JP2008298322A - Air refrigerant type refrigerating device - Google Patents

Air refrigerant type refrigerating device Download PDF

Info

Publication number
JP2008298322A
JP2008298322A JP2007142261A JP2007142261A JP2008298322A JP 2008298322 A JP2008298322 A JP 2008298322A JP 2007142261 A JP2007142261 A JP 2007142261A JP 2007142261 A JP2007142261 A JP 2007142261A JP 2008298322 A JP2008298322 A JP 2008298322A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
compressor
cooled
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007142261A
Other languages
Japanese (ja)
Other versions
JP5108384B2 (en
Inventor
Shinya Ishizuka
伸哉 石塚
Nelson Mugabi
ネルソン ムガビ
Keitaro Abe
啓太郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2007142261A priority Critical patent/JP5108384B2/en
Publication of JP2008298322A publication Critical patent/JP2008298322A/en
Application granted granted Critical
Publication of JP5108384B2 publication Critical patent/JP5108384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air refrigerant type heat exchanger capable of melting ice attached to a cold recovering heat exchanger and discharging the same without jumboizing a device. <P>SOLUTION: In this air refrigerant type refrigerating device constituting a refrigerating cycle system comprising a compressor for compressing the air recovered from a cooled compartment, a cooler for cooling the compressed air, and an expander for expanding the cooled compressed air, and supplying the air of low-temperature obtained by compression, cooling and expanding the air recovered from the cooled compartment to the cooled compartment, the heat exchanger for recovering cold is disposed to exchange heat between the air recovered from the cooled compartment and introduced to the compressor and the air introduced to the expander by opposed flow, and the heat exchanger for recovering cold is disposed in a state that the compressed air flows upward from a lower part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気を冷媒として冷凍サイクルを形成する空気冷媒式冷凍装置に関するものであり、詳しくは冷凍サイクル中に設けた冷熱回収用熱交換器内部に付着する雪及び氷を溶かし排出することが可能である空気冷媒式冷凍装置に関するものである。   The present invention relates to an air refrigerant refrigeration apparatus that forms a refrigeration cycle using air as a refrigerant, and more specifically, melts and discharges snow and ice adhering to the inside of a heat exchanger for recovering cold heat provided in the refrigeration cycle. The present invention relates to a possible air refrigerant refrigeration apparatus.

地球環境保全の見地から、フロン系の冷媒を用いた冷凍装置は見直しが迫られてきている。また、安全面の見地からはアンモニア系の冷媒を用いた冷凍装置にも課題が残る。そこでフロン系冷媒、アンモニア系冷媒の何れも使用せず、空気を冷媒とする空気冷媒式冷凍装置が用いられている。
空気冷媒式冷凍装置は、空気を圧縮機で高温高圧の空気とし、これを冷却器で冷却した後、膨張機で低温低圧の空気として、これを被冷却室に導入して被冷却室内の被冷却物を冷却するものであり、被冷却物を冷却した後の空気を再度圧縮機に導入して、冷凍サイクルを形成している。また、このような空気冷媒式冷凍装置においては一般に、被冷却室から回収され圧縮機へ導入される空気を、膨張機へ導入する空気と熱交換をして冷熱を回収する冷熱回収用熱交換器が設けられている。
From the viewpoint of protecting the global environment, refrigeration systems that use chlorofluorocarbon refrigerants are being reviewed. Also, from the viewpoint of safety, there are still problems in the refrigeration apparatus using an ammonia-based refrigerant. Therefore, an air refrigerant refrigeration apparatus using air as a refrigerant without using any chlorofluorocarbon refrigerant or ammonia refrigerant is used.
The air-refrigeration refrigeration system converts air into high-temperature and high-pressure air using a compressor, cools it using a cooler, and then introduces it into a cooled room as low-temperature and low-pressure air using an expander. The cooling object is cooled, and the air after cooling the object to be cooled is again introduced into the compressor to form a refrigeration cycle. Further, in such an air refrigerant refrigeration apparatus, generally, heat recovery for cold recovery, in which the air recovered from the chamber to be cooled and introduced into the compressor is heat-exchanged with the air introduced into the expander to recover the cold energy. A vessel is provided.

しかしながら、前記のような空気冷媒式冷凍装置では、被冷却室から雪又は霧状になった水分を吸入してしまい、該雪又は霧状になった水分の吸入により冷熱回収用熱交換器の低温側流路内部で氷となって付着する。さらに、前記雪又は霧状になった水分が冷熱回収用熱交換器を通過した場合には、前記水分を含んだ空気が圧縮機で圧縮された後、冷却器及び冷熱回収熱交換器で冷却される際に氷となって冷熱回収用熱交換器の高温側流路内部に付着する。冷熱回収用熱交換器内部に水分が氷結すると、冷熱回収用熱交換器においては伝熱面積が低下し性能が低下する。また、空気冷媒式冷凍機では圧縮機と膨張機を一体化した膨張機一体型圧縮機が一般的に用いられており、このような膨張機一体型圧縮機を用いた空気冷媒式冷凍機においては、冷熱回収用熱交換器内部への水分氷結によって、圧縮機及び膨張機の圧力バランスが変化して動力源である回転機のバランスが崩れ機器の耐久性に影響を与える。   However, in the air refrigerant type refrigeration apparatus as described above, moisture in the form of snow or mist is sucked from the room to be cooled, and the heat exchanger for cold heat recovery is inhaled by inhaling the snow or mist of water. It adheres as ice inside the low-temperature channel. Further, when the water in the form of snow or mist passes through the heat recovery heat exchanger, the air containing the water is compressed by the compressor and then cooled by the cooler and the heat recovery heat exchanger. When this occurs, it becomes ice and adheres to the inside of the high-temperature side flow path of the heat exchanger for cold energy recovery. If moisture freezes inside the cold heat recovery heat exchanger, the heat transfer area is reduced and the performance is deteriorated in the cold heat recovery heat exchanger. Further, in the air refrigerant refrigerator, an expander-integrated compressor in which a compressor and an expander are integrated is generally used. In an air refrigerant refrigerator using such an expander-integrated compressor, The icing of water inside the heat recovery heat exchanger changes the pressure balance between the compressor and the expander, which causes the balance of the rotating machine as a power source to be lost and affects the durability of the equipment.

そこで膨張機の出側に氷補集器を取り付け、該氷捕集器で捕集された氷や霜等を取り除くために昇温した空気を流してドレンとして流出させる所謂デフロスト運転を行うことが考えられ、例えば特許文献1にはバイパス路を設けてデフロスト運転の後、予冷運転を行ってから冷却運転を行うことができる空気冷媒式冷凍装置が開示されている。   Therefore, an ice collector is attached to the outlet side of the expander, and a so-called defrost operation is performed in which the heated air flows to drain as drainage in order to remove ice or frost collected by the ice collector. For example, Patent Literature 1 discloses an air refrigerant refrigeration apparatus that can perform a cooling operation after a pre-cooling operation after a defrost operation by providing a bypass.

特開2006−118772号公報JP 2006-118772 A

しかしながら、特許文献1に開示された空気冷媒式冷凍装置では氷捕集器が必要となるため装置が大がかりとなることに加えて、デフロスト運転によって冷熱回収用熱交換器内にドレンが溜まった場合にはドレンを除去することができず、再度冷却運転を行った際に前記ドレンが冷熱回収熱交換器内で再度氷結してしまう。そのため、予冷時に再度氷結したドレンを加熱する再熱ヒーターが必要となり、さらに装置が大がかりとなる。   However, since the air refrigerant refrigeration apparatus disclosed in Patent Document 1 requires an ice collector, the apparatus becomes large, and in addition, drain is accumulated in the heat exchanger for cold heat recovery by defrost operation. The drain cannot be removed, and when the cooling operation is performed again, the drain is frozen again in the cold heat recovery heat exchanger. Therefore, a reheat heater for heating the drain that has been frozen again at the time of pre-cooling is required, and the apparatus becomes large.

従って、本発明はかかる従来技術の問題に鑑み、装置が大型化することなく、冷熱回収熱交換器内に付着する氷を溶かして排出することが可能である空気冷媒式熱交換器を提供することを目的とする。   Accordingly, the present invention provides an air-refrigerant heat exchanger capable of melting and discharging ice adhering to the cold recovery heat exchanger without increasing the size of the apparatus in view of the problems of the prior art. For the purpose.

上記課題を解決するため本発明においては、
被冷却室から回収した空気を圧縮する圧縮機と、圧縮空気を冷却する冷却器と、冷却圧縮空気を膨張させる膨張機とを有し、前記被冷却室から回収した空気を圧縮、冷却及び膨張することにより得られる低温空気を前記被冷却室に供給する冷凍サイクルシステムを構成する空気冷媒式冷凍装置において、前記被冷却室から回収され前記圧縮機へ導入される空気を前記膨張機へ導入する空気と対向流にて熱交換する冷熱回収用熱交換器を設置し、前記冷熱回収用熱交換器は、前記圧縮空気流れ方向が下方から上方となるように配置することを特徴とする。
In order to solve the above problems, in the present invention,
A compressor that compresses air collected from the cooled chamber; a cooler that cools compressed air; and an expander that expands the cooled compressed air; compresses, cools, and expands the air collected from the cooled chamber In the air refrigerant refrigeration apparatus constituting the refrigeration cycle system for supplying the low temperature air obtained by the operation to the cooled chamber, the air recovered from the cooled chamber and introduced into the compressor is introduced into the expander A heat recovery heat exchanger that exchanges heat with air in a counter flow is installed, and the heat recovery heat exchanger is arranged so that the compressed air flow direction is from the lower side to the upper side.

氷又は雪が付着する冷熱回収用熱交換器を対向流とし、圧縮空気流れ方向を下方から上方とすることで、装置停止時に冷熱回収用熱交換器内が0℃以上となると水分が自重で落下する。さらに圧縮空気流れ、すなわち高温側空気の流れを下方から上方とすることで、冷熱回収用熱交換器内は上方から下方へ向かって温度が徐々に高くなる。そのため、冷熱回収用熱交換器内にドレンが溜まった場合でも再熱ヒーターを必要としない。   The cold heat recovery heat exchanger to which ice or snow adheres is used as a counter flow, and the compressed air flow direction is set from the lower side to the upper side. When the temperature of the cold heat recovery heat exchanger becomes 0 ° C or higher when the device is stopped, moisture falls by its own weight. To do. Further, by setting the flow of the compressed air, that is, the flow of the high temperature side air from the lower side to the upper side, the temperature in the cold heat recovery heat exchanger gradually increases from the upper side to the lower side. Therefore, even when drain is accumulated in the heat exchanger for collecting cold energy, no reheat heater is required.

また、前記冷熱回収用熱交換器は、前記対向流の流路が鉛直方向となるように配置することを特徴とする。このことで、前記のように冷熱回収用熱交換器内の水分が自重で落下する効果がさらに高くなる。   The cold heat recovery heat exchanger may be arranged such that the flow path of the counterflow is in a vertical direction. As a result, the effect of the moisture in the cold heat recovery heat exchanger falling by its own weight is further enhanced as described above.

また、前記圧縮機及び冷熱回収用熱交換器を経た空気を、膨張機及び被冷却室を迂回して前記冷熱回収用熱交換器の被冷却室からの回収空気側に流す第1のバイパス路と、前記膨張機を経た空気を、被冷却室を迂回して前記冷熱回収用熱交換器の被冷却室からの回収空気側に流す第2のバイパス路とを設け、前記第2のバイパス路を閉じた上で第1のバイパス路を経て装置内の空気を循環させるデフロスト運転、前記第1のバイパス路を閉じた上で第2のバイパス路を経て装置内の空気を循環させる予冷運転、及び前記第1のバイパス路及び第2のバイパス路を閉じて装置内の空気を循環させる冷却運転を可能としたことを特徴とする。   Also, a first bypass passage for flowing the air that has passed through the compressor and the heat recovery heat exchanger to the recovered air side from the cooling chamber of the heat recovery heat exchanger bypassing the expander and the cooling target chamber And a second bypass passage that causes the air that has passed through the expander to flow around the cooled chamber and flow to the side of the recovered air from the cooled chamber of the heat recovery heat exchanger, Defrosting operation in which the air in the apparatus is circulated through the first bypass path after closing, and a pre-cooling operation in which the air in the apparatus is circulated through the second bypass path after closing the first bypass path, In addition, the first and second bypass passages are closed to enable a cooling operation for circulating the air in the apparatus.

予冷運転を行わずにデフロスト運転時に装置内に残った昇温した空気が被冷却室へ供給された場合には、被冷却室の温度が上昇し、被冷却室内で凝縮水が発生してしまうが、このようにデフロスト運転の後、被冷却室をバイパスした予冷運転を行うことで、デフロスト運転時に装置内に残った昇温した空気を被冷却室へ供給することなく、空気を冷却することができ、凝縮水の発生を防止することができる。   When the heated air remaining in the apparatus during the defrost operation without being precooled is supplied to the cooled chamber, the temperature of the cooled chamber rises and condensed water is generated in the cooled chamber. However, after the defrosting operation, the precooling operation that bypasses the cooled chamber is performed to cool the air without supplying the heated air remaining in the apparatus during the defrosting operation to the cooled chamber. And the generation of condensed water can be prevented.

冷却運転とデフロスト運転の切り替えは、例えば冷熱回収用熱交換器の高温側と低温側それぞれに出口と入口間の差圧を測定する差圧計を設け、熱交換器の圧力損失の上昇を検知した場合、自動的にデフロスト運転を開始するように構成すると好ましい。   For switching between cooling operation and defrost operation, for example, a differential pressure gauge that measures the differential pressure between the outlet and the inlet is provided on each of the high temperature side and the low temperature side of the heat recovery heat exchanger, and an increase in the pressure loss of the heat exchanger is detected. In this case, it is preferable that the defrosting operation is automatically started.

また、前記圧縮機を経た空気を加温する加温装置を設け、前記デフロスト運転時に前記圧縮機を経た空気を前記加温装置で加温してから前記熱交換器に導入することを特徴とする。
このことによりデフロスト運転時の装置内加熱時間を短縮することができる。
In addition, a heating device that heats the air that has passed through the compressor is provided, and the air that has passed through the compressor is heated by the heating device during the defrost operation and then introduced into the heat exchanger. To do.
As a result, the heating time in the apparatus during the defrosting operation can be shortened.

以上記載のごとく本発明によれば、装置が大型化することなく、冷熱回収熱交換器内に付着する氷を溶かして排出することが可能である空気冷媒式熱交換器を提供することができる。   As described above, according to the present invention, it is possible to provide an air refrigerant heat exchanger capable of melting and discharging ice adhering to the cold heat recovery heat exchanger without increasing the size of the apparatus. .

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明の空気冷媒式冷凍装置の一例のフロー図である。
本実施例1における空気冷媒式冷凍装置は、圧縮機1、冷却器2、冷熱回収用熱交換器5、膨張機8を空気の流れの順に配置し、これらを経た空気を被冷却室9へ導入するように構成している。また被冷却室9からの戻り空気は、冷熱回収用熱交換器5で前記冷却器2を経た空気と熱交換されて圧縮機1へ循環され、冷凍サイクルを形成している。
FIG. 1 is a flowchart of an example of the air refrigerant refrigeration apparatus of the present invention.
In the air refrigerant refrigeration apparatus according to the first embodiment, the compressor 1, the cooler 2, the heat recovery heat exchanger 5 and the expander 8 are arranged in the order of the air flow, and the air that has passed through these is supplied to the room 9 to be cooled. It is configured to be introduced. The return air from the room 9 to be cooled is heat-exchanged with the air passing through the cooler 2 in the heat recovery heat exchanger 5 and circulated to the compressor 1 to form a refrigeration cycle.

前記圧縮機1と膨張機8の回転軸はモータ19の駆動軸に同軸的に接続されて駆動するようにしており、膨張機8の回転動力が圧縮機1の回転軸に伝達されることにより動力回収がなされている。
また、冷却器2はフィンチューブ型熱交換器であり、プレート内を冷却水3が通水される。また、冷却器2を通過する空気を加熱するためのヒーター4も設けられている。なお、本実施例1においては冷却器2にフィンチューブ型熱交換器を用いたが、圧縮機1を経た空気を冷却することができれば他のタイプの冷却器を用いてもよい。
The rotating shafts of the compressor 1 and the expander 8 are coaxially connected to the drive shaft of the motor 19 for driving, and the rotational power of the expander 8 is transmitted to the rotating shaft of the compressor 1. Power recovery is done.
The cooler 2 is a finned tube heat exchanger, and the cooling water 3 is passed through the plate. A heater 4 for heating the air passing through the cooler 2 is also provided. In the first embodiment, a fin tube type heat exchanger is used as the cooler 2, but other types of coolers may be used as long as the air that has passed through the compressor 1 can be cooled.

また、前記膨張機8及び被冷却室9をバイパスする第1のバイパス路21及び被冷却室9をバイパスする第2のバイパス路22を設け、それぞれのバイパス路にバルブ11及び12を設けている。また、膨張機8から被冷却室9への空気流路中であり、前記第2のバイパス路22よりも空気流れ下流側にバルブ14を設けるとともに、被冷却室9から冷熱回収用熱交換器5への空気流路中であり、前記第2のバイパス路22よりも空気流れ上流側にバルブ13を設けている。   Also, a first bypass path 21 that bypasses the expander 8 and the cooled chamber 9 and a second bypass path 22 that bypasses the cooled chamber 9 are provided, and valves 11 and 12 are provided in the respective bypass paths. . Further, in the air flow path from the expander 8 to the cooled chamber 9, a valve 14 is provided on the downstream side of the air flow from the second bypass path 22, and a heat exchanger for recovering cold from the cooled chamber 9 is provided. The valve 13 is provided on the upstream side of the air flow from the second bypass path 22.

次に、図1を用いて本実施例1における空気冷媒式熱交換器の冷却運転時における動作の一例を説明する。図1中に設けられた4つのバルブ11、12、13及び14は、冷却運転時においては、バルブ11及び12を閉、バルブ13及び14を開として運転する。
前記被冷却装置9中の約−60℃の常圧空気を吸引して冷熱回収用熱交換器5の低温側流路7に上方より導入する。該低温側流路7に導入された空気は、冷熱回収用熱交換器5で後述する圧縮機1及び冷却器2を経て冷熱回収熱交換器5の高温側流路6に導入された空気に保有する冷熱を与えることで約35℃の常圧空気となる。
Next, an example of the operation during the cooling operation of the air refrigerant heat exchanger according to the first embodiment will be described with reference to FIG. In the cooling operation, the four valves 11, 12, 13, and 14 provided in FIG. 1 are operated with the valves 11 and 12 closed and the valves 13 and 14 opened.
A normal pressure air of about −60 ° C. in the cooled device 9 is sucked and introduced from above into the low temperature side flow path 7 of the heat recovery heat exchanger 5. The air introduced into the low temperature side flow path 7 is converted into the air introduced into the high temperature side flow path 6 of the cold heat recovery heat exchanger 5 via the compressor 1 and the cooler 2 described later in the cold heat recovery heat exchanger 5. It becomes atmospheric pressure of about 35 ° C by applying the cold heat.

冷熱回収熱交換器5を経て約35℃となった常圧空気は圧縮機1で必要圧力まで圧縮され、その際に約93℃まで温度が上昇するため、冷却器2で約40℃まで冷却し、冷熱回収用熱交換器5の高温側流路6に下方より導入される。ここで、前記冷熱回収用熱交換器5の低温側流路7の約−60℃の空気と熱交換されて約−55℃まで冷却される。   The normal pressure air that has become about 35 ° C. through the cold heat recovery heat exchanger 5 is compressed to the required pressure by the compressor 1, and the temperature rises to about 93 ° C. at that time, so the air is cooled to about 40 ° C. by the cooler 2. And it introduce | transduces into the high temperature side flow path 6 of the heat exchanger 5 for cold-heat recovery from the downward direction. Here, heat is exchanged with about −60 ° C. air in the low temperature side flow path 7 of the cold heat recovery heat exchanger 5 to cool to about −55 ° C.

冷熱回収熱交換器5を経て約−55℃まで冷却された空気は、膨張機8に導入されて大気圧近傍まで膨張され約−80℃となる。こうして約−80℃となった空気を被冷却室9に供給することで、被冷却室9内を冷却する冷凍サイクルシステムが構成される。
即ち、冷却運転時には、圧縮機1→冷却器2→冷熱回収用熱交換器5の高温側流路6→膨張機8→被冷却室9→冷熱回収用熱交換器5の低温側通路7→圧縮機1の順に空気を循環させる冷凍サイクルシステムが構成されている。
The air cooled to about −55 ° C. through the cold recovery heat exchanger 5 is introduced into the expander 8 and expanded to near atmospheric pressure to reach about −80 ° C. A refrigeration cycle system that cools the inside of the room 9 to be cooled is configured by supplying air to the room 9 to be cooled in this way.
That is, during the cooling operation, the compressor 1 → the cooler 2 → the high temperature side passage 6 of the cold heat recovery heat exchanger 5 → the expander 8 → the cooled room 9 → the low temperature side passage 7 of the cold heat recovery heat exchanger 5 → A refrigeration cycle system that circulates air in the order of the compressor 1 is configured.

しかしながら、このような空気冷媒式冷凍装置では、被冷却室9から雪又は霧状になった水分を吸入してしまい、該雪又は霧状になった水分の吸入により冷熱回収用熱交換器5の低温側流路7内部で氷となって付着する。さらに、前記雪又は霧状になった水分が冷熱回収用熱交換器5を通過した場合には、前記水分を含んだ空気が圧縮機1で圧縮された後、冷却器2及び冷熱回収熱交換器5で冷却される際に氷となって冷熱回収用熱交換器5の高温側流路6内部に付着する。冷熱回収用熱交換器5内部に水分が氷結すると、冷熱回収用熱交換器5においては伝熱面積が低下し冷凍機性能が低下する。また、本実施例1のように圧縮機1と膨張機8を一体化した場合においては、冷熱回収用熱交換器5内部への水分氷結によって、圧縮機1及び膨張機8の圧力バランスが変化して動力源であるモータ19のバランスが崩れ機器の耐久性に影響を与える。   However, in such an air refrigerant type refrigeration apparatus, the water in the form of snow or mist is sucked from the chamber 9 to be cooled, and the heat exchanger 5 for recovering cold heat is inhaled by the inhalation of the snow or mist of water. It adheres as ice inside the low temperature side flow path 7. Further, when the snow or mist of moisture passes through the cold heat recovery heat exchanger 5, the air containing the moisture is compressed by the compressor 1, and then the cooler 2 and the cold heat recovery heat exchange. When cooled in the vessel 5, it becomes ice and adheres to the inside of the high temperature side flow path 6 of the heat exchanger 5 for collecting cold heat. When moisture freezes inside the cold heat recovery heat exchanger 5, the heat transfer area in the cold heat recovery heat exchanger 5 decreases, and the refrigerator performance decreases. In addition, when the compressor 1 and the expander 8 are integrated as in the first embodiment, the pressure balance between the compressor 1 and the expander 8 changes due to moisture icing inside the cold heat recovery heat exchanger 5. As a result, the balance of the motor 19 as a power source is lost, and the durability of the device is affected.

そこで、前記冷熱回収用熱交換器5内部に水分が氷結した場合、氷結した水分を除去するためのデフロスト運転を行う。冷却運転からデフロスト運転への切り替えは、例えば冷熱回収用熱交換器5の低温側流路5と高温側流路6のそれぞれに出口と入口間の差圧を測定する差圧計を設け、熱交換器の圧力損失の上昇を検知した場合、自動的にデフロスト運転を開始するように構成するとよい。   Therefore, when moisture freezes inside the cold heat recovery heat exchanger 5, a defrost operation is performed to remove the frozen moisture. For switching from the cooling operation to the defrost operation, for example, a differential pressure gauge for measuring the differential pressure between the outlet and the inlet is provided in each of the low-temperature side channel 5 and the high-temperature side channel 6 of the heat exchanger 5 for recovering cold heat to exchange heat. When an increase in the pressure loss of the vessel is detected, the defrosting operation may be automatically started.

図1を用いて本実施例1における空気冷媒式熱交換器のデフロスト運転時における動作の一例を説明する。図1中に設けられた4つのバルブ11、12、13、14は、デフロスト運転時においては、バルブ11を開、バルブ12、13及び14を閉として運転する。   An example of the operation at the time of defrost operation of the air refrigerant heat exchanger in the first embodiment will be described with reference to FIG. The four valves 11, 12, 13 and 14 provided in FIG. 1 are operated with the valve 11 opened and the valves 12, 13 and 14 closed during the defrost operation.

圧縮機1に導入された空気は圧縮機1で必要圧力まで圧縮されると同時に温度も上昇し、冷却器2へ導入される。冷却器2では冷却水3の通流を停止し、ヒーター4を稼動することで空気をさらに昇温させ、冷熱回収用熱交換器5の高温側流路6に下方より導入させる。
冷熱回収用熱交換機5の高温側流路6に下方から導入された空気は、高温側流路6を通過した後、第1のバイパス路21へと流れる。この時、前述の通り第1のバイパス路21に設けられたバルブ11は開けておく。前記バルブ11を開けておくと、膨張機8へは空気抵抗のためにバルブ11が閉じている時より空気流量が減り、その分空気が流れずに第1のバイパス路21側に空気が流れる。したがって、バルブ11の開閉操作を行うことで第1のバイパス路21側と膨張機8側との空気の流れを切り替えることができる。
The air introduced into the compressor 1 is compressed to the required pressure by the compressor 1 and at the same time the temperature rises and is introduced into the cooler 2. In the cooler 2, the flow of the cooling water 3 is stopped, and the heater 4 is operated to further raise the temperature of the air and introduce the air into the high-temperature side flow path 6 of the heat exchanger 5 for recovering cold heat from below.
The air introduced from below into the high temperature side flow path 6 of the heat exchanger 5 for cold heat recovery flows through the high temperature side flow path 6 and then flows into the first bypass path 21. At this time, the valve 11 provided in the first bypass 21 is opened as described above. If the valve 11 is kept open, the air flow rate to the expander 8 is less than that when the valve 11 is closed due to air resistance, and the air flows to the first bypass path 21 side without the air flow. . Therefore, the air flow between the first bypass path 21 side and the expander 8 side can be switched by opening and closing the valve 11.

前記第1のバイパス路21を通過した空気は冷熱回収用熱交換器5の低温側流路7に上方より導入される。この時、前述の通りバルブ12及びバルブ13を閉じているため、前記第1のバイパス路21を通過した空気は第2のバイパス路22側及び被冷却室9側に流れることはない。
前記冷熱回収用熱交換器5の低温側流路7に上方から導入された空気は、低温側流路7を通過した後、圧縮機1へ導入される。
The air that has passed through the first bypass path 21 is introduced from above into the low temperature side flow path 7 of the heat exchanger 5 for recovering cold heat. At this time, since the valve 12 and the valve 13 are closed as described above, the air that has passed through the first bypass passage 21 does not flow to the second bypass passage 22 side and the cooled chamber 9 side.
The air introduced from above into the low temperature side flow path 7 of the heat recovery heat exchanger 5 is introduced into the compressor 1 after passing through the low temperature side flow path 7.

即ちデフロスト運転時には、圧縮機1→冷却器2(ヒーター4の作動により加温器として用いられる)→冷熱回収用熱交換器5の高温側流路6→第1のバイパス路21→冷熱回収用熱交換器5の低温側通路7→圧縮機1の順に高温空気を循環させている。このようにして高温空気を循環させることで、冷熱回収用熱交換器5内部に氷結した氷を溶かして除去することができる。   That is, during the defrosting operation, the compressor 1 → the cooler 2 (used as a heater by the operation of the heater 4) → the high temperature side flow path 6 of the cold heat recovery heat exchanger 5 → the first bypass path 21 → for cold heat recovery. High temperature air is circulated in the order of the low temperature side passage 7 of the heat exchanger 5 → the compressor 1. By circulating the high-temperature air in this way, it is possible to melt and remove the ice frozen in the cold heat recovery heat exchanger 5.

図2は前記冷熱回収用熱交換器5周辺の概略構成図であり、図3は冷熱回収用熱交換器5内部の部分斜視図である。図2及び図3に基づいてデフロスト運転時の冷熱回収用熱交換器5に周辺の動作を説明する。   FIG. 2 is a schematic configuration diagram around the heat exchanger 5 for cold energy recovery, and FIG. 3 is a partial perspective view of the inside of the heat exchanger 5 for cold energy recovery. Based on FIG.2 and FIG.3, the periphery operation | movement is demonstrated to the heat exchanger 5 for cold recovery at the time of a defrost driving | operation.

前記圧縮機1及びヒーター4の作動により加温器として用いられる冷却器2を経た高温空気は、冷熱回収用熱交換器5下部に設けた導入通路63より冷熱回収用熱交換器5に導入され、冷熱回収用熱交換器5内部を下方から上方へ向けて例えば60で示したような流れで、排出通路64より排出される。また排出通路64より排出された空気は前述の第1のバイパス路21を経て冷熱回収用熱交換器5上部に設けた導入通路73より冷熱回収用熱交換器5に導入され、冷熱回収用熱交換器5内部を上方から下方へ向けて例えば70で示したような流れで、排出通路74より排出され、圧縮機1へ導入される。また、図3に示したように冷熱回収熱交換器5はプレートフィン型熱交換器であり、上下方向の対向流で熱交換を行うことが可能な構成である。   The high-temperature air that has passed through the cooler 2 used as a heater by the operation of the compressor 1 and the heater 4 is introduced into the cold heat recovery heat exchanger 5 from the introduction passage 63 provided at the lower part of the cold heat recovery heat exchanger 5. The inside of the heat exchanger 5 for recovering cold heat is discharged from the discharge passage 64 in a flow as indicated by 60, for example, from below to above. The air discharged from the discharge passage 64 is introduced into the cold heat recovery heat exchanger 5 through the first bypass passage 21 and introduced into the cold heat recovery heat exchanger 5 through the introduction passage 73 provided on the cold heat recovery heat exchanger 5. The inside of the exchanger 5 is discharged from the discharge passage 74 in a flow as indicated by 70, for example, from above to below and introduced into the compressor 1. In addition, as shown in FIG. 3, the cold recovery heat exchanger 5 is a plate fin type heat exchanger, and is configured to be able to perform heat exchange with a counterflow in the vertical direction.

このようにして、デフロスト運転時には冷熱回収用熱交換器5内部に高温空気を通過させることで、冷熱回収用熱交換器5内部に氷結した氷を溶かして除去している。また、熱交換器内の空気の流れを上下方向としているため、デフロスト運転によって氷が溶けて発生した水は自重にて落下する。自重にて落下した水(ドレン)はそれぞれの流路下方に設けたドレントラップ61及び71に溜まる。溜まったドレンは必要に応じて、圧縮機1を停止してバルブ11を閉じた後、ドレントラップ61及び71の下方に設けたバルブ62及び72を開けて溜まったドレンを外部へ排出する。   In this way, during the defrost operation, high temperature air is passed through the cold heat recovery heat exchanger 5 to melt and remove the ice frozen in the cold heat recovery heat exchanger 5. Moreover, since the air flow in the heat exchanger is set in the vertical direction, the water generated by melting ice by the defrost operation falls by its own weight. Water (drain) that has fallen due to its own weight accumulates in drain traps 61 and 71 provided below the respective flow paths. If necessary, the accumulated drain is stopped after the compressor 1 is stopped and the valve 11 is closed, and then the valves 62 and 72 provided below the drain traps 61 and 71 are opened to discharge the accumulated drain to the outside.

ここで、デフロスト運転の後に通常の冷却運転に切り替えると、デフロスト運転を行うことによって装置内に残った昇温した空気が被冷却室9へ供給され、被冷却室9の温度が上昇し、被冷却室9内で凝縮水が発生してしまうため、デフロスト運転の後、被冷却室9をバイパスした予冷運転を行うことで、デフロスト運転時に装置内に残った昇温した空気を被冷却室へ供給することなく、空気を冷却することができ、凝縮水の発生を防止することができる。   Here, when switching to the normal cooling operation after the defrost operation, the heated air remaining in the apparatus by the defrost operation is supplied to the cooled chamber 9, the temperature of the cooled chamber 9 rises, Since condensed water is generated in the cooling chamber 9, after the defrost operation, a precooling operation bypassing the cooled chamber 9 is performed, so that the heated air remaining in the apparatus during the defrosting operation is transferred to the cooled chamber. Without supplying, air can be cooled and generation of condensed water can be prevented.

図1を用いて本実施例1における空気冷媒式熱交換器の予冷運転時における動作の一例を説明する。図1中に設けられた4つのバルブ11、12、13、14は、予冷運転時においては、バルブ12を開、バルブ11、13及び14を閉として運転する。   An example of the operation during the precooling operation of the air refrigerant heat exchanger according to the first embodiment will be described with reference to FIG. The four valves 11, 12, 13, and 14 provided in FIG. 1 are operated with the valve 12 opened and the valves 11, 13, and 14 closed during the pre-cooling operation.

バルブ12を開、バルブ11、13及び14を閉とすることで、前述の冷却運転における被冷却室9のみをバイパスし、圧縮機1→冷却器2→冷熱回収用熱交換器5の高温側流路6→膨張機8→冷熱回収用熱交換機5の低温側通路7→圧縮機1の順に空気を循環させている。このように予冷運転を行い、装置内の昇温した空気は膨張機8で冷却され、被冷却室9をバイパスして循環する。予冷運転を行い、装置内の空気を十分冷却してから冷却運転を開始することで、被冷却室9へ昇温した空気を供給することなく、デフロスト運転から冷却運転に切り替えることができる。   By opening the valve 12 and closing the valves 11, 13, and 14, only the chamber 9 to be cooled in the above-described cooling operation is bypassed, and the compressor 1 → the cooler 2 → the high temperature side of the heat exchanger 5 for collecting cold The air is circulated in the order of the flow path 6 → the expander 8 → the low temperature side passage 7 of the heat recovery heat exchanger 5 → the compressor 1. The pre-cooling operation is performed in this way, and the heated air in the apparatus is cooled by the expander 8 and circulates bypassing the cooled chamber 9. By performing the pre-cooling operation and sufficiently cooling the air in the apparatus and then starting the cooling operation, it is possible to switch from the defrost operation to the cooling operation without supplying the heated air to the chamber 9 to be cooled.

Figure 2008298322
Figure 2008298322

表1に前述の冷却運転、デフロスト運転、水分排出、予冷運転時における圧縮機1の運転状態及びバルブ11、12、13、14、62及び72の開閉状態をまとめている。
冷却運転時には、バルブ13及び14を開とし、第1及び第2のバイパス路に設けたバルブ11及び12を閉として、被冷却室9内を冷却する。
例えば冷熱回収用熱交換器5の圧力損失の上昇を検知する等、デフロスト運転が必要となると、バルブ11を開とするとともに、バルブ13及び14を閉としてデフロスト運転を実施する。
1時間程度のデフロスト運転を行い冷熱回収用熱交換器内の氷を除去した後、圧縮機1を停止して循環を止め、バルブ11を閉じた後、ドレントラップ61及び71の下方の設けたバルブ62及び72を開けてドレントラップに溜まったドレンを系外に排出する。
水分排出が終了すると、バルブ62及び72を閉とし、バルブ12を開け、圧縮機1を稼動して予冷運転を実施する。
予冷運転を行い、装置内が十分冷却されて安定するとバルブ13を開とし、バルブ12を閉として冷却運転に切り替える。
Table 1 summarizes the operating state of the compressor 1 and the open / close states of the valves 11, 12, 13, 14, 62 and 72 during the above-described cooling operation, defrost operation, moisture discharge, and pre-cooling operation.
During the cooling operation, the valves 13 and 14 are opened, the valves 11 and 12 provided in the first and second bypass paths are closed, and the inside of the cooled chamber 9 is cooled.
For example, when a defrost operation is required, such as detecting an increase in pressure loss of the heat recovery heat exchanger 5, the valve 11 is opened and the valves 13 and 14 are closed to perform the defrost operation.
After defrosting for about 1 hour and removing ice in the heat exchanger for cold energy recovery, the compressor 1 is stopped to stop the circulation, the valve 11 is closed, and the drain traps 61 and 71 are provided below. The valves 62 and 72 are opened, and the drain accumulated in the drain trap is discharged out of the system.
When the moisture discharge is completed, the valves 62 and 72 are closed, the valve 12 is opened, the compressor 1 is operated, and the pre-cooling operation is performed.
When the pre-cooling operation is performed and the inside of the apparatus is sufficiently cooled and stabilized, the valve 13 is opened and the valve 12 is closed to switch to the cooling operation.

このように冷熱回収用熱交換器5を上下方向の対向流で熱交換を行うように構成して、高温側通路が下方から上方となるように配置し、冷却運転→デフロスト運転→水分排出→予冷運転→冷却運転を行うことによって装置が大型化することなく、冷熱回収熱交換器内に付着する氷を溶かして排出することが可能となる。   In this way, the heat recovery heat exchanger 5 is configured so as to perform heat exchange with a counterflow in the vertical direction, and the high temperature side passage is arranged from the lower side to the upper side, and the cooling operation → defrost operation → water discharge → By performing the pre-cooling operation → the cooling operation, it is possible to melt and discharge the ice adhering to the cold heat recovery heat exchanger without increasing the size of the apparatus.

装置が大型化することなく、冷熱回収熱交換器内に付着する氷を溶かして排出することが可能である空気冷媒式熱交換器として利用することができる。   The apparatus can be used as an air-refrigerant heat exchanger that can melt and discharge ice adhering to the cold-heat recovery heat exchanger without increasing the size of the apparatus.

本発明の空気冷媒式冷凍装置の一例のフロー図である。It is a flowchart of an example of the air refrigerant type refrigeration apparatus of this invention. 冷熱回収用熱交換器周辺の概略構成図である。It is a schematic block diagram around the heat exchanger for cold energy recovery. 冷熱回収用熱交換器内部の部分斜視図である。It is a fragmentary perspective view inside the heat exchanger for cold heat recovery.

符号の説明Explanation of symbols

1 圧縮機
2 冷却器
3 冷却器
4 ヒーター(加温装置)
5 冷熱回収用熱交換器
6 高温側流路
7 低温側流路
8 膨張機
9 被冷却室
21 第1のバイパス路
22 第2のバイパス路
61、71 ドレントラップ
1 Compressor 2 Cooler 3 Cooler 4 Heater (Heating device)
5 Heat exchanger for cold energy recovery 6 High temperature side flow path 7 Low temperature side flow path 8 Expander 9 Cooled room 21 First bypass path 22 Second bypass path 61, 71 Drain trap

Claims (4)

被冷却室から回収した空気を圧縮する圧縮機と、圧縮空気を冷却する冷却器と、冷却圧縮空気を膨張させる膨張機とを有し、前記被冷却室から回収した空気を圧縮、冷却及び膨張することにより得られる低温空気を前記被冷却室に供給する冷凍サイクルシステムを構成する空気冷媒式冷凍装置において、
前記被冷却室から回収され前記圧縮機へ導入される空気を前記膨張機へ導入する空気と対向流にて熱交換する冷熱回収用熱交換器を設置し、
前記冷熱回収用熱交換器は、前記圧縮空気流れ方向が下方から上方となるように配置することを特徴とする空気冷媒式冷凍装置。
A compressor that compresses air collected from the cooled chamber; a cooler that cools compressed air; and an expander that expands the cooled compressed air; compresses, cools, and expands the air collected from the cooled chamber In an air refrigerant refrigeration apparatus constituting a refrigeration cycle system for supplying low temperature air obtained by
Installing a heat recovery heat exchanger for exchanging heat in a counter flow with air introduced into the expander and recovered from the cooled chamber and introduced into the compressor;
The air refrigerant refrigeration apparatus, wherein the cold heat recovery heat exchanger is arranged so that a flow direction of the compressed air is from the lower side to the upper side.
前記冷熱回収用熱交換器は、前記対向流の流路が鉛直方向となるように配置することを特徴とする請求項1記載の空気冷媒式冷凍装置。   The air refrigerant refrigeration apparatus according to claim 1, wherein the cold heat recovery heat exchanger is disposed such that the flow path of the counterflow is in a vertical direction. 前記圧縮機及び冷熱回収用熱交換器を経た空気を、膨張機及び被冷却室を迂回して前記冷熱回収用熱交換器の被冷却室からの回収空気側に流す第1のバイパス路と、前記膨張機を経た空気を、被冷却室を迂回して前記冷熱回収用熱交換器の被冷却室からの回収空気側に流す第2のバイパス路とを設け、
前記第2のバイパス路を閉じた上で第1のバイパス路を経て装置内の空気を循環させるデフロスト運転、前記第1のバイパス路を閉じた上で第2のバイパス路を経て装置内の空気を循環させる予冷運転、及び前記第1のバイパス路及び第2のバイパス路を閉じて装置内の空気を循環させる冷却運転を可能としたことを特徴とする請求項1又は2記載の空気冷媒式冷凍装置。
A first bypass passage for flowing the air that has passed through the compressor and the heat recovery heat exchanger to the recovery air side from the cooling chamber of the heat recovery heat exchanger, bypassing the expander and the cooling chamber; A second bypass passage is provided for flowing the air that has passed through the expander, bypassing the cooled chamber, and flowing to the recovered air side from the cooled chamber of the heat recovery heat exchanger,
A defrost operation in which the air in the apparatus is circulated through the first bypass path after the second bypass path is closed, and the air in the apparatus is passed through the second bypass path after the first bypass path is closed. The air-cooling type according to claim 1 or 2, wherein a pre-cooling operation for circulating the air and a cooling operation for circulating the air in the apparatus by closing the first bypass path and the second bypass path are possible. Refrigeration equipment.
前記圧縮機を経た空気を加温する加温装置を設け、前記デフロスト運転時に前記圧縮機を経た空気を前記加温装置で加温してから前記熱交換器に導入することを特徴とする請求項3記載の空気冷媒式冷凍装置。   A heating device is provided for heating the air that has passed through the compressor, and the air that has passed through the compressor is heated by the heating device during the defrost operation and then introduced into the heat exchanger. Item 4. The air refrigerant refrigeration apparatus according to Item 3.
JP2007142261A 2007-05-29 2007-05-29 Air refrigerant refrigeration system Active JP5108384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142261A JP5108384B2 (en) 2007-05-29 2007-05-29 Air refrigerant refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142261A JP5108384B2 (en) 2007-05-29 2007-05-29 Air refrigerant refrigeration system

Publications (2)

Publication Number Publication Date
JP2008298322A true JP2008298322A (en) 2008-12-11
JP5108384B2 JP5108384B2 (en) 2012-12-26

Family

ID=40172001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142261A Active JP5108384B2 (en) 2007-05-29 2007-05-29 Air refrigerant refrigeration system

Country Status (1)

Country Link
JP (1) JP5108384B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068522A1 (en) * 2013-11-11 2015-05-14 株式会社前川製作所 Expander-integrated compressor, freezer, and freezer operation method
JP2015161442A (en) * 2014-02-27 2015-09-07 株式会社前川製作所 Air refrigerant type refrigeration system
JP2015210006A (en) * 2014-04-25 2015-11-24 株式会社前川製作所 Air refrigerant type refrigerating apparatus and defrosting method for the same
US10415857B2 (en) 2015-05-01 2019-09-17 Mayekawa Mfg. Co., Ltd. Refrigerator and operation method for refrigerator
CZ308332B6 (en) * 2018-12-19 2020-05-20 Mirai Intex Sagl Air cooling machine
KR102209211B1 (en) * 2019-08-14 2021-01-29 한국에너지기술연구원 Air-conditioning system using air compression and expansion process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141481A (en) * 1985-12-16 1987-06-24 ボツシユシ−メンス、ハウスゲレ−テ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Cooling and refrigerating device
JPH11132582A (en) * 1997-10-24 1999-05-21 Kajima Corp Air refrigerant type refrigerator
JP2000088380A (en) * 1998-09-16 2000-03-31 Sanyo Electric Co Ltd Air cycle type chiller and scroll hydraulic machine
JP2002318027A (en) * 2001-04-20 2002-10-31 Shimadzu Corp Refrigerating system
JP2003287298A (en) * 2002-03-27 2003-10-10 Nhk Spring Co Ltd Air cycle-type cooling device
JP2004205071A (en) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd Air conditioner
JP2006090599A (en) * 2004-09-22 2006-04-06 Kobe Steel Ltd Refrigerating apparatus
JP2006118772A (en) * 2004-10-20 2006-05-11 Kajima Corp Air refrigerant type refrigeration device
JP2006177585A (en) * 2004-12-21 2006-07-06 Kobe Steel Ltd Refrigeration device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141481A (en) * 1985-12-16 1987-06-24 ボツシユシ−メンス、ハウスゲレ−テ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Cooling and refrigerating device
JPH11132582A (en) * 1997-10-24 1999-05-21 Kajima Corp Air refrigerant type refrigerator
JP2000088380A (en) * 1998-09-16 2000-03-31 Sanyo Electric Co Ltd Air cycle type chiller and scroll hydraulic machine
JP2002318027A (en) * 2001-04-20 2002-10-31 Shimadzu Corp Refrigerating system
JP2003287298A (en) * 2002-03-27 2003-10-10 Nhk Spring Co Ltd Air cycle-type cooling device
JP2004205071A (en) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd Air conditioner
JP2006090599A (en) * 2004-09-22 2006-04-06 Kobe Steel Ltd Refrigerating apparatus
JP2006118772A (en) * 2004-10-20 2006-05-11 Kajima Corp Air refrigerant type refrigeration device
JP2006177585A (en) * 2004-12-21 2006-07-06 Kobe Steel Ltd Refrigeration device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068522A1 (en) * 2013-11-11 2015-05-14 株式会社前川製作所 Expander-integrated compressor, freezer, and freezer operation method
US9970449B2 (en) 2013-11-11 2018-05-15 Mayekawa Mfg. Co., Ltd. Expander-integrated compressor, refrigerator and operating method for refrigerator
JP2015161442A (en) * 2014-02-27 2015-09-07 株式会社前川製作所 Air refrigerant type refrigeration system
JP2015210006A (en) * 2014-04-25 2015-11-24 株式会社前川製作所 Air refrigerant type refrigerating apparatus and defrosting method for the same
US10415857B2 (en) 2015-05-01 2019-09-17 Mayekawa Mfg. Co., Ltd. Refrigerator and operation method for refrigerator
CZ308332B6 (en) * 2018-12-19 2020-05-20 Mirai Intex Sagl Air cooling machine
EP3670909B1 (en) * 2018-12-19 2024-10-09 Mirai Intex Sagl Air cooling machine
KR102209211B1 (en) * 2019-08-14 2021-01-29 한국에너지기술연구원 Air-conditioning system using air compression and expansion process

Also Published As

Publication number Publication date
JP5108384B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US9534798B2 (en) Coupled air-conditioning device
JP5108384B2 (en) Air refrigerant refrigeration system
WO2008090773A1 (en) Refrigeration device
JP4317793B2 (en) Cooling system
JP5404761B2 (en) Refrigeration equipment
KR101619016B1 (en) Refrigeration apparatus having defrosting cycle by hot gas
JP2013514511A5 (en)
JP5882152B2 (en) Air conditioner
JP2007107771A (en) Refrigeration cycle device
CN105556221B (en) Refrigerating plant
JP5677472B2 (en) Refrigeration equipment
KR20120022203A (en) Defrosting system using air cooling refrigerant evaporator and condenser
JP2011174662A (en) Air heat source heat pump water heater/air conditioner
JP3824757B2 (en) Air refrigerant refrigeration system
JP6700561B2 (en) Cooling device using air-refrigerant cycle
KR20160060524A (en) A heat hump system having a defrost device
JP2011075207A (en) Air conditioner
JP2010281544A (en) Air conditioner
JP2019095177A (en) Cooling device
JP2006118772A (en) Air refrigerant type refrigeration device
CN106288532A (en) Heat exchanger assembly, air cooler, refrigerating unit and control method thereof
JP6274961B2 (en) Air refrigerant type refrigeration apparatus and its defrost method
JP2019113209A (en) Cooler using air refrigerant cycle
KR20110131886A (en) Air-conditioning system for vehicles using condensed water
JP4023260B2 (en) Air conditioning system for aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5108384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250