JP3763088B2 - Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same - Google Patents

Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same Download PDF

Info

Publication number
JP3763088B2
JP3763088B2 JP19663798A JP19663798A JP3763088B2 JP 3763088 B2 JP3763088 B2 JP 3763088B2 JP 19663798 A JP19663798 A JP 19663798A JP 19663798 A JP19663798 A JP 19663798A JP 3763088 B2 JP3763088 B2 JP 3763088B2
Authority
JP
Japan
Prior art keywords
case
aluminum alloy
battery
temperature
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19663798A
Other languages
Japanese (ja)
Other versions
JP2000017364A (en
Inventor
義和 鈴木
正勝 吉田
佑二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP19663798A priority Critical patent/JP3763088B2/en
Publication of JP2000017364A publication Critical patent/JP2000017364A/en
Application granted granted Critical
Publication of JP3763088B2 publication Critical patent/JP3763088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はリチウムイオン電池で代表される各種電子機器用角型電池のケースなど、各種の電池ケースに用いられるアルミニウム合金板およびその製造方法に関し、特に70〜90℃程度の高温に温度上昇して内圧が増大した時、すなわち高温内圧負荷時においてもフクレが発生しにくい耐フクレ性に優れた電池ケース用アルミニウム合金板およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に携帯電話器等に搭載される角型のリチウムイオン二次電池は、角型のケース内に陰極、陽極および電解質等の電池構成部材を充填した後、ケースの上部に蓋体を溶接等により取付け、さらに外側を樹脂で覆い、電極端子部分を露出させた状態で使用される。このようなリチウムイオン二次電池に使用される角型ケースは、複数の工程の絞り、しごき加工を組合せた多段プレス加工により成形されるのが通常であり、このような角型ケースの成形素材としては従来からスチール板が用いられているが、最近では軽量化の要求から一部でアルミニウム合金板が用いられるようになっている。
【0003】
ところでリチウムイオン二次電池等の電池ケースの問題点として、高温時のフクレの問題がある。すなわち、リチウムイオン電池などの二次電池は、充電−放電の繰返しにより発熱が生じるが、それに加えて携帯電話等に搭載されて夏季などの外気温の高い条件下で自動車内に放置された場合、最高で70〜90℃程度の高温に曝される。このような高温下に長時間曝された場合、電池内部で反応が進んで気泡等の発生により内圧が高まってケースにフクレ変形が生じることがある。そしてこのフクレ変形量が過大になれば、携帯電話等の内部の電子部品を圧迫したり、電子部品のケースが変形したりする等の不都合が生じやすく、またケースと蓋体との溶接部分等に亀裂が生じることもあり、この場合は電池内の電解物質の漏洩が生じ、電池周辺の電子機器部品を腐食させたりする。このように電池ケースのフクレは、電子機器の性能を損ない、場合によっては安全上の問題を招くこともある。したがって電池ケースの素材としては、温度上昇による内圧の増加によってフクレが生じないことが要求される。
【0004】
また角型電池ケースは、前述のように多段プレスにより成形されるところから、プレス成形性が良好であることが要求される。また成形性に関連した要求性能として、プレス加工によって得られたケースの形状が崩れていれば、蓋体と接合組立する際にねじれたり、目的とする形状が得られなかったりし、さらには形状が極端に崩れている場合には、組立てが不可能となる事態が生じるから、プレス加工品によって得られたケースについては、組付け前の形状精度が良好であることが求められている。
【0005】
このようにリチウムイオン電池などの角型二次電池のケースには、70〜90℃程度の高温による内圧増加時にもフクレが生じにくく、しかもプレス成形性が良好であることが必要である。
【0006】
従来この種の角型電池ケースの成形素材として使用されていたスチール板の場合は、プレス成形性が良好でしかも比較的高強度を有するものを容易に得ることができ、そのため前述のような高温内圧負荷時におけるフクレの問題についても、実用上支障ない程度まで回避することが可能であった。しかしながらアルミニウム合金板の場合は、プレス成形性は比較的良好であっても、材料強度はスチール板よりも低いのが通常である。そこで電池の軽量化のためにケースにアルミニウム合金板を用いる場合は、スチール板を用いる場合よりも板の肉厚を大きくして剛性を高め、これによってフクレ変形を防止しようとしているのが実情である。ところがこのように肉厚を大きくすることは、軽量化の目的に反し、また材料使用量も大きくなってコスト上昇を招く。
【0007】
【発明が解決しようとする課題】
前述のようにリチウムイオン電池で代表される角型電子機器用二次電池などの電池ケースに使用されるアルミニウム合金板として、電池を充分に軽量化するためにケースのアルミニウム合金板を薄肉化してもケースのフクレ変形が生じにくく、しかもプレス成形性も良好なアルミニウム合金板を提供することを目的としている。具体的には、成形されたケースの段階での肉厚が0.35〜0.6mm程度となるように薄肉化した場合でも、70〜90℃程度の高温に曝されてその温度上昇に伴ない内圧が増加してもフクレ変形の発生を充分に防止でき、かつプレス成形性も良好な電池ケース用アルミニウム合金板を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者等は、角型の小型電池ケースを加熱して内圧を与えたときのケースのフクレ挙動を検討した結果、このフクレは、特定部位への応力集中による塑性変形と、高温で内圧が加えられた状態で進行するクリープ変形によって生じていることが判明した。そして特に高温内圧負荷状態でのクリープ変形に着目し、材料の成分組成、組織状態、特性値等の面から、クリープ変形を防止してケースのフクレ変形の発生を防止する手段を検討した結果、Al−Mn系アルミニウム合金をベースとし、Mnの固溶量を適切に調整するとともに、材料の耐力値と結晶粒平均面積を適切に調整することによって、リチウムイオン電池で代表される角型電池等の電池ケースとして、70〜90℃の高温時における内圧増加によるフクレ変形を確実に防止することができ、かつ良好なプレス成形性も得られることを見出し、この発明をなすに至ったのである。
【0009】
具体的には、請求項1の発明の電池ケース用アルミニウム合金板は、Mn0.8〜2.0%を含有し、かつ不純物元素として、Siが0.04〜0.2%、Feが0.04〜0.6%に規制され、残部がAlおよび不可避的不純物よりなり、かつMn固溶量が0.25%以上で、耐力値が150〜220N/mm2の範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500〜8000μm2の範囲内にあることを特徴とするものである。
【0010】
また請求項2の発明の電池ケース用アルミニウム合金板は、Mn0.8〜2.0%を含有するとともに、Cu0.05〜0.25%、Cr0.02〜0.1%のうちの1種以上を含有し、かつ不純物として、Siが0.04〜0.2%、Feが0.04〜0.6%に規制され、残部がAlおよび不可避的不純物よりなり、かつMn固溶量が0.25%以上で、耐力値が150〜220N/mm2の範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500〜8000μm2の範囲内にあることを特徴とするものである。
【0011】
さらに請求項3〜請求項6では上述のような電池ケース用アルミニウム合金板を製造する方法を提示している。
【0012】
すなわち請求項3の発明の電池ケース用アルミニウム合金板の製造方法は、Mn0.8〜2.0%を含有し、かつ不純物として、Siが0.04〜0.2%、Feが0.04〜0.6%に規制され、さらに必要に応じてCu0.05〜0.25%、Cr0.02〜0.1%のうちの1種以上を含有し、残部がAlおよび不可避的不純物よりなる合金を素材とし、その素材に対して320〜410℃の範囲内の温度で0.5〜20時間保持する熱間圧延前予備加熱処理を行なった後、材料温度が410℃を越えないように制御して熱間圧延を行ない、その後圧下率35〜70%の最終冷間圧延を施し、これによりMn固溶量が0.25%以上で、耐力値が150〜220N/mm2の範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500〜8000μm2の範囲内にあるアルミニウム合金板を得ることを特徴とするものである。
【0013】
また請求項4の発明は、請求項3に記載の電池ケース用アルミニウム合金板の製造方法において、前記熱間圧延の後、一次冷間圧延として圧下率が15〜65%の冷間圧延を行ない、次いで昇温速度5℃/sec以上で380〜580℃の範囲内の温度に加熱して0〜200sec保持後直ちに冷却速度5℃/sec以上で冷却する中間焼鈍を行ない、その後前記最終冷間圧延を施すことを特徴とするものである。なおここで、中間焼鈍における0sec保持とは、所定温度到達後直ちに冷却することを意味する。
【0014】
そしてまた請求項5の発明は、請求項3もしくは請求項4に記載の電池ケース用アルミニウム合金板の製造方法において、前記最終冷間圧延の後、昇温速度10〜100℃/hrで160〜210℃の範囲内の温度に加熱して1〜8hr保持する最終焼鈍を施すことを特徴とするものである。
【0015】
また請求項6の発明は、請求項3もしくは請求項4に記載の電池ケース用アルミニウム合金板の製造方法において、前記最終冷間圧延の後、昇温速度5℃/sec以上で180〜260℃の範囲内の温度に加熱して0〜200sec保持後、冷却速度5℃/sec以上で冷却する最終焼鈍を施すことを特徴とするものである。
【0016】
【発明の実施の形態】
先ずこの発明の電池ケース用アルミニウム合金板における成分組成の限定理由について説明する。
【0017】
Mn:
Mnはこの発明で用いているAl−Mn系合金の主要添加元素であり、固溶によって高温内圧負荷時の耐フクレ性向上に寄与する元素である。これは、高温内圧負荷時において固溶Mnがクリープ変形の転位移動に対する抵抗として機能するためであり、後述するようにMn固溶量が0.25%以上でその効果を有効に発揮することができる。Mn量が0.8%未満ではMn固溶量を0.25%以上確保することが困難となって上述の効果が充分に得られず、また機械的強度も低くなる。一方Mn量が2.0%を越えれば、粗大な晶出物が多くなり、プレス成形性が低下して電池ケース用素材として不適当となる。したがってMn量は0.8〜2.0%の範囲内とした。
【0018】
Si:
Siは通常のアルミニウム合金において不純物として含まれる元素であるが、この発明の場合、SiはMnの析出を促進してMn固溶量を低下させてしまうという悪い影響を及ぼす。特にSi量が0.2%を越えれば、固溶Mnによるフクレ防止効果が損なわれ、高温内圧負荷時の耐フクレ性が低下する。一方Si量を0.04%未満とすることは、材料特性の向上に対してそれ以上の特段の効果がないにもかかわらず、高純度地金を必要として高コスト化を招く。そこでSi量は0.04〜0.2%の範囲内に規制することとした。
【0019】
Fe:
Feも通常のアルミニウム合金において不純物として含有される元素であるが、この発明の場合、Feは多量に含有されれば粗大な晶出物が生じやすくなって成形性を阻害する原因となる。特にFe量が0.6%を越えればMnとともに粗大な晶出物を形成する傾向が強くなり、固溶Mn量を減少させて高温内圧負荷時の耐フクレ性を低下させるとともに、成形性も悪化させる。一方Fe量を0.04%未満とすることは、材料特性の向上に対してそれ以上の特段の効果がないにもかかわらず、高純度地金を必要として高コスト化を招く。そこでFe量は0.04〜0.6%の範囲内に規制することとした。
【0020】
Cu:
Cuの添加は機械的強度の向上に有効であり、また高温内圧負荷時の耐フクレ性の向上にも有効である。そこで請求項2の発明の電池ケース用アルミニウム合金において選択的にCuを添加することとした。Cu量が0.05%未満では上述の効果が充分に得られず、一方Cu量が0.25%を越えれば材料の耐食性の低下や成形性の低下を招くおそれがある。そこでCuの添加量は0.05〜0.25%の範囲内とした。
【0021】
Cr:
Crの添加も機械的強度の向上に有効であり、また結晶粒サイズの均一化を図って特性のばらつきを低減するために有効である。そこで請求項2の発明の電池ケース用アルミニウム合金板において選択的にCrを添加することとした。Cr量が0.02%未満では上述の効果が充分に得られず、一方Cr量が0.1%を越えれば粗大な金属間化合物粒子が生成されやすく、成形性等に悪影響を与えるおそれがある。そこでCrの添加量は0.02〜0.1%の範囲内とした。
【0022】
以上の各元素のほかは基本的にはAlおよび不可避的不純物とすれば良い。但し、一般のアルミニウム合金においては鋳塊結晶粒微細化のためにTiを単独で、あるいはTiをBと組合せて添加することがあり、この発明の場合も0.1%以下のTi、0.03%以下のBを含有していても良い。
【0023】
なお一般にアルミ缶胴材として使用されているAl−Mn系合金は1%程度のMgが含有されることが多く、このような缶胴材と同一の設備で溶解鋳造した場合にはMgが不純物として混入することがあるが、電池ケースとしてレーザー溶接される場合でも、不純物としてのMg量は、一般的な不純物元素の許容量である0.05%以内であれば差し支えない。
【0024】
さらにこの発明の電池ケース用アルミニウム合金板では、Mn固溶量を0.25%以上とする必要がある。既に述べたように固溶Mnは高温内圧負荷時においてクリープ変形の転位移動に対する抵抗として機能し、高温内圧負荷時における耐フクレ性の向上に寄与する。実際のアルミニウム合金板中におけるMnの固溶量は、例えば図1に示すようなフェノール抽出分析によって測定することができる。ここでMn固溶量が0.25%未満では前述のような効果が充分に得られないから、Mn固溶量は0.25%以上とする必要があるが、0.35%以上とすれば特に良好な耐フクレ性を得ることができる。
【0025】
またこの発明の電池ケース用アルミニウム合金板においては、耐力値を150〜220N/mm2の範囲内に調整する必要がある。耐力値が150N/mm2未満では、成形されたケースに内圧が加わった場合に単なる塑性変形によるフクレが生じやすくなる。一方耐力値が220N/mm2を越えれば、成形が困難となるに加え、成形できたとしても組織中の可動転位の数が多くなるため、クリープ変形が生じやすくなって逆に高温内圧負荷時の耐フクレ性を低下させる。したがって耐力値は150〜220N/mm2の範囲内とする必要がある。このように耐力値はむやみに高くすれば良いというものではなく、特に150〜220N/mm2の範囲内で優れた耐フクレ性が得られるのである。
【0026】
さらにこの発明の電池ケース用アルミニウム合金板は、金属組織条件として、圧延方向に平行な断面での結晶粒の平均面積を500〜8000μm2の範囲内に調整する必要がある。すなわちクリープ変形には素材中の空孔の拡散が関与し、その拡散が速い場合にクリープ変形が助長されるが、結晶粒が小さく粒界が多い場合には、粒界に沿っての拡散の発生頻度が大きくなり、クリープ変形の進行が助長されてしまう。そして特に結晶粒の平均面積が500μm2より小さければクリープ変形によるフクレが生じやすくなり、一方結晶粒の平均面積が8000μm2を越えれば成形性に問題が生じる。したがって圧延方向に平行な断面での結晶粒の平均面積を500μm2〜8000μm2の範囲内とすることが、高温内圧負荷時における耐フクレ性と成形性とを両立させるために必要である。
【0027】
次にこの発明の電池ケース用アルミニウム合金板の製造方法について説明する。
【0028】
先ず前述のような成分組成のアルミニウム合金を常法に従って溶解鋳造する。鋳造方法としては半連続鋳造法(DC法)および板連続鋳造法(CC法)のいずれを用いても良い。但し、高いMn固溶量を確保するためにはCC法が有利であり、一方諸特性の安定性の点ではDC法が有利である。
【0029】
鋳塊もしくは連続鋳造板に対しては、熱間圧延に先立って予備加熱を行なう。この予備加熱は320〜410℃の範囲内の温度で0.5〜20時間保持の条件で行なう。熱間圧延前予備加熱の温度が410℃を越えるかまたは保持時間が20時間を越えれば、Mnの析出が過度に生じてMn固溶量が少なくなり、最終的に電池ケースの高温内圧負荷時における耐フクレ性が低下する。一方熱間圧延前予備加熱の温度が320℃未満または保持時間が0.5時間未満では、熱間圧延を安定して行なうことが困難となる。
【0030】
なお一般に鋳塊に対して均質化処理(均熱処理)を施してから改めて別工程で熱間圧延温度まで加熱するために熱間圧延前の直前加熱を行なうこともあり、この発明の場合も鋳塊均熱処理と熱間圧延前の直前加熱とを分離して行なっても良いが、その場合には均熱処理の温度もこの発明で規定する熱間圧延前予備加熱と同じ範囲内の温度(320〜410℃)で行なう必要があり、また均熱処理の時間と熱間圧延前の直前加熱の時間との合計を0.5〜20時間の範囲内とする必要がある。
【0031】
熱間圧延は、その熱間圧延中の材料温度が410℃を越えないように制御する必要がある。熱間圧延中の材料温度が410℃を越えれば、Mnの析出が過度に生じてMn固溶量が少なくなり、最終的に電池ケースの高温内圧負荷時における耐フクレ性が低下する。なお熱間圧延における圧下率は特に限定しないが、通常は50%以上の圧下を加えることが望ましい。また予備加熱終了後、熱間圧延終了までの時間は1時間以内とすることが望ましい。
【0032】
熱間圧延後には、請求項3で規定しているように直ちに最終冷間圧延を行なって最終板厚とするか、あるいは請求項4において規定しているように一次冷間圧延を行なって急速加熱−急速冷却による中間焼鈍を施し、その後最終冷間圧延を行なって最終板厚とする。いずれの場合も最終冷間圧延の圧延率は35〜70%の範囲内とする必要がある。最終冷間圧延の圧延率が35%未満では最終板の強度が不足し、電池ケースとして用いた場合に初期の塑性変形により大きなフクレが生じてしまうおそれがある。一方最終冷間圧延の圧延率が70%を越えれば、耐力値などの機械的強度は充分であるが、成形が困難となり、また多数の可動転位が組織中に導入されてしまうため、最終的に成形された後の電池ケースにおける可動転位も多くなり、クリープ変形が生じやすくなって高温内圧負荷時における耐フクレ性が低下してしまう。したがって最終冷間圧延における圧延率は、良好な耐フクレ性を有する電池ケースを得るために、35〜70%の範囲内とする。なお請求項3において規定しているように熱間圧延後直ちに最終冷間圧延を施す方法では、熱間圧延終了温度が低くて熱間圧延工程末期における加工歪が無視できない場合、最終冷間圧延の圧延率は35〜60%の範囲内とすることが望ましい。
【0033】
請求項4で規定しているように、熱間圧延後に一次冷間圧延を施してから中間焼鈍を施し、その後最終冷間圧延を施す場合における一次冷間圧延の圧延率は、15〜65%の範囲内とする。一次冷間圧延での圧延率が15%未満では、中間焼鈍において再結晶が不安定となり、最終的に安定した特性の板が得られなくなる。一方一次冷間圧延の圧延率が65%を越えれば、中間焼鈍時の再結晶粒が微細になって最終板における結晶粒平均面積の条件を満たし得なくなって、クリープ変形が進行しやすくなり、高温内圧負荷時の耐フクレ性が低下するおそれがある。
【0034】
一次冷間圧延後に行なう中間焼鈍は、昇温速度5℃/sec以上で急速加熱して380〜580℃の範囲内の温度に0〜200sec保持し、直ちに冷却速度5℃/sec以上で急速冷却する条件とする。なお0sec保持とは、所定温度まで加熱し、到達後直ちに冷却することを意味する。このような急速昇温−短時間加熱−急速冷却による中間焼鈍であれば、中間焼鈍時におけるMnの析出を抑制して固溶Mn量を確保し、最終的な電池ケースにおける高温内圧負荷時の良好な耐フクレ性を確保することができる。ここで、昇温速度、冷却速度が5℃/sec未満の場合(例えばバッチ式の焼鈍装置による中間焼鈍の場合)には、Mnの析出が進行してMn固溶量が少なくなり、最終的に良好な耐フクレ性が得られなくなる。また加熱温度が380℃未満では充分に再結晶させることが困難となり、一方加熱温度が580℃を越えればMnの析出が過度に進行し、また再結晶粒が過度に粗大化するおそれがある。さらに保持時間が200secを越える場合もMnの析出が進行してしまう。なおこのような急速昇温−短時間加熱−急速冷却による中間焼鈍は、通常は連続焼鈍ライン(CAL)により実現することができる。
【0035】
中間焼鈍後の最終冷間圧延は、既に述べたように35〜70%の圧延率で行なえば良い。
【0036】
ここで、熱間圧延後に一次冷間圧延および中間焼鈍を行なわずに直ちに最終冷間圧延を行なう方法と、熱間圧延後に一次冷間圧延および急速昇温−短時間加熱−急速冷却の中間焼鈍を行なってから最終冷間圧延を施す方法とを比較すれば、前者の方法では工程数が少なく、生産性、製造コストの点で有利となり、一方後者の方法では熱延板の板厚条件や2段に分かれた冷間圧延の圧下条件の組合せなどを種々選択することができるため、製造条件の自由度が高く、目標とする特性の板を容易に得ることができるという利点がある。
【0037】
最終冷間圧延によって最終板厚とした板は、そのままで電池ケース用成形素材として用いることができるが、最終冷間圧延後に最終焼鈍を行なっても良い。この最終焼鈍は、冷間圧延で生じた可動転位を低減させる効果をもたらし、さらには一部で固溶Mnの転位近傍への偏析を起こしてクリープ変形時の転位移動に対する抵抗を増大させる効果ももたらし、これによって高温内圧負荷時における耐フクレ性をより一層向上させることができる。
【0038】
このような最終焼鈍の条件としては、請求項5において規定しているように、昇温速度10〜100℃/hrで160〜210℃の範囲内の温度に加熱して1〜8hr保持する条件、あるいは請求項6において規定しているように、昇温速度5℃/sec以上で180〜260℃の範囲内の温度に加熱して0〜200sec保持後、5℃/sec以上の冷却速度で冷却する条件を適用することができる。
【0039】
ここで、請求項5で規定する最終焼鈍において、昇温速度が10℃/hr未満では焼鈍に要する時間が不必要に長くなるため不経済となり、100℃/hrを越えればバッチ式の焼鈍で、材料を均一に加熱することが困難となる。また加熱保持温度が160℃未満または加熱保持時間が1時間未満では、最終焼鈍による効果が充分に得られず、一方加熱保持温度が210℃を越えるかまたは加熱保持時間が8時間を越えれば、Mnの固溶量が少なくなるともに耐力値も低下し、高温内圧負荷時における電池ケースの耐フクレ性が低下してしまう。
【0040】
一方請求項6で規定する最終焼鈍において、昇温速度、冷却速度が5℃/sec未満では連続焼鈍ライン(CAL)により安定して均一に処理することが困難となる。また加熱保持温度が180℃未満では最終焼鈍による効果が充分に得られず、一方加熱保持温度が260℃を越えるかまたは加熱保持時間が200secを越えれば、Mn固溶量が少なくなるとともに耐力値も低下し、高温内圧負荷時における電池ケースの耐フクレ性が低下してしまう。
【0041】
前述の請求項5において規定している条件の最終焼鈍は、バッチ式の焼鈍装置を適用することによって容易に実現することができ、一方請求項6において規定している条件の最終焼鈍は、連続焼鈍ライン(CAL)によって容易に実現することができる。なおこのような最終焼鈍を行なった場合、材料の耐力は最終冷間圧延直後の状態から5〜30N/mm2 程度低下してしまうから、最終焼鈍を施す場合は、最終冷間圧延の圧延率を若干高目の45〜70%の範囲内とすることが望ましい。
【0042】
以上述べたような方法によって、請求項1で規定するようなMn固溶量条件、耐力値条件、および平均結晶粒面積条件を満たす電池ケース成形用素材を得ることができ、この電池ケース成形用素材を用いれば、高温内圧負荷時においても転位の移動に対する抵抗が大きくなるとともに可動転位の数も少なくなり、クリープ変形が生じにくくなるとともに、通常の塑性変形も生じにくくなり、したがって電池ケースのフクレ変形量を小さくすることができ、またプレス成形性も良好となる。
【0043】
【実施例】
実施例1
表1に示される本発明成分組成範囲内の合金A〜D、および本発明成分組成範囲外の比較合金E〜Hについて、DC鋳造法により鋳造した後、表2の製造番号1〜10、表3の製造番号21〜33に示すような条件で熱間圧延前予備加熱−熱間圧延−中間焼鈍(場合によっては省略)−最終冷間圧延−最終焼鈍(場合によっては省略)のプロセスにより厚み0.8mmの板(ケース成形用素材)とした。
【0044】
得られた各板に対し、多段プレス成形を施して、図2に示すように奥行8mm、幅30mmで角Rが1.5mmの角形断面を有しかつ高さが45mmの角型ケース1とした。成形後のケース1について、図3に示すようなフクレ試験機2により加熱内圧フクレ試験を施した。図3のフクレ試験機2は、下方の固定治具3と上方の押え治具4との間に、シリコンゴムからなる受け部材5および同じくシリコンゴムからなる上面シール部材6を介してケース1を挟持し、上方から圧力供給管7を介してケース1内に圧力を加えるようにしたものであり、この実施例では全体を恒温槽中に保持して70℃に加熱保持し、ケース1内に2kgf/cm2 の空気圧を24時間継続して加え、ケースの最大フクレ量を調べた。これは、リチウムイオン電池が加熱されて電池内容物の膨張により内圧が生じた場合をシュミレートしている。
【0045】
ケース成形素材の各板のMn固溶量、耐力、平均結晶粒面積を調べた結果と、成形後のケースについての前述の加熱内圧フクレ試験の結果を表4、表5に示す。なお加熱内圧フクレ試験結果(最大フクレ量)については、1.0mm程度以下で耐フクレ性が良好、1.3mm程度以上で耐フクレ性が不良と判定することができる。
【0046】
【表1】

Figure 0003763088
【0047】
【表2】
Figure 0003763088
【0048】
【表3】
Figure 0003763088
【0049】
【表4】
Figure 0003763088
【0050】
【表5】
Figure 0003763088
【0051】
表4、表5から明らかなように、この発明で規定する成分組成範囲内の合金A〜Dを用い、この発明で規定する製造条件に従って製造して、ケース成形素材のMn固溶量、耐力値、平均結晶粒面積がこの発明で規定する条件を満した製造番号1〜10の各例では、いずれも加熱内圧フクレ量が1.0mm以下と少なく、耐フクレ性が良好であることが判明した。
【0052】
一方製造番号21は、Mn量が少な過ぎた比較合金Eを用いた比較例、製造番号22はMn量が高過ぎかつSi量が過剰な比較合金Fを用いた比較例、製造番号23はSi量が過剰な比較合金Gを用いた比較例、製造番号24はSi量、Fe量ともに過剰な比較合金Hを用いた比較例であり、これらの場合、製造プロセスはこの発明の条件に従ったが、製造番号21(比較合金E)、製造番号23(比較合金G)、製造番号24(比較合金H)の場合は、いずれも固溶Mn量が少なくて、フクレ量が大きくなってしまい、また製造番号22(比較合金F)では耐力値が高過ぎて、ケース成形時に割れが発生してしまった。
【0053】
また製造番号25は、熱間圧延前の予備加熱温度が高過ぎて熱間圧延中の材料の最高温度も高過ぎた比較例であり、この場合はMn固溶量が少な過ぎて、ケースのフクレ量が大きくなった。また製造番号26は熱間圧延前予備加熱を鋳塊均熱処理と熱延直前加熱とに分けて行ない、かつ前者の鋳塊均熱処理の温度が高過ぎた例であるが、この場合平均結晶粒面積が小さ過ぎて、ケースのフクレ量が大きくなった。さらに製造番号27は熱間圧延前予備加熱温度が高過ぎて熱間圧延中の材料温度が高過ぎた例であるが、この場合Mn固溶量が少な過ぎて、ケースのフクレ量が大きくなった。また製造番号28は熱間圧延前予備加熱を鋳塊の均熱処理と熱延直前加熱とに分けて行ない、かつ均熱処理と熱延直前加熱のいずれの温度も高過ぎて、熱間圧延中の材料温度が高過ぎた例であるが、この場合Mn固溶量が少な過ぎるとともに平均結晶粒面積も小さ過ぎて、ケースのフクレ量が大きくなってしまった。
【0054】
一方製造番号29は熱間圧延前予備加熱温度が低過ぎた例であるが、この場合は熱間圧延の続行が困難となってしまった。
【0055】
さらに製造番号30、製造番号31は、中間焼鈍の保持時間が長過ぎるとともに昇温速度、冷却速度が遅過ぎた比較例であるが、これらの場合、Mn固溶量が少な過ぎ、また平均結晶粒面積が大き過ぎて、ケースのフクレ量が大きくなるとともに、ケース成形時に一部で肌荒れが発生してしまった。また製造番号32は最終冷間圧延率が大き過ぎた比較例であるが、この場合は耐力値が大き過ぎ、ケースのフクレ量が大きくなるとともに、ケース成形時に一部で肌荒れが発生した。そしてまた製造番号33はバッチ焼鈍による最終焼鈍の加熱温度が高過ぎた比較例であり、この場合はMn固溶量が少な過ぎるとともに耐力値が低く、ケースのフクレ量が大きくなってしまった。
【0056】
実施例2
表1に示される本発明成分組成範囲内の合金B,Cおよび本発明成分組成範囲外の合金Gについて、CC法により板厚6mmの板状の鋳造材を作製し、表6の製造番号11〜16;34〜36に示すような条件で熱間圧延前予備加熱−熱間圧延−中間焼鈍(場合によっては省略)−最終冷間圧延−最終焼鈍(場合によっては省略)のプロセスにより厚み0.8mmの板(ケース成形用素材)とした。得られた各板について、実施例1と同様に成形して角型ケースとし、加熱内圧フクレ試験に供した。
【0057】
ケース成形素材のMn固溶量、耐力、平均結晶粒面積を調べた結果と、ケース成形後の加熱内圧試験結果を表7に示す。
【0058】
【表6】
Figure 0003763088
【0059】
【表7】
Figure 0003763088
【0060】
表7に示すように、この発明で規定する成分組成範囲内の合金B,Cを用い、この発明で規定する製造条件に従って製造して、ケース成形素材のMn固溶量、耐力値、平均結晶粒面積がこの発明で規定する条件を満たした製造番号11〜16の各例では、いずれもケースの加熱内圧フクレ量が1.0mm以下と小さく、耐フクレ性が良好であることが判明した。
【0061】
一方製造番号34,35は、いずれも熱間圧延前予備加熱の温度が高過ぎて、熱間圧延中の材料最高温度が高過ぎた比較例であるが、これらの場合はMn固溶量が少な過ぎて、ケースのフクレ量が大きくなってしまった。また製造番号36はSi量が過剰な比較合金Gを用いたものであり、この場合製造プロセス条件はこの発明で規定する範囲内であったが、Mn固溶量が少な過ぎて、ケースのフクレ量が大きくなってしまった。
【0062】
【発明の効果】
請求項1、請求項2の電池ケース用アルミニウム合金板によれば、Al−Mn系アルミニウム合金板として成分組成を適切に調整するばかりでなく、特にMn固溶量、耐力値、平均結晶粒面積を適切な範囲に調整することによって、電池ケースとした場合の高温内圧負荷時におけるクリープ変形および塑性変形が生じにくくなり、そのためリチウムイオン電池で代表される電池のケースとして、70〜90℃程度の高温に曝されて内圧が加わる用途に使用してもケースのフクレが生じにくく、かつケースの成形のために必要な成形性も良好である。そして前述のように耐フクレ性が良好であることから、剛性を増すために肉厚を大きくする必要がなくなり、そのため従来よりも薄肉化してケースのより一層の軽量化を図ることが可能となる。
【0063】
また請求項3〜請求項6の製造方法によれば、上述のように電池ケースとして用いて高温内圧負荷時のフクレが少なくかつ成形性も良好なケース成形用素材を実際に量産的規模で製造することができる。
【0064】
なおこの発明による電池ケース用アルミニウム合金板は、リチウムイオン電池の電池ケースに最適であるが、そのほか70〜90℃の高温に曝されて内圧が増加するおそれのある各種の電池ケースに使用して同様な効果を発揮し得ることはもちろんである。
【図面の簡単な説明】
【図1】この発明を実施するにあたって好適に適用される固溶Mn量の測定方法を示すフローチャートである。
【図2】この発明の実施例で成形したケースの断面形状、寸法の一例を示す平面断面図である。
【図3】この発明の実施例で適用した加熱内圧フクレ試験機を示す略解図である。
【符号の説明】
1 ケース
2 加熱内圧フクレ試験機[0001]
BACKGROUND OF THE INVENTION
The present invention includes various cases such as cases of square batteries for various electronic devices represented by lithium ion batteries. Battery pack In particular, the aluminum alloy plate used in the case and the manufacturing method thereof have excellent anti-swelling resistance when the temperature rises to a high temperature of about 70 to 90 ° C. and the internal pressure increases, that is, the swell does not easily occur even under high temperature internal pressure load. Battery The present invention relates to an aluminum alloy plate for a glass and a method for producing the same.
[0002]
[Prior art]
Generally, a rectangular lithium ion secondary battery mounted on a mobile phone or the like is filled with battery components such as a cathode, an anode and an electrolyte in a rectangular case, and then a lid is welded to the upper part of the case by welding or the like. It is used in the state where it is attached and the outer side is covered with resin, and the electrode terminal portion is exposed. The rectangular case used for such a lithium ion secondary battery is usually formed by multi-stage press processing that combines drawing and ironing in a plurality of processes. Conventionally, steel plates have been used, but recently aluminum alloy plates have been used in part due to the demand for weight reduction.
[0003]
By the way, there is a problem of swelling at a high temperature as a problem of a battery case such as a lithium ion secondary battery. In other words, secondary batteries such as lithium-ion batteries generate heat due to repeated charging and discharging, but in addition, they are mounted in mobile phones etc. and left in automobiles under conditions of high outside temperature such as in summer. And exposed to a high temperature of about 70 to 90 ° C. at the maximum. When exposed to such a high temperature for a long time, the reaction proceeds inside the battery, the internal pressure increases due to the generation of bubbles and the like, and the case may be deformed. If the amount of deformation is excessive, inconveniences such as pressure on internal electronic parts such as mobile phones and deformation of the case of the electronic parts are likely to occur, and the welded part between the case and the lid, etc. In this case, leakage of the electrolytic substance in the battery may occur, and the electronic device parts around the battery may be corroded. As described above, the swelling of the battery case impairs the performance of the electronic device and may cause a safety problem in some cases. Therefore, the battery case material is required to be free from blistering due to an increase in internal pressure due to temperature rise.
[0004]
Further, since the square battery case is molded by multistage pressing as described above, it is required that the press formability is good. In addition, as a required performance related to formability, if the shape of the case obtained by pressing is broken, it may be twisted when joining and assembling with the lid, or the target shape may not be obtained. Since the situation where the assembling becomes impossible occurs when the shape is extremely collapsed, it is required that the case obtained by the press-processed product has good shape accuracy before assembling.
[0005]
As described above, in the case of a prismatic secondary battery such as a lithium ion battery, it is necessary that bulge does not easily occur even when the internal pressure increases due to a high temperature of about 70 to 90 ° C., and that press formability is good.
[0006]
In the case of a steel plate that has been conventionally used as a molding material for this type of prismatic battery case, it is possible to easily obtain a sheet having good press formability and relatively high strength. The problem of blistering during internal pressure loading could be avoided to the extent that there is no practical problem. However, in the case of an aluminum alloy plate, the material strength is usually lower than that of a steel plate even if the press formability is relatively good. Therefore, in the case of using an aluminum alloy plate for the case to reduce the weight of the battery, the actual situation is that the thickness of the plate is increased and the rigidity is increased compared to the case of using a steel plate, thereby preventing blister deformation. is there. However, increasing the wall thickness in this way is contrary to the purpose of reducing the weight, and also increases the amount of material used, leading to an increase in cost.
[0007]
[Problems to be solved by the invention]
As described above, secondary batteries for square electronic devices represented by lithium ion batteries, etc. Battery pack As an aluminum alloy plate used in the case, to make the battery light enough, even if the case is thinned, the case will not deform easily and the aluminum alloy plate will have good press formability. The purpose is to do. Specifically, even when the thickness of the molded case is reduced to about 0.35 to 0.6 mm, it is exposed to a high temperature of about 70 to 90 ° C. as the temperature rises. Even if the internal pressure increases, the occurrence of blister deformation can be sufficiently prevented, and the press formability is also good. Battery pack It is an object to provide an aluminum alloy sheet for a glass.
[0008]
[Means for Solving the Problems]
The inventors of the present invention Type battery As a result of examining the swelling behavior of the case when an internal pressure is applied by heating the tube, this swelling is caused by plastic deformation due to stress concentration at a specific site and creep deformation that proceeds while internal pressure is applied at a high temperature. It was found that this occurred. And paying attention to creep deformation especially under high temperature internal pressure load state, as a result of examining the means to prevent creep deformation and occurrence of blister deformation of the case from the aspect of material composition, structure state, characteristic value, etc., A prismatic battery represented by a lithium ion battery, etc., based on an Al—Mn-based aluminum alloy and appropriately adjusting the solid solution amount of Mn and appropriately adjusting the proof stress value and the average grain area of the material. Battery pack As a result, the present inventors have found that the deformation due to an increase in internal pressure at a high temperature of 70 to 90 ° C. can be surely prevented and that good press formability can be obtained, and the present invention has been made.
[0009]
Specifically, the invention of claim 1 Battery pack The aluminum alloy plate for the steel contains Mn 0.8 to 2.0%, and as impurity elements, Si is regulated to 0.04 to 0.2%, Fe is regulated to 0.04 to 0.6%, The balance is made of Al and inevitable impurities, the Mn solid solution amount is 0.25% or more, and the proof stress is 150 to 220 N / mm. 2 The average area of crystal grains in a cross section parallel to the rolling direction is 500 to 8000 μm. 2 It is characterized by being within the range.
[0010]
The invention of claim 2 Battery pack The aluminum alloy plate for the steel contains Mn 0.8 to 2.0%, Cu 0.05 to 0.25%, Cr 1 0.02 to 0.1% and one or more impurities As follows, Si is restricted to 0.04 to 0.2%, Fe is restricted to 0.04 to 0.6%, the balance is made of Al and inevitable impurities, and the Mn solid solution amount is 0.25% or more, Yield value is 150 to 220 N / mm 2 The average area of crystal grains in a cross section parallel to the rolling direction is 500 to 8000 μm. 2 It is characterized by being within the range.
[0011]
Further, in claims 3 to 6, as described above. Battery pack A method of manufacturing an aluminum alloy sheet for a glass is presented.
[0012]
That is, the invention of claim 3 Battery pack The manufacturing method of the aluminum alloy plate for the steel contains Mn 0.8 to 2.0%, and the impurities are restricted to 0.04 to 0.2% for Si and 0.04 to 0.6% for Fe. If necessary, an alloy containing at least one of Cu 0.05 to 0.25% and Cr 0.02 to 0.1%, with the balance being Al and inevitable impurities, is used as the material. After performing the pre-heating treatment before hot rolling at a temperature in the range of 320 to 410 ° C. for 0.5 to 20 hours, the hot rolling is performed by controlling the material temperature not to exceed 410 ° C. After that, a final cold rolling with a rolling reduction of 35 to 70% is performed, whereby the Mn solid solution amount is 0.25% or more and the proof stress value is 150 to 220 N / mm. 2 The average area of crystal grains in a cross section parallel to the rolling direction is 500 to 8000 μm. 2 An aluminum alloy plate within the range is obtained.
[0013]
The invention of claim 4 is described in claim 3. Battery pack In the manufacturing method of an aluminum alloy sheet for a steel, after the hot rolling, cold rolling with a reduction rate of 15 to 65% is performed as primary cold rolling, and then at a temperature increase rate of 5 ° C / sec or more, 380 to 580 It is characterized in that it is heated to a temperature in the range of 0 ° C., held for 0 to 200 seconds and immediately subjected to intermediate annealing to be cooled at a cooling rate of 5 ° C./sec or more, and then subjected to the final cold rolling. Here, 0 sec holding in the intermediate annealing means cooling immediately after reaching a predetermined temperature.
[0014]
And the invention of claim 5 is described in claim 3 or claim 4. Battery pack In the method for producing an aluminum alloy sheet for a steel sheet, after the final cold rolling, it is heated to a temperature in the range of 160 to 210 ° C. at a temperature increase rate of 10 to 100 ° C./hr and maintained for 1 to 8 hours. Hold It is characterized by performing final annealing.
[0015]
Further, the invention of claim 6 is described in claim 3 or claim 4. Battery pack In the manufacturing method of an aluminum alloy sheet for a steel, after the final cold rolling, the temperature is increased to 5 ° C./sec or more and heated to a temperature in the range of 180 to 260 ° C. It is characterized by performing a final annealing that is cooled at a temperature of ° C / sec or more.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First this invention Battery pack The reason for the limitation of the component composition in the aluminum alloy plate for a glass will be described.
[0017]
Mn:
Mn is a main additive element of the Al—Mn alloy used in the present invention, and is an element that contributes to the improvement of bulge resistance under high temperature internal pressure load by solid solution. This is because solute Mn functions as a resistance to dislocation movement due to creep deformation under high temperature internal pressure load, and the effect can be effectively exhibited when the Mn solid solution amount is 0.25% or more as will be described later. it can. If the amount of Mn is less than 0.8%, it is difficult to secure a Mn solid solution amount of 0.25% or more, and the above effects cannot be obtained sufficiently, and the mechanical strength is also lowered. On the other hand, if the amount of Mn exceeds 2.0%, coarse crystallized substances increase and press formability decreases. Battery It is unsuitable as a source material for a business. Therefore, the amount of Mn is set within the range of 0.8 to 2.0%.
[0018]
Si:
Si is an element contained as an impurity in a normal aluminum alloy, but in the case of this invention, Si has an adverse effect of promoting precipitation of Mn and reducing the amount of Mn solid solution. In particular, if the amount of Si exceeds 0.2%, the effect of preventing blistering due to solute Mn is impaired, and the blistering resistance under a high temperature internal pressure load decreases. On the other hand, when the Si content is less than 0.04%, high purity metal is required and the cost is increased, although there is no particular effect for improving the material properties. Therefore, the Si amount is regulated within the range of 0.04 to 0.2%.
[0019]
Fe:
Fe is also an element contained as an impurity in a normal aluminum alloy, but in the case of this invention, if Fe is contained in a large amount, a coarse crystallized product is likely to be produced, which causes a problem in inhibiting formability. In particular, if the amount of Fe exceeds 0.6%, the tendency to form coarse crystals with Mn becomes strong, the amount of dissolved Mn is reduced, and the resistance to swelling at high temperature internal pressure load is lowered, and the moldability is also improved. make worse. On the other hand, when the amount of Fe is less than 0.04%, high purity metal is required and the cost is increased, although there is no particular effect for improving the material properties. Therefore, the amount of Fe is restricted within the range of 0.04 to 0.6%.
[0020]
Cu:
The addition of Cu is effective for improving the mechanical strength, and is also effective for improving the resistance to swelling when a high temperature internal pressure is applied. Accordingly, the invention of claim 2 Battery pack Cu was selectively added to the aluminum alloy for the steel. If the amount of Cu is less than 0.05%, the above effects cannot be obtained sufficiently. On the other hand, if the amount of Cu exceeds 0.25%, the corrosion resistance and formability of the material may be deteriorated. Therefore, the amount of Cu added is set in the range of 0.05 to 0.25%.
[0021]
Cr:
The addition of Cr is also effective for improving the mechanical strength, and is effective for reducing the variation in characteristics by making the crystal grain size uniform. Accordingly, the invention of claim 2 Battery pack Cr was selectively added to the aluminum alloy plate for the steel. If the Cr content is less than 0.02%, the above effects cannot be obtained sufficiently. On the other hand, if the Cr content exceeds 0.1%, coarse intermetallic compound particles are likely to be produced, which may adversely affect moldability and the like. is there. Therefore, the addition amount of Cr is set in the range of 0.02 to 0.1%.
[0022]
In addition to the above elements, Al and inevitable impurities may be basically used. However, in a general aluminum alloy, Ti may be added alone or Ti in combination with B for refining the ingot crystal grains. You may contain 03% or less of B.
[0023]
In general, Al-Mn alloys used as aluminum can bodies often contain about 1% Mg, and when dissolved and cast in the same equipment as such can bodies, Mg is an impurity. May be mixed as a battery case. With Even when laser welding is performed, the amount of Mg as an impurity may be within 0.05%, which is an allowable amount of a general impurity element.
[0024]
Further this invention Battery pack In the aluminum alloy plate for the soot, the Mn solid solution amount needs to be 0.25% or more. As already described, solute Mn functions as a resistance to dislocation movement of creep deformation under a high temperature internal pressure load, and contributes to an improvement in resistance to blistering under a high temperature internal pressure load. The solid solution amount of Mn in an actual aluminum alloy plate can be measured by, for example, phenol extraction analysis as shown in FIG. Here, if the Mn solid solution amount is less than 0.25%, the above-described effects cannot be obtained sufficiently. Therefore, the Mn solid solution amount needs to be 0.25% or more, but it is 0.35% or more. In particular, good resistance to swelling can be obtained.
[0025]
This invention Battery pack In the case of aluminum alloy plates for steel, the proof stress value is 150 to 220 N / mm 2 It is necessary to adjust within the range. Yield value is 150 N / mm 2 If it is less than this, if an internal pressure is applied to the molded case, blistering due to simple plastic deformation is likely to occur. On the other hand, the proof stress is 220 N / mm 2 In addition to being difficult to form, even if it can be formed, the number of movable dislocations in the structure increases, so that creep deformation is likely to occur, and conversely, the resistance to blistering under high temperature internal pressure load is reduced. Therefore, the proof stress value is 150 to 220 N / mm. 2 Must be within the range. In this way, the proof stress value is not to be increased unnecessarily, especially 150 to 220 N / mm. 2 In this range, excellent resistance to blistering can be obtained.
[0026]
Further this invention Battery pack The aluminum alloy plate for a steel has an average area of crystal grains in a cross section parallel to the rolling direction of 500 to 8000 μm as a metallographic condition. 2 It is necessary to adjust within the range. In other words, the creep deformation involves the diffusion of vacancies in the material, and when the diffusion is fast, creep deformation is promoted, but when the crystal grains are small and there are many grain boundaries, diffusion along the grain boundaries is promoted. The frequency of occurrence increases and the progress of creep deformation is promoted. And especially the average area of crystal grains is 500 μm 2 If it is smaller, blistering due to creep deformation tends to occur, while the average area of crystal grains is 8000 μm. 2 Exceeding this causes problems in formability. Therefore, the average area of crystal grains in a cross section parallel to the rolling direction is 500 μm. 2 ~ 8000μm 2 In order to achieve both the resistance to blistering and the moldability at the time of high-temperature internal pressure load, it is necessary to make it within this range.
[0027]
Next, this invention Battery pack A method for producing an aluminum alloy plate for a glass will be described.
[0028]
First, an aluminum alloy having the component composition as described above is melt cast according to a conventional method. As a casting method, either a semi-continuous casting method (DC method) or a plate continuous casting method (CC method) may be used. However, the CC method is advantageous for securing a high Mn solid solution amount, while the DC method is advantageous in terms of stability of various characteristics.
[0029]
Prior to hot rolling, the ingot or continuous cast plate is preheated. This preheating is performed at a temperature in the range of 320 to 410 ° C. for 0.5 to 20 hours. If the preheating temperature before hot rolling exceeds 410 ° C. or the holding time exceeds 20 hours, Mn is excessively precipitated and the amount of Mn solid solution is reduced. Battery The blistering resistance at the time of high-temperature internal pressure load of the source decreases. On the other hand, if the preheating temperature before hot rolling is less than 320 ° C. or the holding time is less than 0.5 hour, it is difficult to stably perform hot rolling.
[0030]
In general, the ingot may be subjected to a homogenization treatment (soaking treatment) and then heated to a hot rolling temperature in a separate process to perform heating immediately before hot rolling. The bulk soaking and the immediately preceding heating before hot rolling may be performed separately. In that case, the temperature of soaking is also within the same range as the preheating before hot rolling defined in the present invention (320). ~ 410 ° C), and the total of the soaking time and the heating time immediately before hot rolling must be in the range of 0.5 to 20 hours.
[0031]
The hot rolling needs to be controlled so that the material temperature during the hot rolling does not exceed 410 ° C. If the material temperature during hot rolling exceeds 410 ° C., precipitation of Mn occurs excessively and the amount of Mn solid solution decreases, and finally Battery The blistering resistance at the time of high-temperature internal pressure load of the source decreases. The rolling reduction in hot rolling is not particularly limited, but it is usually desirable to apply a rolling reduction of 50% or more. Moreover, it is desirable that the time from the end of the preheating to the end of the hot rolling be within 1 hour.
[0032]
After hot rolling, the final cold rolling is performed immediately as defined in claim 3 to obtain the final sheet thickness, or the primary cold rolling is performed as defined in claim 4 and then rapid. Intermediate annealing by heating and rapid cooling is performed, and then final cold rolling is performed to obtain a final thickness. In any case, the rolling ratio of the final cold rolling needs to be in the range of 35 to 70%. If the rolling rate of the final cold rolling is less than 35%, the strength of the final plate will be insufficient. , Battery When used as a soot, there is a risk that large blisters may occur due to initial plastic deformation. On the other hand, if the rolling ratio of the final cold rolling exceeds 70%, the mechanical strength such as the proof stress value is sufficient, but the forming becomes difficult and a large number of movable dislocations are introduced into the structure. After being molded into Battery pack As the number of movable dislocations in the source increases, creep deformation is likely to occur, and the resistance to blistering under high-temperature internal pressure load decreases. Therefore, the rolling rate in the final cold rolling has good resistance to swelling. Battery In order to obtain the source, it is within the range of 35 to 70%. In the method of performing the final cold rolling immediately after the hot rolling as defined in claim 3, the final cold rolling is performed when the hot rolling finish temperature is low and the working strain at the end of the hot rolling process cannot be ignored. The rolling rate is preferably in the range of 35 to 60%.
[0033]
As specified in claim 4, the rolling ratio of primary cold rolling is 15 to 65% when primary cold rolling is performed after hot rolling and then intermediate annealing is performed and then final cold rolling is performed. Within the range. If the rolling ratio in primary cold rolling is less than 15%, recrystallization becomes unstable during intermediate annealing, and a plate having stable characteristics cannot be obtained finally. On the other hand, if the rolling ratio of primary cold rolling exceeds 65%, the recrystallized grains at the time of intermediate annealing become fine and cannot satisfy the condition of the average grain area of the final plate, and creep deformation is likely to proceed. There is a possibility that the blister resistance at the time of high temperature internal pressure load is lowered.
[0034]
The intermediate annealing performed after the primary cold rolling is rapidly heated at a temperature rising rate of 5 ° C./sec or more and maintained at a temperature in the range of 380 to 580 ° C. for 0 to 200 seconds, and immediately cooled rapidly at a cooling rate of 5 ° C./sec or more. It is a condition to do. Note that holding for 0 sec means heating to a predetermined temperature and cooling immediately after reaching. If intermediate annealing is performed by such rapid heating / short-time heating / rapid cooling, the precipitation of Mn during intermediate annealing is suppressed, and the amount of solid solution Mn is secured. Battery pack It is possible to ensure a good resistance to swelling when a high-temperature internal pressure is applied to the base. Here, when the heating rate and the cooling rate are less than 5 ° C./sec (for example, in the case of intermediate annealing by a batch-type annealing apparatus), precipitation of Mn proceeds and the Mn solid solution amount decreases, and finally In other words, good resistance to blistering cannot be obtained. Further, if the heating temperature is less than 380 ° C., it is difficult to sufficiently recrystallize. On the other hand, if the heating temperature exceeds 580 ° C., precipitation of Mn may proceed excessively and the recrystallized grains may become excessively coarse. Further, when the holding time exceeds 200 sec, precipitation of Mn proceeds. In addition, such intermediate annealing by rapid temperature increase-short time heating-rapid cooling can be usually realized by a continuous annealing line (CAL).
[0035]
The final cold rolling after the intermediate annealing may be performed at a rolling rate of 35 to 70% as already described.
[0036]
Here, the method of performing the final cold rolling immediately without performing the primary cold rolling and the intermediate annealing after the hot rolling, and the intermediate annealing of the primary cold rolling and the rapid heating-short heating-rapid cooling after the hot rolling. Compared with the method of performing the final cold rolling after performing the above, the former method has fewer steps and is advantageous in terms of productivity and manufacturing cost, while the latter method is advantageous in terms of the thickness condition of the hot-rolled sheet and Since various combinations of the cold rolling reduction conditions divided into two stages can be selected, there is an advantage that the degree of freedom of the manufacturing conditions is high and a plate having the target characteristics can be easily obtained.
[0037]
The final thickness of the plate by final cold rolling is unchanged With battery Although it can be used as a molding material for a steel, final annealing may be performed after final cold rolling. This final annealing has the effect of reducing the mobile dislocations generated by cold rolling, and also has the effect of increasing the resistance to dislocation movement during creep deformation by causing some segregation of the solid solution Mn to the vicinity of the dislocations. This makes it possible to further improve the resistance to blistering at the time of high temperature internal pressure load.
[0038]
As the conditions for such final annealing, as specified in claim 5, the temperature is maintained at a temperature in the range of 160 to 210 ° C. at a rate of temperature increase of 10 to 100 ° C./hr and maintained for 1 to 8 hours. Hold Or heated to a temperature in the range of 180 to 260 ° C. at a temperature rising rate of 5 ° C./sec or more and maintained for 0 to 200 seconds and then cooled to 5 ° C./sec or more as defined in claim 6 Conditions for cooling at speed can be applied.
[0039]
Here, in the final annealing specified in claim 5, the rate of temperature rise Degree If it is less than 10 ° C./hr, the time required for annealing becomes unnecessarily long, which is uneconomical. If it exceeds 100 ° C./hr, it becomes difficult to uniformly heat the material by batch-type annealing. Further, if the heating and holding temperature is less than 160 ° C. or the heating and holding time is less than 1 hour, the effect of the final annealing cannot be sufficiently obtained, while if the heating and holding temperature exceeds 210 ° C. or the heating and holding time exceeds 8 hours, The amount of solid solution of Mn decreases and the proof stress value decreases, so Battery The blister resistance of the source will be reduced.
[0040]
On the other hand, in the final annealing specified in claim 6, when the temperature rising rate and the cooling rate are less than 5 ° C./sec, it becomes difficult to perform the uniform processing stably by the continuous annealing line (CAL). If the heating and holding temperature is less than 180 ° C, the effect of the final annealing cannot be sufficiently obtained. On the other hand, if the heating and holding temperature exceeds 260 ° C or the heating and holding time exceeds 200 sec, the Mn solid solution amount decreases and the proof stress value. At high temperature and internal pressure load Battery The blister resistance of the source will be reduced.
[0041]
The final annealing under the conditions specified in the above-mentioned claim 5 can be easily realized by applying a batch-type annealing apparatus, while the final annealing under the conditions specified in the claim 6 is continuous. It can be easily realized by an annealing line (CAL). In addition, when such final annealing is performed, the proof stress of the material is 5 to 30 N / mm from the state immediately after the final cold rolling. 2 When the final annealing is performed, it is desirable that the rolling ratio of the final cold rolling is slightly higher in the range of 45 to 70%.
[0042]
By the method described above, the Mn solid solution amount condition, the proof stress condition, and the average grain area condition as defined in claim 1 are satisfied. Battery Can be obtained. Battery pack The use of a material for molding a mold increases resistance to dislocation movement and reduces the number of movable dislocations even under a high temperature internal pressure load, making it difficult for creep deformation and normal plastic deformation. Battery It is possible to reduce the amount of deformation of the soot and to improve the press formability.
[0043]
【Example】
Example 1
The alloys A to D within the composition range of the present invention shown in Table 1 and the comparative alloys E to H outside the composition range of the present composition are cast by the DC casting method. Thickness by the process of preheating before hot rolling-hot rolling-intermediate annealing (omitted in some cases)-final cold rolling-final annealing (omitted in some cases) A 0.8 mm plate (case forming material) was used.
[0044]
Each of the obtained plates is subjected to multistage press forming, and as shown in FIG. 2, a rectangular case 1 having a square cross section with a depth of 8 mm, a width of 30 mm, an angle R of 1.5 mm, and a height of 45 mm did. About the case 1 after shaping | molding, the heating internal pressure swelling test was done with the swelling tester 2 as shown in FIG. The blister tester 2 in FIG. 3 places the case 1 between a lower fixing jig 3 and an upper holding jig 4 via a receiving member 5 made of silicon rubber and an upper surface sealing member 6 also made of silicon rubber. In this embodiment, the whole is held in a constant temperature bath and heated to 70 ° C. and is held in the case 1 by holding the pressure inside the case 1 through the pressure supply pipe 7 from above. 2kgf / cm 2 The air pressure was continuously applied for 24 hours, and the maximum swelling amount of the case was examined. This simulates the case where the internal pressure is generated by the expansion of the battery contents when the lithium ion battery is heated.
[0045]
Tables 4 and 5 show the results of examining the Mn solid solution amount, yield strength, and average crystal grain area of each plate of the case molding material, and the results of the above-described heating internal pressure swelling test for the case after molding. As for the internal pressure swelling test result (maximum swelling amount), it can be determined that the swelling resistance is good at about 1.0 mm or less, and the swelling resistance is poor at about 1.3 mm or more.
[0046]
[Table 1]
Figure 0003763088
[0047]
[Table 2]
Figure 0003763088
[0048]
[Table 3]
Figure 0003763088
[0049]
[Table 4]
Figure 0003763088
[0050]
[Table 5]
Figure 0003763088
[0051]
As is apparent from Tables 4 and 5, alloys A to D within the component composition range specified in the present invention were used in accordance with the manufacturing conditions specified in the present invention. In each of the production numbers 1 to 10 in which the value and the average crystal grain area satisfy the conditions specified in the present invention, the heating internal pressure swelling amount is as small as 1.0 mm or less, and the swelling resistance is found to be good. did.
[0052]
On the other hand, the production number 21 is a comparative example using the comparative alloy E in which the amount of Mn is too small, the production number 22 is a comparative example using the comparative alloy F in which the amount of Mn is too high and the Si amount is excessive, and the production number 23 is Si. Comparative example using comparative alloy G with an excessive amount, production number 24 is a comparative example using comparative alloy H with an excessive amount of Si and Fe. In these cases, the manufacturing process complies with the conditions of the present invention. However, in the case of the production number 21 (comparative alloy E), the production number 23 (comparative alloy G), and the production number 24 (comparative alloy H), the amount of solute Mn is small and the amount of swelling increases. In addition, with the production number 22 (Comparative Alloy F), the proof stress value was too high, and cracking occurred during case molding.
[0053]
The production number 25 is a comparative example in which the preheating temperature before hot rolling is too high and the maximum temperature of the material during hot rolling is too high. In this case, the amount of Mn solid solution is too small, The amount of swelling increased. Production No. 26 is an example in which the preheating before hot rolling is divided into ingot soaking and heating just before hot rolling, and the temperature of the former ingot soaking is too high. The area was too small, and the amount of swelling on the case increased. Further, production number 27 is an example in which the preheating temperature before hot rolling is too high and the material temperature during hot rolling is too high. In this case, the amount of Mn solid solution is too small, and the amount of swelling of the case becomes large. It was. Production No. 28 performs preheating before hot rolling separately for soaking of the ingot and heating immediately before hot rolling, and both the temperature of soaking and heating immediately before hot rolling are too high. In this case, the material temperature was too high. In this case, the amount of Mn solid solution was too small and the average crystal grain area was too small, resulting in a large amount of swelling in the case.
[0054]
On the other hand, production number 29 is an example in which the preheating temperature before hot rolling was too low, but in this case, it was difficult to continue the hot rolling.
[0055]
Further, production number 30 and production number 31 are comparative examples in which the holding time of the intermediate annealing is too long and the heating rate and the cooling rate are too slow. In these cases, the Mn solid solution amount is too small, and the average crystal The grain area was too large, the amount of blistering of the case was increased, and rough skin was partially generated during case molding. The production number 32 is a comparative example in which the final cold rolling rate is too large. In this case, the proof stress value is too large, the amount of swelling of the case is increased, and the surface is partially roughened when the case is molded. And the production number 33 is a comparative example in which the heating temperature of final annealing by batch annealing was too high. In this case, the amount of Mn solid solution was too small, the proof stress value was low, and the amount of swelling of the case was large.
[0056]
Example 2
For the alloys B and C within the composition range of the present invention shown in Table 1 and the alloy G outside the composition range of the present invention, a plate-like cast material having a thickness of 6 mm was prepared by the CC method, ~ 16; under the conditions shown in 34 to 36, thickness 0 is obtained by a process of preheating before hot rolling-hot rolling-intermediate annealing (may be omitted in some cases)-final cold rolling-final annealing (may be omitted in some cases). .8 mm plate (case molding material). About each obtained board, it shape | molded similarly to Example 1, it was set as the square case, and it used for the heating internal pressure swelling test.
[0057]
Table 7 shows the results of examining the Mn solid solution amount, proof stress, and average crystal grain area of the case molding material, and the heating internal pressure test results after the case molding.
[0058]
[Table 6]
Figure 0003763088
[0059]
[Table 7]
Figure 0003763088
[0060]
As shown in Table 7, the alloys B and C within the component composition range specified in the present invention were used according to the manufacturing conditions specified in the present invention, and the Mn solid solution amount, proof stress value, average crystal of the case molding material In each of the production numbers 11 to 16 satisfying the conditions defined in the present invention, it was found that the heating internal pressure swelling amount of the case was as small as 1.0 mm or less and the swelling resistance was good.
[0061]
On the other hand, the production numbers 34 and 35 are comparative examples in which the preheating temperature before hot rolling is too high and the material maximum temperature during hot rolling is too high. In these cases, the Mn solid solution amount is Too little, the amount of case swelling has increased. The production number 36 was obtained by using the comparative alloy G having an excessive amount of Si. In this case, the production process conditions were within the range defined in the present invention, but the amount of Mn solid solution was too small, and the case swelled. The amount has grown.
[0062]
【The invention's effect】
Claims 1 and 2 Battery pack According to the aluminum alloy plate for the steel, not only the component composition is appropriately adjusted as the Al—Mn-based aluminum alloy plate, but particularly the Mn solid solution amount, the proof stress value, and the average crystal grain area are adjusted to an appropriate range. By , Battery The case of a battery represented by a lithium ion battery is less likely to cause creep deformation and plastic deformation at high temperature internal pressure load. As Even when used in applications where the internal pressure is applied by being exposed to a high temperature of about 70 to 90 ° C., the case is less prone to blistering, and the moldability required for forming the case is also good. And as mentioned above, since the anti-swelling property is good, it is not necessary to increase the wall thickness in order to increase the rigidity. Therefore, it is possible to make the case thinner and reduce the weight of the case further. .
[0063]
According to the manufacturing method of claims 3 to 6, as described above. Battery It can be used as a case to manufacture a case forming material with a small amount of swelling under high temperature internal pressure and good moldability on a mass production scale.
[0064]
According to the present invention Battery The aluminum alloy plate for Pond Ideal for battery cases, but also various other types of internal pressure that may increase when exposed to high temperatures of 70-90 ° C. battery Of course, it can be used for a case to achieve the same effect.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for measuring the amount of dissolved Mn that is preferably applied in carrying out the present invention.
FIG. 2 is a plan sectional view showing an example of a sectional shape and dimensions of a case molded in the embodiment of the present invention.
FIG. 3 is a schematic diagram showing a heated internal pressure swelling tester applied in an embodiment of the present invention.
[Explanation of symbols]
1 case
2 Heating internal pressure swelling tester

Claims (6)

Mn0.8〜2.0%(重量%、以下同じ)を含有し、かつ不純物元素として、Siが0.04〜0.2%、Feが0.04〜0.6%に規制され、残部がAlおよび不可避的不純物よりなり、かつMn固溶量が0.25%以上で、耐力値が150〜220N/mm2の範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500〜8000μm2の範囲内にあることを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板。Containing Mn 0.8 to 2.0% (% by weight, hereinafter the same), and as impurity elements, Si is regulated to 0.04 to 0.2%, Fe is regulated to 0.04 to 0.6%, the balance Is composed of Al and inevitable impurities, the Mn solid solution amount is 0.25% or more, the proof stress is in the range of 150 to 220 N / mm 2 , and the average of the grains in the cross section parallel to the rolling direction area is characterized in that in the range of 500~8000μm 2, the battery to case for an aluminum alloy sheet having excellent blister resistance at high temperatures of internal pressure. Mn0.8〜2.0%を含有するとともに、Cu0.05〜0.25%、Cr0.02〜0.1%のうちの1種以上を含有し、かつ不純物として、Siが0.04〜0.2%、Feが0.04〜0.6%に規制され、残部がAlおよび不可避的不純物よりなり、かつMn固溶量が0.25%以上で、耐力値が150〜220N/mm2の範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500〜8000μm2の範囲内にあることを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板。While containing Mn 0.8-2.0%, Cu 0.05-0.25%, Cr containing 0.02-0.1%, and as an impurity, Si is 0.04- 0.2%, Fe is regulated to 0.04 to 0.6%, the balance is made of Al and inevitable impurities, the Mn solid solution amount is 0.25% or more, and the proof stress value is 150 to 220 N / mm. It is in the 2 range, yet the average area of crystal grains in a cross section parallel to the rolling direction, characterized in that in the range of 500~8000Myuemu 2, the cell case having excellent blister resistance at high temperatures of internal pressure Aluminum alloy plate for a glass. Mn0.8〜2.0%を含有し、かつ不純物として、Siが0.04〜0.2%、Feが0.04〜0.6%に規制され、さらに必要に応じてCu0.05〜0.25%、Cr0.02〜0.1%のうちの1種以上を含有し、残部がAlおよび不可避的不純物よりなる合金を素材とし、その素材に対して320〜410℃の範囲内の温度で0.5〜20時間保持する熱間圧延前予備加熱処理を行なった後、材料温度が410℃を越えないように制御して熱間圧延を行ない、その後圧下率35〜70%の最終冷間圧延を施し、これによりMn固溶量が0.25%以上で、耐力値が150〜220N/mm2の範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500〜8000μm2の範囲内にあるアルミニウム合金板を得ることを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板の製造方法。Containing Mn 0.8 to 2.0%, and as impurities, Si is regulated to 0.04 to 0.2%, Fe is regulated to 0.04 to 0.6%, and if necessary, Cu 0.05 to It contains at least one of 0.25% and Cr 0.02 to 0.1%, and the balance is Al and an inevitable impurity alloy. The material is within the range of 320 to 410 ° C. After performing the preheating treatment before hot rolling for 0.5 to 20 hours at the temperature, the material temperature is controlled so as not to exceed 410 ° C., and then the hot rolling is performed, and then the final reduction of 35 to 70% is achieved. Cold rolling is performed, whereby the Mn solid solution amount is 0.25% or more, the proof stress value is in the range of 150 to 220 N / mm 2 , and the average area of crystal grains in a cross section parallel to the rolling direction is this to obtain an aluminum alloy plate in the range of 500~8000Myuemu 2 Wherein the method of manufacturing a battery to case for an aluminum alloy sheet having excellent blister resistance at high temperatures of internal pressure. 請求項3に記載の電池ケース用アルミニウム合金板の製造方法において、
前記熱間圧延の後、一次冷間圧延として圧下率が15〜65%の冷間圧延を行ない、次いで昇温速度5℃/sec以上で380〜580℃の範囲内の温度に加熱して0〜200sec保持後直ちに冷却速度5℃/sec以上で冷却する中間焼鈍を行ない、その後前記最終冷間圧延を施すことを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板の製造方法。
The method of manufacturing a battery to case for the aluminum alloy plate according to claim 3,
After the hot rolling, cold rolling with a rolling reduction of 15 to 65% is performed as primary cold rolling, and then heated to a temperature in the range of 380 to 580 ° C. at a temperature rising rate of 5 ° C./sec or more. immediately perform an intermediate annealing at a cooling rate of 5 ° C. / sec or more after ~200sec holding, then the final, characterized in that the applying cold rolling, the battery to case for scan having excellent blister resistance at high temperatures of internal pressure A method for producing an aluminum alloy plate.
請求項3もしくは請求項4に記載の電池ケース用アルミニウム合金板の製造方法において、
前記最終冷間圧延の後、昇温速度10〜100℃/hrで160〜210℃の範囲内の温度に加熱して1〜8hr保持する最終焼鈍を施すことを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板の製造方法。
The method of manufacturing a battery to case for the aluminum alloy plate according to claim 3 or claim 4,
After said final cold rolling, and wherein the performing final annealing that Soo 1~8hr coercive heated to a temperature in the range of 160 to 210 ° C. at a heating rate of 10 to 100 ° C. / hr, a high temperature pressure method for producing a battery to case for an aluminum alloy sheet having excellent blister resistance during loading.
請求項3もしくは請求項4に記載の電池ケース用アルミニウム合金板の製造方法において、
前記最終冷間圧延の後、昇温速度5℃/sec以上で180〜260℃の範囲内の温度に加熱して0〜200sec保持後、冷却速度5℃/sec以上で冷却する最終焼鈍を施すことを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板の製造方法。
The method of manufacturing a battery to case for the aluminum alloy plate according to claim 3 or claim 4,
After the final cold rolling, the sample is heated to a temperature in the range of 180 to 260 ° C. at a temperature increase rate of 5 ° C./sec or more, held for 0 to 200 seconds, and then subjected to final annealing for cooling at a cooling rate of 5 ° C./sec or more. wherein the manufacturing method of a battery to case for an aluminum alloy sheet having excellent blister resistance at high temperatures of internal pressure.
JP19663798A 1998-06-26 1998-06-26 Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same Expired - Fee Related JP3763088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19663798A JP3763088B2 (en) 1998-06-26 1998-06-26 Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19663798A JP3763088B2 (en) 1998-06-26 1998-06-26 Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000017364A JP2000017364A (en) 2000-01-18
JP3763088B2 true JP3763088B2 (en) 2006-04-05

Family

ID=16361089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19663798A Expired - Fee Related JP3763088B2 (en) 1998-06-26 1998-06-26 Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same

Country Status (1)

Country Link
JP (1) JP3763088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057707A1 (en) 2012-10-12 2014-04-17 日本軽金属株式会社 Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155373B2 (en) 1999-03-29 2008-09-24 日立マクセル株式会社 Battery pack for small electrical equipment
KR100601546B1 (en) 2004-08-30 2006-07-19 삼성에스디아이 주식회사 Outer body of battery
JP5412714B2 (en) * 2007-07-10 2014-02-12 日本軽金属株式会社 Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
JP5388084B2 (en) * 2007-07-27 2014-01-15 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchangers with excellent strength and pitting corrosion resistance
CA2810251A1 (en) * 2010-09-08 2012-03-15 Alcoa Inc. Improved 6xxx aluminum alloys, and methods for producing the same
CN104428433B (en) * 2012-03-23 2017-04-05 株式会社Uacj Lithium ion battery aluminum alloy plate materials and its manufacture method
CN114669964A (en) * 2022-03-28 2022-06-28 中铝瑞闽股份有限公司 Short-process production method of new energy power battery shell cover plate strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057707A1 (en) 2012-10-12 2014-04-17 日本軽金属株式会社 Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability
US9885097B2 (en) 2012-10-12 2018-02-06 Nippon Light Metal Company, Ltd. Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability

Also Published As

Publication number Publication date
JP2000017364A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP3843368B2 (en) Aluminum alloy plate for battery case with excellent resistance to high temperature blistering and method for producing the same
EP3722446B1 (en) Aluminum alloy sheet for battery lids for molding integrated explosion-prevention valve, and method for producing same
JP2008261008A (en) Aluminum alloy sheet for battery cover and its production method
JP6614305B1 (en) Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof
JP6780679B2 (en) Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method
CN111094604B (en) Aluminum alloy plate for battery cover for forming integrated explosion-proof valve and manufacturing method thereof
JP3763088B2 (en) Aluminum alloy plate for battery case having excellent resistance to blistering and method for producing the same
CN111094606B (en) Aluminum alloy plate for battery cover for forming integrated explosion-proof valve and manufacturing method thereof
CN111094605B (en) Aluminum alloy plate for battery cover for forming integrated explosion-proof valve and manufacturing method thereof
TWI696706B (en) Aluminum alloy plate for battery cover used for forming integrated explosion-proof valve and manufacturing method thereof
JP2007277588A (en) Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP3860939B2 (en) Al-Mn-Mg alloy plate for case forming and method for producing the same
TWI696705B (en) Aluminum alloy plate for forming battery cover of integral explosion-proof valve and manufacturing method thereof
JP3750966B2 (en) Al-Mn alloy plate for battery case and method for producing the same
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JP2003034833A (en) Aluminum alloy sheet for case of secondary battery
JPH05247610A (en) Production of aluminum alloy material excellent in moldability, shape freezability and hardenability in coating/baking and small in anisotropy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees