WO2005066554A1 - Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus - Google Patents

Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus Download PDF

Info

Publication number
WO2005066554A1
WO2005066554A1 PCT/JP2005/000024 JP2005000024W WO2005066554A1 WO 2005066554 A1 WO2005066554 A1 WO 2005066554A1 JP 2005000024 W JP2005000024 W JP 2005000024W WO 2005066554 A1 WO2005066554 A1 WO 2005066554A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
circuit
gas
ultra
main
Prior art date
Application number
PCT/JP2005/000024
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Takahashi
Masafumi Yagi
Hiromasa Shimizu
Akira Tomozawa
Masahiko Ikeda
Masahito Shiono
Original Assignee
Shinmaywa Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004002344A external-priority patent/JP2005195258A/en
Priority claimed from JP2004012692A external-priority patent/JP2005207637A/en
Priority claimed from JP2004014074A external-priority patent/JP2005207661A/en
Priority claimed from JP2004014064A external-priority patent/JP4326353B2/en
Priority claimed from JP2004014143A external-priority patent/JP2005207662A/en
Application filed by Shinmaywa Industries, Ltd. filed Critical Shinmaywa Industries, Ltd.
Priority to US10/585,463 priority Critical patent/US20090188270A1/en
Publication of WO2005066554A1 publication Critical patent/WO2005066554A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/04Self-contained movable devices, e.g. domestic refrigerators specially adapted for storing deep-frozen articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing

Definitions

  • the mixed refrigerant contains a refrigerating machine oil for preventing seizure of a sliding bearing or the like in the compressor, and the mixed refrigerant is provided between the discharge side of the compressor and the condenser.
  • An oil separator for removing the refrigerating machine oil is provided to prevent the refrigerating machine oil from being supplied to the cooler and solidifying, thereby reducing the cooling efficiency.
  • a compressor for compressing a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, and a high-boiling refrigerant among the mixed refrigerant discharged from the compressor A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied by the condenser into a liquid refrigerant and a gas refrigerant from a high-boiling-point refrigerant to a low-boiling-point refrigerant; and A multi-stage cascade heat exchange for cooling the gas refrigerant separated by the gas-liquid separator by exchanging heat with the liquid refrigerant separated and decompressed by each gas-liquid separator; and Among them, a cooler for evaporating the decompressed low-boiling-point refrigerant discharged from the last-stage cascade heat exchanger and cooling the object to be cooled to an ultra-low temperature level is connected
  • the cooling device since the plurality of branch decompression means have different decompression capacities, compared to the case where the plurality of branch decompression means have the same decompression capacity, the cooling device has The adjustment range of the cooling temperature and the cooling time can be increased.
  • the branch pressure reducing means is a capillary tube.
  • the main refrigerant circuit provided with the main cooler and the decompressing means for the main cooler and the sub-refrigerant circuit branched and connected to the main refrigerant circuit and provided with the decompressing means for the subcooler
  • the highest position of the sub-refrigerant circuit at the branch of the main and sub-refrigerant circuits was set lower than the lowest position of the main refrigerant circuit, so that the primary-side power of the subcooler was discharged.
  • the decompression capabilities of the plurality of decompression means are different from each other, so that the adjustment range of the cooling temperature and the cooling time in the cooler can be further increased.
  • FIG. 1 is a plan view schematically showing a layout of a vacuum film forming apparatus according to an embodiment of the present invention.
  • FIG. 4 is an enlarged plan view showing a main part of the ultra-low temperature refrigeration apparatus.
  • FIG. 5 is a view in the direction of arrow V in FIG. 4.
  • FIG. 7 is a diagram corresponding to FIG. 4 showing the third embodiment.
  • FIG. 14 is a refrigerant system diagram showing the entire configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 9 of the present invention.
  • FIG. 16 is a refrigerant system diagram showing the entire configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 11 of the present invention.
  • a gate valve 104 is provided at a connection portion of the communication passage 102 with the vacuum chamber 100 to switch the two to a communication state or a communication cutoff state by opening and closing.
  • the opening and closing door 101 is closed and the gate valve 104 is opened. In this state, the inside of the vacuum chamber 100 is evacuated by operating the vacuum pump 103.
  • FIG. 2 shows another example of the layout of the vacuum film forming apparatus A.
  • the cryocoil 32 of the refrigerating apparatus R is provided not in the vacuum chamber 100 but in the communication passage 102.
  • the vacuum in the vacuum chamber 100 is captured by freezing the water in the communication passage 102, that is, the water in the vacuum chamber 100, by indirectly cooling and capturing the water in the communication passage 102 by the ultra-low-temperature refrigeration apparatus R in a state of evacuation by the vacuum pump 103.
  • Other structures are the same as those of the vacuum film forming apparatus A shown in FIG.
  • a water-cooled condenser 8 that cools and condenses the gas refrigerant discharged from the compressor 4 by heat exchange with the cooling water in the cooling water passage 7 is connected to the refrigerant discharge portion of the oil separator 5.
  • the discharge side of the water-cooled condenser 8 is connected to the primary side of an auxiliary condenser 10 via a dryer 9 that removes moisture in the refrigerant and contamination.
  • a second gas-liquid separator 13 is connected to the discharge section on the primary side in the first heat exchange, and in the second gas-liquid separator 13, the first heat exchanger 18 Is separated into a liquid refrigerant and a gas refrigerant.
  • the gas refrigerant discharge section of the second gas-liquid separator 13 has a primary side of a cascade type second heat exchange 19, and the liquid refrigerant discharge section has a second capillary tube 25 as a decompression means.
  • the secondary sides of the same second heat exchanger 19 are connected to each other via the same. Then, the liquid refrigerant separated by the second gas-liquid separator 13 is depressurized by the second capillary tube 25 and then supplied to the secondary side of the second heat exchange to evaporate. Cools the refrigerant to the next highest boiling point in the mixed refrigerant.
  • the gas refrigerant is condensed and liquefied.
  • the primary gas discharge section of the second heat exchanger 19 includes a third gas-liquid separator 14, a third heat exchange 20, and a third cabillary.
  • a fourth gas-liquid separator 15, a fourth heat exchanger 21, and a fourth capillary tube 27 are connected to a tube 26 and a discharge portion on the primary side of the third heat exchanger 20, respectively.
  • These connection structures are the same as the connection structure of the first gas-liquid separator 12, the first heat exchanger 18, and the first capillary tube 24, and therefore detailed description thereof is omitted.
  • the liquid refrigerant separated by the third gas-liquid separator 14 is depressurized by the third capillary tube 26, and then supplied to the secondary side of the third heat exchange to evaporate.
  • the gas refrigerant on the primary side from the liquid separator 14 is cooled, and the boiling point of the mixed refrigerant is the next highest! ⁇ Condenses and liquefies gas refrigerant at temperature. Further, the liquid refrigerant separated by the fourth gas-liquid separator 15 is decompressed by the fourth capillary tube 27, and then supplied to the secondary side of the fourth heat exchange to evaporate. The gas refrigerant on the primary side from the separator 15 is cooled by heat exchange, and the remaining gas refrigerant of the mixed refrigerant is condensed and liquefied.
  • the primary side discharge part of the fourth heat exchanger 21 is connected to the primary side 31a of a subcooler 31 (subcooler) which also has a heat exchanger power.
  • the refrigerant pipe 2 connected to the discharge part on the next side 31a is branched into a main refrigerant pipe 2a and a sub-refrigerant pipe 2b by a branch pipe 35 on the way.
  • a sixth capillary tube 29 and a cryocoil 32 as decompression means for the main cooler are connected in series from the upstream side, respectively.
  • the cryo coil 32 constitutes the main cooler, and as shown in FIG. 1 or FIG. The water as a cooling target in the empty chamber 100 is cooled.
  • the downstream end of the main refrigerant pipe 2a is connected to the refrigerant pipe 2 between the secondary side of the fourth heat exchanger 21 and the secondary side 31b of the subcooler 31, so that the primary
  • the remaining refrigerant discharged from the side 31a is decompressed by the sixth capillary tube 29 of the main refrigerant pipe 2a, and then supplied to the cryocoil 32 to evaporate.
  • the feature of the present invention lies in the arrangement structure of the branch pipe 35. That is, as shown in FIG. 4 and FIG. 5 in an enlarged manner, the branch pipe 35 is formed of a collecting part 35a and a pair of main-side and sub-side branch parts 35b and 35c branched from the collecting part 35a in a forked shape. Consists of The downstream end of the refrigerant pipe 2 connected to the discharge part on the primary side 31a of the subcooler 31 is hermetically joined to the collecting part 35a by brazing or the like.
  • the upstream end of the main refrigerant pipe 2a is joined to the main branch 35b in an airtight manner by brazing or the like, and the upstream end of the sub refrigerant pipe 2b is joined to the sub-branch 35c.
  • Both the main refrigerant pipe 2a and the sub-refrigerant pipe 2b extend substantially along the horizontal plane, and a main refrigerant circuit 38 is provided inside the main branch part 35b and the main refrigerant pipe 2a.
  • the sub-refrigerant circuit 39 is formed in the inside of the sub-refrigerant and the sub-refrigerant pipe 2b, respectively.
  • reference numeral 44 denotes an electromagnetic on-off valve connected to the main refrigerant pipe 2 a between the sixth capillary tube 29 and the cryo-coil 32
  • reference numeral 45 denotes the electromagnetic on-off valve 44 and the cryo-coil 32
  • the defrost circuit 45 is closed by closing the solenoid on-off valve 46 and the main refrigerant is opened by opening the solenoid on-off valve 44.
  • the pipe 2a By opening the pipe 2a, the low-boiling-point refrigerant is evaporated by the cryocoil 32, and the water in the vacuum chamber 100 is cooled to be frozen and captured.
  • Reference numeral 60 denotes a buffer tank, and the buffer tank 60 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18 are connected to the refrigerant tank. It is connected by the inflow pipe 61.
  • the buffer tank 60 and the refrigerant pipe 2 on the suction side of the compressor 4 are connected by a refrigerant return pipe 62 for returning the gas refrigerant inside the buffer tank 60 to the suction side of the compressor 4.
  • an abnormal increase in the discharge pressure of the compressor 4 is prevented by a gas refrigerant that is insufficiently condensed at the start of the operation of the refrigerating device R.
  • the refrigerant discharged from the primary side of the fourth heat exchange enters a gas-liquid mixed state, and after passing through the primary side 31a of the supercooler 31, the refrigerant flows into the branch pipe 35.
  • the refrigerant circuit 38 (main refrigerant pipe 2a) and the sub refrigerant circuit 39 (sub refrigerant pipe 2b) are separated into two paths.
  • the refrigerant flowing into the sub-refrigerant circuit 39 is decompressed by the fifth capillary tube 28, and then supplied to the secondary side 31b of the subcooler 31 to evaporate.
  • the refrigerant in a gas-liquid mixed state from the fourth heat exchange via the primary side 31a of the subcooler 31 is branched by the branch pipe 35 into the main refrigerant circuit 38 (main refrigerant pipe 2a) and the sub-refrigerant circuit 39.
  • the defrost circuit 45 is closed by closing the electromagnetic on-off valve 46 and the main operation is performed by opening the electromagnetic on-off valve 44 in the same manner as described above.
  • the refrigerant pipe 2a is opened, and the low-boiling refrigerant discharged from the primary side 31a of the subcooler 31 is divided into the main refrigerant circuit 38 and the sub-refrigerant circuit 39 by the branch pipe 35. Also in this case, the flow rate force of the liquid coolant flowing into the secondary side 31b of the subcooler 31 due to the height difference h between the main refrigerant circuit 38 and the sub-refrigerant circuit 39 described above.
  • Cooling time can be rapidly reduced from a temperature to an ultra-low temperature level to reduce the cool down time, thereby shortening the evacuation time in the vacuum chamber 100 and the process time of the film forming process, and achieving high efficiency. be able to.
  • the entire height position of the sub-refrigerant circuit 39 is adjusted to the entire height of the main refrigerant circuit 38. Although it is lower than the body, it is not necessary to provide a height difference throughout the sub refrigerant circuit 39 and the main refrigerant circuit 38. At least at the branch between the main refrigerant circuit 38 and the sub-refrigerant circuit 39, the maximum height position of the sub-refrigerant circuit 39 should be lower than the minimum height position of the main refrigerant circuit 38.
  • FIG. 6 shows a second embodiment of the present invention (in the following embodiments, the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted).
  • the first embodiment by setting the height position of the sub-refrigerant circuit 39 lower than that of the main refrigerant circuit 38, the flow rate of the liquid refrigerant flowing to the secondary side 31b of the subcooler 31 is reduced. It is larger than the flow rate.
  • the height position of the sub-refrigerant circuit 39 and that of the main refrigerant circuit 38 are the same, and the cross-sectional area of the sub-refrigerant circuit 39 is larger than that of the main refrigerant circuit 38.
  • the main branch 35b and the sub-branch 35c of the branch pipe 35 have the same diameter as each other as in the first embodiment, but the main refrigerant pipe 2a connected to the main branch 35b is A smaller diameter refrigerant pipe than the sub refrigerant pipe 2b connected to the sub branch 35c is used.
  • the sub-refrigerant circuit 39 formed inside the sub-side branch portion 35c and the sub-refrigerant pipe 2b is formed. Is larger than the cross-sectional area of the main refrigerant circuit 38 formed inside the main-side branch portion 35b and inside the main refrigerant pipe 2a.
  • the main refrigerant pipe 2a has a pipe diameter smaller than that of the sub-refrigerant pipe 2b, and the cross-sectional area of the sub-refrigerant circuit 39 is larger than that of the main refrigerant circuit 38. It's ok.
  • the refrigerant discharged from the primary side 31a of the subcooler 31 is divided into the main refrigerant circuit 38 and the sub-refrigerant circuit 39, the refrigerant as a whole flows into the sub-refrigerant circuit 39 of the refrigerant in a gas-liquid mixed state.
  • the flow rate becomes larger than the flow rate flowing into the main refrigerant circuit 38, and the flow rate of the liquid refrigerant flowing into the sub-refrigerant circuit 39 increases in proportion to the flow rate. For this reason, sufficient cooling of the gas refrigerant on the primary side 31a of the subcooler 31 is maintained, and the flow rate of the liquid refrigerant circulated by the subcooler 31 increases, thereby improving the cooling efficiency of the main cooler. Therefore, the same operation and effect as those of the first embodiment can be obtained.
  • the sub-refrigerant pipe 2b has the same ordinary pipe diameter as that of the first embodiment, and a smaller-diameter pipe is used as the main refrigerant pipe 2a.
  • 2b is larger in diameter than the main refrigerant pipe 2a, but conversely, the main refrigerant pipe 2a is of a normal pipe diameter, and the larger diameter pipe is used as the sub-refrigerant pipe 2b. You may achieve your goals.
  • the cross-sectional area of the entire sub-refrigerant circuit 39 is larger than the entirety of the main refrigerant circuit 38, but the cross-sectional area of the entire sub-refrigerant circuit 39 and the main refrigerant circuit 38 is large. It is only necessary that the minimum cross-sectional area of the sub-refrigerant circuit 39 is larger than the maximum cross-sectional area of the main refrigerant circuit 38.
  • the main refrigerant pipe 2a connected to the main branch part 35b of the branch pipe 35 has a smaller diameter than the sub refrigerant pipe 2b connected to the sub branch part 35c.
  • the cross-sectional area of the sub-refrigerant circuit 39 is larger than the cross-sectional area of the main refrigerant circuit 38 formed inside the main branch portion 35b and inside the main refrigerant pipe 2a.
  • Other configurations are the same as those of the first or second embodiment.
  • the operation and effect of the first and second embodiments are synergistically exhibited, and the cooling efficiency of the cryocoil 32 can be further improved.
  • Embodiments 13 to 13 a non-azeotropic mixed refrigerant obtained by mixing a plurality of types of refrigerants is used.
  • the present invention can be applied to a refrigeration system that does not use a power-mixed refrigerant that is applied to a refrigeration system, and has a subcooler in addition to the main cooler. I just need.
  • FIG. 9 shows an overall configuration of an ultra-low temperature refrigeration apparatus R according to Embodiment 4 of the present invention.
  • the structure of the branch pipe 35 described in the embodiment 13 is not an essential requirement.
  • the circuit configuration of the defrost circuit 45 is characterized. That is, as shown in FIG. 9, between the upstream end of the defrost circuit 45 and the solenoid on-off valve 46, a second oil separator 50 (for separating refrigerant oil such as lubricating oil for a compressor into gas refrigerant power) is provided.
  • An oil separator 5 connected to the discharge section of the compressor 4 is referred to as a first oil separator).
  • the refrigerating machine oil separated by the second oil separator 50 is returned to the suction side of the compressor 4 via the oil return pipe 6 similarly to the first oil separator 5 described above.
  • the second oil separator 50 is provided with a defrost circuit 45 so that the refrigerating machine oil having a high temperature and a low viscosity can be separated and the refrigerating machine oil can be more reliably removed.
  • the distance to the upstream end is It is disposed at a position shorter than the distance (the upstream half of the defrost circuit 45).
  • Other configurations are the same as those of the first embodiment.
  • the vacuum chamber 100 of the film forming apparatus A is provided with the second oil separator 50.
  • the solenoid on-off valve 44 is closed and the solenoid on-off valve 46 is opened, and the mixed refrigerant discharged from the compressor 4 is supplied to the cryocoil 32 by the defrost circuit 45. Then, even if the refrigerating machine oil in the mixed refrigerant cannot be completely removed by the first oil separator 5, it can be further removed by the second oil separator 50.
  • the supply of the refrigerating machine oil from the defrost circuit 45 to the cryocoil 32 can be suppressed.
  • the cooling of the refrigerating machine oil in the cryocoil 32 which is still at an ultra-low temperature level, is prevented from being solidified, so that good circulation of the mixed refrigerant can be ensured.
  • the evacuation time in the vacuum chamber 100 and the process time of the film forming process can be reduced and the efficiency can be improved.
  • the solenoid on-off valve 44 When the vacuum chamber 100 is again evacuated after such a defrost operation, the solenoid on-off valve 44 is opened, the solenoid on-off valve 46 is closed, and the second oil separator 5 is closed.
  • the refrigerating machine oil separated at 0 is collected on the suction side of the compressor 4.
  • the second oil separator 50 since the second oil separator 50 is disposed between the upstream end of the defrost circuit 45 and the electromagnetic on-off valve 46, the second oil separator 50 is disposed between the suction side of the compressor 4 and the second oil separator 50.
  • the former can suppress the occurrence of a higher pressure difference than the latter.
  • the suction side force of the compressor 4 is also directed to the second oil separator 50 to prevent the refrigerating machine oil from flowing backward, and to achieve a smooth recirculation of the refrigerating machine oil to the compressor 4. it can.
  • FIG. 10 shows the overall configuration of an ultra-low-temperature refrigeration apparatus R according to Embodiment 5 of the present invention.
  • This embodiment is characterized by the circuit configuration of the buffer tank. That is, in FIG. A pressure sensor 59 for detecting the discharge pressure of the gas refrigerant is connected to the discharge section of the compressor 4.
  • Reference numeral 63 denotes a first buffer tank, and 64 denotes a second buffer tank located below the first buffer tank 63.
  • the operation of the ultra-low-temperature refrigeration system R is performed by the first and second buffer tanks 63 and 64.
  • high-pressure gas refrigerant that is insufficiently condensed is temporarily released to suppress an abnormal increase in the discharge pressure of the compressor 4.
  • the gas refrigerant in the first and second buffer tanks 63 and 64 is supplied to the compressor 4 in the middle of the refrigerant inflow pipe 61 (portion between the solenoid on-off valve 66 and the second buffer tank 64). It is connected to a refrigerant return pipe 62 returning to the refrigerant pipe 2 on the suction side.
  • a fusible plug 67 is connected to the lower side of the first buffer tank 63.
  • the fusible plug 67 melts by the heat of a fire or the like and opens the inside of the first buffer tank 63 to lower the tank internal pressure.
  • Other configurations are the same as those of the fourth embodiment.
  • the same is detected by the same pressure sensor 59, the electromagnetic on-off valve 66 is closed, and the refrigerant is returned from the first and second buffer tanks 63, 64.
  • the gas refrigerant is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the pipe 62.
  • the gas refrigerant flows between the two tanks 63, 64, and the gas refrigerant in the respective buffer tanks 63, 64 The stagnation of the gas refrigerant is suppressed. This makes it possible to completely circulate the refrigerant components having different specific gravities, thereby preventing a decrease in cooling performance due to a change in the component ratio of the mixed refrigerant in the refrigeration apparatus R.
  • An electromagnetic on-off valve is connected not only to the refrigerant inflow pipe 61 but also to the refrigerant return pipe 62 to open and close each electromagnetic on-off valve in response to an abnormal rise in the discharge pressure of the compressor 4.
  • the amount of the gas refrigerant flowing into the first and second buffer tanks 63 and 64 or the amount of the gas refrigerant returned from the first and second buffer tanks 63 and 64 to the refrigerant circuit 1 may be controlled.
  • the number of the buffer tanks may be three or more.
  • the first and second buffer tanks 63 and 64 are connected to each other by a communication path 65 for allowing the gas refrigerant to flow between the tanks 63 and 64, as in the fifth embodiment.
  • the first buffer tank 63 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18 are connected to the refrigerant. It is connected by the inflow pipe 61.
  • a halfway of the communication passage 65 is connected to a refrigerant return pipe 62 that returns the gas refrigerant in the first and second buffer tanks 63 and 64 to the refrigerant pipe 2 on the suction side of the compressor 4.
  • the fusible plug 67 is connected to the second buffer tank 64.
  • Other configurations are the same as in the fifth embodiment.
  • the electromagnetic on-off valve 66 is closed, and the gas refrigerant in the first and second buffer tanks 63 and 64 is closed. Is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the refrigerant return pipe 62.
  • the positional relationship between the first and second buffer tanks 63 and 64 in the sixth embodiment is such that the second buffer tank 64 is located below the first buffer tank 63 as in the fifth embodiment.
  • the arrangement is not limited to the arrangement, and may be, for example, arranged upside down or arranged side by side. This is the same for the following embodiment 7.
  • FIG. 12 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 7 of the present invention.
  • the difference from the fifth or sixth embodiment is only the circuit configuration of the first and second buffer tanks 63 and 64.
  • the first and second buffer tanks 63 and 64 are connected to each other by the communication path 65 for allowing the gas refrigerant to flow between the two tanks 63 and 64, as in the fifth or sixth embodiment.
  • the refrigerant flows into the first buffer tank 63 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18.
  • the second buffer tank 64 and the refrigerant pipe 2 on the suction side of the compressor 4 are connected by a refrigerant return pipe 62.
  • a fusible plug 67 is connected to the second buffer tank 64.
  • Other configurations are the same as in the sixth embodiment.
  • the sixth embodiment The refrigerant flows into the first buffer tank 63 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18.
  • the second buffer tank 64 and the refrigerant pipe 2 on the suction side of the compressor 4 are connected by
  • the electromagnetic on-off valve 66 is closed, and the gas refrigerant in the first and second buffer tanks 63 and 64 is closed. Is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the refrigerant return pipe 62.
  • the gas refrigerant flows from the refrigerant inflow pipe 61 into the first buffer tank 63, flows through the communication path 65 to the second buffer tank 64, passes through the refrigerant return pipe 62, and flows through the compressor 4 Since it returns to the refrigerant pipe on the suction side, the gas refrigerant flows between the tanks 63 and 64 more smoothly.
  • This makes it possible to suppress the stagnation of the gas refrigerant in the first and second buffer tanks 63 and 64, to completely circulate the refrigerant components having different specific gravities, and to reduce the component ratio of the mixed refrigerant in the refrigeration apparatus R. A decrease in cooling performance due to fluctuations can be prevented.
  • FIG. 13 shows the overall configuration of an ultra-low temperature refrigeration apparatus R according to Embodiment 8 of the present invention.
  • the defrost circuit 45 supplies the high-temperature gas refrigerant discharged from the compressor 4 to the fourth coil 21 in addition to the cryocoil 32. That is, the upstream end of the defrost circuit 45 is connected to the refrigerant pipe 2 between the first oil separator 5 and the water-cooled condenser 8.
  • the downstream end of the defrost circuit 45 branches into a main branch circuit 45a and a sub-branch circuit 45b.
  • the downstream end of the main branch circuit 45a is connected to the main refrigerant pipe 2a between the inlet of the cryocoil 32 and the sixth capillary tube 29, and the downstream end of the sub-branch circuit 45b is connected to the outlet of the cryocoil 32. And is connected to the refrigerant pipe 2 between the secondary side of the fourth heat exchange.
  • the electromagnetic on-off valve 46 is connected to a defrost circuit 45 upstream of the branch portions of the main and sub-branch circuits 45a and 45b, and the electromagnetic on-off valve 44 is connected to the sixth capillary tube 29 and the cryo-coil.
  • the main refrigerant circuit 2a is connected to the upstream side of the connection position with the downstream end of the main branch circuit 45a.
  • Other configurations are the same as in Embodiment 4.
  • the downstream end of the defrost circuit 45 branches into the main branch circuit 45a and the sub-branch circuit 45b, and the downstream end force of the main branch circuit 45a is connected to the refrigerant pipe 2 on the inlet side of the S cryocoil 32, Since the downstream end force of the sub-branch circuit 45b is connected to the refrigerant pipe 2 on the outlet side of the S cryo-coil 32, the refrigerant flowing through the main branch circuit 45a is supplied to the cryo-coil 32 and Further, the refrigerant flowing through the sub-branch circuit 45b is supplied to the fourth-to-second heat exchanger 21-19 connected to the refrigerant pipe 2 on the outlet side of the cryocoil 32, so that the fourth-to-second heat exchanger 21 — 19 can be heated simultaneously.
  • FIG. 14 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 9.
  • the difference from the eighth embodiment is that an electromagnetic on-off valve 68 is connected in the middle of the sub-branch circuit 45b of the defrost circuit 45.
  • Other configurations are the same as those of the eighth embodiment.
  • the sub-branch circuit 45b is opened by opening the solenoid on-off valve 68.
  • the solenoid valve is opened, the defrost circuit 45 is opened by opening the solenoid on-off valve 46 and the main refrigerant pipe 2a is closed by closing the solenoid on-off valve 44 in the same manner as in the eighth embodiment, and the high-temperature gas discharged from the compressor 4 is closed.
  • the refrigerant is supplied to the cryocoil 32 by the main branch circuit 45a of the defrost circuit 45, and is also supplied to the fourth heat exchanger by the sub-branch circuit 45b, so that the moisture in the cryocoil 32 and the fourth heat exchanger 21 is removed. Etc. are simultaneously released.
  • the fourth heat exchange is heated to a temperature higher than the pour point (for example, 50 ° C) of the refrigerating machine oil, the electromagnetic on-off valve 68 is closed and the sub-branch circuit 45b is closed.
  • the high-temperature gaseous refrigerant in the defrost circuit 45 is also supplied to the cryocoil 32 by flowing the state force that had been branched into the main branch circuit 45a and the sub-branch circuit 45b only to the main branch circuit 45a.
  • the temperature can be raised, and the defrost operation time can be further reduced.
  • downstream end of the sub-branch circuit 45b may be connected to the secondary side of the heat exchanger on the higher temperature side than the secondary side of the fourth heat exchanger 21. Absent. In other words, high-temperature gas refrigerant (hot gas) is supplied to the portion of the refrigerant pipe 2 where the temperature is lower than the pour point (for example, ⁇ 50 ° C.) where the refrigerating machine oil flows smoothly. Just connect.
  • hot gas high-temperature gas refrigerant
  • FIG. 15 shows Embodiment 10 of the present invention, in which the configuration of the main refrigerant circuit 38 in the main refrigerant pipe 2a is changed. That is, in the present embodiment, the middle of the main refrigerant circuit 38 is branched into first and second branch circuits 80 and 81 connected in parallel with each other, and is located at a downstream end of the two branch circuits 80 and 81.
  • the cryo coil 32 is connected in series to the main refrigerant circuit 38 on the downstream side.
  • the defrost circuit 45 is closed by closing the electromagnetic opening / closing valve 46 and the main refrigerant circuit 38 is opened by opening the electromagnetic opening / closing valve 44. It is. Further, the second branch circuit 81 is opened by opening the electromagnetic on-off valve 81b.
  • the refrigerant flowing to the main refrigerant circuit 38 is the second refrigerant.
  • the first and second branched capillary tubes 80a and 8la are each branched and decompressed, and after the decompression, evaporate in the cryocoil 32 to cool the water in the vacuum chamber 100.
  • the refrigerant is branched into the first and second branch circuits 80 and 81 by opening the electromagnetic on-off valve 81b, and decompressed by the first and second branch capillary tubes 80a and 81a, respectively.
  • the flow rate of the refrigerant can be increased.
  • the electromagnetic on-off valve 81b closes. Then, the coolant flows only to the first branch cavity tube 80a.
  • the first to fourth four branch circuits 80 to 83 connected in parallel to each other are formed in the middle of the main refrigerant circuit 38, and the branch circuits 80 to 83 merge.
  • the cryocoil 32 is connected in series to the main refrigerant circuit 38 downstream of the section.
  • the first branch circuit 80 is connected in series with a first branch cable tubing 80a.
  • the second branch circuit 81 includes an electromagnetic on-off valve 81b and a second branch cabin tube 81a
  • the third branch circuit 82 includes an electromagnetic on-off valve 82b and a third branch cabin tube 82a.
  • an electromagnetic on-off valve 83b and a fourth branch cavity tube 83a are connected in series from the upstream side, respectively.
  • the first to fourth branched capillary tubes 80a to 83a those having different decompression abilities are used.
  • Other configurations are the same as those of the tenth embodiment.
  • the main cryogenic refrigerating apparatus R is mainly discharged after being discharged from the primary side of the supercooler 31.
  • the refrigerant in the gas-liquid mixed state flowing through the refrigerant circuit 38 is depressurized in the first branch cab- ary tube 80a of the first branch circuit 80.
  • each of the electromagnetic switching valves 81b-83b of the second-fourth branch circuits 81-83 is selectively and appropriately opened.
  • Tube 81a- 83a can be selectively branched, and the cooling temperature in the vacuum chamber 100 and its cooling temperature The cooling time until reaching the temperature can be arbitrarily adjusted.
  • the circuit configuration is such that the main refrigerant circuit 38 is branched into four, ie, the first to fourth branch circuits 80 to 83, but the present invention is not limited to this. Or a circuit configuration branched into five or more (see the phantom line in FIG. 16). This is the same for the following thirteenth embodiment.
  • FIG. 17 shows a refrigerant circuit of a cryogenic refrigerator R according to Embodiment 12 of the present invention.
  • the only difference from the tenth embodiment is the circuit configuration of the capillary tube connected between the subcooler 31 and the cryocoil 32.
  • first and second branch circuits 80 and 81 connected to each other in parallel are formed, and the downstream side of the junction of the two branch circuits 80 and 81 is formed.
  • the cryogenic coil 32 is connected in series to the main refrigerant circuit 38 of the refrigeration cycle.
  • the first branch circuit 80 has a first branch cable tube 80a and an electromagnetic on-off valve 80b
  • the second branch circuit 81 has a second branch cable tube 8la and an electromagnetic valve.
  • the on-off valves 8 lb are also connected in series with the upstream force, respectively.
  • cavities 80a and 81a cavities having different decompression abilities are used.
  • the solenoid on-off valve 44 in Embodiment 10 Is omitted.
  • Other configurations are the same as those of the tenth embodiment.
  • the main cooling is performed after the liquid is discharged from the primary side of the supercooler 31.
  • the remainder of the refrigerant in the gas-liquid mixed state flowing to the refrigerant circuit 38 is supplied to the first and second branch cable tubing 80 a by opening the electromagnetic on-off valves 80 b and 81 b of the first and second branch circuits 80 and 81. , 81a, and the pressure is reduced. After the pressure is reduced, the water evaporates in the cryocoil 32 to cool the water in the vacuum chamber 100.
  • the first and second branch circuits 80 and 81 One The electromagnetic on / off valves 80b and 81b are closed to allow the refrigerant to flow through only one of the first and second branch cavity tubes 80a and 81a.
  • FIG. 18 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 13.
  • the difference from the above-described Embodiment 12 is only the circuit configuration of the cavity tube connected between the supercooler 31 and the cryocoil 32.
  • the first to fourth branch circuits 80-83 connected in parallel with each other are formed in the main refrigerant circuit 38, and the first to fourth branch circuits 80-83 are formed.
  • the cryocoil 32 is connected in series to the main refrigerant circuit 38 downstream of the junction 83.
  • the first branch circuit 80 includes a first branch cable tube 80a and an electromagnetic on-off valve 80b
  • the second branch circuit 81 includes a second branch cable tube 81a.
  • the electromagnetic open / close valve 81b, the third branch circuit 82 has a second branch cable tubing 82a and an electromagnetic switch valve 82b, and the fourth branch circuit 83 has a fourth branch cable.
  • the billet tube 83a and the solenoid on-off valve 83b are also connected in series with each other on the upstream side.
  • the capillary tubes having different decompression abilities are used for the first to fourth branched capillary tubes 80a to 83a.
  • Other configurations are the same as those of the twelfth embodiment.
  • the first and the first cooling targets are cooled in a short time.
  • the solenoid on-off valves 80b-83b of the branch circuits 80-83 of 4 By selectively opening the solenoid on-off valves 80b-83b of the branch circuits 80-83 of 4, the refrigerant in a gas-liquid mixed state that flows into the main refrigerant circuit 38 after being discharged from the primary side of the subcooler 31
  • the remaining part of the tube is selectively branched to the first, second, and fourth branch capillary tubes 80a-83a, and is decompressed. Gives cold to the water.
  • the refrigerant is supplied to the first-first to fourth branch cavities.
  • the tubes 80a-83a can be selectively branched, and the cooling temperature in the vacuum chamber 100 and the cooling time to reach the cooling temperature can be arbitrarily adjusted.
  • the condensers 8, 10, the heat exchanger 21, and the supercooler 31 may have any of a double tube structure, a plate structure, and a shell and tube structure.
  • other pressure reducing means such as an expansion valve, is used instead of the capillary tubes 24-29.
  • a non-azeotropic mixed refrigerant obtained by mixing five or six types of refrigerant is used!
  • the present invention can also be applied to a refrigeration system using a mixed refrigerant in which a different number of refrigerants from five or six types are mixed.
  • the cooling system is used to cool the moisture in the vacuum chamber 100 of the vacuum film forming apparatus A, but may be a refrigeration system for cooling other cooling objects!
  • the water cooling system using the water cooling condenser 21 is shown. Instead, a system using an air-cooled condenser may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

An ultralow temperature refrigerator (R) using a mixed refrigerant containing a plurality of kinds of refrigerants having different boiling points. The refrigerator (R) comprises a main refrigerant circuit (38) provided with a criocoil (32) and a capillary tube (29) and a sub-refrigerant circuit (39) the upstream end of which is branched and connected to the upstream end of the main refrigerant circuit (38) and which is provided with a capillary tube (28). In order to ensure the flow of the liquid refrigerant for a supercooler (31) and to enhance the cooling eficiiency of the criocoil (32), the height of the sub-refrigerant circuit (39) is less than the height of the main refrigerant circuit (38). The flow of the refrigerant in a gas-liquid mixed state discharged from the primary side (31a) of the supercooler (31) and flowing into the sub-refrigerant circuit (39) is greater than the flow into the main refrigerant circuit (38), so that the flow of the liquid refrigerant into the sub-refrigerant circuit (39) is increased more than the flow into the main refrigerant circuit (38).

Description

超低温冷凍装置、冷凍システム及び真空装置  Ultra low temperature refrigeration equipment, refrigeration system and vacuum equipment
技術分野  Technical field
[0001] 本発明は、超低温レベルの寒冷を発生させるための超低温冷凍装置、冷凍システ ム及びそれを備えた真空装置に関する。  The present invention relates to an ultra-low-temperature refrigeration system for generating ultra-low-temperature refrigeration, a refrigeration system, and a vacuum apparatus including the same.
背景技術  Background art
[0002] 従来より、 100°C以下の超低温の寒冷を発生させるための冷凍システムとして、例 えば特許文献 1, 2, 3に示されるように、沸点温度が異なる複数種類の冷媒を混合し てなる非共沸混合冷媒を冷媒回路内に封入した混合冷媒方式の超低温冷凍装置 は知られている。この種の超低温冷凍装置は、例えば、基板 (ウェハー)等の製造に 用いる真空成膜装置の真空チャンバ内に設置され、真空チャンバ内の水分等を凍 結により捕捉して真空レベルを上げるために使用されている。  [0002] Conventionally, as a refrigeration system for generating ultra-low temperature of 100 ° C or less, for example, as shown in Patent Documents 1, 2, and 3, a plurality of types of refrigerants having different boiling points are mixed. A mixed refrigerant type ultra-low temperature refrigeration system in which a non-azeotropic mixed refrigerant is sealed in a refrigerant circuit is known. This type of ultra-low temperature refrigeration system is installed, for example, in a vacuum chamber of a vacuum film forming apparatus used for manufacturing substrates (wafers), etc., in order to increase the vacuum level by capturing moisture and the like in the vacuum chamber by freezing. It is used.
[0003] この冷凍システムの冷媒回路は、基本構成として、例えば圧縮機、凝縮器、複数段 の気液分離器、複数段のカスケード熱交換器、複数の減圧手段及び冷却器 (蒸発 器)を備えている。上記圧縮機から吐出された混合冷媒のうち、主として高沸点の冷 媒を凝縮器で凝縮させた後、第 1段目の気液分離器で液冷媒とガス冷媒とに分離し 、そのガス冷媒を第 1段目のカスケード熱交換器の 1次側において、上記分離された 後に減圧された液冷媒と熱交換させて冷却する。また、第 2段目以後のカスケード熱 交換器においても同様に熱交換を行う。つまり、各段の気液分離器では、前段のカス ケード熱交換器により凝縮された冷媒をガス冷媒と液冷媒とに分離する。その分離さ れた液冷媒を減圧手段で減圧させた後に、対応する上記各段の熱交換器で蒸発さ せ、この蒸発熱により上記気液分離器からのガス冷媒を冷却して凝縮する。そして、 複数段のカスケード熱交換器にお 、てそれぞれ上記混合冷媒を高 、沸点の冷媒か ら低い沸点の冷媒まで順に凝縮させる。最終段のカスケード熱交^^の 1次側から 流出した液冷媒をキヤビラリチューブ等の減圧手段で減圧させた後に、その冷媒を 冷却器において蒸発させる。このことで、 100°C以下の超低温レベルの寒冷を発生 させ、この冷却部の寒冷により冷却対象を冷却し、例えば真空チャンバ内の水分等 を捕捉させる。さらに、この冷却器で冷却作用を行った蒸発後のガス冷媒を最終段の カスケード熱交換器の 2次側に戻し、それから各段のカスケード熱交換器の 2次側を 経由させながら圧縮機に戻すようにして!/、る。 [0003] The refrigerant circuit of this refrigeration system has, as a basic configuration, for example, a compressor, a condenser, a multi-stage gas-liquid separator, a multi-stage cascade heat exchanger, a plurality of decompression means, and a cooler (evaporator). Have. Of the mixed refrigerant discharged from the compressor, a high-boiling-point refrigerant is mainly condensed by a condenser, and then separated into a liquid refrigerant and a gas refrigerant by a first-stage gas-liquid separator. Is cooled on the primary side of the first-stage cascade heat exchanger by exchanging heat with the liquid refrigerant decompressed after the separation. Heat exchange is also performed in the second and subsequent cascade heat exchangers. That is, the gas-liquid separator of each stage separates the refrigerant condensed by the cascade heat exchanger of the preceding stage into a gas refrigerant and a liquid refrigerant. After the separated liquid refrigerant is decompressed by the decompression means, it is evaporated in the corresponding heat exchangers of the respective stages, and the gas refrigerant from the gas-liquid separator is cooled and condensed by the heat of evaporation. Then, the mixed refrigerants are condensed in the multistage cascade heat exchangers in order from high boiling point refrigerant to low boiling point refrigerant. After the pressure of the liquid refrigerant flowing out of the primary side of the final stage cascade heat exchange is reduced by a decompression means such as a capillary tube, the refrigerant is evaporated in a cooler. As a result, an extremely low temperature of 100 ° C or lower is generated, and the object to be cooled is cooled by the cooling of the cooling unit. To be captured. In addition, the evaporated gas refrigerant that has been cooled by this cooler is returned to the secondary side of the final stage cascade heat exchanger, and then sent to the compressor while passing through the secondary side of each stage cascade heat exchanger. Put it back! /
[0004] さらに、上記減圧手段及び冷却器が設けられた主冷媒回路とは並列に副冷媒回路 が分岐接続され、この副冷媒回路に過冷却器用減圧手段が設けられている。上記凝 縮器と冷却器との間には、上記凝縮器から吐出された冷媒が流れる 1次側と、この 1 次側の冷媒と熱交換可能な冷媒が流れる 2次側とを有する熱交 力 なる過冷却 器があり、 1次側の冷媒を 2次側の冷媒との熱交換により冷却する。一方、過冷却器 用減圧手段は、上記過冷却器の 2次側に熱交換のために供給される液冷媒を減圧 するものである。 [0004] Further, a sub-refrigerant circuit is branched and connected in parallel with the main refrigerant circuit provided with the depressurizing means and the cooler, and the sub-refrigerant circuit is provided with a subcooler depressurizing means. A heat exchange between the condenser and the cooler has a primary side through which the refrigerant discharged from the condenser flows, and a secondary side through which the refrigerant that can exchange heat with the primary side refrigerant flows. There is a powerful subcooler that cools the primary-side refrigerant by exchanging heat with the secondary-side refrigerant. On the other hand, the decompression device for the subcooler decompresses the liquid refrigerant supplied to the secondary side of the subcooler for heat exchange.
[0005] また、上記混合冷媒中には、圧縮機内での滑り軸受等の焼付きを防止するための 冷凍機油が混入されており、圧縮機の吐出側から凝縮器までの間に、混合冷媒から 冷凍機油を除去する油分離器を設け、冷凍機油が冷却器に供給されて凝固すること で冷却効率が低下するのを防止して 、る。  [0005] Furthermore, the mixed refrigerant contains a refrigerating machine oil for preventing seizure of a sliding bearing or the like in the compressor, and the mixed refrigerant is provided between the discharge side of the compressor and the condenser. An oil separator for removing the refrigerating machine oil is provided to prevent the refrigerating machine oil from being supplied to the cooler and solidifying, thereby reducing the cooling efficiency.
[0006] さらに、この種の混合冷媒方式の超低温冷凍装置では、その運転開始時等におい て、低沸点成分の冷媒が十分に凝縮しないために、吐出圧力が上昇して冷凍装置 の耐圧を越える場合がある。このため、別途バッファタンクを設け、このバッファタンク と冷媒回路とを、冷媒回路内の圧力が所定圧力(例えば設計耐圧よりもやや低い圧 力)より高くなつたときに作動する弁を備えた配管によって接続することにより、高圧の 冷媒をバッファタンク内に一時的に逃がし、吐出圧力を下げて運転できるようにして いる。  [0006] Further, in this type of mixed refrigerant type ultra-low temperature refrigeration system, since the refrigerant having a low boiling point component does not sufficiently condense at the start of operation or the like, the discharge pressure rises and exceeds the pressure resistance of the refrigeration system. There are cases. For this purpose, a buffer tank is separately provided, and the buffer tank and the refrigerant circuit are connected to each other with a valve provided with a valve that operates when the pressure in the refrigerant circuit becomes higher than a predetermined pressure (for example, a pressure slightly lower than a design withstand pressure). With this connection, high-pressure refrigerant is temporarily released into the buffer tank, and operation can be performed with a reduced discharge pressure.
[0007] さらに、特許文献 4に示されるものでは、ノ ッファタンクと圧縮機の吸入側とを戻し管 によって接続することで、ノ ッファタンク内の冷媒を循環するようにしている。  [0007] Further, in the configuration disclosed in Patent Document 4, the refrigerant in the knocker tank is circulated by connecting the knocker tank and the suction side of the compressor by a return pipe.
[0008] また、上記真空成膜装置では、冷却器 (主冷却器)により水分を捕捉するようになつ ているので、成膜を行わないときには冷凍装置の通常運転を停止し、冷却器での着 霜を解除する必要がある。そのため、上記超低温冷凍装置に対し、圧縮機の吐出側 と冷却器とをデフロスト回路で接続し、圧縮機の吐出ガスを冷却器に供給するデフ口 スト運転を行うことにより、冷却器の除霜を行うようになって!/、る。 特許文献 1:実用新案登録第 2559220号公報 [0008] Further, in the above-described vacuum film forming apparatus, the moisture is captured by the cooler (main cooler). Therefore, when the film is not formed, the normal operation of the refrigerating apparatus is stopped and the cooler is operated. It is necessary to release frost. For this reason, the defrost circuit that connects the discharge side of the compressor and the cooler to the above ultra-low temperature refrigeration system by a defrost circuit and supplies the gas discharged from the compressor to the cooler performs defrosting of the cooler. To do! / Patent Document 1: Utility Model Registration No. 2559220
特許文献 2:特開平 2 - 67855号公報  Patent Document 2: JP-A-2-67855
特許文献 3:特開平 6— 347112号公報  Patent Document 3: JP-A-6-347112
特許文献 4:特開平 6- 159831号公報  Patent Document 4: JP-A-6-159831
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかし、上記従来の冷凍システムでは、次に説明する問題がある。 [0009] However, the conventional refrigeration system has the following problem.
[0010] (1) まず、上記のように過冷却器が接続されている冷凍システムでは、通常、主冷 却器と過冷却器の 2次側とに流れる冷媒の流量が互いに同じになるように設定されて いる。 [0010] (1) First, in a refrigeration system to which a subcooler is connected as described above, usually, the flow rates of the refrigerant flowing to the main cooler and the secondary side of the subcooler are equal to each other. Is set to.
[0011] しかし、主冷媒回路及び副冷媒回路の分岐部を通って主冷却器と過冷却器の 2次 側とに向カゝぅ冷媒は全て液冷媒で構成されているのではなぐ一部にガス冷媒を含 んだ気液混合状態の冷媒が供給されている。このため、上記のように主冷却器及び 過冷却器へ流れる冷媒の流量が互いに同じになるように設定されて 、るとは 、え、過 冷却器の 2次側への液冷媒の流量が少な 、場合、その 1次側のガス冷媒に対する冷 却不足が生じ、その分、過冷却器により液化される液冷媒の流量が減少して主冷却 器の冷却効率の低下を招く。その結果、主冷却器により冷却される冷却対象の負荷 変動があると、その負荷変動に抗して冷却対象を安定して冷却できなくなったり、或 いは主冷却器により冷却対象を常温力 超低温レベルに冷却するまでのクールダウ ン時間が長くなつたりする等の問題が生じる。  [0011] However, the refrigerant flowing toward the main cooler and the secondary side of the subcooler through the branch portions of the main refrigerant circuit and the sub-refrigerant circuit is not entirely composed of liquid refrigerant, but a part thereof. Is supplied with a gas-liquid mixed refrigerant containing a gas refrigerant. For this reason, as described above, the flow rates of the refrigerant flowing to the main cooler and the subcooler are set to be the same as each other, so that the flow rate of the liquid refrigerant to the secondary side of the subcooler is increased. In a small case, insufficient cooling of the gas refrigerant on the primary side occurs, and accordingly, the flow rate of the liquid refrigerant liquefied by the supercooler is reduced, and the cooling efficiency of the main cooler is reduced. As a result, if the load of the cooling target cooled by the main cooler fluctuates, the cooling target cannot be cooled stably against the load fluctuation, or the cooling target cannot be cooled by the main cooler at room temperature. Problems such as prolonged cool down time before cooling to the level may occur.
[0012] (2) また、冷凍装置の通常運転を停止し、圧縮機の吐出ガスをデフロスト回路によ り冷却器に供給して冷却器を除霜するデフロスト運転を行うとき、そのデフロスト運転 の開始時に上記油分離器で除去しきれな力つた冷凍機油があると、それがデフロスト 回路を流れて、未だ超低温レベルにある冷却器に供給されてしまい、冷却器におい て冷凍機油が凝固してしまうという問題が生ずる。  (2) In addition, when the normal operation of the refrigeration apparatus is stopped and the defrost operation is performed in which the discharge gas of the compressor is supplied to the cooler by the defrost circuit and the cooler is defrosted, the defrost operation is performed. At the start, if there is any refrigerating machine oil that has been completely removed by the oil separator, it will flow through the defrost circuit and be supplied to the cooler that is still at an ultra-low temperature level, and the refrigerator oil will solidify in the cooler. Problem arises.
[0013] (3) そして、このように冷凍機油等が冷却器に供給されて冷却器内で凝固すると、 その後、冷却器の昇温により冷凍機油が冷却器を通過するようになったとしても、こ の冷却器力 出た冷凍機油等が同じく超低温レベルにある熱交^^に供給されるの で、その熱交換器内でもやはり冷凍機油等が凝固してしまい、これら冷凍機油等の 凝固が解消されるのに時間を要し、デフロスト運転時間が長くなるという問題が生ず る。 [0013] (3) Then, the refrigerating machine oil or the like is supplied to the cooler and solidified in the cooler. Thereafter, even if the refrigerating machine oil passes through the cooler due to the temperature rise of the cooler. The refrigerating machine oil, etc. generated by the cooler is supplied to the heat exchanger at the very low temperature level. As a result, the refrigerating machine oil and the like solidify also in the heat exchanger, and it takes time for the solidification of the refrigerating machine oil and the like to be eliminated, resulting in a problem that the defrost operation time becomes longer.
[0014] そこで、この冷凍機油等の冷却器での凝固という問題を解決するため、圧縮機の吐 出側から凝縮器までの間に複数の油分離器を直列に配設することが考えられる。し かし、この方法では、混合冷媒の流れの抵抗による圧力損失が発生してしまい、冷却 効率が低下するという別の問題が生じることとなる。  [0014] Therefore, in order to solve the problem of coagulation in a cooler such as refrigerating machine oil, a plurality of oil separators may be arranged in series from the discharge side of the compressor to the condenser. . However, in this method, a pressure loss occurs due to the resistance of the flow of the mixed refrigerant, which causes another problem that the cooling efficiency is reduced.
[0015] (4) さらに、近年、冷凍装置の冷却能力を上げるために、運転中及び停止中にお いても気相状態を保つ低沸点冷媒を使用することが多くなつており、このため、ノ ッフ ァタンクの容量不足が問題となっている。  (4) Further, in recent years, in order to increase the cooling capacity of a refrigeration system, a low-boiling-point refrigerant that maintains a gaseous state during operation and during shutdown has been increasingly used. Insufficient capacity of the tanker is a problem.
[0016] このようなバッファタンクの容量不足を解消するためには、容積の大き 、バッファタ ンクを用いればよい。しかし、タンク容積を単純に大きくしただけでは、タンクの設置ス ペースを確保するのが難しい。また、沸点の異なる冷媒はそれぞれ比重が異なるの で、タンクから冷媒を冷媒回路へ戻すための冷媒戻し管の接続位置によっては完全 に循環することが困難な冷媒成分もある。このため、冷凍装置内の各部分での混合 冷媒の成分比率が冷媒封入当初に比べて変動し、冷却性能が低下する虞れがある  [0016] In order to solve such a shortage of capacity of the buffer tank, a large capacity tank may be used. However, simply increasing the tank volume makes it difficult to secure the space for installing the tank. In addition, since refrigerants having different boiling points have different specific gravities, some refrigerant components are difficult to completely circulate depending on a connection position of a refrigerant return pipe for returning the refrigerant from the tank to the refrigerant circuit. For this reason, the component ratio of the mixed refrigerant in each part in the refrigeration apparatus may fluctuate compared to the time when the refrigerant was initially sealed, and the cooling performance may be reduced.
[0017] (5) さらにまた、上記超低温冷凍装置においては、冷却器を常温力 超低温レべ ルに短時間で冷却することができれば、例えば真空装置の稼働率を向上させること ができて好ましい。ここで、上記減圧手段としてキヤビラリチューブを用いる場合、キヤ ビラリチューブの全長を短くして流路抵抗を小さくすると、冷却器を短時間で低温レ ベルに冷却できて上記要求を満たすことが可能である。しかし、その反面、所定の冷 却温度まで冷却することが困難になる。 (5) Furthermore, in the ultra-low temperature refrigeration apparatus, it is preferable that the cooler can be cooled to a normal temperature and ultra-low temperature level in a short time because, for example, the operation rate of a vacuum apparatus can be improved. Here, in the case where a capillary tube is used as the pressure reducing means, if the length of the capillary tube is shortened and the flow path resistance is reduced, the cooler can be cooled to a low temperature level in a short time and the above requirement can be satisfied. It is. However, on the other hand, it becomes difficult to cool to a predetermined cooling temperature.
[0018] これに対し、キヤビラリチューブの全長を長くして流路抵抗を大きくすると、低沸点 冷媒の蒸発温度を十分低下できる圧力まで冷媒が減圧されて冷却対象を超低温レ ベルに冷却することはできる力 冷媒の流量が少なくなり、短時間で急速に冷却する ことが困難になる。  On the other hand, when the length of the capillary tube is increased to increase the flow path resistance, the refrigerant is depressurized to a pressure at which the evaporation temperature of the low-boiling refrigerant can be sufficiently reduced, and the object to be cooled is cooled to a very low temperature. The flow rate of the refrigerant decreases, making it difficult to cool quickly in a short time.
[0019] このように、従来の減圧手段の回路構成では、冷却器を短時間で超低温レベルに 冷却することが困難であった。 [0019] As described above, in the conventional circuit configuration of the pressure reducing means, the cooler is brought to the ultra-low temperature level in a short time. It was difficult to cool.
[0020] 本発明は斯力る諸点に鑑みてなされたもので、その第 1の目的は、上記の主冷却 器と過冷却器の 2次側とに対する各冷媒流量を適正に調整することで、過冷却器に 対する液冷媒の流量を安定して十分に確保し、主冷却器の冷却効率を増大させて、 冷却対象を負荷変動に抗して安定して冷却し、冷却対象を常温から超低温レベルに 冷却するまでのクールダウン時間を短縮することにある。  [0020] The present invention has been made in view of the above points, and a first object of the present invention is to appropriately adjust the flow rate of each refrigerant with respect to the main cooler and the secondary side of the subcooler. In addition, the flow rate of liquid refrigerant to the subcooler is secured stably and sufficiently, the cooling efficiency of the main cooler is increased, the cooling target is cooled stably against load fluctuation, and the cooling target is cooled from room temperature. The goal is to reduce the cooldown time before cooling to ultra-low temperatures.
[0021] 本発明の第 2の目的は、上記のようにデフロスト回路を設けた超低温冷凍装置にお いて、その冷却効率を損なうことなく冷凍機油の除去を確実に行って、冷却器に冷凍 機油が供給されな 、ようにすることにある。  [0021] A second object of the present invention is to provide an ultra-low temperature refrigeration system provided with a defrost circuit as described above, in which refrigeration oil is reliably removed without impairing its cooling efficiency, and the refrigeration oil is provided to the cooler. Is not supplied.
[0022] 本発明の第 3の目的は、上記のようにデフロスト回路を設けた超低温冷凍装置にお V、て、特に熱交換器での冷凍機油等の凝固を抑制してデフロスト運転時間の短縮を 図ることにある。  [0022] A third object of the present invention is to reduce the defrosting operation time by suppressing solidification of refrigerating machine oil and the like particularly in a heat exchanger in an ultra-low temperature refrigeration system provided with a defrost circuit as described above. It is to plan.
[0023] 本発明の第 4の目的は、冷媒の低沸点化に伴うバッファタンクの大容量ィ匕を実現で き、かつノ ッファタンク内のガス冷媒を効率的に循環できるようにすることにある。  [0023] A fourth object of the present invention is to realize a large-capacity buffer tank with a low boiling point of the refrigerant, and to efficiently circulate the gas refrigerant in the buffer tank. .
[0024] 本発明の第 5の目的は、超低温冷凍装置において、その冷却能力を損なうことなく 冷却器を短時間で超低温レベルに冷却できるようにすることにある。  [0024] A fifth object of the present invention is to make it possible to cool a cooler to an ultra-low temperature level in a short time without impairing its cooling capacity in an ultra-low temperature refrigeration apparatus.
課題を解決するための手段  Means for solving the problem
[0025] 上記目的を達成するために、第 1の発明では、主冷却器及び過冷却器への液冷媒 の流量に差異を付け、過冷却器の 2次側に流れる液冷媒の流量を主冷却器よりも多 くするようにした。 [0025] In order to achieve the above object, in the first invention, the flow rate of the liquid refrigerant to the main cooler and the subcooler is differentiated, and the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler is mainly determined. More than the cooler.
[0026] 具体的には、この第 1の発明の冷凍システムは、冷媒を圧縮する圧縮機と、この圧 縮機から吐出された冷媒を冷却して凝縮する凝縮手段と、この凝縮手段から吐出さ れた冷媒が流れる 1次側、及び該 1次側から吐出されかつ過冷却器用減圧手段によ り減圧された冷媒が流れる 2次側を有し、 1次側の冷媒を 2次側の冷媒との熱交換に より冷却する過冷却器と、この過冷却器の 1次側から吐出されかつ主冷却器用減圧 手段により減圧された冷媒を蒸発させて冷却対象を冷却する主冷却器と、上記過冷 却器の 1次側から吐出された冷媒のうち、過冷却器の 2次側に流れる液冷媒の流量 を主冷却器への液冷媒の流量よりも多くする過冷却器冷媒流量増加手段とを備えた ことを特徴とする。 [0026] Specifically, the refrigeration system of the first invention includes a compressor for compressing the refrigerant, a condensing means for cooling and condensing the refrigerant discharged from the compressor, and a condensing means for discharging the condensing means. And a secondary side through which the refrigerant discharged from the primary side and depressurized by the subcooler decompression means flows, and the primary side refrigerant flows through the secondary side. A subcooler for cooling by heat exchange with the refrigerant, a main cooler for evaporating the refrigerant discharged from the primary side of the subcooler and depressurized by the decompressing means for the main cooler, and cooling an object to be cooled; Of the refrigerant discharged from the primary side of the subcooler, the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler is increased to be greater than the flow rate of the liquid refrigerant to the main cooler. With means It is characterized by that.
[0027] また、第 2の発明の冷凍システムは、沸点が互いに異なる複数種類の冷媒を混合し た混合冷媒を圧縮する圧縮機と、この圧縮機から吐出された混合冷媒のうちの高沸 点冷媒を冷却して凝縮する凝縮器と、この凝縮器から吐出された混合冷媒を高沸点 冷媒から低沸点冷媒へ順に液冷媒及びガス冷媒に分離する複数段の気液分離器と 、この各気液分離器で分離されたガス冷媒を、該各気液分離器で分離された後に減 圧手段で減圧された液冷媒との熱交換により冷却する複数段のカスケード熱交換器 と、この最終段のカスケード熱交 力 吐出された低沸点冷媒が流れる 1次側、及 び該 1次側から吐出されかつ過冷却器用減圧手段により減圧された低沸点冷媒が 流れる 2次側を有し、 1次側の低沸点冷媒を 2次側の低沸点冷媒との熱交換により冷 却する過冷却器と、この過冷却器の 1次側から吐出されかつ主冷却器用減圧手段に より減圧された低沸点冷媒を蒸発させて冷却対象を超低温レベルに冷却する主冷 却器と、上記過冷却器の 1次側から吐出された冷媒のうち、過冷却器の 2次側に流れ る液冷媒の流量を主冷却器への液冷媒の流量よりも多くする過冷却器冷媒流量増 加手段とを備えたことを特徴とする。  [0027] Further, the refrigeration system of the second invention comprises a compressor for compressing a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, and a high-boiling-point refrigerant mixed refrigerant discharged from the compressor. A condenser for cooling and condensing the refrigerant; a multi-stage gas-liquid separator for separating the mixed refrigerant discharged from the condenser into a liquid refrigerant and a gas refrigerant in order from a high-boiling refrigerant to a low-boiling refrigerant; A multi-stage cascade heat exchanger for cooling the gas refrigerant separated by the liquid separator by heat exchange with the liquid refrigerant decompressed by the decompression means after being separated by each gas-liquid separator; A primary side through which the discharged low-boiling refrigerant flows, and a secondary side through which the low-boiling refrigerant discharged from the primary side and depressurized by the decompressing means for the subcooler flows. Heat exchange between the low-boiling refrigerant on the downstream side and the low-boiling refrigerant on the secondary side A main cooler that evaporates a low boiling point refrigerant discharged from the primary side of the subcooler and depressurized by the main cooler decompression means to cool the object to be cooled to an ultra-low temperature level; Of the refrigerant discharged from the primary side of the subcooler, the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler is increased to be larger than the flow rate of the liquid refrigerant to the main cooler. And additional means.
[0028] この各発明の構成によると、過冷却器の 2次側に流れる液冷媒の流量が主冷却器 への液冷媒の流量よりも多いので、その過冷却器の 1次側のガス冷媒に対する十分 な冷却が保たれ、この過冷却器により液化される液冷媒の流量が増加して主冷却器 の冷却効率が向上する。このことから、主冷却器により冷却される冷却対象の負荷変 動があっても、その冷却対象を安定して冷却できるとともに、冷却対象を常温から超 低温レベルに迅速に冷却してクールダウン時間を短縮することができる。  [0028] According to the configuration of each of the present inventions, the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler is larger than the flow rate of the liquid refrigerant to the main cooler. Sufficient cooling is maintained, and the flow rate of the liquid refrigerant liquefied by the supercooler increases, thereby improving the cooling efficiency of the main cooler. Therefore, even if the load of the cooling target cooled by the main cooler fluctuates, the cooling target can be cooled stably, and the cooling target can be quickly cooled from room temperature to an extremely low temperature level to cool down. Can be shortened.
[0029] 第 3の発明では、上記過冷却器冷媒流量増加手段は、主冷却器及び主冷却器用 減圧手段が設けられた主冷媒回路と、上流端が該主冷媒回路の上流端に分岐接続 され、過冷却器用減圧手段が設けられた副冷媒回路とに対し、上記副冷媒回路の 最小断面積が主冷媒回路の最大断面積よりも大きい構造を有することを特徴とする。  [0029] In the third invention, the supercooler refrigerant flow rate increasing means includes a main refrigerant circuit provided with a main cooler and a decompression means for the main cooler, and an upstream end branched and connected to an upstream end of the main refrigerant circuit. In addition, the auxiliary refrigerant circuit has a structure in which the minimum cross-sectional area of the sub-refrigerant circuit is larger than the maximum cross-sectional area of the main refrigerant circuit with respect to the sub-refrigerant circuit provided with the subcooler decompression means.
[0030] このことで、過冷却器の 1次側から吐出された冷媒が主冷媒回路及び副冷媒回路 に分かれて流れる際、その副冷媒回路の最小断面積が主冷媒回路の最大断面積よ りも大きいので、全体から見て、気液混合状態の冷媒の副冷媒回路に流入する流量 が主冷媒回路に流入する流量よりも多くなり、それに比例して副冷媒回路への液冷 媒の流量が主冷媒回路への流量よりも増加する。従って、過冷却器の 1次側のガス 冷媒に対する十分な冷却が得られ、この過冷却器で液化される液冷媒の流量が増 加して主冷却器の冷却効率が向上する。 [0030] With this, when the refrigerant discharged from the primary side of the subcooler flows separately into the main refrigerant circuit and the sub-refrigerant circuit, the minimum cross-sectional area of the sub-refrigerant circuit is smaller than the maximum cross-sectional area of the main refrigerant circuit. The overall flow rate of the refrigerant in a gas-liquid mixed state flowing into the sub-refrigerant circuit Becomes greater than the flow rate flowing into the main refrigerant circuit, and the flow rate of the liquid refrigerant to the sub-refrigerant circuit increases in proportion to the flow rate to the main refrigerant circuit. Therefore, sufficient cooling of the gas refrigerant on the primary side of the subcooler is obtained, and the flow rate of the liquid refrigerant liquefied by the subcooler is increased, thereby improving the cooling efficiency of the main cooler.
[0031] 第 4の発明では、上記過冷却器冷媒流量増加手段は、主冷却器及び主冷却器用 減圧手段が設けられた主冷媒回路と、上流端が該主冷媒回路の上流端に分岐接続 され、過冷却器用減圧手段が設けられた副冷媒回路とに対し、上記主冷媒回路と副 冷媒回路との分岐部における上記副冷媒回路の最高高さ位置が主冷媒回路の最低 高さ位置よりも低 ヽ構造を有することを特徴とする。  [0031] In the fourth invention, the supercooler refrigerant flow rate increasing means includes a main refrigerant circuit provided with a main cooler and a decompression means for the main cooler, and an upstream end branched and connected to an upstream end of the main refrigerant circuit. The maximum height position of the sub-refrigerant circuit at the branch between the main refrigerant circuit and the sub-refrigerant circuit is higher than the minimum height position of the main refrigerant circuit with respect to the sub-refrigerant circuit provided with the subcooler decompression means. Also has a low ヽ structure.
[0032] こうすれば、過冷却器の 1次側から吐出された冷媒が主冷媒回路及び副冷媒回路 に分かれて流れる際、それらの分岐部における副冷媒回路の最高高さ位置が主冷 媒回路の最低高さ位置よりも低いので、気液混合状態の冷媒のうちの液冷媒が、相 対的に高さの低い副冷媒回路に多く流入するようになり、副冷媒回路への液冷媒の 流量が主冷媒回路への流量よりも増加する。従って、過冷却器の 1次側のガス冷媒 に対する十分な冷却が保たれ、この過冷却器で液化される液冷媒の流量が増加して 主冷却器の冷却効率が向上する。  [0032] With this configuration, when the refrigerant discharged from the primary side of the subcooler flows separately into the main refrigerant circuit and the sub-refrigerant circuit, the highest position of the sub-refrigerant circuit in those branch portions is determined by the main refrigerant circuit. Since the liquid refrigerant is lower than the lowest position of the circuit, a large amount of the liquid refrigerant in the gas-liquid mixed state refrigerant flows into the relatively low sub-refrigerant circuit, and the liquid refrigerant flows into the sub-refrigerant circuit. Flow rate is higher than the flow rate to the main refrigerant circuit. Therefore, sufficient cooling of the gas refrigerant on the primary side of the subcooler is maintained, and the flow rate of the liquid refrigerant liquefied by the subcooler increases, thereby improving the cooling efficiency of the main cooler.
[0033] また、主冷媒回路及び副冷媒回路に高さの差異を付けるだけでよぐ断面積の異 なる通路を形成しなくてもょ 、ので、簡単な構造で上記効果が得られる。  [0033] Furthermore, since the main refrigerant circuit and the sub-refrigerant circuit need only be provided with different heights and do not have to form passages having different cross-sectional areas, the above-described effects can be obtained with a simple structure.
[0034] 第 5の発明では、上記第 3の発明の冷凍システムにおいて、過冷却器冷媒流量増 加手段は、主冷媒回路と副冷媒回路との分岐部における副冷媒回路の最高高さ位 置が主冷媒回路の最低高さ位置よりも低い構造を有する。このことで、上記第 3及び 第 4の発明の作用効果を相乗的に奏することができ、主冷却器の冷却効率をさらに 一層向上させることができる。  [0034] In a fifth aspect based on the refrigeration system of the third aspect, the supercooler refrigerant flow rate increasing means includes a maximum height position of the sub-refrigerant circuit at a branch point between the main refrigerant circuit and the sub-refrigerant circuit. Has a structure lower than the minimum height position of the main refrigerant circuit. Thus, the effects of the third and fourth inventions can be synergistically exerted, and the cooling efficiency of the main cooler can be further improved.
[0035] 第 6の発明は、上記第 1一第 5の発明のいずれかの冷凍システムの主冷却器により 真空チャンバ内の水分を冷却により凍結させるように構成されている真空装置を特徴 とする。このことで、真空装置における真空チャンバ内の水分を凍結して、安定した 真空状態が得られるとともに、クールダウン時間の短縮により真空チャンバ内を短時 間で排気して生産効率を向上させることができる。 [0036] 第 7の発明では、デフロスト時に使用する油分離器を、圧縮機の吐出側から凝縮器 までの間ではなくデフロスト回路に設けて、デフロスト回路に流入する混合冷媒から 冷凍機油を除去するようにした。 [0035] A sixth invention is characterized by a vacuum device configured to freeze water in a vacuum chamber by cooling by a main cooler of the refrigeration system according to any of the first to fifth inventions. . As a result, the moisture in the vacuum chamber of the vacuum device is frozen to obtain a stable vacuum state, and the vacuum chamber is evacuated in a short time by shortening the cool down time, thereby improving production efficiency. it can. [0036] In the seventh invention, the oil separator used at the time of defrosting is provided not in the section from the discharge side of the compressor to the condenser but in the defrost circuit, and the refrigerating machine oil is removed from the mixed refrigerant flowing into the defrost circuit. I did it.
[0037] 具体的に、この第 7の発明は、沸点が互いに異なる複数種類の冷媒を混合した混 合冷媒を圧縮する圧縮機と、この圧縮機から吐出された混合冷媒のうちの高沸点の 冷媒を冷却して液化する凝縮器と、上記圧縮機の吐出側から凝縮器に至る混合冷 媒から、混入された冷凍機油を除去する第 1の油分離器と、上記凝縮器で液化され た混合冷媒を高沸点冷媒から低沸点冷媒へと順次液冷媒及びガス冷媒に分離する 複数段の気液分離器と、この各気液分離器で分離されたガス冷媒を、該各気液分離 器で分離されかつ減圧された液冷媒との間で熱交換させて冷却する複数段のカスケ ード熱交^^と、これら複数段のうちの最終段のカスケード熱交 力 吐出されか つ減圧された低沸点冷媒を蒸発させて冷却対象を超低温レベルに冷却する冷却器 と、この冷却器のデフロスト時に、上記圧縮機から吐出された混合冷媒を冷却器に供 給するデフロスト回路とを備え、このデフロスト回路に、上記混合冷媒から冷凍機油を 除去する第 2の油分離器が配設されていることを特徴とする。  [0037] Specifically, the seventh invention provides a compressor for compressing a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, and a high-boiling-point refrigerant of the mixed refrigerant discharged from the compressor. A condenser for cooling and liquefying the refrigerant, a first oil separator for removing mixed refrigerating machine oil from the mixed refrigerant from the discharge side of the compressor to the condenser, and a liquefied liquid in the condenser A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant into a liquid refrigerant and a gas refrigerant from a high-boiling refrigerant to a low-boiling refrigerant, and separating the gas refrigerant separated by each of the gas-liquid separators into each of the gas-liquid separators Cascade heat exchange ^^ that cools by exchanging heat with the liquid refrigerant separated and depressurized by the cascade, and cascade heat exchange at the last stage of these multiple stages. A cooler that evaporates the low-boiling refrigerant to cool the object to be cooled to an ultra-low temperature level; A defrost circuit for supplying the mixed refrigerant discharged from the compressor to the cooler at the time of defrost of the cooler, and a second oil separator for removing the refrigerating machine oil from the mixed refrigerant in the defrost circuit. It is characterized by being provided.
[0038] この発明によれば、デフロスト回路に、混合冷媒から冷凍機油を除去する第 2の油 分離器が配設されているから、デフロスト時に上記混合冷媒中の冷凍機油がデフ口 スト回路力 冷却器に供給されて該冷却器内で凝固するのを抑制することができる。  According to the present invention, since the second oil separator for removing the refrigerating machine oil from the mixed refrigerant is provided in the defrost circuit, the refrigerating machine oil in the mixed refrigerant at the time of defrosting is operated by the differential opening circuit power. Supply to the cooler and solidification in the cooler can be suppressed.
[0039] しかも、複数の油分離器を圧縮機の吐出側力 凝縮器までの間に直列に配設する 場合のような圧力損失の増加を抑えることができる。これにより、混合冷媒を良好に循 環させつつ、上述のような冷却効率の低下を抑制する効果が得られる。  [0039] Moreover, it is possible to suppress an increase in pressure loss as in a case where a plurality of oil separators are arranged in series between the compressor and the discharge-side force condenser. Thereby, it is possible to obtain the effect of suppressing the decrease in the cooling efficiency as described above while circulating the mixed refrigerant satisfactorily.
[0040] さらに、デフロスト回路に第 2の油分離器を配設することで、デフロスト回路を設けな い冷凍装置との間で部品の共通化を図ることができ、設備コストを低減する上で有利 となる。また、交換等のメンテナンス作業も容易に行うことができる。  [0040] Further, by disposing the second oil separator in the defrost circuit, parts can be shared with a refrigeration apparatus not provided with a defrost circuit, and equipment cost can be reduced. This is advantageous. Further, maintenance work such as replacement can be easily performed.
[0041] 第 8の発明では、上記デフロスト回路には、デフロスト時に開く開閉弁が設けられて おり、上記第 2の油分離器は、上記デフロスト回路の上流端から上記開閉弁までの間 に配設されて 、ることを特徴とする。  [0041] In the eighth invention, the defrost circuit is provided with an on-off valve that opens during defrost, and the second oil separator is arranged between the upstream end of the defrost circuit and the on-off valve. It is characterized by being established.
[0042] この発明によれば、第 2の油分離器は、デフロスト回路の上流端力も開閉弁までの 間に配設されているから、上記開閉弁を閉弁することにより、圧縮機の吸込側と第 2 の油分離器との間に前者の方が後者よりも高い圧力差が発生するのを抑制すること ができる。 [0042] According to the present invention, the second oil separator is also configured so that the upstream end force of the defrost circuit is also reduced to the on-off valve. Therefore, closing the on-off valve prevents a pressure difference between the suction side of the compressor and the second oil separator that is higher than that of the latter from occurring. Can be suppressed.
[0043] すなわち、第 2の油分離器と圧縮機との間は、分離した冷凍機油を圧縮機の吸込 側に戻すように接続されており、圧縮機の吸込側と第 2の油分離器との間に前者の 方が後者よりも高い圧力差が発生すると、圧縮機力 第 2の油分離器に向力つて冷 凍機油が逆流する虞れがある。しかし、第 2の油分離器よりも下流側に配設された開 閉弁を閉弁しておけば、上記の如き圧力差の発生を抑制して冷凍機油の逆流を防 止することができ、冷凍機油をスムーズに還流させることができる。  That is, the second oil separator and the compressor are connected so that the separated refrigerating machine oil is returned to the suction side of the compressor, and the suction side of the compressor is connected to the second oil separator. If the former has a higher pressure difference than the latter, the refrigeration oil may flow backward against the compressor oil second oil separator. However, if the open / close valve arranged downstream of the second oil separator is closed, it is possible to suppress the occurrence of the pressure difference as described above and prevent the backflow of the refrigerating machine oil. In addition, the refrigerating machine oil can be smoothly refluxed.
[0044] 第 9の発明では、上記第 2の油分離器は、上記デフロスト回路の上流端までの距離 がデフロスト回路の下流端までの距離よりも短くなる位置に配設されていることを特徴 とする。  [0044] In a ninth aspect, the second oil separator is provided at a position where a distance to an upstream end of the defrost circuit is shorter than a distance to a downstream end of the defrost circuit. And
[0045] 本発明によれば、第 2の油分離器は、デフロスト回路の上流端までの距離が下流端 までの距離よりも短くなる位置に配設されているから、温度が高くて粘性が低い状態 の冷凍機油を分離することができ、より確実に冷凍機油の除去を行うことができる。  [0045] According to the present invention, the second oil separator is disposed at a position where the distance to the upstream end of the defrost circuit is shorter than the distance to the downstream end, so that the temperature is high and the viscosity is low. Refrigeration oil in a low state can be separated, and refrigeration oil can be more reliably removed.
[0046] 第 10の発明では、ノ ッファタンクを複数設け、それらバッファタンク同士を配管接続 することで、ガス冷媒がタンク内をスムーズに循環するようにし、またタンク内でのガス 冷媒の滞留を抑制してガス冷媒を効率的に循環できるようにした。  [0046] In the tenth invention, a plurality of buffer tanks are provided, and the buffer tanks are connected to each other by piping, so that the gas refrigerant circulates smoothly in the tank, and the retention of the gas refrigerant in the tank is suppressed. Thus, the gas refrigerant can be efficiently circulated.
[0047] 具体的に、この第 10の発明では、沸点が互いに異なる複数種類の冷媒を混合した 混合冷媒を圧縮する圧縮機と、この圧縮機から吐出された混合冷媒のうちの高沸点 の冷媒を冷却して液化する凝縮器と、この凝縮器で液化された混合冷媒を高沸点冷 媒から低沸点冷媒へと順次液冷媒及びガス冷媒に分離する複数段の気液分離器と 、この各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減圧 された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交^^と、これら 複数段のうちの最終段のカスケード熱交^^から吐出されかつ減圧された低沸点冷 媒を蒸発させて冷却対象を超低温レベルに冷却する冷却器とが冷媒回路により接続 されている。  [0047] Specifically, in the tenth invention, a compressor for compressing a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, and a high-boiling refrigerant among the mixed refrigerant discharged from the compressor A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied by the condenser into a liquid refrigerant and a gas refrigerant from a high-boiling-point refrigerant to a low-boiling-point refrigerant; and A multi-stage cascade heat exchange for cooling the gas refrigerant separated by the gas-liquid separator by exchanging heat with the liquid refrigerant separated and decompressed by each gas-liquid separator; and Among them, a cooler for evaporating the decompressed low-boiling-point refrigerant discharged from the last-stage cascade heat exchanger and cooling the object to be cooled to an ultra-low temperature level is connected by a refrigerant circuit.
[0048] そして、上記冷媒回路に、上記圧縮機の吐出圧力の異常上昇を抑制する複数の ノ ッファタンクが接続されて ヽることを特徴とする。 [0048] Then, a plurality of refrigerant circuits for suppressing an abnormal increase in the discharge pressure of the compressor are provided in the refrigerant circuit. It is characterized in that a buffer tank is connected.
[0049] この発明によれば、冷媒回路に複数のバッファタンクが接続されて 、るから、タンク の容量不足を解消するために大容量のタンクを 1つだけ接続する場合に比べて、ェ 場内等でのタンクの設置スペースを確保し易くなる。さらに、複数のバッファタンクに よりタンク容量が増加するので、圧縮機の吐出圧力の異常上昇を抑制することができ 、冷凍装置を安定して稼動させる上で有利となる。  [0049] According to the present invention, a plurality of buffer tanks are connected to the refrigerant circuit. Therefore, compared to a case where only one large-capacity tank is connected in order to eliminate a shortage of capacity of the tank, the number of tanks in the plant is smaller than that of the case where only one large-capacity tank is connected. It becomes easy to secure the installation space of the tank in the above. Furthermore, since the tank capacity is increased by the plurality of buffer tanks, an abnormal increase in the discharge pressure of the compressor can be suppressed, which is advantageous in stably operating the refrigeration system.
[0050] 第 11の発明では、上記第 10の発明の超低温冷凍装置において、上記複数のバッ ファタンクは、少なくとも 1つの第 1のバッファタンクと、この第 1のバッファタンクよりも 下側に位置する少なくとも 1つの第 2のバッファタンクとからなる。これら第 1及び第 2 のバッファタンクは、ガス冷媒を第 1及び第 2のバッファタンク間で流通させる連通路 によって互いに接続されている。そして、上記第 2のノ ッファタンクに圧縮機の吐出側 及び吸込側の冷媒回路が接続されていることを特徴とする。  [0050] In an eleventh invention, in the ultra-low-temperature refrigeration apparatus according to the tenth invention, the plurality of buffer tanks are at least one first buffer tank and located below the first buffer tank. And at least one second buffer tank. The first and second buffer tanks are connected to each other by a communication path that allows the gas refrigerant to flow between the first and second buffer tanks. The refrigerant circuit on the discharge side and the suction side of the compressor is connected to the second buffer tank.
[0051] この発明によれば、第 1及び第 2のノ ッファタンクが連通路によって互いに接続され ているから、両タンク間で冷媒が流通される。これにより、タンク内でのガス冷媒の滞 留を抑制して比重の異なる冷媒成分を完全に循環することができ、装置内の混合冷 媒の成分比率が冷媒封入当初に比べ変動して冷却性能が低下することを防止でき る。  According to the present invention, since the first and second buffer tanks are connected to each other by the communication path, the refrigerant flows between the two tanks. This makes it possible to suppress stagnation of the gas refrigerant in the tank and completely circulate the refrigerant components having different specific gravities. Can be prevented from decreasing.
[0052] 第 12の発明では、第 10の発明の超低温冷凍装置において、上記複数のバッファ タンクは、少なくとも 1つの第 1のバッファタンクと、少なくとも 1つの第 2のバッファタン クと力らなる。これら第 1及び第 2のバッファタンクは、ガス冷媒を第 1及び第 2のバッフ ァタンク間で流通させる連通路によって互いに接続され、上記第 1のバッファタンクが 圧縮機の吐出側の冷媒回路に接続されている。そして、上記連通路が途中で圧縮 機の吸込側の冷媒回路に接続されていることを特徴とする。  [0052] In a twelfth aspect, in the ultra-low-temperature refrigeration apparatus according to the tenth aspect, the plurality of buffer tanks comprise at least one first buffer tank and at least one second buffer tank. These first and second buffer tanks are connected to each other by a communication path for allowing gas refrigerant to flow between the first and second buffer tanks, and the first buffer tank is connected to a refrigerant circuit on the discharge side of the compressor. Have been. The communication path is connected to a refrigerant circuit on the suction side of the compressor in the middle.
[0053] この発明によれば、第 1及び第 2のノ ッファタンクが連通路によって互いに接続され ているから、両タンク間で冷媒が流通される。これにより、タンク内でのガス冷媒の滞 留を抑制して比重の異なる冷媒成分を完全に循環することができ、装置内の混合冷 媒の成分比率が冷媒封入当初に比べ変動して冷却性能が低下することを防止でき る。 [0054] さらに、上記連通路が途中で圧縮機の吸込側の冷媒回路に接続されているから、 冷媒回路からバッファタンクに流入して圧縮機の吸込側に戻るガス冷媒がタンク内を スムーズに循環する。これにより、タンク内でのガス冷媒の滞留をより確実に抑制する ことができる。 According to the present invention, since the first and second buffer tanks are connected to each other by the communication passage, the refrigerant flows between the two tanks. This makes it possible to suppress stagnation of the gas refrigerant in the tank and completely circulate the refrigerant components having different specific gravities. Can be prevented from decreasing. Further, since the communication path is connected to the refrigerant circuit on the suction side of the compressor on the way, the gas refrigerant flowing into the buffer tank from the refrigerant circuit and returning to the suction side of the compressor smoothly passes through the inside of the tank. Circulate. Thereby, the stagnation of the gas refrigerant in the tank can be more reliably suppressed.
[0055] 第 13の発明では、第 10の発明の超低温冷凍装置において、上記複数のバッファ タンクは、少なくとも 1つの第 1のバッファタンクと、少なくとも 1つの第 2のバッファタン クと力らなる。これら第 1及び第 2のバッファタンクは、ガス冷媒を第 1及び第 2のバッフ ァタンク間で流通させる連通路によって互いに接続されている。そして、上記第 1のバ ッファタンクが圧縮機の吐出側の冷媒回路に接続され、第 2のバッファタンクが圧縮 機の吸込側の冷媒回路に接続されていることを特徴とする。  [0055] In a thirteenth invention, in the ultra-low-temperature refrigeration apparatus according to the tenth invention, the plurality of buffer tanks comprise at least one first buffer tank and at least one second buffer tank. These first and second buffer tanks are connected to each other by a communication path that allows the gas refrigerant to flow between the first and second buffer tanks. The first buffer tank is connected to a refrigerant circuit on the discharge side of the compressor, and the second buffer tank is connected to a refrigerant circuit on the suction side of the compressor.
[0056] この発明によれば、第 1及び第 2のノ ッファタンクが連通路によって互いに接続され ているから、両タンク間で冷媒が流通される。これにより、タンク内でのガス冷媒の滞 留を抑制して比重の異なる冷媒成分を完全に循環することができ、装置内の混合冷 媒の成分比率が冷媒封入当初に比べ変動して冷却性能が低下することを防止でき る。  According to the present invention, since the first and second buffer tanks are connected to each other by the communication passage, the refrigerant flows between the two tanks. This makes it possible to suppress stagnation of the gas refrigerant in the tank and completely circulate the refrigerant components having different specific gravities. Can be prevented from decreasing.
[0057] さらに、上述のような回路構成にすることにより、タンク内でのガス冷媒の滞留をより 確実に抑制することができる。  Further, by employing the above-described circuit configuration, the stagnation of the gas refrigerant in the tank can be more reliably suppressed.
[0058] 第 14の発明では、デフロスト回路の下流端部を 2つに分岐して、冷却器と熱交換器 とを同時に昇温させるようにした。  [0058] In the fourteenth invention, the downstream end of the defrost circuit is branched into two, and the temperature of the cooler and the heat exchanger is raised simultaneously.
[0059] 具体的に、この第 14の発明では、沸点が互いに異なる複数種類の冷媒を混合した 混合冷媒を圧縮する圧縮機と、この圧縮機から吐出された混合冷媒のうちの高沸点 の冷媒を冷却して液化する凝縮器と、この凝縮器で液化された混合冷媒を高沸点冷 媒から低沸点冷媒へと順次液冷媒及びガス冷媒に分離する複数段の気液分離器と 、この各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減圧 された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交^^と、これら 複数段のうちの最終段のカスケード熱交^^から吐出されかつ減圧された低沸点冷 媒を蒸発させて冷却対象を超低温レベルに冷却する冷却器とが接続された冷媒回 路を備えるとともに、上記冷却器のデフロスト時に、上記圧縮機から吐出された混合 冷媒を冷却器に供給するデフロスト回路を備えた超低温冷凍装置が前提である。 [0059] Specifically, in the fourteenth invention, a compressor for compressing a mixed refrigerant in which a plurality of types of refrigerants having different boiling points are mixed, and a high-boiling refrigerant among the mixed refrigerant discharged from the compressor A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied by the condenser into a liquid refrigerant and a gas refrigerant from a high-boiling-point refrigerant to a low-boiling-point refrigerant; and A multi-stage cascade heat exchange for cooling the gas refrigerant separated by the gas-liquid separator by exchanging heat with the liquid refrigerant separated and decompressed by each gas-liquid separator; and Of the last stage of the cascade heat exchange, and a refrigerant circuit connected to a cooler for evaporating the depressurized low-boiling point refrigerant to cool the object to be cooled to an ultra-low temperature level. When the compressor is defrosted, the mixture discharged from the compressor Combination The premise is an ultra-low temperature refrigeration apparatus having a defrost circuit for supplying a refrigerant to a cooler.
[0060] そして、上記デフロスト回路の下流端部が主分岐回路と副分岐回路とに分岐してい る。また、上記主分岐回路の下流端が冷却器の入口側の冷媒回路に接続されてい る一方、副分岐回路の下流端が冷却器の出口側の冷媒回路に接続されていることを 特徴とする。 [0060] The downstream end of the defrost circuit is branched into a main branch circuit and a sub-branch circuit. The downstream end of the main branch circuit is connected to the refrigerant circuit on the inlet side of the cooler, while the downstream end of the sub-branch circuit is connected to the refrigerant circuit on the outlet side of the cooler. .
[0061] この発明によれば、デフロスト回路の下流端部で分岐された主及び副分岐回路のう ち、主分岐回路の下流端が冷却器の入口側の冷媒回路に接続され、副分岐回路の 下流端が冷却器の出口側の冷媒回路に接続されているから、主分岐回路を流れる 冷媒を冷却器に供給して該冷却器を、また副分岐回路を流れる冷媒を冷却器の出 口側の冷媒回路に接続されている熱交^^に供給して該熱交 をそれぞれ同時 に昇温することができる。これにより、上記冷却器を通過した冷凍機油等が熱交換器 内で再度凝固することを抑制できる。このような冷凍機油等の凝固による冷媒回路の 閉塞を抑制することで、冷媒回路内での混合冷媒の良好な循環を確保することがで き、デフロスト運転時間を短縮することができる。  According to the present invention, of the main and sub-branch circuits branched at the downstream end of the defrost circuit, the downstream end of the main branch circuit is connected to the refrigerant circuit on the inlet side of the cooler, and the sub-branch circuit Is connected to the refrigerant circuit on the outlet side of the cooler, so that the refrigerant flowing through the main branch circuit is supplied to the cooler, and the refrigerant flowing through the sub-branch circuit is supplied to the outlet of the cooler. By supplying the heat exchange to the heat exchange connected to the refrigerant circuit on the side, the heat exchange can be simultaneously heated. This can prevent the refrigerating machine oil or the like that has passed through the cooler from solidifying again in the heat exchanger. By suppressing blockage of the refrigerant circuit due to such solidification of the refrigerating machine oil or the like, good circulation of the mixed refrigerant in the refrigerant circuit can be ensured, and the defrost operation time can be reduced.
[0062] 第 15の発明では、第 14の発明の超低温冷凍装置における上記副分岐回路に開 閉弁が設けられて 、ることを特徴とする。  [0062] A fifteenth invention is characterized in that an opening / closing valve is provided in the sub-branch circuit in the cryogenic refrigerator of the fourteenth invention.
[0063] この発明によれば、開閉弁の開弁により上記の如く冷却器及び熱交換器を同時に 昇温させ、熱交^^において冷凍機油等力 Sスムーズに流動できる流動点以上に昇 温された後で開閉弁を閉弁することで、それまで主分岐回路と副分岐回路とに分岐 されていた混合冷媒を主分岐回路のみに流して冷却器を昇温させることができ、デ フロスト運転時間をさらに短縮することができる。  [0063] According to the present invention, as described above, the temperature of the cooler and the heat exchanger is simultaneously raised by opening the on-off valve, and the temperature of the cooler and the heat exchanger is increased to a point above the pour point where the fluid of the refrigerating machine can smoothly flow in heat exchange. By closing the on-off valve after the cooling, the mixed refrigerant that had been branched into the main branch circuit and the sub-branch circuit can be flown only to the main branch circuit to raise the temperature of the cooler. The operation time can be further reduced.
[0064] 第 16の発明では、冷却器に至る冷媒回路を互いに並列に接続した複数の分岐回 路としてその各々に分岐減圧手段を接続し、冷媒をそれら複数の分岐減圧手段に選 択的に流すようにした。  [0064] In the sixteenth invention, a branch pressure reducing means is connected to each of a plurality of branch circuits connected in parallel with a refrigerant circuit leading to the cooler, and the refrigerant is selectively supplied to the plurality of branch pressure reducing means. I let it flow.
[0065] 具体的に、この第 16の発明では、沸点が互いに異なる複数種類の冷媒を混合した 混合冷媒を圧縮する圧縮機と、この圧縮機から吐出された混合冷媒のうちの高沸点 の冷媒を冷却して液化する凝縮器と、この凝縮器で液化された混合冷媒を高沸点冷 媒から低沸点冷媒へと順次液冷媒及びガス冷媒に分離する複数段の気液分離器と 、この各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減圧 された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交^^と、これら 複数段のうちの最終段のカスケード熱交 力 吐出された低沸点冷媒を減圧する 減圧手段と、この減圧手段で減圧された低沸点冷媒を蒸発させて冷却対象を超低 温レベルに冷却する冷却器とが冷媒回路によって接続された超低温冷凍装置が前 提である。 [0065] Specifically, in the sixteenth invention, a compressor for compressing a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, and a refrigerant having a high boiling point among the refrigerant mixtures discharged from the compressor. And a multi-stage gas-liquid separator that separates the mixed refrigerant liquefied by the condenser into a liquid refrigerant and a gas refrigerant sequentially from a high-boiling refrigerant to a low-boiling refrigerant. A multi-stage cascade heat exchange for cooling the gas refrigerant separated by each gas-liquid separator by exchanging heat with the liquid refrigerant separated and decompressed by each gas-liquid separator; Cascade heat exchange at the last stage of the plurality of stages Decompression means for decompressing the discharged low-boiling refrigerant, and evaporating the low-boiling refrigerant decompressed by the decompression means to cool the object to be cooled to an ultra-low temperature level An ultra-low-temperature refrigeration system in which a cooler is connected by a refrigerant circuit is assumed.
[0066] そして、上記最終段のカスケード熱交換器から上記冷却器へ冷媒を供給する冷媒 回路は、互いに並列に接続された複数の分岐回路力もなる。また、上記減圧手段は 、上記複数の分岐回路の各々に直列に接続された複数の分岐減圧手段力 なる。さ らに、上記複数の分岐回路のうちの少なくとも 1つに冷媒が流れるように切り換える切 換手段が設けられて 、ることを特徴とする。  [0066] The refrigerant circuit that supplies the refrigerant from the last-stage cascade heat exchanger to the cooler also has a plurality of branch circuit powers connected in parallel with each other. Further, the pressure reducing means includes a plurality of branch pressure reducing means connected in series to each of the plurality of branch circuits. Further, a switching means for switching the refrigerant to flow through at least one of the plurality of branch circuits is provided.
[0067] この発明によれば、互いに並列に接続された複数の分岐回路の各々に分岐減圧 手段が接続され、上記複数の分岐回路のうちの少なくとも 1つに冷媒が流れるように 切り換える切換手段が設けられているので、この切換手段の切換えにより冷媒を複数 の分岐回路に分岐させて流量を増やすことができる。よって、冷媒の流路抵抗の変 化により冷却対象を所定の冷却温度まで冷却するための減圧能力を確保しつつ、そ の冷却温度に到達するまでの冷却時間を短縮することができる。  According to the present invention, the branch pressure reducing means is connected to each of the plurality of branch circuits connected in parallel to each other, and the switching means for switching the refrigerant to flow through at least one of the plurality of branch circuits is provided. Since the refrigerant is provided, the refrigerant can be branched into a plurality of branch circuits by switching of the switching means to increase the flow rate. Therefore, the cooling time required to reach the cooling temperature can be shortened while securing the pressure reducing ability for cooling the cooling target to the predetermined cooling temperature by changing the flow path resistance of the refrigerant.
[0068] 第 17の発明では、第 16の発明の超低温冷凍装置において、上記切換手段は、上 記複数の分岐回路のうちの少なくとも 1つに設けられた開閉弁であることを特徴とする  [0068] In a seventeenth aspect based on the ultralow temperature refrigeration apparatus of the sixteenth aspect, the switching means is an on-off valve provided in at least one of the plurality of branch circuits.
[0069] この発明によれば、開閉弁を選択的に開弁することにより、複数の分岐回路に分岐 する冷媒の流量を調整することができる。これにより、冷却器における冷却温度及び 冷却時間を任意に調整することができる。 [0069] According to the present invention, by selectively opening the on-off valve, the flow rate of the refrigerant branched to the plurality of branch circuits can be adjusted. Thereby, the cooling temperature and the cooling time in the cooler can be arbitrarily adjusted.
[0070] 第 18の発明では、上記第 16又は第 17の発明の超低温冷凍装置において、上記 複数の分岐減圧手段は、それぞれ異なる減圧能力を有して ヽることを特徴とする。  [0070] In an eighteenth aspect, in the ultra-low-temperature refrigeration apparatus according to the sixteenth or seventeenth aspect, the plurality of branch pressure reducing means have different pressure reducing capacities.
[0071] この発明によれば、複数の分岐減圧手段がそれぞれ異なる減圧能力を有している から、複数の分岐減圧手段がそれぞれ同じ減圧能力を有している場合に比べて、冷 却器における冷却温度及び冷却時間の調整幅を大きくすることができる。 [0072] 第 19の発明では、上記第 16—第 18の発明のうちいずれかの超低温冷凍装置に おいて、上記分岐減圧手段は、キヤビラリチューブであることを特徴とする。 [0071] According to the present invention, since the plurality of branch decompression means have different decompression capacities, compared to the case where the plurality of branch decompression means have the same decompression capacity, the cooling device has The adjustment range of the cooling temperature and the cooling time can be increased. [0072] In a nineteenth aspect, in the ultra-low temperature refrigeration apparatus of any of the sixteenth to eighteenth aspects, the branch pressure reducing means is a capillary tube.
[0073] この発明によれば、分岐減圧手段としてキヤビラリチューブを用いることで、超低温 領域においても確実に低沸点冷媒の減圧を行うことができる。これにより、例えば減 圧手段として膨張弁等を用いた場合に比べて信頼性が高ぐ装置を安定稼動させる 上で有利となる。また、キヤビラリチューブは膨張弁に比べると低価格であるため、設 備費を大幅に削減することが可能となる。  [0073] According to the present invention, the use of the capillary tube as the branch pressure reducing means makes it possible to reliably reduce the pressure of the low-boiling refrigerant even in the ultra-low temperature range. This is advantageous, for example, in stably operating a highly reliable device as compared with the case where an expansion valve or the like is used as the pressure reducing means. In addition, since the cost of the capillary tube is lower than that of the expansion valve, it is possible to significantly reduce the equipment cost.
[0074] さらに、第 20の発明では、上記第 6—第 19の発明のいずれかの超低温冷凍装置 の冷却器により真空チャンバ内の水分を冷却により凍結させるように構成されて 、る 真空装置を特徴とする。このことで、真空装置の生産効率及び作動安定性の向上を 図ることができる。  [0074] Further, in the twentieth invention, the vacuum apparatus is configured to freeze water in the vacuum chamber by cooling by the cooler of the ultra-low temperature refrigeration apparatus according to any of the sixth to nineteenth inventions. Features. As a result, the production efficiency and operation stability of the vacuum device can be improved.
発明の効果  The invention's effect
[0075] 以上説明したように、第 1又は第 2の発明によると、冷却対象を冷却する主冷却器と 、 1次側の冷媒を 2次側の冷媒で冷却する過冷却器とを備えた冷凍システムに対し、 過冷却器の 2次側に流れる液冷媒の流量を主冷却器への液冷媒の流量よりも多くす る過冷却器冷媒流量増加手段を設けたことにより、過冷却器の 1次側のガス冷媒に 対する十分な冷却を確保して、主冷却器の冷却効率を向上させることができ、冷却 対象の冷却安定ィ匕ゃ冷却対象の超低温レベルまでのクールダウン時間の短縮ィ匕等 を図ることができる。  As described above, according to the first or second invention, the main cooler for cooling the object to be cooled and the subcooler for cooling the primary-side refrigerant with the secondary-side refrigerant are provided. The refrigeration system is equipped with a subcooler refrigerant flow rate increasing means that makes the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler larger than the flow rate of the liquid refrigerant to the main cooler. Sufficient cooling of the gas refrigerant on the primary side can be ensured, and the cooling efficiency of the main cooler can be improved, and the cooling target can be cooled stably. A dagger or the like can be achieved.
[0076] 第 3の発明によれば、主冷却器及び主冷却器用減圧手段が設けられた主冷媒回 路と、この主冷媒回路に分岐接続され、過冷却器用減圧手段が設けられた副冷媒回 路とに対し、副冷媒回路の最小断面積を主冷媒回路の最大断面積よりも大きくしたこ とにより、過冷却器の 1次側から吐出された冷媒が主冷媒回路及び副冷媒回路に分 かれて流れる際、気液混合状態の冷媒の副冷媒回路への流量を主冷媒回路への流 量よりも多くして、副冷媒回路に流入する液冷媒の流量を主冷媒回路よりも増加でき 、上記過冷却器冷媒流量増加手段を具体ィ匕することができる。  [0076] According to the third invention, the main refrigerant circuit provided with the main cooler and the main cooler decompression means, and the auxiliary refrigerant branched and connected to the main refrigerant circuit and provided with the subcooler decompression means are provided. By making the minimum cross-sectional area of the sub-refrigerant circuit larger than the maximum cross-sectional area of the main refrigerant circuit with respect to the circuit, the refrigerant discharged from the primary side of the subcooler flows to the main refrigerant circuit and the sub-refrigerant circuit. When separated and flowing, the flow rate of the refrigerant in the gas-liquid mixed state to the sub-refrigerant circuit is made larger than the flow rate to the main refrigerant circuit, and the flow rate of the liquid refrigerant flowing into the sub-refrigerant circuit is increased compared to the main refrigerant circuit. Further, the above-mentioned supercooler refrigerant flow rate increasing means can be specifically implemented.
[0077] 第 4の発明によると、主冷却器及び主冷却器用減圧手段が設けられた主冷媒回路 と、この主冷媒回路に分岐接続され、過冷却器用減圧手段が設けられた副冷媒回路 とに対し、主及び副冷媒回路の分岐部における副冷媒回路の最高高さ位置を主冷 媒回路の最低高さ位置よりも低くしたことにより、過冷却器の 1次側力 吐出された冷 媒が主冷媒回路及び副冷媒回路に分かれて流れる際、気液混合状態の冷媒のうち の液冷媒を、相対的に高さの低い副冷媒回路に流入させて、副冷媒回路への液冷 媒の流量を主冷媒回路よりも増加でき、簡単な構造でもって、上記過冷却器冷媒流 量増加手段を具体ィ匕することができる。 [0077] According to the fourth invention, the main refrigerant circuit provided with the main cooler and the decompressing means for the main cooler, and the sub-refrigerant circuit branched and connected to the main refrigerant circuit and provided with the decompressing means for the subcooler In contrast, the highest position of the sub-refrigerant circuit at the branch of the main and sub-refrigerant circuits was set lower than the lowest position of the main refrigerant circuit, so that the primary-side power of the subcooler was discharged. When the medium flows separately into the main refrigerant circuit and the sub-refrigerant circuit, the liquid refrigerant of the refrigerant in the gas-liquid mixed state is caused to flow into the relatively low sub-refrigerant circuit to perform liquid cooling to the sub-refrigerant circuit. The flow rate of the medium can be increased more than that of the main refrigerant circuit, and the supercooler refrigerant flow rate increasing means can be specifically implemented with a simple structure.
[0078] 第 5の発明によると、第 3の発明の冷凍システムにおいて、主冷媒回路と副冷媒回 路との分岐部における副冷媒回路の最高高さ位置を主冷媒回路の最低高さ位置よ りも低くしたことにより、上記第 3及び第 4の発明の作用効果が相乗的に得られ、主冷 却器の冷却効率をさらに一層向上させることができる。  [0078] According to the fifth invention, in the refrigeration system of the third invention, the maximum height position of the sub-refrigerant circuit at the branch point between the main refrigerant circuit and the sub-refrigerant circuit is defined as the minimum height position of the main refrigerant circuit. By lowering the temperature, the effects of the third and fourth aspects of the invention can be synergistically obtained, and the cooling efficiency of the main cooler can be further improved.
[0079] 第 6の発明によると、上記冷凍システムの主冷却器により真空装置における真空チ ヤンバ内の水分を冷却により凍結させるようにしたことにより、真空チャンバ内の真空 状態の安定化、及びクールダウン時間、排気時間の短縮による生産効率の向上を図 ることがでさる。  [0079] According to the sixth invention, the main cooler of the refrigeration system freezes the water in the vacuum chamber in the vacuum device by cooling, thereby stabilizing the vacuum state in the vacuum chamber and cooling the vacuum chamber. Production efficiency can be improved by reducing down time and exhaust time.
[0080] 第 7の発明によれば、超低温冷凍装置のデフロスト回路に、混合冷媒から冷凍機油 を除去する油分離器を配設したことにより、デフロスト時に上記混合冷媒中の冷凍機 油がデフロスト回路力 冷却器に供給されて該冷却器内で凝固するのを抑制できる とともに、複数の油分離器を圧縮機から凝縮器までの間に直列に配設する場合のよ うな圧力損失の増加を抑えることができる。よって、混合冷媒の循環を良好に確保し つつ冷却効率の向上を図ることができる。  [0080] According to the seventh invention, the oil separator for removing the refrigerating machine oil from the mixed refrigerant is provided in the defrost circuit of the ultra-low temperature refrigerating apparatus, so that the refrigerating machine oil in the mixed refrigerant is defrosted at the time of defrosting. It is possible to suppress the supply to the power cooler and solidification in the cooler, as well as to suppress an increase in pressure loss as in the case where a plurality of oil separators are arranged in series between the compressor and the condenser. be able to. Therefore, it is possible to improve the cooling efficiency while ensuring good circulation of the mixed refrigerant.
[0081] 第 8の発明によれば、デフロスト回路の上流端と開閉弁との間に油分離器を配置し たことにより、開閉弁の閉弁によって圧縮機の吸込側と油分離器との間に前者の方 が後者よりも高 、圧力差が発生するのを抑制することができ、圧縮機の吸込側から油 分離器に向力つて冷凍機油が逆流するのを防止して、冷凍機油の圧縮機へのスム ーズな還流を図ることができる。  [0081] According to the eighth invention, the oil separator is arranged between the upstream end of the defrost circuit and the on-off valve, so that the closing of the on-off valve closes the suction side of the compressor and the oil separator. In the former, the former is higher than the latter, which can suppress the generation of a pressure difference, prevent the refrigerating machine oil from flowing backward from the suction side of the compressor to the oil separator, and prevent the refrigerating machine oil from flowing. Smooth recirculation to the compressor can be achieved.
[0082] 第 9の発明によれば、油分離器をデフロスト回路の上流側に配置したことにより、温 度が高くて粘性が低い状態の冷凍機油を回収することができ、より確実に冷凍機油 の除去を行うことができる。 [0083] 第 10の発明によれば、冷媒回路に複数のバッファタンクを接続したことにより、バッ ファタンクの設置スペースの確保を図りながら、ノ ッファタンクの大容量ィ匕により圧縮 機の吐出圧力の異常上昇を抑制して装置を安定稼動させることができる。 [0082] According to the ninth aspect, the oil separator is arranged on the upstream side of the defrost circuit, so that the refrigerating machine oil having a high temperature and a low viscosity can be collected, and the refrigerating machine oil can be more reliably collected. Can be removed. [0083] According to the tenth aspect of the present invention, by connecting a plurality of buffer tanks to the refrigerant circuit, it is possible to secure an installation space for the buffer tanks, and to increase the capacity of the buffer tanks, thereby causing an abnormal discharge pressure of the compressor. The device can be operated stably by suppressing the rise.
