JP5793745B2 - Cooling trap device - Google Patents

Cooling trap device Download PDF

Info

Publication number
JP5793745B2
JP5793745B2 JP2011092616A JP2011092616A JP5793745B2 JP 5793745 B2 JP5793745 B2 JP 5793745B2 JP 2011092616 A JP2011092616 A JP 2011092616A JP 2011092616 A JP2011092616 A JP 2011092616A JP 5793745 B2 JP5793745 B2 JP 5793745B2
Authority
JP
Japan
Prior art keywords
valve
trap
refrigerant
path
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011092616A
Other languages
Japanese (ja)
Other versions
JP2012223691A (en
Inventor
徹 戸島
徹 戸島
Original Assignee
東京理化器械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京理化器械株式会社 filed Critical 東京理化器械株式会社
Priority to JP2011092616A priority Critical patent/JP5793745B2/en
Publication of JP2012223691A publication Critical patent/JP2012223691A/en
Application granted granted Critical
Publication of JP5793745B2 publication Critical patent/JP5793745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、冷却トラップ装置に関し、詳しくは、真空常温乾燥や減圧濃縮で排気される溶媒蒸気を、冷凍機の冷媒によって低温に冷却されたトラップ槽内に導入して凝縮又は凍結させて捕集するための冷却トラップ装置に関する。 The present invention related to cooling trap apparatus and, more particularly, the solvent vapor to be evacuated by vacuum drying at room temperature and concentrated under reduced pressure, and condensed or frozen is introduced into the trap vessel which is cooled to a low temperature by the refrigerant of the refrigerator about the cold trap device for trapping.

真空常温乾燥や減圧濃縮で排出される蒸気を冷却して液化又は固化させて捕集するための冷却トラップ装置が知られている。冷却トラップ装置は、トラップ槽に設けた冷却流路に冷凍サイクルからの低温冷媒を流通させることによってトラップ槽を低温に冷却し、低温のトラップ槽内で溶媒蒸気を冷却することによって液化又は固化させて捕集するようにしている(例えば、特許文献1参照。)。   There is known a cooling trap device for cooling and collecting liquefied or solidified vapor discharged by vacuum room temperature drying or vacuum concentration. The cold trap device cools the trap tank to a low temperature by circulating a low-temperature refrigerant from the refrigeration cycle through a cooling channel provided in the trap tank, and liquefies or solidifies the solvent vapor by cooling the solvent tank in the low-temperature trap tank. (See, for example, Patent Document 1).

特開2008−23479号公報JP 2008-23479A

乾燥操作や濃縮操作で、通常の操作よりも大量の溶媒蒸気が長時間にわたって発生するような場合、トラップ槽内に大量の固形物(霜)が付着したり、トラップ槽内に大量の液体が溜まったりすることがあり、冷却トラップ装置の処理能力が低下することがあった。   When a large amount of solvent vapor is generated over a long period of time during drying or concentration operations, a large amount of solid matter (frost) adheres to the trap tank or a large amount of liquid is trapped in the trap tank. In some cases, the capacity of the cooling trap device may be reduced.

この場合、大容量の冷却トラップ装置を使用するか、複数台の冷却トラップ装置を切り替えて使用する必要があり、いずれの場合も溶媒蒸気の捕集操作が一時的に中断することになり、また、操作に要するコストが上昇する要因となっていた。また、理化学実験用の冷却トラップ装置では、有機溶媒蒸気を捕集することがあるため、トラップ槽内の固形物や液体を除去する際には、外部への有機溶媒の漏出を防止する必要がある。   In this case, it is necessary to use a large-capacity cold trap device or switch between multiple cold trap devices, and in any case, the solvent vapor collection operation will be temporarily suspended, and The cost required for operation was a factor. In addition, in the cold trap device for physics and chemistry experiments, since organic solvent vapor may be collected, it is necessary to prevent leakage of the organic solvent to the outside when removing solids and liquid in the trap tank. is there.

そこで本発明は、真空常温乾燥や減圧濃縮を行う際に大量の溶媒蒸気が発生するような場合でも、長時間の連続運転が可能な冷却トラップ装置を提供することを目的としている。 The present invention aims at providing a large number of even solvent vapor as occurs, a cold trap equipment capable prolonged continuous operation when performing vacuum dried at room temperature and concentrated under reduced pressure.

上記目的を達成するため、本発明に係る圧縮機、凝縮器、膨張弁及び蒸発器を備えた冷凍サイクルの前記蒸発器を流れる低温冷媒によって冷却されるトラップ槽内に溶媒蒸気を導入し、該溶媒蒸気をトラップ槽内で冷却して捕集する冷却トラップ装置の第1の構成は、複数のトラップ槽と、除霜用液体を含む液体を貯留する液体貯留槽とを備え、前記複数のトラップ槽は、前記溶媒蒸気をトラップ槽内に流入させる溶媒蒸気流入経路及び該溶媒蒸気流入経路に設けられた蒸気流入弁と、トラップ槽内を真空排気する排気経路及び該排気経路に設けられた排気弁と、トラップ槽の底部と前記液体貯留槽とを接続する液体導入導出経路及び該液体導入導出経路に設けられた液体導入導出弁と、トラップ槽内にガスを流入させるためのガス流入経路及び該ガス流入経路に設けられたガス流入弁とをそれぞれ備え、前記冷凍サイクルは、前記圧縮機で圧縮した高温高圧冷媒によって前記液体貯留槽内の除霜用液体を加熱する加熱器を備えた高温冷媒経路と、該高温冷媒経路を経た高温高圧冷媒を凝縮させる前記凝縮器と、該凝縮器で凝縮した高圧冷媒を各トラップ槽にそれぞれ設けられた複数の前記蒸発器に導入するための複数の高圧冷媒経路及び該高圧冷媒経路にそれぞれ設けられた高圧冷媒弁と、各高圧冷媒弁を経た高圧冷媒をそれぞれ膨張させる膨張弁と、各膨張弁で膨張した低温冷媒を各蒸発器に導入する低温冷媒導入経路と、各蒸発器で蒸発したガス状冷媒を各蒸発器からそれぞれ導出するガス状冷媒導出経路と、一つの蒸発器からガス状冷媒導出経路に導出されたガス状冷媒を他の蒸発器に導入する予冷用冷媒導入経路と、前記ガス状冷媒導出経路に導出されたガス状冷媒を圧縮機吸入弁を介して前記圧縮機に循環吸入させる圧縮機吸入経路と、前記予冷用冷媒導入経路から前記他の蒸発器に導入されて該他の蒸発器を導出した予冷用冷媒を予冷弁を介して前記圧縮機に循環吸入させる予冷冷媒循環経路とを備え、複数のトラップ槽の中の一つのトラップ槽において、該一つのトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁をそれぞれ開いてガス流入弁及び液体導入導出弁を閉じた状態とし、該一つのトラップ槽の蒸発器に低温冷媒を導入して該一つのトラップ槽を冷却することにより、該一つのトラップ槽内に溶媒蒸気流入経路から流入した溶媒蒸気を冷却固化させて捕集する蒸気捕集工程を行っているときに、他のトラップ槽では、該他のトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及びガス流入弁を閉じた状態で液体導入導出弁を開き、高温高圧冷媒で加熱した除霜用液体を液体貯留槽内から吸引して該他のトラップ槽の冷却面に付着している霜を除霜用液体により加熱溶解させて液化する加熱溶解段階と、ガス流入弁を開いて前記他のトラップ槽内にガスを導入し、霜が溶解して液化した液体を含む除霜用液体を液体貯留槽に戻す液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、蒸気捕集工程を行っている一つのトラップ槽の蒸発器から導出したガス状冷媒を他のトラップ槽の蒸発器に導入し、該他のトラップ槽の蒸発器を経たガス状冷媒を圧縮機に吸入させる予冷段階とを含む再生工程を行って、複数のトラップ槽において前記蒸気捕集工程と再生工程とを切り替えて実施することを特徴としている。 In order to achieve the above object , solvent vapor is introduced into a trap tank cooled by a low-temperature refrigerant flowing through the evaporator of a refrigeration cycle including a compressor, a condenser, an expansion valve and an evaporator according to the present invention, A first configuration of a cold trap device that cools and collects solvent vapor in a trap tank includes a plurality of trap tanks and a liquid storage tank that stores a liquid containing a liquid for defrosting , and the plurality of traps The tank includes a solvent vapor inflow path for allowing the solvent vapor to flow into the trap tank, a steam inflow valve provided in the solvent vapor inflow path, an exhaust path for evacuating the trap tank, and an exhaust provided in the exhaust path. gas inlet path for introducing a valve, a trap tank bottom and the liquid storage tank and a connection to the liquid introduced deriving path and said liquid introducing derived liquid introduction deriving valve provided in the path, the gas in the trap vessel Each comprise a fine the gas inlet passage gas inlet valve provided in the refrigerating cycle, comprising a heater for heating the liquid for defrosting of the liquid storage tank by a high-temperature high-pressure refrigerant compressed by the compressor A plurality of high-temperature refrigerant paths, the condenser for condensing the high-temperature high-pressure refrigerant that has passed through the high-temperature refrigerant path, and a plurality of high-pressure refrigerants condensed in the condenser for introduction into a plurality of evaporators provided in each trap tank. High-pressure refrigerant paths, high-pressure refrigerant valves provided in the high-pressure refrigerant paths, expansion valves that expand the high-pressure refrigerant that has passed through the high-pressure refrigerant valves, and low-temperature refrigerant that has been expanded by the expansion valves are introduced into the evaporators. A low-temperature refrigerant introduction path, a gaseous refrigerant deriving path for deriving the gaseous refrigerant evaporated in each evaporator from each evaporator, and a gaseous refrigerant derived from one evaporator to the gaseous refrigerant deriving path. A refrigerant introduction path for pre-cooling to be introduced into the evaporator, and compressor suction path for circulating sucked into the compressor via the compressor suction valve gaseous refrigerant derived to the gaseous refrigerant outlet path, for the pre-cooling is introduced from the refrigerant introduction path into the other evaporator and a pre-cooling refrigerant circulating path for circulating sucked into the compressor through the precooling valve refrigerant precooling derived the other evaporator, a plurality of trap tank In one of the trap tanks, the steam inlet valve, the exhaust valve, the high-pressure refrigerant valve, and the compressor intake valve of the one trap tank are opened, and the gas inlet valve and the liquid inlet / outlet valve are closed. Vapor collection that cools and solidifies the solvent vapor flowing from the solvent vapor inflow path into the one trap tank by introducing a low-temperature refrigerant into the trap tank evaporator to cool the one trap tank. Do the process When the other trap tank is open, the liquid inlet / outlet valve is opened with the steam inlet valve, the exhaust valve, the high-pressure refrigerant valve and the gas inlet valve of the other trap tank closed, and the defrost is heated with the high-temperature / high-pressure refrigerant. A heating and melting stage for sucking liquid from the liquid storage tank and liquefying the frost adhering to the cooling surface of the other trap tank by heating and dissolving with the defrosting liquid; A liquid discharge stage for introducing gas into the trap tank and returning the defrosting liquid including the liquid liquefied by frost melting to the liquid storage tank, and closing the liquid introduction derivation valve and the gas inflow valve, exhaust valve and pre-cooling A gaseous refrigerant derived from an evaporator of one trap tank that opens a valve and performs a vapor collecting process is introduced into the evaporator of another trap tank, and the gaseous refrigerant passes through the evaporator of the other trap tank. A regeneration process including a pre-cooling stage in which the compressor is sucked into the compressor. It is characterized by carrying out switching between regeneration step and the vapor absorption step in a plurality of trap tank.

さらに、第2の構成は、前記高温冷媒経路は、前記加熱器と並列に、該加熱器を迂回するバイパス経路及び該バイパス経路に設けられたバイパス弁とを備え、前記一つのトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁をそれぞれ開いてガス流入弁及び液体導入導出弁を閉じた状態とし、該一つのトラップ槽の蒸発器に低温冷媒を導入して該一つのトラップ槽を冷却することにより、該一つのトラップ槽内に溶媒蒸気流入経路から流入した溶媒蒸気を冷却液化させて捕集する蒸気捕集工程を前記一つのトラップ槽において行っているときに、前記バイパス弁を開いて、前記加熱器を迂回する高温高圧冷媒を前記バイパス経路を介して前記凝縮器に流すとともに、他のトラップ槽では、該他のトラップ槽の蒸気流入弁、排気弁及び高圧冷媒弁を閉じた状態でガス流入弁及び液体導入導出弁を開き、該他のトラップ槽内にガスを導入して該他のトラップ槽内に捕集した液体を前記液体貯留槽に排出する液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、蒸気捕集工程を行っている一つのトラップ槽の蒸発器から導出したガス状冷媒を他のトラップ槽の蒸発器に導入し、該他のトラップ槽の蒸発器を経たガス状冷媒を圧縮機に吸入させる予冷段階とを含む再生工程を行うことを特徴とし、第1の構成及び第2の構成において、前記複数のトラップ槽が3槽の場合は、第1のトラップ槽が蒸気捕集工程を行っている際に、第2のトラップ槽が加熱溶解段階及び液体排出段階を行い、第3のトラップ槽が予冷段階を行うことを特徴としている。 Further, in the second configuration, the high-temperature refrigerant path includes a bypass path that bypasses the heater and a bypass valve provided in the bypass path in parallel with the heater, and the steam of the one trap tank The inflow valve, the exhaust valve, the high-pressure refrigerant valve, and the compressor intake valve are opened, the gas inflow valve and the liquid introduction / derivation valve are closed, and a low-temperature refrigerant is introduced into the evaporator of the one trap tank. When the trapping step of cooling and trapping the solvent vapor flowing from the solvent vapor inflow path into the one trapping tank by cooling the trapping tank is performed in the one trapping tank, The bypass valve is opened, and the high-temperature and high-pressure refrigerant that bypasses the heater is caused to flow to the condenser via the bypass path. In other trap tanks, a steam inlet valve, an exhaust valve, and an exhaust valve of the other trap tank are used. With the high-pressure refrigerant valve closed, the gas inflow valve and the liquid introduction / delivery valve are opened to introduce the gas into the other trap tank and discharge the liquid collected in the other trap tank to the liquid storage tank. The liquid discharge stage, the liquid inlet / outlet valve and the gas inflow valve are closed, the exhaust valve and the precooling valve are opened, and the gaseous refrigerant derived from the evaporator of one trap tank performing the vapor collection process is transferred to the other trap tank. In the first configuration and the second configuration, including a pre-cooling step in which a gaseous refrigerant having passed through the evaporator in the other trap tank is sucked into the compressor . When the plurality of trap tanks are three tanks, the second trap tank performs the heating and dissolving stage and the liquid discharging stage when the first trap tank is performing the vapor collecting process, and the third trap tank The tank is characterized by performing a pre-cooling stage .

また、第3の構成は、複数のトラップ槽と、除霜用液体を含む液体を貯留する液体貯留槽とを備え、前記複数のトラップ槽は、前記溶媒蒸気をトラップ槽内に流入させる溶媒蒸気流入経路及び該溶媒蒸気流入経路に設けられた蒸気流入弁と、トラップ槽内を真空排気する排気経路及び該排気経路に設けられた排気弁と、トラップ槽の底部と前記液体貯留槽とを接続する液体導入導出経路及び該液体導入導出経路に設けられた液体導入導出弁と、トラップ槽内にガスを流入させるためのガス流入経路及び該ガス流入経路に設けられたガス流入弁とをそれぞれ備え、前記冷凍サイクルは、前記圧縮機で圧縮した高温高圧冷媒が吐出する高温冷媒経路と、該高温冷媒経路を経た高温高圧冷媒を凝縮させる前記凝縮器と、該凝縮器で凝縮した高圧冷媒を各トラップ槽にそれぞれ設けられた複数の前記蒸発器に導入するための複数の高圧冷媒経路及び該高圧冷媒経路にそれぞれ設けられた高圧冷媒弁と、各高圧冷媒弁を経た高圧冷媒をそれぞれ膨張させる膨張弁と、各膨張弁で膨張した低温冷媒を各蒸発器に導入する低温冷媒導入経路と、各蒸発器で蒸発したガス状冷媒を各蒸発器からそれぞれ導出するガス状冷媒導出経路と、一つの蒸発器からガス状冷媒導出経路に導出されたガス状冷媒を他の蒸発器に導入する予冷用冷媒導入経路と、前記ガス状冷媒導出経路に導出されたガス状冷媒を圧縮機吸入弁を介して前記圧縮機に循環吸入させる圧縮機吸入経路と、前記予冷用冷媒導入経路から前記他の蒸発器に導入されて該他の蒸発器を導出した予冷用冷媒を予冷弁を介して前記圧縮機に循環吸入させる予冷冷媒循環経路とを備え、複数のトラップ槽の中の一つのトラップ槽において、該一つのトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁をそれぞれ開いてガス流入弁及び液体導入導出弁を閉じた状態とし、該一つのトラップ槽の蒸発器に低温冷媒を導入して該一つの トラップ槽を冷却することにより、該一つのトラップ槽内に溶媒蒸気流入経路から流入した溶媒蒸気を冷却液化させて捕集する蒸気捕集工程を行っているときに、他のトラップ槽では、該他のトラップ槽の蒸気流入弁、排気弁及び高圧冷媒弁を閉じた状態でガス流入弁及び液体導入導出弁を開き、該他のトラップ槽内にガスを導入して該他のトラップ槽内に捕集した液体を前記液体貯留槽に排出する液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、蒸気捕集工程を行っている一つのトラップ槽の蒸発器から導出したガス状冷媒を他のトラップ槽の蒸発器に導入し、該他のトラップ槽の蒸発器を経たガス状冷媒を圧縮機に吸入させる予冷段階とを含む再生工程を行い、複数のトラップ槽において前記蒸気捕集工程と前記再生工程とを切り替えて実施することを特徴としている。 The third configuration includes a plurality of trap tanks and a liquid storage tank that stores a liquid containing a defrosting liquid, and the plurality of trap tanks cause the solvent vapor to flow into the trap tank. Connecting the inflow path and the steam inflow valve provided in the solvent vapor inflow path, the exhaust path for evacuating the inside of the trap tank, the exhaust valve provided in the exhaust path, and the bottom of the trap tank and the liquid storage tank A liquid introduction / extraction path, a liquid introduction / extraction valve provided in the liquid introduction / extraction path, a gas inflow path for allowing gas to flow into the trap tank, and a gas inflow valve provided in the gas inflow path, respectively. The refrigeration cycle includes a high-temperature refrigerant path that discharges the high-temperature and high-pressure refrigerant compressed by the compressor, the condenser that condenses the high-temperature and high-pressure refrigerant that has passed through the high-temperature refrigerant path, and the high-pressure refrigerant that is condensed in the condenser. A plurality of high-pressure refrigerant paths for introduction into the plurality of evaporators provided in the respective trap tanks, high-pressure refrigerant valves respectively provided in the high-pressure refrigerant paths, and high-pressure refrigerant that has passed through the high-pressure refrigerant valves are expanded. An expansion valve, a low-temperature refrigerant introduction path for introducing the low-temperature refrigerant expanded by each expansion valve into each evaporator, a gaseous refrigerant deriving path for deriving the gaseous refrigerant evaporated by each evaporator from each evaporator, A precooling refrigerant introduction path for introducing the gaseous refrigerant derived from one evaporator into the gaseous refrigerant extraction path to another evaporator, and a compressor intake valve for the gaseous refrigerant derived from the gaseous refrigerant extraction path. A pre-cooling refrigerant introduced into the other evaporator through the pre-cooling refrigerant introduction path and led to the other evaporator through the pre-cooling valve. Circulating suction into the machine And a pre-cooling refrigerant circulation path for, in one trap tank of the plurality of trap tank, said one of the trap tank of the steam inlet valve, exhaust valve, respectively a high-pressure refrigerant valve and compressor suction valve open gas inlet valve And the liquid inlet / outlet valve is closed, and a low-temperature refrigerant is introduced into the evaporator of the single trap tank to cool the single trap tank, thereby flowing into the single trap tank from the solvent vapor inflow path. when you are the the solvent vapor by performing a vapor collection step of collecting by cooling liquefaction, in other trap tank, gas is closed steam admission valves of the other trap tank, an exhaust valve and the high pressure refrigerant valve A liquid discharge stage for opening the inflow valve and the liquid introduction / derivation valve, introducing a gas into the other trap tank, and discharging the liquid collected in the other trap tank to the liquid storage tank; and a liquid introduction / derivation valve And gas inlet valve Close and open the exhaust valve and precooling valve, introduce the gaseous refrigerant derived from the evaporator of one trap tank that is performing the vapor collection process into the evaporator of the other trap tank, and evaporate the other trap tank A regeneration process including a precooling step for sucking the gaseous refrigerant that has passed through the compressor into the compressor is performed, and the steam collecting process and the regeneration process are switched in a plurality of trap tanks.

さらに、第3の構成において、前記複数のトラップ槽が3槽の場合は、第1のトラップ槽が蒸気捕集工程を行っている際に、第2のトラップ槽が液体排出段階を行い、第3のトラップ槽が予冷段階を行うことを特徴としている。また、第1乃至第3の構成において、前記液体貯留槽は、該液体貯留槽内の液体の液面があらかじめ設定された高さ超えたときに、液体貯留槽内の液体をオーバーフローさせて液体貯留槽から排出するオーバーフロー経路19を備えていることを特徴としているFurther, in the third configuration, when the plurality of trap tanks are three tanks, the second trap tank performs a liquid discharge stage when the first trap tank is performing the vapor collecting step, 3 trap tanks are characterized by performing the pre-cooling stage. In the first to third configurations, the liquid storage tank may be configured to overflow the liquid in the liquid storage tank when the liquid level of the liquid in the liquid storage tank exceeds a preset height. An overflow path 19 for discharging from the storage tank is provided .

本発明によれば、複数のトラップ槽を蒸気捕集工程と再生工程とに切り替えて運転することができるので、トラップする溶媒蒸気の量が多い場合でも、長時間にわたって連続して溶媒蒸気を捕集することができる。   According to the present invention, since a plurality of trap tanks can be operated by switching between a vapor collection step and a regeneration step, even when the amount of solvent vapor to be trapped is large, the solvent vapor is continuously collected for a long time. Can be collected.

本発明の冷却トラップ装置の一形態例を示す要部の系統図である。It is a systematic diagram of the principal part which shows one example of the cooling trap apparatus of this invention. 二つのトラップ槽を備えた冷却トラップ装置における冷凍サイクルの一形態例を示す系統図である。It is a systematic diagram which shows one example of the refrigerating cycle in the cold trap apparatus provided with two trap tanks. 一方のトラップ槽で捕集工程、他方のトラップ槽で除霜工程又は捕集液排出工程を開始したときの冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of a refrigerant | coolant when a collection process is started in one trap tank, and a defrost process or a collection liquid discharge process is started by the other trap tank. 同じく他方のトラップ槽で予冷段階を行っているときの冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of a refrigerant | coolant when the pre-cooling step is similarly performed in the other trap tank. 同じく一方のトラップ槽を除霜工程又は捕集液排出工程に切り替えて他方のトラップ槽を捕集工程に切り替えたときの冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of a refrigerant | coolant when similarly switching one trap tank to a defrost process or a collection liquid discharge process, and switching the other trap tank to a collection process. 同じく一方のトラップ槽で予冷段階を行っているときの冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of a refrigerant | coolant when the pre-cooling step is similarly performed in one trap tank.

本形態例に示す冷却トラップ装置は、2個のトラップ槽11a,11bと、該トラップ槽11a,11bを冷却するための冷凍サイクル12と、該冷凍サイクル12の経路内に設けられた加熱槽13とを備えている。   The cold trap apparatus shown in this embodiment includes two trap tanks 11a and 11b, a refrigeration cycle 12 for cooling the trap tanks 11a and 11b, and a heating tank 13 provided in the path of the refrigeration cycle 12. And.

各トラップ槽11a,11bには、各トラップ槽11a,11b内に乾燥装置や濃縮装置で発生した溶媒蒸気を流入させる溶媒蒸気流入経路14a,14bと、各トラップ槽11a,11b内を真空排気する排気経路15a,15bと、各トラップ槽11a,11bの底部と前記加熱槽13とを接続する液体導入導出経路16a,16bと、各トラップ槽11a,11b内にガスを流入させるためのガス流入経路17a,17bとがそれぞれ設けられている。   In each of the trap tanks 11a and 11b, the solvent vapor inflow paths 14a and 14b through which the solvent vapor generated in the drying apparatus and the concentrating apparatus flows into the trap tanks 11a and 11b, and the trap tanks 11a and 11b are evacuated. Exhaust paths 15a, 15b, liquid introduction / derivation paths 16a, 16b connecting the bottoms of the trap tanks 11a, 11b and the heating tank 13, and gas inflow paths for allowing gas to flow into the trap tanks 11a, 11b 17a and 17b are provided.

また、前記溶媒蒸気流入経路14a,14bには蒸気流入弁14Va,14Vbが、排気経路15a,15bには排気弁15Va,15Vbが、液体導入導出経路16a,16bには液体導入導出弁16Va,16Vbが、ガス流入経路17a,17bにはガス流入弁17Va,17Vbがそれぞれ設けられている。   The solvent vapor inflow paths 14a and 14b have steam inflow valves 14Va and 14Vb, the exhaust paths 15a and 15b have exhaust valves 15Va and 15Vb, and the liquid introduction / derivation paths 16a and 16b have liquid introduction / derivation valves 16Va and 16Vb. However, gas inlet valves 17Va and 17Vb are provided in the gas inlet paths 17a and 17b, respectively.

前記冷凍サイクル12は、冷媒を圧縮してガス状の高温高圧冷媒とする圧縮機21と、該圧縮機21から高温冷媒経路31に吐出された高温高圧冷媒を冷却して凝縮させる凝縮器22と、該凝縮器22で凝縮して高圧冷媒弁32Va,32Vbを介して2本の高圧冷媒経路32a,32bに導出した液状の高圧冷媒を膨張させる膨張弁23a,23bと、該膨張弁23a,23bで膨張して低温冷媒導入経路33a,33bに導出された低圧で液状の低圧冷媒を蒸発させる蒸発器24a,24bと、該蒸発器24a,24bで蒸発してガス状冷媒導出経路34a,34bに導出したガス状冷媒を合流させてから圧縮機吸入弁35Vを介して前記圧縮機21の吸引側に循環させる圧縮機吸入経路35と、蒸発器24a,24bのいずれか一方から前記ガス状冷媒導出経路34a,34bのいずれか一方に導出したガス状冷媒を予冷用冷媒としていずれか他方の蒸発器24a,24bに導入し、該蒸発器24a,24bから予冷用冷媒導出経路36a,36bに導出した予冷用冷媒を、予冷弁36Va,36Vbを介して前記圧縮機21の吸引側に循環させる予冷冷媒循環経路37a,37bとを備えている。   The refrigeration cycle 12 includes a compressor 21 that compresses refrigerant into a gaseous high-temperature and high-pressure refrigerant, and a condenser 22 that cools and condenses the high-temperature and high-pressure refrigerant discharged from the compressor 21 to the high-temperature refrigerant path 31. Expansion valves 23a and 23b for expanding the liquid high-pressure refrigerant condensed in the condenser 22 and led to the two high-pressure refrigerant paths 32a and 32b via the high-pressure refrigerant valves 32Va and 32Vb, and the expansion valves 23a and 23b. And the evaporators 24a and 24b for evaporating the low-pressure liquid low-pressure refrigerant led to the low-temperature refrigerant introduction paths 33a and 33b, and evaporated by the evaporators 24a and 24b to the gaseous refrigerant lead-out paths 34a and 34b. One of the compressor suction path 35 and the evaporators 24a and 24b, where the derived gaseous refrigerant is merged and then circulated to the suction side of the compressor 21 via the compressor suction valve 35V. The gaseous refrigerant led out to either one of the gaseous refrigerant lead-out paths 34a, 34b is introduced into the other evaporator 24a, 24b as a precooling refrigerant, and the precooling refrigerant lead-out path 36a from the evaporators 24a, 24b. , 36b are provided with precooling refrigerant circulation paths 37a, 37b for circulating the precooling refrigerant led to the suction side of the compressor 21 via precooling valves 36Va, 36Vb.

前記加熱槽13は、除霜用液体を含む液体を貯留するための槽であって、加熱槽13には、高温冷媒経路31を流れる高温高圧冷媒を加熱源として加熱槽13内の液体を加熱するための加熱器31aと、加熱槽13内の液体を槽底部から排出するためのドレン弁18と、該加熱槽13内の液体の液面があらかじめ設定された高さ超えたときに、加熱槽13内の液体をオーバーフローさせて加熱槽13から排出するオーバーフロー経路19とが設けられている。   The said heating tank 13 is a tank for storing the liquid containing the liquid for defrost, Comprising: The heating tank 13 heats the liquid in the heating tank 13 by using the high temperature / high pressure refrigerant | coolant which flows through the high temperature refrigerant path 31 as a heating source. A heater 31a for heating, a drain valve 18 for discharging the liquid in the heating tank 13 from the bottom of the tank, and heating when the liquid level of the liquid in the heating tank 13 exceeds a preset height. An overflow path 19 for overflowing the liquid in the tank 13 and discharging it from the heating tank 13 is provided.

本形態例に示すトラップ槽11a,11bは、槽胴部外周に蒸発器24a,24bの一部を巻回しており、槽内面全体を冷却面としている。また、本形態例に示す冷凍サイクル12では、前記加熱器31aと並列に、該加熱器31aを迂回するバイパス経路38を設けており、加熱槽13内の液体を加熱する必要がないときには、バイパス経路38に設けたバイパス弁38Vを開くことにより、高温高圧冷媒が加熱器31aを通らずに凝縮器22に流れるようにしている。   The trap tanks 11a and 11b shown in this embodiment have a part of the evaporators 24a and 24b wound around the outer periphery of the tank body, and the entire inner surface of the tank is used as a cooling surface. Further, in the refrigeration cycle 12 shown in this embodiment, a bypass path 38 that bypasses the heater 31a is provided in parallel with the heater 31a, and when the liquid in the heating tank 13 does not need to be heated, a bypass is provided. By opening the bypass valve 38V provided in the path 38, the high-temperature and high-pressure refrigerant flows into the condenser 22 without passing through the heater 31a.

以下、本形態例に示した冷却トラップ装置を用いて、溶媒蒸気をトラップ槽11a,11b内で冷却固化させて捕集する第1の運転方法にて長時間連続運転する際の運転手順を説明する。溶媒蒸気を固化させて捕集する場合、加熱槽13内には、あらかじめ設定された量の除霜用液体が投入されている。また、加熱槽13におけるドレン弁18は、閉状態に保たれており、オーバーフロー経路19にオーバーフロー弁19Vが設けられている場合、オーバーフロー弁19Vは開状態に保たれて加熱槽13内は大気圧状態となっている。   Hereinafter, using the cooling trap apparatus shown in the present embodiment, the operation procedure for continuous operation for a long time in the first operation method in which the solvent vapor is cooled and solidified in the trap tanks 11a and 11b and collected will be described. To do. When the solvent vapor is solidified and collected, a predetermined amount of defrosting liquid is introduced into the heating tank 13. In addition, the drain valve 18 in the heating tank 13 is kept in a closed state, and when the overflow valve 19 is provided in the overflow path 19, the overflow valve 19V is kept in an open state and the inside of the heating tank 13 is at atmospheric pressure. It is in a state.

一方のトラップ槽(以下、第1トラップ槽)11aが再生工程から蒸気捕集工程に切り替えられ、他方のトラップ槽(以下、第2トラップ槽)11bが蒸気捕集工程から再生工程に切り替えられた状態のとき、第1トラップ槽11aにおいては、該第1トラップ槽11aに関連する蒸気流入弁14Va、排気弁15Va、高圧冷媒弁32Va及び圧縮機吸入弁35Vをそれぞれ開いた状態とし、ガス流入弁17Va及び液体導入導出弁16Vaをそれぞれ閉じた状態とする。   One trap tank (hereinafter referred to as the first trap tank) 11a was switched from the regeneration process to the steam collecting process, and the other trap tank (hereinafter referred to as the second trap tank) 11b was switched from the steam collecting process to the regeneration process. In the first trap tank 11a, the steam inlet valve 14Va, the exhaust valve 15Va, the high-pressure refrigerant valve 32Va, and the compressor intake valve 35V related to the first trap tank 11a are opened, and the gas inlet valve 17Va and the liquid introduction / derivation valve 16Va are closed.

これにより、図3に実線で示すように、冷凍サイクル12を循環する冷媒は、圧縮機21で圧縮され、凝縮器22で凝縮し、膨張弁23aで膨張した液状の低圧冷媒が低温冷媒導入経路33aを通って第1トラップ槽11aの蒸発器24aに導入され、該蒸発器24a内で蒸発した低温冷媒によって第1トラップ槽11aの冷却面が冷却され、蒸発器24aからガス状冷媒導出経路34aに導出された低温冷媒は、圧縮機吸入弁35Vを介して圧縮機吸入経路35を通り、圧縮機21の吸入側に循環する。   Thereby, as shown by a solid line in FIG. 3, the refrigerant circulating in the refrigeration cycle 12 is compressed by the compressor 21, condensed by the condenser 22, and expanded by the expansion valve 23a. The cooling surface of the first trap tank 11a is cooled by the low-temperature refrigerant introduced into the evaporator 24a of the first trap tank 11a through the 33a and evaporated in the evaporator 24a, and the gaseous refrigerant lead-out path 34a from the evaporator 24a. The low-temperature refrigerant led to is circulated to the suction side of the compressor 21 through the compressor suction path 35 via the compressor suction valve 35V.

また、真空ポンプ(図示せず)に接続した排気経路15aを介して第1トラップ槽11a内が減圧されることにより、乾燥装置や濃縮装置で発生した溶媒蒸気が吸引されて溶媒蒸気流入経路14aから第1トラップ槽11a内に流入し、第1トラップ槽11aの内部で冷却されることにより、冷却面に霜状に固化して第1トラップ槽11a内に捕集される。このとき、加熱槽13では、加熱器31aを流れる高温高圧冷媒によって加熱槽13内の除霜用液体が加熱されている。   Further, the inside of the first trap tank 11a is depressurized through an exhaust passage 15a connected to a vacuum pump (not shown), so that the solvent vapor generated in the drying device and the concentrating device is sucked and the solvent vapor inflow passage 14a. Then, it flows into the first trap tank 11a and is cooled inside the first trap tank 11a, so that it is solidified in the form of frost on the cooling surface and collected in the first trap tank 11a. At this time, in the heating tank 13, the defrosting liquid in the heating tank 13 is heated by the high-temperature and high-pressure refrigerant flowing through the heater 31a.

一方、第2トラップ槽11bでは、再生工程における第1段階の加熱溶解段階が始まり、該第2トラップ槽11bに関連する蒸気流入弁14Vb、排気弁15Vb、高圧冷媒弁32Vb及びガス流入弁17Vbを閉じた状態とし、第2トラップ槽11b内への溶媒蒸気の流入を遮断するとともに、蒸発器24bへの低圧冷媒の導入を遮断する。この状態で液体導入導出弁16Vbを開くと、再生工程に入る前の蒸気捕集工程で真空ポンプにより減圧されて減圧状態となっている第2トラップ槽11b内に、液体導入導出経路16bを通して加熱槽13からあらかじめ設定された温度に加熱された除霜用液体が吸い上げられる。これにより、第2トラップ槽11b内が加熱された除霜用液体で満たされた状態になり、第2トラップ槽11bの冷却面に霜状に固化して捕集された溶媒固化物が除霜用液体で加熱溶解されて液体となり、除霜用液体中に混合した状態となる。   On the other hand, in the second trap tank 11b, the first heating and melting stage in the regeneration process starts, and the steam inlet valve 14Vb, the exhaust valve 15Vb, the high-pressure refrigerant valve 32Vb, and the gas inlet valve 17Vb related to the second trap tank 11b are connected. In a closed state, the flow of the solvent vapor into the second trap tank 11b is blocked, and the introduction of the low-pressure refrigerant to the evaporator 24b is blocked. When the liquid introduction / derivation valve 16Vb is opened in this state, the liquid is introduced through the liquid introduction / derivation path 16b into the second trap tank 11b, which is decompressed by the vacuum pump in the vapor collection process before entering the regeneration process. The defrosting liquid heated to a preset temperature is sucked up from the tank 13. Thereby, the inside of the 2nd trap tank 11b will be in the state filled with the heated defrosting liquid, and the solvent solidified thing which solidified and collected in the frost form on the cooling surface of the 2nd trap tank 11b will defrost. It is heated and dissolved in the liquid for use to become a liquid, and is mixed in the liquid for defrosting.

あらかじめ設定された時間の加熱溶解段階を終えた後、再生工程における第2段階の液体排出段階に入り、液体導入導出弁16Vbを開状態に保ったままガス流入弁17Vbを開く。これにより、ガス流入経路17bを通って第2トラップ槽11b内にガス、例えば大気が流入し、第2トラップ槽11b内の霜が溶解して液化した液体を含む除霜用液体が自重で液体導入導出経路16bから加熱槽13に向かって流下する。   After finishing the heating and melting stage for a preset time, the process enters the second liquid discharge stage in the regeneration process, and the gas inlet valve 17Vb is opened while the liquid introduction / derivation valve 16Vb is kept open. Thereby, gas, for example, air flows into the second trap tank 11b through the gas inflow path 17b, and the defrosting liquid including the liquid liquefied by the frost in the second trap tank 11b is liquefied by its own weight. It flows down from the introduction / derivation path 16 b toward the heating tank 13.

液体排出段階で除霜用液体を排出した第2トラップ槽11bは、再生工程における第3段階の予冷段階に入り、液体導入導出弁16Vb及びガス流入弁17Vbを閉じるとともに、排気弁15Vbを開き、第2トラップ槽11b内の真空排気が始まる。また、圧縮機吸入弁35Vを閉じるとともに予冷弁36Vbを開く。   The second trap tank 11b that has discharged the defrosting liquid at the liquid discharge stage enters the third precooling stage in the regeneration process, closes the liquid introduction / derivation valve 16Vb and the gas inflow valve 17Vb, and opens the exhaust valve 15Vb, Vacuum evacuation in the second trap tank 11b starts. Further, the compressor intake valve 35V is closed and the precooling valve 36Vb is opened.

これにより、図4の実線で示すように、低温冷媒導入経路33aから第1トラップ槽11aの蒸発器24aに導入され、第1トラップ槽11aを冷却してガス状冷媒導出経路34aに導出された低温冷媒は、圧縮機吸入弁35Vが閉じていることから第2トラップ槽11bのガス状冷媒導出経路34bを逆流し、第2トラップ槽11bの蒸発器24bの出口側に導入されて蒸発器24bを通過することにより第2トラップ槽11bを冷却し、蒸発器24bの入口側から低温冷媒導入経路33bに導出される。低温冷媒導入経路33bに導出された低温冷媒は、予冷用冷媒導出経路36bから予冷弁36Vbを通り、さらに、予冷冷媒循環経路37bから圧縮機吸入経路35を通って圧縮機21の吸入側に循環する。したがって、第2トラップ槽11bは、第1トラップ槽11aの蒸発器24aから導出した低温冷媒によってあらかじめ設定された予冷温度に予冷される。   As a result, as shown by the solid line in FIG. 4, the refrigerant is introduced into the evaporator 24a of the first trap tank 11a from the low-temperature refrigerant introduction path 33a, and is cooled to the gaseous refrigerant lead-out path 34a after cooling the first trap tank 11a. Since the compressor suction valve 35V is closed, the low-temperature refrigerant flows back in the gaseous refrigerant lead-out path 34b of the second trap tank 11b, and is introduced to the outlet side of the evaporator 24b of the second trap tank 11b to be supplied to the evaporator 24b. The second trap tank 11b is cooled by passing through and is led out to the low-temperature refrigerant introduction path 33b from the inlet side of the evaporator 24b. The low-temperature refrigerant led out to the low-temperature refrigerant introduction path 33b passes through the pre-cooling refrigerant lead-out path 36b through the pre-cooling valve 36Vb, and further circulates from the pre-cooling refrigerant circulation path 37b to the suction side of the compressor 21 through the compressor suction path 35. To do. Therefore, the second trap tank 11b is pre-cooled to a preset pre-cooling temperature by the low-temperature refrigerant derived from the evaporator 24a of the first trap tank 11a.

あらかじめ設定された予冷時間を経過して第2トラップ槽11bの温度が十分に低下した後、第1トラップ槽11aが蒸気捕集工程から再生工程に切り替えられ、第2トラップ槽11bが再生工程から蒸気捕集工程に切り替えられる。すなわち、第2トラップ槽11bに関連する蒸気流入弁14Vb、排気弁15Vb、高圧冷媒弁32Vb及び圧縮機吸入弁35Vをそれぞれ開いた状態とし、ガス流入弁17Vb及び液体導入導出弁16Vbをそれぞれ閉じた状態とする。   After the pre-cooling time set in advance has passed and the temperature of the second trap tank 11b has sufficiently decreased, the first trap tank 11a is switched from the steam collecting process to the regeneration process, and the second trap tank 11b is moved from the regeneration process. Switch to the steam collection process. That is, the steam inlet valve 14Vb, the exhaust valve 15Vb, the high-pressure refrigerant valve 32Vb, and the compressor intake valve 35V related to the second trap tank 11b are opened, and the gas inlet valve 17Vb and the liquid introduction / derivation valve 16Vb are closed, respectively. State.

これにより、図5の実線で示すように、冷凍サイクル12において、圧縮機21で圧縮された冷媒は、加熱器31aを含む高温冷媒経路31,凝縮器22,高圧冷媒弁32Vb,高圧冷媒経路32b,膨張弁23b,低温冷媒導入経路33b,第2トラップ槽11bの蒸発器24b,ガス状冷媒導出経路34b,圧縮機吸入弁35V,圧縮機吸入経路35をへて圧縮機21に循環する。これにより、排気経路15bを介して減圧された第2トラップ槽11b内に溶媒蒸気が吸引されて冷却され、冷却面に霜状に固化して第2トラップ槽11b内に捕集される。   Thus, as shown by the solid line in FIG. 5, in the refrigeration cycle 12, the refrigerant compressed by the compressor 21 is a high-temperature refrigerant path 31, the condenser 22, the high-pressure refrigerant valve 32Vb, and the high-pressure refrigerant path 32b including the heater 31a. , The expansion valve 23b, the low-temperature refrigerant introduction path 33b, the evaporator 24b of the second trap tank 11b, the gaseous refrigerant outlet path 34b, the compressor intake valve 35V, and the compressor intake path 35 circulate to the compressor 21. As a result, the solvent vapor is sucked into the second trap tank 11b decompressed via the exhaust passage 15b and cooled, solidified in the form of frost on the cooling surface, and collected in the second trap tank 11b.

また、再生工程に切り替えられた第1トラップ槽11aでは、蒸気流入弁14Va、排気弁15Va、高圧冷媒弁32Va及びガス流入弁17Vaを閉じるとともに、液体導入導出弁16Vaを開いて第1トラップ槽11a内に加熱槽13から除霜用液体を吸い上げ、第1トラップ槽11aに捕集した溶媒固化物を加熱溶解する加熱溶解段階を行い、さらに、ガス流入弁17Vaを開いて第1トラップ槽11a内の液体を液体導入導出経路16aから加熱槽13に排出する液体排出段階を行う。   In the first trap tank 11a switched to the regeneration process, the steam inlet valve 14Va, the exhaust valve 15Va, the high-pressure refrigerant valve 32Va, and the gas inlet valve 17Va are closed, and the liquid introduction / derivation valve 16Va is opened to open the first trap tank 11a. The defrosting liquid is sucked up from the heating tank 13 and the solvent solidified material collected in the first trap tank 11a is heated and dissolved, and the gas inflow valve 17Va is opened to open the first trap tank 11a. The liquid discharging step of discharging the liquid from the liquid introduction / derivation path 16a to the heating tank 13 is performed.

次に、第1トラップ槽11aの予冷段階に入り、液体導入導出弁16Va,ガス流入弁17Va及び圧縮機吸入弁35Vを閉じるとともに、排気弁15Va及び予冷弁36Vaを開き、第1トラップ槽11a内を真空排気を開始し、図6の実線で示すように、第2トラップ槽11bの蒸発器24bからガス状冷媒導出経路34bに導出された低温冷媒を、ガス状冷媒導出経路34aから第1トラップ槽11aの蒸発器24aに逆流させ、第2トラップ槽11bの蒸発器24bから導出した低温冷媒によって第1トラップ槽11aを予冷する。   Next, the pre-cooling stage of the first trap tank 11a is entered, the liquid introduction / derivation valve 16Va, the gas inflow valve 17Va and the compressor suction valve 35V are closed, and the exhaust valve 15Va and the pre-cooling valve 36Va are opened, and the first trap tank 11a is opened. As shown by the solid line in FIG. 6, the low temperature refrigerant led out from the evaporator 24b of the second trap tank 11b to the gaseous refrigerant lead-out path 34b is transferred from the gaseous refrigerant lead-out path 34a to the first trap. The first trap tank 11a is pre-cooled by the low-temperature refrigerant which is caused to flow backward to the evaporator 24a of the tank 11a and derived from the evaporator 24b of the second trap tank 11b.

第1トラップ槽11aの再生工程が終了したら、第1トラップ槽11aを蒸気捕集工程に切り替え、第2トラップ槽11bを再生工程に切り替える。このように、第1トラップ槽11a及び第2トラップ槽11bにおけるそれぞれの蒸気捕集工程と再生工程とを交互に切り替えて実施することにより、蒸気捕集工程で捕集した溶媒蒸気を再生工程で除去することができるので、長時間にわたって大量の蒸気を連続して捕集することができる。   When the regeneration process of the first trap tank 11a is completed, the first trap tank 11a is switched to the steam collecting process, and the second trap tank 11b is switched to the regeneration process. In this way, by alternately switching between the vapor collection process and the regeneration process in the first trap tank 11a and the second trap tank 11b, the solvent vapor collected in the vapor collection process can be recovered in the regeneration process. Since it can be removed, a large amount of vapor can be continuously collected over a long period of time.

また、加熱器31aを流れる高温高圧冷媒で加熱した除霜用液体によって霜(固化した溶媒蒸気)を直接加熱して溶解するので、高温高圧冷媒を冷却器に導入して除霜を行うホットガス方式に比べて短時間で確実に霜を除去することができ、蒸気捕集工程と再生工程との切換時間を短くすることができる。したがって、短時間で蒸気捕集工程と再生工程とに切り替えることができるので、小容量のトラップ槽を使用することが可能となり、装置全体の小型化や低コスト化を図ることができる。   Moreover, since the frost (solidified solvent vapor) is directly heated and melted by the defrosting liquid heated by the high-temperature and high-pressure refrigerant flowing through the heater 31a, the hot gas for defrosting by introducing the high-temperature and high-pressure refrigerant into the cooler Compared with the method, frost can be reliably removed in a short time, and the switching time between the steam collecting step and the regeneration step can be shortened. Therefore, since it is possible to switch between the steam collecting process and the regeneration process in a short time, it becomes possible to use a small-capacity trap tank, and it is possible to reduce the size and cost of the entire apparatus.

さらに、加熱槽13にオーバーフロー経路19を設けておくことにより、霜が加熱溶解した液体によって加熱槽13内の除霜用液体の量が多くなっても、液体排出段階で液体の余剰分をオーバーフロー経路19から外部の回収容器などに排出することができるので、加熱槽13内に一定量の除霜用液体を保持することができ、加熱器31aを流れる高温高圧冷媒による除霜用液体の加熱を一定時間で確実に行うことができる。   Furthermore, by providing the overflow path 19 in the heating tank 13, even if the amount of defrosting liquid in the heating tank 13 is increased by the liquid in which the frost is heated and dissolved, the excess liquid overflows in the liquid discharge stage. Since it can discharge | emit to an external collection container etc. from the path | route 19, a fixed amount of defrosting liquid can be hold | maintained in the heating tank 13, and the heating of the defrosting liquid by the high temperature / high pressure refrigerant | coolant which flows through the heater 31a is possible. Can be reliably performed in a certain time.

また、溶媒蒸気をトラップ槽11a,11b内で冷却液化させて捕集する第2の運転方法では、除霜用液体による固化物の加熱溶解が不要となることから、再生工程における第1段階の加熱溶解段階を省略し、再生工程に切り替えたときに第2段階の液体排出段階から開始すればよい。   Further, in the second operation method in which the solvent vapor is cooled and liquefied and collected in the trap tanks 11a and 11b, it is not necessary to heat and dissolve the solidified material with the defrosting liquid. What is necessary is just to start from the liquid discharge stage of the second stage when the heating and dissolving stage is omitted and the regeneration process is switched.

すなわち、一方のトラップ槽、例えば第1トラップ槽11aで溶媒蒸気を液化させて捕集する前記同様の蒸気捕集工程を行っている際に、第2トラップ槽11bでは、蒸気流入弁14Vb、排気弁15Vb及び高圧冷媒弁32Vbを閉じ、第2トラップ槽11b内への溶媒蒸気の流入及び第2トラップ槽11bの冷却を停止した状態でガス流入弁17Vbを開き、前述の第1の運転方法における液体排出段階と同じ状態とすることにより、第2トラップ槽11b内に捕集した液体を自重で液体導入導出経路16bから加熱槽13に排出する。液体を排出した第2トラップ槽11bは、前述の第1の運転方法における再生工程と同様に、液体排出段階の次の予冷段階を行い、第2トラップ槽11b内の真空排気と、第1トラップ槽11aの蒸発器24aから導出した低温冷媒により予冷とを行う。   That is, when performing the same steam collecting step of liquefying and collecting the solvent vapor in one trap tank, for example, the first trap tank 11a, in the second trap tank 11b, the steam inlet valve 14Vb, the exhaust gas The valve 15Vb and the high-pressure refrigerant valve 32Vb are closed, and the gas inflow valve 17Vb is opened in a state where the inflow of the solvent vapor into the second trap tank 11b and the cooling of the second trap tank 11b are stopped. By setting the same state as the liquid discharge stage, the liquid collected in the second trap tank 11b is discharged from the liquid introduction / derivation path 16b to the heating tank 13 by its own weight. The second trap tank 11b from which the liquid has been discharged is subjected to a pre-cooling stage next to the liquid discharge stage in the same manner as in the regeneration step in the first operation method described above, and the evacuation in the second trap tank 11b and the first trap Pre-cooling is performed with a low-temperature refrigerant derived from the evaporator 24a of the tank 11a.

このように、溶媒蒸気を冷却液化させて捕集する場合も、加熱溶解段階を省略した再生工程と蒸気捕集工程とを第1トラップ槽11a及び第2トラップ槽11bにおいて交互に切り替えることにより、長時間にわたって大量の蒸気を連続して捕集することができる。   Thus, even when the solvent vapor is cooled and liquefied and collected, by alternately switching between the regeneration step and the vapor collection step in which the heating and dissolving step is omitted in the first trap tank 11a and the second trap tank 11b, A large amount of steam can be continuously collected over a long period of time.

また、加熱槽13で液体を加熱する必要がないので、バイパス弁38Vを開いて高温高圧冷媒を加熱器31aに通さずにバイパス経路38に迂回させることにより、再生工程で加熱槽13内に流下した液体を加熱することがなくなり、加熱槽13から溶媒蒸気が発生することを防止できる。また、加熱槽13のドレン弁18を開いておき、液体排出段階で加熱槽13に流下した液体を、加熱槽13に溜めることなく別の回収容器などに回収することができ、加熱槽13内を常に空の状態にしておくことができる。   Further, since there is no need to heat the liquid in the heating tank 13, the bypass valve 38V is opened and the high-temperature and high-pressure refrigerant is diverted to the bypass path 38 without passing through the heater 31a. The heated liquid is no longer heated, and the generation of solvent vapor from the heating tank 13 can be prevented. Further, the drain valve 18 of the heating tank 13 is opened, and the liquid that has flowed down to the heating tank 13 in the liquid discharge stage can be recovered in another recovery container or the like without being stored in the heating tank 13. Can always be left empty.

なお、溶媒蒸気が水蒸気の場合、除霜用液体は水でよく、液体排出段階でトラップ槽に流入させるガスは大気でよいが、捕集する溶媒蒸気が水に不溶性の物質の場合は、該物質を溶解可能な液体を除霜用液体として使用し、捕集する溶媒蒸気が有害な有機溶媒蒸気の場合は、除霜用液体及びトラップ槽に流入させるガスを適切に選択するとともに、オーバーフロー経路やガス流入経路から有機溶媒蒸気が装置外に漏れ出さないような密閉構造を採用することが好ましい。   When the solvent vapor is water vapor, the defrosting liquid may be water, and the gas flowing into the trap tank at the liquid discharge stage may be air, but when the solvent vapor to be collected is a substance insoluble in water, When a liquid capable of dissolving substances is used as a defrosting liquid and the solvent vapor to be collected is a harmful organic solvent vapor, the defrosting liquid and the gas flowing into the trap tank are appropriately selected, and the overflow path It is preferable to employ a sealed structure so that the organic solvent vapor does not leak out of the apparatus from the gas inflow path.

また、冷凍サイクルの構成は冷凍能力に合わせて適宜最適な構成を採用することができ、例えば、本形態例に示す冷凍サイクル12では、蒸発器24a,24bのいずれか一方から導出したガス状の低温冷媒を蒸発器24a,24bのいずれか他方に導入する予冷用冷媒導入経路としてガス状冷媒導出経路34a,34bを利用しているが、専用の予冷用冷媒導入経路を設けてもよく、弁も適宜な位置に配置することが可能である。さらに、トラップ槽を3槽以上設けて切り替え使用することでき、例えば、3槽の場合、第1のトラップ槽が蒸気捕集工程を行っている際に、第2のトラップ槽が加熱溶解段階(固化捕集時のみ)及び液体排出段階を行い、第3のトラップ槽が予冷段階を行うように設定することができる。   In addition, the configuration of the refrigeration cycle can adopt an optimal configuration as appropriate according to the refrigeration capacity. For example, in the refrigeration cycle 12 shown in this embodiment, a gaseous state derived from one of the evaporators 24a and 24b. Although the gaseous refrigerant lead-out paths 34a and 34b are used as the pre-cooling refrigerant introduction path for introducing the low-temperature refrigerant into the other of the evaporators 24a and 24b, a dedicated pre-cooling refrigerant introduction path may be provided. Can also be arranged at an appropriate position. Furthermore, three or more trap tanks can be provided and used for switching. For example, in the case of three tanks, when the first trap tank is performing the vapor collecting process, the second trap tank is heated and dissolved ( It is possible to set the third trap tank to perform the pre-cooling stage, only during solidification collection) and the liquid discharge stage.

11a,11b…トラップ槽、12…冷凍サイクル、13…加熱槽、14a,14b…溶媒蒸気流入経路、14Va,14Vb…蒸気流入弁、15a,15b…排気経路、15Va,15Vb…排気弁、16a,16b…液体導入導出経路、16Va,16Vb…液体導入導出弁、17a,17b…ガス流入経路、17Va,17Vb…ガス流入弁、18…ドレン弁、19…オーバーフロー経路、21…圧縮機、22…凝縮器、23a,23b…膨張弁、24a,24b…蒸発器、31…高温冷媒経路、31a…加熱器、32a,32b…高圧冷媒経路、32Va,32Vb…高圧冷媒弁、33a,33b…低温冷媒導入経路、34a,34b…ガス状冷媒導出経路、35…圧縮機吸入経路、35V…圧縮機吸入弁、36a,36b…予冷用冷媒導出経路、36Va,36Vb…予冷弁、37a,37b…予冷冷媒循環経路、38…バイパス経路、38V…バイパス弁   11a, 11b ... trap tank, 12 ... refrigeration cycle, 13 ... heating tank, 14a, 14b ... solvent vapor inflow path, 14Va, 14Vb ... steam inflow valve, 15a, 15b ... exhaust path, 15Va, 15Vb ... exhaust valve, 16a, 16b ... Liquid introduction / derivation path, 16Va, 16Vb ... Liquid introduction / derivation valve, 17a, 17b ... Gas inflow path, 17Va, 17Vb ... Gas inflow valve, 18 ... Drain valve, 19 ... Overflow path, 21 ... Compressor, 22 ... Condensation 23a, 23b ... expansion valve, 24a, 24b ... evaporator, 31 ... high temperature refrigerant path, 31a ... heater, 32a, 32b ... high pressure refrigerant path, 32Va, 32Vb ... high pressure refrigerant valve, 33a, 33b ... low temperature refrigerant introduction Route, 34a, 34b ... Gaseous refrigerant lead-out route, 35 ... Compressor intake route, 35V ... Compressor intake valve, 36a, 36b ... Pre-cooling Medium derived route, 36Va, 36Vb ... pre-cooling valve, 37a, 37b ... the pre-cooling refrigerant circulation path, 38 ... bypass route, 38V ... bypass valve

Claims (6)

圧縮機、凝縮器、膨張弁及び蒸発器を備えた冷凍サイクルの前記蒸発器を流れる低温冷媒によって冷却されるトラップ槽内に溶媒蒸気を導入し、該溶媒蒸気をトラップ槽内で冷却して捕集する冷却トラップ装置において、複数のトラップ槽と、除霜用液体を含む液体を貯留する液体貯留槽とを備え、前記複数のトラップ槽は、前記溶媒蒸気をトラップ槽内に流入させる溶媒蒸気流入経路及び該溶媒蒸気流入経路に設けられた蒸気流入弁と、トラップ槽内を真空排気する排気経路及び該排気経路に設けられた排気弁と、トラップ槽の底部と前記液体貯留槽とを接続する液体導入導出経路及び該液体導入導出経路に設けられた液体導入導出弁と、トラップ槽内にガスを流入させるためのガス流入経路及び該ガス流入経路に設けられたガス流入弁とをそれぞれ備え、前記冷凍サイクルは、前記圧縮機で圧縮した高温高圧冷媒によって前記液体貯留槽内の除霜用液体を加熱する加熱器を備えた高温冷媒経路と、該高温冷媒経路を経た高温高圧冷媒を凝縮させる前記凝縮器と、該凝縮器で凝縮した高圧冷媒を各トラップ槽にそれぞれ設けられた複数の前記蒸発器に導入するための複数の高圧冷媒経路及び該高圧冷媒経路にそれぞれ設けられた高圧冷媒弁と、各高圧冷媒弁を経た高圧冷媒をそれぞれ膨張させる膨張弁と、各膨張弁で膨張した低温冷媒を各蒸発器に導入する低温冷媒導入経路と、各蒸発器で蒸発したガス状冷媒を各蒸発器からそれぞれ導出するガス状冷媒導出経路と、一つの蒸発器からガス状冷媒導出経路に導出されたガス状冷媒を他の蒸発器に導入する予冷用冷媒導入経路と、前記ガス状冷媒導出経路に導出されたガス状冷媒を圧縮機吸入弁を介して前記圧縮機に循環吸入させる圧縮機吸入経路と、前記予冷用冷媒導入経路から前記他の蒸発器に導入されて該他の蒸発器を導出した予冷用冷媒を予冷弁を介して前記圧縮機に循環吸入させる予冷冷媒循環経路とを備え、複数のトラップ槽の中の一つのトラップ槽において、該一つのトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁をそれぞれ開いてガス流入弁及び液体導入導出弁を閉じた状態とし、該一つのトラップ槽の蒸発器に低温冷媒を導入して該一つのトラップ槽を冷却することにより、該一つのトラップ槽内に溶媒蒸気流入経路から流入した溶媒蒸気を冷却固化させて捕集する蒸気捕集工程を行っているときに、他のトラップ槽では、該他のトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及びガス流入弁を閉じた状態で液体導入導出弁を開き、高温高圧冷媒で加熱した除霜用液体を液体貯留槽内から吸引して該他のトラップ槽の冷却面に付着している霜を除霜用液体により加熱溶解させて液化する加熱溶解段階と、ガス流入弁を開いて前記他のトラップ槽内にガスを導入し、霜が溶解して液化した液体を含む除霜用液体を液体貯留槽に戻す液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、蒸気捕集工程を行っている一つのトラップ槽の蒸発器から導出したガス状冷媒を他のトラップ槽の蒸発器に導入し、該他のトラップ槽の蒸発器を経たガス状冷媒を圧縮機に吸入させる予冷段階とを含む再生工程を行って、複数のトラップ槽において前記蒸気捕集工程と再生工程とを切り替えて実施することを特徴とする冷却トラップ装置。 Compressor, a condenser, introducing solvent vapor into the expansion valve and the trap tank being cooled by cold refrigerant flowing through the evaporator of the refrigeration cycle having an evaporator, capturing and cooling the solvent vapor in the trap tank The cooling trap device to be collected includes a plurality of trap tanks and a liquid storage tank for storing a liquid containing a defrosting liquid, and the plurality of trap tanks have a solvent vapor inflow for allowing the solvent vapor to flow into the trap tank. A path, a steam inlet valve provided in the solvent vapor inlet path, an exhaust path for evacuating the inside of the trap tank, an exhaust valve provided in the exhaust path, and the bottom of the trap tank and the liquid storage tank are connected to each other A liquid introduction / extraction path, a liquid introduction / extraction valve provided in the liquid introduction / extraction path, a gas inflow path for allowing gas to flow into the trap tank, and a gas inflow valve provided in the gas inflow path; Comprising respectively, the freezing cycle, the high-temperature refrigerant path by a high-temperature high-pressure refrigerant compressed by the compressor with a heater for heating the liquid for defrosting of the liquid storage tank, the high-temperature high-pressure refrigerant which has flowed through the high-temperature refrigerant passage And a plurality of high-pressure refrigerant paths for introducing the high-pressure refrigerant condensed in the condenser into the plurality of evaporators provided in each trap tank, and the high-pressure refrigerant paths, respectively. A high-pressure refrigerant valve, an expansion valve that expands the high-pressure refrigerant that has passed through each high-pressure refrigerant valve, a low-temperature refrigerant introduction path that introduces the low-temperature refrigerant expanded by each expansion valve into each evaporator, and a gas that has evaporated in each evaporator gaseous refrigerant outlet path for deriving respective refrigerant from the evaporator, the refrigerant introduction path for pre-cooling to introduce a gaseous refrigerant derived gaseous refrigerant outlet passage to another evaporator from one evaporator, Serial and compressor suction path gaseous refrigerant derived gaseous refrigerant outlet path through the compressor intake valve circulates sucked into the compressor, is introduced from the refrigerant introduction path for the pre-cooling to the other evaporator and a pre-cooling refrigerant circulating path for circulating the suction precooling refrigerant derived the other evaporator to the compressor via a pre-cooling valve, in one trap tank of the plurality of trap tank, said one trap vessel The steam inlet valve, the exhaust valve, the high-pressure refrigerant valve and the compressor intake valve are opened to close the gas inlet valve and the liquid inlet / outlet valve, and a low-temperature refrigerant is introduced into the evaporator of the one trap tank. While performing a vapor collection step of cooling and solidifying the solvent vapor flowing from the solvent vapor inflow path into one trap tank by cooling one trap tank, The other tiger Open the liquid inlet / outlet valve with the steam inlet valve, exhaust valve, high pressure refrigerant valve and gas inlet valve of the tank closed, and suck the defrosting liquid heated with the high temperature / high pressure refrigerant from the liquid storage tank. The frost adhering to the cooling surface of the other trap tank is heated and dissolved by the defrosting liquid to liquefy it, and the gas inlet valve is opened to introduce gas into the other trap tank. A liquid discharging stage for returning the defrosting liquid including the dissolved and liquefied liquid to the liquid storage tank, the liquid introduction / derivation valve and the gas inflow valve are closed, the exhaust valve and the precooling valve are opened, and the vapor collecting process is performed. Including a pre-cooling stage in which a gaseous refrigerant derived from an evaporator of one trap tank is introduced into an evaporator of another trap tank, and the gaseous refrigerant having passed through the evaporator of the other trap tank is sucked into a compressor. Performing the process, the steam collector in a plurality of trap tanks Cold trap apparatus which comprises carrying out switching between regeneration steps and. 前記高温冷媒経路は、前記加熱器と並列に、該加熱器を迂回するバイパス経路及び該バイパス経路に設けられたバイパス弁とを備え、前記一つのトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁をそれぞれ開いてガス流入弁及び液体導入導出弁を閉じた状態とし、該一つのトラップ槽の蒸発器に低温冷媒を導入して該一つのトラップ槽を冷却することにより、該一つのトラップ槽内に溶媒蒸気流入経路から流入した溶媒蒸気を冷却液化させて捕集する蒸気捕集工程を前記一つのトラップ槽において行っているときに、前記バイパス弁を開いて、前記加熱器を迂回する高温高圧冷媒を前記バイパス経路を介して前記凝縮器に流すとともに、他のトラップ槽では、該他のトラップ槽の蒸気流入弁、排気弁及び高圧冷媒弁を閉じた状態でガス流入弁及び液体導入導出弁を開き、該他のトラップ槽内にガスを導入して該他のトラップ槽内に捕集した液体を前記液体貯留槽に排出する液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、蒸気捕集工程を行っている一つのトラップ槽の蒸発器から導出したガス状冷媒を他のトラップ槽の蒸発器に導入し、該他のトラップ槽の蒸発器を経たガス状冷媒を圧縮機に吸入させる予冷段階とを含む再生工程を行うことを特徴とする請求項1記載の冷却トラップ装置。 The high-temperature refrigerant path includes a bypass path that bypasses the heater and a bypass valve provided in the bypass path in parallel with the heater, and a steam inlet valve, an exhaust valve, and a high-pressure refrigerant of the one trap tank By opening the valve and the compressor intake valve and closing the gas inflow valve and the liquid introduction / delivery valve, respectively, by introducing a low-temperature refrigerant into the evaporator of the one trap tank and cooling the one trap tank, When the vapor trapping step for collecting and collecting the solvent vapor flowing from the solvent vapor inflow path into the one trap tank is cooled and liquefied in the one trap tank, the bypass valve is opened and the heating is performed. The high-temperature and high-pressure refrigerant that bypasses the condenser flows to the condenser via the bypass path, and in the other trap tank, the steam inlet valve, the exhaust valve, and the high-pressure refrigerant valve of the other trap tank are closed. A liquid discharge stage for opening the gas inflow valve and the liquid introduction / derivation valve, introducing the gas into the other trap tank and discharging the liquid collected in the other trap tank to the liquid storage tank, and the liquid introduction Close the outlet valve and the gas inlet valve, open the exhaust valve and the precooling valve, introduce the gaseous refrigerant derived from the evaporator of one trap tank that is performing the vapor collection process into the evaporator of the other trap tank, 2. The cooling trap device according to claim 1 , wherein a regeneration step including a pre-cooling step of sucking the gaseous refrigerant having passed through the evaporator of the other trap tank into the compressor is performed . 前記複数のトラップ槽が3槽の場合において、第1のトラップ槽が蒸気捕集工程を行っている際に、第2のトラップ槽が加熱溶解段階及び液体排出段階を行い、第3のトラップ槽が予冷段階を行うことを特徴とする請求項1又は2記載の冷却トラップ装置。 In the case where the plurality of trap tanks are three tanks, the second trap tank performs the heating and dissolving stage and the liquid discharging stage when the first trap tank is performing the vapor collecting step, and the third trap tank The cooling trap device according to claim 1 or 2, wherein the precooling step is performed . 圧縮機、凝縮器、膨張弁及び蒸発器を備えた冷凍サイクルの前記蒸発器を流れる低温冷媒によって冷却されるトラップ槽内に溶媒蒸気を導入し、該溶媒蒸気をトラップ槽内で冷却して捕集する冷却トラップ装置において、複数のトラップ槽と、除霜用液体を含む液体を貯留する液体貯留槽とを備え、前記複数のトラップ槽は、前記溶媒蒸気をトラップ槽内に流入させる溶媒蒸気流入経路及び該溶媒蒸気流入経路に設けられた蒸気流入弁と、トラップ槽内を真空排気する排気経路及び該排気経路に設けられた排気弁と、トラップ槽の底部と前記液体貯留槽とを接続する液体導入導出経路及び該液体導入導出経路に設けられた液体導入導出弁と、トラップ槽内にガスを流入させるためのガス流入経路及び該ガス流入経路に設けられたガス流入弁とをそれぞれ備え、前記冷凍サイクルは、前記圧縮機で圧縮した高温高圧冷媒が吐出する高温冷媒経路と、該高温冷媒経路を経た高温高圧冷媒を凝縮させる前記凝縮器と、該凝縮器で凝縮した高圧冷媒を各トラップ槽にそれぞれ設けられた複数の前記蒸発器に導入するための複数の高圧冷媒経路及び該高圧冷媒経路にそれぞれ設けられた高圧冷媒弁と、各高圧冷媒弁を経た高圧冷媒をそれぞれ膨張させる膨張弁と、各膨張弁で膨張した低温冷媒を各蒸発器に導入する低温冷媒導入経路と、各蒸発器で蒸発したガス状冷媒を各蒸発器からそれぞれ導出するガス状冷媒導出経路と、一つの蒸発器からガス状冷媒導出経路に導出されたガス状冷媒を他の蒸発器に導入する予冷用冷媒導入経路と、前記ガス状冷媒導出経路に導出されたガス状冷媒を圧縮機吸入弁を介して前記圧縮機に循環吸入させる圧縮機吸入経路と、前記予冷用冷媒導入経路から前記他の蒸発器に導入されて該他の蒸発器を導出した予冷用冷媒を予冷弁を介して前記圧縮機に循環吸入させる予冷冷媒循環経路とを備え、複数のトラップ槽の中の一つのトラップ槽において、該一つのトラップ槽の蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁をそれぞれ開いてガス流入弁及び液体導入導出弁を閉じた状態とし、該一つのトラップ槽の蒸発器に低温冷媒を導入して該一つのトラップ槽を冷却することにより、該一つのトラップ槽内に溶媒蒸気流入経路から流入した溶媒蒸気を冷却液化させて捕集する蒸気捕集工程を行っているときに、他のトラップ槽では、該他のトラップ槽の蒸気流入弁、排気弁及び高圧冷媒弁を閉じた状態でガス流入弁及び液体導入導出弁を開き、該他のトラップ槽内にガスを導入して該他のトラップ槽内に捕集した液体を前記液体貯留槽に排出する液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、蒸気捕集工程を行っている一つのトラップ槽の蒸発器から導出したガス状冷媒を他のトラップ槽の蒸発器に導入し、該他のトラップ槽の蒸発器を経たガス状冷媒を圧縮機に吸入させる予冷段階とを含む再生工程を行い、複数のトラップ槽において前記蒸気捕集工程と前記再生工程とを切り替えて実施することを特徴とする冷却トラップ装置。 A solvent vapor is introduced into a trap tank cooled by a low-temperature refrigerant flowing through the evaporator of a refrigeration cycle including a compressor, a condenser, an expansion valve, and an evaporator, and the solvent vapor is cooled and trapped in the trap tank. The cooling trap device to be collected includes a plurality of trap tanks and a liquid storage tank for storing a liquid containing a defrosting liquid, and the plurality of trap tanks have a solvent vapor inflow for allowing the solvent vapor to flow into the trap tank. A path, a steam inlet valve provided in the solvent vapor inlet path, an exhaust path for evacuating the inside of the trap tank, an exhaust valve provided in the exhaust path, and the bottom of the trap tank and the liquid storage tank are connected to each other A liquid introduction / extraction path, a liquid introduction / extraction valve provided in the liquid introduction / extraction path, a gas inflow path for allowing gas to flow into the trap tank, and a gas inflow valve provided in the gas inflow path; Each of the refrigeration cycles includes a high-temperature refrigerant path that discharges a high-temperature and high-pressure refrigerant compressed by the compressor, the condenser that condenses the high-temperature and high-pressure refrigerant that has passed through the high-temperature refrigerant path, and the high-pressure refrigerant that is condensed in the condenser. Are introduced into a plurality of evaporators provided in each trap tank, a plurality of high-pressure refrigerant paths, high-pressure refrigerant valves provided in the respective high-pressure refrigerant paths, and high-pressure refrigerant via each high-pressure refrigerant valve are expanded. An expansion valve, a low-temperature refrigerant introduction path for introducing the low-temperature refrigerant expanded by each expansion valve to each evaporator, a gaseous refrigerant deriving path for deriving the gaseous refrigerant evaporated by each evaporator from each evaporator, A precooling refrigerant introduction path for introducing the gaseous refrigerant derived from one evaporator to the gaseous refrigerant extraction path to another evaporator, and a compression of the gaseous refrigerant derived to the gaseous refrigerant extraction path A pre-cooling refrigerant introduced into the other evaporator from the pre-cooling refrigerant introduction path through the pre-cooling refrigerant introduction path through the pre-cooling valve through the pre-cooling valve. A pre-cooling refrigerant circulation path that circulates and sucks into the compressor , and in one trap tank, a steam inlet valve, an exhaust valve, a high-pressure refrigerant valve, and a compressor suction valve of the one trap tank Open the gas inlet valve and the liquid inlet / outlet valve and close the trap tank by introducing a low-temperature refrigerant into the evaporator of the trap tank and cooling the trap tank. In the other trap tank, the vapor inlet valve, the exhaust valve, and the high-pressure refrigerant of the other trap tank are used during the vapor trapping process for cooling and collecting the solvent vapor flowing into the solvent vapor inflow path. Valve closed A liquid discharge stage for opening the gas inflow valve and the liquid introduction / derivation valve in the state, introducing the gas into the other trap tank, and discharging the liquid collected in the other trap tank to the liquid storage tank ; Close the inlet / outlet valve and the gas inflow valve, open the exhaust valve and the precooling valve, and introduce the gaseous refrigerant derived from the evaporator of one trap tank performing the vapor collection process into the evaporator of the other trap tank. A regeneration step including a precooling step of sucking the gaseous refrigerant having passed through the evaporator of the other trap tank into the compressor, and switching between the vapor collecting step and the regeneration step in a plurality of trap tanks. A cooling trap device. 前記複数のトラップ槽が3槽の場合において、第1のトラップ槽が蒸気捕集工程を行っている際に、第2のトラップ槽が液体排出段階を行い、第3のトラップ槽が予冷段階を行うことを特徴とする請求項4記載の冷却トラップ装置。 In the case where the plurality of trap tanks are three tanks, when the first trap tank is performing the vapor collecting process, the second trap tank performs the liquid discharge stage, and the third trap tank performs the pre-cooling stage. cooling trap apparatus according to claim 4, characterized in that. 前記液体貯留槽は、該液体貯留槽内の液体の液面があらかじめ設定された高さ超えたときに、液体貯留槽内の液体をオーバーフローさせて液体貯留槽から排出するオーバーフロー経路19を備えていることを特徴とする請求項1乃至5項のいずれか1項に記載の冷却トラップ装置 The liquid storage tank includes an overflow path 19 that overflows the liquid in the liquid storage tank and discharges it from the liquid storage tank when the liquid level of the liquid in the liquid storage tank exceeds a preset height. The cooling trap device according to any one of claims 1 to 5, wherein the cooling trap device is provided .
JP2011092616A 2011-04-19 2011-04-19 Cooling trap device Active JP5793745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092616A JP5793745B2 (en) 2011-04-19 2011-04-19 Cooling trap device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092616A JP5793745B2 (en) 2011-04-19 2011-04-19 Cooling trap device

Publications (2)

Publication Number Publication Date
JP2012223691A JP2012223691A (en) 2012-11-15
JP5793745B2 true JP5793745B2 (en) 2015-10-14

Family

ID=47274493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092616A Active JP5793745B2 (en) 2011-04-19 2011-04-19 Cooling trap device

Country Status (1)

Country Link
JP (1) JP5793745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178580A (en) * 2016-09-14 2016-12-07 济南山目生物医药科技有限公司 A kind of cold-trap device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188816A (en) * 2014-03-28 2015-11-02 株式会社クボタ absorption dehydration apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719001A (en) * 1980-07-05 1982-02-01 Taiyo Sanso Kk Recovery of volatile matter in gaseous phase
JPS63248422A (en) * 1987-04-03 1988-10-14 Kogyo Kaihatsu Kenkyusho Steam trapping method
JPH0437502U (en) * 1990-07-23 1992-03-30
JPH04326901A (en) * 1991-04-24 1992-11-16 Kobe Steel Ltd Solvent recovery apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178580A (en) * 2016-09-14 2016-12-07 济南山目生物医药科技有限公司 A kind of cold-trap device

Also Published As

Publication number Publication date
JP2012223691A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
TWI630018B (en) Extraction apparatus and method thereof
TWI314635B (en)
JP2014505230A (en) Flash (frost) defrost system
KR101999270B1 (en) Vacuum freeze drying device and method
JP2010144966A (en) Freeze drying device
JP2010054064A (en) Freeze drying method and freeze drying apparatus
JP5793745B2 (en) Cooling trap device
JP6524115B2 (en) Solid-liquid separation system
CN105556221B (en) Refrigerating plant
KR102173814B1 (en) Cascade heat pump system
US20210301804A1 (en) Multi-cooling type cold trap
KR100969204B1 (en) Refrigerant purifying and collecting apparatus and method thereof
JP2008298322A (en) Air refrigerant type refrigerating device
JP4786591B2 (en) VOC cooling recovery equipment
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
KR101124872B1 (en) Heat pump having plural evaporation members
KR101514319B1 (en) Freeze drier
WO2005066554A1 (en) Ultralow temperature refrigerator, refrigerating system, and vacuum apparatus
JP4786593B2 (en) VOC cooling recovery equipment
JP5448482B2 (en) Automatic ice machine
CN114111232A (en) Temperature control system of freeze dryer
KR102101393B1 (en) Combined cold-hot heat storage system
JP2006118772A (en) Air refrigerant type refrigeration device
JP2734343B2 (en) Vacuum ice making equipment
CN216448483U (en) Temperature control system of freeze dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R150 Certificate of patent or registration of utility model

Ref document number: 5793745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250