WO2005067696A1 - Elektronische mess- oder regeleinrichtung für die bewässerung von pflanzen - Google Patents
Elektronische mess- oder regeleinrichtung für die bewässerung von pflanzen Download PDFInfo
- Publication number
- WO2005067696A1 WO2005067696A1 PCT/EP2005/000395 EP2005000395W WO2005067696A1 WO 2005067696 A1 WO2005067696 A1 WO 2005067696A1 EP 2005000395 W EP2005000395 W EP 2005000395W WO 2005067696 A1 WO2005067696 A1 WO 2005067696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measuring
- control device
- moisture
- capacitor
- electronics
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
- A01G25/167—Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G27/00—Self-acting watering devices, e.g. for flower-pots
- A01G27/008—Component parts, e.g. dispensing fittings, level indicators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
- G01N27/225—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/1842—Ambient condition change responsive
- Y10T137/1866—For controlling soil irrigation
- Y10T137/189—Soil moisture sensing
Definitions
- the invention relates to an electronic measuring or control device for watering plants based on an electronic moisture sensor, which converts the soil moisture of the plants monitored by it into an electrical variable. Furthermore, the invention relates to this electronic moisture sensor itself.
- interval-controlled irrigation systems with adjustable irrigation times are known. These have the disadvantage that the temperature and thus the degree of evaporation within the irrigation intervals and the existing soil moisture are not taken into account. This means that if the wrong time interval is selected, the monitored plant can get too little or too much water.
- Such an irrigation system, which is time-controlled is known for example from DE 101 06 266 AI.
- water level indicators with a float are known to be used, which are attached in a transparent tube.
- the soil moisture of a conventional plant pot is not displayed here. So there is no permanent monitoring of the soil moisture with a corresponding display of the plant-specific moisture requirement.
- the object of the present invention is to provide an electronic measuring or control device for the irrigation of plants based on an electronic moisture sensor and such an electronic moisture sensor itself, which is structurally simple, but in a reliable manner a suitable electrical signal for detection the soil moisture of the monitored plant and further processing in the measuring or control device for pinpoint irrigation.
- the essence of the invention is the design of the electronic moisture sensor on the basis of a moisture-sensitive capacitor for measuring the earth's moisture, which is provided with a dielectric that changes its dielectric number when moisture penetrates.
- the change in the dielectric constant can be recorded and evaluated using suitable electronics.
- the corresponding electrical signal is then used as the basis for measuring the soil moisture and regulating irrigation using the electronic measuring or control device, depending on its design.
- a capacitor with a dielectric constant that is moisture-dependent in its most diverse designs can be implemented mechanically simply and inexpensively.
- claim 8 relates to the detection and evaluation of the moisture-dependent changing capacity of the moisture sensor with the help of electronics, which can be analog or preferably microprocessor-based.
- the measuring or regulating device can be individually adapted to the respectively monitored plant species.
- the measuring device can thus signal that there is a need for watering for the monitored plant.
- the soil moisture changes, which in turn is detected by the measuring device and can be used to visually detect a pouring stop signal (claim 10). Due to the variable or fixed resistance circuit provided according to claim 11, threshold values for the visualization of a casting requirement and / or casting stop can be set in the case of analog electronics.
- the temperature sensor provided according to claim 12 for measuring the ambient temperature provides a signal which can be processed by the electronics of the measuring or control device and which can be used to calculate the individual drying times of the plant roots for the necessary oxygen supply.
- the above design of the subject of the application as a measuring device to support manual watering can also be used to implement a control device for fully automatic irrigation, in which the electronics can then control an integrated irrigation valve for watering the plant (claim 13).
- the level-monitored water reservoir according to claim 14, the liquid fertilizer feed according to claim 15 and the pH sensor according to claim 16 serve to further optimize the control device for type-specific irrigation and care of the plant provided with the control device.
- measuring or control device with evaluation and control electronics can also be operated with a different type of moisture sensor.
- FIG. 2 shows a cross section through the moisture sensor according to section line II-II according to FIG. 1,
- FIG. 3 shows a highly schematic side view of a moisture sensor in a second embodiment
- FIG. 4 shows a schematic view of an electronic measuring device for the soil moisture of an irrigated plant
- Fig. 5 is a schematic view of a control device for watering a plant
- FIG. 6 is a top view of an irrigation ring for the plant fed by the control device according to FIG. 5.
- the moisture sensor 1 shown in FIG. 1 has an elongated, tubular housing 2 made of an insulating plastic material. At its end to be inserted into the root ball of a plant to be monitored for its moisture (not shown), this housing 2 is provided with a point 3 for easier penetration of the sensor. Before this end, a plurality of slots 4 running parallel to the longitudinal axis are provided in the housing 2, distributed over its circumference, through which moisture can penetrate from the root ball into the interior of the housing 2.
- the actual moisture-sensitive capacitor in the interior of the housing 2 is provided with the reference symbol 5, which has an outer, tubular capacitor pole 6 and an inner capacitor pole 7 with a round cross section arranged radially inside of it. Both capacitor poles 6, 7 are formed by a correspondingly curved, thin, single-layer aluminum foil with a thickness of, for example, 50 ⁇ m.
- the outer capacitor pole 6 also has openings 4 aligned with the slots 4 for the penetrating moisture.
- a dielectric 8 is arranged, which consists of a glass fiber mat. This is formed by a pressed glass fiber fleece or fabric.
- the inner capacitor pole 7 sits on an electrically insulating support core 9.
- the two capacitor poles 6, 7 are connected via feed lines 10, 11 to an evaluation electronics of the measuring or control device for the plant irrigation to be explained in more detail with reference to FIGS. 4 and 5.
- the measuring device 12 shown in FIG. 4 has a housing 13 to which the rod-shaped moisture sensor 1 with the capacitor 5 shown in more detail in FIG. 1 is attached.
- the microprocessor-based electronics 14 are housed in the housing 13 and apply an alternating voltage to the two capacitor poles 6, 7. When the moisture in the dielectric 8 changes, the dielectric constant changes and thus the capacitance of the capacitor arrangement 5, which leads to a frequency shift of the oscillator. This is recorded by the electronics 14 and evaluated to form a moisture-dependent signal.
- the power supply for the electronics 14 and all other components is ensured by an optionally rechargeable battery 1, which is accommodated in a corresponding battery compartment in the housing 13.
- a plug element 16 is provided on the housing 13 for connection to a charging cable (not shown).
- the housing 13 has a data interface 17 for the transmission of individual plant-specific parameters, such as irrigation data appropriate to the species, or for reading out statistical data, such as the periods of under-or over-irrigation periods.
- the electronics 14 determines the optimum moisture range for the plant provided with the measuring device.
- the determined actual moisture of the root ball is related to this bandwidth and its value is visualized by three light-emitting diodes 18, 19, 20 attached to the outside of the housing 13. Siert. If the correct moisture content is present, the middle light-emitting diode 19 can be controlled by the electronics 14 and shine in green color, for example. If the plant dries out and the moisture content of the root ball falls below a lower limit of the moisture range, the lower light-emitting diode 20 is activated and then glows red, for example.
- the plant is then watered, the moisture increase detected by the moisture sensor 1 is evaluated by the electronics 14, which finally activates the middle light-emitting diode 19 when the correct moisture is reached. If too much is poured and the moisture exceeds the upper limit of the correct moisture range, the upper LED 18 can be activated. A correspondingly red light signal therefore gives a visually perceptible pouring stop warning signal.
- FIG. 5 shows a control device 21 for the automatic irrigation of a plant container (not shown in more detail).
- This control device 21 in turn has a rod-shaped moisture sensor 1 with a condenser 5 at its end to be inserted into the root ball of the plant supplied on its housing 13.
- corresponding electronics 14, battery 15, a plug element 16 for coupling a cable for charging the battery 15 and a data interface 17 are again provided.
- 17 plant-specific irrigation data can be read in via this data interface. Since active irrigation of the plant takes place in the embodiment according to the present FIG. 5, the cumulative actual irrigation times can, for example, be read out via the data interface 17.
- An irrigation valve 22 is integrated in the control device 21 for the active irrigation of the plant, the opening and closing of which is controlled by the electronics 14 depending on the determined water requirement of the plant.
- the irrigation valve 22 is connected via an inlet connection 23 and a corresponding line 24 to a water reservoir 25, the content of which in turn can be monitored by the electronics 14 via a fill level sensor 26.
- the fill level sensor 26 is in signal connection with the electronics 14 via a signal line 27 with a corresponding plug socket 26 on the housing 13. As soon as the liquid level in the water reservoir 25 falls below a lower limit, the electronics 14 activate the light-emitting diode 29, which then emits a warning flashing signal.