[0084] 第 11の発明によれば、第 1及び第 2のバッファタンクが連通路によって互いに接続 されているから、両タンク間で冷媒が流通され、タンク内でのガス冷媒の滞留を抑制 でき、装置内の混合冷媒の成分比率の変動による冷却性能の低下を防止できる。  [0084] According to the eleventh invention, since the first and second buffer tanks are connected to each other by the communication path, the refrigerant is circulated between the two tanks, and the stagnation of the gas refrigerant in the tanks can be suppressed. In addition, it is possible to prevent a decrease in cooling performance due to a change in the component ratio of the mixed refrigerant in the apparatus.
[0085] 第 12の発明によれば、連通路の途中を圧縮機の吸込側の冷媒回路に接続したこ とにより、冷媒回路からバッファタンクに流入して圧縮機の吸込側に戻る冷媒がタンク 内をスムーズに循環して、タンク内でのガス冷媒の滞留をより確実に抑制することが できる。  [0085] According to the twelfth aspect, by connecting the middle of the communication path to the refrigerant circuit on the suction side of the compressor, the refrigerant flowing from the refrigerant circuit into the buffer tank and returning to the suction side of the compressor is stored in the tank. The gas circulates smoothly inside the tank, and the stagnation of the gas refrigerant in the tank can be suppressed more reliably.
[0086] 第 13の発明によれば、ガス冷媒を圧縮機の吐出側からバッファタンクに流入させ、 さらに圧縮機の吸込側に戻すような回路構成としたことにより、タンク内でのガス冷媒 の滞留をより確実に抑制することができる。  [0086] According to the thirteenth aspect, the circuit configuration is such that the gas refrigerant flows into the buffer tank from the discharge side of the compressor and returns to the suction side of the compressor. Stagnation can be suppressed more reliably.
[0087] 第 14の発明によれば、超低温冷凍装置におけるデフロスト回路の下流端部を主分 岐回路と副分岐回路とに分岐してそれぞれ冷却器の入口側及び出口側の冷媒回路 に接続したことにより、冷却器と熱交^^とを同時に昇温して、冷却器を通過した冷 凍機油等が熱交換器内で凝固することを抑制でき、冷媒の良好な循環を確保してデ フロスト運転時間を短縮することができる。  [0087] According to the fourteenth aspect, the downstream end of the defrost circuit in the ultra-low temperature refrigeration apparatus is branched into the main branch circuit and the sub-branch circuit, and connected to the refrigerant circuits on the inlet side and the outlet side of the cooler, respectively. As a result, the temperature of the cooler and the heat exchange ^^ are simultaneously raised, and it is possible to suppress the freezing oil and the like that has passed through the cooler from solidifying in the heat exchanger, and to secure a good circulation of the refrigerant, and Frost operation time can be reduced.
[0088] 第 15の発明によれば、上記副分岐回路に開閉弁を設けたことにより、熱交^^に おいて冷凍機油等がスムーズに流動できる流動点以上に昇温された後で開閉弁の 閉弁により主分岐回路のみに混合冷媒を流して冷却器を昇温させることができ、デフ ロスト運転時間をさらに短縮することができる。  [0088] According to the fifteenth aspect, the provision of the on-off valve in the sub-branch circuit allows the refrigerating machine oil or the like to be opened and closed after the temperature of the refrigerating machine oil or the like is raised to a pour point where the fluid can smoothly flow during heat exchange. By closing the valve, the temperature of the cooler can be increased by flowing the mixed refrigerant only to the main branch circuit, and the defrost operation time can be further reduced.
[0089] 第 16の発明によれば、超低温冷凍装置の最終段のカスケード熱交換器の 1次側か ら冷媒を冷却器に供給するための冷媒回路を複数に分岐させ、その各分岐回路に 減圧手段を接続して、切換手段の切換えにより冷媒を複数の分岐回路に分岐させる ようにしたことにより、冷媒の流量を増やすことができ、冷却対象を所定の冷却温度ま で冷却するための減圧能力の確保を図りつつ、その冷却温度に到達するまでの冷 却時間の短縮ィ匕を図ることができる。 [0090] 第 17の発明によれば、切換手段を、分岐回路の少なくとも 1つに設けられた開閉弁 としたことにより、冷却器における冷却温度及び冷却時間を任意に調整することがで きる。 [0089] According to the sixteenth aspect, the refrigerant circuit for supplying the refrigerant to the cooler from the primary side of the final-stage cascade heat exchanger of the ultra-low-temperature refrigeration apparatus is branched into a plurality of refrigerant circuits. By connecting the pressure reducing means and branching the refrigerant into a plurality of branch circuits by switching the switching means, it is possible to increase the flow rate of the refrigerant and reduce the pressure for cooling the object to be cooled to a predetermined cooling temperature. It is possible to shorten the cooling time until the cooling temperature is reached while securing the capacity. According to the seventeenth aspect, since the switching means is an on-off valve provided in at least one of the branch circuits, the cooling temperature and the cooling time in the cooler can be arbitrarily adjusted.
[0091] 第 18の発明によれば、複数の減圧手段の減圧能力を互いに異ならせたことにより、 冷却器における冷却温度及び冷却時間の調整幅をさらに大きくすることができる。  [0091] According to the eighteenth aspect, the decompression capabilities of the plurality of decompression means are different from each other, so that the adjustment range of the cooling temperature and the cooling time in the cooler can be further increased.
[0092] 第 19の発明によれば、上記減圧手段をキヤビラリチューブとしたことにより、超低温 領域にお ヽても確実に減圧作業を行うことができ、冷凍装置を安定稼動をする上で 有利となり、信頼性の向上及び設備費の大幅な削減を図ることができる。  [0092] According to the nineteenth aspect, by using a capillary tube as the decompression means, decompression work can be reliably performed even in an ultra-low temperature range, and stable operation of the refrigeration apparatus is required. Advantageously, it is possible to improve reliability and greatly reduce equipment costs.
[0093] 第 20の発明によれば、上記超低温冷凍装置の冷却器により真空装置における真 空チャンバ内の水分を冷却により凍結させるようにしたことにより、真空装置の生産効 率及び作動安定性の向上を図ることができる。  [0093] According to the twentieth aspect, since the moisture in the vacuum chamber of the vacuum device is frozen by cooling by the cooler of the ultra-low temperature refrigerator, the production efficiency and operation stability of the vacuum device are improved. Improvement can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0094] [図 1]図 1は、本発明の実施形態に係る真空成膜装置のレイアウトを概略的に示す平 面図である。  FIG. 1 is a plan view schematically showing a layout of a vacuum film forming apparatus according to an embodiment of the present invention.
[図 2]図 2は、真空成膜装置の他のレイアウトを概略的に示す平面図である。  FIG. 2 is a plan view schematically showing another layout of the vacuum film forming apparatus.
[図 3]図 3は、本発明の実施形態 1に係る超低温冷凍装置の全体構成を示す冷媒系 統図である。  FIG. 3 is a refrigerant system diagram showing the entire configuration of the ultra-low temperature refrigeration apparatus according to Embodiment 1 of the present invention.
[図 4]図 4は、超低温冷凍装置の要部を拡大して示す平面図である。  FIG. 4 is an enlarged plan view showing a main part of the ultra-low temperature refrigeration apparatus.
[図 5]図 5は、図 4の V方向矢視図である。  FIG. 5 is a view in the direction of arrow V in FIG. 4.
[図 6]図 6は、実施形態 2を示す図 4相当図である。  FIG. 6 is a diagram corresponding to FIG. 4, showing the second embodiment.
[図 7]図 7は、実施形態 3を示す図 4相当図である。  FIG. 7 is a diagram corresponding to FIG. 4 showing the third embodiment.
[図 8]図 8は、図 7の VIII方向矢視図である。  FIG. 8 is a view taken in the direction of arrow VIII in FIG. 7.
[図 9]図 9は、本発明の実施形態 4に係る超低温冷凍装置の全体構成を示す冷媒系 統図である。  FIG. 9 is a refrigerant system diagram showing the overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 4 of the present invention.
[図 10]図 10は、本発明の実施形態 5に係る超低温冷凍装置の全体構成を示す冷媒 系統図である。  FIG. 10 is a refrigerant system diagram showing an overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 5 of the present invention.
[図 11]図 11は、本発明の実施形態 6に係る超低温冷凍装置の全体構成を示す冷媒 系統図である。 [図 12]図 12は、本発明の実施形態 7に係る超低温冷凍装置の全体構成を示す冷媒 系統図である。 FIG. 11 is a refrigerant system diagram showing an overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 6 of the present invention. FIG. 12 is a refrigerant system diagram showing an overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 7 of the present invention.
[図 13]図 13は、本発明の実施形態 8に係る超低温冷凍装置の全体構成を示す冷媒 系統図である。  FIG. 13 is a refrigerant system diagram showing an overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 8 of the present invention.
[図 14]図 14は、本発明の実施形態 9に係る超低温冷凍装置の全体構成を示す冷媒 系統図である。  FIG. 14 is a refrigerant system diagram showing the entire configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 9 of the present invention.
[図 15]図 15は、本発明の実施形態 10に係る超低温冷凍装置の全体構成を示す冷 媒系統図である。  FIG. 15 is a refrigerant system diagram showing the entire configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 10 of the present invention.
[図 16]図 16は、本発明の実施形態 11に係る超低温冷凍装置の全体構成を示す冷 媒系統図である。  FIG. 16 is a refrigerant system diagram showing the entire configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 11 of the present invention.
[図 17]図 17は、本発明の実施形態 12に係る超低温冷凍装置の全体構成を示す冷 媒系統図である。  FIG. 17 is a refrigerant system diagram showing an overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 12 of the present invention.
[図 18]図 18は、本発明の実施形態 13に係る超低温冷凍装置の全体構成を示す冷 媒系統図である。  FIG. 18 is a refrigerant system diagram showing an overall configuration of an ultra-low temperature refrigeration apparatus according to Embodiment 13 of the present invention.
符号の説明 Explanation of symbols
A 真空成膜装置  A vacuum deposition equipment
R 超低温冷凍装置  R Ultra low temperature refrigerator
1 冷媒回路  1 Refrigerant circuit
2 冷媒配管  2 Refrigerant piping
2a 主冷媒配管  2a Main refrigerant piping
2b 副冷媒配管  2b Secondary refrigerant piping
4 圧縮機  4 Compressor
5 油分離器 (第 1の油分離器)  5 Oil separator (first oil separator)
6 油戻し管  6 Oil return pipe
8 水冷コンデンサ (凝縮器)  8 Water-cooled condenser (condenser)
9 ドライヤ  9 Dryer
10 補助コンデンサ (凝縮器)  10 Auxiliary condenser (condenser)
12 第 1気液分離器 第 2気液分離器 12 First gas-liquid separator Second gas-liquid separator
第 3気液分離器  Third gas-liquid separator
第 4気液分離器  4th gas-liquid separator
第 1熱交換器  1st heat exchanger
第 2熱交換器  2nd heat exchanger
第 3熱交換器  Third heat exchanger
第 4熱交換器  4th heat exchanger
第 1キヤビラリチューブ (減圧手段)  No. 1 capillary tube (decompression means)
第 2キヤビラリチューブ (減圧手段)  2nd capillary tube (decompression means)
第 3キヤビラリチューブ (減圧手段)  3rd capillary tube (decompression means)
第 4キヤビラリチューブ (減圧手段)  4th capillary tube (decompression means)
第 5キヤビラリチューブ (過冷却器用減圧手段) 第 6キヤビラリチューブ 30 (主冷却器用減圧手段) 過冷却器 Fifth capillary tube (Decompression means for subcooler) Sixth capillary tube 30 (Decompression means for main cooler) Subcooler
a 1次側a Primary side
b 2次側 b Secondary side
クライオコイル (主冷却器)  Cryo coil (Main cooler)
分岐管 Branch pipe
b 主側分岐部b Main branch
c 副側分岐部 c Secondary branch
高さ height
主冷媒回路  Main refrigerant circuit
副冷媒回路  Sub refrigerant circuit
電磁開閉弁  Solenoid on-off valve
デフロスト回路 Defrost circuit
a 主分岐回路a Main branch circuit
b 副分岐回路 b Sub-branch circuit
電磁開閉弁 50 第 2の油分離器 Solenoid on-off valve 50 Second oil separator
59 圧力センサ  59 Pressure sensor
60 バッファタンク  60 buffer tank
61 冷媒流入管  61 Refrigerant inlet pipe
62 冷媒戻し管  62 Refrigerant return pipe
63 第 1のバッファタンク  63 1st buffer tank
64 第 2のバッファタンク  64 Second buffer tank
65 連通路  65 connecting passage
66 電磁開閉弁  66 Solenoid on-off valve
68 電磁開閉弁  68 Solenoid on-off valve
80 第 1の分岐回路  80 1st branch circuit
80a 第 1の分岐キヤビラリチューブ  80a 1st branch capillary tube
80b 電磁開閉弁  80b Solenoid on-off valve
81 第 2の分岐回路  81 Second branch circuit
81a 第 2の分岐キヤビラリチューブ  81a 2nd branch capillary tube
81b 電磁開閉弁  81b Solenoid on-off valve
82 第 3の分岐回路  82 Third branch circuit
82a 第 3の分岐キヤビラリチューブ  82a 3rd branch capillary tube
82b 電磁開閉弁  82b Solenoid on-off valve
83 第 4の分岐回路  83 Fourth Branch Circuit
83a 第 4の分岐キヤビラリチューブ  83a 4th Branch Capillary Tube
83b 電磁開閉弁  83b Solenoid on-off valve
100 真空チャンバ  100 vacuum chamber
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0096] 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施 形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制 限することを意図するものでは全くな!/、。 [0096] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description of the preferred embodiments below is merely exemplary in nature and is in no way intended to limit the invention, its applications, or uses.
[0097] (実施形態 1) 図 1は本発明の実施形態に係る真空装置としての真空成膜装置 Aのレイアウトの一 例を示す。 100は内部が真空状態に保たれて図示しない基板 (ウェハーともいう)が 成膜される真空チャンバで、この真空チャンバ 100には、開閉扉 101により開閉され る搬入出口(図示せず)が開口されており、開閉扉 101を開いた状態で、成膜しょうと する基板を真空チャンバ 100内に搬入し、或いは成膜後の基板を真空チャンバ 100 内から搬出する。真空チャンバ 100には連通路 102を介して真空ポンプ 103が接続 されている。この連通路 102の真空チャンバ 100との接続部には、開閉により両者を 連通状態又は連通遮断状態に切り換わるゲートバルブ 104が配設されており、開閉 扉 101を閉じかつゲートバルブ 104を開いた状態で真空ポンプ 103の作動により真 空チャンバ 100内を真空引きするようになっている。 (Embodiment 1) FIG. 1 shows an example of a layout of a vacuum film forming apparatus A as a vacuum apparatus according to an embodiment of the present invention. Reference numeral 100 denotes a vacuum chamber in which a substrate (also referred to as a wafer) (not shown) is formed while maintaining a vacuum state, and a loading / unloading port (not shown) opened and closed by an opening / closing door 101 is opened in the vacuum chamber 100. The substrate on which a film is to be formed is loaded into the vacuum chamber 100 with the opening / closing door 101 being opened, or the substrate after the film formation is transported from the vacuum chamber 100. A vacuum pump 103 is connected to the vacuum chamber 100 via a communication path 102. A gate valve 104 is provided at a connection portion of the communication passage 102 with the vacuum chamber 100 to switch the two to a communication state or a communication cutoff state by opening and closing.The opening and closing door 101 is closed and the gate valve 104 is opened. In this state, the inside of the vacuum chamber 100 is evacuated by operating the vacuum pump 103.
[0098] 上記真空成膜装置 Aには本発明の本発明の実施形態 1に係る冷凍システムを構 成する超低温冷凍装置 Rが設けられて ヽる。この超低温冷凍装置 Rの後述するクライ ォコイル 32により、真空ポンプ 103の真空引きの状態で真空チャンバ 100内の冷却 対象としての水分を直接に超低温レベルまで冷却することにより、その水分を凍結に より捕捉して真空チャンバ 100内の真空レベルを上げるようになって!/、る。  [0098] The vacuum film forming apparatus A is provided with an ultra-low temperature refrigeration apparatus R that constitutes a refrigeration system according to Embodiment 1 of the present invention. The cryo-coil 32 described later of the ultra-low temperature refrigeration unit R directly cools the water to be cooled in the vacuum chamber 100 to the ultra-low temperature level while the vacuum pump 103 is evacuated, so that the water is captured by freezing. To increase the vacuum level in the vacuum chamber 100!
[0099] 一方、図 2は真空成膜装置 Aのレイアウトの他の例を示し、冷凍装置 Rのクライオコ ィル 32は真空チャンバ 100内ではなくて連通路 102の途中に配設されている。真空 ポンプ 103による真空引きの状態で超低温冷凍装置 Rにより連通路 102内の水分、 つまり間接的に真空チャンバ 100内の水分を冷却して凍結により捕捉することで、真 空チャンバ 100内の真空レベルを高めるようにして!/、る。その他の構造は図 1に示す 真空成膜装置 Aと同じである。  [0099] On the other hand, FIG. 2 shows another example of the layout of the vacuum film forming apparatus A. The cryocoil 32 of the refrigerating apparatus R is provided not in the vacuum chamber 100 but in the communication passage 102. The vacuum in the vacuum chamber 100 is captured by freezing the water in the communication passage 102, that is, the water in the vacuum chamber 100, by indirectly cooling and capturing the water in the communication passage 102 by the ultra-low-temperature refrigeration apparatus R in a state of evacuation by the vacuum pump 103. /! Other structures are the same as those of the vacuum film forming apparatus A shown in FIG.
[0100] 上記超低温冷凍装置 Rは、冷媒として沸点温度が互いに異なる数種類の冷媒を混 合してなる非共沸混合冷媒を用いて - 100°C以下の超低温レベルの寒冷を発生させ るものである。  [0100] The ultra-low temperature refrigeration apparatus R uses a non-azeotropic refrigerant mixture in which several types of refrigerants having different boiling points are mixed as a refrigerant, and generates ultra-low temperature of -100 ° C or lower. is there.
[0101] すなわち、図 3は超低温冷凍装置 Rの全体構成を示し、 1は上記混合冷媒が封入さ れた閉サイクルの冷媒回路で、この冷媒回路 1は以下に説明する各種の機器を冷媒 配管 2で接続してなる。 4はガス冷媒を圧縮する圧縮機で、この圧縮機 4の吐出部に は油分離器 5が接続されている。この油分離器 5は、圧縮機 4から吐出されたガス冷 媒中に混入されている圧縮機用潤滑油等の冷凍機油をガス冷媒カゝら分離するもの であり、この分離された冷凍機油は油戻し管 6を経て圧縮機 4の吸入側に戻される。 上記油分離器 5の冷媒吐出部には、圧縮機 4からの吐出ガス冷媒を冷却水通路 7の 冷却水との熱交換により冷却して凝縮する水冷コンデンサ 8が接続されて 、る。水冷 コンデンサ 8の吐出部には、冷媒中の水分ゃコンタミネーシヨンを除去するドライヤ 9 を介して補助コンデンサ 10の 1次側が接続されており、この補助コンデンサ 10にお いて、水冷コンデンサ 8からのガス冷媒を、圧縮機 4に吸入される低温度の 2次側の 還流冷媒との熱交換により冷却して凝縮させる。この実施形態では、水冷コンデンサ 8と補助コンデンサ 10とで凝縮器を構成しており、これら両コンデンサ 8, 10により、 混合冷媒のうち沸点温度が比較的高温のガス冷媒を凝縮させて液化するようになつ ている。 [0101] That is, Fig. 3 shows the overall configuration of the ultra-low-temperature refrigeration system R, and 1 is a closed-cycle refrigerant circuit in which the above-mentioned mixed refrigerant is sealed. This refrigerant circuit 1 connects various devices described below to refrigerant piping. Connected by two. Reference numeral 4 denotes a compressor for compressing a gas refrigerant, and an oil separator 5 is connected to a discharge portion of the compressor 4. This oil separator 5 is used for gas-cooled gas discharged from the compressor 4. This is for separating the refrigerating machine oil, such as compressor lubricating oil, mixed in the medium into gas refrigerant, and the separated refrigerating machine oil is returned to the suction side of the compressor 4 via the oil return pipe 6. . A water-cooled condenser 8 that cools and condenses the gas refrigerant discharged from the compressor 4 by heat exchange with the cooling water in the cooling water passage 7 is connected to the refrigerant discharge portion of the oil separator 5. The discharge side of the water-cooled condenser 8 is connected to the primary side of an auxiliary condenser 10 via a dryer 9 that removes moisture in the refrigerant and contamination. The gas refrigerant is cooled and condensed by heat exchange with the low-temperature secondary-side reflux refrigerant sucked into the compressor 4. In this embodiment, a condenser is constituted by the water-cooled condenser 8 and the auxiliary condenser 10.The condensers 8 and 10 condense and liquefy gas refrigerant having a relatively high boiling point in the mixed refrigerant. It has become.
[0102] 上記補助コンデンサ 10における 1次側の吐出部には第 1気液分離器 12が接続さ れ、この第 1気液分離器 12で、上記補助コンデンサ 10からの気液混合の冷媒を液 冷媒とガス冷媒とに分離する。この第 1気液分離器 12のガス冷媒吐出部にはカスケ ードタイプの第 1熱交翻18の 1次側力 また液冷媒吐出部には、減圧手段としての 第 1キヤビラリチューブ 24を介して同じ第 1熱交換器 18の 2次側がそれぞれ接続され ている。そして、第 1気液分離器 12で分離された液冷媒を第 1キヤビラリチューブ 24 で減圧させた後に第 1熱交 の 2次側に供給して蒸発させ、この蒸発により 1次 側のガス冷媒を冷却して、混合冷媒のうち沸点温度が次に高!ヽ温度のガス冷媒を凝 縮させて液化するようになって!/、る。  [0102] A first gas-liquid separator 12 is connected to the primary-side discharge portion of the auxiliary condenser 10, and the first gas-liquid separator 12 allows the refrigerant of the gas-liquid mixture from the auxiliary condenser 10 to be discharged. It is separated into liquid refrigerant and gas refrigerant. The gas refrigerant discharge section of the first gas-liquid separator 12 has a primary side force of a cascade type first heat exchange 18 and the liquid refrigerant discharge section has a first capillary tube 24 as a pressure reducing means. The secondary sides of the same first heat exchanger 18 are connected to each other. Then, the liquid refrigerant separated by the first gas-liquid separator 12 is decompressed by the first capillary tube 24 and then supplied to the secondary side of the first heat exchange to evaporate. The gas refrigerant is cooled, and the boiling point temperature of the mixed refrigerant is the next highest!ガ ス The gas refrigerant at the temperature condenses and liquefies!
[0103] さらに、上記第 1熱交 における 1次側の吐出部には第 2気液分離器 13が接 続されており、この第 2気液分離器 13において、第 1熱交換器 18からの気液混合の 冷媒を液冷媒とガス冷媒とに分離する。この第 2気液分離器 13のガス冷媒吐出部に はカスケードタイプの第 2熱交翻 19の 1次側が、また液冷媒吐出部には、減圧手 段としての第 2キヤビラリチューブ 25を介して同じ第 2熱交換器 19の 2次側がそれぞ れ接続されている。そして、第 2気液分離器 13で分離された液冷媒を第 2キヤビラリ チューブ 25で減圧させた後に第 2熱交 の 2次側に供給して蒸発させ、この蒸 発により 1次側のガス冷媒を冷却して、混合冷媒のうち沸点温度が次に高い温度の ガス冷媒を凝縮液化する。 [0103] Further, a second gas-liquid separator 13 is connected to the discharge section on the primary side in the first heat exchange, and in the second gas-liquid separator 13, the first heat exchanger 18 Is separated into a liquid refrigerant and a gas refrigerant. The gas refrigerant discharge section of the second gas-liquid separator 13 has a primary side of a cascade type second heat exchange 19, and the liquid refrigerant discharge section has a second capillary tube 25 as a decompression means. The secondary sides of the same second heat exchanger 19 are connected to each other via the same. Then, the liquid refrigerant separated by the second gas-liquid separator 13 is depressurized by the second capillary tube 25 and then supplied to the secondary side of the second heat exchange to evaporate. Cools the refrigerant to the next highest boiling point in the mixed refrigerant. The gas refrigerant is condensed and liquefied.
[0104] さらに、上記接続構造と同様にして、上記第 2熱交換器 19における 1次側の吐出部 には、第 3気液分離器 14、第 3熱交翻 20及び第 3キヤビラリチューブ 26が、また当 該第 3熱交換器 20における 1次側の吐出部には、第 4気液分離器 15、第 4熱交換器 21及び第 4キヤビラリチューブ 27がそれぞれ接続されている(これらの接続構造は上 記第 1気液分離器 12、第 1熱交換器 18及び第 1キヤビラリチューブ 24の接続構造と 同じであるので、その詳細な説明は省略する)。そして、第 3気液分離器 14で分離さ れた液冷媒を第 3キヤビラリチューブ 26で減圧させた後に第 3熱交 の 2次側 に供給して蒸発させ、その蒸発により第 3気液分離器 14からの 1次側のガス冷媒を 冷却して、混合冷媒のうち沸点温度が次に高!ヽ温度のガス冷媒を凝縮させて液化す る。また、第 4気液分離器 15で分離された液冷媒を第 4キヤビラリチューブ 27で減圧 させた後に第 4熱交 の 2次側に供給して蒸発させ、この蒸発により第 4気液分 離器 15からの 1次側のガス冷媒を熱交換により冷却して、混合冷媒のうち残るガス冷 媒を凝縮させて液化するようにして 、る。  [0104] Further, similarly to the connection structure, the primary gas discharge section of the second heat exchanger 19 includes a third gas-liquid separator 14, a third heat exchange 20, and a third cabillary. A fourth gas-liquid separator 15, a fourth heat exchanger 21, and a fourth capillary tube 27 are connected to a tube 26 and a discharge portion on the primary side of the third heat exchanger 20, respectively. (These connection structures are the same as the connection structure of the first gas-liquid separator 12, the first heat exchanger 18, and the first capillary tube 24, and therefore detailed description thereof is omitted.) Then, the liquid refrigerant separated by the third gas-liquid separator 14 is depressurized by the third capillary tube 26, and then supplied to the secondary side of the third heat exchange to evaporate. The gas refrigerant on the primary side from the liquid separator 14 is cooled, and the boiling point of the mixed refrigerant is the next highest!ヽ Condenses and liquefies gas refrigerant at temperature. Further, the liquid refrigerant separated by the fourth gas-liquid separator 15 is decompressed by the fourth capillary tube 27, and then supplied to the secondary side of the fourth heat exchange to evaporate. The gas refrigerant on the primary side from the separator 15 is cooled by heat exchange, and the remaining gas refrigerant of the mixed refrigerant is condensed and liquefied.
[0105] そして、上記第 4熱交換器 21における 1次側の吐出部には熱交換器力もなる過冷 却器 31 (サブクーラ)の 1次側 31aが接続され、この過冷却器 31の 1次側 31aの吐出 部に接続されている冷媒配管 2は、途中の分岐管 35で主冷媒配管 2aと副冷媒配管 2bとに分岐されている。  [0105] The primary side discharge part of the fourth heat exchanger 21 is connected to the primary side 31a of a subcooler 31 (subcooler) which also has a heat exchanger power. The refrigerant pipe 2 connected to the discharge part on the next side 31a is branched into a main refrigerant pipe 2a and a sub-refrigerant pipe 2b by a branch pipe 35 on the way.
[0106] 上記副冷媒配管 2bの途中には第 5キヤビラリチューブ 28 (過冷却器用減圧手段) が接続されている。また、副冷媒配管 2bの下流端は同じ過冷却器 31の 2次側 31bに 接続され、この過冷却器 31の 2次側 31bは冷媒配管 2を介して上記第 4熱交 の 2次側に接続されている。そして、第 4熱交 から吐出された冷媒を、過冷却 器 31の 1次側 31aに通過させた後、その一部を副冷媒配管 2bの第 5キヤビラリチュ ーブ 28で減圧させ、その液冷媒を過冷却器 31の 2次側 31bに供給して蒸発させ、そ の蒸発熱により 1次側 31aのガス冷媒を冷却するようにして 、る。  [0106] A fifth capillary tube 28 (pressure reducing means for a subcooler) is connected in the middle of the sub-refrigerant pipe 2b. The downstream end of the sub-refrigerant pipe 2b is connected to the secondary side 31b of the same subcooler 31. The secondary side 31b of the subcooler 31 is connected to the secondary side of the fourth heat exchange through the refrigerant pipe 2. It is connected to the. After passing the refrigerant discharged from the fourth heat exchange to the primary side 31a of the supercooler 31, a part of the refrigerant is depressurized by the fifth refrigerant tube 28 of the sub-refrigerant pipe 2b, and the liquid refrigerant is discharged. Is supplied to the secondary side 31b of the supercooler 31 to evaporate it, and the heat of the evaporation cools the gas refrigerant on the primary side 31a.
[0107] 一方、上記主冷媒配管 2aの途中には、主冷却器用減圧手段としての第 6キヤビラリ チューブ 29とクライオコイル 32とがそれぞれ上流側から直列に接続されている。上記 クライオコイル 32は主冷却器を構成するもので、図 1又は図 2に示すように、上記真 空チャンバ 100内の冷却対象としての水分を冷却する。主冷媒配管 2aの下流端は、 上記第 4熱交換器 21の 2次側と過冷却器 31の 2次側 31bとの間の冷媒配管 2に接続 されており、過冷却器 31の 1次側 31aから吐出された冷媒の残部を主冷媒配管 2aの 第 6キヤビラリチューブ 29で減圧させた後にクライオコイル 32に供給して蒸発させ、 その蒸発熱により真空チャンバ 100内の水分 (冷却対象)を- 100°C以下の温度の超 低温レベルに冷却し、その水分を凍結により捕捉して真空レベルを高めるようにして いる。 [0107] On the other hand, in the middle of the main refrigerant pipe 2a, a sixth capillary tube 29 and a cryocoil 32 as decompression means for the main cooler are connected in series from the upstream side, respectively. The cryo coil 32 constitutes the main cooler, and as shown in FIG. 1 or FIG. The water as a cooling target in the empty chamber 100 is cooled. The downstream end of the main refrigerant pipe 2a is connected to the refrigerant pipe 2 between the secondary side of the fourth heat exchanger 21 and the secondary side 31b of the subcooler 31, so that the primary The remaining refrigerant discharged from the side 31a is decompressed by the sixth capillary tube 29 of the main refrigerant pipe 2a, and then supplied to the cryocoil 32 to evaporate. ) Is cooled to an ultra-low temperature level of -100 ° C or lower, and the moisture is captured by freezing to increase the vacuum level.
[0108] また、上記過冷却器 31の 2次側 (及びクライオコイル 32)と、第 4熱交換器 21、第 3 熱交換器 20、第 2熱交換器 19、第 1熱交換器 18及び補助コンデンサ 10の各 2次側 とは記載順に直列に冷媒配管 2により接続され、補助コンデンサ 10の 2次側は圧縮 機 4の吸入側に接続されており、混合冷媒にお!/ヽて蒸発によってガス化した各冷媒 を圧縮機 4に吸入させるようにして ヽる。  [0108] Further, the secondary side (and the cryo-coil 32) of the subcooler 31 and the fourth heat exchanger 21, the third heat exchanger 20, the second heat exchanger 19, the first heat exchanger 18, and Each secondary side of the auxiliary condenser 10 is connected in series in the order described by the refrigerant pipe 2, and the secondary side of the auxiliary condenser 10 is connected to the suction side of the compressor 4 and evaporates to the mixed refrigerant. The refrigerant gasified by the above is sucked into the compressor 4.
[0109] 本発明の特徴は上記分岐管 35の配置構造にある。すなわち、図 4及び図 5に拡大 して示すように、分岐管 35は集合部 35aと、この集合部 35aから二股状に分岐された 主側及び副側の 1対の分岐部 35b, 35cとからなる。集合部 35aには、過冷却器 31 の 1次側 31aの吐出部に接続された冷媒配管 2の下流端がロウ付け等により気密状 に接合されている。また、主側分岐部 35bには上記主冷媒配管 2aの上流端が、また 副側分岐部 35cには副冷媒配管 2bの上流端がそれぞれロウ付け等により気密状に 接合されている。これら主冷媒配管 2a及び副冷媒配管 2bはいずれも略水平面に沿 つて延びており、主側分岐部 35bの内部及び主冷媒配管 2aの内部に主冷媒回路 3 8が、また副側分岐部 35cの内部及び副冷媒配管 2bの内部に副冷媒回路 39がそれ ぞれ形成されている。  The feature of the present invention lies in the arrangement structure of the branch pipe 35. That is, as shown in FIG. 4 and FIG. 5 in an enlarged manner, the branch pipe 35 is formed of a collecting part 35a and a pair of main-side and sub-side branch parts 35b and 35c branched from the collecting part 35a in a forked shape. Consists of The downstream end of the refrigerant pipe 2 connected to the discharge part on the primary side 31a of the subcooler 31 is hermetically joined to the collecting part 35a by brazing or the like. The upstream end of the main refrigerant pipe 2a is joined to the main branch 35b in an airtight manner by brazing or the like, and the upstream end of the sub refrigerant pipe 2b is joined to the sub-branch 35c. Both the main refrigerant pipe 2a and the sub-refrigerant pipe 2b extend substantially along the horizontal plane, and a main refrigerant circuit 38 is provided inside the main branch part 35b and the main refrigerant pipe 2a. The sub-refrigerant circuit 39 is formed in the inside of the sub-refrigerant and the sub-refrigerant pipe 2b, respectively.
[0110] 上記分岐管 35の主側分岐部 35bと副側分岐部 35cとは互いに同じ径 (外径及び 内径の双方共)を有し、主側分岐部 35bに接続される主冷媒配管 2aと、副側分岐部 35cに接続される副冷媒配管 2bとは互いに同じ内径を有する配管力 なっている。 そして、主側分岐部 35b及び副側分岐部 35cは、副側分岐部 35cが主側分岐部 35 bの下側に位置するように略鉛直面に沿って上下方向に並んだ状態で配置されてお り、副側分岐部 35c及びそれに接続される副冷媒配管 2bは、主側分岐部 35b及び それに接続される主冷媒配管 2aよりも所定高さ hだけ低い高さ位置に配置されてい る。よって、上記副冷媒回路 39全体の高さ位置が主冷媒回路 38の全体の高さ位置 よりも低く設定されている。 [0110] The main-side branch portion 35b and the sub-side branch portion 35c of the branch pipe 35 have the same diameter (both the outer diameter and the inner diameter) and are connected to the main-side branch portion 35b. And the sub-refrigerant pipe 2b connected to the sub-branch 35c have the same internal diameter as each other. The main branch part 35b and the sub-branch part 35c are arranged in the vertical direction along a substantially vertical plane such that the sub-branch part 35c is located below the main branch part 35b. The sub-branch 35c and the sub-refrigerant pipe 2b connected to the sub-branch 35c are It is arranged at a height lower than the main refrigerant pipe 2a connected thereto by a predetermined height h. Therefore, the overall height position of the sub refrigerant circuit 39 is set lower than the overall height position of the main refrigerant circuit 38.
[0111] さらに、図 3において、 44は上記第 6キヤビラリチューブ 29とクライオコイル 32との間 の主冷媒配管 2aに接続された電磁開閉弁、 45は該電磁開閉弁 44及びクライオコィ ル 32の間の主冷媒配管 2aと、油分離器 5及び水冷コンデンサ 8の間の冷媒配管 2と の間に接続されたデフロスト回路、 46は該デフロスト回路 45の途中に接続された電 磁開閉弁である。そして、真空成膜装置 Aの真空チャンバ 100を真空状態にして基 板に成膜する通常運転時には、電磁開閉弁 46の閉弁によりデフロスト回路 45を閉じ かつ電磁開閉弁 44の開弁により主冷媒配管 2aを開くことで、クライオコイル 32で低 沸点冷媒を蒸発させ、真空チャンバ 100内の水分を冷却して凍結捕捉させる。一方 、開閉扉 101を開いて真空チャンバ 100を大気に開放し基板に成膜を行わない状態 のデフロスト運転時には、電磁開閉弁 46の開弁によりデフロスト回路 45を開きかつ 電磁開閉弁 44の閉弁により主冷媒配管 2aを閉じることで、圧縮機 4から吐出された 高温のガス冷媒 (ホットガス)をそのままデフロスト回路 45を経てクライオコイル 32に 供給して、クライオコイル 32での水分の凍結捕捉を戻すようにして 、る。  Further, in FIG. 3, reference numeral 44 denotes an electromagnetic on-off valve connected to the main refrigerant pipe 2 a between the sixth capillary tube 29 and the cryo-coil 32, and reference numeral 45 denotes the electromagnetic on-off valve 44 and the cryo-coil 32 A defrost circuit connected between the main refrigerant pipe 2a between the oil separator 5 and the refrigerant pipe 2 between the oil separator 5 and the water-cooled condenser 8; 46, an electromagnetic switching valve connected in the middle of the defrost circuit 45; is there. During a normal operation in which the vacuum chamber 100 of the vacuum film forming apparatus A is evacuated to form a film on the substrate, the defrost circuit 45 is closed by closing the solenoid on-off valve 46 and the main refrigerant is opened by opening the solenoid on-off valve 44. By opening the pipe 2a, the low-boiling-point refrigerant is evaporated by the cryocoil 32, and the water in the vacuum chamber 100 is cooled to be frozen and captured. On the other hand, during a defrost operation in which the opening / closing door 101 is opened to open the vacuum chamber 100 to the atmosphere and no film is formed on the substrate, the electromagnetic opening / closing valve 46 is opened to open the defrost circuit 45 and the electromagnetic opening / closing valve 44 is closed. By closing the main refrigerant pipe 2a, the high-temperature gas refrigerant (hot gas) discharged from the compressor 4 is directly supplied to the cryocoil 32 via the defrost circuit 45, and the cryocoil 32 freezes and captures moisture. Put it back.
