを供給しつつ鋼の冷却を行う方法である。この方法に
よれば、熱処理装置に付属しているガス変成炉からの吸
熱型変成ガスを前記固体微粒子流動化に利用することが
できるため、固体微粒子流動化のためのガス発生、供給
装置等を別に準備する必要がなく経済的である。
A first aspect of the present invention is a method for cooling steel while supplying an endothermic metamorphic gas in a fluidized bed made of solid fine particles. According to this method, since the endothermic metamorphic gas from the gas shift furnace attached to the heat treatment apparatus can be used for the fluidization of the solid fine particles, a gas generation and supply device for fluidizing the solid fine particles can be used. It is economical because there is no need to prepare separately.

【0010】さらに、従来、熱処理操業時には、熱処理
炉内の雰囲気ガスに不足が生じることがないように、熱
処理炉内への必要供給分より多い吸熱型変成ガスを前記
ガス変成炉において生成し、余剰分を不使用処分してお
り、本発明では該余剰吸熱型変成ガスを前記固体微粒子
の流動化に利用することができ経済的である。
[0010] Conventionally, during the heat treatment operation, an endothermic conversion gas is generated in the gas conversion furnace in an amount larger than a necessary supply to the heat treatment furnace so that the atmosphere gas in the heat treatment furnace does not become insufficient. The surplus is discarded unused, and the present invention is economical because the surplus endothermic metamorphic gas can be used for fluidizing the solid fine particles.

【0011】さらに、前記吸熱型変成ガスには、約40
%のN2 ガスのほか、H2 ガスを約35%含み、N2
スのみの場合に比べて優れた冷却効果が得られる。
Further, the endothermic type modified gas contains about 40
% Of N 2 gas and about 35% of H 2 gas, and an excellent cooling effect can be obtained as compared with the case of using only N 2 gas.

【0012】本願請求項2は、固体微粒子からなる流動
層中において浸炭炉から排出される雰囲気ガスを供給し
つつ鋼の冷却を行う方法である。この方法によれば、前
記請求項1と同様に、固体微粒子流動化のためのガス発
生、供給装置等を別に準備する必要がなく、さらに浸炭
炉から排出される雰囲気ガスを有効利用できるため経済
的である。なお、該浸炭炉から排出される雰囲気ガス成
分も前記吸熱型変成ガスとほとんど同様である。
A second aspect of the present invention is a method for cooling steel while supplying an atmospheric gas discharged from a carburizing furnace in a fluidized bed made of solid fine particles. According to this method, there is no need to separately prepare a gas generation and supply device for fluidizing the solid fine particles, and the atmosphere gas discharged from the carburizing furnace can be effectively used, as in the case of the first aspect. It is a target. The atmosphere gas components discharged from the carburizing furnace are almost the same as the endothermic type modified gas.

【0013】請求項3に示す本発明の好ましい実施の一
形態は、前記固体微粒子として、セラミック微粒子を使
用する方法である。該セラミック微粒子は、金属微粒子
の場合のように高温の鋼の表面に固着等することがな
く、多数回の鋼の冷却に使用でき経済的である。
A preferred embodiment of the present invention as set forth in claim 3 is a method using ceramic fine particles as the solid fine particles. The ceramic fine particles do not adhere to the surface of high-temperature steel unlike the case of metal fine particles, and can be used for cooling the steel many times, and are economical.

【0014】請求項4に示す本発明の好ましい実施の一
形態は、前記セラミック微粒子としてアルミナを使用す
る方法である。該アルミナは、化学的、物理的に安定
で、硬く、熱に強いほか、高い比熱を有するため、極め
て好ましい素材である。
A preferred embodiment of the present invention according to claim 4 is a method using alumina as the ceramic fine particles. Alumina is an extremely preferred material because it is chemically and physically stable, hard, resistant to heat, and has a high specific heat.

