JPH06347112A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH06347112A
JPH06347112A JP2053094A JP2053094A JPH06347112A JP H06347112 A JPH06347112 A JP H06347112A JP 2053094 A JP2053094 A JP 2053094A JP 2053094 A JP2053094 A JP 2053094A JP H06347112 A JPH06347112 A JP H06347112A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
branch
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2053094A
Other languages
Japanese (ja)
Inventor
Hiroshi Ariyoshi
寛 有吉
Yasuhiro Onishi
泰寛 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2053094A priority Critical patent/JPH06347112A/en
Publication of JPH06347112A publication Critical patent/JPH06347112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To provide a cooling device in which a defrosting operation for an evaporator can be performed within a short period of time and the evaporator can be efficiently returned back to a desired cooling temperature. CONSTITUTION:A cooling device 1 is comprised of a compressor 2, a condensor 3, gas-liquid separators 4, 5, cascade heat exchangers 6, 7, 8, capillary tubes 9, 10, 11 and an evaporator 12. They are connected by a refrigerant supplying pipe 13 and a refrigerant returning pipe 14. Within a freezing cycle, a plurality of kinds of refrigerants having different boiling points are enclosed. There is provide a branched supplying pipe 16 extending from a discharging side of the compressor 2 to an inlet port of the evaporator 12. There is also provided a branch returning pipe 18 extending from an outlet port of the evaporator 12 to a suction side of the compressor 2. The branch supplying pipe 16 and the branch returning pipe 18 are provided with solenoid valves 17, 19 which are operated to close the pipes in such a manner that they may be freely opened or closed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カスケード式冷凍サイ
クルを用いた冷却装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a cooling device using a cascade type refrigeration cycle.

【0002】[0002]

【従来の技術】従来、カスケード式冷凍サイクルを用い
た超低温を得るための冷却装置として、特開平2−17
6371号公報等に開示された装置があり、近年、ウェ
ーハ等の製造において、ロードロック室等における水分
やガスのトラップに利用されている。
2. Description of the Related Art Conventionally, as a cooling device for obtaining an ultralow temperature using a cascade type refrigeration cycle, Japanese Patent Laid-Open No. 2-17
There is an apparatus disclosed in Japanese Patent No. 6371, etc., and in recent years, it has been used for trapping moisture or gas in a load lock chamber or the like in the production of wafers or the like.

【0003】例えば、図7に示される冷却装置101に
おいては、圧縮機102と、凝縮器103と、第1およ
び第2の気液分離器104、105と、第1ないし第3
のカスケード熱交換器106、107、108と、第1
ないし第3のキャピラリチュ−ブ(膨張手段)109、
110、111と、蒸発器112とが備えられ、これら
が冷媒供給管路113と冷媒戻り管路114により適宜
配管接続され、冷凍サイクルの循環経路が構成されてい
る。
For example, in the cooling device 101 shown in FIG. 7, the compressor 102, the condenser 103, the first and second gas-liquid separators 104 and 105, and the first to third parts.
The cascade heat exchangers 106, 107, 108 of the first
To a third capillary tube (expansion means) 109,
110, 111 and an evaporator 112 are provided, and these are appropriately pipe-connected by a refrigerant supply pipe line 113 and a refrigerant return pipe line 114 to form a refrigeration cycle circulation path.

【0004】また、この冷凍サイクル内に沸点温度の異
なる複数種類の成分の冷媒が混合されて封入されてい
る。
Further, a plurality of types of refrigerants having different boiling points are mixed and enclosed in this refrigeration cycle.

【0005】そして、圧縮機102から吐出された高
温、高圧の混合ガス冷媒は凝縮器103で水または空気
によって冷却され、一部が凝縮されて気液混相の冷媒と
なり第1の気液分離器104に送り込まれる。ここで、
気液混相の冷媒は気相冷媒と液相冷媒とに分離されて、
液相冷媒は第1のキャピラリチュ−ブ109で減圧膨張
された後、冷媒戻り管路114の戻り冷媒と合流する。
一方、気相冷媒は第1のカスケード熱交換器106に送
り込まれ、そこで冷媒戻り管路114の戻り冷媒との熱
交換により冷却されて、一部が凝縮液化して気液混相の
冷媒となり、第2の気液分離器105に送り込まれる。
The high-temperature, high-pressure mixed gas refrigerant discharged from the compressor 102 is cooled by water or air in the condenser 103, and a part thereof is condensed to become a gas-liquid mixed phase refrigerant, which is the first gas-liquid separator. It is sent to 104. here,
The gas-liquid mixed phase refrigerant is separated into a gas phase refrigerant and a liquid phase refrigerant,
The liquid-phase refrigerant is decompressed and expanded by the first capillary tube 109 and then merges with the return refrigerant in the refrigerant return pipe line 114.
On the other hand, the gas-phase refrigerant is sent to the first cascade heat exchanger 106, where it is cooled by heat exchange with the return refrigerant in the refrigerant return line 114, and a part thereof is condensed and liquefied to become a gas-liquid mixed phase refrigerant, It is sent to the second gas-liquid separator 105.

【0006】第2の気液分離器105、第2のカスケー
ド熱交換器107、および第2のキャピラリチュ−ブ1
10においても上記と同様な動作が繰り返される。
The second gas-liquid separator 105, the second cascade heat exchanger 107, and the second capillary tube 1
Also in 10, the same operation as described above is repeated.

【0007】以上のようにして、混合冷媒のうち沸点の
高い成分の冷媒から順に冷媒戻り管路114を通じて圧
縮機102側に戻され、最も沸点の低い成分の冷媒が気
相状態で第2のカスケード熱交換器107に送り込ま
れ、そこで冷却されて凝縮され、さらに第3のカスケー
ド熱交換器108で冷却された後、第3のキャピラリチ
ューブ111に送り込まれる。
As described above, the refrigerant having the highest boiling point in the mixed refrigerant is returned to the compressor 102 side in order from the refrigerant having the highest boiling point component, and the refrigerant having the lowest boiling point is in the second phase in the vapor phase state. It is sent to the cascade heat exchanger 107, cooled and condensed there, further cooled by the third cascade heat exchanger 108, and then sent to the third capillary tube 111.

【0008】そして、液相状態の冷媒は第3のキャピラ
リチュ−ブ111で減圧膨張されて気液混相状態とな
り、蒸発器112に送り込まれる。蒸発器112に送り
込まれた冷媒は、蒸発器112で熱を吸収して蒸発し、
ここに蒸発器112を超低温に冷却する。
Then, the refrigerant in the liquid phase state is decompressed and expanded by the third capillary tube 111 to be in a gas-liquid mixed phase state, and sent to the evaporator 112. The refrigerant sent to the evaporator 112 absorbs heat in the evaporator 112 and evaporates,
Here, the evaporator 112 is cooled to an ultralow temperature.

【0009】また、蒸発器112から冷媒戻り管路11
4に流出した気相状態の戻り冷媒は第3ないし第1のカ
スケード熱交換器108、107、106を順次経由し
て自身の温度を次第に上昇させながら、最終的に常温の
低圧ガスとなって圧縮機102に戻るよう構成されてい
る。
Further, the refrigerant return line 11 from the evaporator 112
The return refrigerant in the gas phase that has flowed out to No. 4 gradually passes through the third to first cascade heat exchangers 108, 107 and 106 to gradually increase its own temperature and finally become a low pressure gas at room temperature. It is configured to return to the compressor 102.

【0010】そして、図5や図6に示される如く、冷却
装置101の蒸発器112がロードロック室等の真空チ
ャンバ120内や、真空ポンプ121と真空チャンバ1
20とを接続する配管122内に設置され、真空チャン
バ120内の水分やガスをトラップするよう構成されて
いる。なお、各図において、123は真空チャンバ12
0の開閉扉、124は真空チャンバ120と配管122
との連通路を開閉自在に遮断するゲートバルブである。
As shown in FIG. 5 and FIG. 6, the evaporator 112 of the cooling device 101 is installed in the vacuum chamber 120 such as a load lock chamber or the vacuum pump 121 and the vacuum chamber 1.
It is installed in a pipe 122 connecting with 20 and is configured to trap water and gas in the vacuum chamber 120. In each figure, 123 is the vacuum chamber 12.
0 open / close door, 124 is vacuum chamber 120 and piping 122
It is a gate valve that opens and closes the communication path with and.

【0011】[0011]

【発明が解決しようとする課題】そして、蒸発器112
による水分等のトラップ量が増加すれば、デフロスト作
業が必要とされ、また、蒸発器112は超低温であるた
め、真空チャンバ120内へのウェーハ等の出し入れに
際し、真空チャンバ120を大気開放する場合は、図5
に示される如く、蒸発器112が真空チャンバ120内
にあればデフロスト作業終了後に、図6に示される如
く、蒸発器112が配管122内にあればゲートバルブ
124を閉じた後に開閉扉123を開放する必要があ
る。
Then, the evaporator 112 is provided.
If the amount of trapped moisture or the like increases due to the defrosting work, and the evaporator 112 is at an extremely low temperature, when the vacuum chamber 120 is opened to the atmosphere when the wafer is taken in and out of the vacuum chamber 120, , Fig. 5
6, if the evaporator 112 is in the vacuum chamber 120, the defrosting work is completed. If the evaporator 112 is in the pipe 122, the gate valve 124 is closed and the opening / closing door 123 is opened, as shown in FIG. There is a need to.

【0012】しかしながら、従来、この種の冷却装置1
01における蒸発器112のデフロスト作業は、図7に
示される如く、蒸発器112に備えられたヒータ126
の加熱による方法であり、デフロスト作業に長時間を要
し、非常に効率が悪いという問題があった。また、第1
ないし3のキャピラリチューブ109、110、111
には、水分やオイルが蓄積し易く、冷媒の循環が悪くな
って、冷却効率が低下するという問題もあった。
However, heretofore, this type of cooling device 1 has been used.
The defrosting operation of the evaporator 112 in 01 is performed by the heater 126 provided in the evaporator 112 as shown in FIG.
However, this method requires a long time for the defrosting work, and there is a problem that it is very inefficient. Also, the first
No. 3 to No. 3 capillary tubes 109, 110, 111
However, there is a problem that water and oil are likely to be accumulated, the circulation of the refrigerant is deteriorated, and the cooling efficiency is reduced.

【0013】そこで、本発明は上記問題点に鑑み、デフ
ロスト作業を短時間で行うことができ、しかもその後に
所望の冷却温度に効率よく戻すことができる冷却装置を
提供することを目的とする。また、膨張手段(キャピラ
リチューブ)への水分やオイルの蓄積を容易に解除でき
る冷却装置を提供することを目的とする。
Therefore, in view of the above problems, it is an object of the present invention to provide a cooling device capable of performing a defrosting operation in a short time and efficiently returning to a desired cooling temperature thereafter. Another object of the present invention is to provide a cooling device that can easily release the accumulation of water and oil in the expansion means (capillary tube).

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
の第1の技術的手段は、沸点温度の異なる複数種類の冷
媒が混合されてなる冷媒を圧縮機で圧縮し、圧縮機から
吐出された冷媒を凝縮器で冷却し、凝縮器で冷却された
冷媒を高沸点の液相冷媒と気相冷媒に気液分離器で分離
し、分離された高沸点の液相冷媒は膨張手段で減圧して
カスケード熱交換器で前記気液分離器で分離された気相
冷媒を冷却すると共に圧縮機側に戻され、順次、気液分
離器で分離された気相冷媒を冷却して気液分離および冷
却を繰り返してより高沸点の冷媒を圧縮機側に戻すと共
に低沸点の冷媒を抽出して蒸発器に案内し、蒸発器で低
沸点の冷媒を蒸発させて冷却作用を行った後、カスケー
ド熱交換器を経由して圧縮機に戻す冷却装置において、
前記圧縮機の吐出側から凝縮器に至る冷媒供給管路途中
から分岐され、かつ蒸発器の入口側に接続された分岐供
給管と、蒸発器の出口側からカスケード熱交換器に至る
冷媒戻り管路途中から分岐され、かつ圧縮機の吸入側に
接続された分岐戻り管とが設けられると共に、前記分岐
供給管および分岐戻り管にその管路を開閉自在に遮断す
る開閉弁がそれぞれ備えられてなる点にある。
A first technical means for achieving the above object is to compress a refrigerant, which is a mixture of plural kinds of refrigerants having different boiling points, with a compressor, and to discharge the refrigerant from the compressor. The refrigerant is cooled by a condenser, and the refrigerant cooled by the condenser is separated into a high-boiling-point liquid-phase refrigerant and a vapor-phase refrigerant by a gas-liquid separator, and the separated high-boiling-point liquid phase refrigerant is decompressed by an expansion means. Then, the cascade heat exchanger cools the gas-phase refrigerant separated by the gas-liquid separator and returns it to the compressor side, which in turn cools the gas-phase refrigerant separated by the gas-liquid separator to separate the gas-liquid. And cooling is repeated to return the higher boiling point refrigerant to the compressor side, extract the low boiling point refrigerant and guide it to the evaporator, evaporate the low boiling point refrigerant in the evaporator to perform the cooling action, and then cascade. In the cooling device that returns to the compressor via the heat exchanger,
A branch supply pipe branched from the middle of the refrigerant supply line from the discharge side of the compressor to the condenser and connected to the inlet side of the evaporator, and a refrigerant return pipe from the outlet side of the evaporator to the cascade heat exchanger. A branch return pipe that is branched from the middle of the passage and is connected to the suction side of the compressor is provided, and the branch supply pipe and the branch return pipe are respectively provided with open / close valves that open and close the pipe passages. There is a point.

【0015】また、上記目的を達成するための第2の技
術的手段は、沸点温度の異なる複数種類の冷媒が混合さ
れてなる冷媒を圧縮機で圧縮し、圧縮機から吐出された
冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高沸
点の液相冷媒と気相冷媒に気液分離器で分離し、分離さ
れた高沸点の液相冷媒は膨張手段で減圧してカスケード
熱交換器で前記気液分離器で分離された気相冷媒を冷却
すると共に圧縮機側に戻され、順次、気液分離器で分離
された気相冷媒を冷却して気液分離および冷却を繰り返
してより高沸点の冷媒を圧縮機側に戻すと共に低沸点の
冷媒を抽出して蒸発器に案内し、蒸発器で低沸点の冷媒
を蒸発させて冷却作用を行った後、カスケード熱交換器
を経由して圧縮機に戻す冷却装置において、前記圧縮機
の吐出側から凝縮器に至る冷媒供給管路途中から分岐さ
れ、かつ蒸発器の入口側に接続された分岐供給管が設け
られると共に、該分岐供給管の管路を開閉自在に遮断す
る開閉弁が備えられ、蒸発器の出口側からカスケード熱
交換器に至る冷媒戻り管路途中から分岐され、かつ前記
圧縮機の吐出側から凝縮器に至る冷媒供給管路の前記分
岐供給管分岐位置と凝縮器との間に接続された分岐戻り
管が設けられると共に、該分岐戻り管の管路を開閉自在
に遮断する開閉弁が備えられ、前記分岐供給管分岐位置
と分岐戻り管の接続位置との間で前記冷媒供給管路を開
閉自在に遮断する開閉弁が備えられると共に、前記蒸発
器の出口側からカスケード熱交換器に至る冷媒戻り管路
の前記分岐戻り管分岐位置とカスケード熱交換器との間
で前記冷媒戻り管路を開閉自在に遮断する開閉弁が備え
られてなる点にある。
A second technical means for achieving the above object is to compress a refrigerant, which is a mixture of plural kinds of refrigerants having different boiling points, with a compressor, and to condense the refrigerant discharged from the compressor. The refrigerant cooled in the condenser and the refrigerant cooled in the condenser are separated into the high boiling liquid phase refrigerant and the vapor phase refrigerant by the gas-liquid separator, and the separated high boiling liquid phase refrigerant is decompressed by the expansion means to generate the cascade heat. The exchanger cools the gas-phase refrigerant separated by the gas-liquid separator and returns to the compressor side, and sequentially cools the gas-phase refrigerant separated by the gas-liquid separator to repeat gas-liquid separation and cooling. The higher boiling point refrigerant is returned to the compressor side, the low boiling point refrigerant is extracted and guided to the evaporator, and the low boiling point refrigerant is evaporated in the evaporator to perform the cooling operation, and then the cascade heat exchanger is set. In the cooling device that returns to the compressor via the condenser from the discharge side of the compressor Is provided with a branch supply pipe that is branched from the middle of the refrigerant supply pipe and that is connected to the inlet side of the evaporator, and an on-off valve that opens and closes the pipe of the branch supply pipe is provided. Connected from the branch supply pipe branching position of the refrigerant supply pipe from the discharge side of the compressor to the condenser and between the condenser and the refrigerant return pipe from the outlet side of the compressor to the cascade heat exchanger. Is provided with an opening / closing valve that opens and closes the pipe line of the branch return pipe, and the refrigerant supply pipe is provided between the branch supply pipe branch position and the connection position of the branch return pipe. An on-off valve that opens and closes the passage is provided, and the refrigerant return pipe between the branch return pipe branch position of the refrigerant return pipe passage from the outlet side of the evaporator to the cascade heat exchanger and the cascade heat exchanger. Open and close the pipeline freely Off valve lies in is provided for.

【0016】さらに、上記目的を達成するための第3の
技術的手段は、沸点温度の異なる複数種類の冷媒が混合
されてなる冷媒を圧縮機で圧縮し、圧縮機から吐出され
た冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高
沸点の液相冷媒と気相冷媒に気液分離器で分離し、分離
された高沸点の液相冷媒は膨張手段で減圧してカスケー
ド熱交換器で前記気液分離器で分離された気相冷媒を冷
却すると共に圧縮機側に戻され、順次、気液分離器で分
離された気相冷媒を冷却して気液分離および冷却を繰り
返してより高沸点の冷媒を圧縮機側に戻すと共に低沸点
の冷媒を抽出し、該低沸点の冷媒を膨張手段で減圧して
蒸発器に案内し、蒸発器で低沸点の冷媒を蒸発させて冷
却作用を行った後、カスケード熱交換器を経由して圧縮
機に戻す冷却装置において、前記圧縮機の吐出側から凝
縮器に至る冷媒供給管路途中から分岐され、かつ蒸発器
の入口側に接続された分岐供給管と、蒸発器の出口側か
らカスケード熱交換器に至る冷媒戻り管路途中から分岐
され、かつ圧縮機の吸入側に接続された分岐戻り管とが
設けられると共に、前記分岐供給管および分岐戻り管に
その管路を開閉自在に遮断する開閉弁がそれぞれ備えら
れ、前記膨張手段はキャピラリチューブからなり、前記
分岐供給管がキャピラリチューブに対して熱的接触状に
配設されてなる点にある。
Further, a third technical means for achieving the above object is to compress a refrigerant, which is a mixture of plural kinds of refrigerants having different boiling points, with a compressor, and to condense the refrigerant discharged from the compressor. The refrigerant cooled in the condenser and the refrigerant cooled in the condenser are separated into the high boiling liquid phase refrigerant and the vapor phase refrigerant by the gas-liquid separator, and the separated high boiling liquid phase refrigerant is decompressed by the expansion means to generate the cascade heat. The exchanger cools the gas-phase refrigerant separated by the gas-liquid separator and returns to the compressor side, and sequentially cools the gas-phase refrigerant separated by the gas-liquid separator to repeat gas-liquid separation and cooling. The higher boiling point refrigerant is returned to the compressor side and the low boiling point refrigerant is extracted, the low boiling point refrigerant is decompressed by the expansion means and guided to the evaporator, and the low boiling point refrigerant is evaporated by the evaporator. Cooling device that returns to the compressor via the cascade heat exchanger after cooling. In the above, a branch supply pipe branched from a refrigerant supply pipe halfway from the discharge side of the compressor to the condenser and connected to the inlet side of the evaporator, and a cascade heat exchanger from the outlet side of the evaporator A branch return pipe that is branched from the middle of the refrigerant return pipe and is connected to the suction side of the compressor is provided, and an on-off valve that opens and closes the pipes in the branch supply pipe and the branch return pipe, respectively. The expansion means comprises a capillary tube, and the branch supply pipe is arranged in thermal contact with the capillary tube.

【0017】また、上記目的を達成するための第4の技
術的手段は、沸点温度の異なる複数種類の冷媒が混合さ
れてなる冷媒を圧縮機で圧縮し、圧縮機から吐出された
冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高沸
点の液相冷媒と気相冷媒に気液分離器で分離し、分離さ
れた高沸点の液相冷媒は膨張手段で減圧してカスケード
熱交換器で前記気液分離器で分離された気相冷媒を冷却
すると共に圧縮機側に戻され、順次、気液分離器で分離
された気相冷媒を冷却して気液分離および冷却を繰り返
してより高沸点の冷媒を圧縮機側に戻すと共に低沸点の
冷媒を抽出し、該低沸点の冷媒を膨張手段で減圧して蒸
発器に案内し、蒸発器で低沸点の冷媒を蒸発させて冷却
作用を行った後、カスケード熱交換器を経由して圧縮機
に戻す冷却装置において、前記圧縮機の吐出側から凝縮
器に至る冷媒供給管路途中から分岐され、かつ蒸発器の
入口側に接続された分岐供給管が設けられると共に、該
分岐供給管の管路を開閉自在に遮断する開閉弁が備えら
れ、蒸発器の出口側からカスケード熱交換器に至る冷媒
戻り管路途中から分岐され、かつ前記圧縮機の吐出側か
ら凝縮器に至る冷媒供給管路の前記分岐供給管分岐位置
と凝縮器との間に接続された分岐戻り管が設けられると
共に、該分岐戻り管の管路を開閉自在に遮断する開閉弁
が備えられ、前記分岐供給管分岐位置と分岐戻り管の接
続位置との間で前記冷媒供給管路を開閉自在に遮断する
開閉弁が備えられると共に、前記蒸発器の出口側からカ
スケード熱交換器に至る冷媒戻り管路の前記分岐戻り管
分岐位置とカスケード熱交換器との間で前記冷媒戻り管
路を開閉自在に遮断する開閉弁が備えられ、前記膨張手
段はキャピラリチューブからなり、前記分岐供給管がキ
ャピラリチューブに対して熱的接触状に配設されてなる
点にある。
A fourth technical means for achieving the above object is to compress a refrigerant, which is a mixture of plural kinds of refrigerants having different boiling points, with a compressor, and to condense the refrigerant discharged from the compressor. The refrigerant cooled in the condenser and the refrigerant cooled in the condenser are separated into the high boiling liquid phase refrigerant and the vapor phase refrigerant by the gas-liquid separator, and the separated high boiling liquid phase refrigerant is decompressed by the expansion means to generate the cascade heat. The exchanger cools the gas-phase refrigerant separated by the gas-liquid separator and returns to the compressor side, and sequentially cools the gas-phase refrigerant separated by the gas-liquid separator to repeat gas-liquid separation and cooling. The higher boiling point refrigerant is returned to the compressor side and the low boiling point refrigerant is extracted, the low boiling point refrigerant is decompressed by the expansion means and guided to the evaporator, and the low boiling point refrigerant is evaporated by the evaporator. After cooling, the cooling device is returned to the compressor via the cascade heat exchanger. A branch supply pipe that is branched from the middle of the refrigerant supply pipe from the discharge side of the compressor to the condenser and is connected to the inlet side of the evaporator is provided, and the pipe line of the branch supply pipe can be freely opened and closed. Is provided with an on-off valve for shutting off the refrigerant, the refrigerant is branched from the refrigerant return line from the outlet side of the evaporator to the cascade heat exchanger, and the branched supply of the refrigerant supply line from the discharge side of the compressor to the condenser. A branch return pipe connected between the pipe branch position and the condenser is provided, and an opening / closing valve for opening and closing the pipe line of the branch return pipe is provided. The branch supply pipe branch position and the branch return pipe And a branching return pipe branching position of the refrigerant return pipe from the outlet side of the evaporator to the cascade heat exchanger, the opening and closing valve for opening and closing the refrigerant supply pipe to and from the connection position of the evaporator. With cascade heat exchanger Is provided with an opening / closing valve that opens and closes the refrigerant return pipe line, the expansion means is formed of a capillary tube, and the branch supply pipe is arranged in thermal contact with the capillary tube. .

【0018】[0018]

【作用】第1発明によれば、通常の冷却運転時には、分
岐供給管および分岐戻り管に備えられた各開閉弁は閉鎖
されて各管路を遮断状態としており、冷媒供給管路およ
び冷媒戻り管路を通じて従来同様の冷凍サイクルにより
所望の冷却機能が発揮される。
According to the first aspect of the invention, during the normal cooling operation, the on-off valves provided in the branch supply pipe and the branch return pipe are closed to shut off the respective pipe lines, and the refrigerant supply pipe line and the refrigerant return pipe are closed. A desired cooling function is exerted by the same refrigeration cycle as the conventional one through the pipeline.

【0019】そして、蒸発器のデフロスト作業を実行す
る場合には、分岐供給管および分岐戻り管に備えられた
各開閉弁は開放され、この状態で冷却装置が運転され
る。このデフロスト運転時にあっては、圧縮機から吐出
された高温、高圧の冷媒は大部分が管路抵抗の少ない分
岐供給管側に流れ、若干分が管路抵抗の大きい通常の冷
媒供給管路側に流れる。
When performing the defrosting work of the evaporator, the on-off valves provided in the branch supply pipe and the branch return pipe are opened, and the cooling device is operated in this state. During this defrost operation, most of the high-temperature, high-pressure refrigerant discharged from the compressor flows to the branch supply pipe side where the pipeline resistance is low, and some of it flows to the normal refrigerant supply pipeline side where the pipeline resistance is high. Flowing.

【0020】従って、圧縮機から吐出された高温、高圧
の冷媒の大部分が分岐供給管を通じて直接、蒸発器に案
内されるため、蒸発器が短時間で昇温され、ここに、短
時間で蒸発器にトラップされた水分やガスをデフロスト
でき、またベーキングすることができる。
Therefore, most of the high-temperature, high-pressure refrigerant discharged from the compressor is directly guided to the evaporator through the branch supply pipe, so that the temperature of the evaporator is raised in a short time and the temperature of the evaporator is increased in a short time. The moisture and gas trapped in the evaporator can be defrosted and can be baked.

【0021】一方、このデフロスト運転時においても、
若干分の冷媒は冷媒供給管路側を流れるため、冷却運転
時の冷凍サイクルを形成することができ、ここに、予備
冷却機能が発揮できる。従って、デフロスト作業終了後
に冷却運転に切り換えた際、蒸発器を短時間で容易に所
望の冷却温度に戻すことができる。
On the other hand, even during this defrosting operation,
Since a small amount of the refrigerant flows on the refrigerant supply pipe side, a refrigeration cycle during the cooling operation can be formed, and the preliminary cooling function can be exhibited here. Therefore, when the cooling operation is switched to after the defrosting operation is completed, the evaporator can be easily returned to the desired cooling temperature in a short time.

【0022】第2発明によれば、通常の冷却運転時に
は、分岐供給管および分岐戻り管に備えられた各開閉弁
は閉鎖されて各管路を遮断状態とし、冷媒供給管路およ
び冷媒戻り管路に備えられた各開閉弁は開放されて各管
路を開放状態としており、冷媒供給管路および冷媒戻り
管路を通じて従来同様の冷凍サイクルにより所望の冷却
機能が発揮される。
According to the second aspect of the invention, during the normal cooling operation, the on-off valves provided in the branch supply pipe and the branch return pipe are closed to shut off the respective pipe lines, and the refrigerant supply pipe line and the refrigerant return pipe are provided. The respective on-off valves provided in the passage are opened to open the respective pipelines, and the desired cooling function is exhibited by the refrigeration cycle similar to the conventional one through the refrigerant supply pipeline and the refrigerant return pipeline.

【0023】そして、蒸発器のデフロスト作業を実行す
る場合には、分岐供給管および分岐戻り管に備えられた
各開閉弁は開放されると共に、冷媒供給管路および冷媒
戻り管路に備えられた各開閉弁は閉鎖され、この状態で
冷却装置が運転される。このデフロスト運転時にあって
は、圧縮機から吐出された高温、高圧の冷媒は全て分岐
供給管側に流れる。
When performing the defrosting operation of the evaporator, the opening / closing valves provided in the branch supply pipe and the branch return pipe are opened, and the refrigerant supply pipe and the refrigerant return pipe are provided. Each on-off valve is closed, and the cooling device is operated in this state. During the defrost operation, all the high temperature and high pressure refrigerant discharged from the compressor flows to the branch supply pipe side.

【0024】従って、圧縮機から吐出された高温、高圧
の冷媒の全てが分岐供給管を通じて直接、蒸発器に案内
されるため、蒸発器が短時間で昇温され、ここに、短時
間で蒸発器にトラップされた水分やガスをデフロストで
き、あるいはベーキングすることができる。
Therefore, all of the high-temperature and high-pressure refrigerant discharged from the compressor is directly guided to the evaporator through the branch supply pipe, so that the temperature of the evaporator is raised in a short time, and the evaporation is performed in a short time. Moisture and gas trapped in the vessel can be defrosted or baked.

【0025】そして、蒸発器を出た冷媒は分岐戻り管を
通じて凝縮器に戻され、ここに、このデフロスト運転時
においても、冷却運転時の冷凍サイクルを形成すること
ができ、予備冷却機能が発揮できる。従って、デフロス
ト作業終了後に冷却運転に切り換えた際、蒸発器を短時
間で容易に所望の冷却温度に戻すことができる。
Then, the refrigerant discharged from the evaporator is returned to the condenser through the branch return pipe, and even during the defrost operation, a refrigeration cycle during the cooling operation can be formed, and the preliminary cooling function is exerted. it can. Therefore, when the cooling operation is switched to after the defrosting operation is completed, the evaporator can be easily returned to the desired cooling temperature in a short time.

【0026】第3発明によれば、通常の冷却運転時に
は、分岐供給管および分岐戻り管に備えられた各開閉弁
は閉鎖されて各管路を遮断状態としており、冷媒供給管
路および冷媒戻り管路を通じて従来同様の冷凍サイクル
により所望の冷却機能が発揮される。
According to the third aspect of the invention, during the normal cooling operation, the on-off valves provided in the branch supply pipe and the branch return pipe are closed to shut off the respective pipe lines, and the refrigerant supply pipe line and the refrigerant return pipe are closed. A desired cooling function is exerted by the same refrigeration cycle as the conventional one through the pipeline.

【0027】そして、蒸発器のデフロスト作業を実行す
る場合には、分岐供給管および分岐戻り管に備えられた
各開閉弁は開放され、この状態で冷却装置が運転され
る。このデフロスト運転時にあっては、圧縮機から吐出
された高温、高圧の冷媒は大部分が管路抵抗の少ない分
岐供給管側に流れ、若干分が管路抵抗の大きい通常の冷
媒供給管路側に流れる。
When performing the defrosting work of the evaporator, the on-off valves provided in the branch supply pipe and the branch return pipe are opened, and the cooling device is operated in this state. During this defrost operation, most of the high-temperature, high-pressure refrigerant discharged from the compressor flows to the branch supply pipe side where the pipeline resistance is low, and some of it flows to the normal refrigerant supply pipeline side where the pipeline resistance is high. Flowing.

【0028】従って、圧縮機から吐出された高温、高圧
の冷媒の大部分が分岐供給管を通じて直接、蒸発器に案
内されるため、蒸発器が短時間で昇温され、ここに、短
時間で蒸発器にトラップされた水分やガスをデフロスト
でき、またベーキングすることができる。
Therefore, most of the high-temperature and high-pressure refrigerant discharged from the compressor is directly guided to the evaporator through the branch supply pipe, so that the temperature of the evaporator is raised in a short time and the temperature of the evaporator is increased in a short time. The moisture and gas trapped in the evaporator can be defrosted and can be baked.

【0029】また、分岐供給管がキャピラリチューブに
対して熱的接触状に配設されているため、デフロスト運
転時に分岐供給管内を流れる高温、高圧の冷媒によって
キャピラリチューブが加熱され、キャピラリチューブ内
に蓄積された水分やオイル成分が溶解されて除去でき、
ここに、冷媒の循環がスムーズに行われることとなり、
冷却能力の低下が防止でき、デフロスト作業終了後に冷
却運転に切り換えた際、蒸発器を所望の冷却温度に効率
よく戻すことができる。
Further, since the branch supply pipe is arranged in thermal contact with the capillary tube, the capillary tube is heated by the high-temperature and high-pressure refrigerant flowing in the branch supply pipe during the defrosting operation, and the capillary tube is heated. The accumulated water and oil components can be dissolved and removed,
Here, the circulation of the refrigerant will be performed smoothly,
The cooling capacity can be prevented from lowering, and when the cooling operation is switched to after the defrosting operation is completed, the evaporator can be efficiently returned to a desired cooling temperature.

【0030】第4発明によれば、通常の冷却運転時に
は、分岐供給管および分岐戻り管に備えられた各開閉弁
は閉鎖されて各管路を遮断状態とし、冷媒供給管路およ
び冷媒戻り管路に備えられた各開閉弁は開放されて各管
路を開放状態としており、冷媒供給管路および冷媒戻り
管路を通じて従来同様の冷凍サイクルにより所望の冷却
機能が発揮される。
According to the fourth aspect of the invention, during the normal cooling operation, the on-off valves provided in the branch supply pipe and the branch return pipe are closed to shut off the respective pipe lines, and the refrigerant supply pipe line and the refrigerant return pipe are closed. The respective on-off valves provided in the passage are opened to open the respective pipelines, and the desired cooling function is exhibited by the refrigeration cycle similar to the conventional one through the refrigerant supply pipeline and the refrigerant return pipeline.

【0031】そして、蒸発器のデフロスト作業を実行す
る場合には、分岐供給管および分岐戻り管に備えられた
各開閉弁は開放されると共に、冷媒供給管路および冷媒
戻り管路に備えられた各開閉弁は閉鎖され、この状態で
冷却装置が運転される。このデフロスト運転時にあって
は、圧縮機から吐出された高温、高圧の冷媒は全て分岐
供給管側に流れる。
When performing the defrosting operation of the evaporator, the opening / closing valves provided in the branch supply pipe and the branch return pipe are opened, and the refrigerant supply pipe and the refrigerant return pipe are provided. Each on-off valve is closed, and the cooling device is operated in this state. During the defrost operation, all the high temperature and high pressure refrigerant discharged from the compressor flows to the branch supply pipe side.

【0032】従って、圧縮機から吐出された高温、高圧
の冷媒の全てが分岐供給管を通じて直接、蒸発器に案内
されるため、蒸発器が短時間で昇温され、ここに、短時
間で蒸発器にトラップされた水分やガスをデフロストで
き、あるいはベーキングすることができる。
Therefore, all of the high-temperature and high-pressure refrigerant discharged from the compressor is directly guided to the evaporator through the branch supply pipe, so that the temperature of the evaporator is raised in a short time, and the vaporization occurs in a short time. Moisture and gas trapped in the vessel can be defrosted or baked.

【0033】また、分岐供給管がキャピラリチューブに
対して熱的接触状に配設されているため、デフロスト運
転時に分岐供給管内を流れる高温、高圧の冷媒によって
キャピラリチューブが加熱され、キャピラリチューブ内
に蓄積された水分やオイル成分が溶解されて除去でき、
ここに、冷媒の循環がスムーズに行われることとなり、
冷却能力の低下が防止でき、デフロスト作業終了後に冷
却運転に切り換えた際、蒸発器を所望の冷却温度に効率
よく戻すことができる。
Further, since the branch supply pipe is arranged in thermal contact with the capillary tube, the capillary tube is heated by the high-temperature, high-pressure refrigerant flowing in the branch supply pipe during the defrost operation, and the capillary tube is heated inside the capillary tube. The accumulated water and oil components can be dissolved and removed,
Here, the circulation of the refrigerant will be performed smoothly,
The cooling capacity can be prevented from lowering, and when the cooling operation is switched to after the defrosting operation is completed, the evaporator can be efficiently returned to a desired cooling temperature.

【0034】[0034]

【実施例】以下、第1発明の実施例を図面に基づいて説
明すると、図1は冷却装置1の回路図を示し、前述同様
構成の圧縮機2と、凝縮器3と、第1および第2の気液
分離器4、5と、第1ないし第3のカスケード熱交換器
6、7、8と、第1ないし第3のキャピラリチュ−ブ
(膨張手段)9、10、11と、蒸発器12とが備えら
れ、これらが冷媒供給管路13と冷媒戻り管路14によ
り適宜配管接続され、冷凍サイクルの循環経路が構成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the first invention will be described below with reference to the drawings. FIG. 1 shows a circuit diagram of a cooling device 1, a compressor 2 having the same construction as described above, a condenser 3, and first and second cooling devices. 2 gas-liquid separators 4 and 5, first to third cascade heat exchangers 6, 7 and 8, first to third capillary tubes (expansion means) 9, 10 and 11, and evaporation The container 12 is provided, and these are appropriately pipe-connected by the refrigerant supply pipeline 13 and the refrigerant return pipeline 14 to form a circulation path of the refrigeration cycle.

【0035】そして、この冷凍サイクル内に沸点温度の
異なる複数種類(本実施例では高沸点、中沸点、低沸点
の3種類)の成分の冷媒が混合されて封入されている。
In this refrigeration cycle, refrigerants of a plurality of types (three types of high boiling point, medium boiling point, and low boiling point in this embodiment) having different boiling points are mixed and sealed.

【0036】また、圧縮機2の吐出側から凝縮器3に至
る冷媒供給管路13途中から分岐する分岐供給管16が
設けられており、分岐供給管16の他端側は蒸発器12
の入口側に接続された冷媒供給管路13に接続されてい
る。そして、分岐供給管16にはその管路を開閉自在に
遮断する開閉弁としてのデフロスト側第1電磁弁17が
備えられている。
Further, a branch supply pipe 16 is provided which branches from the refrigerant supply pipe line 13 from the discharge side of the compressor 2 to the condenser 3, and the other end side of the branch supply pipe 16 is the evaporator 12.
Is connected to the refrigerant supply line 13 connected to the inlet side of the. The branch supply pipe 16 is provided with a defrost-side first electromagnetic valve 17 as an opening / closing valve that opens and closes the pipe line.

【0037】さらに、蒸発器12の出口側から第3のカ
スケード熱交換器8に至る冷媒戻り管路14途中から分
岐する分岐戻り管18が設けられており、分岐戻り管1
8の他端側は圧縮機2の吸入側に接続された冷媒戻り管
路14に接続されている。そして、分岐戻り管18には
その管路を開閉自在に遮断する開閉弁としてのデフロス
ト側第2電磁弁19が備えられている。
Further, a branch return pipe 18 is provided which branches off from the middle of the refrigerant return pipe 14 from the outlet side of the evaporator 12 to the third cascade heat exchanger 8.
The other end side of 8 is connected to the refrigerant return line 14 connected to the suction side of the compressor 2. Further, the branch return pipe 18 is provided with a second defrost-side solenoid valve 19 as an opening / closing valve that opens and closes the pipe line.

【0038】第1発明の実施例は以上のように構成され
ており、通常の冷却運転時には、各電磁弁17、19は
閉じられて分岐供給管16および分岐戻り管18はそれ
ぞれその管路が遮断状態とされている。そして、圧縮機
2から吐出された高温、高圧の混合ガス冷媒は凝縮器3
で水または空気によって冷却され、一部が凝縮されて気
液混相の冷媒となり第1の気液分離器4に送り込まれ
る。ここで、気液混相の冷媒は気相冷媒と液相冷媒とに
分離されて、液相冷媒は第1のキャピラリチュ−ブ9で
減圧膨張された後、冷媒戻り管路14の戻り冷媒と合流
する。
The embodiment of the first invention is configured as described above, and during the normal cooling operation, the solenoid valves 17 and 19 are closed and the branch supply pipe 16 and the branch return pipe 18 have their respective pipelines. It is shut off. The high temperature, high pressure mixed gas refrigerant discharged from the compressor 2 is transferred to the condenser 3
Is cooled by water or air, and a part of it is condensed to become a gas-liquid mixed phase refrigerant and sent to the first gas-liquid separator 4. Here, the gas-liquid mixed-phase refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the liquid-phase refrigerant is decompressed and expanded by the first capillary tube 9 and then returned to the refrigerant return line 14. Join.

【0039】一方、気相冷媒は第1のカスケード熱交換
器6に送り込まれ、そこで冷媒戻り管路14の戻り冷媒
との熱交換により冷却されて、一部が凝縮液化して気液
混相の冷媒となり、第2の気液分離器5に送り込まれ
る。
On the other hand, the gas-phase refrigerant is sent to the first cascade heat exchanger 6, where it is cooled by heat exchange with the return refrigerant in the refrigerant return line 14, and part of it is condensed and liquefied to form a gas-liquid mixed phase. It becomes a refrigerant and is sent to the second gas-liquid separator 5.

【0040】第2の気液分離器5、第2のカスケード熱
交換器7、および第2のキャピラリチュ−ブ10におい
ても上記と同様な動作が繰り返される。
The same operation as described above is repeated in the second gas-liquid separator 5, the second cascade heat exchanger 7, and the second capillary tube 10.

【0041】以上のようにして、混合冷媒のうち沸点の
高い成分の冷媒から順に、本実施例にあっては高沸点の
冷媒、続いて中沸点の冷媒の順に冷媒戻り管路14を通
じて圧縮機2側に戻され、最も沸点の低い低沸点の冷媒
が気相状態で第2のカスケード熱交換器7に送り込ま
れ、そこで冷却されて凝縮され、さらに第3のカスケー
ド熱交換器8で冷却された後、蒸発器12入口側の第3
のキャピラリチューブ11に送り込まれる。
As described above, the refrigerant having the higher boiling point in the mixed refrigerant is sequentially arranged, in this embodiment, the high boiling point refrigerant and then the medium boiling point refrigerant in this order through the refrigerant return pipe 14. The low-boiling-point refrigerant having the lowest boiling point is sent to the second side in the vapor phase state to the second cascade heat exchanger 7, where it is cooled and condensed, and further cooled in the third cascade heat exchanger 8. And then the third on the inlet side of the evaporator 12
It is sent to the capillary tube 11.

【0042】そして、液相状態の冷媒は第3のキャピラ
リチュ−ブ11で減圧膨張されて気液混相状態となり、
蒸発器12に送り込まれる。蒸発器12に送り込まれた
冷媒は、蒸発器12で熱を吸収して蒸発し、ここに蒸発
器12を超低温に冷却する。
The liquid-phase refrigerant is decompressed and expanded by the third capillary tube 11 into a gas-liquid mixed phase,
It is sent to the evaporator 12. The refrigerant sent to the evaporator 12 absorbs heat in the evaporator 12 and evaporates, whereupon the evaporator 12 is cooled to an ultralow temperature.

【0043】また、蒸発器12から冷媒戻り管路14に
流出した気相状態の戻り冷媒は第3ないし第1のカスケ
ード熱交換器8、7、6を順次経由して自身の温度を次
第に上昇させながら、最終的に常温の低圧ガスとなって
圧縮機2に戻る。
Further, the return refrigerant in the vapor phase flowing out from the evaporator 12 to the refrigerant return pipe 14 gradually passes through the third to first cascade heat exchangers 8, 7, 6 to gradually increase its temperature. While being carried out, it finally becomes low temperature gas at room temperature and returns to the compressor 2.

【0044】次に、蒸発器12のデフロスト作業を実行
する場合のデフロスト運転時には、各電磁弁17、19
は開放されて分岐供給管16および分岐戻り管18はそ
れぞれその管路が開放状態とされる。この状態で冷却装
置1が運転されると、圧縮機2から吐出された高温、高
圧の混合ガス冷媒は大部分が管路抵抗の少ない分岐供給
管16側に流れ、若干分が管路抵抗の大きい通常の冷媒
供給管路13側に流れる。
Next, at the time of defrost operation when the defrost operation of the evaporator 12 is performed, the solenoid valves 17 and 19 are operated.
Is opened and the branch supply pipe 16 and the branch return pipe 18 are opened. When the cooling device 1 is operated in this state, most of the high-temperature, high-pressure mixed gas refrigerant discharged from the compressor 2 flows to the side of the branch supply pipe 16 having a small line resistance, and a small amount of the line resistance is generated. It flows to the large normal refrigerant supply line 13 side.

【0045】従って、圧縮機2から吐出された高温、高
圧の混合ガス冷媒の大部分が分岐供給管16を通じて直
接、蒸発器12に案内されるため、蒸発器12が短時間
で昇温され、ここに、短時間で蒸発器12にトラップさ
れた水分やガスをデフロストでき、またベーキングする
ことができる。
Therefore, most of the high-temperature, high-pressure mixed gas refrigerant discharged from the compressor 2 is directly guided to the evaporator 12 through the branch supply pipe 16, so that the temperature of the evaporator 12 is raised in a short time. Here, the water and gas trapped in the evaporator 12 can be defrosted and baked in a short time.

【0046】一方、このデフロスト運転時においても、
若干分の混合ガス冷媒は冷媒供給管路13側を流れるた
め、冷却運転時の冷凍サイクルを形成することができ、
ここに、予備冷却機能が発揮できる。従って、デフロス
ト作業終了後に冷却運転に切り換えた際、蒸発器12を
短時間で容易に所望の冷却温度に戻すことができる。
On the other hand, even during this defrost operation,
Since some of the mixed gas refrigerant flows on the refrigerant supply line 13 side, it is possible to form a refrigeration cycle during the cooling operation,
The pre-cooling function can be demonstrated here. Therefore, when the cooling operation is switched to after the defrosting operation is completed, the evaporator 12 can be easily returned to the desired cooling temperature in a short time.

【0047】以上のように、デフロスト作業を短時間で
行うことができ、しかもその後に所望の冷却温度に効率
よく戻すことができ、図5や図6に示される如く、冷却
装置1の蒸発器12をロードロック室等の真空チャンバ
120内や配管122内に設置した場合、冷却運転時に
おいては超低温冷媒を直接、蒸発器12に供給するた
め、短時間で超低温を得ることができる。従って、真空
チャンバ120の大気開放から真空引きの工程におい
て、短時間で真空チャンバ120内の水分やガスのトラ
ップを開始するため、排気時間の短縮化が図れる。
As described above, the defrosting work can be performed in a short time, and thereafter, the desired cooling temperature can be returned efficiently, and as shown in FIGS. 5 and 6, the evaporator of the cooling device 1 can be used. When 12 is installed in the vacuum chamber 120 such as a load lock chamber or in the pipe 122, the ultra low temperature refrigerant is directly supplied to the evaporator 12 during the cooling operation, so that the ultra low temperature can be obtained in a short time. Therefore, in the process of evacuating the vacuum chamber 120 from the atmosphere to vacuuming, the trapping of moisture and gas in the vacuum chamber 120 is started in a short time, and the exhaust time can be shortened.

【0048】また、真空状態から大気開放の工程におい
て、短時間で蒸発器12のデフロストおよび昇温が行え
るため、蒸発器12を真空チャンバ120内に設置した
構造にあっては短時間で大気圧に戻すことができる。
In the process of opening from the vacuum state to the atmosphere, the evaporator 12 can be defrosted and heated in a short time. Therefore, in the structure in which the evaporator 12 is installed in the vacuum chamber 120, the atmospheric pressure can be obtained in a short time. Can be returned to.

【0049】以上のことから、真空チャンバ120の真
空引き、大気開放が短時間に行えるため、真空引き、大
気開放の繰り返しが激しい装置、例えばロードロック室
等にあっては生産性の向上が図れる利点がある。
From the above, since the vacuum chamber 120 can be evacuated and opened to the atmosphere in a short time, the productivity can be improved in a device in which the evacuation and the atmosphere are repeatedly repeated, such as a load lock chamber. There are advantages.

【0050】図2は第2発明の実施例を示しており、図
中、第1発明の実施例と同様構成は同一符号を付しその
説明を省略する。
FIG. 2 shows an embodiment of the second invention. In the figure, the same components as those of the embodiment of the first invention are designated by the same reference numerals and the description thereof will be omitted.

【0051】冷却装置1は圧縮機2の吐出側から凝縮器
3に至る冷媒供給管路13途中から分岐する分岐供給管
26が設けられており、分岐供給管26の他端側は蒸発
器12の入口側に接続された冷媒供給管路13に接続さ
れている。そして、分岐供給管26にはその管路を開閉
自在に遮断する開閉弁としてのデフロスト側第1電磁弁
27が備えられている。
The cooling device 1 is provided with a branch supply pipe 26 that branches from the middle of the refrigerant supply pipe line 13 from the discharge side of the compressor 2 to the condenser 3, and the other end side of the branch supply pipe 26 is the evaporator 12. Is connected to the refrigerant supply line 13 connected to the inlet side of the. The branch supply pipe 26 is provided with a defrost-side first electromagnetic valve 27 as an opening / closing valve that opens and closes the pipe line.

【0052】また、蒸発器12の出口側から第3のカス
ケード熱交換器8に至る冷媒戻り管路14途中から分岐
する分岐戻り管28が設けられており、分岐戻り管28
の他端側は圧縮機2の吐出側から凝縮器3に至る冷媒供
給管路13の分岐供給管26分岐位置Aと凝縮器3との
間に接続されている。そして、分岐戻り管28にはその
管路を開閉自在に遮断する開閉弁としてのデフロスト側
第2電磁弁29が備えられている。
Further, a branch return pipe 28 is provided which branches from the middle of the refrigerant return pipe line 14 from the outlet side of the evaporator 12 to the third cascade heat exchanger 8, and the branch return pipe 28 is provided.
The other end of is connected between the condenser 3 and the branch position A of the branch supply pipe 26 of the refrigerant supply pipe 13 extending from the discharge side of the compressor 2 to the condenser 3. The branch return pipe 28 is provided with a second defrost-side solenoid valve 29 as an opening / closing valve that opens and closes the pipe line.

【0053】さらに、分岐供給管26分岐位置Aと分岐
戻り管28の接続位置Bとの間で冷媒供給管路13を開
閉自在に遮断する開閉弁としての冷凍サイクル側第1電
磁弁30が備えられ、蒸発器12の出口側から第3のカ
スケード熱交換器8に至る冷媒戻り管路14の分岐戻り
管28分岐位置Cと第3のカスケード熱交換器8との間
で冷媒戻り管路14を開閉自在に遮断する開閉弁として
の冷凍サイクル側第2電磁弁31が備えられている。
Further, the refrigerating cycle side first solenoid valve 30 is provided as an opening / closing valve for opening / closing the refrigerant supply pipe 13 between the branch position A of the branch supply pipe 26 and the connection position B of the branch return pipe 28. The refrigerant return pipe line 14 is provided between the branch return pipe 28 of the refrigerant return pipe line 14 extending from the outlet side of the evaporator 12 to the third cascade heat exchanger 8 and the third cascade heat exchanger 8. A second solenoid valve 31 on the refrigeration cycle side is provided as an on-off valve for opening and closing the valve.

【0054】第2発明の実施例は以上のように構成され
ており、通常の冷却運転時には、デフロスト側の各電磁
弁27、29は閉じられて分岐供給管26および分岐戻
り管28はそれぞれその管路が遮断状態とされており、
冷凍サイクル側の各電磁弁30、31は開放されて冷媒
供給管路13および冷媒戻り管路14はそれぞれその管
路を開放状態とされている。そして、第1発明の実施例
と同様に冷却装置1の冷凍サイクルにより所望の冷却機
能が発揮される。
The embodiment of the second aspect of the invention is configured as described above, and during the normal cooling operation, the electromagnetic valves 27, 29 on the defrost side are closed and the branch supply pipe 26 and the branch return pipe 28 are respectively closed. The pipeline is blocked,
The solenoid valves 30 and 31 on the refrigeration cycle side are opened, and the refrigerant supply pipeline 13 and the refrigerant return pipeline 14 are open. Then, the desired cooling function is exhibited by the refrigeration cycle of the cooling device 1 as in the first embodiment.

【0055】次に、蒸発器12のデフロスト作業を実行
する場合のデフロスト運転時には、デフロスト側の各電
磁弁27、29は開放されて分岐供給管26および分岐
戻り管28はそれぞれその管路が開放状態とされると共
に、冷凍サイクル側の各電磁弁30、31は閉じられて
冷媒供給管路13の分岐位置Aと接続位置Bとの間の管
路、および分岐位置Cと第3のカスケード熱交換器8と
の間の管路がそれぞれ遮断状態とされる。この状態で冷
却装置1が運転されると、圧縮機2から吐出された高
温、高圧の混合ガス冷媒は全て分岐供給管26側に流れ
る。
Next, during the defrosting operation when the defrosting operation of the evaporator 12 is executed, the electromagnetic valves 27 and 29 on the defrosting side are opened and the branch supply pipe 26 and the branch return pipe 28 are opened. The solenoid valves 30 and 31 on the refrigeration cycle side are closed while being in the state, and the pipeline between the branch position A and the connection position B of the refrigerant supply pipeline 13, and the branch position C and the third cascade heat. Each of the conduits with the exchanger 8 is cut off. When the cooling device 1 is operated in this state, all the high-temperature and high-pressure mixed gas refrigerant discharged from the compressor 2 flows to the branch supply pipe 26 side.

【0056】従って、圧縮機2から吐出された高温、高
圧の混合ガス冷媒の全てが分岐供給管26を通じて直
接、蒸発器12に案内されるため、蒸発器12が短時間
で昇温され、ここに、短時間で蒸発器12にトラップさ
れた水分やガスをデフロストでき、あるいはベーキング
することができる。
Therefore, all of the high-temperature, high-pressure mixed gas refrigerant discharged from the compressor 2 is directly guided to the evaporator 12 through the branch supply pipe 26, so that the temperature of the evaporator 12 is raised in a short time. In addition, the moisture or gas trapped in the evaporator 12 can be defrosted or baked in a short time.

【0057】そして、蒸発器12を出た冷媒は分岐戻り
管28を通じて凝縮器3に戻され、ここに、このデフロ
スト運転時においても冷却運転時の冷凍サイクルを形成
することができ、予備冷却機能が発揮できる。従って、
デフロスト作業終了後に冷却運転に切り換えた際、蒸発
器12を短時間で容易に所望の冷却温度に戻すことがで
きる。
Then, the refrigerant discharged from the evaporator 12 is returned to the condenser 3 through the branch return pipe 28, and a refrigerating cycle during the cooling operation can be formed there even during the defrost operation, and the preliminary cooling function is provided. Can be demonstrated. Therefore,
When the cooling operation is switched to after the defrosting operation is completed, the evaporator 12 can be easily returned to the desired cooling temperature in a short time.

【0058】以上のように、デフロスト作業を短時間で
行うことができ、しかもその後に所望の冷却温度に効率
よく戻すことができ、第1発明の実施例同様、図5や図
6に示される如く、冷却装置1の蒸発器12をロードロ
ック室等の真空チャンバ120内や配管122内に設置
した場合、冷却運転時においては超低温冷媒を直接、蒸
発器12に供給するため、短時間で超低温を得ることが
でき、真空チャンバ120の大気開放から真空引きの工
程において、排気時間の短縮化が図れる。また、真空状
態から大気開放の工程において、短時間で蒸発器12の
デフロストおよび昇温が行えるため、蒸発器12を真空
チャンバ120内に設置した構造にあっては短時間で大
気圧に戻すことができ、真空チャンバ120の真空引
き、大気開放が短時間に行えるため、真空引き、大気開
放の繰り返しが激しい装置、例えばロードロック室等に
あっては生産性の向上が図れる利点がある。
As described above, the defrosting work can be carried out in a short time, and after that, the desired cooling temperature can be returned efficiently, and as in the first embodiment of the invention, it is shown in FIGS. 5 and 6. As described above, when the evaporator 12 of the cooling device 1 is installed in the vacuum chamber 120 such as a load lock chamber or in the pipe 122, the ultra low temperature refrigerant is directly supplied to the evaporator 12 during the cooling operation, so that the ultra low temperature is quickly achieved. Therefore, in the process of opening the vacuum chamber 120 from the atmosphere to evacuation, the exhaust time can be shortened. Further, in the process of opening from the vacuum state to the atmosphere, the evaporator 12 can be defrosted and heated in a short time. Therefore, in the structure in which the evaporator 12 is installed in the vacuum chamber 120, the atmospheric pressure must be restored in a short time. Since the vacuum chamber 120 can be evacuated and opened to the atmosphere in a short time, there is an advantage that productivity can be improved in a device in which the evacuation and the atmospheric release are frequently repeated, such as a load lock chamber.

【0059】さらに、この第2発明の実施例にあって
は、デフロスト終了後、あるいは冷却装置1立ち上げ時
にデフロスト側の各電磁弁27、29および冷凍サイク
ル側第2電磁弁31を閉じ、冷凍サイクル側第1電磁弁
30を開放することにより、蒸発器12を常温に保持し
た状態で冷却運転時の冷凍サイクルを形成することがで
きるので、予備冷却機能をより有効に発揮できる。
Further, in the embodiment of the second invention, after the defrosting is completed or when the cooling device 1 is started up, the electromagnetic valves 27 and 29 on the defrosting side and the second electromagnetic valve 31 on the refrigeration cycle side are closed to freeze. By opening the cycle-side first electromagnetic valve 30, the refrigeration cycle during the cooling operation can be formed while the evaporator 12 is kept at room temperature, so that the preliminary cooling function can be more effectively exhibited.

【0060】図3は第3発明の実施例を示しており、図
中、第1発明の実施例と同様構成は同一符号を付しその
説明を省略する。
FIG. 3 shows an embodiment of the third invention. In the figure, the same components as those of the embodiment of the first invention are designated by the same reference numerals and the description thereof will be omitted.

【0061】即ち、本実施例においては、第1発明の実
施例における分岐供給管16が、各キャピラリチュ−ブ
9、10、11に対して熱的接触状に配設された構造と
されている。
That is, in the present embodiment, the branch supply pipe 16 in the embodiment of the first invention is arranged so as to be in thermal contact with each capillary tube 9, 10, 11. There is.

【0062】なお、熱的接触状に配設とは、分岐供給管
16と各キャピラリチュ−ブ9、10、11とが直接的
に接触して配設され、分岐供給管16側の熱を各キャピ
ラリチュ−ブ9、10、11側に伝導可能とされた場合
だけに限られず、分岐供給管16と各キャピラリチュ−
ブ9、10、11とが近接状に配設され、分岐供給管1
6側の熱を各キャピラリチュ−ブ9、10、11側に伝
導可能とされた場合や、分岐供給管16と各キャピラリ
チュ−ブ9、10、11とが他の部品を介して間接的に
接触して配設され、分岐供給管16側の熱を各キャピラ
リチュ−ブ9、10、11側に伝導可能とされた場合等
が含まれる。
The term "arranged in thermal contact" means that the branch supply pipe 16 and the respective capillary tubes 9, 10, 11 are arranged in direct contact with each other, and the heat on the side of the branch supply pipe 16 is transferred. The present invention is not limited to the case where the capillaries can be conducted to the respective capillary tubes 9, 10 and 11, and the branch supply pipe 16 and the respective capillary tubes.
And the branch supply pipe 1
When the heat on the 6 side can be conducted to the respective capillary tubes 9, 10 and 11, or the branch supply pipe 16 and the respective capillary tubes 9, 10 and 11 are indirectly connected via other parts. And the case where the heat on the side of the branch supply pipe 16 can be conducted to the side of each capillary tube 9, 10, 11 is included.

【0063】第3発明の実施例は以上のように構成され
ており、通常の冷却運転時には、第1発明の実施例と同
様にして冷却装置1の冷凍サイクルにより所望の冷却機
能が発揮される。
The embodiment of the third invention is constructed as described above, and in the normal cooling operation, the desired cooling function is exhibited by the refrigeration cycle of the cooling device 1 in the same manner as the embodiment of the first invention. .

【0064】また、蒸発器12のデフロスト作業を実行
する場合のデフロスト運転時にも、第1発明の実施例と
同様にして実行され、圧縮機2から吐出された高温、高
圧の混合ガス冷媒の大部分が分岐供給管16を通じて直
接、蒸発器12に案内されるため、蒸発器12が短時間
で昇温され、ここに、短時間で蒸発器12にトラップさ
れた水分やガスをデフロストでき、またベーキングする
ことができる。
Also, during the defrosting operation when the defrosting operation of the evaporator 12 is carried out, it is carried out in the same manner as the embodiment of the first invention, and a large amount of the high temperature and high pressure mixed gas refrigerant discharged from the compressor 2 is discharged. Since the part is directly guided to the evaporator 12 through the branch supply pipe 16, the temperature of the evaporator 12 is raised in a short time, and the water and gas trapped in the evaporator 12 can be defrosted there in a short time. It can be baked.

【0065】一方、冷凍サイクル内には、圧縮機2等の
潤滑用のオイルや、そのオイルおよび冷媒中に溶け込ん
だ水分や圧縮機2、カスケード熱交換器6、7、8、各
管路13、14、各管16、18等に付着した水分が内
在している。そして、このオイルや水分は冷却運転時
に、内径が最も小さくて流路が狭く、温度も低くなるキ
ャピラリチューブ9、10、11を詰まらせて冷却能力
の低下を引き起こすおそれがある。
On the other hand, in the refrigeration cycle, oil for lubricating the compressor 2 and the like, water dissolved in the oil and the refrigerant, the compressor 2, the cascade heat exchangers 6, 7, 8 and each pipe 13 are provided. , 14, and the water adhered to the tubes 16, 18 and the like are inherent. Then, during the cooling operation, this oil or water may clog the capillary tubes 9, 10 and 11 having the smallest inner diameter, the narrow flow path, and the low temperature to cause a decrease in cooling capacity.

【0066】従来この種の冷却装置においては、キャピ
ラリチューブ内に蓄積された水分やオイル成分を除去す
る方法として、ヒータによりキャピラリチューブを加熱
する方式が採用されていたが、過熱や断線等の問題があ
った。
Conventionally, in this type of cooling device, a method of heating the capillary tube with a heater has been adopted as a method of removing water and oil components accumulated in the capillary tube, but there is a problem such as overheating and disconnection. was there.

【0067】これに対し、第3発明の実施例によれば、
分岐供給管16が各キャピラリチューブ9、10、11
に対して熱的接触状に配設されているため、デフロスト
運転時に分岐供給管16内を流れる高温、高圧の混合ガ
ス冷媒によって各キャピラリチューブ9、10、11が
加熱され、各キャピラリチューブ9、10、11内に蓄
積された水分やオイル成分が溶解されて除去することが
できる。この際、冷媒供給管路13側へは分岐供給管1
6へ流れなかった若干分の混合ガス冷媒が循環するだけ
であり、分岐供給管16を流れる高温、高圧の冷媒量で
十分に0゜C以上に加熱できる。
On the other hand, according to the embodiment of the third invention,
The branch supply pipe 16 is used for each of the capillary tubes 9, 10, 11
Since they are arranged in thermal contact with each other, each capillary tube 9, 10, 11 is heated by the high-temperature and high-pressure mixed gas refrigerant flowing in the branch supply pipe 16 during the defrosting operation, and each capillary tube 9, Moisture and oil components accumulated in 10 and 11 can be dissolved and removed. At this time, the branch supply pipe 1 is connected to the refrigerant supply pipe line 13 side.
Only some of the mixed gas refrigerant that did not flow to No. 6 circulates, and it is possible to sufficiently heat it to 0 ° C or higher with the amount of high-temperature and high-pressure refrigerant flowing through the branch supply pipe 16.

【0068】以上のように、簡単な構造で、デフロスト
運転毎に各キャピラリチューブ9、10、11内に蓄積
された水分やオイル成分を溶解させて除去することがで
き、各キャピラリチューブ9、10、11を安全にリフ
レッシュできて冷媒の循環がスムーズに行われることと
なり、冷却能力の低下を未然に防止できる。そして、デ
フロスト作業終了後に冷却運転に切り換えた際、蒸発器
12を所望の冷却温度に効率よく戻すことができる。
As described above, the water and oil components accumulated in the capillary tubes 9, 10 and 11 can be dissolved and removed with a simple structure every defrosting operation, and the capillary tubes 9 and 10 can be removed. , 11 can be safely refreshed and the refrigerant can be circulated smoothly, so that the cooling capacity can be prevented from lowering. When the cooling operation is switched to after the defrosting operation is completed, the evaporator 12 can be efficiently returned to the desired cooling temperature.

【0069】図4は第4発明の実施例を示しており、図
中、第2発明の実施例と同様構成は同一符号を付しその
説明を省略する。
FIG. 4 shows an embodiment of the fourth invention. In the figure, the same components as those of the embodiment of the second invention are designated by the same reference numerals and the description thereof will be omitted.

【0070】即ち、本実施例においては、第2発明の実
施例における分岐供給管26が、各キャピラリチュ−ブ
9、10、11に対して熱的接触状に配設された構造と
されている。
That is, in this embodiment, the branch supply pipe 26 in the embodiment of the second invention is arranged so as to be in thermal contact with each capillary tube 9, 10, 11. There is.

【0071】第4発明の実施例は以上のように構成され
ており、通常の冷却運転時には、第2発明の実施例と同
様にして冷却装置1の冷凍サイクルにより所望の冷却機
能が発揮される。
The embodiment of the fourth aspect of the invention is configured as described above, and during the normal cooling operation, the desired cooling function is exerted by the refrigeration cycle of the cooling device 1 in the same manner as the embodiment of the second aspect of the invention. .

【0072】また、蒸発器12のデフロスト作業を実行
する場合のデフロスト運転時にも、第2発明の実施例と
同様にして実行され、圧縮機2から吐出された高温、高
圧の混合ガス冷媒の全てが分岐供給管26を通じて直
接、蒸発器12に案内されるため、蒸発器12が短時間
で昇温され、ここに、短時間で蒸発器12にトラップさ
れた水分やガスをデフロストでき、またベーキングする
ことができる。
Also, during the defrosting operation when the defrosting operation of the evaporator 12 is performed, the operation is performed in the same manner as the embodiment of the second invention, and all of the high temperature and high pressure mixed gas refrigerant discharged from the compressor 2 is discharged. Is directly guided to the evaporator 12 through the branch supply pipe 26, so that the temperature of the evaporator 12 is raised in a short time, and the water and gas trapped in the evaporator 12 can be defrosted there in a short time, and baking is performed. can do.

【0073】また、分岐供給管26が各キャピラリチュ
ーブ9、10、11に対して熱的接触状に配設されてい
るため、デフロスト運転時に分岐供給管26内を流れる
高温、高圧の混合ガス冷媒によって各キャピラリチュー
ブ9、10、11が加熱され、各キャピラリチューブ
9、10、11内に蓄積された水分やオイル成分が溶解
されて除去することができる。
Further, since the branch supply pipe 26 is arranged in thermal contact with each of the capillary tubes 9, 10, 11, the high temperature, high pressure mixed gas refrigerant flowing in the branch supply pipe 26 during defrosting operation. The respective capillary tubes 9, 10, 11 are heated by the above, and the water and oil components accumulated in the respective capillary tubes 9, 10, 11 can be dissolved and removed.

【0074】以上のように、簡単な構造で、デフロスト
運転毎に各キャピラリチューブ9、10、11内に蓄積
された水分やオイル成分を溶解させて除去することがで
き、各キャピラリチューブ9、10、11を安全にリフ
レッシュできて冷媒の循環がスムーズに行われることと
なり、冷却能力の低下を未然に防止できる。そして、デ
フロスト作業終了後に冷却運転に切り換えた際、蒸発器
12を所望の冷却温度に効率よく戻すことができる。
As described above, with a simple structure, it is possible to dissolve and remove the water and oil components accumulated in the respective capillary tubes 9, 10 and 11 for each defrosting operation, and to remove the respective capillary tubes 9 and 10. , 11 can be safely refreshed and the refrigerant can be circulated smoothly, so that the cooling capacity can be prevented from lowering. When the cooling operation is switched to after the defrosting operation is completed, the evaporator 12 can be efficiently returned to the desired cooling temperature.

【0075】なお、前記真空ポンプ121としてターボ
分子ポンプを用いれば、特に水分の排出に効果があり、
より排気時間の短縮化が図れる。また、上記の各実施例
において、気液分離器4、5やカスケード熱交換器6、
7、8やキャピラリチューブ9、10、11の数は混合
冷媒の種類や目的とする冷却温度等に応じて適宜決定す
ればよい。
If a turbo molecular pump is used as the vacuum pump 121, it is particularly effective in draining water,
The exhaust time can be further shortened. Further, in each of the above embodiments, the gas-liquid separators 4 and 5 and the cascade heat exchanger 6,
The numbers of 7, 8 and the capillary tubes 9, 10, 11 may be appropriately determined according to the type of mixed refrigerant, the target cooling temperature, and the like.

【0076】また、第3発明や第4発明の実施例におい
て、冷媒の特性等で水分やオイル成分が蓄積されるキャ
ピラリチューブ9、10、11やその他の配管が特定で
きる場合には、その部分のみに対して分岐供給管16、
26を熱的接触状に配設する構造としてもよい。
In the embodiments of the third invention and the fourth invention, if the capillary tubes 9, 10, 11 and other pipes in which water and oil components are accumulated can be specified due to the characteristics of the refrigerant, etc., that portion can be specified. Branch supply pipe 16, for only
26 may be arranged so as to be in thermal contact with each other.

【0077】[0077]

【発明の効果】以上のように、第1発明の冷却装置によ
れば、圧縮機の吐出側から凝縮器に至る冷媒供給管路途
中から分岐され、かつ蒸発器の入口側に接続された分岐
供給管と、蒸発器の出口側からカスケード熱交換器に至
る冷媒戻り管路途中から分岐され、かつ圧縮機の吸入側
に接続された分岐戻り管とが設けられると共に、前記分
岐供給管および分岐戻り管にその管路を開閉自在に遮断
する開閉弁がそれぞれ備えられてなるものであり、圧縮
機から吐出された高温、高圧の冷媒の大部分が分岐供給
管を通じて直接、蒸発器に案内されるため、蒸発器が短
時間で昇温され、短時間で蒸発器にトラップされた水分
やガスをデフロストでき、また、このデフロスト運転時
においても、若干分の冷媒は冷媒供給管路側を流れるた
め、冷却運転時の冷凍サイクルを形成することができ、
ここに、予備冷却機能が発揮できる。従って、デフロス
ト作業終了後に冷却運転に切り換えた際、蒸発器を短時
間で容易に所望の冷却温度に効率よく戻すことができる
利点がある。
As described above, according to the cooling device of the first aspect of the invention, the branch is branched from the middle of the refrigerant supply line from the discharge side of the compressor to the condenser and is connected to the inlet side of the evaporator. A supply pipe and a branch return pipe branched from the refrigerant return pipe from the outlet side of the evaporator to the cascade heat exchanger and connected to the suction side of the compressor are provided, and the branch supply pipe and the branch are provided. Each of the return pipes is provided with an on-off valve that opens and closes the pipe so that most of the high-temperature and high-pressure refrigerant discharged from the compressor is directly guided to the evaporator through the branch supply pipe. Therefore, the temperature of the evaporator is raised in a short time, and the water and gas trapped in the evaporator can be defrosted in a short time. Also, during this defrosting operation, some of the refrigerant flows through the refrigerant supply pipe side. , During cooling operation It is possible to form a freezing cycle,
The pre-cooling function can be demonstrated here. Therefore, when the cooling operation is switched to after the defrosting operation is completed, there is an advantage that the evaporator can be easily and efficiently returned to a desired cooling temperature in a short time.

【0078】また、第2発明の冷却装置によれば、圧縮
機の吐出側から凝縮器に至る冷媒供給管路途中から分岐
され、かつ蒸発器の入口側に接続された分岐供給管が設
けられると共に、該分岐供給管の管路を開閉自在に遮断
する開閉弁が備えられ、蒸発器の出口側からカスケード
熱交換器に至る冷媒戻り管路途中から分岐され、かつ前
記圧縮機の吐出側から凝縮器に至る冷媒供給管路の前記
分岐供給管分岐位置と凝縮器との間に接続された分岐戻
り管が設けられると共に、該分岐戻り管の管路を開閉自
在に遮断する開閉弁が備えられ、前記分岐供給管分岐位
置と分岐戻り管の接続位置との間で前記冷媒供給管路を
開閉自在に遮断する開閉弁が備えられると共に、前記蒸
発器の出口側からカスケード熱交換器に至る冷媒戻り管
路の前記分岐戻り管分岐位置とカスケード熱交換器との
間で前記冷媒戻り管路を開閉自在に遮断する開閉弁が備
えられてなるものであり、圧縮機から吐出された高温、
高圧の冷媒の全てが分岐供給管を通じて直接、蒸発器に
案内されるため、蒸発器が短時間で昇温され、短時間で
蒸発器にトラップされた水分やガスをデフロストでき
る。また、蒸発器を出た冷媒は分岐戻り管を通じて凝縮
器に戻され、デフロスト運転時においても、冷却運転時
の冷凍サイクルを形成することができ、予備冷却機能が
発揮できる。従って、デフロスト作業終了後に冷却運転
に切り換えた際、蒸発器を短時間で容易に所望の冷却温
度に効率よく戻すことができる利点がある。
Further, according to the cooling device of the second aspect of the present invention, the branch supply pipe is provided which is branched from the refrigerant supply pipe from the discharge side of the compressor to the condenser and is connected to the inlet side of the evaporator. Along with this, an on-off valve that shuts off the pipeline of the branch supply pipe is provided so as to open and close, is branched from the refrigerant return pipeline from the outlet side of the evaporator to the cascade heat exchanger, and from the discharge side of the compressor. A branch return pipe connected between the branch supply pipe branch position of the refrigerant supply pipe leading to the condenser and the condenser is provided, and an on-off valve is provided to open / close the pipe line of the branch return pipe. An opening / closing valve for opening and closing the refrigerant supply pipe between the branch supply pipe branch position and the branch return pipe connection position is provided, and the outlet side of the evaporator reaches the cascade heat exchanger. Refrigerant return line branch return It is those off valve for interrupting the coolant return line to freely open and close between the branch positions and the cascade heat exchanger is provided, discharged from the compressor high-temperature,
Since all the high-pressure refrigerant is directly guided to the evaporator through the branch supply pipe, the temperature of the evaporator is raised in a short time, and the moisture and gas trapped in the evaporator can be defrosted in a short time. Further, the refrigerant discharged from the evaporator is returned to the condenser through the branch return pipe, and even during the defrost operation, the refrigeration cycle during the cooling operation can be formed and the preliminary cooling function can be exerted. Therefore, when the cooling operation is switched to after the defrosting operation is completed, there is an advantage that the evaporator can be easily and efficiently returned to a desired cooling temperature in a short time.

【0079】さらに、第3発明の冷却装置によれば、圧
縮機の吐出側から凝縮器に至る冷媒供給管路途中から分
岐され、かつ蒸発器の入口側に接続された分岐供給管
と、蒸発器の出口側からカスケード熱交換器に至る冷媒
戻り管路途中から分岐され、かつ圧縮機の吸入側に接続
された分岐戻り管とが設けられると共に、前記分岐供給
管および分岐戻り管にその管路を開閉自在に遮断する開
閉弁がそれぞれ備えられ、膨張手段はキャピラリチュー
ブからなり、前記分岐供給管がキャピラリチューブに対
して熱的接触状に配設されてなるものであり、圧縮機か
ら吐出された高温、高圧の冷媒の大部分が分岐供給管を
通じて直接、蒸発器に案内されるため、蒸発器が短時間
で昇温され、短時間で蒸発器にトラップされた水分やガ
スをデフロストでき、また、このデフロスト運転時にお
いては、分岐供給管内を流れる高温、高圧の冷媒によっ
てキャピラリチューブが加熱され、キャピラリチューブ
内に蓄積された水分やオイル成分が溶解されて除去で
き、ここに、冷媒の循環がスムーズに行われることとな
り、冷却能力の低下が防止でき、デフロスト作業終了後
に冷却運転に切り換えた際、蒸発器を所望の冷却温度に
効率よく戻すことができる利点がある。
Furthermore, according to the cooling device of the third aspect of the invention, the branch supply pipe branched from the refrigerant supply pipe from the discharge side of the compressor to the condenser and connected to the inlet side of the evaporator, A branch return pipe that is branched from the middle of the refrigerant return pipe from the outlet side of the compressor to the cascade heat exchanger and that is connected to the suction side of the compressor is provided, and the pipes are provided in the branch supply pipe and the branch return pipe. The expansion means comprises a capillary tube, and the branch supply pipe is arranged in thermal contact with the capillary tube. Most of the high-temperature, high-pressure refrigerant that has been stored is guided directly to the evaporator through the branch supply pipe, so the temperature of the evaporator is raised in a short time and the moisture and gas trapped in the evaporator can be defrosted in a short time. Also, during this defrost operation, the capillary tube is heated by the high-temperature, high-pressure refrigerant flowing in the branch supply pipe, and the water and oil components accumulated in the capillary tube can be dissolved and removed. This has the advantage that the cooling capacity can be prevented from decreasing and that the evaporator can be efficiently returned to the desired cooling temperature when switching to the cooling operation after the completion of the defrosting work.

【0080】また、第4発明の冷却装置によれば、圧縮
機の吐出側から凝縮器に至る冷媒供給管路途中から分岐
され、かつ蒸発器の入口側に接続された分岐供給管が設
けられると共に、該分岐供給管の管路を開閉自在に遮断
する開閉弁が備えられ、蒸発器の出口側からカスケード
熱交換器に至る冷媒戻り管路途中から分岐され、かつ前
記圧縮機の吐出側から凝縮器に至る冷媒供給管路の前記
分岐供給管分岐位置と凝縮器との間に接続された分岐戻
り管が設けられると共に、該分岐戻り管の管路を開閉自
在に遮断する開閉弁が備えられ、前記分岐供給管分岐位
置と分岐戻り管の接続位置との間で前記冷媒供給管路を
開閉自在に遮断する開閉弁が備えられると共に、前記蒸
発器の出口側からカスケード熱交換器に至る冷媒戻り管
路の前記分岐戻り管分岐位置とカスケード熱交換器との
間で前記冷媒戻り管路を開閉自在に遮断する開閉弁が備
えられ、膨張手段はキャピラリチューブからなり、前記
分岐供給管がキャピラリチューブに対して熱的接触状に
配設されてなるものであり、圧縮機から吐出された高
温、高圧の冷媒の全てが分岐供給管を通じて直接、蒸発
器に案内されるため、蒸発器が短時間で昇温され、短時
間で蒸発器にトラップされた水分やガスをデフロストで
きる。また、デフロスト運転時に分岐供給管内を流れる
高温、高圧の冷媒によってキャピラリチューブが加熱さ
れ、キャピラリチューブ内に蓄積された水分やオイル成
分が溶解されて除去でき、ここに、冷媒の循環がスムー
ズに行われることとなり、冷却能力の低下が防止でき、
デフロスト作業終了後に冷却運転に切り換えた際、蒸発
器を所望の冷却温度に効率よく戻すことができる。
Further, according to the cooling device of the fourth aspect of the present invention, a branch supply pipe is provided which is branched from the refrigerant supply pipe from the discharge side of the compressor to the condenser and which is connected to the inlet side of the evaporator. Along with this, an on-off valve that shuts off the pipeline of the branch supply pipe is provided so as to open and close, is branched from the refrigerant return pipeline from the outlet side of the evaporator to the cascade heat exchanger, and from the discharge side of the compressor. A branch return pipe connected between the branch supply pipe branch position of the refrigerant supply pipe leading to the condenser and the condenser is provided, and an on-off valve is provided to open / close the pipe line of the branch return pipe. An opening / closing valve for opening and closing the refrigerant supply pipe between the branch supply pipe branch position and the branch return pipe connection position is provided, and the outlet side of the evaporator reaches the cascade heat exchanger. Refrigerant return line branch return An opening / closing valve for opening and closing the refrigerant return pipe between the branch position and the cascade heat exchanger is provided, the expansion means is a capillary tube, and the branch supply pipe is in thermal contact with the capillary tube. The high-temperature, high-pressure refrigerant discharged from the compressor is directly guided to the evaporator through the branch supply pipe, so that the temperature of the evaporator is raised in a short time, Can defrost water and gas trapped in the evaporator. In addition, the capillary tube is heated by the high-temperature, high-pressure refrigerant flowing in the branch supply pipe during the defrost operation, and the water and oil components accumulated in the capillary tube can be dissolved and removed, and the refrigerant can circulate smoothly there. It is possible to prevent the deterioration of the cooling capacity,
When the cooling operation is switched to after the defrosting operation is completed, the evaporator can be efficiently returned to a desired cooling temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明の実施例にかかる冷却装置を示す回路
図である。
FIG. 1 is a circuit diagram showing a cooling device according to an embodiment of the first invention.

【図2】第2発明の実施例にかかる冷却装置を示す回路
図である。
FIG. 2 is a circuit diagram showing a cooling device according to an embodiment of the second invention.

【図3】第3発明の実施例にかかる冷却装置を示す回路
図である。
FIG. 3 is a circuit diagram showing a cooling device according to an example of a third invention.

【図4】第4発明の実施例にかかる冷却装置を示す回路
図である。
FIG. 4 is a circuit diagram showing a cooling device according to an embodiment of the fourth invention.

【図5】冷却装置を利用した装置の概略説明図である。FIG. 5 is a schematic explanatory view of an apparatus using a cooling device.

【図6】冷却装置を利用した装置の概略説明図である。FIG. 6 is a schematic explanatory view of an apparatus using a cooling device.

【図7】従来例を示す回路図である。FIG. 7 is a circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 冷却装置 2 圧縮機 3 凝縮器 4 第1の気液分離器 5 第2の気液分離器 6 第1のカスケード熱交換器 7 第2のカスケード熱交換器 8 第3のカスケード熱交換器 9 第1のキャピラリチューブ 10 第2のキャピラリチューブ 11 第3のキャピラリチューブ 12 蒸発器 13 冷媒供給管路 14 冷媒戻り管路 16 分岐供給管 17 デフロスト側第1電磁弁 18 分岐戻り管 19 デフロスト側第2電磁弁 26 分岐供給管 27 デフロスト側第1電磁弁 28 分岐戻り管 29 デフロスト側第2電磁弁 30 冷凍サイクル側第1電磁弁 31 冷凍サイクル側第2電磁弁 1 Cooling Device 2 Compressor 3 Condenser 4 First Gas-Liquid Separator 5 Second Gas-Liquid Separator 6 First Cascade Heat Exchanger 7 Second Cascade Heat Exchanger 8 Third Cascade Heat Exchanger 9 First Capillary Tube 10 Second Capillary Tube 11 Third Capillary Tube 12 Evaporator 13 Refrigerant Supply Pipeline 14 Refrigerant Return Pipeline 16 Branch Supply Pipe 17 Defrost Side First Solenoid Valve 18 Branch Return Pipe 19 Defrost Side Second Solenoid valve 26 Branch supply pipe 27 Defrost side first solenoid valve 28 Branch return pipe 29 Defrost side second solenoid valve 30 Refrigeration cycle side first solenoid valve 31 Refrigeration cycle side second solenoid valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 沸点温度の異なる複数種類の冷媒が混合
されてなる冷媒を圧縮機で圧縮し、圧縮機から吐出され
た冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高
沸点の液相冷媒と気相冷媒に気液分離器で分離し、分離
された高沸点の液相冷媒は膨張手段で減圧してカスケー
ド熱交換器で前記気液分離器で分離された気相冷媒を冷
却すると共に圧縮機側に戻され、順次、気液分離器で分
離された気相冷媒を冷却して気液分離および冷却を繰り
返してより高沸点の冷媒を圧縮機側に戻すと共に低沸点
の冷媒を抽出して蒸発器に案内し、蒸発器で低沸点の冷
媒を蒸発させて冷却作用を行った後、カスケード熱交換
器を経由して圧縮機に戻す冷却装置において、 前記圧縮機の吐出側から凝縮器に至る冷媒供給管路途中
から分岐され、かつ蒸発器の入口側に接続された分岐供
給管と、蒸発器の出口側からカスケード熱交換器に至る
冷媒戻り管路途中から分岐され、かつ圧縮機の吸入側に
接続された分岐戻り管とが設けられると共に、前記分岐
供給管および分岐戻り管にその管路を開閉自在に遮断す
る開閉弁がそれぞれ備えられてなることを特徴とする冷
却装置。
1. A refrigerant in which a plurality of kinds of refrigerants having different boiling points are mixed is compressed by a compressor, the refrigerant discharged from the compressor is cooled by a condenser, and the refrigerant cooled by the condenser has a high boiling point. Is separated into a liquid-phase refrigerant and a gas-phase refrigerant by a gas-liquid separator, and the separated high-boiling-point liquid-phase refrigerant is decompressed by expansion means and separated by the cascade heat exchanger in the gas-liquid separator. Is cooled and returned to the compressor side, and the gas-phase refrigerant separated in the gas-liquid separator is sequentially cooled, and gas-liquid separation and cooling are repeated to return the higher boiling point refrigerant to the compressor side and lower boiling point. The refrigerant is extracted and guided to the evaporator, and after performing a cooling action by evaporating the low boiling point refrigerant in the evaporator, in the cooling device that returns to the compressor via the cascade heat exchanger, The refrigerant is branched from the middle of the refrigerant supply line from the discharge side to the condenser, and the evaporator A branch supply pipe connected to the inlet side and a branch return pipe branched from the middle of the refrigerant return pipe from the outlet side of the evaporator to the cascade heat exchanger and connected to the suction side of the compressor are provided. A cooling device, wherein each of the branch supply pipe and the branch return pipe is provided with an on-off valve that opens and closes its pipeline.
【請求項2】 沸点温度の異なる複数種類の冷媒が混合
されてなる冷媒を圧縮機で圧縮し、圧縮機から吐出され
た冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高
沸点の液相冷媒と気相冷媒に気液分離器で分離し、分離
された高沸点の液相冷媒は膨張手段で減圧してカスケー
ド熱交換器で前記気液分離器で分離された気相冷媒を冷
却すると共に圧縮機側に戻され、順次、気液分離器で分
離された気相冷媒を冷却して気液分離および冷却を繰り
返してより高沸点の冷媒を圧縮機側に戻すと共に低沸点
の冷媒を抽出して蒸発器に案内し、蒸発器で低沸点の冷
媒を蒸発させて冷却作用を行った後、カスケード熱交換
器を経由して圧縮機に戻す冷却装置において、 前記圧縮機の吐出側から凝縮器に至る冷媒供給管路途中
から分岐され、かつ蒸発器の入口側に接続された分岐供
給管が設けられると共に、該分岐供給管の管路を開閉自
在に遮断する開閉弁が備えられ、蒸発器の出口側からカ
スケード熱交換器に至る冷媒戻り管路途中から分岐さ
れ、かつ前記圧縮機の吐出側から凝縮器に至る冷媒供給
管路の前記分岐供給管分岐位置と凝縮器との間に接続さ
れた分岐戻り管が設けられると共に、該分岐戻り管の管
路を開閉自在に遮断する開閉弁が備えられ、前記分岐供
給管分岐位置と分岐戻り管の接続位置との間で前記冷媒
供給管路を開閉自在に遮断する開閉弁が備えられると共
に、前記蒸発器の出口側からカスケード熱交換器に至る
冷媒戻り管路の前記分岐戻り管分岐位置とカスケード熱
交換器との間で前記冷媒戻り管路を開閉自在に遮断する
開閉弁が備えられてなることを特徴とする冷却装置。
2. A refrigerant in which a plurality of kinds of refrigerants having different boiling points are mixed is compressed by a compressor, a refrigerant discharged from the compressor is cooled by a condenser, and a refrigerant cooled by the condenser has a high boiling point. Is separated into a liquid-phase refrigerant and a gas-phase refrigerant by a gas-liquid separator, and the separated high-boiling-point liquid-phase refrigerant is decompressed by expansion means and separated by the cascade heat exchanger in the gas-liquid separator. Is cooled and returned to the compressor side, and the gas-phase refrigerant separated in the gas-liquid separator is sequentially cooled, and gas-liquid separation and cooling are repeated to return the higher boiling point refrigerant to the compressor side and lower boiling point. The refrigerant is extracted and guided to the evaporator, and after performing a cooling action by evaporating the low boiling point refrigerant in the evaporator, in the cooling device that returns to the compressor via the cascade heat exchanger, The refrigerant is branched from the middle of the refrigerant supply line from the discharge side to the condenser, and the evaporator A branch supply pipe connected to the inlet side is provided, and an opening / closing valve that opens and closes the pipe line of the branch supply pipe is provided, and a refrigerant return pipe line from the outlet side of the evaporator to the cascade heat exchanger is provided. And a branch return pipe connected between the branch supply pipe branching position of the refrigerant supply pipe from the discharge side of the compressor to the condenser and the condenser, and the branch return pipe An on-off valve that opens and closes the pipeline is provided, and an on-off valve that opens and closes the refrigerant supply pipeline between the branch supply pipe branch position and the connection position of the branch return pipe is provided. An opening / closing valve is provided to open / close the refrigerant return pipe between the branch return pipe branch position of the refrigerant return pipe from the outlet side of the evaporator to the cascade heat exchanger and the cascade heat exchanger. Cooling equipment characterized by Place
【請求項3】 沸点温度の異なる複数種類の冷媒が混合
されてなる冷媒を圧縮機で圧縮し、圧縮機から吐出され
た冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高
沸点の液相冷媒と気相冷媒に気液分離器で分離し、分離
された高沸点の液相冷媒は膨張手段で減圧してカスケー
ド熱交換器で前記気液分離器で分離された気相冷媒を冷
却すると共に圧縮機側に戻され、順次、気液分離器で分
離された気相冷媒を冷却して気液分離および冷却を繰り
返してより高沸点の冷媒を圧縮機側に戻すと共に低沸点
の冷媒を抽出し、該低沸点の冷媒を膨張手段で減圧して
蒸発器に案内し、蒸発器で低沸点の冷媒を蒸発させて冷
却作用を行った後、カスケード熱交換器を経由して圧縮
機に戻す冷却装置において、 前記圧縮機の吐出側から凝縮器に至る冷媒供給管路途中
から分岐され、かつ蒸発器の入口側に接続された分岐供
給管と、蒸発器の出口側からカスケード熱交換器に至る
冷媒戻り管路途中から分岐され、かつ圧縮機の吸入側に
接続された分岐戻り管とが設けられると共に、前記分岐
供給管および分岐戻り管にその管路を開閉自在に遮断す
る開閉弁がそれぞれ備えられ、 前記膨張手段はキャピラリチューブからなり、前記分岐
供給管がキャピラリチューブに対して熱的接触状に配設
されてなることを特徴とする冷却装置。
3. A refrigerant in which a plurality of kinds of refrigerants having different boiling points are mixed is compressed by a compressor, the refrigerant discharged from the compressor is cooled by a condenser, and the refrigerant cooled by the condenser has a high boiling point. Is separated into a liquid-phase refrigerant and a gas-phase refrigerant by a gas-liquid separator, and the separated high-boiling-point liquid-phase refrigerant is decompressed by expansion means and separated by the cascade heat exchanger in the gas-liquid separator. Is cooled and returned to the compressor side, and the gas-phase refrigerant separated in the gas-liquid separator is sequentially cooled, and gas-liquid separation and cooling are repeated to return the higher boiling point refrigerant to the compressor side and lower boiling point. The refrigerant having a low boiling point is decompressed by the expansion means and guided to the evaporator, and the refrigerant having a low boiling point is evaporated by the evaporator to perform a cooling function, and then the cascade heat exchanger is used. In the cooling device returning to the compressor, the refrigerant supply from the discharge side of the compressor to the condenser is A branch supply pipe branched from the middle of the pipeline and connected to the inlet side of the evaporator, and a refrigerant return pipeline from the outlet side of the evaporator to the cascade heat exchanger, branched from the middle and connected to the suction side of the compressor. A branch return pipe connected to the branch supply pipe, and the branch supply pipe and the branch return pipe each provided with an on-off valve for opening and closing the pipe line, and the expansion means includes a capillary tube. Is arranged in thermal contact with the capillary tube.
【請求項4】 沸点温度の異なる複数種類の冷媒が混合
されてなる冷媒を圧縮機で圧縮し、圧縮機から吐出され
た冷媒を凝縮器で冷却し、凝縮器で冷却された冷媒を高
沸点の液相冷媒と気相冷媒に気液分離器で分離し、分離
された高沸点の液相冷媒は膨張手段で減圧してカスケー
ド熱交換器で前記気液分離器で分離された気相冷媒を冷
却すると共に圧縮機側に戻され、順次、気液分離器で分
離された気相冷媒を冷却して気液分離および冷却を繰り
返してより高沸点の冷媒を圧縮機側に戻すと共に低沸点
の冷媒を抽出し、該低沸点の冷媒を膨張手段で減圧して
蒸発器に案内し、蒸発器で低沸点の冷媒を蒸発させて冷
却作用を行った後、カスケード熱交換器を経由して圧縮
機に戻す冷却装置において、 前記圧縮機の吐出側から凝縮器に至る冷媒供給管路途中
から分岐され、かつ蒸発器の入口側に接続された分岐供
給管が設けられると共に、該分岐供給管の管路を開閉自
在に遮断する開閉弁が備えられ、蒸発器の出口側からカ
スケード熱交換器に至る冷媒戻り管路途中から分岐さ
れ、かつ前記圧縮機の吐出側から凝縮器に至る冷媒供給
管路の前記分岐供給管分岐位置と凝縮器との間に接続さ
れた分岐戻り管が設けられると共に、該分岐戻り管の管
路を開閉自在に遮断する開閉弁が備えられ、前記分岐供
給管分岐位置と分岐戻り管の接続位置との間で前記冷媒
供給管路を開閉自在に遮断する開閉弁が備えられると共
に、前記蒸発器の出口側からカスケード熱交換器に至る
冷媒戻り管路の前記分岐戻り管分岐位置とカスケード熱
交換器との間で前記冷媒戻り管路を開閉自在に遮断する
開閉弁が備えられ、 前記膨張手段はキャピラリチューブからなり、前記分岐
供給管がキャピラリチューブに対して熱的接触状に配設
されてなることを特徴とする冷却装置。
4. A refrigerant in which a plurality of kinds of refrigerants having different boiling points are mixed is compressed by a compressor, the refrigerant discharged from the compressor is cooled by a condenser, and the refrigerant cooled by the condenser has a high boiling point. Is separated into a liquid-phase refrigerant and a gas-phase refrigerant by a gas-liquid separator, and the separated high-boiling-point liquid-phase refrigerant is decompressed by expansion means and separated by the cascade heat exchanger in the gas-liquid separator. Is cooled and returned to the compressor side, and the gas-phase refrigerant separated in the gas-liquid separator is sequentially cooled, and gas-liquid separation and cooling are repeated to return the higher boiling point refrigerant to the compressor side and lower boiling point. The refrigerant having a low boiling point is decompressed by the expansion means and guided to the evaporator, and the refrigerant having a low boiling point is evaporated by the evaporator to perform a cooling function, and then the cascade heat exchanger is used. In the cooling device returning to the compressor, the refrigerant supply from the discharge side of the compressor to the condenser is A branch supply pipe is provided that is branched from the middle of the pipe and is connected to the inlet side of the evaporator, and an opening / closing valve that opens and closes the pipe of the branch supply pipe is provided. A branch return connected between the branch supply pipe branch position and the condenser of the refrigerant supply line from the discharge side of the compressor to the condenser and branched from the middle of the refrigerant return line to the cascade heat exchanger. A pipe is provided, and an on-off valve that opens and closes the branch return pipe line is provided so that the refrigerant supply line can be opened and closed between the branch supply pipe branch position and the branch return pipe connection position. And an opening / closing valve for shutting off the refrigerant return pipe between the outlet side of the evaporator and the cascade heat exchanger. Provided with an on-off valve that shuts off freely The expansion device is formed of a capillary tube, and the branch supply pipe is arranged in thermal contact with the capillary tube.
JP2053094A 1993-04-15 1994-02-17 Cooling device Pending JPH06347112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053094A JPH06347112A (en) 1993-04-15 1994-02-17 Cooling device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-113657 1993-04-15
JP11365793 1993-04-15
JP2053094A JPH06347112A (en) 1993-04-15 1994-02-17 Cooling device

Publications (1)

Publication Number Publication Date
JPH06347112A true JPH06347112A (en) 1994-12-20

Family

ID=26357496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053094A Pending JPH06347112A (en) 1993-04-15 1994-02-17 Cooling device

Country Status (1)

Country Link
JP (1) JPH06347112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066554A1 (en) * 2004-01-07 2005-07-21 Shinmaywa Industries, Ltd. Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus
JP2005207662A (en) * 2004-01-22 2005-08-04 Shin Meiwa Ind Co Ltd Extremely low temperature refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066554A1 (en) * 2004-01-07 2005-07-21 Shinmaywa Industries, Ltd. Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus
JP2005207662A (en) * 2004-01-22 2005-08-04 Shin Meiwa Ind Co Ltd Extremely low temperature refrigerating device

Similar Documents

Publication Publication Date Title
US10690410B2 (en) Freeze-drying system and freeze-drying method
CN108700354B (en) Condenser and turbo refrigeration device provided with same
JP3377830B2 (en) Plasma apparatus and operation method thereof
JPH06347112A (en) Cooling device
WO2005066554A1 (en) Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus
JP2008185256A (en) Refrigerating device
JP2004163084A (en) Vapor compression type refrigerator
US20180100678A1 (en) Refrigerator and method for controlling the same
JP4413128B2 (en) Ultra-low temperature cooling device
CN111043783B (en) Self-cascade refrigeration system for trapping cryogenic water vapor and control method
KR102491229B1 (en) Cooling system for a low temperature storage
JP2005195258A (en) Refrigeration system and vacuum deposition device
JP2009186074A (en) Refrigerating device
JPH09210515A (en) Refrigerating device
JP2004271110A (en) Cooling device and cooling method for the same
JP5793745B2 (en) Cooling trap device
JP2003004346A (en) Cooling equipment
JP2005207660A (en) Extremely low temperature refrigerating device
JP2814186B2 (en) Cooling system
KR102536337B1 (en) Heat exchange system for refrigerator truck
JP2016017668A (en) Vegetable vacuum cooling system and vegetable vacuum cooling method
JP2005207637A (en) Extremely low temperature refrigerating device
JPH10253171A (en) Air conditioner
JP2005207661A (en) Extremely low temperature refrigerating device
JP2005207662A (en) Extremely low temperature refrigerating device