JP2004163084A - Vapor compression type refrigerator - Google Patents

Vapor compression type refrigerator Download PDF

Info

Publication number
JP2004163084A
JP2004163084A JP2003152287A JP2003152287A JP2004163084A JP 2004163084 A JP2004163084 A JP 2004163084A JP 2003152287 A JP2003152287 A JP 2003152287A JP 2003152287 A JP2003152287 A JP 2003152287A JP 2004163084 A JP2004163084 A JP 2004163084A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
compressor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152287A
Other languages
Japanese (ja)
Inventor
Susumu Kawamura
進 川村
Akihiro Iwase
明宏 岩瀬
Takeshi Sakai
猛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003152287A priority Critical patent/JP2004163084A/en
Priority to DE2003143820 priority patent/DE10343820A1/en
Publication of JP2004163084A publication Critical patent/JP2004163084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Defrosting Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression type refrigerator capable of reducing defrosting operation time. <P>SOLUTION: The refrigerator is constituted to stop hot water supply to a water refrigerant heat exchanger 20 during a defrosting operation, fully open a valve 61 in a stopped state of outside air blowing to an evaporator 40, and increase opening of an expansion valve 30 to a value that is equivalent to a pressure not higher than a withstanding pressure of the evaporator 40 and provides a temperature allowing heating of the evaporator 40. Thus, hot refrigerant that has little been cooled by the water refrigerant heat exchanger 20 is distributed and supplied to the evaporator 40 and an accumulator 50, so that hot refrigerant can be supplied also to the accumulator 50. As a result, many refrigerants having flown into the accumulator 50 can be suppressed from being condensed and liquified, so that gas phase refrigerant amount supplied from the accumulator 50 to a compressor 10 can be prevented from decreasing comparing with hot gas amount discharged from the compressor. Much hot gas can be supplied to the evaporator 40, so that the defrosting operation time can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は蒸気圧縮式冷凍機に関するもので、給湯器や暖房装置等の蒸気圧縮式冷凍機で発生する温熱を利用する機器に適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
図11、12は、給湯器や暖房装置等の主に温熱を利用する一般的な蒸気圧縮式冷凍機の模式図である。
【0003】
そして、図11に記載の蒸気圧縮式冷凍機において、低温側熱交換器(蒸発器)40に発生した霜を除去する場合、つまり除霜運転時には、膨脹弁30を略全開として高圧側熱交換器20から流出した高圧冷媒(ホットガス)を減圧することなく、低温側熱交換器40に導いて低圧側熱交換器40及び気液分離器50を加熱し、図12に示す蒸気圧縮式冷凍機において、除霜運転をする場合には、膨脹弁30を閉じた状態でバイパス通路を開いてホットガスを低温側熱交換器40に導いて低圧側熱交換器40及び気液分離器50を加熱している。
【0004】
ところで、低圧側熱交換器及び気液分離器は、蒸気圧縮式冷凍機において、低圧側に属し略等温・等圧であり、かつ、低圧側熱交換器及び気液分離器はホットガス流れに対して直列に繋がれているため、低圧側熱交換器を加熱して温度が低下した冷媒により気液分離器を加熱せざるを得ない。
【0005】
このため、低圧側熱交換器から流出して気液分離器に流入した多くの冷媒が凝縮して液化してしまため、気液分離器から圧縮機に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまう。
【0006】
また、低圧側熱交換器では除霜完了部分を通ってホットガスが流れるため、放熱ロスが発生していしまう。したがって、除霜運転に多くの時間を要すると言う問題がある。
【0007】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、除霜運転時間の短縮を図ることを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、冷媒を吸入圧縮する圧縮機(10)と、圧縮された高圧冷媒を冷却する高圧側熱交換器(20)と、減圧された低圧冷媒を蒸発させる低圧側熱交換器(40)と、圧縮機(10)に吸入側に設けられ、冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機(10)に供給する気液分離器(50)とを有し、低圧側熱交換器(40)に発生した霜を除去する場合には、高圧側熱交換器(20)にて冷却されていない高温冷媒を分配して、低圧側熱交換器(40)及び気液分離器(50)それぞれに供給することを特徴とする。
【0009】
これにより、気液分離器(50)に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、気液分離器(50)から圧縮機(10)に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、低圧側熱交換器(40)に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0010】
請求項2に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、冷媒を吸入圧縮する圧縮機(10)と、圧縮された高圧冷媒を冷却する高圧側熱交換器(20)と、高圧側熱交換器(20)から流出した冷媒を等エンタルピ的に減圧膨脹させる減圧器(30)と、減圧器(30)にて減圧された低圧冷媒を蒸発させる低圧側熱交換器(40)と、圧縮機(10)に吸入側に設けられ、冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機(10)に供給する気液分離器(50)と、低圧側熱交換器(40)に発生した霜を除去する場合には、高圧側熱交換器(20)にて冷却されていない高温冷媒を分配して、低圧側熱交換器(40)及び気液分離器(50)それぞれに供給することを特徴とする。
【0011】
これにより、気液分離器(50)に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、気液分離器(50)から圧縮機(10)に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、低圧側熱交換器(40)に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0012】
請求項3に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、圧縮機(10)から吐出した高圧冷媒の熱を放熱する高圧側熱交換器(20)と、低圧冷媒を蒸発させる低圧側熱交換器(40)と、高圧冷媒を等エントロピ的に減圧膨張させるノズル(71)を有し、ノズル(71)から噴射する高い速度の冷媒流により低圧側熱交換器(40)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(70)と、エジェクタ(70)から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒用出口が圧縮機(10)の吸引側に接続され、液相冷媒用出口が低圧側熱交換器(40)に接続された気液分離器(50)とを有し、低圧側熱交換器(40)に発生した霜を除去する場合には、高圧側熱交換器(20)にて冷却されていない高温冷媒を分配して、低圧側熱交換器(40)及び気液分離器(50)それぞれに供給することを特徴とする。
【0013】
これにより、気液分離器(50)に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、気液分離器(50)から圧縮機(10)に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、低圧側熱交換器(40)に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0014】
請求項4に記載の発明では、圧縮機(10)は、複数段階に分けて冷媒を圧縮する多段方式の圧縮機であり、低圧側熱交換器(40)に発生した霜を除去する場合には、圧縮機(10)の初段吐出から最終吐出に至る圧縮行程中で冷媒を分配することを特徴とするものである。
【0015】
請求項5に記載の発明では、低温側の熱を高温側に移動させる場合には、圧縮機(10)の吐出圧を冷媒の臨界圧力以上とすることを特徴とするものである。
【0016】
請求項6に記載の発明では、冷媒として二酸化炭素が用いられていることを特徴とするものである。
【0017】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0018】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る蒸気圧縮式冷凍機を給湯器に適用したものであって、図1は本実施形態に係る蒸気圧縮式冷凍機の模式図である。
【0019】
圧縮機10は冷媒を吸入圧縮するもので、本実施形態では電動モータと圧縮機構とが一体化された電動圧縮機を採用している。水冷媒熱交換器20は、給湯水と圧縮機10から吐出する高温・高圧冷媒とを熱交換して給湯水を加熱する高圧側熱交換器であり、本実施形態では、圧縮機10の吐出圧を冷媒の臨界圧力以上として所望の温度を得ているので、水冷媒熱交換器20内で冷媒は、凝縮(相変化)することなく温度を低下させながらエンタルピを低下させていく。因みに、本実施形態では、冷媒として二酸化炭素を採用している。
【0020】
膨脹弁30は水冷媒熱交換器20から流出した冷媒を等エンタルピ的に減圧膨脹させる減圧器であり、本実施形態では、電子制御装置(図示せず。)により高圧側冷媒の圧力が所定範囲となるように膨脹弁30の絞り開度が可変制御されている。
【0021】
蒸発器40は膨脹弁30にて減圧された低圧冷媒を蒸発させる低温側熱交換器であり、アキュムレータ50は、圧縮機10に吸入側に設けられて流入する冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機10に供給する気液分離器である。
【0022】
なお、オイル戻し回路51は、密度差により分離された冷凍機油を圧縮機10の吸入側に戻すための通路である。因みに、冷凍機油とは、圧縮機10内の摺動部を潤滑するための潤滑油では、蒸気圧縮式冷凍機では、通常、冷媒中に冷凍機油を混合することにより圧縮機10に供給している。
【0023】
また、バイパス回路60は、膨脹弁30から流出した冷媒を蒸発器40を迂回させてアキュムレータ50に導く冷媒通路であり、このバイパス回路60には、バイパス回路60に流れ込む冷媒量を制御するバルブ61が設けられており、このバルブ61は、前述の電子制御装置により制御されている。
【0024】
次に、本実施形態の特徴的作動及びその効果を述べる。
【0025】
外気温度が摂氏0度以下の第1所定温度(例えば、0℃)T1の場合であって、外気温度と蒸発器40から流出する冷媒の温度との差が所定値以上となったときに、蒸発器40に発生した霜が発生したものとみなして、以下に述べる除霜運転を行う。
【0026】
すなわち、水冷媒熱交換器20への給湯水の供給を停止し、かつ、蒸発器40への外気送風を停止した状態でバルブ61を全開とするとともに、膨脹弁30の開度を、蒸発器40の耐圧圧力以下であって、蒸発器40を加熱することができる、つまり外気温度より高い温度となる圧力相当まで開く。
【0027】
これにより、水冷媒熱交換器20にて殆ど冷却されていない高温冷媒が、蒸発器40及びアキュムレータ50それぞれに分配供給されるので、蒸発器40は勿論のこと、アキュムレータ50にも高温の冷媒が供給される。
【0028】
したがって、アキュムレータ50に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、アキュムレータ50から圧縮機10に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、蒸発器40に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0029】
(第2実施形態)
本実施形態は第1実施形態の変形例であり、本実施形態では、図2に示すように、圧縮機10から吐出した冷媒を水冷媒熱交換器20及び膨脹弁30を迂回させて蒸発器40及びアキュムレータ50それぞれに分配供給するバイパス回路62を設けるとともに、バイパス回路62に流れ込む冷媒量を制御するバルブ63を前述の電子制御装置により制御するものである。
【0030】
これにより、除霜運転時に膨脹弁30を閉じた状態でバルブ63を開けば、水冷媒熱交換器20にて冷却されていない高温冷媒が、蒸発器40及びアキュムレータ50それぞれに分配供給されるので、蒸発器40は勿論のこと、アキュムレータ50にも高温の冷媒が供給される。
【0031】
したがって、アキュムレータ50に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、アキュムレータ50から圧縮機10に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、蒸発器40に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0032】
(第3実施形態)
本実施形態は、図3に示すように、圧縮機10として、複数段階に分けて冷媒を圧縮する多段方式の圧縮機を採用するとともに、除霜運転時には、圧縮機10の初段吐出から最終吐出に至る圧縮行程中で冷媒を分配するものである。
【0033】
なお、バルブ60a、60bはバイパス回路60c、60dに流れる冷媒量を調するものであり、逆止弁60eは蒸発器40側から圧縮機10の吐出側に冷媒が逆流することを防止する逆止弁である。
【0034】
また、図3(a)は圧縮機10の初段吐出側から高温冷媒をアキュムレータ50に導き、圧縮機10の最終吐出側から高温冷媒を蒸発器40に導く例であり、図3(b)は圧縮機10の最終段吐出側から高温冷媒をアキュムレータ50に導き、圧縮機10の初吐出側から高温冷媒を蒸発器40に導く例である。
【0035】
なお、図3では、二段圧縮方式であったが、三段以上の圧縮方式でも良いことは言うまでもない。
【0036】
(第4実施形態)
上述の実施形態では、冷媒を等エンタルピ的に減圧膨脹させる減圧器を用いた蒸気圧縮式冷凍機(膨脹弁サイクル)を用いた給湯器であったが、本実施形態は、図4に示すように、蒸気圧縮式冷凍機としてエジェクタサイクルを用いたものである。
【0037】
ここで、エジェクタサイクルとは、高圧冷媒を等エントロピ的に減圧膨張させるノズル71を有し、ノズル71から噴射する高い速度の冷媒流により蒸発器40にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるエジェクタ70を用いた蒸気圧縮式冷凍機であり、本実施形態では、ノズル71の絞り開度は、高圧側冷媒の圧力が所定範囲となるように可変制御される。
【0038】
また、ノズル71から噴射する駆動流と蒸発器40から吸引された吸引流とは、混合部72で互いの運動量が保存されるように混合されて昇圧し、その後、冷媒通路断面積を徐々に拡大するディフューザ73にて動圧が静圧に変換されて更に昇圧される。
【0039】
そして、本実施形態では、圧縮機10から吐出した冷媒を水冷媒熱交換器20及びエジェクタ70を迂回させて蒸発器40及びアキュムレータ50それぞれに分配供給するバイパス回路64を設けるとともに、バイパス回路64に流れ込む冷媒量を制御するバルブ65を電子制御装置により制御するものである。
【0040】
なお、エジェクタサイクルでは、エジェクタ70のポンプ作用(JIS Z 8126 番号2.1.2.3等参照)により、アキュムレータ50→蒸発器40→エジェクタ70(混合部72→ディフューザ73)→アキュムレータ50の順に冷媒が循環し、圧縮機10のポンプ作用により、圧縮機10→水冷媒熱交換器20→エジェクタ70→アキュムレータ50→圧縮機10の順に冷媒が循環する。
【0041】
このため、アキュムレータ50は、エジェクタ70から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒用出口が圧縮機10の吸引側に接続され、液相冷媒用出口が蒸発器40に接続されている。
【0042】
次に、本実施形態の作用効果を述べる。
【0043】
除霜運転時にノズル71を閉じた状態でバルブ65を開けば、水冷媒熱交換器20にて冷却されていない高温冷媒が、蒸発器40及びアキュムレータ50それぞれに分配供給されるので、蒸発器40は勿論のこと、アキュムレータ50にも高温の冷媒が供給される。
【0044】
したがって、アキュムレータ50に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、アキュムレータ50から圧縮機10に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、蒸発器40に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0045】
なお、図5は本実施形態に係る蒸気圧縮式冷凍機の蒸発器40及びアキュムレータ50の温度変化と、従来の技術(図11)に係る蒸気圧縮式冷凍機の蒸発器40及びアキュムレータ50の温度変化と示すもので、本実施形態に係る蒸気圧縮式冷凍機によれば、従来に比べて除霜運転時間が短縮されていることが解る。
【0046】
(第5実施形態)
第4実施形態では、バイパス回路64の高圧側を水冷媒熱交換器20の冷媒入口側に接続したが、本実施形態は、図6に示すように、バイパス回路64の高圧側を水冷媒熱交換器20の冷媒出口側に接続したものである。なお、バルブ65及びノズル71の制御作動は、第4実施形態と同じである。
【0047】
(第6実施形態)
本実施形態もエジェクタサイクルを用いたものであり、本実施形態では、図7に示すように、エジェクタ70から流出した冷媒をアキュムレータ50を迂回させて蒸発器40の冷媒入口側に導くバイパス回路66を設けるとともに、バイパス回路66に流れ込む冷媒量を制御するバルブ67を電子制御装置により制御するものである。
【0048】
次に、本実施形態の特徴的作動及びその効果を述べる。
【0049】
除霜運転時に、水冷媒熱交換器20への給湯水の供給を停止し、かつ、蒸発器40への外気送風を停止した状態でバルブ67を全開とするとともに、ノズル71の開度を、蒸発器40の耐圧圧力以下であって、蒸発器40を加熱することができる、つまり外気温度より高い温度となる圧力相当まで開く。
【0050】
これにより、水冷媒熱交換器20にて殆ど冷却されていない高温冷媒が、蒸発器40及びアキュムレータ50それぞれに分配供給されるので、蒸発器40は勿論のこと、アキュムレータ50にも高温の冷媒が供給される。
【0051】
したがって、アキュムレータ50に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、アキュムレータ50から圧縮機10に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、蒸発器40に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0052】
(第7実施形態)
第6実施形態では、バルブ67として二方弁を採用したが、本実施形態は、図8に示すように、バルブ67として三方弁を採用したものである。なお、冷媒の流し方は、第6実施形態と同様である。
【0053】
因みに、図8では、バイパス回路66の蒸発器40側にバルブ67を配置したが、これとは逆に、バイパス回路66のエジェクタ70側にバルブ67を配置してもよいことは言うまでもない。
【0054】
(第8実施形態)
本実施形態もエジェクタサイクルを用いたものであり、本実施形態では、図9に示すように、エジェクタ70から流出した冷媒を蒸発器40のエジェクタ70側に導くバイパス回路68を設けるとともに、バイパス回路68に流れ込む冷媒量を制御するバルブ69を電子制御装置により制御するものである。
【0055】
次に、本実施形態の特徴的作動及びその効果を述べる。
【0056】
除霜運転時に、水冷媒熱交換器20への給湯水の供給を停止し、かつ、蒸発器40への外気送風を停止した状態でバルブ69作動させてバイパス回路68と蒸発器40とを連通させるとともに、ノズル71の開度を、蒸発器40の耐圧圧力以下であって、蒸発器40を加熱することができる、つまり外気温度より高い温度となる圧力相当まで開く。
【0057】
これにより、水冷媒熱交換器20にて殆ど冷却されていない高温冷媒が、蒸発器40及びアキュムレータ50それぞれに分配供給されるので、蒸発器40は勿論のこと、アキュムレータ50にも高温の冷媒が供給される。
【0058】
したがって、アキュムレータ50に流入した多くの冷媒が凝縮液化してしまうことを抑制できるので、アキュムレータ50から圧縮機10に供給される気相冷媒量が圧縮機から吐出されるホットガス量に比べて少なくなってしまうことを防止できる。延いては、蒸発器40に多くのホットガスを供給することができるので、除霜運転時間を短縮することができる。
【0059】
なお、除霜運転時以外、つまり蒸発器40にて吸熱する際には、エジェクタ70と蒸発器40とを連通させ、バイパス回路68側を閉じるようにバルブ69を作動させる。
【0060】
(第9実施形態)
本実施形態は、第4実施形態の変形例である。
【0061】
すなわち、第4実施形態では、アキュムレータ50と蒸発器40とを繋ぐ冷媒配管にバイパス回路64を繋いだが、本実施形態は、図10に示すように、バイパス回路64をエジェクタ70と蒸発器40とを繋ぐ冷媒回路に繋ぐとともに、除霜運転時には、ノズル71を閉じた状態でホットガスをバイパス回路64に供給するものである。
【0062】
これにより、除霜運転時には、圧縮機10から吐出したホットガスは、バイパス回路64を経由して蒸発器40とエジェクタ70とを繋ぐ回路に流れ込むとともに、ここで蒸発器40に流れるホットガスとエジェクタ70を経由して気液分離器50に流れるホットガスとに分流する。
【0063】
因みに、エジェクタ70に流れ込んだホットガスは、ノズル71が閉じているため、混合部72及びディフューザ73を経由して気液分離器50に至る。
【0064】
したがって、ホットガスがアキュムレータ5及び蒸発器40の両者に分配供給されるので、除霜運転時間を短縮することができる。
【0065】
(その他の実施形態)
上述の実施形態では、給湯器を例に本発明を説明したが、本発明はこれに限定されるものではなく、冷凍庫等の冷熱を利用する蒸気圧縮式冷凍機にも適用することができる。
【0066】
また、上述の実施形態において、バイパス回路64を二方弁に開閉する例にあっては、二方弁に代えてバイパス回路64と圧縮機10の吐出側とを接続する部位に三方弁を設けてもよい。
【0067】
また、上述の実施形態では、冷媒を二酸化炭素として高圧側圧力を臨界圧力以上としたが、本発明はこれに限定されるものではない。
【0068】
また、上述の実施形態では、外気温度が摂氏0度以下の第1所定温度(例えば、0℃)T1の場合であって、外気温度と蒸発器40から流出する冷媒の温度との差が所定値以上となったときに、蒸発器40に発生した霜が発生したものとみなして除霜運転を行ったが、本発明はこれに限定されるものではなく、例えばタイマー手段により所定時間毎に定期的に除霜運転を行う等してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図2】本発明の第2実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図3】本発明の第3実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図4】本発明の第4実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図5】本発明の第4実施形態に係る蒸気圧縮式冷凍機の蒸発器及びアキュムレータの温度変化と、従来の技術に係る蒸気圧縮式冷凍機の蒸発器及びアキュムレータの温度変化と示すグラフである。
【図6】本発明の第5実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図7】本発明の第6実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図8】本発明の第7実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図9】本発明の第8実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図10】本発明の第9実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図11】従来の技術に係る蒸気圧縮式冷凍機の模式図である。
【図12】従来の技術に係る蒸気圧縮式冷凍機の模式図である。
【符号の説明】
10…圧縮機、20…水冷媒熱交換器、30…膨脹弁、40…蒸発器、
50…アキュムレータ、61…バルブ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor compression refrigerator, and is effective when applied to equipment utilizing the heat generated by the vapor compression refrigerator, such as a water heater or a heating device.
[0002]
Problems to be solved by the prior art and the invention
FIGS. 11 and 12 are schematic diagrams of a general vapor compression refrigerator that mainly uses heat, such as a water heater and a heating device.
[0003]
In the vapor compression refrigerator shown in FIG. 11, when removing frost generated in the low-temperature side heat exchanger (evaporator) 40, that is, at the time of the defrosting operation, the expansion valve 30 is almost fully opened to set the high-pressure side heat exchange. The high-pressure refrigerant (hot gas) flowing out of the heat exchanger 20 is guided to the low-temperature side heat exchanger 40 without depressurization, thereby heating the low-pressure side heat exchanger 40 and the gas-liquid separator 50, and the vapor compression refrigeration shown in FIG. When the defrosting operation is performed in the machine, the bypass passage is opened with the expansion valve 30 closed, and the hot gas is guided to the low-temperature side heat exchanger 40 so that the low-pressure side heat exchanger 40 and the gas-liquid separator 50 are connected. Heating.
[0004]
By the way, the low-pressure side heat exchanger and the gas-liquid separator belong to the low-pressure side in the vapor compression type refrigerator and are substantially isothermal and at equal pressure, and the low-pressure side heat exchanger and the gas-liquid separator On the other hand, since they are connected in series, the gas-liquid separator has to be heated by the refrigerant whose temperature has decreased by heating the low-pressure side heat exchanger.
[0005]
Because of this, much of the refrigerant flowing out of the low-pressure side heat exchanger and flowing into the gas-liquid separator is condensed and liquefied, and the amount of gas-phase refrigerant supplied from the gas-liquid separator to the compressor is reduced. Is smaller than the amount of hot gas discharged from the nozzle.
[0006]
Further, in the low-pressure side heat exchanger, the hot gas flows through the defrosting completed portion, so that heat dissipation loss occurs. Therefore, there is a problem that much time is required for the defrosting operation.
[0007]
SUMMARY OF THE INVENTION In view of the above points, the present invention firstly provides a new vapor compression refrigerator different from the conventional one, and secondly, aims to shorten the defrosting operation time.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a vapor compression refrigerator for transferring heat on a low temperature side to a high temperature side, wherein the compressor compresses a refrigerant by suction. A high-pressure heat exchanger (20) for cooling the compressed high-pressure refrigerant, a low-pressure heat exchanger (40) for evaporating the depressurized low-pressure refrigerant, and a compressor (10) provided on the suction side, A gas-liquid separator (50) for separating the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and supplying the gas-phase refrigerant to the compressor (10), and frost generated in the low-pressure side heat exchanger (40). Is removed, high-temperature refrigerant not cooled in the high-pressure side heat exchanger (20) is distributed and supplied to the low-pressure side heat exchanger (40) and the gas-liquid separator (50), respectively. Features.
[0009]
Thereby, since it is possible to suppress a large amount of refrigerant flowing into the gas-liquid separator (50) from being condensed and liquefied, the amount of the gas-phase refrigerant supplied from the gas-liquid separator (50) to the compressor (10) is reduced. It is possible to prevent the amount of hot gas discharged from the compressor from becoming smaller than the amount of hot gas discharged. Since a large amount of hot gas can be supplied to the low-pressure side heat exchanger (40), the defrosting operation time can be shortened.
[0010]
According to a second aspect of the present invention, there is provided a vapor compression refrigerator for transferring heat on a low temperature side to a high temperature side, and a compressor (10) for sucking and compressing a refrigerant, and a high pressure side for cooling a compressed high-pressure refrigerant. A heat exchanger (20), a decompressor (30) for decompressing and expanding the refrigerant flowing out of the high-pressure side heat exchanger (20) in an isenthalpy manner, and evaporating the low-pressure refrigerant depressurized by the decompressor (30). Gas-liquid provided on the suction side of the low-pressure side heat exchanger (40) and the compressor (10) to separate the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and supply the gas-phase refrigerant to the compressor (10) When removing the frost generated in the separator (50) and the low-pressure side heat exchanger (40), the high-temperature refrigerant not cooled in the high-pressure side heat exchanger (20) is distributed to remove the low-pressure side heat. It is supplied to the exchanger (40) and the gas-liquid separator (50), respectively.
[0011]
Thereby, since it is possible to suppress a large amount of refrigerant flowing into the gas-liquid separator (50) from being condensed and liquefied, the amount of the gas-phase refrigerant supplied from the gas-liquid separator (50) to the compressor (10) is reduced. It is possible to prevent the amount of hot gas discharged from the compressor from becoming smaller than the amount of hot gas discharged. Since a large amount of hot gas can be supplied to the low-pressure side heat exchanger (40), the defrosting operation time can be shortened.
[0012]
According to the third aspect of the present invention, there is provided a vapor compression type refrigerator for transferring heat of a low temperature side to a high temperature side, wherein the high pressure side heat exchanger (20) radiating heat of the high pressure refrigerant discharged from the compressor (10). ), A low-pressure side heat exchanger (40) for evaporating the low-pressure refrigerant, and a nozzle (71) for decompressing and expanding the high-pressure refrigerant in an isentropic manner. An ejector (70) that sucks the vaporized refrigerant evaporated in the side heat exchanger (40), converts expansion energy into pressure energy to increase the suction pressure of the compressor (10), and an ejector (70). The discharged refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, an outlet for the gas-phase refrigerant is connected to the suction side of the compressor (10), and an outlet for the liquid-phase refrigerant is connected to the low-pressure side heat exchanger (40). Gas-liquid separator (50) When removing the frost generated in the side heat exchanger (40), the high-temperature refrigerant not cooled in the high-pressure side heat exchanger (20) is distributed, and the low-pressure side heat exchanger (40) and the gas-liquid It is characterized in that it is supplied to each of the separators (50).
[0013]
Thereby, since it is possible to suppress a large amount of refrigerant flowing into the gas-liquid separator (50) from being condensed and liquefied, the amount of the gas-phase refrigerant supplied from the gas-liquid separator (50) to the compressor (10) is reduced. It is possible to prevent the amount of hot gas discharged from the compressor from becoming smaller than the amount of hot gas discharged. Since a large amount of hot gas can be supplied to the low-pressure side heat exchanger (40), the defrosting operation time can be shortened.
[0014]
In the invention according to claim 4, the compressor (10) is a multi-stage compressor that compresses the refrigerant in a plurality of stages, and removes frost generated in the low-pressure side heat exchanger (40). Is characterized in that refrigerant is distributed during a compression stroke from a first stage discharge to a final discharge of the compressor (10).
[0015]
According to a fifth aspect of the present invention, when the heat on the low temperature side is moved to the high temperature side, the discharge pressure of the compressor (10) is set to be equal to or higher than the critical pressure of the refrigerant.
[0016]
The invention according to claim 6 is characterized in that carbon dioxide is used as the refrigerant.
[0017]
Incidentally, the reference numerals in parentheses of the respective means are examples showing the correspondence with specific means described in the embodiments described later.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the steam compression refrigerator according to the present invention is applied to a water heater, and FIG. 1 is a schematic diagram of the steam compression refrigerator according to the embodiment.
[0019]
The compressor 10 sucks and compresses the refrigerant. In the present embodiment, an electric compressor in which an electric motor and a compression mechanism are integrated is employed. The water-refrigerant heat exchanger 20 is a high-pressure side heat exchanger that heats hot water by exchanging heat between the hot water and the high-temperature high-pressure refrigerant discharged from the compressor 10. Since the pressure is equal to or higher than the critical pressure of the refrigerant and the desired temperature is obtained, the refrigerant in the water-refrigerant heat exchanger 20 decreases the enthalpy while lowering the temperature without condensation (phase change). Incidentally, in the present embodiment, carbon dioxide is employed as the refrigerant.
[0020]
The expansion valve 30 is a decompressor that decompresses and expands the refrigerant flowing out of the water-refrigerant heat exchanger 20 in an isenthalpic manner. In the present embodiment, the pressure of the high-pressure side refrigerant is controlled within a predetermined range by an electronic control unit (not shown). The throttle opening of the expansion valve 30 is variably controlled such that
[0021]
The evaporator 40 is a low-temperature side heat exchanger that evaporates the low-pressure refrigerant decompressed by the expansion valve 30. The accumulator 50 is provided on the suction side of the compressor 10 and converts the refrigerant flowing into the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant. And a gas-liquid separator for supplying the gas-phase refrigerant to the compressor 10 after being separated into the gaseous refrigerant.
[0022]
The oil return circuit 51 is a passage for returning the refrigerating machine oil separated by the density difference to the suction side of the compressor 10. Incidentally, the refrigerating machine oil is a lubricating oil for lubricating a sliding portion in the compressor 10, and in a vapor compression type refrigerating machine, usually, the refrigerating machine oil is mixed with a refrigerant to be supplied to the compressor 10. I have.
[0023]
The bypass circuit 60 is a refrigerant passage that guides the refrigerant flowing out of the expansion valve 30 to the accumulator 50 by bypassing the evaporator 40. The bypass circuit 60 includes a valve 61 that controls the amount of refrigerant flowing into the bypass circuit 60. The valve 61 is controlled by the above-described electronic control device.
[0024]
Next, the characteristic operation of this embodiment and its effects will be described.
[0025]
In a case where the outside air temperature is a first predetermined temperature (for example, 0 ° C.) T1 of 0 ° C. or less and the difference between the outside air temperature and the temperature of the refrigerant flowing out of the evaporator 40 becomes equal to or more than a predetermined value, Assuming that frost has occurred in the evaporator 40, the following defrosting operation is performed.
[0026]
That is, while the supply of hot water to the water-refrigerant heat exchanger 20 is stopped and the supply of outside air to the evaporator 40 is stopped, the valve 61 is fully opened, and the opening degree of the expansion valve 30 is adjusted by the evaporator. The pressure is equal to or lower than the pressure resistance pressure of 40 and the evaporator 40 can be heated, that is, it is opened to a pressure corresponding to a temperature higher than the outside air temperature.
[0027]
As a result, the high-temperature refrigerant that is hardly cooled in the water-refrigerant heat exchanger 20 is distributed and supplied to each of the evaporator 40 and the accumulator 50. Supplied.
[0028]
Therefore, since a large amount of refrigerant flowing into the accumulator 50 can be suppressed from being condensed and liquefied, the amount of gas-phase refrigerant supplied to the compressor 10 from the accumulator 50 is smaller than the amount of hot gas discharged from the compressor. Can be prevented. As a result, a large amount of hot gas can be supplied to the evaporator 40, so that the defrosting operation time can be reduced.
[0029]
(2nd Embodiment)
This embodiment is a modification of the first embodiment. In this embodiment, as shown in FIG. 2, the refrigerant discharged from the compressor 10 bypasses the water refrigerant heat exchanger 20 and the expansion valve 30 to evaporate. A bypass circuit 62 for distributing and supplying to each of the accumulator 50 and the accumulator 50 is provided, and a valve 63 for controlling the amount of refrigerant flowing into the bypass circuit 62 is controlled by the above-mentioned electronic control device.
[0030]
Accordingly, if the valve 63 is opened with the expansion valve 30 closed during the defrosting operation, the high-temperature refrigerant not cooled by the water-refrigerant heat exchanger 20 is distributed and supplied to the evaporator 40 and the accumulator 50, respectively. The high-temperature refrigerant is supplied not only to the evaporator 40 but also to the accumulator 50.
[0031]
Therefore, since a large amount of refrigerant flowing into the accumulator 50 can be suppressed from being condensed and liquefied, the amount of gas-phase refrigerant supplied to the compressor 10 from the accumulator 50 is smaller than the amount of hot gas discharged from the compressor. Can be prevented. As a result, a large amount of hot gas can be supplied to the evaporator 40, so that the defrosting operation time can be reduced.
[0032]
(Third embodiment)
In the present embodiment, as shown in FIG. 3, a multi-stage compressor that compresses refrigerant in a plurality of stages is employed as the compressor 10, and during the defrosting operation, the compressor 10 is discharged from the first stage to the final stage. And distributes the refrigerant during the compression stroke.
[0033]
The valves 60a and 60b regulate the amount of the refrigerant flowing through the bypass circuits 60c and 60d. The check valve 60e is a check valve for preventing the refrigerant from flowing backward from the evaporator 40 to the discharge side of the compressor 10. It is a valve.
[0034]
FIG. 3A shows an example in which a high-temperature refrigerant is introduced from the first-stage discharge side of the compressor 10 to the accumulator 50, and a high-temperature refrigerant is introduced from the final discharge side of the compressor 10 to the evaporator 40. FIG. This is an example in which a high-temperature refrigerant is guided to an accumulator 50 from a final discharge side of the compressor 10 and a high-temperature refrigerant is guided to an evaporator 40 from a first discharge side of the compressor 10.
[0035]
Although FIG. 3 shows a two-stage compression method, it goes without saying that a three-stage or more compression method may be used.
[0036]
(Fourth embodiment)
In the above embodiment, a water heater using a vapor compression refrigerator (expansion valve cycle) using a decompressor that decompresses and expands a refrigerant in an isenthalpic manner is used. However, in this embodiment, as shown in FIG. In addition, an ejector cycle is used as a vapor compression refrigerator.
[0037]
Here, the ejector cycle has a nozzle 71 that decompresses and expands the high-pressure refrigerant in an isentropic manner, and aspirates the vapor-phase refrigerant evaporated in the evaporator 40 by the high-speed refrigerant flow injected from the nozzle 71, This is a vapor compression refrigerator using an ejector 70 that converts expansion energy into pressure energy to increase the suction pressure of the compressor 10. In the present embodiment, the throttle opening of the nozzle 71 is determined by the pressure of the high-pressure side refrigerant. It is variably controlled to be within a predetermined range.
[0038]
Further, the driving flow ejected from the nozzle 71 and the suction flow sucked from the evaporator 40 are mixed in the mixing section 72 so that their momentums are preserved, and the pressure is increased. The expanding diffuser 73 converts the dynamic pressure into a static pressure and further increases the pressure.
[0039]
In the present embodiment, a bypass circuit 64 that distributes and supplies the refrigerant discharged from the compressor 10 to the evaporator 40 and the accumulator 50 by bypassing the water-refrigerant heat exchanger 20 and the ejector 70 is provided. The valve 65 for controlling the amount of refrigerant flowing in is controlled by an electronic control unit.
[0040]
In the ejector cycle, the accumulator 50 → the evaporator 40 → the ejector 70 (mixing section 72 → diffuser 73) → accumulator 50 in the order of the pumping action of the ejector 70 (see JIS Z 8126 No. 2.1.2.3). The refrigerant circulates, and the refrigerant circulates in the order of the compressor 10, the water refrigerant heat exchanger 20, the ejector 70, the accumulator 50, and the compressor 10 by the pump action of the compressor 10.
[0041]
For this reason, the accumulator 50 separates the refrigerant flowing out of the ejector 70 into a gas-phase refrigerant and a liquid-phase refrigerant, the outlet for the gas-phase refrigerant is connected to the suction side of the compressor 10, and the outlet for the liquid-phase refrigerant is connected to the evaporator. 40.
[0042]
Next, the operation and effect of the present embodiment will be described.
[0043]
If the valve 65 is opened with the nozzle 71 closed during the defrosting operation, the high-temperature refrigerant not cooled by the water-refrigerant heat exchanger 20 is distributed and supplied to the evaporator 40 and the accumulator 50, respectively. Needless to say, the accumulator 50 is also supplied with a high-temperature refrigerant.
[0044]
Therefore, since a large amount of refrigerant flowing into the accumulator 50 can be suppressed from being condensed and liquefied, the amount of gas-phase refrigerant supplied to the compressor 10 from the accumulator 50 is smaller than the amount of hot gas discharged from the compressor. Can be prevented. As a result, a large amount of hot gas can be supplied to the evaporator 40, so that the defrosting operation time can be reduced.
[0045]
FIG. 5 shows the temperature change of the evaporator 40 and the accumulator 50 of the vapor compression refrigerator according to the present embodiment, and the temperature of the evaporator 40 and the accumulator 50 of the vapor compression refrigerator according to the conventional technology (FIG. 11). This indicates that the defrosting operation time of the vapor compression refrigerator according to the present embodiment is shorter than that of the related art.
[0046]
(Fifth embodiment)
In the fourth embodiment, the high-pressure side of the bypass circuit 64 is connected to the refrigerant inlet side of the water-refrigerant heat exchanger 20. However, in the present embodiment, as shown in FIG. It is connected to the refrigerant outlet side of the exchanger 20. The control operations of the valve 65 and the nozzle 71 are the same as in the fourth embodiment.
[0047]
(Sixth embodiment)
This embodiment also uses an ejector cycle. In this embodiment, as shown in FIG. 7, a bypass circuit 66 that guides the refrigerant flowing out of the ejector 70 to the refrigerant inlet side of the evaporator 40 by bypassing the accumulator 50. And a valve 67 for controlling the amount of refrigerant flowing into the bypass circuit 66 is controlled by an electronic control unit.
[0048]
Next, the characteristic operation of this embodiment and its effects will be described.
[0049]
During the defrosting operation, the supply of hot water to the water / refrigerant heat exchanger 20 is stopped, and the valve 67 is fully opened in a state in which outside air blowing to the evaporator 40 is stopped. The pressure is equal to or lower than the pressure resistance of the evaporator 40 and the evaporator 40 can be heated, that is, the pressure is increased to a pressure corresponding to a temperature higher than the outside air temperature.
[0050]
As a result, the high-temperature refrigerant that is hardly cooled in the water-refrigerant heat exchanger 20 is distributed and supplied to each of the evaporator 40 and the accumulator 50. Supplied.
[0051]
Therefore, since a large amount of refrigerant flowing into the accumulator 50 can be suppressed from being condensed and liquefied, the amount of gas-phase refrigerant supplied to the compressor 10 from the accumulator 50 is smaller than the amount of hot gas discharged from the compressor. Can be prevented. As a result, a large amount of hot gas can be supplied to the evaporator 40, so that the defrosting operation time can be reduced.
[0052]
(Seventh embodiment)
In the sixth embodiment, a two-way valve is adopted as the valve 67, but in the present embodiment, a three-way valve is adopted as the valve 67 as shown in FIG. The flow of the refrigerant is the same as in the sixth embodiment.
[0053]
Incidentally, in FIG. 8, the valve 67 is arranged on the side of the evaporator 40 of the bypass circuit 66, but it is needless to say that the valve 67 may be arranged on the side of the ejector 70 of the bypass circuit 66.
[0054]
(Eighth embodiment)
This embodiment also uses an ejector cycle. In this embodiment, as shown in FIG. 9, a bypass circuit 68 for guiding refrigerant flowing out of the ejector 70 to the ejector 70 side of the evaporator 40 is provided. A valve 69 for controlling the amount of refrigerant flowing into the valve 68 is controlled by an electronic control unit.
[0055]
Next, the characteristic operation of this embodiment and its effects will be described.
[0056]
During the defrosting operation, the supply of hot water to the water / refrigerant heat exchanger 20 is stopped, and the outside air blow to the evaporator 40 is stopped to operate the valve 69 to connect the bypass circuit 68 to the evaporator 40. At the same time, the opening degree of the nozzle 71 is equal to or lower than the pressure resistance of the evaporator 40 and the evaporator 40 can be heated, that is, opened to a pressure corresponding to a temperature higher than the outside air temperature.
[0057]
As a result, the high-temperature refrigerant that has not been substantially cooled by the water-refrigerant heat exchanger 20 is distributed and supplied to each of the evaporator 40 and the accumulator 50, so that the high-temperature refrigerant is stored not only in the evaporator 40 but also in the accumulator 50. Supplied.
[0058]
Therefore, since a large amount of refrigerant flowing into the accumulator 50 can be suppressed from being condensed and liquefied, the amount of gas-phase refrigerant supplied to the compressor 10 from the accumulator 50 is smaller than the amount of hot gas discharged from the compressor. Can be prevented. As a result, a large amount of hot gas can be supplied to the evaporator 40, so that the defrosting operation time can be reduced.
[0059]
Note that, other than during the defrosting operation, that is, when heat is absorbed by the evaporator 40, the ejector 70 and the evaporator 40 are communicated, and the valve 69 is operated so as to close the bypass circuit 68 side.
[0060]
(Ninth embodiment)
This embodiment is a modification of the fourth embodiment.
[0061]
That is, in the fourth embodiment, the bypass circuit 64 is connected to the refrigerant pipe connecting the accumulator 50 and the evaporator 40. However, in the present embodiment, the bypass circuit 64 is connected to the ejector 70 and the evaporator 40 as shown in FIG. The hot gas is supplied to the bypass circuit 64 with the nozzle 71 closed during the defrosting operation.
[0062]
Thereby, during the defrosting operation, the hot gas discharged from the compressor 10 flows into the circuit connecting the evaporator 40 and the ejector 70 via the bypass circuit 64, and the hot gas flowing to the evaporator 40 and the ejector The gas is separated into hot gas flowing into the gas-liquid separator 50 via 70.
[0063]
Incidentally, the hot gas flowing into the ejector 70 reaches the gas-liquid separator 50 via the mixing unit 72 and the diffuser 73 because the nozzle 71 is closed.
[0064]
Therefore, the hot gas is distributed and supplied to both the accumulator 5 and the evaporator 40, so that the defrosting operation time can be reduced.
[0065]
(Other embodiments)
In the above embodiment, the present invention has been described by taking a water heater as an example. However, the present invention is not limited to this, and can be applied to a vapor compression refrigerator using cold heat in a freezer or the like.
[0066]
In the above-described embodiment, in the example in which the bypass circuit 64 is opened and closed by the two-way valve, a three-way valve is provided at a portion connecting the bypass circuit 64 and the discharge side of the compressor 10 instead of the two-way valve. You may.
[0067]
In the above-described embodiment, the refrigerant is carbon dioxide and the high pressure side pressure is equal to or higher than the critical pressure. However, the present invention is not limited to this.
[0068]
Further, in the above-described embodiment, the case where the outside air temperature is the first predetermined temperature (for example, 0 ° C.) T1 of 0 ° C. or less, and the difference between the outside air temperature and the temperature of the refrigerant flowing out of the evaporator 40 is the predetermined temperature When the value became equal to or more than the value, the defrosting operation was performed assuming that the frost generated in the evaporator 40 was generated. However, the present invention is not limited to this. The defrosting operation may be performed periodically.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vapor compression refrigerator according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of a vapor compression refrigerator according to a second embodiment of the present invention.
FIG. 3 is a schematic view of a vapor compression refrigerator according to a third embodiment of the present invention.
FIG. 4 is a schematic view of a vapor compression refrigerator according to a fourth embodiment of the present invention.
FIG. 5 is a graph showing a temperature change of an evaporator and an accumulator of a vapor compression refrigerator according to a fourth embodiment of the present invention, and a temperature change of an evaporator and an accumulator of a vapor compression refrigerator according to the related art. is there.
FIG. 6 is a schematic diagram of a vapor compression refrigerator according to a fifth embodiment of the present invention.
FIG. 7 is a schematic diagram of a vapor compression refrigerator according to a sixth embodiment of the present invention.
FIG. 8 is a schematic view of a vapor compression refrigerator according to a seventh embodiment of the present invention.
FIG. 9 is a schematic view of a vapor compression refrigerator according to an eighth embodiment of the present invention.
FIG. 10 is a schematic view of a vapor compression refrigerator according to a ninth embodiment of the present invention.
FIG. 11 is a schematic view of a vapor compression refrigerator according to a conventional technique.
FIG. 12 is a schematic diagram of a vapor compression refrigerator according to a conventional technique.
[Explanation of symbols]
10: compressor, 20: water refrigerant heat exchanger, 30: expansion valve, 40: evaporator,
50: accumulator, 61: valve.

Claims (6)

低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
冷媒を吸入圧縮する圧縮機(10)と、
圧縮された高圧冷媒を冷却する高圧側熱交換器(20)と、
減圧された低圧冷媒を蒸発させる低圧側熱交換器(40)と、
前記圧縮機(10)に吸入側に設けられ、冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を前記圧縮機(10)に供給する気液分離器(50)とを有し、
前記低圧側熱交換器(40)に発生した霜を除去する場合には、前記高圧側熱交換器(20)にて冷却されていない高温冷媒を分配して、前記低圧側熱交換器(40)及び前記気液分離器(50)それぞれに供給することを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that transfers heat on the low temperature side to the high temperature side,
A compressor (10) for sucking and compressing the refrigerant;
A high-pressure side heat exchanger (20) for cooling the compressed high-pressure refrigerant;
A low-pressure side heat exchanger (40) for evaporating the depressurized low-pressure refrigerant;
A gas-liquid separator (50) provided on the suction side of the compressor (10) to separate the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and supply the gas-phase refrigerant to the compressor (10); And
When removing the frost generated in the low-pressure side heat exchanger (40), the high-pressure refrigerant not cooled by the high-pressure side heat exchanger (20) is distributed to the low-pressure side heat exchanger (40). ) And the gas-liquid separator (50).
低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
冷媒を吸入圧縮する圧縮機(10)と、
圧縮された高圧冷媒を冷却する高圧側熱交換器(20)と、
前記高圧側熱交換器(20)から流出した冷媒を等エンタルピ的に減圧膨脹させる減圧器(30)と、
前記減圧器(30)にて減圧された低圧冷媒を蒸発させる低圧側熱交換器(40)と、
前記圧縮機(10)に吸入側に設けられ、冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を前記圧縮機(10)に供給する気液分離器(50)と、
前記低圧側熱交換器(40)に発生した霜を除去する場合には、前記高圧側熱交換器(20)にて冷却されていない高温冷媒を分配して、前記低圧側熱交換器(40)及び前記気液分離器(50)それぞれに供給することを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that transfers heat on the low temperature side to the high temperature side,
A compressor (10) for sucking and compressing the refrigerant;
A high-pressure side heat exchanger (20) for cooling the compressed high-pressure refrigerant;
A pressure reducer (30) for decompressing and expanding the refrigerant flowing out of the high-pressure side heat exchanger (20) in an isenthalpy manner;
A low-pressure side heat exchanger (40) for evaporating the low-pressure refrigerant decompressed by the pressure reducer (30);
A gas-liquid separator (50) provided on the suction side of the compressor (10), for separating a refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and supplying the gas-phase refrigerant to the compressor (10);
When removing the frost generated in the low-pressure side heat exchanger (40), the high-pressure refrigerant not cooled by the high-pressure side heat exchanger (20) is distributed to the low-pressure side heat exchanger (40). ) And the gas-liquid separator (50).
低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
圧縮機(10)から吐出した高圧冷媒の熱を放熱する高圧側熱交換器(20)と、
低圧冷媒を蒸発させる低圧側熱交換器(40)と、
高圧冷媒を等エントロピ的に減圧膨張させるノズル(71)を有し、前記ノズル(71)から噴射する高い速度の冷媒流により前記低圧側熱交換器(40)にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(70)と、
前記エジェクタ(70)から流出した冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒用出口が前記圧縮機(10)の吸引側に接続され、液相冷媒用出口が前記低圧側熱交換器(40)に接続された気液分離器(50)とを有し、
前記低圧側熱交換器(40)に発生した霜を除去する場合には、前記高圧側熱交換器(20)にて冷却されていない高温冷媒を分配して、前記低圧側熱交換器(40)及び前記気液分離器(50)それぞれに供給することを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that transfers heat on the low temperature side to the high temperature side,
A high-pressure side heat exchanger (20) for radiating heat of the high-pressure refrigerant discharged from the compressor (10);
A low pressure side heat exchanger (40) for evaporating the low pressure refrigerant,
It has a nozzle (71) for decompressing and expanding a high-pressure refrigerant in an isentropic manner, and sucks a vapor-phase refrigerant evaporated in the low-pressure side heat exchanger (40) by a high-speed refrigerant flow injected from the nozzle (71). An ejector (70) that converts expansion energy into pressure energy to increase the suction pressure of the compressor (10);
The refrigerant flowing out of the ejector (70) is separated into a gas-phase refrigerant and a liquid-phase refrigerant, an outlet for the gas-phase refrigerant is connected to a suction side of the compressor (10), and an outlet for the liquid-phase refrigerant is connected to the low-pressure side. A gas-liquid separator (50) connected to the heat exchanger (40);
When removing the frost generated in the low-pressure side heat exchanger (40), the high-pressure refrigerant not cooled by the high-pressure side heat exchanger (20) is distributed to the low-pressure side heat exchanger (40). ) And the gas-liquid separator (50).
前記圧縮機(10)は、複数段階に分けて冷媒を圧縮する多段方式の圧縮機であり、
前記低圧側熱交換器(40)に発生した霜を除去する場合には、前記圧縮機(10)の初段吐出から最終吐出に至る圧縮行程中で冷媒を分配することを特徴とする請求項1ないし3のいずれか1つに記載の蒸気圧縮式冷凍機。
The compressor (10) is a multi-stage compressor that compresses a refrigerant in a plurality of stages,
The refrigerant is distributed in a compression stroke from a first stage discharge to a final discharge of the compressor (10) when removing frost generated in the low-pressure side heat exchanger (40). 4. The vapor compression refrigerator according to any one of items 3 to 3.
低温側の熱を高温側に移動させる場合には、前記圧縮機(10)の吐出圧を冷媒の臨界圧力以上とすることを特徴とする請求項1ないし4のいずれか1つに記載の蒸気圧縮式冷凍機。The steam according to any one of claims 1 to 4, wherein when the heat on the low-temperature side is moved to the high-temperature side, the discharge pressure of the compressor (10) is equal to or higher than the critical pressure of the refrigerant. Compression refrigerator. 冷媒として二酸化炭素が用いられていることを特徴とする請求項1ないし4のいずれか1つに記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to any one of claims 1 to 4, wherein carbon dioxide is used as the refrigerant.
JP2003152287A 2002-09-24 2003-05-29 Vapor compression type refrigerator Pending JP2004163084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003152287A JP2004163084A (en) 2002-09-24 2003-05-29 Vapor compression type refrigerator
DE2003143820 DE10343820A1 (en) 2002-09-24 2003-09-22 Water heater circuit for defrosting a refrigerator, has high temperature coolant not fed through high pressure heat exchanger if low pressure heat exchanger ices up

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002277364 2002-09-24
JP2003152287A JP2004163084A (en) 2002-09-24 2003-05-29 Vapor compression type refrigerator

Publications (1)

Publication Number Publication Date
JP2004163084A true JP2004163084A (en) 2004-06-10

Family

ID=31980621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152287A Pending JP2004163084A (en) 2002-09-24 2003-05-29 Vapor compression type refrigerator

Country Status (2)

Country Link
JP (1) JP2004163084A (en)
DE (1) DE10343820A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033378A1 (en) * 2004-09-22 2006-03-30 Denso Corporation Ejector type refrigeration cycle
JP2007263391A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Refrigerating cycle device
JP2008057940A (en) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd Refrigerant cycle device
JP2009276051A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
CN101346056B (en) * 2007-07-13 2011-09-07 国际商业机器公司 Method and system for cooling heat-generating devices
US9200820B2 (en) 2009-10-20 2015-12-01 Mitsubishi Electric Corporation Heat pump apparatus with ejector cycle
WO2019245096A1 (en) * 2018-06-20 2019-12-26 티이컴퍼니 유한회사 Complex cooling system capable of efficient defrosting operation
CN114674097A (en) * 2022-04-29 2022-06-28 济南宇翔制冷设备有限公司 Hot gas bypass defrosting system and method
CN115307324A (en) * 2022-07-29 2022-11-08 青岛海尔空调电子有限公司 Cascade heat pump system and defrosting control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024771B4 (en) * 2007-05-25 2018-05-03 Denso Corporation Refrigerant cycle device with a two-stage compressor
DE102008024772B4 (en) * 2007-05-25 2018-05-03 Denso Corporation Refrigerant cycle device with a two-stage compressor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186180B2 (en) 2004-09-22 2012-05-29 Denso Corporation Ejector-type refrigerant cycle device
WO2006033378A1 (en) * 2004-09-22 2006-03-30 Denso Corporation Ejector type refrigeration cycle
KR100798395B1 (en) 2004-09-22 2008-01-28 가부시키가이샤 덴소 Ejector type refrigeration cycle
US7757514B2 (en) 2004-09-22 2010-07-20 Denso Corporation Ejector-type refrigerant cycle device
JP2006118849A (en) * 2004-09-22 2006-05-11 Denso Corp Ejector type refrigeration cycle
JP2007263391A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Refrigerating cycle device
JP2008057940A (en) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd Refrigerant cycle device
CN101346056B (en) * 2007-07-13 2011-09-07 国际商业机器公司 Method and system for cooling heat-generating devices
JP2009276049A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2009276051A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
US9200820B2 (en) 2009-10-20 2015-12-01 Mitsubishi Electric Corporation Heat pump apparatus with ejector cycle
WO2019245096A1 (en) * 2018-06-20 2019-12-26 티이컴퍼니 유한회사 Complex cooling system capable of efficient defrosting operation
CN114674097A (en) * 2022-04-29 2022-06-28 济南宇翔制冷设备有限公司 Hot gas bypass defrosting system and method
CN115307324A (en) * 2022-07-29 2022-11-08 青岛海尔空调电子有限公司 Cascade heat pump system and defrosting control method thereof

Also Published As

Publication number Publication date
DE10343820A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
JP5195364B2 (en) Ejector refrigeration cycle
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
EP2381180B1 (en) Heat pump type hot water supply apparatus
JP3102651U (en) Refrigerator refrigerator with two evaporators
JP2003083622A (en) Ejector cycle
US10088216B2 (en) Refrigerator and method of controlling the same
JP2004198002A (en) Vapor compression type refrigerator
KR20080106311A (en) Freezing apparatus
JP2003329313A (en) Vapor compression type refrigerating machine
JP5126072B2 (en) Ejector refrigeration cycle
CN100436964C (en) Ejector cycle
JP5359231B2 (en) Ejector refrigeration cycle
JP2003114063A (en) Ejector cycle
KR102173814B1 (en) Cascade heat pump system
CN113310243B (en) Mixed working medium low-temperature refrigeration circulation system adopting ejector and control method
KR102477314B1 (en) A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator
JP2008064421A (en) Refrigerating device
JP2012504221A (en) Increase in capacity when pulling down
JP2004163084A (en) Vapor compression type refrigerator
JP2004257694A (en) Vapor compression type refrigerator
JP2005024210A (en) Vapor compression type refrigerating machine
JP2001235245A (en) Freezer
JP3847499B2 (en) Two-stage compression refrigeration system
CN210425610U (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Effective date: 20080512

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930