【0015】請求項5に示す本発明の好ましい実施の一
形態は、流動層でのガス流速が最小流動化流速の5倍以
上30以下であることを特徴とする。ここで、前記最小
流動化流速について説明すると、固体微粒子を充填した
流動層容器の下部から気体を流入させた時、該気体の流
速がある一定の値以上になると、前記流動層内の上部と
下部の圧力差が一定になることが確認される。前記圧力
差が一定になる最小の流速を最小流動化流速と言い、1
Umfと表示される。
In a preferred embodiment of the present invention, the gas flow velocity in the fluidized bed is not less than 5 times and not more than 30 times the minimum fluidization flow rate. Here, to explain the minimum fluidization flow rate, when gas flows from the lower part of the fluidized bed container filled with solid fine particles, when the flow velocity of the gas becomes a certain value or more, the upper part in the fluidized bed It is confirmed that the pressure difference in the lower part is constant. The minimum flow rate at which the pressure difference becomes constant is referred to as the minimum fluidization flow rate, and 1
Umf is displayed.

【0016】そして、前記最小流動化流速でガスが流動
化層内を流れると固体微粒子が流動した状態になり、い
わゆる流動層を形成する。なお、前記1Umfが実際に
流動化層内でどのような流速になっているかは、流動層
容器の大きさや流動層内に配置された固体微粒子の粒径
によって異なる。
When the gas flows in the fluidized bed at the minimum fluidizing velocity, the solid fine particles are in a fluidized state, forming a so-called fluidized bed. The actual flow rate of 1 Umf in the fluidized bed differs depending on the size of the fluidized bed container and the particle size of the solid fine particles arranged in the fluidized bed.

【0017】本発明では、前記流入させる気体の流速
は、流動層容器の大きさに関係なく、5Umfから30
Umfの範囲とされる。すなわち、該流入気体の流速が
5Umf以下の場合には、流動層内の固体微粒子は流動
しているが、冷却能が十分でなく、また、前記流入気体
の流速が30Umf以上になると、固体微粒子と鋼との
間に空隙が増え、固体微粒子と鋼との接触が低下して、
実質的には気体による冷却となり、冷却能が低下し、妥
当でないためである。
In the present invention, the flow rate of the gas to be introduced is from 5 Umf to 30 regardless of the size of the fluidized bed container.
Umf range. That is, when the flow rate of the inflow gas is 5 Umf or less, the solid fine particles in the fluidized bed are flowing, but the cooling capacity is not sufficient, and when the flow rate of the inflow gas is 30 Umf or more, the solid fine particles The gap between the steel and the steel increases, the contact between the solid fine particles and the steel decreases,
This is because cooling is substantially performed by gas, and the cooling capacity is reduced, which is not appropriate.

【0018】[0018]

【発明の実施の形態】以下に、本発明の一実施の形態を
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below.

【0019】[0019]

【実施例1】 供試材:SMC420H 供試材寸法:Ф25mmX100mm (なお、中央部に温度測定用のФ1.7X50mmの穴
を設けてある。) 流動層容器材料:SS400 流動層容器寸法(mm):Ф100X600HX2t 固体微粒子:アルミナ (#120,平均粒径110μ
m) 前記アルミナ、3kgを前記流動層容器内の分散板上に
約220mmの高さまで充填した。前記流動層における
固体微粒子の流動化条件は、1Umf=1.2X10-2
m/sec であり、この時、流動層容器内には、約5.6
リットル/minのガスが流入される。
Example 1 Specimen: SMC420H Dimension of specimen: (25 mm × 100 mm (A hole of Ф1.7 × 50 mm for temperature measurement is provided in the center.) Fluid bed container material: SS400 Fluid bed container dimensions (mm) : $ 100X600HX2t Solid fine particles: Alumina (# 120, average particle size 110μ)
m) 3 kg of the alumina was charged to a height of about 220 mm on the dispersion plate in the fluidized bed container. The fluidization condition of the solid fine particles in the fluidized bed is 1 Umf = 1.2 × 10 −2.
m / sec, and at this time, about 5.6
1 liter / min of gas is introduced.

【0020】まず、前記供試材を浸炭雰囲気中で、87
0℃、1時間保持して浸炭及び拡散処理を施す。得られ
た浸炭処理品の鋼を前記流動層容器の流動層内に供給し
て焼入れ、すなわち、冷却を行った。
First, the test material was placed in a carburizing atmosphere for 87 minutes.
Carburizing and diffusion treatment is performed at 0 ° C. for 1 hour. The obtained carburized steel was supplied to the fluidized bed of the fluidized bed container and quenched, that is, cooled.

【0021】前記冷却は、流動層容器の下部から、45
リットル/minの流量で吸熱型変成ガスを供給して行
った。これは、ほぼ8Umfに相当する。なお、流動層
内のガスの流速は、9.56X10-2m/sec である。
また、吸熱型変成ガスの成分は、一般公知のH2 :35
%、N2 :40%、CO:25%である。
The cooling is performed from the lower part of the fluidized bed vessel by 45
The test was carried out by supplying an endothermic metamorphic gas at a flow rate of liter / min. This corresponds to approximately 8 Umf. The flow velocity of the gas in the fluidized bed is 9.56 × 10 -2 m / sec.
The component of the endothermic metamorphic gas is generally known H 2 : 35.
%, N 2 : 40%, CO: 25%.

【0022】前記実施例における冷却温度曲線aを図1
に示す。同図に比較例として示した曲線bは、供試材、
浸炭及び拡散処理及び供給ガス量等を全く同条件にし
て、流動層容器内に100%のN2 ガスを供給した場合
であり、同図によれば、N2 ガスに比べて本発明の冷却
能が優れていることが確認されるものである。
FIG. 1 shows a cooling temperature curve a in the above embodiment.
Shown in The curve b shown as a comparative example in FIG.
And carburizing and diffusion treatment and the supply amount of gas, etc. in exactly the same conditions, a case of supplying 100% of the N 2 gas into the fluidized bed vessel, according to the figure, the cooling of the present invention as compared to N 2 gas It is confirmed that the performance is excellent.

【0023】[0023]

【実施例2】供試材、流動層容器材料及び固体微粒子の
アルミナ粒子は、前記実施例1と同様にし、流動層容器
寸法を、Ф320X660HX2t(mm)、アルミナ
重量を60Kgとして前記流動層容器内の分散板状に約
380mmの高さまで充填した。
Example 2 The test material, the fluidized bed container material and the alumina particles of the solid fine particles were the same as in the above-mentioned Example 1, and the dimensions of the fluidized bed container were Ф320 × 660HX2t (mm) and the weight of alumina was 60 kg. To a height of about 380 mm.

【0024】その後、前記供試材Sを、図2に示す治具
T(Ф200X285L(mm))に9本〜をセッ
トして、前記実施例1と同様の浸炭処理を施し、治具T
にセットしたまま、前記流動層容器の流動層に供給して
焼入れ、すなわち、冷却を行った。
After that, nine or more test pieces S are set in a jig T (# 200 × 285L (mm)) shown in FIG. 2 and carburizing treatment similar to that in the first embodiment is performed.
, And quenched by supplying to the fluidized bed of the fluidized bed container, that is, cooling.

【0025】この時の固体微粒子の流動化条件は、1U
mf=1.33X10-2m/sec であり、流動層容器の
下部から、約64リットル/minの吸熱型変成ガスが
供給される。この実施例2では、900リットル/mi
nの吸熱型変成ガスを流し、これは、ほぼ14Umfに
相当する。
The condition for fluidizing the solid fine particles at this time is 1 U
mf = 1.33 × 10 −2 m / sec, and an endothermic metamorphic gas of about 64 l / min is supplied from the lower part of the fluidized bed container. In this embodiment 2, 900 liters / mi
n endothermic metamorphic gases are passed, which corresponds to approximately 14 Umf.

【0026】下記表1に、前記浸炭処理及び冷却処理を
施した9本〜の供試材Sの硬度測定結果を示す。硬
度測定は、図3に示す供試材Sの長さ方向の半分位置X
を切断し、この切断面の中心の硬さ(HRC)を測定し
たものである。
Table 1 below shows the hardness measurement results of nine or more specimens S subjected to the carburizing treatment and the cooling treatment. The hardness was measured at a half position X in the length direction of the test material S shown in FIG.
Was cut, and the hardness (HRC) at the center of the cut surface was measured.

【0027】[0027]

【表1】 なお、比較例として示した油焼入れは、供試材及び浸炭
及び拡散処理条件は前記実施例2と同様であり、油温1
40℃の焼入れ油(ハイテンプA)にて焼入れを行った
ものである。両者の数値を比較検討しますと、その硬度
にさほどの相違がなく実用性のあることが確認された。
[Table 1] In the oil quenching shown as a comparative example, the test materials, carburizing and diffusion treatment conditions were the same as those in Example 2, and the oil temperature was 1
Hardened with a quenching oil (High Temp A) at 40 ° C. Comparing the two values, it was confirmed that there was no significant difference in the hardness and that it was practical.

【0028】[0028]

【実施例3】供試材、流動層容器材料、固体微粒子のア
ルミナ粒子、流動層容器寸法、アルミナ重量、アルミナ
充填高さ、治具Tへのセット、浸炭処理条件、固体微粒
子の流動化条件及び硬度測定方法を前記実施例2と同一
にして、吸熱型変成ガスに変えて、浸炭炉から排出され
た雰囲気ガスを使用した。
Example 3 Sample material, fluidized bed container material, solid particulate alumina particles, fluidized bed container dimensions, alumina weight, alumina filling height, setting to jig T, carburizing treatment conditions, solid particulate fluidization conditions The method for measuring the hardness was the same as that in Example 2, and the atmosphere gas discharged from the carburizing furnace was used instead of the endothermic modified gas.

【0029】前記表1に、本実施例、すなわち、前記浸
炭炉から排出された雰囲気ガスを使用して冷却処理を施
した9本〜のS供試材Sの硬度測定結果を示す。得
られた硬度測定数値を比較検討しますと、前記実施例2
における吸熱型変成ガスを使用した場合とほぼ同じであ
り、実用性のあることが確認された。
Table 1 shows the results of the hardness measurement of the present Example, that is, nine or more S specimens S which had been subjected to a cooling treatment using the atmospheric gas discharged from the carburizing furnace. When comparing the obtained hardness measurement values, it is found that the above Example 2
This is almost the same as the case where the endothermic metamorphic gas is used, and it is confirmed that it is practical.

【0030】なお、表中のH値は、ジョミニ試験結果及
びグロスマンチャ−トより算出した数値であり、その数
値には大差がないことが確認された。
The H values in the table are numerical values calculated from the results of the Jomini test and the gross man chart, and it was confirmed that there was no great difference between the numerical values.

【0031】[0031]

【発明の効果】本発明によれば、流動層を用いた鋼の冷
却において、固体微粒子流動化のためのガス発生、供給
装置等を別に準備する必要がなく、経済的であるととも
に、N 2 ガス使用に比べて優れた冷却効果を得ることが
でき、さらに油焼入れとさほど相違しない硬度を得るこ
とができ、実用性を有し、同時に油、ソルト焼入れ等に
伴う環境問題の解決に役立つものである。
According to the present invention, cooling of steel using a fluidized bed is performed.
Gas generation and supply for fluidization of solid fine particles
It is economical because there is no need to prepare separate equipment, etc.
And N Two Excellent cooling effect compared to using gas
To obtain hardness that is not so different from oil quenching.
It has practicality and at the same time oil and salt quenching
It helps solve the accompanying environmental problems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷却曲線とN2 ガス使用の冷却曲
線の比較線図である。
FIG. 1 is a comparison diagram of a cooling curve according to the present invention and a cooling curve using N 2 gas.

【図2】治具への供試材セット状態を示す斜視図であ
る。
FIG. 2 is a perspective view showing a test material set state on a jig.

【図3】供試材の正面図である。FIG. 3 is a front view of a test material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 四條 隆幹 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 虻川 文隆 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takamitsu Shijo 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Fumitaka Abkawa 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体微粒子からなる流動層中において吸
熱型変成ガスを供給しつつ冷却を行うことを特徴とする
鋼の冷却方法。
1. A method for cooling steel, comprising cooling in a fluidized bed made of solid fine particles while supplying an endothermic metamorphic gas.
【請求項2】 固体微粒子からなる流動層中において浸
炭炉から排出される雰囲気ガスを供給しつつ冷却を行う
ことを特徴とする鋼の冷却方法。
2. A method for cooling steel, comprising cooling in a fluidized bed made of solid fine particles while supplying an atmospheric gas discharged from a carburizing furnace.
【請求項3】 固体微粒子がセラミック微粒子であるこ
とを特徴とする請求項1又は2に記載の鋼の冷却方法。
3. The method for cooling steel according to claim 1, wherein the solid fine particles are ceramic fine particles.
【請求項4】 セラミック微粒子がアルミナであること
を特徴とする請求項3に記載の鋼の冷却方法。
4. The method for cooling steel according to claim 3, wherein the ceramic fine particles are alumina.
【請求項5】 流動層でのガス流速が最小流動化流速の
5倍以上30倍以下であることを特徴とする請求項1、
2、3又は4に記載の鋼の冷却方法。
5. The method according to claim 1, wherein the gas flow velocity in the fluidized bed is 5 to 30 times the minimum fluidization flow velocity.
5. The method for cooling steel according to 2, 3, or 4.
JP10118299A 1999-04-08 1999-04-08 Steel cooling method Expired - Fee Related JP3852652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10118299A JP3852652B2 (en) 1999-04-08 1999-04-08 Steel cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10118299A JP3852652B2 (en) 1999-04-08 1999-04-08 Steel cooling method

Publications (2)

Publication Number Publication Date
JP2000290726A true JP2000290726A (en) 2000-10-17
JP3852652B2 JP3852652B2 (en) 2006-12-06

Family

ID=14293860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10118299A Expired - Fee Related JP3852652B2 (en) 1999-04-08 1999-04-08 Steel cooling method

Country Status (1)

Country Link
JP (1) JP3852652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068678A1 (en) * 2004-01-15 2005-07-28 Ryobi Ltd. Heat treatment method for aluminum die-cast product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068678A1 (en) * 2004-01-15 2005-07-28 Ryobi Ltd. Heat treatment method for aluminum die-cast product

Also Published As

Publication number Publication date
JP3852652B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US8182617B2 (en) Nitrogen alloyed stainless steel and process
CZ293506B6 (en) Method for hardfacing a metal surface with a wear-resistant coating and slurry for hardfaung a metal surface
US3598638A (en) Diffusion metallic coating method
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
JPS5921267B2 (en) Surface hardening method for metal substrates
JP2000290726A (en) Method for cooling steel
EP0577086A1 (en) Apparatus for surface treatment
KR900014613A (en) Powder metallurgy manufacturing process and powder metallurgy parts
Yoo Reactive binders for metal parts produced by Three Dimensional Printing
JPH0225560A (en) Powdery nitriding agent and method for nitriding steel surface using the same agent
US4380479A (en) Foils of brittle alloys
Huttunen-Saarivirta et al. Particle angularity effects on the elevated-temperature erosion–oxidation behaviour of aluminium diffusion coatings on 9% Cr steel
JP2607254B2 (en) Manufacturing method of high carbon steel standard sample for carbon analysis
EP0494977B1 (en) Method of modifying the surface of a substrate
Yadav et al. On microstructure, hardness and wear behaviour of flame sprayed Co base alloy coating deposited on mild steel
RU2221898C2 (en) Process of thermal-diffusion treatment of articles made of metals and alloys
JP4158015B2 (en) Method for producing sintered body and sintered body
JPS6389615A (en) Method for quenching in fluidized bed
Röttger et al. Diffusion and Phase Transformation at the Interface between an Austenitic Substrate and a Thermally Sprayed Coating of Ledeburitic Cold‐Work Tool Steel
Mokarram Fundamental investigation of ultrasonic powder consolidation and its application to hardfacing of forging dies
RU2109843C1 (en) Method for manufacturing parts with hardened working surface
JP6786111B2 (en) Method of suppressing sooting in vacuum carburizing method
Iwama et al. Falling Angle of Fe‐C‐Based Alloy Droplet on Coke and Graphite
EP0066019B1 (en) Diffusion coating composition and method
Khaleghi Sintering and heat treatment of P/M low alloy steels prepared from a partially prealloyed powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees