WO2005067206A1 - Procede pour la mise en oeuvre de services sur des elements de reseau sur la base de plusieurs adresses d'elements de reseau - Google Patents

Procede pour la mise en oeuvre de services sur des elements de reseau sur la base de plusieurs adresses d'elements de reseau Download PDF

Info

Publication number
WO2005067206A1
WO2005067206A1 PCT/CN2005/000010 CN2005000010W WO2005067206A1 WO 2005067206 A1 WO2005067206 A1 WO 2005067206A1 CN 2005000010 W CN2005000010 W CN 2005000010W WO 2005067206 A1 WO2005067206 A1 WO 2005067206A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
network element
new
network
activation
Prior art date
Application number
PCT/CN2005/000010
Other languages
English (en)
French (fr)
Inventor
Wang Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34744514&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005067206(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP05700385.7A priority Critical patent/EP1703669B2/en
Priority to DE602005016772T priority patent/DE602005016772D1/de
Priority to AT05700385T priority patent/ATE443952T1/de
Publication of WO2005067206A1 publication Critical patent/WO2005067206A1/zh
Priority to US11/477,551 priority patent/US7848502B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5092Address allocation by self-assignment, e.g. picking addresses at random and testing if they are already in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of network communication technologies, and in particular, to a method for performing services based on multiple network element addresses on an automatically switched optical network element.
  • ASON adds the function of automatically generating services on the basis of the traditional optical network, thereby transforming the optical network from a system that can only implement a pure transmission function to a comprehensive system with transmission and switching functions.
  • the channels and switching nodes carrying services constitute the transmission plane.
  • IP Internet Protocol
  • ASON In order to ensure the reliable transmission of data and control information between network elements, it is necessary to configure corresponding network element addresses for each network element.
  • each network element of ASON is statically configured with only one network element address, which is used to uniquely identify the network element in the network.
  • the network element address can also be used as the IP address of the network element in the control plane.
  • the network element address and the IP address are the same.
  • the network element address and the IP address of the network element can be different.
  • the object of the present invention is to provide a method for automatically switching optical network elements based on multiple network element addresses to carry out services, so that the automatic switching optical network elements can ensure the normal development of old services while realizing the new configuration-based
  • the NE address creates a new service.
  • a method for performing a service on an automatic switching optical network network element based on multiple network element addresses includes:
  • the network element locally sets the network element address corresponding to the new service as the activation address
  • the network element diffuses the address information containing the activation address newly set by the network element into the network through a routing protocol
  • the neighboring network element obtains the new activation address of the peer end of the traffic engineering link, and uses the activation address as the new peer activation address of the traffic engineering link, which will include the new peer activation address and the current local address.
  • the link information of the end activation address is diffused into the network;
  • Step a) of the method further includes: creating multiple loopback interfaces on the control plane for the network element in advance, configuring a network layer address on each loopback interface, and configuring each address to the transmission plane.
  • step a) further includes: creating a new loopback interface on the network element control plane, and configuring a new network layer address on the loopback interface. So that the network layer address value is the same as the network element address value corresponding to the new service to be configured, and the address is configured to the transmission plane.
  • the address information diffusion process includes:
  • the address information is carried in a router address type length value diffused by a traffic engineering link state announcement of a routing protocol, and the new network element address is specified as a new active address at the local end, and is published to the network through the routing protocol.
  • the address information described in this method is carried in the newly added subtype length value of the 3 or 4 subtype length value or the link type length value in the router address type length value of the routing protocol traffic engineering link state announcement spread.
  • the address information further includes the original activation address of the network element.
  • the process that the adjacent network element obtains the new activation address of the peer end of the traffic engineering link includes: setting the network element with the new activation address to carry its new activation address in the link management protocol report C-Type1 and C-Type2 in the network element address Class of the text; the neighboring network element obtains the new activation address of the opposite network element through periodic check, and the new activation address of the opposite network element and the local network
  • the meta address is carried in the router address type length value spread by the traffic engineering link status announcement of the routing protocol, and indicates that the new network element address is the new active address of the peer end, and is published to the network through the routing protocol.
  • the new activated address of the opposite network element and the local network element address are carried in the routing protocol's traffic engineering link status announcement.
  • the diffused router address type length value 3 or 4 subtype length value or link type length value In the newly added subtype length value.
  • step a) of the method setting the network element address corresponding to the new service as the activation address includes: adding an activation label indicating that the network element address corresponding to the new service is in the activated state.
  • the present invention adopts a relatively simple method to achieve the purpose of configuring multiple network element addresses on the network elements of the automatic switching optical network, so that when a new service is launched in the network, it can be used
  • the newly configured network element address can also use the original network element address when the old service is launched in the network; that is, in the present invention, different network element addresses can be configured on the network element for different services, and Used when conducting different businesses.
  • the present invention can make the network element addresses configured for each network element in the network not only meet the application needs of new services, but also adapt to the application needs of the original services, and ensure the reasons for network expansion, network expansion, and other reasons. As a result, when different network element addresses need to be used for different services, all the new and old services can be carried out normally.
  • FIG. 1 is a flowchart of a solution for creating a new network element address according to the present invention
  • FIG. 2 is a flowchart of a solution for activating an existing network element address according to the present invention.
  • the solution of the present invention is to configure multiple network element addresses on the network elements of the automatic switching optical network, and different network element addresses are used for different services.
  • the configuration method is to create multiple loopback interfaces on the control plane and configure one network element address on each loopback interface; then configure each network element address to the transmission plane.
  • the network element address corresponding to the new service only needs to be set as the activation address, and the new activation address of each network element is propagated in the network, so that it can be based on The new activation address creates a new business.
  • the old service originally created on the inactive address continues to operate normally based on the original address, and the network is a network where new and old services coexist.
  • the old service here refers to the service created on the previous activated address before the new activated address is set, and now its address has become an inactive address, but it is still running normally.
  • multiple network element addresses can be configured when the network element address is first configured for the network element, and then different network element addresses are used to carry out different services as needed; or one that has already been configured according to network operation needs
  • network elements with multiple network element addresses add new network element addresses and set them as activation addresses at any time, and propagate and diffuse new activation addresses in the network, so as to carry out new services.
  • the service passes through a certain network element, and the network element address that the service wants already exists in the network element, but it is not set. To activate the address, at this time, you only need to set the network element address as the activation address and spread the activation address in the network.
  • the third case is that the service passes through a certain network element, and the network element that the service wants The address is the current activation address of the network element. At this time, there is no need to perform any operation on the network element address, so it will not be discussed here. After the configuration of the new address of each network element in the network is completed, a new service corresponding to the activated address can be launched in the network.
  • There is another special case that is, there is only one address configured in the network element, and the current service is based on this address. In this case, the activation address may not be specified.
  • FIG. 1 specifically includes:
  • Step 11 When the network element address required for the new service to be carried out does not exist in the network element, configure a new network element address corresponding to the new service for each network element, and set the new network element address as the activation address.
  • it includes: creating a new loopback interface on the control plane of each network element involved in the new service, and configuring a new network layer address on the loopback interface, the value of which is the same as the new network element address to be configured,
  • the address is configured to the transmission plane to obtain a new network element address, and the network element address is set as the activation address.
  • There are many methods for setting the address as the activation address for example: adding a label to the address to indicate that the address is the activation address.
  • Step 12 Publish the newly configured activation address to the routing protocol, and then diffuse the newly activated address to the network through the routing protocol, so that when new services are launched in the network, the routing calculation can be performed based on the new network element address, Determine the path, etc.
  • the specific process of spreading new network element activation addresses in the network is: Traffic in routing protocols
  • the router address type length value (Router Address TLV) diffused by the engineering link state announcement (TE-LSA) carries the current new network element address, and indicates that the new network element address is the active address of the network element.
  • Step 13 The adjacent network element obtains the new network element address of the opposite network element of the traffic engineering ( ⁇ ) link, that is, the activation address, and uses it as the new opposite network element activation address of the TE link.
  • the link information based on the newly activated address is diffused into the network.
  • the change of the activation address of the local end can be directly obtained, and when the activation address of the opposite end of the TE link changes, you need to obtain the new The address is the activation address, and then the obtained new address is used as the activation address of the peer NE of the TE link.
  • the specific process for the neighboring network element to obtain the activation address change information of the opposite network element is as follows: On the network element whose activation address is changed, the new network element address is used as the local activation address and the corresponding activation address of the opposite end is carried in the chain.
  • Network Management Protocol (LMP) Network Element Address Class
  • the address establishes a new link based on the LMP, so as to implement corresponding services based on the new network element address.
  • the Class is a data structure in the LMP, and the C-Typel and C-Type2 are one data in the LMP.
  • the spread of the link information based on the new active address is the link type length value (Link TLV) of the neighboring network element that carries the local active address on the TE-LSA.
  • Link TLV link type length value
  • the peer end of the TE link will use the new active address as the peer active address to carry the link type length value of 4 in the TE-LSA
  • the number of sub-TLVs or the newly added sub-TLVs of the link type length value are advertised to the network through a routing protocol, thereby implementing the diffusion of the corresponding link information.
  • the routing protocol involved in the present invention may be a link state protocol, and the link state protocol may be a shortest path first (OSPF) protocol, or an intermediate system to intermediate system (ISIS) protocol.
  • OSPF shortest path first
  • ISIS intermediate system to intermediate system
  • the issuing process of the new activation address in step 12 is performed on each network element that has changed the activation address; the link information update publication process in step 13 is performed on each network element with the changed activation address through the TE chain. It is implemented in adjacent network elements connected to each other. After the above process is completed, it indicates that the process of updating and publishing the newly configured network element address and TE link information is complete. Step 14 may be further performed.
  • Step 14 When it is necessary to carry out the new service in the network, each network element performs path calculation according to the new activated address, that is, uses the Constrained Shortest Path First Algorithm (CSPF) to perform service path calculation according to the new activated address.
  • CSPF Constrained Shortest Path First Algorithm
  • Step 15 Start a new business based on the results of the path calculation. Since the path calculation is performed according to the newly activated address in step 14, the new service in the network is a service based on the newly configured network element address.
  • the address required to start a new service is one of the inactive network element addresses, you need to change the network element activation address, which is the second case above.
  • the process is similar to the processing of steps 11 to 15 above, except that the new activation address selected by the network element is one of one or more network element addresses that already exist in the network element.
  • the specific process of modifying the activation address of the network element includes the following steps:
  • Step 21 When a new service is needed, if the desired address of the service already exists in the network element but is not the current activation address of the network element, the activation address of the network element needs to be modified.
  • each network element involved in the new service finds a correspondence with the new service on the transmission plane Set the network element address as the activation address, and set the original activation address to the inactive state, that is, remove the activation tag of the original activation address.
  • Step 22 Use the new network element address configured on the new loopback interface as the local element's activation address, publish it to the routing protocol together with the current activation address of the opposite network element, and diffuse it to the network through the routing protocol. in.
  • the specific process of this step is the same as that of step 12 above.
  • this step and step 12 can also carry the activation address originally existing on the network element in the message of the diffusion activation address, that is, the activation address of the old network element, so that the network element receiving the message can find the corresponding old network Element activation address and modify it to a new network element activation address.
  • the activation address originally existing in the network element described herein is the original network element address of the network element.
  • the old activation address can be carried in the Router Address TLV of the TE-LSA, or it can be carried in the new Sub-TLV defined for the old activation address.
  • Step 23 Neighboring network elements in the network obtain a new activation address, and use the new activation address as a new peer activation address of the TE link, and diffuse the link information based on the new network element address into the network.
  • the specific process of this step is the same as that of step 13 above.
  • steps 22 and 23 are performed on each network element. Until the entire process of modifying the activation address of the network element ends, step 24 is performed.
  • Step 24 When the corresponding services need to be carried out in the network, each network element performs path calculation according to the new activation address, that is, CSPF is used to perform service path calculation according to the new activation address.
  • Step 25 Carry out corresponding services based on the results of path calculation. Similarly, since the path calculation is performed based on the modified new activation address in step 24, the corresponding service in the network is a service based on the modified new network element activation address.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)
  • Small-Scale Networks (AREA)

Description

网元上基于多个网元地址开展业务的方法 技术领域
本发明涉及网络通信技术领域, 尤其涉及一种自动交换光网絡网元 上基于多个网元地址开展业务的方法。 发明背景
随着网络通信技术的发展, 光网络通信的应用日益普及。 在传统的 光网络中, 业务的配置通常采用静态配置的方法。 自动交换光网絡
( ASON )在传统光网络的基础上增加了自动生成业务的功能, 从而使 光网络从一种只能实现单純传输功能的系统转变为具有传输和交换功 能的综合系统。 在自动交换光网络中, ^^载业务的通道和交换节点构成 了传送平面。 另外, 为了实现自动交换功能还需要在节点之间进行控制 信息的交互, 由此自动交换光网络中构筑了一个基于互联网协议(IP ) 的数据通信网, 该数据通信网构成了控制平面。
在 ASON中, 为了保证数据及控制信息在网元间的可靠传递, 需要 为各个网元配置相应的网元地址。
目前, ASON的各个网元上只静态配置有一个网元地址, 用于在网 络中唯一标识这个网元。 该网元地址同时也可以作为网元在控制平面中 的 IP地址, 此时网元地址和 IP地址相同; 另外, 也可以配置网元的网 元地址和该网元的 IP地址不同。
然而, 随着网络业务的发展, 在网络扩容或者改造的时候, 需要对 网络进行重新规划, 这时, 可能需要各个网元采用新的网元地址来开展 新的业务。 由于在自动交换光网络中通过网元地址来识别网元, 所有业 务都是基于该地址生成的, 这样, 如果直接更换网元地址, 会导致此前 的所有业务全部失效, 但是, 如果仍采用现有的网元地址将可能无法满 足新业务的需要。 发明内容
本发明的目的是提供一种自动交换光网络网元上基于多个网元地 址开展业务的方法, 使得自动交换光网絡网元上可以在保证旧的业务正 常开展的同时, 实现基于新配置的网元地址创建新业务。
本发明所述的目的是通过以下技术方案实现的:
本发明所述的一种在自动交换光网络网元上基于多个网元地址开 展业务的方法, 包括:
a ) 网元在本地设置新业务对应的网元地址为激活地址;
b ) 网元将包含有自身新设置的激活地址的地址信息通过路由协议 扩散到网络中;
c )相邻的网元获取流量工程链路对端网元新的激活地址,将该激活 地址作为该流量工程链路新的对端激活地址, 将包含有新的对端激活地 址和当前本端激活地址的链路信息扩散到网络中;
d ) 当需要在网络中开展所述新业务时, 根据新的激活地址进行路 径计算, 根据计算结果开展新业务。
该方法步骤 a )前进一步包括: 预先为网元在控制平面创建多个环 回接口, 在每个环回接口上配置一个网絡层地址, 将各地址配置到传送 平面。
该方法如果新业务所对应的网元地址在网元中不存在, 则步骤 a ) 前进一步包括: 在网元控制平面上创建新的环回接口, 在环回接口上配 置新的网络层地址, 使该网络层地址值与欲配置的所述新业务对应的网 元地址值相同, 将该地址配置到传送平面。 该方法步骤 b )所述地址信息扩散过程包括:
将所述地址信息承载在路由协议的流量工程链路状态通告扩散的 路由器地址类型长度值中, 并且指明该新网元地址为本端新的激活地 址, 通过路由协议发布到网络中。
该方法所述地址信息承载在路由协议的流量工程链路状态通告扩 散的路由器地址类型长度值中的 3或 4号子类型长度值或链路类型长度 值中新增加的子类型长度值中。
该方法步骤 b )所述地址信息中还包括网元原来的激活地址。 该方法步驟 c )所述相邻的网元获取流量工程链路对端网元新的激 活地址的过程包括: 设置新的激活地址的网元将自身新的激活地址承载 于链路管理协议报文的网元地址 Class中的 C-Typel和 C-Type2中; 所述相邻网元通过周期校验获得对端网元新的激活地址, 将对端网 元新的激活地址和本地的网元地址承载在路由协议的流量工程链路状 态通告扩散的路由器地址类型长度值中 , 并且指明该新网元地址为对端 新的激活地址, 通过路由协议发布到网络中。
该方法对端网元新的激活地址和本地的网元地址承载在路由协议 的流量工程链路状态通告扩散的路由器地址类型长度值中的 3或 4号子 类型长度值或链路类型长度值中新增加的子类型长度值中。
该方法步骤 a )所述设置新业务对应的网元地址为激活地址包括: 为新业务对应的网元地址加上表示处于激活状态的激活标签。
由上述本发明提供的技术方案可以看出, 本发明采用了较为简便的 方法实现在自动交换光网络网元上配置多个网元地址的目的, 使得在网 络中开展新的业务时, 可以使用新配置的网元地址, 在网络中开展旧业 务时, 还可以使用原有的网元地址; 也就是说, 在本发明中可以针对不 同的业务在网元上配置不同的网元地址, 并在开展不同业务时使用。 因 此, 本发明可以使网络中针对各个网元配置的网元地址不仅可以满足新 业务的应用需要, 还可以适应原有的业务的应用需要, 保证了网络中因. 网络扩容或网络改造等原因导致出现开展不同的业务需要使用不同的 网元地址的情况时, 其中所有的新、 旧业务均可以正常开展。 附图简要说明
图 1为本发明创建新网元地址处理方案的流程图;
图 2为本发明激活已有网元地址处理方案的流程图。 实施本发明的方式
本发明方案是在自动交换光网络的网元上配置多个网元地址, 不同 的网元地址用于不同的业务。 配置方法是在控制平面创建多个环回接 口, 在每个环回接口上配置一个网元地址; 再将各网元地址配置到传送 平面。 当在网络中需要创建新的业务时, 只需将与所述新业务对应的网 元地址设置为激活地址, 并在网络中传播扩散每个网元的新的激活地 址, 这样, 便可以基于新的激活地址创建新的业务。 此时, 原来在非激 活地址上创建的旧业务, 仍然基于原来的地址继续正常运行, 网络是一 个新、 旧业务共存的网络。 其中, 这里旧的业务指在设置新激活地址之 前,在以前的激活地址上创建的业务,现在其地址已经变成非激活地址, 但仍然正常运行。
本发明中, 可以在第一次为网元配置网元地址时即配置多个网元地 址, 之后根据需要使用不同的网元地址开展不同的业务; 也可根据网络 运营需要对已经配置有一个或多个网元地址的网元, 再随时增加配置新 的网元地址并设置为激活地址, 在网络中传播扩散新的激活地址, 以便 开展新增的业务。 这样, 在创建一条业务的时候, 对网元地址可能有三 种不同的操作处理, 一种是该业务经过某个网元, 但该业务希望的网元 地址未在网元中设置, 此时, 则需要首先在网元上增加配置该业务对应 的网元地址, 再将其设置为激活地址, 然后在网络中传播扩散该激活地 址; 另一种是该业务经过某个网元, 并且该业务希望的网元地址在网元 中已经存在, 只是未设置为激活地址, 此时, 只需将该网元地址设置为 激活地址并在网絡中传播扩散该激活地址即可; 第三种情况是该业务经 过某个网元, 而且该业务希望的网元地址即是该网元当前的激活地址, 此时无需对网元地址执行任何操作, 因此这里不作讨论。 当网络中各网 元的新地址配置结束后, 便可以在网络中开展该激活地址所对应的新业 务。 还有一种特殊情况, 即网元中只配置有一个地址, 当前业务就是基 于该地址开展的, 则此时可以不指定激活地址。
下面首先描述上述第一种情况, 即在自动交换光网络中, 通过创建 新地址来开展新业务的实现方案, 参见图 1所示, 具体包括:
步骤 11: 当所要开展的新业务需要采用的网元地址在网元中不存在 时, 为各个网元配置该新业务对应的新的网元地址, 将新的网元地址设 置为激活地址。
具体包括: 在新业务所涉及的每个网元的控制平面上创建一个新的 环回接口, 在环回接口上配置新的网絡层地址, 其值与所要配置的新的 网元地址相同, 将该地址配置到传送平面, 即得到新的网元地址, 并设 置该网元地址为激活地址。 将地址设置为激活地址的方法可以有艮多, 比如: 在地址上加标签, 以表示该地址为激活地址。
步骤 12: 将新配置的激活地址发布到路由协议中, 再通过路由协议 将新激活地址扩散到网络中, 以便于在网络中开展新的业务时, 可以根 据新的网元地址执行计算路由、 确定路径等操作。
在网絡中扩散新的网元激活地址的具体过程为: 在路由协议的流量 工程链路状态通告 (TE—LSA )扩散的路由器地址类型长度值 ( Router Address TLV )中承载当前新的网元地址, 并且指明该新网元地址为本网 元的激活地址。
步骤 13: 相邻的网元获取流量工程(ΊΈ )链路对端网元的所述新的 网元地址, 即激活地址, 并将其作为该 TE链路新的对端网元激活地址, 将基于该新激活地址的链路信息扩散到网络中。
对于自动交换光网络中的各个网元来说, 本端激活地址的改变可以 直接获得, 而当 TE链路对端网元的激活地址发生改变时, 则需要首先 获得该对端网元新的地址, 即激活地址, 然后, 将获得的新的地址作为 该 TE链路对端网元的激活地址。
相邻网元获取对端网元激活地址改变信息的具体过程为: 在激活地 址改变的网元上, 将新的网元地址作为本端激活地址并将相应的对端的 激活地址分别承载于链路管理协议 (LMP ) ^艮文的网元地址 Class
( NODE— ID Class )中的 C-Typel和 C-Type2中。 这样, 在周期校验时, 相邻网元便可以发现这一激活地址的改变, 并重新生成包含有该新激活 地址的新的 TE链路信息, 以便于在自动光网络中根据所述激活地址基 于 LMP建立新的链路, 从而实现基于新的网元地址开展相应的业务。 其中, 所述 Class是 LMP中的一种数据结构, 所述 C-Typel和 C-Type2 是 LMP中的一个数据。
扩散基于新的激活地址的链路信息是所述相邻网元将本端激活地 址承载于 TE—LSA的链路类型长度值 ( Link TLV )的 3号子类型长度值
( sub-TLV )或链路类型长度值中新增加的 sub-TLV中,将 TE链路的对 端将新的激活地址作为对端激活地址承载于 TE—LSA的链路类型长度值 的 4号 sub-TLV或链路类型长度值中新增加的 sub-TLV中, 并通过路由 协议发布到网络中, 从而实现相应的链路信息的扩散。 在本发明中涉及的路由协议可以为链路状态协议, 该链路状态协议 可以为最短路径优先( OSPF )协议,也可以为中间系统到中间系统( ISIS ) 协议。
所述步骤 12 的新激活地址的发布过程在每个更改了激活地址的网 元上执行; 所述步骤 13 的链路信息更新发布过程在网絡中每个与更改 激活地址的网元通过 TE链路相连的相邻网元中执行。 上述过程执行完 成以后,表明新配置的网元地址和 TE链路信息的更新和发布过程结束, 可进一步执行步骤 14。
步骤 14: 当需要在网络中开展所述新业务时, 各个网元根据新的激 活地址进行路径计算, 即根据新的激活地址采用约束最短路径优先算法 ( CSPF )进行业务路径计算。
步谏 15: 根据路径计算结果开展新业务。 由于在步骤 14中是根据 新激活地址进行的路径计算, 则网络中的新业务便为基于新配置的网元 地址开展的业务。
如果网元上同时存在着多个网元地址, 但是开展新业务所需要的地 址是其中的一个未被激活的网元地址, 则需要更改网元激活地址, 即上 述第二种情况, 其具体过程与上述步驟 11至步驟 15的处理过程类似, 区别主要在于网元所选择的新的激活地址为网元中已经存在的一个或 多个网元地址中的一个。
所述的具体修改网元激活地址的处理过程, 参见图 2所示, 包括以 下步骤:
步骤 21 : 当需要开展的新业务时, 如果该业务所希望的地址在网元 中已经存在, 但不是网元当前的激活地址, 则需要对网元的激活地址进 行修改。
具体包括: 新业务所涉及的各个网元在传送平面找到与新业务对应 的网元地址, 将该网元地址设置为激活地址, 并设置原激活地址为非激 活状态, 即将原激活地址的激活标签去除。
步驟 22:将针对新的环回接口上配置的新的网元地址作为网元本端 激活地址, 将其与对端网元当前的激活地址一起发布到路由协议中, 通 过路由协议扩散到网絡中。 该步骤具体的过程与上述步骤 12相同。
另外本步骤与步骤 12在扩散激活地址的报文中还可以承载网元原 来存在的激活地址, 即旧的网元激活地址, 以便于接收到该报文的网元 可以找到相应的旧的网元激活地址, 并将其修改为新的网元激活地址。 对于步骤 12, 如果网元中原来只存在一个网元地址, 则这里所述网元原 来存在的激活地址即为该网元原来的网元地址。
旧的激活地址可以承载于 TE—LSA的 Router Address TLV中 , 也可 以被承载于为旧的激活地址定义的新的 Sub— TLV中。
步骤 23: 网络中相邻的网元获得新的激活地址, 并将新的激活地址 作为 TE链路新的对端激活地址, 将基于该新网元地址的链路信息扩散 到网络中。 该步骤具体的过程与上述步骤 13相同。
同样, 在各个网元上执行步骤 22和步骤 23的操作处理过程, 直至 整个修改网元激活地址的处理过程结束, 执行步骤 24。
步骤 24: 当需要在网络中开展相应的业务时, 各个网元根据新的激 活地址进行路径计算, 即根据新的激活地址进行采用 CSPF进行业务路 径计算。
步骤 25: 根据路径计算结果开展相应的业务。 同样, 由于在步骤 24中是根据修改后的新的激活地址进行的路径计算,则网络中的相应业 务便为基于修改后的新的网元激活地址开展的业务。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范 围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求书的保护范围为准。

Claims

权利要求书
1、 一种在网元上基于多个网元地址开展业务的方法, 其特征在于, 包括:
a ) 网元在本地设置新业务对应的网元地址为激活地址;
b ) 网元将包含有自身新设置的激活地址的地址信息通过路由协议 扩散到网络中;
c )相邻的网元获取流量工程链路对端网元新的激活地址,将该激活 地址作为该流量工程链路新的对端激活地址, 将包含有新的对端激活地 址和当前本端激活地址的链路信息扩散到网络中;
d ) 当需要在网络中开展所述新业务时, 根据新的激活地址进行路 径计算, 根据计算结果开展新业务。
2、 根据权利要求 1所述的方法, 其特征在于, 步驟 a )前进一步包 括: 预先为网元在控制平面创建多个环回接口, 在每个环回接口上配置 一个网络层地址, 将各地址配置到传送平面。
3、 根据权利要求 1 所述的方法, 其特征在于, 如果新业务所对应 的网元地址在网元中不存在, 则步骤 a )前进一步包括: 在网元控制平 面上创建新的环回接口, 在环回接口上配置新的网络层地址, 使该网络 层地址值与欲配置的所述新业务对应的网元地址值相同, 将该地址配置 到传送平面。
4、 根据权利要求 1所述的方法, 其特征在于, 步驟 b )所述地址信 息扩散过程包括:
将所述地址信息承载在路由协议的流量工程链路状态通告扩散的 路由器地址类型长度值中, 并且指明该新网元地址为本端新的激活地 址, 通过路由协议发布到网络中。
5、 根据权利要求 4所述的方法, 其特征在于, 所述地址信息承载 在路由协议的流量工程链路状态通告扩散的路由器地址类型长度值中 的 3 或 4号子类型长度值或链路类型长度值中新增加的子类型长度值 中。
6、 根据权利要求 1或 4或 5所述的方法, 其特征在于, 步驟 b )所 述地址信息中还包括网元原来的激活地址。
7、 根据权利要求 1所述的方法, 其特征在于, 步骤 c )所述才目邻的 网元获取流量工程链路对端网元新的激活地址的过程包括: 设置新的激 活地址的网元将自身新的激活地址承载于链路管理协议^艮文的网元地 址 Class中的 C-Typel和 C-Type2中;
所述相邻网元通过周期校验获得对端网元新的激活地址, 将对端网 元新的激活地址和本地的网元地址 载在路由协议的流量工程链路状 态通告扩散的路由器地址类型长度值中, 并且指明该新网元地址为对端 新的激活地址, 通过路由协议发布到网络中。
8、 根据权利要求 7所述的方法, 其特征在于, 对端网元新的激活 地址和本地的网元地址承载在路由协议的流量工程链路状态通告扩散 的路由器地址类型长度值中 f
中新增加的子类型长度值中。
9、 根据权利要求 1所述的方法, 其特征在于, 步骤 a )所述设置新 业务对应的网元地址为激活地址包括: 为新业务对应的网元地址力口上表 示处于激活状态的激活标签。
PCT/CN2005/000010 2004-01-04 2005-01-04 Procede pour la mise en oeuvre de services sur des elements de reseau sur la base de plusieurs adresses d'elements de reseau WO2005067206A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05700385.7A EP1703669B2 (en) 2004-01-04 2005-01-04 A method for implementing services on network elements based on multiple network element addresses
DE602005016772T DE602005016772D1 (de) 2004-01-04 2005-01-04 Verfahren zum implementieren von diensten auf netzwerkelementen auf der basis mehrerer netzwerkelementadressen
AT05700385T ATE443952T1 (de) 2004-01-04 2005-01-04 Verfahren zum implementieren von diensten auf netzwerkelementen auf der basis mehrerer netzwerkelementadressen
US11/477,551 US7848502B2 (en) 2004-01-04 2006-06-30 Method for implementing services on a network element based on multiple IDs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410002353.1 2004-01-04
CNB2004100023531A CN100574226C (zh) 2004-01-04 2004-01-04 自动交换光网络网元上基于多个网元地址开展业务的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/477,551 Continuation US7848502B2 (en) 2004-01-04 2006-06-30 Method for implementing services on a network element based on multiple IDs

Publications (1)

Publication Number Publication Date
WO2005067206A1 true WO2005067206A1 (fr) 2005-07-21

Family

ID=34744514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000010 WO2005067206A1 (fr) 2004-01-04 2005-01-04 Procede pour la mise en oeuvre de services sur des elements de reseau sur la base de plusieurs adresses d'elements de reseau

Country Status (6)

Country Link
US (1) US7848502B2 (zh)
EP (1) EP1703669B2 (zh)
CN (1) CN100574226C (zh)
AT (1) ATE443952T1 (zh)
DE (1) DE602005016772D1 (zh)
WO (1) WO2005067206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285908A (zh) * 2021-12-09 2022-04-05 中国联合网络通信集团有限公司 网元适配方法、装置、设备和计算机可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116839A1 (en) * 2005-04-29 2006-11-09 Nortel Networks Limited Method and apparatus for non-disruptive call modification
KR100987263B1 (ko) * 2006-03-08 2010-10-12 닛본 덴끼 가부시끼가이샤 무선 제어 장치, 그 동작 제어 방법 및 컴퓨터 판독가능 기록매체
US7831700B2 (en) * 2006-10-16 2010-11-09 Futurewei Technologies, Inc. Distributed PCE-based system and architecture in multi-layer network
US8432909B2 (en) * 2007-04-03 2013-04-30 Ciena Corporation Methods and systems for using a link management interface to distribute information in a communications network
CN104579728B (zh) * 2013-10-17 2019-02-26 中兴通讯股份有限公司 网元设备配置和管理方法、装置及网元设备
CN105530109B (zh) * 2014-09-30 2019-06-11 中国电信股份有限公司 一种网元即插即管理的方法、路由器和系统
CN114389952B (zh) * 2020-10-15 2024-05-31 中国移动通信集团设计院有限公司 面向多层网的移动通信网络容量配置方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758771A (ja) * 1993-08-12 1995-03-03 Sharp Corp アドレス管理装置
WO2001072003A2 (en) * 2000-03-20 2001-09-27 At & T Corp. Method and apparatus for coordinating user selection of network service providers over a broadband communications network
WO2001076159A1 (en) 2000-03-31 2001-10-11 British Telecommunications Public Limited Company Processing capacity management
WO2002015491A1 (en) 2000-08-17 2002-02-21 Advanced Network Technology Laboratories Pte Ltd. Reconfigurable computer networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433606C (zh) * 2002-06-29 2008-11-12 中兴通讯股份有限公司 一种光网络信令控制平台的实现方法
CN1312863C (zh) * 2002-07-11 2007-04-25 北京邮电大学 一种自动交换光网络可恢复路径选择建立方法
US7689693B2 (en) * 2003-03-31 2010-03-30 Alcatel-Lucent Usa Inc. Primary/restoration path calculation in mesh networks based on multiple-cost criteria
US7545736B2 (en) * 2003-03-31 2009-06-09 Alcatel-Lucent Usa Inc. Restoration path calculation in mesh networks
US8296407B2 (en) * 2003-03-31 2012-10-23 Alcatel Lucent Calculation, representation, and maintenance of sharing information in mesh networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758771A (ja) * 1993-08-12 1995-03-03 Sharp Corp アドレス管理装置
WO2001072003A2 (en) * 2000-03-20 2001-09-27 At & T Corp. Method and apparatus for coordinating user selection of network service providers over a broadband communications network
WO2001076159A1 (en) 2000-03-31 2001-10-11 British Telecommunications Public Limited Company Processing capacity management
WO2002015491A1 (en) 2000-08-17 2002-02-21 Advanced Network Technology Laboratories Pte Ltd. Reconfigurable computer networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LMP, LDP and RSVP Extensions for Optical UNI Signaling", IETF STANDARD-WORKING-DRAFT, INTERNET ENGINEERING TASK FORCE, IETF, 1 October 2003 (2003-10-01)
WEI X.S. ET AL: "Routing technique of control plane in ASON", WORLD TELECOMMUNICATIONS, vol. 16, no. 12, December 2003 (2003-12-01), pages 39 - 42, XP008076944 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285908A (zh) * 2021-12-09 2022-04-05 中国联合网络通信集团有限公司 网元适配方法、装置、设备和计算机可读存储介质
CN114285908B (zh) * 2021-12-09 2023-10-31 中国联合网络通信集团有限公司 网元适配方法、装置、设备和计算机可读存储介质

Also Published As

Publication number Publication date
EP1703669A1 (en) 2006-09-20
ATE443952T1 (de) 2009-10-15
DE602005016772D1 (de) 2009-11-05
US20070074039A1 (en) 2007-03-29
CN1642123A (zh) 2005-07-20
EP1703669B2 (en) 2014-07-30
EP1703669B1 (en) 2009-09-23
US7848502B2 (en) 2010-12-07
EP1703669A4 (en) 2007-05-02
CN100574226C (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
TWI499237B (zh) 廣播網路之標籤分配協定與內部閘道協定同步化
US8018952B1 (en) Automatic LSP stitching with protocol signaling
US8155028B2 (en) Method and apparatus for providing full logical connectivity in MPLS networks
RU2521092C2 (ru) Синхронизация ldp и igp для широковещательных сетей
US20060126496A1 (en) Fast reroute (FRR) protection at the edge of a RFC 2547 network
US20080031619A1 (en) Method and device for recovering from inter-domain link failure
EP1779568A2 (en) Graceful shutdown of ldp on specific interfaces between label switched routers
WO2008043229A1 (fr) Procédé et appareil de calcul du trajet de service
WO2008037198A1 (fr) Procédés de mise en oeuvre de réacheminement rapide multidiffusion et noeud
JP2006033307A (ja) Mplsネットワークシステム及びノード
JP3855809B2 (ja) 経路制御方法、経路制御装置
WO2011110110A1 (zh) 一种建立标签交换路径的方法、系统和节点设备
US7848502B2 (en) Method for implementing services on a network element based on multiple IDs
WO2005122442A1 (fr) Procede d'execution d'associations dans un reseau optique a commutation automatique
US8902909B2 (en) Method, system, and device for implementing service forwarding
WO2009106012A1 (zh) 一种通告相邻网络域ds-te信息的方法和系统及设备
JP4684351B2 (ja) シグナリング装置及びシグナリング方法
JP2004080211A (ja) 経路制御方法及び装置及び経路制御プログラム及び経路制御プログラムを格納した記憶媒体
Virk et al. Economical protection in MPLS networks
CN104253752B (zh) 在ldp协议中实现lsp平滑切换的方法及系统
JP6377738B2 (ja) Rsvp−teシグナリングを処理するための方法及びシステム
WO2013033997A1 (zh) 一种实现控制平面交叉倒换的方法及系统
JP2003234824A (ja) ルーティング方法及び装置と光パスネットワーク
JP2007067813A (ja) 光ネットワークおよびエッジスイッチ
JP4549925B2 (ja) ノード装置およびルーティング方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005700385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11477551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005700385

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11477551

Country of ref document: US