- the outlet connection 30 is connected via a hose line (not shown) to the irrigation ring 31 shown in FIG. 6 (arrow P1).
- This irrigation ring 31, which is partially open in the circumference, is provided with trickle openings 36 distributed uniformly over its circumference.
- control device 21 is equipped with a liquid fertilizer store 32, which feeds a liquid fertilizer valve 33 in the control device 21.
- the latter is in turn controlled by the electronics 14 in order to deliver liquid fertilizers to the plant via a corresponding hose line at suitable fertilizer intervals (arrow P2).
- control device 21 is provided with a pH sensor 34 for measuring the pH value of the potting soil of the plant monitored by the control device.
- This pH sensor 34 is also attached to the end of the moisture sensor 1 to be inserted into the root ball.
- the control device 1 also has a temperature sensor 35, the signal of which, like that of the pH sensor 34, is detected and evaluated by the electronics 14.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Soil Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/586,249 US20070157512A1 (en) | 2004-01-16 | 2005-01-17 | Electronic measuring or control device used for watering plants |
EP05700972A EP1713320A1 (de) | 2004-01-16 | 2005-01-17 | Elektronische mess- oder regeleinrichtung für die bewässerung von pflanzen |
IL176884A IL176884A0 (en) | 2004-01-16 | 2006-07-16 | Electronic measuring or control device used for watering plants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004002271.2 | 2004-01-16 | ||
DE200410002271 DE102004002271B4 (de) | 2004-01-16 | 2004-01-16 | Elektrischer Sensor zur Wandlung der Erdfeuchtigkeit in eine elektrische Größe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005067696A1 true WO2005067696A1 (de) | 2005-07-28 |
Family
ID=34744779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/000395 WO2005067696A1 (de) | 2004-01-16 | 2005-01-17 | Elektronische mess- oder regeleinrichtung für die bewässerung von pflanzen |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070157512A1 (de) |
EP (1) | EP1713320A1 (de) |
DE (1) | DE102004002271B4 (de) |
IL (1) | IL176884A0 (de) |
WO (1) | WO2005067696A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007059636A1 (de) * | 2005-11-23 | 2007-05-31 | Plantcare Ag | Bewässerungssystem zur bewässerung von pflanzen |
WO2011141901A1 (en) * | 2010-05-11 | 2011-11-17 | Autoagronom Israel Ltd. | Oxygen availability-based irrigation system |
WO2015104017A1 (de) * | 2014-01-09 | 2015-07-16 | Ergolabs Gmbh | Verfahren zur messung und beeinflussung eines feuchtegehalts und/oder mineralstoffgehalts eines in einem pflanztopf enthaltenen substrats und pflanztopf |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2428955A (en) * | 2005-06-08 | 2007-02-14 | Tekgenuity Ltd | Plant watering system |
US20100251807A1 (en) * | 2008-10-31 | 2010-10-07 | Fertile Earth Systems, Inc | Moisture monitoring device and method |
US20100109685A1 (en) * | 2008-10-31 | 2010-05-06 | Fertile Earth Systems, Inc. | Wireless moisture monitoring device and method |
US20110043230A1 (en) * | 2008-10-31 | 2011-02-24 | Fertile Earth Systems, Inc. | Moisture monitoring device and method |
DE102009019901A1 (de) * | 2009-05-04 | 2011-03-03 | Pawel Alexander Adamczyk | Gerät zur Messung der Feuchtigkeit von Pflanzenerde |
US8862277B1 (en) * | 2010-02-01 | 2014-10-14 | Green Badge, LLC | Automatic efficient irrigation threshold setting |
US8751052B1 (en) * | 2010-02-01 | 2014-06-10 | Green Badge, LLC | Automatic efficient irrigation threshold setting |
CN102297883A (zh) * | 2011-05-20 | 2011-12-28 | 江苏大学 | 一种土壤剖面水分测量装置及其测量方法 |
US10215676B2 (en) * | 2012-10-22 | 2019-02-26 | Carl L. C. Kah, Jr. | Plant stem tree branch or trunk moisture probe |
EP3044771A4 (de) * | 2013-09-09 | 2017-05-03 | Soil IQ, Inc. | Überwachungsvorrichtung und verfahren zur verwendung |
US20150289460A1 (en) * | 2014-04-10 | 2015-10-15 | Jules Sanford Vanderveken | Automated Plant Irrigation Method and System using Weight and Leak Sensors |
US20170303481A1 (en) * | 2014-09-16 | 2017-10-26 | 4D Holdings, Llc | Irrigation apparatus and feeding system |
US10757874B2 (en) * | 2016-10-26 | 2020-09-01 | Andrew Purcell | Self watering planter assembly |
US10820536B2 (en) * | 2017-02-09 | 2020-11-03 | Camilo Mora | Autonomous programmable plant watering device |
DE102017220618B3 (de) * | 2017-11-17 | 2019-04-18 | BSH Hausgeräte GmbH | Vorrichtung zum Anbau von Pflanzen |
DE102019106425A1 (de) * | 2019-03-13 | 2020-09-17 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Messeinrichtung und Verfahren zur Feuchtigkeitsmessung |
CN111685027A (zh) * | 2020-07-13 | 2020-09-22 | 瞿依伦 | 一种基于电容式传感原理的花卉自动浇水装置 |
IL297321A (en) * | 2022-10-13 | 2024-05-01 | Tal Kochav Plast Ltd | Sprinkler control system |
US20240245017A1 (en) * | 2023-01-22 | 2024-07-25 | Marlo Jackson | Plant watering device and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2687787A1 (fr) * | 1992-02-25 | 1993-08-27 | Capord Sarl | Dispositif de capteur a capacite variable pour la mesure de l'hygrometrie des sols. |
US5546974A (en) * | 1995-01-03 | 1996-08-20 | Bireley; Richard L. | Moisture monitoring system |
US6401742B1 (en) * | 1999-11-08 | 2002-06-11 | Dean L. Cramer | Moisture sensor and irrigation control system |
DE10106266A1 (de) | 2001-02-10 | 2002-09-19 | Andreas Junker | Sich selbstständig gießender Blumentopf (Timer gesteuert, Batterie oder Solar betrieben) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020417A (en) * | 1975-11-26 | 1977-04-26 | Turf Service Laboratories, Inc. | Soil moisture indicator device |
US4149970A (en) * | 1977-10-15 | 1979-04-17 | Fisons Limited | Method of treating water for horticultural uses |
DE3702725A1 (de) * | 1987-01-30 | 1988-08-11 | Wuest Heinrich Kg | Feuchtesensor zur verwendung in automatischen bewaesserungsanlagen |
US4858063A (en) * | 1987-12-31 | 1989-08-15 | California Institute Of Technology | Spiral configuration of electrodes and dielectric material for sensing an environmental property |
AU3890095A (en) * | 1994-09-19 | 1996-04-09 | Terry Lee Mauney | Plant growing system |
AU2001255088A1 (en) * | 2000-05-06 | 2001-12-03 | Jung-Yeon Park | Apparatus and method for digitally controlling plant pot, and method for ordering plant pot delivering on-line |
US6700395B1 (en) * | 2002-04-26 | 2004-03-02 | Betty J. Perry | Soil moisture indicator device |
JP3717068B2 (ja) * | 2002-08-23 | 2005-11-16 | 松下電器産業株式会社 | 液体検知センサおよび液体検知装置 |
-
2004
- 2004-01-16 DE DE200410002271 patent/DE102004002271B4/de not_active Expired - Fee Related
-
2005
- 2005-01-17 EP EP05700972A patent/EP1713320A1/de not_active Withdrawn
- 2005-01-17 US US10/586,249 patent/US20070157512A1/en not_active Abandoned
- 2005-01-17 WO PCT/EP2005/000395 patent/WO2005067696A1/de active Application Filing
-
2006
- 2006-07-16 IL IL176884A patent/IL176884A0/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2687787A1 (fr) * | 1992-02-25 | 1993-08-27 | Capord Sarl | Dispositif de capteur a capacite variable pour la mesure de l'hygrometrie des sols. |
US5546974A (en) * | 1995-01-03 | 1996-08-20 | Bireley; Richard L. | Moisture monitoring system |
US6401742B1 (en) * | 1999-11-08 | 2002-06-11 | Dean L. Cramer | Moisture sensor and irrigation control system |
DE10106266A1 (de) | 2001-02-10 | 2002-09-19 | Andreas Junker | Sich selbstständig gießender Blumentopf (Timer gesteuert, Batterie oder Solar betrieben) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007059636A1 (de) * | 2005-11-23 | 2007-05-31 | Plantcare Ag | Bewässerungssystem zur bewässerung von pflanzen |
WO2011141901A1 (en) * | 2010-05-11 | 2011-11-17 | Autoagronom Israel Ltd. | Oxygen availability-based irrigation system |
US8752327B2 (en) | 2010-05-11 | 2014-06-17 | Nissim Daniely | Oxygen availability-based irrigation system |
WO2015104017A1 (de) * | 2014-01-09 | 2015-07-16 | Ergolabs Gmbh | Verfahren zur messung und beeinflussung eines feuchtegehalts und/oder mineralstoffgehalts eines in einem pflanztopf enthaltenen substrats und pflanztopf |
Also Published As
Publication number | Publication date |
---|---|
DE102004002271A1 (de) | 2005-08-11 |
US20070157512A1 (en) | 2007-07-12 |
DE102004002271B4 (de) | 2007-10-31 |
IL176884A0 (en) | 2006-10-31 |
EP1713320A1 (de) | 2006-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1713320A1 (de) | Elektronische mess- oder regeleinrichtung für die bewässerung von pflanzen | |
EP1844323B1 (de) | Vorrichtung und verfahren zur bestimmung von feuchtigkeit in einem medium | |
DE2836415A1 (de) | Wasserflussregeleinrichtung | |
WO2010097689A1 (de) | System und verfahren zur fernüberwachung von topfpflanzen | |
WO2007059636A1 (de) | Bewässerungssystem zur bewässerung von pflanzen | |
WO2015104017A1 (de) | Verfahren zur messung und beeinflussung eines feuchtegehalts und/oder mineralstoffgehalts eines in einem pflanztopf enthaltenen substrats und pflanztopf | |
DE202006000586U1 (de) | Wasserstand-Messvorrichtung für Pflanzengefässe | |
EP3038448A1 (de) | Gerät zum verteilen eines mischfluids, sowie gerät zum verteilen von schüttgut | |
DE3243839A1 (de) | Vorrichtung zur hoehenstandsmessung von fluessigkeiten in behaeltern, insbesondere fuellstandsanzeige fuer kraftfahrzeuge | |
DE102005058436A1 (de) | Vorrichtung zur Messung und Anzeige der Feuchtigkeit in einem Erdreich | |
DE3639695A1 (de) | Geraet zur anzeige von bei einer hydro-kultur interessierenden werten | |
WO2018104236A1 (de) | Füllstandssensor | |
DE4441521A1 (de) | Automatisch arbeitende Anlage zur optimalen dauerhaften Bewässerung von Zimmerpflanzen in Hydro- und Erdkultur und jeder anderen Art | |
DE202005020951U1 (de) | Vorrichtung zur Messung und Anzeige der Feuchtigkeit in einem Erdreich | |
DE10015764A1 (de) | Vorrichtung zum Messen des Volumens einer elektrisch leitenden Flüssigkeit | |
WO2020126228A1 (de) | Bewässerungsvorrichtung und verfahren zum bewässern von pflanzen | |
DE202005021093U1 (de) | Vorrichtung zur Messung und Anzeige der Feuchtigkeit in einem Erdreich | |
AT412380B (de) | Blumentopf mit automatischer wasserversorgung und wassermangelanzeige | |
DE29908134U1 (de) | Feuchteanzeigegerät | |
DE2634952A1 (de) | Wasserstandsanzeiger fuer hydrokultur | |
DE20012404U1 (de) | Pflanztopf mit Wasserstands-Anzeiger | |
DE10330141A1 (de) | Sensor- und parametergesteuerte elektronische Regeleinheit zur automatischen Pflanzenbewässerung | |
DE102005040116A1 (de) | Verfahren zur automatischen Ermittlung und Anzeige der Wachstumsparameter von Pflanzen sowie Vorrichtung zur Durchführung dieses Verfahrens | |
DE202017107474U1 (de) | Einstichlanze mit mindestens einer Messsonde zur Erfassung mindestens der Feuchte von körnigem Schüttgut | |
DE19608422A1 (de) | Meßgerät für die Bestimmung eines Überdruckes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 176884 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007157512 Country of ref document: US Ref document number: 10586249 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005700972 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005700972 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10586249 Country of ref document: US |