[0112] また、 60はバッファタンクで、このバッファタンク 60と、第 1気液分離器 12のガス冷 媒吐出部及び第 1熱交換器 18の 1次側の間の冷媒配管 2とが冷媒流入管 61によつ て接続されている。また、ノ ッファタンク 60と、圧縮機 4の吸込側の冷媒配管 2とは、 バッファタンク 60の内部のガス冷媒を圧縮機 4の吸込側に戻す冷媒戻し管 62によつ て接続されており、ノ ッファタンク 60において、冷凍装置 Rの運転開始時に凝縮が不 十分なガス冷媒により圧縮機 4の吐出圧の異常上昇を防ぐようにしている。  [0112] Reference numeral 60 denotes a buffer tank, and the buffer tank 60 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18 are connected to the refrigerant tank. It is connected by the inflow pipe 61. The buffer tank 60 and the refrigerant pipe 2 on the suction side of the compressor 4 are connected by a refrigerant return pipe 62 for returning the gas refrigerant inside the buffer tank 60 to the suction side of the compressor 4. In the tanker tank 60, an abnormal increase in the discharge pressure of the compressor 4 is prevented by a gas refrigerant that is insufficiently condensed at the start of the operation of the refrigerating device R.
[0113] また、上記デフロスト回路 45の電磁開閉弁 46近傍と、第 6キヤビラリチューブ 29及 びクライオコイル 32の間の電磁開閉弁 44近傍と、クライオコイル 32の出口側及び第 4熱交換器 21の 2次側の間の冷媒配管 2とに、それぞれ第 1一第 3の手動開閉弁 71 一 73が配設されている。これら第 1一第 3の手動開閉弁 71— 73は、クライオコイル 3 2の交換やメンテナンス時に各々閉弁することで配管内に残存する混合冷媒が外部 に漏れ出さな 、ようにするものである。 [0114] さらに、クライオコイル 32の出口側と第 4熱交 の 2次側との間の冷媒配管 2 には、冷媒回路 1内に混合冷媒を供給するための冷媒供給管路 70が接続されてい る。また、この冷媒供給管路 70は、冷媒回路 1内力も混合冷媒を排出するための排 出管路を兼ねている。そして、冷媒供給管路 70には、冷媒の供給又は排出時に開く 供給開閉弁 75が設けられて 、る。 [0113] Further, the vicinity of the electromagnetic on-off valve 46 of the defrost circuit 45, the vicinity of the electromagnetic on-off valve 44 between the sixth capillary tube 29 and the cryo-coil 32, the outlet side of the cryo-coil 32 and the fourth heat exchange First and third manual on-off valves 71 and 173 are provided in the refrigerant pipe 2 between the secondary side of the vessel 21 and the refrigerant pipe 2, respectively. The first and third manual on-off valves 71-73 are used to close the valves during replacement or maintenance of the cryocoils 32 so that the mixed refrigerant remaining in the piping does not leak out. . [0114] Further, a refrigerant supply pipe 70 for supplying a mixed refrigerant into the refrigerant circuit 1 is connected to the refrigerant pipe 2 between the outlet side of the cryocoil 32 and the secondary side of the fourth heat exchange. ing. In addition, the refrigerant supply line 70 also functions as a discharge line for discharging the mixed refrigerant with the internal force of the refrigerant circuit 1. The refrigerant supply line 70 is provided with a supply opening / closing valve 75 that opens when the refrigerant is supplied or discharged.
[0115] 尚、図 4中、 42は分岐管 35の副側分岐部 35cと第 5キヤビラリチューブ 28との間に 直列に接続されたストレーナ(図 3には示していない)である。  In FIG. 4, reference numeral 42 denotes a strainer (not shown in FIG. 3) connected in series between the sub-branch portion 35c of the branch pipe 35 and the fifth capillary tube 28.
[0116] したがって、この実施形態においては、真空成膜装置 Aの真空チャンバ 100内で 基板を成膜するときには、超低温冷凍装置 Rが運転されて、真空チャンバ 100内部( 又は連通路 102内部)の水分カ 100°C以下の超低温レベルまで冷却されて凍結に より捕捉され、真空チャンバ 100内が真空状態にされる。  Therefore, in this embodiment, when depositing a substrate in the vacuum chamber 100 of the vacuum deposition apparatus A, the ultra-low temperature refrigeration apparatus R is operated, and the inside of the vacuum chamber 100 (or the inside of the communication passage 102) is operated. The moisture is cooled down to an ultra-low temperature level of 100 ° C. or less, captured by freezing, and the inside of the vacuum chamber 100 is evacuated.
[0117] 具体的に、この超低温冷凍装置 Rの運転時、電磁開閉弁 46の閉弁によりデフロスト 回路 45が閉じられかつ電磁開閉弁 44の開弁により主冷媒配管 2aが開かれる。この ことで、圧縮機 4から吐出された混合冷媒は水冷コンデンサ 8により冷却された後に 補助コンデンサ 10で圧縮機 4へ戻る 2次側の冷媒により冷却され、混合冷媒のうち沸 点温度が最高温度のものを中心にガス冷媒が凝縮されて液化する。この冷媒は第 1 気液分離器 12においてガス冷媒と液冷媒とに分離され、液冷媒は第 1キヤビラリチュ ーブ 24で減圧された後に第 1熱交 18の 1次側で蒸発し、この蒸発熱により第 1 気液分離器 12からのガス冷媒が冷却され、その中で沸点温度が最も高い温度のガ ス冷媒が中心となって凝縮されて液ィ匕する。以後、同様にして、第 2—第 4熱交 19一 21でそれぞれ混合冷媒のうちの沸点温度が高い温度力も順にガス冷媒が凝縮 されて液化する。  [0117] Specifically, during operation of the ultra-low temperature refrigeration system R, the defrost circuit 45 is closed by closing the solenoid on-off valve 46, and the main refrigerant pipe 2a is opened by opening the solenoid on-off valve 44. As a result, the mixed refrigerant discharged from the compressor 4 is cooled by the water-cooled condenser 8 and then returned to the compressor 4 by the auxiliary condenser 10 and is cooled by the refrigerant on the secondary side. The gas refrigerant is condensed and liquefied mainly on the material. This refrigerant is separated into a gas refrigerant and a liquid refrigerant in the first gas-liquid separator 12, and the liquid refrigerant is decompressed by the first cavitation tube 24 and then evaporates on the primary side of the first heat exchange 18. The gas refrigerant from the first gas-liquid separator 12 is cooled by the heat, and the gas refrigerant having the highest boiling point is condensed around the refrigerant and liquefied. Thereafter, similarly, in the second to fourth heat exchanges 19 to 21, the gas refrigerants are sequentially condensed and liquefied also with respect to the temperature forces having the higher boiling points of the mixed refrigerants.
[0118] 上記第 4熱交 の 1次側から吐出された冷媒は気液混合状態となり、この気 液混合の冷媒は、過冷却器 31の 1次側 31aを通過した後に分岐管 35で主冷媒回路 38 (主冷媒配管 2a)と副冷媒回路 39 (副冷媒配管 2b)との 2経路に分離される。そし て、副冷媒回路 39に流れた冷媒は第 5キヤビラリチューブ 28で減圧された後に過冷 却器 31の 2次側 31bに供給されて蒸発し、この蒸発熱により上記第 4熱交 か ら過冷却器 31の 1次側 3 laに供給された気液混合状態の冷媒がさらに冷却されて液 冷媒の量が増加する。 [0118] The refrigerant discharged from the primary side of the fourth heat exchange enters a gas-liquid mixed state, and after passing through the primary side 31a of the supercooler 31, the refrigerant flows into the branch pipe 35. The refrigerant circuit 38 (main refrigerant pipe 2a) and the sub refrigerant circuit 39 (sub refrigerant pipe 2b) are separated into two paths. The refrigerant flowing into the sub-refrigerant circuit 39 is decompressed by the fifth capillary tube 28, and then supplied to the secondary side 31b of the subcooler 31 to evaporate. The gas-liquid mixed state refrigerant supplied to the primary side 3 la of the supercooler 31 from the The amount of refrigerant increases.
[0119] また、過冷却器 31の 1次側 31aから吐出された後に主冷媒配管 2aに流れる、気液 混合状態の冷媒の残部は第 6キヤビラリチューブ 29で減圧され、その減圧後にクライ ォコイル 32において蒸発して真空チャンバ 100内の水分に例えば- 100°C以下の寒 冷を付与する。この 100°C以下の温度の寒冷により真空チャンバ 100内の水分が 凍結により捕捉されて真空チャンバ 100内の真空レベルが上昇する。  [0119] Further, the remainder of the refrigerant in a gas-liquid mixed state, which flows into the main refrigerant pipe 2a after being discharged from the primary side 31a of the subcooler 31, is decompressed by the sixth capillary tube 29, and after the decompression, the client is cooled. The water in the vacuum chamber 100 evaporates in the coil 32 and is cooled to, for example, −100 ° C. or less. Due to the cooling at a temperature of 100 ° C. or less, moisture in the vacuum chamber 100 is captured by freezing, and the vacuum level in the vacuum chamber 100 increases.
[0120] そして、上記第 4熱交 から過冷却器 31の 1次側 31aを経由した気液混合状 態の冷媒が分岐管 35で主冷媒回路 38 (主冷媒配管 2a)及び副冷媒回路 39 (副冷 媒配管 2b)に分岐されて流れるとき、上記副冷媒回路 39の高さ位置が主冷媒回路 3 8の高さ位置よりも低いことから、気液混合状態の冷媒のうちの液冷媒が、相対的に 高さの低い副冷媒回路 39に多く流入するようになり、その副冷媒回路 39への液冷媒 の流量が主冷媒回路 38への流量よりも増加する。従って、過冷却器 31の 1次側 31a のガス冷媒に対する冷却を十分に行うことができ、この過冷却器 31で液ィ匕される液 冷媒の流量が増加してクライオコイル 32の冷却効率を向上させることができる。しか も、成膜状態で真空チャンバ 100内の熱負荷に変動があっても、その真空チャンバ 1 00内を安定して冷却することができ、真空チャンバ 100内の真空状態を安定に保つ て、基板の成膜品質の向上を図ることができる。  [0120] The refrigerant in a gas-liquid mixed state from the fourth heat exchange via the primary side 31a of the subcooler 31 is branched by the branch pipe 35 into the main refrigerant circuit 38 (main refrigerant pipe 2a) and the sub-refrigerant circuit 39. When branched and flows into the (sub-coolant pipe 2b), since the height position of the sub-refrigerant circuit 39 is lower than the height position of the main refrigerant circuit 38, the liquid refrigerant of the refrigerant in the gas-liquid mixed state is However, a large amount of the refrigerant flows into the sub-refrigerant circuit 39 having a relatively low height, and the flow rate of the liquid refrigerant to the sub-refrigerant circuit 39 becomes larger than the flow rate to the main refrigerant circuit 38. Therefore, it is possible to sufficiently cool the gas refrigerant on the primary side 31a of the subcooler 31, and the flow rate of the liquid refrigerant circulated by the supercooler 31 increases, thereby reducing the cooling efficiency of the cryocoil 32. Can be improved. Even if the thermal load in the vacuum chamber 100 fluctuates in the film forming state, the inside of the vacuum chamber 100 can be cooled stably, and the vacuum state in the vacuum chamber 100 can be kept stable. The quality of the film formed on the substrate can be improved.
[0121] 一方、成膜装置 Aの真空チャンバ 100を大気に開放して基板の成膜を行わない状 態のデフロスト運転時には、電磁開閉弁 46の開弁によりデフロスト回路 45が開かれ かつ電磁開閉弁 44の閉弁により主冷媒配管 2aが閉じる。このことで、圧縮機 4から吐 出された高温のガス冷媒がデフロスト回路 45を経てクライオコイル 32に供給されて、 クライオコイル 32での水分の凍結が解除される。そして、このデフロスト運転の後に、 再度真空チャンバ 100内を真空状態にするときには、上記と同様にして、電磁開閉 弁 46の閉弁によりデフロスト回路 45が閉じられかつ電磁開閉弁 44の開弁により主冷 媒配管 2aが開かれ、過冷却器 31の 1次側 31aから出た低沸点冷媒が分岐管 35で 主冷媒回路 38及び副冷媒回路 39に分かれる。この場合にも、上記した主冷媒回路 38と副冷媒回路 39との高さの差 hにより、過冷却器 31の 2次側 31bに流入する液冷 媒の流量力 Sクライオコイル 32への流量よりも多くなるので、真空チャンバ 100内を常 温から超低温レベルに迅速に冷却して、クールダウン時間を短縮することができ、延 いては真空チャンバ 100内の排気時間や成膜処理の工程時間の短縮ィ匕及び高効 率ィ匕を図ることができる。 [0121] On the other hand, during the defrost operation in which the vacuum chamber 100 of the film forming apparatus A is opened to the atmosphere and the film is not formed on the substrate, the defrost circuit 45 is opened by opening the electromagnetic on-off valve 46 and the electromagnetic opening and closing is performed. The main refrigerant pipe 2a is closed by closing the valve 44. As a result, the high-temperature gas refrigerant discharged from the compressor 4 is supplied to the cryocoil 32 via the defrost circuit 45, and the freezing of moisture in the cryocoil 32 is released. When the inside of the vacuum chamber 100 is again evacuated after the defrost operation, the defrost circuit 45 is closed by closing the electromagnetic on-off valve 46 and the main operation is performed by opening the electromagnetic on-off valve 44 in the same manner as described above. The refrigerant pipe 2a is opened, and the low-boiling refrigerant discharged from the primary side 31a of the subcooler 31 is divided into the main refrigerant circuit 38 and the sub-refrigerant circuit 39 by the branch pipe 35. Also in this case, the flow rate force of the liquid coolant flowing into the secondary side 31b of the subcooler 31 due to the height difference h between the main refrigerant circuit 38 and the sub-refrigerant circuit 39 described above The vacuum chamber 100. Cooling time can be rapidly reduced from a temperature to an ultra-low temperature level to reduce the cool down time, thereby shortening the evacuation time in the vacuum chamber 100 and the process time of the film forming process, and achieving high efficiency. be able to.
[0122] さらに、このようにクライオコイル 32の冷却効率を向上させるに当たり、主冷媒回路 38及び副冷媒回路 39に高さの差異を付けるだけでよいので、簡単な構造で上記効 果が得られる。  [0122] Further, in order to improve the cooling efficiency of the cryocoil 32, it is only necessary to provide a difference in height between the main refrigerant circuit 38 and the sub-refrigerant circuit 39, so that the above-described effects can be obtained with a simple structure. .
[0123] 尚、この実施形態では、主冷媒配管 2a及び副冷媒配管 2bをいずれも水平面に沿 つて延びるようにすることで、副冷媒回路 39の全体の高さ位置を主冷媒回路 38の全 体よりも低くしているが、副冷媒回路 39及び主冷媒回路 38の全体に亘り高さの差を 設ける必要はない。少なくとも主冷媒回路 38と副冷媒回路 39との分岐部において、 副冷媒回路 39の最高高さ位置が主冷媒回路 38の最低高さ位置よりも低くなつてい ればよい。  [0123] In the present embodiment, by making both the main refrigerant pipe 2a and the sub-refrigerant pipe 2b extend along the horizontal plane, the entire height position of the sub-refrigerant circuit 39 is adjusted to the entire height of the main refrigerant circuit 38. Although it is lower than the body, it is not necessary to provide a height difference throughout the sub refrigerant circuit 39 and the main refrigerant circuit 38. At least at the branch between the main refrigerant circuit 38 and the sub-refrigerant circuit 39, the maximum height position of the sub-refrigerant circuit 39 should be lower than the minimum height position of the main refrigerant circuit 38.
[0124] (実施形態 2)  (Embodiment 2)
図 6は本発明の実施形態 2を示す(尚、以下の各実施形態では、図 1一図 5と同じ 部分については同じ符号を付してその詳細な説明は省略する)。上記実施形態 1で は副冷媒回路 39の高さ位置を主冷媒回路 38よりも低くすることで、過冷却器 31の 2 次側 31bに流れる液冷媒の流量をクライオコイル 32への液冷媒の流量よりも多くして いる。これに対し、この実施形態は、副冷媒回路 39及び主冷媒回路 38の高さ位置を 互いに同じにした上で、副冷媒回路 39の断面積を主冷媒回路 38よりも大きくしたも のである。  FIG. 6 shows a second embodiment of the present invention (in the following embodiments, the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted). In the first embodiment, by setting the height position of the sub-refrigerant circuit 39 lower than that of the main refrigerant circuit 38, the flow rate of the liquid refrigerant flowing to the secondary side 31b of the subcooler 31 is reduced. It is larger than the flow rate. On the other hand, in this embodiment, the height position of the sub-refrigerant circuit 39 and that of the main refrigerant circuit 38 are the same, and the cross-sectional area of the sub-refrigerant circuit 39 is larger than that of the main refrigerant circuit 38.
[0125] すなわち、この実施形態では、実施形態 1とは異なり、分岐管 35の集合部 35aと、 主側分岐部 35b及びそれに接続された主冷媒配管 2aと、分岐管 35の副側分岐部 3 5c及びそれに接続された副冷媒配管 2bとは同じ水平面内に位置して、互いに同じ 高さ位置に配置されている。  That is, in the present embodiment, unlike the first embodiment, the collecting portion 35a of the branch pipe 35, the main branch portion 35b and the main refrigerant pipe 2a connected thereto, and the sub-side branch portion of the branch pipe 35 35c and the sub-refrigerant pipe 2b connected to it are located in the same horizontal plane and at the same height.
[0126] そして、分岐管 35の主側分岐部 35b及び副側分岐部 35cは、実施形態 1と同様に 互いに同じ径を有するが、その主側分岐部 35bに接続される主冷媒配管 2aは、副側 分岐部 35cに接続される副冷媒配管 2bよりも小径のものが用いられている。このこと で、副側分岐部 35cの内部及び副冷媒配管 2bの内部に形成される副冷媒回路 39 の断面積が、主側分岐部 35bの内部及び主冷媒配管 2aの内部に形成される主冷媒 回路 38の断面積よりも大きくなつて 、る。 [0126] The main branch 35b and the sub-branch 35c of the branch pipe 35 have the same diameter as each other as in the first embodiment, but the main refrigerant pipe 2a connected to the main branch 35b is A smaller diameter refrigerant pipe than the sub refrigerant pipe 2b connected to the sub branch 35c is used. Thus, the sub-refrigerant circuit 39 formed inside the sub-side branch portion 35c and the sub-refrigerant pipe 2b is formed. Is larger than the cross-sectional area of the main refrigerant circuit 38 formed inside the main-side branch portion 35b and inside the main refrigerant pipe 2a.
[0127] その他の構成は実施形態 1と同じである。尚、図 6にはストレーナ 42及び第 5キヤピ ラリチューブ 28は示して 、な 、が、実施形態 1と同様の構造となつて 、る(図 4参照) The other configuration is the same as that of the first embodiment. FIG. 6 shows the strainer 42 and the fifth capillary tube 28. However, the structure is the same as that of the first embodiment (see FIG. 4).
[0128] この実施形態の場合、主冷媒配管 2aとして、管径が副冷媒配管 2bよりも細 、もの が用いられて、副冷媒回路 39の断面積が主冷媒回路 38の断面積よりも大きくなつて いる。このことで、過冷却器 31の 1次側 31aから吐出された冷媒が主冷媒回路 38及 び副冷媒回路 39に分かれる際、全体として、気液混合状態の冷媒の副冷媒回路 39 に流入する流量が主冷媒回路 38に流入する流量よりも多くなり、それに比例して副 冷媒回路 39に流入する液冷媒の流量も主冷媒回路 38への流量に比べ増加する。 このため、過冷却器 31の 1次側 31aのガス冷媒に対する十分な冷却が保たれ、この 過冷却器 31で液ィ匕される液冷媒の流量が増加して主冷却器の冷却効率が向上し、 よって上記実施形態 1と同様の作用効果が得られる。 In this embodiment, the main refrigerant pipe 2a has a pipe diameter smaller than that of the sub-refrigerant pipe 2b, and the cross-sectional area of the sub-refrigerant circuit 39 is larger than that of the main refrigerant circuit 38. It's ok. As a result, when the refrigerant discharged from the primary side 31a of the subcooler 31 is divided into the main refrigerant circuit 38 and the sub-refrigerant circuit 39, the refrigerant as a whole flows into the sub-refrigerant circuit 39 of the refrigerant in a gas-liquid mixed state. The flow rate becomes larger than the flow rate flowing into the main refrigerant circuit 38, and the flow rate of the liquid refrigerant flowing into the sub-refrigerant circuit 39 increases in proportion to the flow rate. For this reason, sufficient cooling of the gas refrigerant on the primary side 31a of the subcooler 31 is maintained, and the flow rate of the liquid refrigerant circulated by the subcooler 31 increases, thereby improving the cooling efficiency of the main cooler. Therefore, the same operation and effect as those of the first embodiment can be obtained.
[0129] 尚、この実施形態 2では、副冷媒配管 2bは実施形態 1と同様の通常の管径のもの を用い、それよりも小径の配管を主冷媒配管 2aとして用いることで、副冷媒配管 2bを 主冷媒配管 2aよりも大径としているが、逆に、主冷媒配管 2aは通常の管径のものを 用い、それよりも大径の配管を副冷媒配管 2bとして用いることで、同様の目的を達成 してちよい。  [0129] In the second embodiment, the sub-refrigerant pipe 2b has the same ordinary pipe diameter as that of the first embodiment, and a smaller-diameter pipe is used as the main refrigerant pipe 2a. 2b is larger in diameter than the main refrigerant pipe 2a, but conversely, the main refrigerant pipe 2a is of a normal pipe diameter, and the larger diameter pipe is used as the sub-refrigerant pipe 2b. You may achieve your goals.
[0130] また、この実施形態 2においても、副冷媒回路 39全体の断面積を主冷媒回路 38全 体よりも大きくしているが、副冷媒回路 39及び主冷媒回路 38の全体に亘り断面積の 差を設ける必要はなぐ副冷媒回路 39の最小断面積が主冷媒回路 38の最大断面 積よりも大であればよい。  [0130] Also in the second embodiment, the cross-sectional area of the entire sub-refrigerant circuit 39 is larger than the entirety of the main refrigerant circuit 38, but the cross-sectional area of the entire sub-refrigerant circuit 39 and the main refrigerant circuit 38 is large. It is only necessary that the minimum cross-sectional area of the sub-refrigerant circuit 39 is larger than the maximum cross-sectional area of the main refrigerant circuit 38.
[0131] (実施形態 3)  (Embodiment 3)
図 7及び図 8は実施形態 3を示し、上記実施形態 1及び実施形態 2の技術事項を組 み合わせたものである。すなわち、この実施形態では、上記実施形態 1と同様に、分 岐管 35の主側分岐部 35b及び副側分岐部 35cは、副側分岐部 35cが主側分岐部 3 5bの下側に位置するように略鉛直面に沿って上下方向に並んだ状態で配置され、 副側分岐部 35c及びそれに接続される副冷媒配管 2bは、主側分岐部 35b及びそれ に接続される主冷媒配管 2aよりも低い高さ位置に配置されている。それと同時に、実 施形態 2と同様に、分岐管 35の主側分岐部 35bに接続される主冷媒配管 2aは、副 側分岐部 35cに接続される副冷媒配管 2bよりも小径のものが用いられていて、副冷 媒回路 39の断面積が、主側分岐部 35bの内部及び主冷媒配管 2aの内部に形成さ れる主冷媒回路 38の断面積よりも大きくなつている。その他は実施形態 1又は 2と同 様の構成である。 FIGS. 7 and 8 show the third embodiment, which is a combination of the technical items of the first and second embodiments. That is, in this embodiment, as in the first embodiment, the main branch portion 35b and the sub branch portion 35c of the branch pipe 35 are positioned such that the sub branch portion 35c is located below the main branch portion 35b. Are arranged in a state of being vertically aligned along a substantially vertical plane, The sub-branch 35c and the sub-refrigerant pipe 2b connected to it are arranged at a lower position than the main-branch 35b and the main refrigerant pipe 2a connected to it. At the same time, as in the second embodiment, the main refrigerant pipe 2a connected to the main branch part 35b of the branch pipe 35 has a smaller diameter than the sub refrigerant pipe 2b connected to the sub branch part 35c. The cross-sectional area of the sub-refrigerant circuit 39 is larger than the cross-sectional area of the main refrigerant circuit 38 formed inside the main branch portion 35b and inside the main refrigerant pipe 2a. Other configurations are the same as those of the first or second embodiment.
[0132] したがって、この実施形態においては、実施形態 1及び実施形態 2の作用効果が 相乗的に奏され、クライオコイル 32の冷却効率をさらに一層向上させることができる。  Therefore, in this embodiment, the operation and effect of the first and second embodiments are synergistically exhibited, and the cooling efficiency of the cryocoil 32 can be further improved.
[0133] 尚、この場合も、実施形態 1と同様に、少なくとも主冷媒回路 38と副冷媒回路 39と の分岐部において、副冷媒回路 39の最高高さ位置が主冷媒回路 38の最低高さ位 置よりも低くなつて 、ればよ 、。 [0133] Also in this case, as in the first embodiment, at least at the branch portion between the main refrigerant circuit 38 and the sub-refrigerant circuit 39, the highest position of the sub-refrigerant circuit 39 is the lowest height of the main refrigerant circuit 38. It should be lower than the position.
[0134] 尚、上記実施形態 1一 3は、複数種類の冷媒を混合してなる非共沸混合冷媒を用[0134] In Embodiments 13 to 13, a non-azeotropic mixed refrigerant obtained by mixing a plurality of types of refrigerants is used.
Vヽて 、る冷凍システムに適用したものである力 混合冷媒を用いな 、冷凍システムに 対しても本発明は適用することができ、要は主冷却器の他に過冷却器を有するもの であればよい。 The present invention can be applied to a refrigeration system that does not use a power-mixed refrigerant that is applied to a refrigeration system, and has a subcooler in addition to the main cooler. I just need.
[0135] (実施形態 4) (Embodiment 4)
図 9は、本発明の実施形態 4に係る超低温冷凍装置 Rの全体構成を示す。尚、以 下の実施形態 4一 13では、上記実施形態 1一 3で説明した分岐管 35の構造は必須 要件ではない。  FIG. 9 shows an overall configuration of an ultra-low temperature refrigeration apparatus R according to Embodiment 4 of the present invention. In the following embodiments 413, the structure of the branch pipe 35 described in the embodiment 13 is not an essential requirement.
[0136] この実施形態 4では、デフロスト回路 45の回路構成に特徴がある。すなわち、図 9 に示すように、デフロスト回路 45の上流端と電磁開閉弁 46との間には、圧縮機用潤 滑油等の冷凍機油をガス冷媒力 分離する第 2の油分離器 50 (圧縮機 4の吐出部に 接続された油分離器 5を第 1の油分離器とする)が配設されている。この第 2の油分離 器 50で分離された冷凍機油は、上記第 1の油分離器 5と同様に油戻し管 6を経て圧 縮機 4の吸込側に戻される。ここで、第 2の油分離器 50は、温度が高くて粘性が低い 状態の冷凍機油を分離してより確実に冷凍機油の除去を行うことができるように、油 分離器 50からデフロスト回路 45上流端までの距離がデフロスト回路 45下流端までの 距離よりも短くなる位置 (デフロスト回路 45の上流側半部)に配設されている。その他 の構成は実施形態 1と同様である。 In the fourth embodiment, the circuit configuration of the defrost circuit 45 is characterized. That is, as shown in FIG. 9, between the upstream end of the defrost circuit 45 and the solenoid on-off valve 46, a second oil separator 50 (for separating refrigerant oil such as lubricating oil for a compressor into gas refrigerant power) is provided. An oil separator 5 connected to the discharge section of the compressor 4 is referred to as a first oil separator). The refrigerating machine oil separated by the second oil separator 50 is returned to the suction side of the compressor 4 via the oil return pipe 6 similarly to the first oil separator 5 described above. Here, the second oil separator 50 is provided with a defrost circuit 45 so that the refrigerating machine oil having a high temperature and a low viscosity can be separated and the refrigerating machine oil can be more reliably removed. When the distance to the upstream end is It is disposed at a position shorter than the distance (the upstream half of the defrost circuit 45). Other configurations are the same as those of the first embodiment.
[0137] したがって、この実施形態においては、デフロスト回路 45に、混合冷媒から冷凍機 油を除去する第 2の油分離器 50が配設されて 、るから、成膜装置 Aの真空チャンバ 100で基板の成膜を行わない状態のデフロスト運転時に、電磁開閉弁 44が閉じかつ 電磁開閉弁 46が開いて、圧縮機 4から吐出された混合冷媒がデフロスト回路 45によ りクライオコイル 32に供給されたとき、その混合冷媒中の冷凍機油を、第 1の油分離 器 5で除去しきれなくても、それをさらに第 2の油分離器 50で除去することができる。 このことで、冷凍機油がデフロスト回路 45からクライオコイル 32に供給されるのを抑 制することができる。特にデフロスト運転の開始時に、未だ超低温レベルにあるクライ ォコイル 32内で冷凍機油が冷却されて凝固するのを抑制して、混合冷媒の良好な 循環を確保することができる。延いては、真空チャンバ 100内の排気時間や成膜処 理の工程時間の短縮ィ匕及び高効率ィ匕を図ることができる。  Therefore, in this embodiment, since the second oil separator 50 for removing the refrigerating machine oil from the mixed refrigerant is provided in the defrost circuit 45, the vacuum chamber 100 of the film forming apparatus A is provided with the second oil separator 50. During the defrost operation in a state where the substrate is not formed, the solenoid on-off valve 44 is closed and the solenoid on-off valve 46 is opened, and the mixed refrigerant discharged from the compressor 4 is supplied to the cryocoil 32 by the defrost circuit 45. Then, even if the refrigerating machine oil in the mixed refrigerant cannot be completely removed by the first oil separator 5, it can be further removed by the second oil separator 50. As a result, the supply of the refrigerating machine oil from the defrost circuit 45 to the cryocoil 32 can be suppressed. In particular, at the start of the defrost operation, the cooling of the refrigerating machine oil in the cryocoil 32, which is still at an ultra-low temperature level, is prevented from being solidified, so that good circulation of the mixed refrigerant can be ensured. As a result, the evacuation time in the vacuum chamber 100 and the process time of the film forming process can be reduced and the efficiency can be improved.
[0138] また、上記第 2の油分離器 50は、デフロスト回路 45の上流端までの距離がデフロス ト回路 45の下流端までの距離よりも短くなる位置に配設されている。このことで、温度 が高くて粘性が低い状態の冷凍機油を分離する上で有利となり、より確実に冷凍機 油の除去を行うことができる。  [0138] The second oil separator 50 is provided at a position where the distance to the upstream end of the defrost circuit 45 is shorter than the distance to the downstream end of the defrost circuit 45. This is advantageous in separating refrigerating machine oil having a high temperature and a low viscosity, and can more reliably remove the refrigerating machine oil.
[0139] そして、このようなデフロスト運転の後に、再度真空チャンバ 100内を真空状態にす るときには、電磁開閉弁 44が開かれて電磁開閉弁 46は閉弁され、第 2の油分離器 5 0で分離された冷凍機油が圧縮機 4の吸込側に回収される。そのとき、デフロスト回路 45の上流端と電磁開閉弁 46との間に上記第 2の油分離器 50が配置されているので 、圧縮機 4の吸込側と第 2の油分離器 50との間に前者の方が後者よりも高い圧力差 が発生するのを抑制することができる。このことで、圧縮機 4の吸込側力も第 2の油分 離器 50に向カゝつて冷凍機油が逆流するのを防止して、冷凍機油の圧縮機 4へのス ムーズな還流を図ることができる。  When the vacuum chamber 100 is again evacuated after such a defrost operation, the solenoid on-off valve 44 is opened, the solenoid on-off valve 46 is closed, and the second oil separator 5 is closed. The refrigerating machine oil separated at 0 is collected on the suction side of the compressor 4. At this time, since the second oil separator 50 is disposed between the upstream end of the defrost circuit 45 and the electromagnetic on-off valve 46, the second oil separator 50 is disposed between the suction side of the compressor 4 and the second oil separator 50. In addition, the former can suppress the occurrence of a higher pressure difference than the latter. As a result, the suction side force of the compressor 4 is also directed to the second oil separator 50 to prevent the refrigerating machine oil from flowing backward, and to achieve a smooth recirculation of the refrigerating machine oil to the compressor 4. it can.
[0140] (実施形態 5)  (Embodiment 5)
図 10は、本発明の実施形態 5に係る超低温冷凍装置 Rの全体構成を示し、この実 施形態では、ノ ッファタンクの回路構成に特徴がある。すなわち、図 10において、圧 縮機 4の吐出部にはガス冷媒の吐出圧力を検出する圧力センサ 59が接続されてい る。 63は第 1のバッファタンク、 64は第 1のバッファタンク 63の下側に位置する第 2の ノ ッファタンクであり、これら第 1及び第 2のバッファタンク 63, 64により、超低温冷凍 装置 Rの運転開始時に凝縮が不十分な高圧のガス冷媒を一時的に逃がして、圧縮 機 4の吐出圧力の異常上昇を抑制する。 FIG. 10 shows the overall configuration of an ultra-low-temperature refrigeration apparatus R according to Embodiment 5 of the present invention. This embodiment is characterized by the circuit configuration of the buffer tank. That is, in FIG. A pressure sensor 59 for detecting the discharge pressure of the gas refrigerant is connected to the discharge section of the compressor 4. Reference numeral 63 denotes a first buffer tank, and 64 denotes a second buffer tank located below the first buffer tank 63. The operation of the ultra-low-temperature refrigeration system R is performed by the first and second buffer tanks 63 and 64. At the start, high-pressure gas refrigerant that is insufficiently condensed is temporarily released to suppress an abnormal increase in the discharge pressure of the compressor 4.
[0141] 上記第 1及び第 2のバッファタンク 63, 64は、ガス冷媒を両タンク 63, 64間で流通 させるための連通路 65 (連通管)によって互いに接続されている。また、第 2のバッフ ァタンク 64と、第 1気液分離器 12のガス冷媒吐出部及び第 1熱交換器 18の 1次側の 間の冷媒配管 2とは冷媒流入管 61によって接続されている。この冷媒流入管 61の途 中には、第 1及び第 2のバッファタンク 63, 64へのガス冷媒の流入を制御する電磁開 閉弁 66が接続されている。また、上記冷媒流入管 61の途中(電磁開閉弁 66と第 2の バッファタンク 64との間の部分)は、第 1及び第 2のバッファタンク 63, 64内のガス冷 媒を圧縮機 4の吸込側の冷媒配管 2に戻す冷媒戻し管 62に接続されている。  [0141] The first and second buffer tanks 63, 64 are connected to each other by a communication path 65 (communication pipe) for allowing the gas refrigerant to flow between the tanks 63, 64. Further, the second buffer tank 64 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18 are connected by a refrigerant inflow pipe 61. . An electromagnetic opening / closing valve 66 for controlling the flow of gas refrigerant into the first and second buffer tanks 63 and 64 is connected in the middle of the refrigerant inflow pipe 61. The gas refrigerant in the first and second buffer tanks 63 and 64 is supplied to the compressor 4 in the middle of the refrigerant inflow pipe 61 (portion between the solenoid on-off valve 66 and the second buffer tank 64). It is connected to a refrigerant return pipe 62 returning to the refrigerant pipe 2 on the suction side.
[0142] また、第 1のバッファタンク 63の下側に可溶栓 67が接続されている。この可溶栓 67 は、火災等の熱により自ら溶融して第 1のバッファタンク 63内を開放してタンク内圧を 低下させるものである。その他の構成は上記実施形態 4と同様である。  [0142] A fusible plug 67 is connected to the lower side of the first buffer tank 63. The fusible plug 67 melts by the heat of a fire or the like and opens the inside of the first buffer tank 63 to lower the tank internal pressure. Other configurations are the same as those of the fourth embodiment.
[0143] したがって、この実施形態にお!、ては、超低温冷凍装置 Rの運転開始時に、凝縮 が不十分なガス冷媒によって圧縮機 4の吐出圧力の異常上昇が発生すると、そのこ とが圧力センサ 59により検出される。この検出に伴い電磁開閉弁 66が開弁され、上 記第 1気液分離器 12で分離されたガス冷媒の一部が冷媒流入管 61を通って第 2の ノ ッファタンク 64に流入する。また、ガス冷媒の流入量が多い場合には、さらに連通 路 65を通って第 1のバッファタンク 63にも流入する。そして、上記吐出圧力の異常上 昇が解消されると、そのことが同じ圧力センサ 59により検出されて、電磁開閉弁 66が 閉弁され、第 1及び第 2のバッファタンク 63, 64から冷媒戻し管 62を通って圧縮機 4 の吸込側の冷媒配管 2にガス冷媒が戻される。  [0143] Therefore, in this embodiment, when the operation of the ultra-low temperature refrigeration system R is started, if an abnormal increase in the discharge pressure of the compressor 4 occurs due to insufficiently condensed gaseous refrigerant, the pressure is raised. Detected by sensor 59. With this detection, the electromagnetic on-off valve 66 is opened, and a part of the gas refrigerant separated by the first gas-liquid separator 12 flows into the second buffer tank 64 through the refrigerant inflow pipe 61. Further, when the inflow amount of the gas refrigerant is large, the gas refrigerant further flows into the first buffer tank 63 through the communication path 65. When the abnormal rise in the discharge pressure is eliminated, the same is detected by the same pressure sensor 59, the electromagnetic on-off valve 66 is closed, and the refrigerant is returned from the first and second buffer tanks 63, 64. The gas refrigerant is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the pipe 62.
[0144] この場合、上述したように冷媒回路 1に第 1及び第 2の 2つのバッファタンク 63, 64 が接続されて 、るから、ノ ッファタンクの容量不足を解消するために大容量のバッフ ァタンクを 1つだけ接続する場合に比べて、ノ ッファタンクの設置スペースを確保し易 くなる。 In this case, since the first and second two buffer tanks 63 and 64 are connected to the refrigerant circuit 1 as described above, a large-capacity buffer tank is used to eliminate the shortage of the capacity of the buffer tank. It is easier to secure the installation space for the buffer tank than when only one is connected. Become.
[0145] さらに、第 1及び第 2のバッファタンク 63, 64が連通路 65によって互いに接続され ているので、両タンク 63, 64間でガス冷媒が流通して各バッファタンク 63, 64内での ガス冷媒の滞留が抑制される。このことで、比重の異なる冷媒成分を完全に循環させ ることができ、冷凍装置 R内の混合冷媒の成分比率の変動による冷却性能の低下を 防止できる。  [0145] Further, since the first and second buffer tanks 63, 64 are connected to each other by the communication passage 65, the gas refrigerant flows between the two tanks 63, 64, and the gas refrigerant in the respective buffer tanks 63, 64 The stagnation of the gas refrigerant is suppressed. This makes it possible to completely circulate the refrigerant components having different specific gravities, thereby preventing a decrease in cooling performance due to a change in the component ratio of the mixed refrigerant in the refrigeration apparatus R.
[0146] 尚、上記冷媒流入管 61だけでなく冷媒戻し管 62にもそれぞれ電磁開閉弁を接続 して、圧縮機 4の吐出圧力の異常上昇に応じて各電磁開閉弁を開閉させることにより 、第 1及び第 2のバッファタンク 63, 64に流入させるガス冷媒の量、又は第 1及び第 2 のバッファタンク 63, 64から冷媒回路 1に戻すガス冷媒の量を制御するようにしても よい。また、ノ ッファタンクの数は 3つ以上にしてもよい。これらは、以下の実施形態 6 , 7についても同様である。  [0146] An electromagnetic on-off valve is connected not only to the refrigerant inflow pipe 61 but also to the refrigerant return pipe 62 to open and close each electromagnetic on-off valve in response to an abnormal rise in the discharge pressure of the compressor 4. The amount of the gas refrigerant flowing into the first and second buffer tanks 63 and 64 or the amount of the gas refrigerant returned from the first and second buffer tanks 63 and 64 to the refrigerant circuit 1 may be controlled. The number of the buffer tanks may be three or more. These also apply to the following embodiments 6 and 7.
[0147] (実施形態 6)  (Embodiment 6)
図 11は、本発明の実施形態 6に係る超低温冷凍装置 Rの冷媒回路を示す。上記 実施形態 5との違いは、第 1及び第 2のバッファタンク 63, 64の回路構成のみである ため、実施形態 5と同じ部分については同じ符号を付し、相違点についてのみ説明 する(実施形態 7も同様とする)。  FIG. 11 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 6 of the present invention. The difference from the fifth embodiment is only the circuit configuration of the first and second buffer tanks 63 and 64. Therefore, the same parts as those in the fifth embodiment are denoted by the same reference numerals, and only the differences will be described. The same applies to mode 7.)
[0148] 第 1及び第 2のバッファタンク 63, 64は、実施形態 5と同様に、ガス冷媒を両タンク 6 3, 64間で流通させるための連通路 65によって互いに接続されている。一方、実施 形態 5とは異なり、第 1のバッファタンク 63と、第 1気液分離器 12のガス冷媒吐出部及 び第 1熱交換器 18の 1次側の間の冷媒配管 2とが冷媒流入管 61によって接続され ている。また、上記連通路 65の途中は、第 1及び第 2のバッファタンク 63, 64内のガ ス冷媒を圧縮機 4の吸込側の冷媒配管 2に戻す冷媒戻し管 62に接続されている。ま た、可溶栓 67は第 2のバッファタンク 64に接続されている。その他の構成は実施形 態 5と同じである。  [0148] The first and second buffer tanks 63 and 64 are connected to each other by a communication path 65 for allowing the gas refrigerant to flow between the tanks 63 and 64, as in the fifth embodiment. On the other hand, unlike Embodiment 5, the first buffer tank 63 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18 are connected to the refrigerant. It is connected by the inflow pipe 61. A halfway of the communication passage 65 is connected to a refrigerant return pipe 62 that returns the gas refrigerant in the first and second buffer tanks 63 and 64 to the refrigerant pipe 2 on the suction side of the compressor 4. Further, the fusible plug 67 is connected to the second buffer tank 64. Other configurations are the same as in the fifth embodiment.
[0149] この実施形態の場合、超低温冷凍装置 Rの運転開始時に、凝縮が不十分なガス冷 媒によって圧縮機 4の吐出圧力の異常上昇が発生したことが圧力センサ 59により検 出されると、電磁開閉弁 66が開弁され、第 1気液分離器 12で分離されたガス冷媒の 一部が冷媒流入管 61を通って第 1のバッファタンク 63に流入する。そして、この第 1 のバッファタンク 63に流入したガス冷媒の一部が連通路 65を通って第 2のバッファタ ンク 64に流入し、残りが冷媒戻し管 62を通って圧縮機 4の吸込側の冷媒配管 2に戻 される。 In the case of this embodiment, when the operation of the ultra-low temperature refrigeration system R is started, when the pressure sensor 59 detects that the discharge pressure of the compressor 4 has abnormally increased due to insufficiently condensed gas refrigerant, The solenoid on-off valve 66 is opened and the gas refrigerant separated in the first gas-liquid separator 12 is A part flows into the first buffer tank 63 through the refrigerant inflow pipe 61. Then, a part of the gas refrigerant flowing into the first buffer tank 63 flows into the second buffer tank 64 through the communication passage 65, and the remaining gas refrigerant flows through the refrigerant return pipe 62 to the suction side of the compressor 4. Returned to refrigerant pipe 2.
[0150] また、上記吐出圧力の異常上昇が解消されたことが圧力センサ 59により検出される と、電磁開閉弁 66が閉弁され、第 1及び第 2のバッファタンク 63, 64内のガス冷媒が 冷媒戻し管 62を通って圧縮機 4の吸込側の冷媒配管 2に戻される。  When the pressure sensor 59 detects that the abnormal rise in the discharge pressure has been eliminated, the electromagnetic on-off valve 66 is closed, and the gas refrigerant in the first and second buffer tanks 63 and 64 is closed. Is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the refrigerant return pipe 62.
[0151] このように、上記連通路 65の途中が圧縮機 4の吸込側の冷媒配管 2 (冷媒回路 1) に接続されているから、冷媒回路 1から第 1のバッファタンク 63に流入した後に圧縮 機 4の吸込側に戻るガス冷媒が第 1及び第 2のバッファタンク 63, 64内をスムーズに 流通する。このことで、第 1及び第 2のバッファタンク 63, 64内でのガス冷媒の滞留を 抑制して比重の異なる冷媒成分を完全に循環させることができ、冷凍装置 R内の混 合冷媒の成分比率の変動による冷却性能の低下を防止できる。  [0151] As described above, since the middle of the communication passage 65 is connected to the refrigerant pipe 2 (refrigerant circuit 1) on the suction side of the compressor 4, after flowing into the first buffer tank 63 from the refrigerant circuit 1, The gas refrigerant returning to the suction side of the compressor 4 smoothly flows through the first and second buffer tanks 63 and 64. This makes it possible to suppress the stagnation of the gas refrigerant in the first and second buffer tanks 63 and 64 and completely circulate the refrigerant components having different specific gravities. A decrease in cooling performance due to a change in the ratio can be prevented.
[0152] 尚、この実施形態 6における第 1及び第 2のバッファタンク 63, 64の位置関係は、上 記実施形態 5のように第 1のバッファタンク 63の下側に第 2のバッファタンク 64を配置 したものに限定されず、例えば上下を入れ換えて配置したり、横方向に並べて配置し たりしても構わない。この点は、次の実施形態 7についても同様である。  [0152] The positional relationship between the first and second buffer tanks 63 and 64 in the sixth embodiment is such that the second buffer tank 64 is located below the first buffer tank 63 as in the fifth embodiment. The arrangement is not limited to the arrangement, and may be, for example, arranged upside down or arranged side by side. This is the same for the following embodiment 7.
[0153] (実施形態 7)  (Embodiment 7)
図 12は、本発明の実施形態 7に係る超低温冷凍装置 Rの冷媒回路を示す。実施 形態 5又は 6との違いは、第 1及び第 2のバッファタンク 63, 64の回路構成のみであ る。  FIG. 12 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 7 of the present invention. The difference from the fifth or sixth embodiment is only the circuit configuration of the first and second buffer tanks 63 and 64.
[0154] すなわち、第 1及び第 2のバッファタンク 63, 64は、実施形態 5又は 6と同様に、ガ ス冷媒を両タンク 63, 64間で流通させるための連通路 65によって互いに接続されて いる。そして、実施形態 6と同様に、第 1のノ ッファタンク 63と、第 1気液分離器 12の ガス冷媒吐出部及び第 1熱交換器 18の 1次側の間の冷媒配管 2とが冷媒流入管 61 によって接続されている。また、実施形態 6とは異なり、第 2のノ ッファタンク 64と圧縮 機 4の吸込側の冷媒配管 2とが冷媒戻し管 62によって接続されている。尚、第 2のバ ッファタンク 64に可溶栓 67が接続されている。その他の構成は実施形態 6と同じであ る。 That is, the first and second buffer tanks 63 and 64 are connected to each other by the communication path 65 for allowing the gas refrigerant to flow between the two tanks 63 and 64, as in the fifth or sixth embodiment. I have. As in the sixth embodiment, the refrigerant flows into the first buffer tank 63 and the refrigerant pipe 2 between the gas refrigerant discharge part of the first gas-liquid separator 12 and the primary side of the first heat exchanger 18. Connected by tube 61. Further, unlike the sixth embodiment, the second buffer tank 64 and the refrigerant pipe 2 on the suction side of the compressor 4 are connected by a refrigerant return pipe 62. Note that a fusible plug 67 is connected to the second buffer tank 64. Other configurations are the same as in the sixth embodiment. The
[0155] この実施形態の場合、超低温冷凍装置 Rの運転開始時に、凝縮が不十分なガス冷 媒によって圧縮機 4の吐出圧力の異常上昇が発生したことが圧力センサ 59により検 出されると、電磁開閉弁 66が開弁され、第 1気液分離器 12で分離されたガス冷媒の 一部が冷媒流入管 61を通って第 1のバッファタンク 63に流入する。そして、このガス 冷媒が連通路 65を通って第 2のバッファタンク 64に流入し、冷媒戻し管 62を通って 圧縮機 4の吸込側の冷媒配管 2に戻される。  [0155] In the case of this embodiment, when the operation of the ultra-low temperature refrigeration apparatus R is started, when the pressure sensor 59 detects that the discharge pressure of the compressor 4 has abnormally increased due to insufficiently condensed gas refrigerant, The electromagnetic on-off valve 66 is opened, and a part of the gas refrigerant separated by the first gas-liquid separator 12 flows into the first buffer tank 63 through the refrigerant inflow pipe 61. Then, the gas refrigerant flows into the second buffer tank 64 through the communication passage 65, and is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the refrigerant return pipe 62.
[0156] また、上記吐出圧力の異常上昇が解消されたことが圧力センサ 59により検出される と、電磁開閉弁 66が閉弁され、第 1及び第 2のバッファタンク 63, 64内のガス冷媒が 冷媒戻し管 62を通って圧縮機 4の吸込側の冷媒配管 2に戻される。  When the pressure sensor 59 detects that the abnormal rise in the discharge pressure has been eliminated, the electromagnetic on-off valve 66 is closed, and the gas refrigerant in the first and second buffer tanks 63 and 64 is closed. Is returned to the refrigerant pipe 2 on the suction side of the compressor 4 through the refrigerant return pipe 62.
[0157] このように、ガス冷媒力 冷媒流入管 61から第 1のバッファタンク 63に流入し、連通 路 65を通って第 2のバッファタンク 64に流れ、冷媒戻し管 62を通って圧縮機 4の吸 込側の冷媒配管に戻るようになっているので、両タンク 63, 64間でガス冷媒がより一 層スムーズに流通する。これにより、第 1及び第 2のバッファタンク 63, 64内でのガス 冷媒の滞留を抑制して比重の異なる冷媒成分を完全に循環させることができ、冷凍 装置 R内の混合冷媒の成分比率の変動による冷却性能の低下を防止できる。  As described above, the gas refrigerant flows from the refrigerant inflow pipe 61 into the first buffer tank 63, flows through the communication path 65 to the second buffer tank 64, passes through the refrigerant return pipe 62, and flows through the compressor 4 Since it returns to the refrigerant pipe on the suction side, the gas refrigerant flows between the tanks 63 and 64 more smoothly. This makes it possible to suppress the stagnation of the gas refrigerant in the first and second buffer tanks 63 and 64, to completely circulate the refrigerant components having different specific gravities, and to reduce the component ratio of the mixed refrigerant in the refrigeration apparatus R. A decrease in cooling performance due to fluctuations can be prevented.
[0158] (実施形態 8)  (Eighth Embodiment)
図 13は本発明の実施形態 8に係る超低温冷凍装置 Rの全体構成を示す。この実 施形態では、デフロスト回路 45は、圧縮機 4から吐出された高温のガス冷媒をクライ ォコイル 32に加えて第 4熱交^^ 21にも供給するようになっている。つまり、このデフ ロスト回路 45の上流端は第 1の油分離器 5及び水冷コンデンサ 8の間の冷媒配管 2 に接続されている。一方、デフロスト回路 45の下流端部は主分岐回路 45aと副分岐 回路 45bとに分岐している。主分岐回路 45aの下流端は、クライオコイル 32の入口側 で第 6キヤビラリチューブ 29との間の主冷媒配管 2aに接続され、副分岐回路 45bの 下流端は、クライオコイル 32の出口側で第 4熱交 の 2次側との間の冷媒配管 2に接続されている。  FIG. 13 shows the overall configuration of an ultra-low temperature refrigeration apparatus R according to Embodiment 8 of the present invention. In this embodiment, the defrost circuit 45 supplies the high-temperature gas refrigerant discharged from the compressor 4 to the fourth coil 21 in addition to the cryocoil 32. That is, the upstream end of the defrost circuit 45 is connected to the refrigerant pipe 2 between the first oil separator 5 and the water-cooled condenser 8. On the other hand, the downstream end of the defrost circuit 45 branches into a main branch circuit 45a and a sub-branch circuit 45b. The downstream end of the main branch circuit 45a is connected to the main refrigerant pipe 2a between the inlet of the cryocoil 32 and the sixth capillary tube 29, and the downstream end of the sub-branch circuit 45b is connected to the outlet of the cryocoil 32. And is connected to the refrigerant pipe 2 between the secondary side of the fourth heat exchange.
[0159] 尚、電磁開閉弁 46は、主及び副分岐回路 45a, 45bの分岐部よりも上流側のデフ ロスト回路 45に接続され、電磁開閉弁 44は、第 6キヤビラリチューブ 29とクライオコィ ル 32との間の主冷媒配管 2aにおいて上記主分岐回路 45aの下流端との接続位置よ りも上流側 (第 6キヤビラリチューブ 29側)に接続されている。その他の構成は実施形 態 4と同様である。 [0159] The electromagnetic on-off valve 46 is connected to a defrost circuit 45 upstream of the branch portions of the main and sub-branch circuits 45a and 45b, and the electromagnetic on-off valve 44 is connected to the sixth capillary tube 29 and the cryo-coil. In the main refrigerant pipe 2a between the main branch circuit 45a and the downstream end of the main branch circuit 45a, the main refrigerant circuit 2a is connected to the upstream side of the connection position with the downstream end of the main branch circuit 45a. Other configurations are the same as in Embodiment 4.
[0160] この実施形態においては、成膜装置 Aの真空チャンバ 100で基板 (ウェハー)の成 膜を行わない状態のデフロスト運転時には、電磁開閉弁 46の開弁によりデフロスト回 路 45が開かれかつ電磁開閉弁 44の閉弁により主冷媒配管 2aが閉じる。このことで、 圧縮機 4から吐出された高温のガス冷媒がデフロスト回路 45の主分岐回路 45aによ りクライオコイル 32にその入口側を経て供給されるとともに、副分岐回路 45bを経て 第 4熱交 21にも供給されて、クライオコイル 32及び第 4一 2熱交 21— 19で の水分等の捕捉の解除が同時に行われる。  In this embodiment, during the defrost operation in a state where the substrate (wafer) is not formed in the vacuum chamber 100 of the film forming apparatus A, the defrost circuit 45 is opened by opening the electromagnetic on-off valve 46 and The main refrigerant pipe 2a is closed by closing the solenoid on-off valve 44. As a result, the high-temperature gaseous refrigerant discharged from the compressor 4 is supplied to the cryocoil 32 via the inlet side by the main branch circuit 45a of the defrost circuit 45, and the fourth heat is transmitted through the sub-branch circuit 45b. The water is also supplied to the heat exchanger 21 to simultaneously release the capture of moisture and the like in the cryocoil 32 and the 412 heat exchanger 21-19.
[0161] すなわち、デフロスト回路 45の下流端部が主分岐回路 45aと副分岐回路 45bとに 分岐し、主分岐回路 45aの下流端力 Sクライオコイル 32の入口側の冷媒配管 2に接続 され、副分岐回路 45bの下流端力 Sクライオコイル 32の出口側の冷媒配管 2にそれぞ れ接続されて ヽるので、主分岐回路 45aを流れる冷媒をクライオコイル 32に供給して 該クライオコイル 32を、また副分岐回路 45bを流れる冷媒を、クライオコイル 32の出 口側の冷媒配管 2に接続された第 4一 2熱交換器 21— 19に供給して該第 4一 2熱交 換器 21— 19をそれぞれ同時に昇温することができる。これにより、特にデフロスト運 転の開始時に未だ超低温レベルにあるクライオコイル 32を通過した冷凍機油等が第 4一 2熱交換器 21— 19内で再度凝固するのを抑制して、混合冷媒の良好な循環を 確保することができるとともに、デフロスト運転時間を短縮することができる。延いては 真空チャンバ: LOO内の排気時間や成膜処理の工程時間の短縮ィ匕及び高効率ィ匕を 図ることができる。  [0161] That is, the downstream end of the defrost circuit 45 branches into the main branch circuit 45a and the sub-branch circuit 45b, and the downstream end force of the main branch circuit 45a is connected to the refrigerant pipe 2 on the inlet side of the S cryocoil 32, Since the downstream end force of the sub-branch circuit 45b is connected to the refrigerant pipe 2 on the outlet side of the S cryo-coil 32, the refrigerant flowing through the main branch circuit 45a is supplied to the cryo-coil 32 and Further, the refrigerant flowing through the sub-branch circuit 45b is supplied to the fourth-to-second heat exchanger 21-19 connected to the refrigerant pipe 2 on the outlet side of the cryocoil 32, so that the fourth-to-second heat exchanger 21 — 19 can be heated simultaneously. This suppresses the refrigerating machine oil and the like that has passed through the cryocoil 32, which is still at a very low temperature at the start of the defrost operation, from re-solidifying in the 412 heat exchanger 21-19, thereby improving the mixed refrigerant quality. A proper circulation can be ensured and the defrost operation time can be shortened. In addition, a vacuum chamber can reduce the evacuation time in the LOO and the process time of the film forming process, and achieve high efficiency.
[0162] (実施形態 9)  (Embodiment 9)
図 14は実施形態 9に係る超低温冷凍装置 Rの冷媒回路を示す。上記実施形態 8と の違いは、デフロスト回路 45の副分岐回路 45bの途中に電磁開閉弁 68が接続され ていることにある。その他の構成は実施形態 8と同じである。  FIG. 14 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 9. The difference from the eighth embodiment is that an electromagnetic on-off valve 68 is connected in the middle of the sub-branch circuit 45b of the defrost circuit 45. Other configurations are the same as those of the eighth embodiment.
[0163] この実施形態においては、真空成膜装置 Aの真空チャンバ 100で基板の成膜を行 わない状態のデフロスト運転時には、電磁開閉弁 68の開弁により副分岐回路 45bが 開かれ、上記実施形態 8と同様に電磁開閉弁 46の開弁によりデフロスト回路 45が開 かれかつ電磁開閉弁 44の閉弁により主冷媒配管 2aが閉じ、圧縮機 4から吐出された 高温のガス冷媒がデフロスト回路 45の主分岐回路 45aによりクライオコイル 32に供 給されるとともに、副分岐回路 45bにより第 4熱交 にも供給されて、クライオコ ィル 32及び第 4熱交換器 21での水分等の捕捉の解除が同時に開始される。 In this embodiment, during the defrost operation in a state where the substrate is not formed in the vacuum chamber 100 of the vacuum film forming apparatus A, the sub-branch circuit 45b is opened by opening the solenoid on-off valve 68. When the solenoid valve is opened, the defrost circuit 45 is opened by opening the solenoid on-off valve 46 and the main refrigerant pipe 2a is closed by closing the solenoid on-off valve 44 in the same manner as in the eighth embodiment, and the high-temperature gas discharged from the compressor 4 is closed. The refrigerant is supplied to the cryocoil 32 by the main branch circuit 45a of the defrost circuit 45, and is also supplied to the fourth heat exchanger by the sub-branch circuit 45b, so that the moisture in the cryocoil 32 and the fourth heat exchanger 21 is removed. Etc. are simultaneously released.
[0164] そして、第 4熱交 が冷凍機油の流動点 (例えば 50°C)以上に昇温されたと きに、上記電磁開閉弁 68が閉弁されて副分岐回路 45bが閉じられる。このことにより 、デフロスト回路 45内の高温のガス冷媒が、それまで主分岐回路 45aと副分岐回路 45bとに分岐されていた状態力も主分岐回路 45aのみに流れてクライオコイル 32に 供給され、その昇温を行うことができ、さらにデフロスト運転時間を短縮することができ る。 [0164] When the fourth heat exchange is heated to a temperature higher than the pour point (for example, 50 ° C) of the refrigerating machine oil, the electromagnetic on-off valve 68 is closed and the sub-branch circuit 45b is closed. As a result, the high-temperature gaseous refrigerant in the defrost circuit 45 is also supplied to the cryocoil 32 by flowing the state force that had been branched into the main branch circuit 45a and the sub-branch circuit 45b only to the main branch circuit 45a. The temperature can be raised, and the defrost operation time can be further reduced.
[0165] 尚、この実施形態 9において、副分岐回路 45bの下流端は第 4熱交換器 21の 2次 側ではなぐそれよりも高温側の熱交換器の 2次側に接続しても構わない。すなわち 、冷媒配管 2にお 、て冷凍機油等力スムーズに流動する流動点(例えば- 50°C)以 下の温度となっている部位に高温のガス冷媒 (ホットガス)が供給されるように接続す ればよい。  In the ninth embodiment, the downstream end of the sub-branch circuit 45b may be connected to the secondary side of the heat exchanger on the higher temperature side than the secondary side of the fourth heat exchanger 21. Absent. In other words, high-temperature gas refrigerant (hot gas) is supplied to the portion of the refrigerant pipe 2 where the temperature is lower than the pour point (for example, −50 ° C.) where the refrigerating machine oil flows smoothly. Just connect.
[0166] (実施形態 10)  (Embodiment 10)
図 15は本発明の実施形態 10を示し、主冷媒配管 2a内の主冷媒回路 38の構成を 変えたものである。すなわち、この実施形態では、主冷媒回路 38の途中は、互いに 並列に接続された第 1及び第 2の分岐回路 80, 81に分岐され、この両分岐回路 80, 81の下流端合流部よりも下流側の主冷媒回路 38にクライオコイル 32が直列に接続 されている。  FIG. 15 shows Embodiment 10 of the present invention, in which the configuration of the main refrigerant circuit 38 in the main refrigerant pipe 2a is changed. That is, in the present embodiment, the middle of the main refrigerant circuit 38 is branched into first and second branch circuits 80 and 81 connected in parallel with each other, and is located at a downstream end of the two branch circuits 80 and 81. The cryo coil 32 is connected in series to the main refrigerant circuit 38 on the downstream side.
[0167] 上記第 1の分岐回路 80には、第 1の分岐キヤビラリチューブ 80aが直列に接続され ている。また、第 2の分岐回路 81には、電磁開閉弁 81bと第 2の分岐キヤビラリチュー ブ 81aとがそれぞれ上流側力も直列に接続されている。上記電磁開閉弁 81bは、第 2の分岐回路 81に冷媒が供給されるように切り換える切換手段を構成して 、る。また 、第 1及び第 2の分岐キヤビラリチューブ 80a, 81aには、互いに異なる減圧能力を有 したキヤビラリチューブが用いられている。また、図示しないが、超低温冷凍装置尺に は、クライオコイル 32の温度を検出する温度検出器が設けられている。その他の構 成は実施形態 4と同様である。 [0167] The first branch circuit 80 is connected in series with a first branch cable tubing 80a. Further, the second branch circuit 81 is connected in series with an electromagnetic on-off valve 81b and a second branch cavity tube 81a, respectively, with respect to the upstream side force. The electromagnetic on-off valve 81b constitutes switching means for switching the refrigerant to be supplied to the second branch circuit 81. Further, as the first and second branched capillary tubes 80a and 81a, those having different decompression abilities are used. Also, although not shown, the ultra-low temperature refrigeration system Is provided with a temperature detector for detecting the temperature of the cryocoil 32. Other configurations are the same as in the fourth embodiment.
[0168] したがって、この実施形態においては、超低温冷凍装置 Rの通常運転時、電磁開 閉弁 46の閉弁によりデフロスト回路 45が閉じられかつ電磁開閉弁 44の開弁により主 冷媒回路 38が開かれる。さらに、電磁開閉弁 81bの開弁により第 2の分岐回路 81が 開かれる。このことで、第 4熱交換器 21の 1次側から吐出されて過冷却器 31の 1次側 を通過した後の気液混合状態の冷媒のうち、主冷媒回路 38に流れる冷媒は、第 1及 び第 2の分岐キヤビラリチューブ 80a, 8 laにそれぞれ分岐して減圧され、その減圧 後にクライオコイル 32において蒸発して真空チャンバ 100内の水分に寒冷を付与す る。 Therefore, in this embodiment, during normal operation of the ultra-low temperature refrigeration system R, the defrost circuit 45 is closed by closing the electromagnetic opening / closing valve 46 and the main refrigerant circuit 38 is opened by opening the electromagnetic opening / closing valve 44. It is. Further, the second branch circuit 81 is opened by opening the electromagnetic on-off valve 81b. As a result, of the refrigerant in the gas-liquid mixed state after being discharged from the primary side of the fourth heat exchanger 21 and passing through the primary side of the supercooler 31, the refrigerant flowing to the main refrigerant circuit 38 is the second refrigerant. The first and second branched capillary tubes 80a and 8la are each branched and decompressed, and after the decompression, evaporate in the cryocoil 32 to cool the water in the vacuum chamber 100.
[0169] そのとき、電磁開閉弁 81bの開弁により冷媒を第 1及び第 2の分岐回路 80, 81に 分岐させてそれぞれ第 1及び第 2の分岐キヤビラリチューブ 80a, 81aで減圧させるこ とで、冷媒の流量を増やすことができる。  At this time, the refrigerant is branched into the first and second branch circuits 80 and 81 by opening the electromagnetic on-off valve 81b, and decompressed by the first and second branch capillary tubes 80a and 81a, respectively. Thus, the flow rate of the refrigerant can be increased.
[0170] そして、超低温冷凍装置 Rの上記温度検出器で検出された検出値が、予め設定し た設定温度 (例えば 100°C以下)に達したときに、電磁開閉弁 81bが閉弁して、冷 媒が第 1の分岐キヤビラリチューブ 80aにのみ流れる。 [0170] Then, when the detection value detected by the temperature detector of the ultra-low temperature refrigeration apparatus R reaches a preset set temperature (for example, 100 ° C or lower), the electromagnetic on-off valve 81b closes. Then, the coolant flows only to the first branch cavity tube 80a.
[0171] よって、この実施形態では、冷媒の流路抵抗の増大により、冷却対象を超低温レべ ルに冷却するための冷却能力の確保を図りつつ、超低温レベルに到達するまでの冷 却時間の短縮ィ匕を図ることができる。延いては真空チャンバ 100における成膜処理 の工程時間の短縮ィ匕及び高効率ィ匕を図ることができる。 [0171] Therefore, in this embodiment, by increasing the flow path resistance of the refrigerant, the cooling time required to reach the ultra-low temperature level is ensured while securing the cooling capacity for cooling the object to be cooled to the ultra-low temperature level. Shortening can be achieved. As a result, it is possible to reduce the process time of the film forming process in the vacuum chamber 100 and achieve high efficiency.
[0172] さらに、減圧手段として第 1及び第 2の分岐キヤビラリチューブ 80a, 81aを用いるこ とで、超低温領域においても確実に冷媒の減圧を行うことができ、減圧手段として膨 張弁等を用いた場合に比べて信頼性が高ぐ装置を安定稼動させる上で有利となる[0172] Further, by using the first and second branched capillary tubes 80a and 81a as depressurizing means, it is possible to surely depressurize the refrigerant even in an ultra-low temperature range, and to use an expansion valve or the like as depressurizing means. Higher reliability than in the case of using it is advantageous for stable operation of equipment
。また、キヤビラリチューブは膨張弁に比べると低価格であるため、設備費を大幅に 削減することが可能となる。 . In addition, since the cost of the capillary tube is lower than that of the expansion valve, it is possible to greatly reduce equipment costs.
[0173] 尚、本実施形態では、第 1及び第 2の分岐キヤビラリチューブ 80a, 81aには、互い に異なる減圧能力を有するキヤビラリチューブを用いたが、同じ減圧能力のものを用 いても構わない。 [0174] (実施形態 11) [0173] In the present embodiment, the first and second branched capillary tubes 80a and 81a have different decompression abilities from each other, but the same decompression abilities are used. It does not matter. (Embodiment 11)
図 16は、本発明の実施形態 11に係る超低温冷凍装置 Rの冷媒回路を示す。上記 実施形態 10との違いは、過冷却器 31の 1次側力もクライオコイル 32の入口側までの 間に接続されるキヤビラリチューブの回路構成のみである。  FIG. 16 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 11 of the present invention. The difference from the tenth embodiment is only the circuit configuration of the capillary tube connected between the primary force of the subcooler 31 and the inlet side of the cryocoil 32.
[0175] すなわち、この実施形態では、主冷媒回路 38の途中に、互いに並列に接続された 第 1一第 4の 4つの分岐回路 80— 83が形成され、これらの分岐回路 80— 83の合流 部よりも下流側の主冷媒回路 38にクライオコイル 32が直列に接続されている。  That is, in this embodiment, the first to fourth four branch circuits 80 to 83 connected in parallel to each other are formed in the middle of the main refrigerant circuit 38, and the branch circuits 80 to 83 merge. The cryocoil 32 is connected in series to the main refrigerant circuit 38 downstream of the section.
[0176] さらに、上記第 1の分岐回路 80には第 1の分岐キヤビラリチューブ 80aが直列に接 続されている。また、第 2の分岐回路 81には電磁開閉弁 81bと第 2の分岐キヤビラリ チューブ 81aとが、また第 3の分岐回路 82には電磁開閉弁 82bと第 3の分岐キヤビラ リチューブ 82aとが、さらに第 4の分岐回路 83には電磁開閉弁 83bと第 4の分岐キヤ ビラリチューブ 83aとがそれぞれ上流側から直列に接続されている。ここで、第 1一第 4の分岐キヤビラリチューブ 80a— 83aには、互いに異なる減圧能力を有したキヤビラ リチューブが用いられている。その他の構成は実施形態 10と同じである。  [0176] Further, the first branch circuit 80 is connected in series with a first branch cable tubing 80a. Also, the second branch circuit 81 includes an electromagnetic on-off valve 81b and a second branch cabin tube 81a, and the third branch circuit 82 includes an electromagnetic on-off valve 82b and a third branch cabin tube 82a. In the fourth branch circuit 83, an electromagnetic on-off valve 83b and a fourth branch cavity tube 83a are connected in series from the upstream side, respectively. Here, as the first to fourth branched capillary tubes 80a to 83a, those having different decompression abilities are used. Other configurations are the same as those of the tenth embodiment.
[0177] この実施形態においては、真空成膜装置 Aの真空チャンバ 100内で基板を成膜す るときの超低温冷凍装置 Rの運転時には、過冷却器 31の 1次側から吐出された後に 主冷媒回路 38に流れる気液混合状態の冷媒は、第 1の分岐回路 80の第 1の分岐キ ャビラリチューブ 80aで減圧される。また、短時間で冷却対象を冷却できるようにする ために、第 2—第 4の分岐回路 81— 83の各電磁開閉弁 81b— 83bを適宜選択的に 開弁する。こりことにより、第 2—第 4の分岐キヤビラリチューブ 81a— 83aに選択的に 分岐して減圧され、その減圧後にクライオコイル 32において蒸発して真空チャンバ 1 00内の水分に寒冷を付与する。  [0177] In this embodiment, during the operation of the ultra-low-temperature refrigeration apparatus R when forming a substrate in the vacuum chamber 100 of the vacuum film-forming apparatus A, the main cryogenic refrigerating apparatus R is mainly discharged after being discharged from the primary side of the supercooler 31. The refrigerant in the gas-liquid mixed state flowing through the refrigerant circuit 38 is depressurized in the first branch cab- ary tube 80a of the first branch circuit 80. Further, in order to cool the object to be cooled in a short time, each of the electromagnetic switching valves 81b-83b of the second-fourth branch circuits 81-83 is selectively and appropriately opened. As a result, the pressure is selectively branched to the second to fourth branched capillary tubes 81a to 83a, and the pressure is reduced. After the pressure is reduced, the cryocoil 32 evaporates and the water in the vacuum chamber 100 is cooled. .
[0178] そして、温度検出器の検出値が設定温度 (例えば 100°C以下)に達したときに、 例えば電磁開閉弁 81b— 83bを閉弁して、冷媒を第 1の分岐キヤビラリチューブ 80a にのみ流す。  [0178] Then, when the detected value of the temperature detector reaches the set temperature (for example, 100 ° C or less), for example, the electromagnetic on-off valves 81b-83b are closed to allow the refrigerant to flow to the first branch capillary tube. Run only to 80a.
[0179] 本実施形態によれば、第 2—第 4の分岐回路 81— 83の電磁開閉弁 81b— 83bを 選択的に開弁することにより、冷媒を第 2—第 4の分岐キヤビラリチューブ 81a— 83a に選択的に分岐させることができ、真空チャンバ 100内での冷却温度やその冷却温 度に到達するまでの冷却時間を任意に調整することができる。 According to the present embodiment, by selectively opening the solenoid on-off valves 81b-83b of the second-fourth branch circuits 81-83, the refrigerant is supplied to the second-fourth branch cavities. Tube 81a- 83a can be selectively branched, and the cooling temperature in the vacuum chamber 100 and its cooling temperature The cooling time until reaching the temperature can be arbitrarily adjusted.
[0180] 尚、本実施形態では、主冷媒回路 38を第 1一第 4の分岐回路 80— 83の 4つに分 岐した回路構成であるが、これに限定されず、例えば 3つに分岐したものや、さらに 5 つ以上に分岐した回路構成(図 16の仮想線参照)であっても構わない。この点は、 以下の実施形態 13についても同様である。  In the present embodiment, the circuit configuration is such that the main refrigerant circuit 38 is branched into four, ie, the first to fourth branch circuits 80 to 83, but the present invention is not limited to this. Or a circuit configuration branched into five or more (see the phantom line in FIG. 16). This is the same for the following thirteenth embodiment.
[0181] (実施形態 12)  (Embodiment 12)
図 17は本発明の実施形態 12に係る超低温冷凍装置 Rの冷媒回路を示す。上記 実施形態 10との違いは、過冷却器 31からクライオコイル 32までの間に接続されるキ ャビラリチューブの回路構成のみである。  FIG. 17 shows a refrigerant circuit of a cryogenic refrigerator R according to Embodiment 12 of the present invention. The only difference from the tenth embodiment is the circuit configuration of the capillary tube connected between the subcooler 31 and the cryocoil 32.
[0182] すなわち、主冷媒回路 38の途中には、互いに並列に接続された第 1及び第 2の分 岐回路 80, 81が形成され、この両分岐回路 80, 81の合流部よりも下流側の主冷媒 回路 38にクライオコイル 32が直列に接続されている。  [0182] That is, in the middle of the main refrigerant circuit 38, first and second branch circuits 80 and 81 connected to each other in parallel are formed, and the downstream side of the junction of the two branch circuits 80 and 81 is formed. The cryogenic coil 32 is connected in series to the main refrigerant circuit 38 of the refrigeration cycle.
[0183] 上記第 1の分岐回路 80には第 1の分岐キヤビラリチューブ 80aと電磁開閉弁 80bと が、また第 2の分岐回路 81には第 2の分岐キヤビラリチューブ 8 laと電磁開閉弁 8 lb とがそれぞれ上流側力も直列に接続されている。第 1及び第 2の分岐キヤビラリチュ ーブ 80a, 81aには、互いに異なる減圧能力を有するキヤビラリチューブが用いられ ている。また、第 1及び第 2の分岐回路 80, 81の電磁開閉弁 80b, 81bを同時に閉 弁することでデフロスト時に主冷媒回路 38が閉じられるため、実施形態 10における 電磁開閉弁 44 (図 15参照)は省略されている。その他の構成は実施形態 10と同じで ある。  [0183] The first branch circuit 80 has a first branch cable tube 80a and an electromagnetic on-off valve 80b, and the second branch circuit 81 has a second branch cable tube 8la and an electromagnetic valve. The on-off valves 8 lb are also connected in series with the upstream force, respectively. For the first and second branch cavities 80a and 81a, cavities having different decompression abilities are used. Further, since the main refrigerant circuit 38 is closed at the time of defrost by simultaneously closing the solenoid on-off valves 80b and 81b of the first and second branch circuits 80 and 81, the solenoid on-off valve 44 in Embodiment 10 (see FIG. 15) ) Is omitted. Other configurations are the same as those of the tenth embodiment.
[0184] この実施形態においては、真空成膜装置 Aの真空チャンバ 100内で基板を成膜す るときの超低温冷凍装置 Rの運転時には、過冷却器 31の 1次側から吐出された後に 主冷媒回路 38に流れる気液混合状態の冷媒の残部は、第 1及び第 2の分岐回路 80 , 81の電磁開閉弁 80b, 81bの開弁により第 1及び第 2の分岐キヤビラリチューブ 80 a, 81aに分岐して減圧され、その減圧後にクライオコイル 32において蒸発して真空 チャンバ 100内の水分に寒冷を付与する。  [0184] In this embodiment, during operation of the ultra-low temperature refrigeration apparatus R when forming a substrate in the vacuum chamber 100 of the vacuum film forming apparatus A, the main cooling is performed after the liquid is discharged from the primary side of the supercooler 31. The remainder of the refrigerant in the gas-liquid mixed state flowing to the refrigerant circuit 38 is supplied to the first and second branch cable tubing 80 a by opening the electromagnetic on-off valves 80 b and 81 b of the first and second branch circuits 80 and 81. , 81a, and the pressure is reduced. After the pressure is reduced, the water evaporates in the cryocoil 32 to cool the water in the vacuum chamber 100.
[0185] そして、温度検出器又は圧力検出器で検出された検出値が設定温度 (例えば 10 0°C以下)又は設定圧力に達したときに、第 1及び第 2の分岐回路 80, 81の一方の 電磁開閉弁 80b, 81bを閉弁して、冷媒を第 1又は第 2の分岐キヤビラリチューブ 80a , 81aのどちらか一方にのみ流す。 [0185] Then, when the detection value detected by the temperature detector or the pressure detector reaches the set temperature (for example, 100 ° C or lower) or the set pressure, the first and second branch circuits 80 and 81 One The electromagnetic on / off valves 80b and 81b are closed to allow the refrigerant to flow through only one of the first and second branch cavity tubes 80a and 81a.
[0186] 本実施形態によれば、第 1及び第 2の分岐回路 80, 81の電磁開閉弁 80b, 81bを 選択的に開弁することにより、冷媒を第 1及び第 2の分岐キヤビラリチューブ 80a, 81 aに選択的に分岐させることができ、真空チャンバ 100内での冷却温度及びその冷 却温度に到達する冷却時間を任意に調整することができる。  According to the present embodiment, by selectively opening the electromagnetic on-off valves 80b and 81b of the first and second branch circuits 80 and 81, the refrigerant is supplied to the first and second branch cavities. The tubes 80a and 81a can be selectively branched, and the cooling temperature in the vacuum chamber 100 and the cooling time to reach the cooling temperature can be arbitrarily adjusted.
[0187] 尚、 2つの電磁開閉弁 80b, 81bを同時に開弁せずに、どちらか一方の電磁開閉 弁 80b, 8 lbのみを開弁させてもよい。  [0187] It is also possible to open only one of the electromagnetic on-off valves 80b and 8lb without opening the two electromagnetic on-off valves 80b and 81b at the same time.
[0188] (実施形態 13)  (Embodiment 13)
図 18は実施形態 13に係る超低温冷凍装置 Rの冷媒回路を示す。上記実施形態 1 2との違いは、過冷却器 31からクライオコイル 32までの間に接続されるキヤビラリチュ ーブの回路構成のみである。  FIG. 18 shows a refrigerant circuit of an ultra-low temperature refrigeration apparatus R according to Embodiment 13. The difference from the above-described Embodiment 12 is only the circuit configuration of the cavity tube connected between the supercooler 31 and the cryocoil 32.
[0189] すなわち、この実施形態では、主冷媒回路 38の途中に、互いに並列に接続された 第 1一第 4の分岐回路 80— 83が形成され、この第 1一第 4の分岐回路 80— 83の合 流部よりも下流側の主冷媒回路 38にクライオコイル 32が直列に接続されている。  That is, in this embodiment, the first to fourth branch circuits 80-83 connected in parallel with each other are formed in the main refrigerant circuit 38, and the first to fourth branch circuits 80-83 are formed. The cryocoil 32 is connected in series to the main refrigerant circuit 38 downstream of the junction 83.
[0190] さらに、上記第 1の分岐回路 80には第 1の分岐キヤビラリチューブ 80aと電磁開閉 弁 80bとが、また第 2の分岐回路 81には第 2の分岐キヤビラリチューブ 81aと電磁開 閉弁 81bとが、さらに第 3の分岐回路 82には第 2の分岐キヤビラリチューブ 82aと電 磁開閉弁 82bとが、さらにまた第 4の分岐回路 83には第 4の分岐キヤビラリチューブ 8 3aと電磁開閉弁 83bとがそれぞれ上流側力も直列に接続されている。第 1一第 4の 分岐キヤビラリチューブ 80a— 83aには、互いに異なる減圧能力を有するキヤビラリチ ユーブが用いられている。その他の構成は実施形態 12と同じである。  [0190] Further, the first branch circuit 80 includes a first branch cable tube 80a and an electromagnetic on-off valve 80b, and the second branch circuit 81 includes a second branch cable tube 81a. The electromagnetic open / close valve 81b, the third branch circuit 82 has a second branch cable tubing 82a and an electromagnetic switch valve 82b, and the fourth branch circuit 83 has a fourth branch cable. The billet tube 83a and the solenoid on-off valve 83b are also connected in series with each other on the upstream side. For the first to fourth branched capillary tubes 80a to 83a, the capillary tubes having different decompression abilities are used. Other configurations are the same as those of the twelfth embodiment.
[0191] この実施形態においては、真空成膜装置 Aの真空チャンバ 100内で基板を成膜す るときの超低温冷凍装置 Rの運転時、短時間で冷却対象を冷却できるように第 1一第 4の分岐回路 80— 83の電磁開閉弁 80b— 83bを選択的に開弁することにより、過冷 却器 31の 1次側から吐出された後に主冷媒回路 38に流れる気液混合状態の冷媒 の残部が、第 1一第 4の分岐キヤビラリチューブ 80a— 83aに選択的に分岐して流れ て減圧され、その減圧後にクライオコイル 32において蒸発して真空チャンバ 100内 の水分に寒冷を付与する。 [0191] In this embodiment, during operation of the ultra-low temperature refrigeration apparatus R when forming a substrate in the vacuum chamber 100 of the vacuum film forming apparatus A, the first and the first cooling targets are cooled in a short time. By selectively opening the solenoid on-off valves 80b-83b of the branch circuits 80-83 of 4, the refrigerant in a gas-liquid mixed state that flows into the main refrigerant circuit 38 after being discharged from the primary side of the subcooler 31 The remaining part of the tube is selectively branched to the first, second, and fourth branch capillary tubes 80a-83a, and is decompressed. Gives cold to the water.
[0192] そして、温度検出器の検出値が設定温度 (例えば 100°C以下)に達したときに、 第 1一第 4の分岐回路 80— 83の電磁開閉弁 80b— 83bを適宜閉弁して、冷媒を第 1 一第 4の分岐キヤビラリチューブ 80a— 83aに選択的に流す。  [0192] Then, when the detected value of the temperature detector reaches the set temperature (for example, 100 ° C or less), the electromagnetic on-off valves 80b-83b of the first-fourth branch circuits 80-83 are appropriately closed. Then, the refrigerant is selectively passed through the first, second and fourth branched capillary tubes 80a-83a.
[0193] 本実施形態によれば、第 1一第 4の分岐回路 80— 83の電磁開閉弁 80b— 83bを 選択的に開弁することにより、冷媒を第 1一第 4の分岐キヤビラリチューブ 80a— 83a に選択的に分岐させることができ、真空チャンバ 100内での冷却温度及びその冷却 温度に到達する冷却時間を任意に調整することができる。  According to the present embodiment, by selectively opening the solenoid on-off valves 80b-83b of the first-fourth branch circuits 80-83, the refrigerant is supplied to the first-first to fourth branch cavities. The tubes 80a-83a can be selectively branched, and the cooling temperature in the vacuum chamber 100 and the cooling time to reach the cooling temperature can be arbitrarily adjusted.
[0194] (その他の実施形態)  (Other Embodiments)
尚、上記各実施形態では、クライオコイル 32を真空チャンバ 100内に配置して、そ のクライオコイル 32により真空チャンバ 100内の水分を直接冷却するようにしている 1S クライオコイル 32に代えてブラインクーラ (放熱部)を設け、このブラインクーラを 真空チャンバ 100内に位置する吸熱部とブライン回路により接続し、このブラインク一 ラにおいてブライン回路内のブラインを超低温レベルに冷却して、そのブラインにより 真空チャンバ 100内の吸熱部に同温度レベルの寒冷を付与するようにしてもよい。  In the above embodiments, the cryocoil 32 is disposed in the vacuum chamber 100, and the cryocoil 32 directly cools the water in the vacuum chamber 100. (Heat radiating section), this brine cooler is connected to a heat absorbing section located in the vacuum chamber 100 by a brine circuit, and the brine in the brine circuit is cooled to an ultra-low temperature level in the blind coupler, and the brine is used to form a vacuum chamber. The heat-absorbing part in 100 may be provided with cold at the same temperature level.
[0195] また、上記コンデンサ 8, 10、熱交 — 21及び過冷却器 31は、 2重管構造の もの、プレート構造のもの、シェルアンドチューブ構造のもののいずれを用いてもよい 。また、キヤビラリチューブ 24— 29の代わりに他の減圧手段、例えば膨張弁等を用い ることちでさる。  [0195] The condensers 8, 10, the heat exchanger 21, and the supercooler 31 may have any of a double tube structure, a plate structure, and a shell and tube structure. In addition, other pressure reducing means, such as an expansion valve, is used instead of the capillary tubes 24-29.
[0196] また、上記各実施形態では、例えば 5種類又は 6種類の冷媒を混合してなる非共沸 混合冷媒を用いて!/、るが、 5種類又は 6種類とは異なる種類数の冷媒を混合した混 合冷媒を用いる冷凍システムに対しても適用できるのは勿論である。また、上記各実 施形態では、真空成膜装置 Aの真空チャンバ 100内の水分を冷却するために用い て!、るが、その他の冷却対象を冷却するための冷凍システムでもよ!/、。  [0196] In each of the above embodiments, for example, a non-azeotropic mixed refrigerant obtained by mixing five or six types of refrigerant is used! However, it is needless to say that the present invention can also be applied to a refrigeration system using a mixed refrigerant in which a different number of refrigerants from five or six types are mixed. Further, in each of the above embodiments, the cooling system is used to cool the moisture in the vacuum chamber 100 of the vacuum film forming apparatus A, but may be a refrigeration system for cooling other cooling objects!
[0197] また、上記実施形態では、気液分離を 4段階行うシステムを示した力 これに代え、 気液分離を 3段階以下又は 5段階以上行うシステムにも本発明の適用が可能である  [0197] Further, in the above-described embodiment, the force showing the system for performing the four-stage gas-liquid separation is shown. Alternatively, the present invention can be applied to a system for performing the three-stage or less stage or the five-stage stage or more.
[0198] また、本実施形態では水冷コンデンサ 21を用いた水冷システムを示した力 これに 代え、空冷コンデンサを用いたシステムに構成してもよ 、。 [0198] Further, in the present embodiment, the water cooling system using the water cooling condenser 21 is shown. Instead, a system using an air-cooled condenser may be used.
産業上の利用可能性 Industrial applicability
本発明は、負荷変動があっても冷却対象を安定して冷却できるとともに、冷却対象 を常温力 超低温レベルに迅速に冷却してクールダウン時間を短縮できる、デフロス ト回路を備えた超低温冷凍装置のデフロスト時に、混合冷媒の循環を良好に確保し つつ冷却効率の向上を図ることができる、超低温冷凍装置のノ ッファタンク内のガス 冷媒をスムーズに循環させてタンク内でのガス冷媒の滞留を抑制し、冷媒の成分比 率を良好に保つことができる、デフロスト運転時間を短縮することができる、冷却対象 を所定の冷却温度まで冷却するための冷却能力を確保しつつ、その冷却温度に到 達するまでの冷却時間を短縮することができる等、実用性の高い様々な効果が得ら れ、極めて有用で産業上の利用可能性は高い。  The present invention relates to an ultra-low-temperature refrigeration apparatus having a defrost circuit, which can stably cool an object to be cooled even when there is a load change, and can quickly cool the object to be cooled to an ordinary temperature and an ultra-low temperature level to shorten a cool-down time. During defrosting, it is possible to improve the cooling efficiency while ensuring good circulation of the mixed refrigerant, and to smoothly circulate the gas refrigerant in the ultra-low temperature refrigeration equipment's notch tank to suppress the accumulation of gas refrigerant in the tank. It is possible to maintain a good refrigerant component ratio, shorten the defrost operation time, and maintain the cooling capacity to cool the object to be cooled to a predetermined cooling temperature, while maintaining the cooling capacity until the cooling temperature is reached. Various effects with high practicability, such as a reduction in cooling time, are obtained, and are extremely useful and have high industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 冷媒を圧縮する圧縮機と、  [1] a compressor for compressing the refrigerant,
上記圧縮機から吐出された冷媒を冷却して凝縮する凝縮手段と、  Condensing means for cooling and condensing the refrigerant discharged from the compressor,
上記凝縮手段から吐出された冷媒が流れる 1次側と、該 1次側から吐出されかつ過 冷却器用減圧手段により減圧された冷媒が流れる 2次側とを有し、 1次側の冷媒を 2 次側の冷媒との熱交換により冷却する過冷却器と、  It has a primary side through which the refrigerant discharged from the condensing means flows, and a secondary side through which the refrigerant discharged from the primary side and decompressed by the subcooler decompression means flows. A subcooler for cooling by heat exchange with the refrigerant on the next side,
上記過冷却器の 1次側から吐出されかつ主冷却器用減圧手段により減圧された冷 媒を蒸発させて冷却対象を冷却する主冷却器と、  A main cooler that evaporates the coolant discharged from the primary side of the supercooler and depressurized by the main cooler decompression means to cool a cooling target;
上記過冷却器の 1次側から吐出された冷媒のうち、過冷却器の 2次側に流れる液 冷媒の流量を主冷却器への液冷媒の流量よりも多くする過冷却器冷媒流量増加手 段とを備えたことを特徴とする冷凍システム。  Of the refrigerant discharged from the primary side of the subcooler, the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler is increased to be larger than the flow rate of the liquid refrigerant to the main cooler. A refrigeration system comprising a stage.
[2] 沸点が互いに異なる複数種類の冷媒を混合した混合冷媒を圧縮する圧縮機と、 上記圧縮機から吐出された混合冷媒のうちの高沸点冷媒を冷却して凝縮する凝縮 器と、 [2] A compressor that compresses a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, a condenser that cools and condenses a high-boiling refrigerant of the mixed refrigerant discharged from the compressor,
上記凝縮器から吐出された混合冷媒を高沸点冷媒から低沸点冷媒へ順に液冷媒 とガス冷媒とに分離する複数段の気液分離器と、  A multi-stage gas-liquid separator for separating the mixed refrigerant discharged from the condenser into a liquid refrigerant and a gas refrigerant in order from a high-boiling refrigerant to a low-boiling refrigerant,
上記各気液分離器で分離されたガス冷媒を、該各気液分離器で分離された後に 減圧手段で減圧された液冷媒との熱交換により冷却する複数段のカスケード熱交換 器と、  A multi-stage cascade heat exchanger that cools the gas refrigerant separated by each gas-liquid separator by heat exchange with the liquid refrigerant decompressed by the decompression means after being separated by each gas-liquid separator;
上記最終段のカスケード熱交換器から吐出された低沸点冷媒が流れる 1次側と、 該 1次側から吐出されかつ過冷却器用減圧手段により減圧された低沸点冷媒が流 れる 2次側とを有し、 1次側の低沸点冷媒を 2次側の低沸点冷媒との熱交換により冷 却する過冷却器と、  A primary side through which the low-boiling refrigerant discharged from the last-stage cascade heat exchanger flows, and a secondary side through which the low-boiling refrigerant discharged from the primary side and depressurized by the decooler for the subcooler flows. A supercooler that cools the primary low-boiling refrigerant by heat exchange with the secondary low-boiling refrigerant;
上記過冷却器の 1次側から吐出されかつ主冷却器用減圧手段により減圧された低 沸点冷媒を蒸発させて冷却対象を超低温レベルに冷却する主冷却器と、  A main cooler that evaporates the low-boiling refrigerant discharged from the primary side of the subcooler and depressurized by the main cooler decompression means to cool the object to be cooled to an ultra-low temperature level;
上記過冷却器の 1次側から吐出された冷媒のうち、過冷却器の 2次側に流れる液 冷媒の流量を主冷却器への液冷媒の流量よりも多くする過冷却器冷媒流量増加手 段とを備えたことを特徴とする冷凍システム。 Of the refrigerant discharged from the primary side of the subcooler, the flow rate of the liquid refrigerant flowing to the secondary side of the subcooler is increased to be larger than the flow rate of the liquid refrigerant to the main cooler. A refrigeration system comprising a stage.
[3] 請求項 1又は 2の冷凍システムにおいて、 [3] The refrigeration system according to claim 1 or 2,
過冷却器冷媒流量増加手段は、主冷却器及び主冷却器用減圧手段が設けられた 主冷媒回路と、上流端が該主冷媒回路の上流端に分岐接続され、過冷却器用減圧 手段が設けられた副冷媒回路とに対し、上記副冷媒回路の最小断面積が主冷媒回 路の最大断面積よりも大きい構造を有することを特徴とする冷凍システム。  The subcooler refrigerant flow rate increasing means includes a main refrigerant circuit provided with a main cooler and a decompressing means for the main cooler, an upstream end branched and connected to an upstream end of the main refrigerant circuit, and a subcooler depressurizing means provided. A refrigeration system having a structure in which the minimum cross-sectional area of the sub-refrigerant circuit is larger than the maximum cross-sectional area of the main refrigerant circuit.
[4] 請求項 1又は 2の冷凍システムにおいて、  [4] The refrigeration system according to claim 1 or 2,
過冷却器冷媒流量増加手段は、主冷却器及び主冷却器用減圧手段が設けられた 主冷媒回路と、上流端が該主冷媒回路の上流端に分岐接続され、過冷却器用減圧 手段が設けられた副冷媒回路とに対し、上記主冷媒回路と副冷媒回路との分岐部に おける上記副冷媒回路の最高高さ位置が主冷媒回路の最低高さ位置よりも低い構 造を有することを特徴とする冷凍システム。  The subcooler refrigerant flow rate increasing means includes a main refrigerant circuit provided with a main cooler and a decompressing means for the main cooler, an upstream end branched and connected to an upstream end of the main refrigerant circuit, and a subcooler depressurizing means provided. In contrast to the auxiliary refrigerant circuit, the maximum height position of the auxiliary refrigerant circuit at the branch between the main refrigerant circuit and the auxiliary refrigerant circuit is lower than the minimum height position of the main refrigerant circuit. And refrigeration system.
[5] 請求項 3の冷凍システムにおいて、  [5] The refrigeration system according to claim 3,
過冷却器冷媒流量増加手段は、主冷媒回路と副冷媒回路との分岐部における副 冷媒回路の最高高さ位置が主冷媒回路の最低高さ位置よりも低い構造を有すること を特徴とする冷凍システム。  The supercooler refrigerant flow rate increasing means has a structure in which the highest position of the sub-refrigerant circuit at the branch between the main refrigerant circuit and the sub-refrigerant circuit is lower than the lowest position of the main refrigerant circuit. system.
[6] 請求項 1一 5のいずれかの冷凍システムの主冷却器により真空チャンバ内の水分を 冷却により凍結させるように構成されていることを特徴とする真空装置。  [6] A vacuum apparatus characterized in that the main cooler of the refrigeration system according to any one of claims 11 to 5 freezes moisture in the vacuum chamber by cooling.
[7] 沸点が互いに異なる複数種類の冷媒を混合した混合冷媒を圧縮する圧縮機と、 上記圧縮機から吐出された混合冷媒のうちの高沸点の冷媒を冷却して液化する凝 縮器と、  [7] A compressor that compresses a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, a condenser that cools and liquefies a high-boiling refrigerant among the mixed refrigerant discharged from the compressor,
上記圧縮機の吐出側カゝら凝縮器に至る混合冷媒から、混入された冷凍機油を除去 する第 1の油分離器と、  A first oil separator for removing mixed refrigerating machine oil from the refrigerant mixture reaching the condenser on the discharge side of the compressor,
上記凝縮器で液化された混合冷媒を高沸点冷媒から低沸点冷媒へと順次液冷媒 とガス冷媒とに分離する複数段の気液分離器と、  A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied by the condenser from a high-boiling refrigerant to a low-boiling refrigerant into a liquid refrigerant and a gas refrigerant,
上記各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減 圧された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交換器と、 上記複数段のうちの最終段のカスケード熱交^^から吐出されかつ減圧された低 沸点冷媒を蒸発させて冷却対象を超低温レベルに冷却する冷却器と、 上記冷却器のデフロスト時に、上記圧縮機から吐出された混合冷媒を冷却器に供 給するデフロスト回路とを備え、 A multi-stage cascade heat exchanger for cooling the gas refrigerant separated by the gas-liquid separators by exchanging heat with the liquid refrigerant separated and reduced in the gas-liquid separators; A cooler that evaporates the low-boiling refrigerant discharged and depressurized from the cascade heat exchange of the last stage of the plurality of stages to cool the object to be cooled to an ultra-low temperature level; A defrost circuit for supplying the mixed refrigerant discharged from the compressor to the cooler when the cooler is defrosted,
上記デフロスト回路に、上記混合冷媒から冷凍機油を除去する第 2の油分離器が 配設されて!/ゝることを特徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus characterized in that a second oil separator for removing refrigeration oil from the mixed refrigerant is provided in the defrost circuit!
[8] 請求項 7の超低温冷凍装置において、 [8] The ultra-low temperature refrigeration apparatus according to claim 7,
デフロスト回路には、デフロスト時に開く開閉弁が設けられており、  The defrost circuit is provided with an on-off valve that opens during defrost,
第 2の油分離器は、上記デフロスト回路の上流端力 上記開閉弁までの間に配設 されて ヽることを特徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus, wherein the second oil separator is disposed between the upstream end force of the defrost circuit and the open / close valve.
[9] 請求項 7又は 8の超低温冷凍装置において、 [9] The ultra-low temperature refrigeration apparatus according to claim 7 or 8,
第 2の油分離器は、デフロスト回路の上流端までの距離がデフロスト回路の下流端 までの距離よりも短くなる位置に配設されていることを特徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus, wherein the second oil separator is disposed at a position where a distance to an upstream end of the defrost circuit is shorter than a distance to a downstream end of the defrost circuit.
[10] 沸点が互いに異なる複数種類の冷媒を混合した混合冷媒を圧縮する圧縮機と、 上記圧縮機から吐出された混合冷媒のうちの高沸点の冷媒を冷却して液化する凝 縮器と、 [10] A compressor that compresses a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, a condenser that cools and liquefies a high-boiling refrigerant among the mixed refrigerant discharged from the compressor,
上記凝縮器で液化された混合冷媒を高沸点冷媒から低沸点冷媒へと順次液冷媒 とガス冷媒とに分離する複数段の気液分離器と、  A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied in the condenser from a high-boiling refrigerant to a low-boiling refrigerant into a liquid refrigerant and a gas refrigerant,
上記各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減 圧された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交換器と、 上記複数段のうちの最終段のカスケード熱交^^から吐出されかつ減圧された低 沸点冷媒を蒸発させて冷却対象を超低温レベルに冷却する冷却器とが冷媒回路に より接続され、  A multi-stage cascade heat exchanger for cooling the gas refrigerant separated by the gas-liquid separators by exchanging heat with the liquid refrigerant separated and reduced in the gas-liquid separators; A refrigerant circuit is connected by a refrigerant circuit to a cooler that evaporates a low-boiling point refrigerant discharged and decompressed from the cascade heat exchange in the last stage of the plurality of stages to cool the object to be cooled to an ultra-low temperature level,
上記冷媒回路に、上記圧縮機の吐出圧力の異常上昇を抑制する複数のバッファタ ンクが接続されて ヽることを特徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus, wherein a plurality of buffer tanks for suppressing an abnormal rise in the discharge pressure of the compressor are connected to the refrigerant circuit.
[11] 請求項 10の超低温冷凍装置において、 [11] The ultra-low-temperature refrigeration apparatus according to claim 10,
複数のバッファタンクは、少なくとも 1つの第 1のバッファタンクと、該第 1のバッファタ ンクよりも下側に位置する少なくとも 1つの第 2のノ ッファタンクとからなり、  The plurality of buffer tanks include at least one first buffer tank and at least one second buffer tank located below the first buffer tank.
上記第 1及び第 2のバッファタンクは、ガス冷媒を第 1及び第 2のバッファタンク間で 流通させる連通路によって互いに接続され、 上記第 2のバッファタンクに圧縮機の吐出側及び吸込側の冷媒回路が接続されて Vヽることを特徴とする超低温冷凍装置。 The first and second buffer tanks are connected to each other by a communication path that allows the gas refrigerant to flow between the first and second buffer tanks, An ultra-low-temperature refrigeration apparatus characterized in that a refrigerant circuit on a discharge side and a suction side of a compressor is connected to the second buffer tank so that the refrigerant is cooled.
[12] 請求項 10の超低温冷凍装置において、 [12] The ultra-low temperature refrigeration apparatus according to claim 10,
複数のバッファタンクは、少なくとも 1つの第 1のバッファタンクと、少なくとも 1つの第 2のバッファタンクとからなり、  The plurality of buffer tanks includes at least one first buffer tank and at least one second buffer tank,
上記第 1及び第 2のバッファタンクは、ガス冷媒を第 1及び第 2のバッファタンク間で 流通させる連通路によって互いに接続され、  The first and second buffer tanks are connected to each other by a communication path that allows the gas refrigerant to flow between the first and second buffer tanks,
上記第 1のバッファタンクが圧縮機の吐出側の冷媒回路に接続され、  The first buffer tank is connected to a refrigerant circuit on a discharge side of the compressor,
上記連通路が途中で圧縮機の吸込側の冷媒回路に接続されていることを特徴とす る超低温冷凍装置。  An ultra-low-temperature refrigeration apparatus characterized in that the communication path is connected to a refrigerant circuit on the suction side of the compressor in the middle.
[13] 請求項 10の超低温冷凍装置において、 [13] The ultra-low temperature refrigeration apparatus according to claim 10,
複数のバッファタンクは、少なくとも 1つの第 1のバッファタンクと、少なくとも 1つの第 2のバッファタンクとからなり、  The plurality of buffer tanks includes at least one first buffer tank and at least one second buffer tank,
上記第 1及び第 2のバッファタンクは、ガス冷媒を第 1及び第 2のバッファタンク間で 流通させる連通路によって互いに接続され、  The first and second buffer tanks are connected to each other by a communication path that allows the gas refrigerant to flow between the first and second buffer tanks,
上記第 1のバッファタンクが圧縮機の吐出側の冷媒回路に接続され、  The first buffer tank is connected to a refrigerant circuit on a discharge side of the compressor,
上記第 2のバッファタンクが圧縮機の吸込側の冷媒回路に接続されていることを特 徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus characterized in that the second buffer tank is connected to a refrigerant circuit on a suction side of a compressor.
[14] 沸点が互いに異なる複数種類の冷媒を混合した混合冷媒を圧縮する圧縮機と、 上記圧縮機から吐出された混合冷媒のうちの高沸点の冷媒を冷却して液化する凝 縮器と、 [14] A compressor that compresses a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, a condenser that cools and liquefies a high-boiling refrigerant of the mixed refrigerant discharged from the compressor,
上記凝縮器で液化された混合冷媒を高沸点冷媒から低沸点冷媒へと順次液冷媒 とガス冷媒とに分離する複数段の気液分離器と、  A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied in the condenser from a high-boiling refrigerant to a low-boiling refrigerant into a liquid refrigerant and a gas refrigerant,
上記各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減 圧された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交換器と、 上記複数段のうちの最終段のカスケード熱交^^から吐出されかつ減圧された低 沸点冷媒を蒸発させて冷却対象を超低温レベルに冷却する冷却器とが接続された 冷媒回路を備えるとともに、 上記冷却器のデフロスト時に、上記圧縮機から吐出された混合冷媒を冷却器に供 給するデフロスト回路を備えた超低温冷凍装置において、 A multi-stage cascade heat exchanger for cooling the gas refrigerant separated by the gas-liquid separators by exchanging heat with the liquid refrigerant separated and reduced in the gas-liquid separators; A refrigerant circuit connected to a cooler for evaporating the decompressed low-boiling-point refrigerant discharged from the last-stage cascade heat exchanger of the plurality of stages and cooling the object to be cooled to an ultra-low temperature level, An ultra-low-temperature refrigeration system including a defrost circuit for supplying the mixed refrigerant discharged from the compressor to the cooler when the cooler is defrosted,
上記デフロスト回路の下流端部が主分岐回路と副分岐回路とに分岐しており、 上記主分岐回路の下流端が冷却器の入口側の冷媒回路に接続されている一方、 副分岐回路の下流端が冷却器の出口側の冷媒回路に接続されていることを特徴と する超低温冷凍装置。  The downstream end of the defrost circuit is branched into a main branch circuit and a sub-branch circuit, and the downstream end of the main branch circuit is connected to the refrigerant circuit on the inlet side of the cooler, while the downstream end of the sub-branch circuit An ultra-low-temperature refrigeration apparatus characterized in that the end is connected to a refrigerant circuit on the outlet side of a cooler.
[15] 請求項 14の超低温冷凍装置において、 [15] The ultra-low temperature refrigeration apparatus according to claim 14,
副分岐回路に開閉弁が設けられていることを特徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus, wherein an on-off valve is provided in a sub-branch circuit.
[16] 沸点が互いに異なる複数種類の冷媒を混合した混合冷媒を圧縮する圧縮機と、 上記圧縮機から吐出された混合冷媒のうちの高沸点の冷媒を冷却して液化する凝 縮器と、 [16] A compressor that compresses a mixed refrigerant obtained by mixing a plurality of types of refrigerants having different boiling points, a condenser that cools and liquefies a high-boiling refrigerant of the mixed refrigerant discharged from the compressor,
上記凝縮器で液化された混合冷媒を高沸点冷媒から低沸点冷媒へと順次液冷媒 とガス冷媒とに分離する複数段の気液分離器と、  A multi-stage gas-liquid separator for sequentially separating the mixed refrigerant liquefied by the condenser from a high-boiling refrigerant to a low-boiling refrigerant into a liquid refrigerant and a gas refrigerant,
上記各気液分離器で分離されたガス冷媒を、該各気液分離器で分離されかつ減 圧された液冷媒との間で熱交換させて冷却する複数段のカスケード熱交換器と、 上記複数段のうちの最終段のカスケード熱交 力 吐出された低沸点冷媒を減 圧する減圧手段と、  A multi-stage cascade heat exchanger for cooling the gas refrigerant separated by the gas-liquid separators by exchanging heat with the liquid refrigerant separated and reduced in the gas-liquid separators; A cascade heat exchange at the last stage of the plurality of stages; a pressure reducing means for reducing the pressure of the discharged low-boiling refrigerant;
上記減圧手段で減圧された低沸点冷媒を蒸発させて冷却対象を超低温レベルに 冷却する冷却器とが冷媒回路によって接続された超低温冷凍装置において、 上記最終段のカスケード熱交 力 冷却器へ冷媒を供給する冷媒回路は、互 、 に並列に接続された複数の分岐回路力 なり、  In an ultra-low temperature refrigeration system in which a low-boiling-point refrigerant decompressed by the decompression means is evaporated to cool the object to be cooled to an ultra-low temperature level by a refrigerant circuit, the refrigerant is supplied to the last-stage cascade heat exchange cooler. The refrigerant circuit to be supplied is composed of a plurality of branch circuits connected in parallel to each other.
上記減圧手段は、上記複数の分岐回路の各々に直列に接続された複数の分岐減 圧手段からなり、  The pressure reducing means includes a plurality of branch pressure reducing means connected in series to each of the plurality of branch circuits,
上記複数の分岐回路のうちの少なくとも 1つに冷媒が流れるように切り換える切換 手段が設けられて!/ヽることを特徴とする超低温冷凍装置。  An ultra-low-temperature refrigeration apparatus characterized in that switching means for switching the refrigerant to flow through at least one of the plurality of branch circuits is provided.
[17] 請求項 16の超低温冷凍装置において、 [17] The ultra-low temperature refrigeration apparatus according to claim 16,
切換手段は、複数の分岐回路のうちの少なくとも 1つに設けられた開閉弁であること を特徴とする超低温冷凍装置。 The switching means is an on-off valve provided in at least one of the plurality of branch circuits.
[18] 請求項 16又は 17の超低温冷凍装置において、 [18] The ultra-low temperature refrigeration apparatus according to claim 16 or 17,
複数の分岐減圧手段は、それぞれ異なる減圧能力を有して!ヽることを特徴とする超 低温冷凍装置。  The ultra-low-temperature refrigeration system, wherein the plurality of branch pressure reducing means have different pressure reducing capabilities.
[19] 請求項 16— 18のうちいずれかの超低温冷凍装置において、  [19] The cryogenic refrigerator according to any one of claims 16 to 18, wherein
分岐減圧手段は、キヤビラリチューブであることを特徴とする超低温冷凍装置。  An ultra-low temperature refrigeration apparatus, wherein the branch pressure reducing means is a capillary tube.
[20] 請求項 6— 19のいずれかの超低温冷凍装置の冷却器により真空チャンバ内の水 分を冷却により凍結させるように構成されていることを特徴とする真空装置。 [20] A vacuum apparatus, wherein the cooler of the ultra-low temperature refrigeration apparatus according to any one of claims 6 to 19 is configured to freeze water in the vacuum chamber by cooling.
PCT/JP2005/000024 2004-01-07 2005-01-05 Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus WO2005066554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/585,463 US20090188270A1 (en) 2004-01-07 2005-01-05 Ultra-low temperature freezer, refrigeration system and vacuum apparatus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-002344 2004-01-07
JP2004002344A JP2005195258A (en) 2004-01-07 2004-01-07 Refrigeration system and vacuum deposition device
JP2004-012692 2004-01-21
JP2004012692A JP2005207637A (en) 2004-01-21 2004-01-21 Extremely low temperature refrigerating device
JP2004014074A JP2005207661A (en) 2004-01-22 2004-01-22 Extremely low temperature refrigerating device
JP2004-014064 2004-01-22
JP2004014064A JP4326353B2 (en) 2004-01-22 2004-01-22 Ultra-low temperature refrigeration equipment
JP2004-014074 2004-01-22
JP2004-014143 2004-01-22
JP2004014143A JP2005207662A (en) 2004-01-22 2004-01-22 Extremely low temperature refrigerating device

Publications (1)

Publication Number Publication Date
WO2005066554A1 true WO2005066554A1 (en) 2005-07-21

Family

ID=34753943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000024 WO2005066554A1 (en) 2004-01-07 2005-01-05 Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus

Country Status (4)

Country Link
US (1) US20090188270A1 (en)
CN (2) CN101963409B (en)
TW (1) TW200532153A (en)
WO (1) WO2005066554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176075A (en) * 2018-03-29 2019-10-10 東京エレクトロン株式会社 Cooling system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131604A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
CN102414160B (en) 2009-05-15 2014-06-04 株式会社日本触媒 Method for producing (meth)acrylic acid and crystallization system
CN103857968B (en) * 2011-07-01 2016-11-23 布鲁克机械公司 For freezing heat-exchanger array is heated, for compact and effective refrigeration and the System and method for for adaptive power management
CN103712494A (en) * 2014-01-09 2014-04-09 缪志先 Integral-box-shaped stacked heat exchanger with gas-liquid separation device
EP3109572B1 (en) * 2015-06-22 2019-05-01 Lg Electronics Inc. Refrigerator
KR102479532B1 (en) * 2015-07-28 2022-12-21 엘지전자 주식회사 Refrigerator
US10648701B2 (en) 2018-02-06 2020-05-12 Thermo Fisher Scientific (Asheville) Llc Refrigeration systems and methods using water-cooled condenser and additional water cooling
JP6957026B2 (en) * 2018-05-31 2021-11-02 伸和コントロールズ株式会社 Refrigeration equipment and liquid temperature control equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116369U (en) * 1988-01-29 1989-08-04
JPH03191269A (en) * 1989-12-18 1991-08-21 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH0583668U (en) * 1992-03-31 1993-11-12 新明和工業株式会社 Refrigeration equipment
JPH06159817A (en) * 1992-11-19 1994-06-07 Toshiba Corp Air-conditioning device for vehicle
JPH06159831A (en) * 1992-11-19 1994-06-07 Shin Meiwa Ind Co Ltd Refrigerating plant
JPH06347112A (en) * 1993-04-15 1994-12-20 Shin Meiwa Ind Co Ltd Cooling device
JPH07103587A (en) * 1993-09-30 1995-04-18 Shin Meiwa Ind Co Ltd Cooling equipment
JPH09145179A (en) * 1995-11-24 1997-06-06 Mac:Kk Binary type cryogenic refrigerator with mixed refrigerant
JP2000179968A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerating cycle for air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2248318B (en) * 1990-09-06 1994-11-02 Perkin Elmer Ltd Temperature control systems
KR100343638B1 (en) * 1994-06-29 2002-12-28 다이킨 고교 가부시키가이샤 Freezer
JP3094997B2 (en) * 1998-09-30 2000-10-03 ダイキン工業株式会社 Refrigeration equipment
JP2004502024A (en) * 2000-06-28 2004-01-22 アイジーシー ポリコールド システムズ インコーポレイテッド Nonflammable mixed refrigerant used in cryogenic throttle cycle refrigeration system
JP4277078B2 (en) * 2001-10-26 2009-06-10 ブルックス オートメイション インコーポレーテッド Method for preventing freeze-out of cryogenic mixed refrigerant system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116369U (en) * 1988-01-29 1989-08-04
JPH03191269A (en) * 1989-12-18 1991-08-21 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH0583668U (en) * 1992-03-31 1993-11-12 新明和工業株式会社 Refrigeration equipment
JPH06159817A (en) * 1992-11-19 1994-06-07 Toshiba Corp Air-conditioning device for vehicle
JPH06159831A (en) * 1992-11-19 1994-06-07 Shin Meiwa Ind Co Ltd Refrigerating plant
JPH06347112A (en) * 1993-04-15 1994-12-20 Shin Meiwa Ind Co Ltd Cooling device
JPH07103587A (en) * 1993-09-30 1995-04-18 Shin Meiwa Ind Co Ltd Cooling equipment
JPH09145179A (en) * 1995-11-24 1997-06-06 Mac:Kk Binary type cryogenic refrigerator with mixed refrigerant
JP2000179968A (en) * 1998-12-18 2000-06-30 Fujitsu General Ltd Refrigerating cycle for air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176075A (en) * 2018-03-29 2019-10-10 東京エレクトロン株式会社 Cooling system
JP6994419B2 (en) 2018-03-29 2022-01-14 東京エレクトロン株式会社 Cooling system

Also Published As

Publication number Publication date
CN101943498A (en) 2011-01-12
CN101963409B (en) 2012-07-25
US20090188270A1 (en) 2009-07-30
TW200532153A (en) 2005-10-01
CN101963409A (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP6456633B2 (en) Turbo refrigerator
KR20030077639A (en) Ultra-low temperature closed-loop recirculating gas chilling system
EP2910871B1 (en) Refrigeration device
KR101220583B1 (en) Freezing device
KR101220741B1 (en) Freezing device
WO2005066554A1 (en) Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus
EP3851764A1 (en) Cooling system with flooded low side heat exchangers
JP2008185256A (en) Refrigerating device
JP4326353B2 (en) Ultra-low temperature refrigeration equipment
TWI624634B (en) Flow path switching device, refrigeration cycle circuit and refrigerator
JP4413128B2 (en) Ultra-low temperature cooling device
KR20210014091A (en) Refrigeration unit and liquid temperature control unit
JP2009186074A (en) Refrigerating device
KR20180056854A (en) High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor
JP2005195258A (en) Refrigeration system and vacuum deposition device
JP2013002737A (en) Refrigeration cycle device
JP2009180442A (en) Refrigeration system
JP2008185257A (en) Refrigerating device
JP2009174739A (en) Mixed refrigerant cooling device
JP2005207637A (en) Extremely low temperature refrigerating device
JP2005207661A (en) Extremely low temperature refrigerating device
JP3596825B2 (en) Low pressure control device for cryogenic refrigerator
JP2004271110A (en) Cooling device and cooling method for the same
JP2005207662A (en) Extremely low temperature refrigerating device
JPH06347112A (en) Cooling device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10585463

Country of ref document: US

Ref document number: 200580002097.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase