WO2005064334A1 - 粒子三次元配列体を利用した反応容器及び反応装置 - Google Patents

粒子三次元配列体を利用した反応容器及び反応装置 Download PDF

Info

Publication number
WO2005064334A1
WO2005064334A1 PCT/JP2004/019638 JP2004019638W WO2005064334A1 WO 2005064334 A1 WO2005064334 A1 WO 2005064334A1 JP 2004019638 W JP2004019638 W JP 2004019638W WO 2005064334 A1 WO2005064334 A1 WO 2005064334A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid support
particles
reaction
particle
reaction vessel
Prior art date
Application number
PCT/JP2004/019638
Other languages
English (en)
French (fr)
Inventor
Hideji Tajima
Donald I. Stimpson
Original Assignee
Universal Bio Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Bio Research Co., Ltd. filed Critical Universal Bio Research Co., Ltd.
Priority to JP2005516707A priority Critical patent/JPWO2005064334A1/ja
Priority to EP04807993A priority patent/EP1712912A1/en
Publication of WO2005064334A1 publication Critical patent/WO2005064334A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00283Reactor vessels with top opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00466Beads in a slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • B01J2219/00515Essentially linear supports in the shape of strings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00664Three-dimensional arrays
    • B01J2219/00666One-dimensional arrays within three-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00664Three-dimensional arrays
    • B01J2219/00668Two-dimensional arrays within three-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • G01N2001/368Mounting multiple samples in one block, e.g. TMA [Tissue Microarrays]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1055General features of the devices using the transfer device for another function for immobilising reagents, e.g. dried reagents

Definitions

  • the present invention relates to a reaction vessel and a reaction apparatus using a three-dimensional array of particles having a predetermined reactant fixed on a surface.
  • the present invention also relates to a method for producing a three-dimensional array of particles.
  • a solid support to which a probe having a base sequence complementary to the target nucleic acid is immobilized is used. For example, by bringing a solid support in which a probe is solidified into contact with a liquid sample containing a target nucleic acid, hybridizing the probe with the target nucleic acid, and removing substances other than the target nucleic acid by washing or the like, Detection, separation, etc. of the target nucleic acid are performed.
  • a solid support on which probes are immobilized is a DNA array (DNA chip) in which a large number of probes are arranged and immobilized on the surface of a solid support such as a slide glass.
  • DNA array is very useful when analyzing gene expression, mutation, polymorphism, etc. in parallel.
  • a method for preparing a DNA array for example, a method of directly synthesizing an oligonucleotide used as a probe on the surface of a solid support, or a method of preparing an oligonucleotide (a polynucleotide in some cases) prepared in advance! There is known a method of fixing to the surface of a solid support.
  • a typical example of the former method is to combine the use of a protective group that is selectively removed by light irradiation with photolithography technology and solid-phase synthesis technology used for semiconductor production to form a predetermined matrix. There is a method of selectively synthesizing a probe in the region of (1).
  • the former method is generally used as a method for producing a DNA array because the method involves a complicated process and the cost is increased.
  • the probe is spotted on the surface of the solid support by dropping a probe-containing liquid onto the surface of the solid support, and thus the probe density per spot depends on the amount of probe per spot.
  • Patent Document 1 U.S. Pat.No. 6,133,436
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-281251
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-346842
  • Patent Document 4 JP-A-11-243997
  • the liquid sample containing the target nucleic acid and the probe-integrated particles are combined. Is one-dimensional or two-dimensional. That is, although the target nucleic acid is dispersed in the liquid sample (ie, exists three-dimensionally in the liquid sample), the probe-integrated particles are arranged in one or two dimensions. Therefore, the probability of encounter between the two was low, and the reaction efficiency was low.
  • the present invention firstly provides a three-dimensional particle array capable of improving the reaction efficiency by increasing the probability of encountering a target substance in a liquid sample with a reactant immobilized on the particle surface.
  • An object of the present invention is to provide a reaction container using the reaction container and a reaction device using the reaction container.
  • the present invention relates to a method for efficiently preparing a three-dimensional particle array. It is an object of the present invention to provide a method for producing a child three-dimensional array.
  • a reaction container of the present invention includes a reaction container body having a reaction chamber capable of holding a liquid sample, a solid support housed in the reaction chamber, A reaction vessel provided with a plurality of particles to which a predetermined reactant is fixed, wherein the particles are three-dimensionally arranged in the reaction chamber while being fixed to the surface of the solid support. And features.
  • the reaction chamber serves as a reaction site between the target substance in the liquid sample and the reaction substance on the particle surface.
  • the target substance in the liquid sample is dispersed in the reaction chamber and exists three-dimensionally in the reaction chamber.
  • the particles with the reactants immobilized on the surface are arranged three-dimensionally, so that the reaction field between the target substance in the liquid sample and the reactants on the particle surface becomes three-dimensional, and both encounter The probability is high, and the reaction efficiency of both parties is improved.
  • Liquid sample means a liquid to be subjected to testing, inspection, analysis, and the like, and a target substance is used in accordance with the purpose of the test, inspection, analysis, or the like performed using the reaction container of the present invention.
  • a liquid to be contained or a liquid that may contain the target substance is appropriately selected. Note that terms defined in this specification are used synonymously throughout this specification.
  • Target substance refers to a substance to be detected, separated, or the like, and its structure, function, and the like are known according to the purpose of a test, inspection, analysis, or the like performed using the reaction container of the present invention. Substance or unknown substance is selected as appropriate.
  • the type of the target substance is not particularly limited, and specific examples thereof include biological substances such as nucleic acids, proteins, antigens, antibodies, enzymes, and sugar chains.
  • the “nucleic acid” includes not only DNA and RNA, but also analogs or derivatives thereof (eg, peptide nucleic acid (PNA), phosphorothioate DNA, and the like).
  • the base length of the nucleic acid is not particularly limited, and may be any of an oligonucleotide and a polynucleotide.
  • the nucleic acid may be in a single-stranded state or a double-stranded state, or may be in a mixed state thereof.
  • reactant refers to a substance that reacts with a target substance, and has a reactivity with the target substance according to the purpose of the test, inspection, analysis, or the like performed using the reaction container of the present invention. or As for, a substance which may have reactivity with the target substance is appropriately selected.
  • the reactant may be a shift from a known or unknown substance having a known structure or function, and the type of the reactant is not particularly limited.
  • the reactant has (or may have) a target that can be of any reactivity, for example, covalent bonds, ionic bonds, van der Waals forces, hydrogen bonds, coordination bonds, chemical bonds.
  • It has the property of binding to a target substance by a binding mode such as physical adsorption and physical adsorption.
  • a binding mode such as physical adsorption and physical adsorption.
  • Specific examples of the combination of the target substance and the reactant include nucleic acid Z complementary nucleic acid, receptor protein Z ligand, enzyme Z substrate, antibody Z antigen and the like.
  • the number of reactants immobilized on the surface of the particle is not particularly limited, but a plurality of reactants are immobilized on the surface of the particle, that is, the reactant is integrated on the surface of the particle. It is preferred to have been.
  • Predetermined reactant means that the type of reactant immobilized on the surface of each particle is determined in advance.
  • the type of reactant immobilized on the surface of each particle may be one type or two or more types.
  • Solid support means a three-dimensional structure capable of fixing particles on its surface, and its shape, size, and the like are not particularly limited as long as it can be accommodated in a reaction chamber.
  • the material of the solid support is a material that is insoluble in the liquid sample, and can be appropriately selected according to the type of the solvent of the liquid sample and the like.
  • Typical examples of the material of the solid support include plastics (eg, polyethylene, polypropylene, polyamide, polyvinylidene difluoride, etc.), metals (eg, iron, gold, silver, copper, aluminum, nickel, cono). And glass, ceramics, and composite materials thereof.
  • the solid support is preferably non-swellable, but may be swellable.
  • the surface of the solid support may be porous or non-porous, but when the solid support surface is porous more particles are deposited on the solid support surface than when it is non-porous. Can be fixed.
  • the term "particle” means a minute three-dimensional structure capable of immobilizing a reactant on its surface, and its shape, size, and the like are not particularly limited.
  • the shape of the particles is, for example, spherical, and the preferred particle size is about 1 ⁇ m to about 100 ⁇ m in diameter.
  • the material of the particles is a material that is insoluble in the liquid sample, and can be appropriately selected according to the type of the solvent of the liquid sample.
  • Particle material Typical examples of the quality include styrene, chlorostyrene, chloromethylstyrene, a-methylstyrene, dibutylbenzene, sodium styrenesulfonate, (meth) acrylic acid,
  • Crosslinked products of polysaccharides such as dextran, cellulose, carboxymethylcellulose, etc .; crosslinked products of proteins such as methylated albumin, gelatin, collagen, casein; inorganic materials such as glass and ceramics; metals such as iron and silicon; Composite materials and the like can be mentioned.
  • the particles are preferably non-swellable, but may be swellable.
  • the particle surface may be porous or non-porous, but more reactive substances can be immobilized when the particle surface is porous than when it is non-porous.
  • the "surface" of a solid support or particle means a surface that can come into contact with a liquid (eg, a liquid sample), and not only the outer surface (outer surface) of the solid support or particle, but also The inner surface (inner surface) of the obtained solid support or particle (for example, the inner surface of pores of the solid support or particle) is also included.
  • the structure of the reaction chamber is not particularly limited as long as it can accommodate the liquid sample.
  • the reaction chamber can be formed as a concave portion having an opening at the upper end in the reaction container body.
  • the reaction container of the present invention may be provided with a lid member for sealing the opening of the reaction chamber.
  • the number of reaction chambers is not particularly limited, and may be one or more.
  • the reaction chamber is preferably constituted by a thin plate. Since the reaction chamber is composed of thin plates, it is possible to control the temperature of the liquid sample in the reaction chamber quickly and efficiently, and to irradiate the reaction chamber with light and from the reaction chamber. It is easy to set the irradiation condition / light receiving condition when detecting emitted light.
  • Particles are three-dimensionally arranged means that the particles are arranged in such a manner that not all particles are located on the same plane.
  • the fixation of the particles to the solid support and the fixation of the reactants to the particles can be performed by various bonding modes.
  • Specific examples of the binding mode include specific interaction between streptavidin or avidin and biotin, hydrophobic interaction, magnetic interaction, polar interaction, covalent bond (e.g., amide bond, disulfide bond, thioether bond, etc.). ), And crosslinking with a crosslinking agent.
  • Appropriate chemical modification can be applied to the surface of the solid support, the surface of the particles, or the reactants using known techniques so that fixation by these bonding modes becomes possible.
  • the fixation of the reactant to the particles may be performed after the fixation of the particles to the solid support.However, from the viewpoint that the fixation of the reactant to the particles is performed easily and efficiently, the particles are fixed to the solid support. It is preferable to carry out before fixing.
  • maltose binding protein Z maltose In addition to the specific interaction between streptavidin or avidin and biotin, maltose binding protein Z maltose, polyhistidine peptide Z metal ions such as nickel and cobalt, glutathione S transferase Z glutathione, canolemodulin Z force lumodulin binding Immobilize particles on a solid support by utilizing specific interactions of peptides, ATP binding protein ZATP, nucleic acid Z complementary nucleic acid, receptor protein Z ligand, enzyme Z substrate, antibody Z antigen, IgGZ protein A, etc. Immobilization of reactants on particles is possible.
  • the bonding mode between the solid support and the particles and the bonding mode between the particles and the reactant should be a bonding mode in which the bonding partners (the solid support and the particles, and the particles and the reactant) are not easily separated. Is preferred.
  • a binding mode include an interaction between avidin or streptavidin and biotin, formation of a covalent bond, crosslinking with a crosslinking agent, and the like.
  • particles coated with avidin or streptavidin can be bound to a solid support coated with biotin.
  • a reaction substance into which biotin is introduced (for example, a biotinylated nucleic acid obtained by performing PCR using a primer having a 5′-end piotinylated) is coated on a particle coated with avidin or streptavidin.
  • avidin or streptavidin and bitin can be reversed, for example, to bind particles coated with biotin to a solid support coated with avidin or streptavidin. The same applies to the binding between the particles and the reactants.
  • the covalent bond can be formed by utilizing a functional group present on the surface of the solid support, the surface of the particle, or the reactant.
  • the functional group capable of forming a covalent bond include a carboxyl group, an amino group, a hydroxyl group, and the like.
  • carboxyl group is present on the surface of the solid support
  • carbodiimides such as 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC) are used.
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • the amide bond between the solid support and the particle can be obtained by reacting the ropoxyl group with an amino group present on the surface of the particle after the activation.
  • the amino group When an amino group is present on the surface of the solid support, the amino group is converted to a carboxyl group using a cyclic acid anhydride such as succinic anhydride, and then reacted with the amino group present on the surface of the particle. Thereby, an amide bond can be formed between the solid support and the particles.
  • the binding between the particles and the reactant can be performed in the same manner.
  • the reactant is a nucleic acid, it does not impair the nucleic acid's ability to hybridize with the reactive nucleic acid! / Via the linker sequence introduced at the 5'-end or 3'-end of the nucleic acid.
  • the nucleic acids are bound to the particles.
  • crosslinking agent When crosslinking by a crosslinking agent is used, various crosslinking agents capable of reacting with the functional group of the substance to be crosslinked can be used.
  • the crosslinking agent include polyfunctional reagents such as bifunctional reagents and trifunctional reagents.
  • Specific examples of such multifunctional reagents include N-succinimidyl (4-diodeacetyl) aminobenzoate (
  • N-succinimidyl (4-iodoacetyl) aminobenzoate) (SIAB), dimaleimide, dithio-bis-nitrobenzoic acid (DTNB), N-succinimidyl-S-acetyl- Thioacetate (N-succinimidy S-acetyH: hioacetate) (SATA), N-succinimidyl-3- (2-pyridyldithio) propionate (SATA), N-succinimidyl-3- (2-pyridyldithio) propionate (SATA), N-succinimidyl-3- (2-pyridyldithio) propionate (SATA), N-succinimidyl-3- (2-pyridyldithio) propionate (SATA), N-succinimidyl-3- (2-pyridyldithio) propionate (SATA), N-succinimidyl
  • SMCC 4- (N-maleimidomethyl) cyclohexane- 1 -carboxvlate)
  • HYNIC 6-hydrazinonicotimide
  • SMCC 4- (N-maleimidomethyl) cyclohexane- 1 -carboxvlate)
  • 6-hydrazinonicotimide 6-hydrazinonicotimide
  • HYNIC 6-hydrazinonicotimide
  • a plurality of solid supports are accommodated in the reaction chamber, and the particles are one-dimensional, two-dimensional, or three-dimensional on the surface of each solid support. It is arranged in.
  • the number of solid supports accommodated in the reaction chamber may be one or more, but in the reaction vessel according to this embodiment, the number of solid supports is one. Contains a plurality of solid supports. When the number of solid supports accommodated in the reaction chamber is three, it is necessary to arrange the particles three-dimensionally on the surface of one solid support. When the number is plural, the particles can be arranged one-dimensionally, two-dimensionally or three-dimensionally on the surface of each solid support. That is, in the reaction vessel according to the present embodiment, the particles on the surface of each solid support are entirely combined by combining the particles arranged one-dimensionally, two-dimensionally, or three-dimensionally on the surface of each solid support.
  • each particle in the reaction chamber is so arranged that the particles on the surface of each solid support are not located on the same plane as a whole. Adjust the position of the solid support.
  • the surface of the solid support is configured to include a curved surface or a plurality of planes that are not on the same plane, and the particles are formed on the curved surface.
  • the force is arranged in three dimensions, or is arranged in one or two dimensions in the plurality of planes.
  • the curved surface when the surface of the solid support is configured to include a curved surface, the curved surface has a three-dimensional spread, so that the particles are arranged three-dimensionally on the curved surface.
  • the particles can be arranged three-dimensionally in the reaction chamber.
  • Specific examples of the solid support having a curved surface include a spiral member, a member obtained by bending a flexible sheet member, a columnar member, a cylindrical member, and a conical member.
  • the plane when the surface of the solid support is configured to include a plurality of planes that are not on the same plane, the plane has a two-dimensional spread. Arranged in one or two dimensions, but primary on multiple planes not coplanar By combining the original or two-dimensionally arranged particles, the particles can be three-dimensionally arranged as a whole in the reaction chamber.
  • Specific examples of the solid support having a plurality of planes that are not on the same plane include a member obtained by bending a flexible sheet member, a prismatic member, a prismatic member, and a pyramid member. .
  • the surface of the solid support may include both a curved surface and a plurality of planes that are coplanar, and particles may be arranged on both surfaces.
  • the solid support is formed of a spiral member.
  • the particles can be three-dimensionally arranged in the reaction chamber by arranging the particles three-dimensionally on the curved surface.
  • the spiral member for example, a member obtained by forming a flexible elongated member into a spiral shape can be used.
  • the elongated shape include a thread shape, a string shape, a rod shape, a tape shape and the like.
  • the elongated member is made of a material having shape retention such as a metal
  • the elongated member itself can be formed in a spiral shape.
  • the elongated member does not have such shape retention, it can be formed into a spiral shape by winding it around a shaft member.
  • the shape and structure of the shaft member are not particularly limited as long as the shaft member can be the center of the wound object.
  • a rod-shaped member, a columnar member, a cylindrical member, a prismatic member, a prismatic member, or the like is used as the shaft member. Can be used.
  • the solid support is a member formed by bending and Z or bending a flexible sheet member.
  • the surface of the member obtained by bending the flexible sheet-like member includes a curved surface
  • by arranging the particles three-dimensionally on the curved surface it is possible to arrange the particles three-dimensionally in the reaction chamber. it can.
  • the surface of a member obtained by bending a flexible sheet-like member includes a plurality of planes that are not on the same plane, particles are one-dimensionally or two-dimensionally formed on the plurality of planes. By arranging the particles, the particles can be three-dimensionally arranged as a whole in the reaction chamber.
  • the term "flexible” means that the sheet-shaped member can be deformed into an arbitrary shape by bending, bending, or the like, and the material, thickness, and the like of the sheet-shaped member are not particularly limited as long as the sheet-shaped member has flexibility. is not.
  • Examples of the shape of the member obtained by bending the sheet-like member include a U-shape, a wavy line, and a cylindrical shape.
  • Examples of the shape of the member obtained by bending the sheet-like member include a “C” shape, a “U” shape, a saw-tooth shape, a square tube shape, and the like.
  • the particles may be arranged on only one surface of the sheet member, but are preferably arranged on both surfaces in order to further improve the reaction efficiency between the target substance in the liquid sample and the reactant on the particle surface. .
  • the particles are fixed to predetermined positions on the surface of the solid support according to the type of the reaction substance.
  • the type of the reaction substance fixed on the surface of each particle may be the same or different, but in the reaction vessel according to this embodiment, the surface of each particle differs.
  • the reactant is fixed, and each particle is fixed at a predetermined position on the surface of the solid support according to the type of the reactant. This makes it possible to identify the type of reactant immobilized on the surface of each particle based on the location of each particle immobilized on the solid support. It is possible to analyze the properties in parallel.
  • the "predetermined portion of the solid support” means that the fixing position of each particle is determined in advance in association with the type of the reactant fixed on the surface of each particle.
  • each particle is adjusted so that different reactants are fixed when the particles are fixed to the surface of the solid support so that cross-contamination between the particles does not occur.
  • a plurality of concave portions may be formed in the solid support, and the particles corresponding to each concave portion may be fixed.
  • the particles have a predetermined labeling substance depending on the type of the reaction substance.
  • each particle has a predetermined labeling substance according to the type of the reactant.
  • the type of reactant fixed on the surface of each particle can be identified based on the type of target substance possessed by each particle, and the reactivities of multiple types of reactants with the target substance can be determined in parallel. It becomes possible to analyze.
  • the "predetermined labeling substance” is associated with the type of reactant fixed on the surface of each particle. This means that the type of labeling substance possessed by each particle is determined in advance.
  • labeling substances include fluorescent dyes (e.g., Marine Blue, Cascade Blue, cascade ellow, Fluorescein, Rhodamine, Phycoerythrin, CyChrome, Per and i 3, fexas Red, Allophycocyanin, other such PharRed, Cy2, Cy3, Cy3 .5, Cy5, Cy7 etc., Cya dyes, Alexa-488, Alexa-532, Alexa-546, Alexa-633, Alexa-680 etc., BODIPY FL, BODIPY TR- etc. BODIPY dyes) etc. fluorescent substances, radioactive isotopes (e.g., 3 H, "C, 32 P, 33 P, 35 S, 125 I) radioactive substances etc. and the like. If the labeling substance used fluorescent dye, fluorescent By combining the type and content of the dye, a wide variety of labels can be obtained.
  • fluorescent dyes e.g., Marine Blue, Cascade Blue, cascade ellow, Fluorescein, Rhod
  • the labeling with a fluorescent dye is performed, for example, by reacting a fluorescent dye having an active ester with particles having an amino group introduced into the surface in advance, or by adding a carboxyl group or an amino group to the surface in advance.
  • a fluorescent dye having a functional group capable of binding reaction with a carboxyl group for example, an amino group
  • a fluorescent dye having a functional group capable of binding reaction with an amino group for example, a carboxyl group
  • the reaction can be carried out by reacting the dye in the presence of carbodiimides such as 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC).
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • the particles can be labeled with the fluorescent dye.
  • the solid support or the particles have on the surface a polymer exhibiting an adhesive force by drying, and the solid support or the particles have a polymer which exhibits an adhesive force by drying.
  • the particles are fixed on the surface of the solid support.
  • a polymer in a water-containing state is interposed between the solid support and the particles, and the polymer is dried to easily fix the particles to the surface of the solid support. be able to.
  • the polymer that exhibits an adhesive force upon drying examples include proteins, polyvinyl alcohol, and the like.
  • the adhesive force exerted by these polymers by drying is maintained even when the surface of the fixed support on which the particles are fixed infiltrates.
  • the particles are magnetic particles, and the particles are fixed to the surface of the solid support by a magnetic force.
  • the fixing operation can be easily performed by utilizing the magnetic interaction for fixing the particles to the solid support. Further, by adjusting the strength of the magnetic force, a binding mode in which the binding partners (the solid support and the particles) are not easily separated can be obtained.
  • Magnetic particles means particles composed of a magnetic material, and specific examples of magnetic particles include iron hydroxide, iron oxide hydrate, ⁇ -FeO, FeO Particles composed of
  • a magnet is provided on the solid support, and the particles are fixed to the surface of the solid support by the action of the magnet.
  • the position where the magnet is provided is not particularly limited in the reaction vessel according to the present embodiment.
  • the position of the magnet is not particularly limited.
  • a magnet can be fitted in the space.
  • the “magnet” include a permanent magnet, an electromagnet, and a superconducting magnet.
  • the solid support is constituted by a magnet, and the particles are fixed to the surface of the solid support by the action of the magnet.
  • the magnetic flux density on the surface of the solid support is uniform.
  • the magnetic particles can be reliably fixed to a predetermined position on the surface of the solid support. Therefore, cross-contamination between particles can be effectively prevented when different reactants are fixed on the surface of each particle.
  • the reaction substance is a biological substance.
  • the biological substance is a nucleic acid or a protein.
  • the reaction container according to this embodiment can be used for the same applications as DNA arrays and protein arrays. It comes out.
  • the reaction container main body is made of a light-transmitting material.
  • the reaction vessel body is made of a light-transmitting material
  • light emitted from the reaction chamber for example, fluorescence or light emission
  • the reaction chamber can be detected.
  • Light power emitted from the reaction chamber If this is an indicator of the reaction result generated in the reaction chamber (for example, whether or not there is a reaction between the target substance and the reactant), the light emitted from the reaction chamber is detected.
  • the reaction result can be determined. For example, a liquid sample containing a fluorescently labeled target substance is contained in a reaction chamber, and the target substance and the reaction substance are brought into contact with each other, and then the liquid sample is removed from the reaction chamber, and the reaction chamber is washed with a washing liquid as necessary. By washing and then detecting light emitted from the reaction chamber, the presence or absence of a reaction between the target substance and the reactant can be determined.
  • the type of the light-transmitting material is not particularly limited, and any material may be used as long as it is transparent or translucent and has the strength required for the reaction vessel body.
  • Specific examples of the light transmitting material include plastic and glass.
  • the reaction container main body has a liquid inflow / outlet communicating with a reaction chamber in the reaction chamber.
  • various liquid reaction chambers such as accommodating a liquid sample in the reaction chamber, removing a liquid sample from the reaction chamber, accommodating a cleaning liquid in the reaction chamber, and removing a cleaning liquid from the reaction chamber are used.
  • the flow into and out of the reaction chamber can be easily performed through the liquid inlet and outlet communicating with the reaction chamber.
  • the first reaction device of the present invention comprises: a reaction container of the reaction container according to the fourteenth aspect (see (15)); and a light source that irradiates light into a reaction chamber of the reaction container. And a detector for detecting light from the reaction chamber.
  • reaction device of the present invention it is possible to automate the irradiation of light into the reaction chamber and the detection of light from the reaction chamber.
  • the second reaction apparatus of the present invention comprises a reaction vessel according to the fifteenth aspect (see (16)) and a reaction chamber of the reaction vessel via a liquid inlet / outlet of the reaction vessel. Liquid inflow And a liquid suction / discharge device for discharging the liquid from the reaction chamber.
  • various liquids are stored in the reaction chamber, such as storing the liquid sample in the reaction chamber, removing the liquid sample from the reaction chamber, storing the cleaning liquid in the reaction chamber, and removing the cleaning liquid from the reaction chamber.
  • the inflow and outflow from the reaction chamber can be automated.
  • the method for producing a three-dimensional particle array of the present invention is characterized by comprising the following steps (a) to (c).
  • a three-dimensional particle array can be efficiently prepared by spotting the liquid containing particles at a plurality of locations on the surface of the solid support at one time, but the liquid containing particles is spotted at multiple locations on the surface of the solid support at once. At this time, the spotting operation is easier when spotting is performed at a plurality of locations arranged one-dimensionally or two-dimensionally than at a plurality of locations arranged three-dimensionally. Therefore, in the method for producing a three-dimensionally arranged particle of the present invention, the liquid containing particles is spotted at a plurality of locations arranged one-dimensionally or two-dimensionally on the surface of the solid support, and then the solid support is deformed. This causes the particles to be three-dimensionally arranged on the surface of the solid support.
  • the "particle three-dimensional array” means a solid support having a plurality of particles arranged three-dimensionally on its surface, and is contained in a reaction chamber of the reaction vessel of the present invention.
  • the body is equivalent to a “particle three-dimensional array”.
  • the solvent of the particle-containing liquid is not particularly limited as long as it does not corrode the particles and the solid support, and is appropriately selected according to the bonding mode between the particles and the solid support.
  • the reactant may not be fixed on the surface of the particles contained in the particle-containing liquid, the reaction surface is not efficiently fixed in order to efficiently produce a three-dimensional array of particles that can be used in the reaction vessel of the present invention. It is preferable that the substance is fixed. When reactants are fixed on the particle surface It is preferable to spot the particle-containing liquid at a predetermined location according to the type of the reactant.
  • the solid support one that can spot the particle-containing liquid one-dimensionally or two-dimensionally on its surface is selected.
  • examples of such a solid support include a thread-like member, a string-like member, a tape-like member, and a sheet-like member.
  • the material of the solid support is selected so that the solid support has flexibility.
  • the spotting in the step (a) can be performed, for example, using a spotting member having a plurality of projections whose tips are arranged one-dimensionally or two-dimensionally.
  • the number of times of spotting on the same spot may be one or more, but it is preferable that the spotting force for increasing the amount of particles per spot is more than one.
  • the immobilization of the particles on the surface of the solid support in the step (b) can be performed by a predetermined bonding mode between the solid support and the particles.
  • the deformation of the solid support in the step (c) can be easily performed by utilizing the flexibility of the solid support.
  • Particles arranged one-dimensionally or two-dimensionally on the surface of the solid support are three-dimensionally arranged on the surface of the solid support by deforming the solid support.
  • the deformation mode of the solid support is not particularly limited as long as the particles can be three-dimensionally arranged on the surface of the solid support, but an elongated member such as a thread, a string, a rod, or a tape may be used as the solid support.
  • an elongated member such as a thread, a string, a rod, or a tape
  • a deformation into a spiral shape can be mentioned.
  • a sheet-like member is used as the solid support, for example, deformation due to bending and Z or bending may be mentioned.
  • the particle-containing liquid stored in each of the plurality of particle-containing liquid storage portions corresponds to the arrangement of the plurality of particle-containing liquid storage portions.
  • a spotting member having a plurality of projections provided as described above spotting is performed at one time on a plurality of locations on the surface of the solid support.
  • a three-dimensional particle array can be efficiently produced by spotting the particle-containing liquid at a plurality of locations on the surface of the solid support at once.
  • the particle-containing liquid is three-dimensionally spotted on the surface of the solid support, it is necessary to appropriately change the shape of each protrusion (for example, the length of the protrusion) according to the shape of the surface of the solid support. Therefore, the same type of spotting member cannot be used.
  • the particle-containing liquid is spotted one-dimensionally or two-dimensionally on the surface of the solid support, the shape of each projection is changed to the shape of the surface of the solid support. It is possible to repeatedly use the same form of spotting member that does not need to be changed as needed. Therefore, it is possible to automate the spotting of the particle-containing liquid.
  • the structure of the particle-containing liquid storage section is not particularly limited as long as it can store the particle-containing liquid.
  • it can be formed on a plastic plate as a concave portion having an opening at the upper end.
  • the number of the particle-containing liquid storage units is not particularly limited as long as it is plural, but for example, 8 ⁇ 12 can be formed on a plastic plate.
  • the shape, structure, and the like of the projections are determined by entering the particle-containing liquid storage section, holding the particle-containing liquid contained in the particle-containing liquid storage section, and contacting the solid support. It is not particularly limited as long as the particle-containing liquid can be spotted.
  • Specific examples of the protruding portion include a protruding portion having a sharp tip, a protruding portion having a concave portion formed at the front end, and a hook-shaped protruding portion.
  • the solid support is a sheet-like member, and the sheet-like member is curved, Z-shaped, or bent in the step (c).
  • the sheet-like member is deformed by bending, Z-folding or bending the sheet-like member.
  • the shape of the member obtained by bending the sheet-like member include a u-shape, a wavy line, and a cylindrical shape
  • examples of the shape of the member obtained by bending the sheet-like member include, for example, a “U” shape. , “U” shape, sawtooth shape, square tube shape and the like.
  • the solid support is an elongated member, and the elongated member is spirally deformed in the step (c).
  • the elongated member is spirally deformed.
  • the elongated shape include a thread shape, a string shape, a rod shape, a tape shape and the like.
  • the elongated member can be spirally deformed by being wound around a shaft member. Shaft like this
  • the material is particularly necessary when the elongated member also has a material strength having shape retention such as metal, etc., but is necessary when the elongated member does not have such shape retention.
  • the shape and structure of the shaft member are not particularly limited as long as the shaft member can be the center of the wound object.
  • a rod member, a columnar member, a cylindrical member, a prismatic member, a prismatic member, or the like is used as the shaft member. it can.
  • the particles are magnetic particles.
  • the operability of the particles is improved because the magnetic particles are used.
  • particles can be easily collected by applying a magnet to the particles, so that washing of the particles, preparation of a high-concentration particle-containing liquid, and the like can be easily performed.
  • the solid support is constituted by a magnet.
  • the magnetic particles can be easily fixed to the solid support by utilizing the magnetic interaction. Further, by adjusting the strength of the magnet, a binding mode in which the binding partners (the solid support and the magnetic particles) are not easily separated can be obtained.
  • the magnetic flux density on the surface of the solid support is uniform.
  • the magnetic particles can be reliably fixed to a predetermined position on the surface of the solid support. Therefore, cross-contamination between particles can be effectively prevented when different reactants are fixed on the surface of each particle.
  • FIG. 1 is a partial cross-sectional view showing one embodiment of the reactor of the present invention.
  • FIG. 2 is an explanatory view showing a procedure for producing particles having a probe made of an oligonucleotide or a polynucleotide immobilized on a surface thereof.
  • FIG. 3 is an explanatory diagram showing a procedure for producing a three-dimensional particle array using probe-immobilized particles.
  • FIG. 5 is a partial cross-sectional view of a dispenser used for producing probe-immobilized particles.
  • FIG. 6 is a perspective view showing another embodiment of a light irradiation / light detection device.
  • FIG. 7 is a perspective view showing another embodiment of a three-dimensional particle array.
  • FIG. 8 is a perspective view showing another embodiment of the three-dimensional particle array.
  • FIG. 9 (a) is a partial cross-sectional view showing another embodiment of the reaction vessel body 21, and (b) and (c) are partial cross-sectional views showing another embodiment of the solid support. And a top view.
  • FIG. 1 is a partial cross-sectional view showing one embodiment of the reactor of the present invention.
  • the reaction device 1 includes a reaction container 2, a liquid suction / discharge device 3, a light irradiation and light detection device 4.
  • the reaction vessel 2 includes a reaction vessel body 21 having a reaction chamber 26, and a three-dimensional particle array 22 accommodated in the reaction chamber 26.
  • the reaction vessel body 21 has a cylindrical large-diameter portion 211 and a cylindrical small-diameter portion 212 having a smaller diameter than the large-diameter portion 211, and includes a lower end portion of the large-diameter portion 211 and a small-diameter portion 212. It is continuous with the upper end.
  • a reaction chamber 26 is formed inside the reaction container main body 21, and the reaction chamber 26 can accommodate a liquid.
  • Lower end of small diameter section 212 Is provided with a liquid inflow / outflow port 213 communicating with the reaction chamber 26 so that liquid can flow into and out of the reaction chamber 26 through the liquid inflow / outflow port 213. I'm familiar.
  • the three-dimensional particle array 22 includes a cylindrical shaft member 25, a string member 23 wound around the shaft member 25, and a plurality of particle groups fixed to predetermined positions on the surface of the string member 23. 24.
  • Each particle group 24 includes a plurality of particles, and the same reactant is fixed on the surface of each particle included in the same particle group 24.
  • the type of the reactant fixed on the particle surface differs between the particle groups 24, and each particle group 24 has a predetermined surface of the string-shaped member 23 according to the type of the reactant fixed on the particle surface. It is fixed in place. Therefore, the type of the reaction substance fixed on the particle surface of each particle group 24 can be identified based on the fixing position of each particle group 24.
  • the string member 23 is spirally formed by being wound around the shaft member 25, and the plurality of particle groups 24 are fixed to the surface of the spirally formed string member 23, Three-dimensionally arranged in reaction chamber 26
  • the liquid suction / discharge device 3 includes a nozzle portion 31 attached to the upper end opening portion 214 of the large-diameter portion 211 of the reaction container main body 21 via the O-ring 30, and a nozzle portion 31 and a pipe 33.
  • a cylinder 32 is provided for communication, and the pressure inside or below the reaction chamber 26 is reduced or increased, so that suction and discharge of liquid into and from the reaction chamber 26 can be performed through the liquid inlet / outlet 213.
  • the light irradiation / light detection device 4 includes a light source 41 for emitting excitation light E, a mirror 42, lenses 43 and 45, an optical filter 44, a detector 46 electrically connected, and a controller 47. And a display device 48.
  • the light irradiation 4 light detection device 4 can irradiate the excitation light E emitted from the light source 41 into the reaction chamber 26 through the mirror 42 and the lens 43, and emit the fluorescence from the reaction chamber 26 into the lens 43 and the mirror 42.
  • the data is detected by a detector 46 via an optical filter 44 and a lens 45, and the data is processed by a controller 47 so that the data can be displayed on a display device 48.
  • the light irradiation / light detection device 4 can be moved vertically by a driving device (not shown) and scanned, and can be rotated 360 degrees around the large diameter portion 211 for scanning.
  • Light irradiation 'The light detector 4 is moved to move the entire reaction chamber 26
  • irradiation of excitation light and detection of fluorescence can be performed.
  • the liquid sample containing the target substance is sucked into the reaction chamber 26 from the liquid inflow / outflow port 213 by operating the liquid suction / discharge apparatus 3, and the liquid sample is It is generated by bringing the target substance therein into contact with the reactant on the particle surface of each particle group 24, and the reaction result is detected by the light irradiation / light detection device 4.
  • the reaction device 1 can be used for a wide variety of applications. For example, by selecting a probe composed of an oligonucleotide or a polynucleotide as a reactant immobilized on the particle surface of each particle group 24, the reaction device 1 can be used to determine the base sequence of a target nucleic acid, detect a mutation of a target nucleic acid, It can be used for applications such as polymorphism analysis of target nucleic acids (SNP analysis) and gene expression profile analysis.
  • SNP analysis polymorphism analysis of target nucleic acids
  • a container 60 is provided below the reaction container 2, and a liquid sample 50 containing a fluorescently labeled target DNA 501 is contained in the container 60.
  • the target DNA 501 is a fluorescently labeled DNA obtained by reverse transcribing mRNA extracted from the tissues and cells of a subject using fluorescently labeled nucleotides. DNA that has a strong base sequence is included.
  • the reactant fixed on the particle surface of each particle group 24 is an oligonucleotide probe or a polynucleotide probe that specifically hybridizes with a specific gene.
  • the type of probe immobilized on the particle surface of each particle group 24 ie, the type of gene to which the probe specifically hybridizes
  • each particle group 24 It is fixed to a predetermined location on the surface of the string-like member 23 according to the type of the probe being fixed. Therefore, based on the fixing position of each particle group 24, the type of probe fixed to the particle surface of each particle group 24 can be identified!
  • step la the liquid inflow / outlet 213 enters the container 60, and the liquid suction / discharge device By operating 3, the liquid sample 50 in the container 60 is sucked into the reaction chamber 26.
  • the reaction apparatus 1 is provided with a mechanism (not shown) for moving the reaction vessel 2 in the vertical direction. This mechanism allows the liquid inflow / outflow port 213 to enter and exit the various vessels. You can now do.
  • step 2a the target DNA 501 is reacted with the probe on the particle surface of each particle group 24 in the reaction chamber 26.
  • the target DNA 501 in the liquid sample 50 is dispersed in the reaction chamber 26 and exists three-dimensionally in the reaction chamber 26.
  • a plurality of particle groups 24 each having a plurality of particle forces having a probe fixed to the surface are three-dimensionally arranged. Therefore, the reaction field between the target DNA 501 in the liquid sample 50 and the probe on the particle surface of each particle group 24 is three-dimensional, the probability of encountering both is high, and the reaction efficiency of both is high.
  • step 3a the liquid sample 50 in the reaction chamber 26 is discharged from the liquid inlet / outlet 213 to the outside of the reaction chamber 26 by operating the liquid suction / discharge device 3.
  • step 4a after moving the reaction container 2 above the container 61 containing the cleaning liquid 51, the liquid inlet / outlet 213 is advanced into the container 61, and the liquid suction / discharge device 3 is operated. The cleaning liquid 51 in the container 61 is sucked into the reaction chamber 26.
  • the reaction device 1 is provided with a mechanism (not shown) for moving the reaction container 2 in the left-right direction.
  • step 5a after cleaning the inside of the reaction chamber 26 with the cleaning liquid 51, the liquid suction / discharge device 3 is operated to discharge the cleaning liquid 51 in the reaction chamber 26 to the outside of the reaction chamber 26. Thereby, the target DNA 501 remaining in the reaction chamber 26 without being hybridized with the probe on the particle surface of each particle group 24 is removed from the reaction chamber 26.
  • step 6a the light irradiation / light detection device 4 is operated to irradiate the reaction chamber 26 with the excitation light, and at the same time, emit the fluorescence emitted from the reaction chamber 26 (that is, the particles of any of the particle groups 24). Fluorescence emitted by the target DNA 501 hybridized with the probe on the daughter surface) is detected. Then, by identifying the site where the fluorescence is emitted and identifying the probe to which the target DNA 501 has hybridized, a gene that is expressed and expressed in the tissues and cells of the subject is identified. In this way, the gene expression profile of the subject can be analyzed, and a certain disease can be associated with the gene expression profile when the disease is caused. Thus, it is possible to diagnose whether or not a subject has a certain disease and has a gene expression profile ability.
  • the fluorescent-labeled target nucleic acid and the particles of each particle group 24 were also used. It can be carried out in the same manner as in step la-6a, using an oligonucleotide or a polynucleotide whose base sequence is fixed and a known oligonucleotide or polynucleotide.
  • the light irradiation / light detection device 4 can be changed to the light irradiation / light detection device 7 shown in FIG.
  • the light irradiation / photodetection device 7 includes a number of optical fibers 72 whose tips are arranged in a ring, and a support member 71 that supports the tips of the optical fibers 72, and the inside of the reaction chamber 26 via the optical fibers 72. In addition to being able to irradiate the excitation light, fluorescence from the inside of the reaction chamber 26 can be detected via the optical fiber 72.
  • the light irradiation / light detection device 7 includes a mechanism (not shown) for moving the support member 71 in the vertical direction, and moving the support member 71 in the vertical direction to control the entire reaction chamber 26. Irradiation with excitation light and detection of fluorescence can be performed.
  • the three-dimensional particle array 22 can be changed to the three-dimensional particle arrays 22a to 22h shown in (a) to (h) of Figs. 7 and 8.
  • the three-dimensional particle array 22a includes a columnar member 23a and a plurality of particle groups 24 fixed to the side surface of the columnar member 23a, and the particle group 24 is three-dimensionally arranged on the side surface of the columnar member 23a.
  • the three-dimensional particle array 22b includes a cylindrical member 23b and a plurality of particle groups 24 fixed to the outer surface of the cylindrical member 23b, and the particle group 24 is three-dimensionally formed on the outer surface of the cylindrical member 23b. They are arranged.
  • the three-dimensional particle arrays 22c and 22d are also formed by flexible sheet members 23c and 23d, and a plurality of particle groups 24 fixed on both surfaces of the sheet members 23c and 23d. Due to the curvature of 23d, the particle groups 24 are three-dimensionally arranged on the surfaces of the sheet members 23c and 23d.
  • the three-dimensional particle array 22e is composed of a prismatic member 23e and a plurality of particle groups 24 fixed to the side surface of the prismatic member 23e, and the particle group 24 is three-dimensionally arranged on the side surface of the prismatic member 23e. I have.
  • the row body 22f includes a rectangular cylindrical member 23f and a plurality of particle groups 24 fixed to the side surface of the rectangular cylindrical member 23f, and the particle group 24 is three-dimensionally arranged on the side surface of the rectangular cylindrical member 23f.
  • the three-dimensional particle array 22g, 22h is composed of flexible sheet members 23g, 23h, and a plurality of particle groups 24 fixed on both surfaces of the sheet members 23g, 23h. Due to the bending of 23h, the particle groups 24 are three-dimensionally arranged on the surfaces of the sheet members 23g and 23h.
  • the particle groups 24 are two-dimensionally arranged on each plane constituting the surfaces of the prismatic member 23e, the rectangular cylindrical member 23f, and the bent sheet members 23g, 23h. Force Since the planes are not on the same plane, the particle groups 24 are arranged three-dimensionally as a whole.
  • the reaction vessel main body 21 can be changed to a reaction vessel main body 21a shown in Fig. 9 (a).
  • the reaction vessel main body 21a does not have the liquid inflow / outflow port 213, and accordingly, the liquid suction / discharge device 3 is also omitted.
  • the inflow of the liquid into the reaction chamber 26 and the outflow of the liquid from the inside of the reaction chamber 26 are performed through the upper end opening of the reaction vessel main body 21a.
  • the solid support 22 housed in the reaction chamber 26 of the reaction vessel body 21a shown in Fig. 9 (a) can be changed to a solid support 22i shown in Figs. 9 (b) and 9 (c). It is.
  • the five solid supports 22i are housed in the reaction chamber 26 while being fixed to the lid member 27 attached to the upper end opening 214 of the reaction vessel main body 21a.
  • the solid support 22i has a sheet shape, and a plurality of particle groups 24 are arranged on both surfaces thereof in a one-dimensional manner. The position of each solid support 22i in the reaction chamber 26 is adjusted so that the particle groups 24 are not located on the same plane, whereby the surface of each solid support 22i is one-dimensionally adjusted.
  • the arranged particle groups 24 are three-dimensionally arranged in the reaction chamber 26 as a whole.
  • step lb to step 8b in Fig. 2 The procedure for preparing particles having oligonucleotide or polynucleotide probes immobilized on the surface is shown in step lb to step 8b in Fig. 2 and the procedure for preparing the three-dimensional particle array 22 using the particles is shown. Is shown in steps 9b to 14b in FIGS. 3 and 4.
  • Step lb-step 8b shown in FIG. 2 is performed using the dispenser 9 shown in FIG.
  • the dispenser 9 shown in FIG. 5 includes a container 91 for storing a liquid, a tapered tip 95 inserted into the container 91 to suck or discharge the liquid, a thick storage portion 92 for storing the liquid, common And a pipette tip P having a narrow liquid passage 93 communicating the tip end portion 95 and the reservoir 92, and a nozzle N is detachably fitted to the opening of the reservoir 92 to apply a negative pressure or pressure inside the pipette tip P.
  • Dispensing unit for sucking or discharging the liquid to the pipette tip P, a magnet M provided so as to be able to approach and separate from the outer surface of the liquid passage 93, and a magnet M to be brought close to and away from the liquid passage 93
  • a magnet drive device (not shown) and a control device that controls the operation and movement of the dispensing unit, the attachment / detachment of the nozzle N and the pipette tip P, and the proximity and separation of the magnet M to / from the pipette tip P of the magnet drive device ( (Not shown)).
  • the liquid passage 93 has a magnet working portion 931 operated by the magnet M.
  • a biotinylated probe Prl composed of a biotinylated oligonucleotide or polynucleotide is prepared using PCR.
  • a container VI attached to the PCR reaction device 10 contains a PCR reaction solution L1.
  • the PCR reaction solution L1 contains a type III nucleic acid, a biotinidyl primer capable of specifically and specifically hybridizing to the nucleic acid, PCR buffer etc. are included.
  • the biotinylated probe Prl is amplified in the PCR reaction solution L1.
  • step 2b the particle-containing liquid L2 in the pipette tip P is discharged to the PCR reaction liquid L1 in the container VI.
  • the particle-containing liquid L2 contains magnetic particles MB whose surface is coated with avidin.
  • step 3b suction-discharge with the pipette tip P is repeated to prepare a mixed solution L3 of the PCR reaction solution L1 and the particle-containing solution L2.
  • the biotinylated probe Prl is immobilized on the surface of the magnetic particle MB via the biotin-avidin bond, and the probe-immobilized particle PB1 is formed.
  • a plurality of biotinylated probes Prl are immobilized (ie, integrated) on the surface of the probe-immobilized particle PB1.
  • step 4b the mixture L3 containing the probe-immobilized particles PB1 is sucked into the pipette tip P, and the magnet M is made to approach the pipette tip P.
  • Probe immobilized particle P When passing through the magnet action portion 931 of the pipette tip P, Bl is collected on the inner wall surface of the magnet action portion 931 by the action of the magnet M disposed outside the pipette tip P, and the probe-immobilized particles PB One particle aggregate S 1 is formed.
  • step 5b the liquid mixture L3 excluding the particle aggregate S1 is discharged into the container VI while holding the particle aggregate S1 on the inner wall surface of the pipette tip P.
  • step 6b while holding the particle aggregate S1 on the inner wall surface of the pipette tip P, the pipette tip P is transferred to the installation location of the container V2 containing the cleaning solution L4, and the cleaning solution L4 Is repeated.
  • the particle aggregate S1 is washed, and contaminants contained in the particle aggregate S1 (for example, a biotinylated probe Prl not immobilized on the magnetic particles MB, a type III nucleic acid contained in the PCR reaction solution L1 or Primers) are removed.
  • step 7b while holding the particle aggregate S1 on the inner wall surface of the pipette tip P, the pipette tip P is transferred to the installation location of the container V3 containing the buffer solution L5, and buffered by the pipette tip P. Repeat the suction and discharge of the liquid L5, and separate the magnet M from the pipette tip P.
  • step 8b the particle-containing liquid BL1 containing the probe-immobilized particles PB1 is prepared in the container V3.
  • Step lb-Step 8b is repeated to prepare a pionylated probe Prl, Pr2, Pr (n) (n is an arbitrary natural number; the same applies hereinafter) having different nucleotide sequences, and a probe is provided for each probe.
  • step 9b a plate PLT in which 8 X 48 particle-containing liquid storage units C1 and C384 are provided at equal intervals is prepared, and the particle-containing liquid BL1 and BL384 are respectively stored in the particle-containing liquid storage units C1 and C384.
  • the plate PLT has 48 rows of eight particle-containing liquid storage sections, the first row being the particle-containing liquid storage sections C1 and C8, and the second row being the particle-containing liquid storage sections C9 and C9. 16, the third row is composed of the particle-containing liquid storage sections C17-C24, and the 48th row is composed of the particle-containing liquid storage sections C377-C384.
  • step 9b a spotting section having eight projections J1 to J8 provided corresponding to the arrangement of the particle-containing liquid storage section.
  • the material SPT is prepared, and the projections Jl-J8 of the spotting member SPT are respectively inserted into the particle-containing liquid storage sections C1-C8 in the first row.
  • each of the protrusions J1 to J8 has a hook shape so as to easily hold the particle-containing liquid.
  • the protrusions J1 and J8 have substantially the same length, so that they can come into contact with the surface of the string-shaped member 23 at a time.
  • step 10b the projections J1 and J8 of the spotting member SPT are immersed in the particle-containing liquids BL1 and BL8 in the particle-containing liquid storage sections C1 and C8, respectively. Let J1 and J8 hold the particle-containing liquids BL1 and BL8, respectively.
  • step lib the protrusions J1 and J8 of the spotting member SPT are brought into contact with the surface of the string-shaped member 23 at one time, and the particle-containing liquid BL is placed at a predetermined position arranged in one dimension on the surface of the string-shaped member 23. 1—Spot the BL8 at once.
  • step 12b the particle-containing liquid BL1-BL8 spotted on the surface of the string-like member 23 is dried, and the probe-immobilized particles PB1-PB8 are fixed on the surface of the string-like member 23.
  • the steps 9b-12b are repeated for the particle-containing liquid storage sections in the second row and the 48th row to fix the probe-immobilized particles PB1-PB384 at predetermined positions on the surface of the string-shaped member 23.
  • the used spotting member SPT may be washed and used, or an unused spotting member SPT may be used.
  • Particles whose surfaces are coated with protein require drying of the spotted particle-containing liquid. Thereby, it can be easily fixed to the surface of the string-shaped member 23.
  • Each of the spotted particle-containing liquids BL1-BL384 contains a plurality of probe-immobilized particles PB1-PB384, and each of the probe-immobilized particles PB1-PB384 forms a particle group, and is a string-shaped member. It is fixed in place on 23 surfaces.
  • the particle-containing liquid BL1-BL384 is spotted at a predetermined position arranged one-dimensionally on the surface of the string-like member 23.
  • the spotted particle-containing liquid BL1-BL384 infiltrates around the string-like member 23.
  • the probe-immobilized particles PB1 to PB384 are three-dimensionally arranged around the string-shaped member 23. Therefore, the particle-containing liquid BL1 Just because one BL384 is spotted one-dimensionally on the surface of the cord-like member 23 does not necessarily mean that the probe-immobilized particles PB1 to PB384 are one-dimensionally arranged on the surface of the cord-like member 23.
  • the probe-immobilized particles PB1 to PB384 are finally arranged three-dimensionally. There is no problem even if it is fixed to the surface of the member 23 in three dimensions.
  • step 13b the string-shaped member 23 having the probe-immobilized particles PB1-PB384 fixed on the surface thereof is wound around the shaft member 25.
  • a three-dimensional particle array 22 is produced.
  • the probe-immobilized particles PB1 to PB384 form a particle group and are three-dimensionally arranged on the surface of the string-shaped member.
  • solid supports of various shapes having flexibility can be used other than the string-shaped member 23.
  • the particle-containing liquid BL 1-BL384 is spotted at a predetermined position arranged one-dimensionally or two-dimensionally on the surface of the tape-like member, and then the tape-like member is removed.
  • a three-dimensional particle array (not shown) can be manufactured.
  • the particle-containing liquid BL 1-BL 384 is spotted at a predetermined position arranged one-dimensionally or two-dimensionally on both surfaces of the sheet-like member, and then the sheet-like member is removed.
  • the three-dimensional particle arrays 22c, 22d, 22g, and 22h shown in FIGS. 7 (c) and (d) and FIGS. 8 (g) and (h) can be produced by bending and / or bending.
  • the probe-immobilized particles PB1-PB384 are composed of magnetic particles MB (see step 2b).
  • a magnet as a solid support for immobilizing the probe-immobilized particles PB1-PB384
  • the immobilization of the probe-immobilized particles PB1-PB384 can be easily performed by utilizing the magnetic interaction between the probe-immobilized particles PB1-PB384 and the solid support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)

Abstract

 液体試料中の標的物質と粒子表面に固定された反応物質との遭遇確率を高め、反応効率を向上させることができる、粒子三次元配列体を利用した反応容器、及び該反応容器を利用した反応装置を提供することを目的とし、本発明により提供される反応容器は、液体試料を収容し得る反応室を有する反応容器本体と、前記反応室内に収納された固体支持体と、表面に所定の反応物質が固定された複数の粒子とを備えた反応容器であって、前記粒子が、前記固体支持体の表面に固定された状態で前記反応室内に三次元に配列していることを特徴とする。

Description

明 細 書
粒子三次元配列体を利用した反応容器及び反応装置
技術分野
[0001] 本発明は、表面に所定の反応物質が固定された粒子の三次元配列体を利用した 反応容器及び反応装置に関する。また、本発明は、粒子三次元配列体の作製方法 に関する。
背景技術
[0002] 標的核酸の検出、分離等の際には、標的核酸と相補的な塩基配列を有するプロ一 ブが固定された固体支持体が用いられる。例えば、プローブが固体化された固体支 持体と標的核酸を含む液体試料とを接触させ、プローブと標的核酸とをハイブリダィ ズさせた後、洗浄等によって標的核酸以外の物質を除去することによって、標的核酸 の検出、分離等が行われる。
[0003] プローブを固定化した固体支持体の一例として、スライドガラス等の固体支持体の 表面上に多数のプローブを配列して固定化した DNAアレイ(DNAチップ)がある。こ のような DNAアレイは、遺伝子の発現、変異、多型性等の解析を並列して行なう際 に非常に有用である。
[0004] DNAアレイの作製方法としては、例えば、プローブとして用いられるオリゴヌクレオ チドを固体支持体表面で直接合成する方法と、予め調製してお!、たオリゴヌクレオチ ド (場合によってポリヌクレオチド)を固体支持体表面に固定ィ匕する方法とが知られて いる。
[0005] 前者の方法の代表例としては、光照射で選択的に除去される保護基の使用と、半 導体製造に利用されるフォトリソグラフィー技術及び固相合成技術とを組み合わせて 、マトリックスの所定の領域でプローブを選択的に合成する方法がある。
[0006] また、後者の方法の代表例としては、(l)cDNAや PCR産物をポリ陽イオン (ポリリシ ン、ポリエチレンイミン等)で表面処理した固体支持体表面にスポットし、 DNAの荷電 を利用して固体支持体に静電結合させる方法、(2)反応活性基を導入したオリゴヌク レオチドを合成し、表面処理した固体支持体表面に該オリゴヌクレオチドをスポットし 、固体支持体表面に共有結合させる方法がある。
[0007] 前者の方法では複雑な工程を経るためコスト高になる等の理由から、 DNAアレイ の作製方法としては一般的に後者の方法が用いられる。
[0008] 標的核酸の検出感度を向上させるためは、 1スポット当たりのプローブ密度を出来 るだけ高くすることが必要である。後者の方法では、プローブ含有液を固体支持体表 面へ滴下することによりプローブを固体支持体表面にスポットするので、 1スポット当 たりのプローブ密度は、 1スポット当たりのプローブ量に依存する。
[0009] 1スポット当たりのプローブ量を増加させるために、プローブを固体支持体表面に直 接結合させるのではなぐプローブを粒子に集積させた後、プローブを集積させた粒 子 (プローブ集積化粒子)を固体支持体表面に一次元又は二次元に固定する方法 が考え出されている (特許文献 1,特許文献 2,特許文献 3,特許文献 4)。
特許文献 1 :米国特許第 6, 133, 436号公報
特許文献 2:特開 2001—281251号公報
特許文献 3:特開 2000— 346842号公報
特許文献 4:特開平 11—243997号公報
発明の開示
発明が解決しょうとする課題
[0010] しカゝしながら、プローブ集積化粒子を利用した上記方法では、プローブ集積化粒子 を一次元又は二次元に固定しているので、標的核酸を含む液体試料とプローブ集 積化粒子との反応の場は一次元又は二次元となる。すなわち、標的核酸は、液体試 料中に分散している(すなわち、液体試料中に三次元に存在している)にも関わらず 、プローブ集積化粒子は一次元又は二次元に配置されているため、両者の遭遇確 率は低ぐ反応効率は低いものとなっていた。
[0011] そこで、本発明は、第一に、液体試料中の標的物質と粒子表面に固定された反応 物質との遭遇確率を高めて反応効率を向上させることができる、粒子三次元配列体 を利用した反応容器、及び該反応容器を利用した反応装置を提供することを目的と する。
[0012] また、本発明は、第二に、粒子三次元配列体を効率よく作製することができる、粒 子三次元配列体の作製方法を提供することを目的とする。
課題を解決するための手段
[0013] (1)上記課題を解決するために、本発明の反応容器は、液体試料を収容し得る反応 室を有する反応容器本体と、前記反応室内に収納された固体支持体と、表面に所定 の反応物質が固定された複数の粒子とを備えた反応容器であって、前記粒子が、前 記固体支持体の表面に固定された状態で前記反応室内に三次元に配列しているこ とを特徴とする。
[0014] 本発明の反応容器において、反応室は、液体試料中の標的物質と粒子表面の反 応物質との反応の場となる。液体試料が反応室内に収容されると、液体試料中の標 的物質は反応室内に分散し、反応室内に三次元に存在する。反応室内には、表面 に反応物質が固定された粒子が三次元に配列しているので、液体試料中の標的物 質と粒子表面の反応物質との反応の場は三次元となり、両者の遭遇確率は高ぐ両 者の反応効率が向上する。
[0015] 「液体試料」とは、試験、検査、分析等に供される液体を意味し、本発明の反応容 器を用いて行なう試験、検査、分析等の目的に応じて、標的物質を含有する液体又 は標的物質を含有する可能性がある液体が適宜選択される。なお、本明細書で定義 された用語は、本明細書全体を通じて同義に用いられるものとする。
[0016] 「標的物質」とは、検出、分離等の対象となる物質を意味し、本発明の反応容器を 用いて行なう試験、検査、分析等の目的に応じて、構造や機能等が公知の物質又は 未知の物質が適宜選択される。標的物質の種類は特に限定されるものではなぐそ の具体例としては、核酸、タンパク質、抗原、抗体、酵素、糖鎖等の生体関連物質が 挙げられる。なお、「核酸」には、 DNA及び RNAの他、これらの類似体又は誘導体( 例えば、ペプチド核酸 (PNA)、ホスホロチォエート DNA等)が含まれる。また、核酸 の塩基長は特に限定されるものではなぐオリゴヌクレオチド及びポリヌクレオチドの いずれであってもよい。また、核酸は一本鎖及び二本鎖のいずれの状態であっても よぐこれらの混合状態であってもよい。
[0017] 「反応物質」とは、標的物質と反応させる物質を意味し、本発明の反応容器を用い て行なう試験、検査、分析等の目的に応じて、標的物質との反応性を有する物質又 は標的物質との反応性を有する可能性がある物質が適宜選択される。反応物質は、 構造や機能等が公知の物質及び未知の物質の 、ずれであってもよく、反応物質の 種類は特に限定されるものではない。反応物質が有する(又は有する可能性がある) 標的物質との反応性はいかなる反応性であってもよぐ例えば、共有結合、イオン結 合、ファンデルワールス力、水素結合、配位結合、化学的吸着、物理的吸着等の結 合様式によって標的物質と結合する性質が挙げられる。標的物質と反応物質との組 み合わせの具体例としては、核酸 Z相補的核酸、受容体タンパク質 Zリガンド、酵素 Z基質、抗体 Z抗原等が挙げられる。
[0018] 粒子の表面に固定される反応物質の数は特に限定されるものではないが、粒子の 表面に複数の反応物質が固定されていること、すなわち、粒子の表面に反応物質が 集積化されて ヽることが好ま 、。
[0019] 「所定の反応物質」とは、各粒子の表面に固定する反応物質の種類を予め決めて おくことを意味する。各粒子の表面に固定する反応物質の種類は 1種類であっても 2 種類以上であってもよい。
[0020] 「固体支持体」とは、表面に粒子を固定できる三次元構造体を意味し、その形状、 サイズ等は反応室内に収納可能である限り特に限定されるものではない。固体支持 体の材質は、液体試料に対して不溶性の材質であり、液体試料の溶媒の種類等に 応じて適宜選択できる。固体支持体の材質の一般的な具体例としては、プラスチック (例えば、ポリエチレン、ポリプロピレン、ポリアミド、ポリビ-リデンジフルオライド等)、 金属(例えば、鉄、金、銀、銅、アルミニウム、ニッケル、コノ レト、シリコン等)、ガラス 、セラミックス、これらの複合材料等が挙げられる。固体支持体は非膨潤性であること が好ましいが、膨潤性であってもよい。固体支持体表面は多孔質であっても無孔質 であってもよいが、固体支持体表面が多孔質である場合には無孔質である場合より も多くの粒子を固体支持体表面に固定することができる。
[0021] 「粒子」とは、表面に反応物質を固定できる微小な三次元構造体を意味し、その形 状、サイズ等は特に限定されるものではない。粒子の形状は、例えば球形であり、好 ましい粒径は直径約 1 μ m—約 100 μ mである。粒子の材質は、液体試料に対して 不溶性の材質であり、液体試料の溶媒の種類等に応じて適宜選択できる。粒子の材 質の一般的な具体例としては、スチレン、クロルスチレン、クロロメチルスチレン、 a— メチルスチレン、ジビュルベンゼン、スチレンスルホン酸ナトリウム、(メタ)アクリル酸、
(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n -ブチル、(メタ) アクリル酸- 2—ヒドロキシェチル、(メタ)アクリル酸ポリオキシエチレン、(メタ)アクリル 酸グリシジル、エチレングリコールージー (メタ)アクリル酸エステル、(メタ)アクリル酸トリ ブロモフエ-ル、トリブロモプロピルアタリレート、(メタ)アクリロニトリル、(メタ)ァクロレ イン、(メタ)アクリルアミド、メチレンビス (メタ)アクリルアミド、ブタジエン、イソプレン、 酢酸ビュル、ビュルピリジン、 N ビニルピロリドン、塩化ビュル、臭化ビニル等の芳香 族ビニル化合物、 a , j8—不飽和カルボン酸のエステル類又はアミド類、 a , j8—不 飽和-トリル化合物、ハロゲン化ビュル化合物、共役ジェン化合物、低級脂肪酸ビ- ルエステル等のビュル系単量体の 1種以上を重合して得られるポリマー;ァガロース
、デキストラン、セルロース、カルボキシメチルセルロース等の多糖類の架橋体;メチ ル化アルブミン、ゼラチン、コラーゲン、カゼイン等の蛋白質の架橋体;ガラス、セラミ ックス等の無機材料;鉄、シリコン等の金属;これらの複合材料等が挙げられる。粒子 は非膨潤性であることが好ましいが、膨潤性であってもよい。粒子表面は多孔質であ つても無孔質であってもよいが、粒子表面が多孔質である場合には無孔質である場 合よりも多くの反応物質を固定することができる。
[0022] 固体支持体又は粒子の「表面」とは、液体 (例えば液体試料)と接触し得る面を意味 し、固体支持体又は粒子の外面 (外部表面)はもちろんのこと、液体が浸潤し得る固 体支持体又は粒子の内面(内部表面)(例えば、固体支持体又は粒子が有する細孔 の内部表面)も含まれる。
[0023] 反応室の構造は、液体試料を収容し得る限り特に限定されるものではなぐ例えば 、上端に開口部を有する凹部として反応容器本体に形成することができる。反応室が 開口部を有するとき、本発明の反応容器は反応室の開口部を封止する蓋部材を備 えていてもよい。反応室の個数は特に限定されるものでなぐ 1個であってもよいし、 複数個であってもよい。反応室は薄板によって構成されていることが好ましい。反応 室が薄板によって構成されることによって、反応室内の液体試料の温度制御を迅速 かつ効率よく行なうことができるとともに、反応室内への光の照射及び反応室内から 発せられる光の検出を行なう際の照射条件ゃ受光条件の設定が容易となる。
[0024] 「粒子が三次元に配列している」とは、全ての粒子が同一平面上に位置することが な 、ように粒子が配列して 、ることを意味する。
[0025] 固体支持体への粒子の固定及び粒子への反応物質の固定は、種々の結合様式 によって行なうことができる。結合様式の具体例としては、ストレプトアビジン又はアビ ジンとピオチンとの特異的相互作用、疎水性相互作用、磁性相互作用、極性相互作 用、共有結合 (例えば、アミド結合、ジスルフイド結合、チォエーテル結合等)の形成 、架橋剤による架橋等が挙げられる。これらの結合様式による固定が可能となるよう に、公知の技術を用いて、固体支持体表面、粒子表面又は反応物質に適当な化学 修飾を施すことができる。なお、粒子への反応物質の固定は、粒子を固体支持体に 固定した後に行なってもよいが、粒子への反応物質の固定を簡便かつ効率的に行な う点から、粒子を固体支持体に固定する前に行なうことが好ましい。
[0026] ストレプトアビジン又はアビジンとピオチンとの特異的相互作用以外にも、マルトー ス結合タンパク質 Zマルトース、ポリヒスチジンペプチド Zニッケルやコバルト等の金 属イオン、グルタチオン S トランスフェラーゼ Zグルタチオン、カノレモジュリン Z力 ルモジュリン結合ペプチド、 ATP結合タンパク質 ZATP、核酸 Z相補的核酸、受容 体タンパク質 Zリガンド、酵素 Z基質、抗体 Z抗原、 IgGZプロテイン A等の特異的 相互作用を利用して、固体支持体への粒子の固定及び粒子への反応物質の固定を 行なうことちできる。
[0027] 固体支持体と粒子との結合様式及び粒子と反応物質との結合様式は、結合パート ナー同士(固体支持体と粒子、粒子と反応物質)が容易に離脱しない結合様式であ ることが好ましい。このような結合様式としては、例えば、アビジン又はストレプトァビジ ンとピオチンとの相互作用、共有結合の形成、架橋剤による架橋等が挙げられる。 ば、アビジン又はストレプトアビジンでコーティングされた粒子を、ピオチンでコーティ ングされた固体支持体に結合させることができる。また、ピオチンを導入した反応物 質 (例えば、 5'末端をピオチンィ匕したプライマーを用いて PCRを行なうことにより得ら れたピオチン化核酸)を、アビジン又はストレプトアビジンでコーティングされた粒子に 結合させることができる。なお、アビジン又はストレプトアビジンとビ才チンとを逆にし て、例えば、ピオチンでコーティングされた粒子をアビジン又はストレプトアビジンでコ 一ティングされた固体支持体に結合させることができる。粒子と反応物質との結合に ついても同様である。
[0029] 共有結合の形成を利用する場合には、固体支持体表面、粒子表面又は反応物質 に存在する官能基を利用して共有結合を形成させることができる。共有結合を形成し 得る官能基の具体例として、カルボキシル基、アミノ基、水酸基等が挙げられる。例え ば、固体支持体の表面にカルボキシル基が存在する場合には、 1-ェチル -3-(3-ジメ チルァミノプロピル)- 3-ェチルカルボジイミド塩酸塩(EDC)等のカルボジイミド類で力 ルポキシル基を活性ィ匕させた後、粒子の表面に存在するァミノ基と反応させることに より、固体支持体と粒子とをアミド結合させることができる。また、固体支持体の表面 にァミノ基が存在する場合には、無水コハク酸等の環状酸無水物を用いてアミノ基を カルボキシル基に変換した後、粒子の表面に存在するァミノ基と反応させることにより 、固体支持体と粒子とをアミド結合させることができる。粒子と反応物質との結合につ いても同様にして行なうことができる。なお、反応物質が核酸である場合、核酸の反 応性湘補的核酸とのハイブリダィズ性)を損なわな!/、ように、核酸の 5 '末端又は 3 ' 末端に導入したリンカ一配列を介して核酸を粒子に結合させることが好ましい。
[0030] 架橋剤による架橋を利用する場合には、架橋対象物質が有する官能基と反応し得 る種々の架橋剤を使用できる。架橋剤の具体例としては、二官能性試薬、三官能性 試薬等の多官能性試薬が挙げられる。このような多官能性試薬の具体例としては、 N-スクシンィミジル (4-ィオードァセチル)ァミノべンゾエート(
N-succinimidyl(4-iodoacetyl)aminobenzoate) (SIAB)、ンマレづ ト (dimaleimide)、ン チォ-ビス -ニトロ安息香酸(dithio- bis- nitrobenzoic acid) (DTNB)、 N -スクシンイミジ ル- S-ァセチル-チォアセテート(N- succinimidy卜 S- acetyH:hioacetate) (SATA)、 N- スクシンィミジル- 3-(2-ピリジルジチォ)プロピオネート(
N-succinimidyl-3-(2-pyridyldithio)propionate) (SPDP)、スクシンィミジル 4— (N—マレ イミドメチノレ)シクロへキサン- 1-力ノレボキシレート(succinimidyl
4-(N-maleimidomethyl)cyclohexane- 1 -carboxvlate) (SMCC)、 6—ヒドラジノニコチミド ( 6-hydrazinonicotimide) (HYNIC)等が挙げられる。
[0031] (2)本発明の反応容器の第一態様では、前記反応室内に複数の固体支持体が収納 されており、前記粒子が各固体支持体の表面に一次元、二次元又は三次元に配列 している。
[0032] 本発明の反応容器において、反応室内に収納される固体支持体の個数は 1個であ つてもよいし複数個であってもよいが、本態様に係る反応容器においては、反応室内 に複数の固体支持体が収納されている。反応室内に収納される固体支持体の個数 力 個である場合には、 1個の固体支持体の表面に粒子を三次元に配列させる必要 があるが、反応室内に収納される固体支持体の個数が複数個である場合には、各固 体支持体の表面に粒子を一次元、二次元又は三次元に配列させることができる。す なわち、本態様に係る反応容器においては、各固体支持体の表面に一次元、二次 元又は三次元に配列している粒子を組み合わせることにより、各固体支持体の表面 の粒子を全体として反応室内に三次元に配列させる。各固体支持体の表面に粒子 がー次元又は二次元に配列している場合には、各固体支持体の表面の粒子が全体 として同一平面上に位置することがないように、反応室内の各固体支持体の位置を 調節する。
[0033] (3)本発明の反応容器の第二態様では、前記固体支持体の表面が、曲面又は同一 平面上にない複数の平面を含んで構成されており、前記粒子が、前記曲面に三次 元に配列して 、る力、あるいは前記複数の平面に一次元又は二次元に配列して 、る
[0034] 本態様に係る反応容器において、固体支持体の表面が曲面を含んで構成されて いる場合、曲面は三次元的な広がりを有するので、粒子を曲面に三次元に配列させ ることにより、粒子を反応室内に三次元に配列させることができる。表面が曲面を含ん で構成される固体支持体の具体例としては、螺旋状部材、可撓性を有するシート状 部材を湾曲させた部材、円柱状部材、円筒状部材、円錐状部材等が挙げられる。
[0035] 本態様に係る反応容器において、固体支持体の表面が同一平面上にない複数の 平面を含んで構成されている場合、平面は二次元的な広がりを有するので、粒子は 各平面に一次元又は二次元に配列するが、同一平面上にない複数の平面に一次 元又は二次元に配列する粒子を組み合わせることによって、粒子を全体として反応 室内に三次元に配列させることができる。同一平面上にない複数の平面を有する固 体支持体の具体例としては、可撓性を有するシート状部材を曲折させた部材、角柱 状部材、角筒状部材、角錐状部材等が挙げられる。
なお、本態様に係る反応容器において、固体支持体の表面に曲面及び同一平面 上にな 、複数の平面の両者が含まれており、両者に粒子が配列して 、てもよ 、。
[0036] (4)本発明の反応容器の第三態様では、前記固体支持体が螺旋状部材からなる。
螺旋状部材の表面は曲面を含んで構成されて 、るので、粒子を曲面に三次元に 配列させることにより、粒子を反応室内に三次元に配列させることができる。螺旋状部 材としては、例えば、可撓性を有する細長形状部材を螺旋状に成形したものを使用 できる。細長形状の具体例としては、糸状、紐状、棒状、テープ状等の形状が挙げら れる。細長形状部材が金属等のように形態保持性を有する材質からなる場合には、 細長形状部材自体を螺旋状に成形することができる。また、細長形状部材がそのよう な形態保持性を有しない場合には軸部材に卷装することにより螺旋状に成形するこ とができる。軸部材は卷く物の中心となり得る限り、その形状や構造は特に限定され るものではなぐ例えば、棒状部材、円柱状部材、円筒状部材、角柱状部材、角筒状 部材等を軸部材として使用できる。
[0037] (5)本発明の反応容器の第四態様では、前記固体支持体が、可撓性を有するシート 状部材を湾曲及び Z又は曲折させた部材力 なる。
可撓性を有するシート状部材を湾曲させた部材の表面は曲面を含んで構成されて いるので、粒子を曲面に三次元に配列させることにより、粒子を反応室内に三次元に 配列させることができる。また、可撓性を有するシート状部材を曲折させた部材の表 面は、同一平面上にない複数の平面を含んで構成されているので、これら複数の平 面に粒子を一次元又は二次元に配列させることにより、粒子を全体として反応室内に 三次元に配列させることができる。
[0038] 「可撓性」とは、湾曲、曲折等によって任意の形状に変形が可能であることを意味し 、シート状部材の材質、厚み等は可撓性を有する限り特に限定されるものではない。 シート状部材を湾曲させた部材の形状としては、例えば、 U字状、波線状、円筒状等 が挙げられ、シート状部材を曲折させた部材の形状としては、例えば、「く」の字状、「 コ」の字状、鋸歯状、角筒状等が挙げられる。
[0039] 粒子はシート状部材の片面にのみ配列させてもよいが、液体試料中の標的物質と 粒子表面の反応物質との反応効率をより一層向上させる点から両面に配列させるこ とが好ましい。
[0040] (6)本発明の反応容器の第五態様では、前記粒子が、前記反応物質の種類に応じ て前記固体支持体の表面の所定箇所に固定されている。
本発明の反応容器において、各粒子の表面に固定される反応物質の種類は同一 であってもよいし異なっていてもよいが、本態様に係る反応容器においては、各粒子 の表面にそれぞれ異なる反応物質が固定されており、各粒子は、反応物質の種類に 応じて固体支持体の表面の所定箇所に固定されている。これによつて、各粒子の表 面に固定されている反応物質の種類を、各粒子の固体支持体上の固定箇所に基づ き識別でき、複数種類の反応物質について、標的物質との反応性を並列して解析す ることが可能となる。
[0041] 「固体支持体の所定箇所」とは、各粒子の表面に固定される反応物質の種類と対 応付けて、各粒子の固定箇所を予め決めておくことを意味する。
各粒子の固定箇所は、粒子の固体支持体表面への固定の際に、異なる反応物質 が固定されて 、る粒子間のクロスコンタミネーシヨンが生じな 、ように調節する。異な る反応物質が固定されている粒子間のクロスコンタミネーシヨンを防止するために、固 体支持体に複数の凹部を形成させて、各凹部に対応する粒子を固定してもよい。
[0042] (7)本発明の反応容器に係る第六態様では、前記粒子が、前記反応物質の種類に 応じて所定の標識物質を有する。
本態様に係る反応容器においては、各粒子の表面にそれぞれ異なる反応物質が 固定されており、各粒子は、反応物質の種類に応じて所定の標識物質を有する。こ れによって、各粒子の表面に固定されている反応物質の種類を、各粒子が有する標 識物質の種類に基づき識別でき、複数種類の反応物質について、標的物質との反 応性を並列して解析することが可能となる。
[0043] 「所定の標識物質」とは、各粒子の表面に固定される反応物質の種類と対応付けて 、各粒子が有する標識物質の種類を予め決めておくことを意味する。
標識物質の具体例としては、蛍光色素(例えば、 Marine Blue, Cascade Blue, cascade ellow, Fluorescein, Rhodamine, Phycoerythrin, CyChrome, Perし i3, fexas Red, Allophycocyanin, PharRed等の他、 Cy2, Cy3, Cy3.5, Cy5, Cy7等の Cy系色素 、 Alexa-488, Alexa- 532, Alexa- 546, Alexa- 633, Alexa- 680等の Alexa系色素、 BODIPY FL, BODIPY TR-等の BODIPY系色素)等の蛍光性物質、放射性同位元素 (例えば、 3H、 "C、 32P、 33P、 35S、 125I)等の放射性物質等が挙げられる。標識物質と して蛍光色素を用いる場合、蛍光色素の種類と含有量とを組み合わせることにより多 種多様な標識が可能となる。
[0044] 蛍光色素による標識化は、例えば、予め表面にアミノ基を導入しておいた粒子に活 性エステルを有する蛍光色素を反応させることにより、あるいは、予め表面にカルボ キシル基又はアミノ基を導入してぉ 、た粒子に、カルボキシル基との結合反応が可 能な官能基 (例えばアミノ基)を有する蛍光色素又はアミノ基との結合反応が可能な 官能基 (例えばカルボキシル基)を有する蛍光色素を、 1-ェチル -3-(3-ジメチルアミ ノプロピル)- 3-ェチルカルボジイミド塩酸塩(EDC)等のカルボジイミド類の存在下で 反応させることにより行なうことができる。また、重合反応によって粒子を合成する際 に反応液中に蛍光色素を添加しておくことにより、あるいは、ラジカル重合の重合反 応の終了直後でラジカルが残存している間に当該ラジカルと反応性を有する蛍光色 素を添加することにより、蛍光色素による粒子の標識ィ匕を行なうことができる。
[0045] (8)本発明の反応容器の第七態様では、前記固体支持体又は前記粒子が、乾燥に より接着力を発揮するポリマーを表面に有しており、前記ポリマーの接着力により前 記粒子が前記固体支持体の表面に固定されている。
[0046] 本態様に係る反応容器においては、含水状態にあるポリマーを固体支持体と粒子 との間に介在させ、当該ポリマーを乾燥させることにより、粒子を固体支持体の表面 に容易に固定することができる。
乾燥により接着力を発揮するポリマーとしては、例えば、タンパク質、ポリビニルアル コール等が挙げられる。これらのポリマーが乾燥により発揮する接着力は、粒子が固 定された固定支持体の表面が浸潤しても保持される。 [0047] (9)本発明の反応容器の第八態様では、前記粒子が磁性粒子であって、前記粒子 が磁力によって前記固体支持体の表面に固定されて 、る。
本態様に係る反応容器においては、固体支持体への粒子の固定に磁性相互作用 を利用することによって固定操作を容易に行なうことができる。また、磁力の強さを調 節することによって、結合パートナー同士(固体支持体と粒子)が容易に離脱しない 結合様式とすることができる。
[0048] 「磁性粒子」とは、磁性体を含んで構成される粒子を意味し、磁性粒子の具体例と しては、水酸化鉄、酸化鉄水和物、 γ— Fe O、 Fe O等を含んで構成される粒子が
2 3 3 4
挙げられる。
[0049] (10)本発明の反応容器の第九態様では、前記固体支持体に磁石が設けられており 、前記磁石の作用によって前記粒子が前記固体支持体の表面に固定されている。 本態様に係る反応容器にぉ ヽて、磁石を設ける位置は特に限定されるものではな ぐ例えば、固体支持体が円筒状、角筒状等のように内部空間を有する場合には、 当該内部空間に磁石を嵌装することができる。「磁石」の具体例としては、永久磁石、 電磁石、超伝導磁石等が挙げられる。
[0050] (11)本発明の反応容器の第十態様では、前記固体支持体が磁石で構成されており 、前記磁石の作用によって前記粒子が前記固体支持体の表面に固定されている。
[0051] (12)本発明の反応容器の第十一態様では、前記固体支持体の表面の磁束密度が 均一である。
本態様に係る反応容器にぉ 、ては、固体支持体表面の磁束密度が均一であるの で、磁性粒子を固体支持体表面の所定箇所に確実に固定できる。したがって、各粒 子の表面に異なる反応物質が固定されている場合に粒子間のクロスコンタミネーショ ンを効果的に防止できる。
[0052] (13)本発明の反応容器の第十二態様では、前記反応物質が、生体関連物質である
[0053] (14)本発明の反応容器の第十三態様では、前記生体関連物質が核酸又はタンパ ク質である。
本態様に係る反応容器は、 DNAアレイやタンパク質アレイと同様の用途に用いるこ とがでさる。
[0054] (15)本発明の反応容器の第十四態様では、前記反応容器本体が光透過性材料で 構成されている。
本態様に係る反応容器にぉ ヽては、反応容器本体が光透過性材料で構成される こと〖こよって、反応室内から発せられる光 (例えば蛍光やィ匕学発光)を反応容器の外 部にて検出できる。反応室内から発せられる光力 反応室内で生じた反応結果 (例え ば、標的物質と反応物質との反応の有無)の指標となる場合には、反応室内から発 せられる光を検出することによって、反応結果を判別できる。例えば、蛍光標識した 標的物質を含有する液体試料を反応室内に収容し、標的物質と反応物質とを接触さ せた後、反応室内から液体試料を除去し、必要に応じて反応室内を洗浄液で洗浄し 、次いで、反応室内から発せられる光を検出することによって、標的物質と反応物質 との反応の有無を判別できる。
[0055] 光透過性材料の種類は特に限定されるものではなぐ透明または半透明であって 反応容器本体に必要とされる強度を有する材料であればいかなるものを使用しても よい。光透過性材料の具体例としては、プラスチック、ガラス等が挙げられる。
[0056] (16)本発明の反応容器の第十五態様では、前記反応容器本体が、前記反応室内 の反応室に連通する液体流入出口を有する。
本態様に係る反応容器においては、反応室内への液体試料の収容、反応室内か らの液体試料の除去、反応室内への洗浄液の収容、反応室内からの洗浄液の除去 等、各種液体の反応室への流入及び反応室からの流出を、反応室に連通する液体 流入出口を介して容易に行なうことができる。
[0057] (17)本発明の第一の反応装置は、第十四態様に係る反応容器 (前記(15)参照)の 反応容器と、前記反応容器の反応室内へ光を照射する光源と、前記反応室内から の光を検出する検出部とを備えたことを特徴とする。
本発明の反応装置においては、反応室内への光の照射及び反応室内からの光の 検出の自動化を図ることができる。
[0058] (18)本発明の第二の反応装置は、第十五態様に係る反応容器 (前記(16)参照)と 、前記反応容器の液体流入出口を介して前記反応容器の反応室への液体の流入 及び前記反応室からの液体の流出を行なう液体吸引 ·吐出装置とを備えたことを特 徴とする。
本発明の反応装置においては、反応室内への液体試料の収容、反応室内からの 液体試料の除去、反応室内への洗浄液の収容、反応室内からの洗浄液の除去等、 各種液体の反応室への流入及び反応室からの流出の自動化を図ることができる。
[0059] (19)本発明の粒子三次元配列体の作製方法は、以下の工程 (a)— (c)を含むことを 特徴とする。
(a)可撓性を有する固体支持体の表面の一次元又は二次元に配列する複数箇所に 、粒子含有液を一度にスポッティングする工程
(b)前記粒子含有液中の粒子を前記固体支持体の表面に固定させる工程
(c)前記固体支持体を変形させて前記粒子を前記固体支持体の表面に三次元に配 列させる工程
[0060] 固体支持体表面の複数箇所に粒子含有液を一度にスポッティングすることによって 粒子三次元配列体を効率よく作製できるが、固体支持体表面の複数箇所に粒子含 有液を一度にスポッティングする際、三次元に配列する複数箇所にスポッティングす るよりも、一次元又は二次元に配列する複数箇所にスポッティングする方が、スポッテ イング操作が容易である。そこで、本発明の粒子三次元配列体の作製方法において は、固体支持体表面の一次元又は二次元に配列する複数箇所に、粒子含有液を一 度にスポッティングし、その後、固体支持体を変形させることにより粒子を固体支持体 の表面に三次元に配列させる。
[0061] 「粒子三次元配列体」とは、表面に複数の粒子が三次元に配列している固体支持 体を意味し、本発明の反応容器の反応室内に収容されて!、る固体支持体は「粒子 三次元配列体」に相当する。
[0062] 粒子含有液の溶媒は粒子及び固体支持体を腐食しない限り特に限定されるもので はなぐ粒子と固体支持体との結合様式等に応じて適宜選択される。粒子含有液に 含有される粒子表面には反応物質が固定されていなくてもよいが、本発明の反応容 器に利用できる粒子三次元配列体を効率よく作製する点から、粒子表面には反応物 質が固定されて 、ることが好ま 、。粒子表面に反応物質が固定されて 、る場合に は、反応物質の種類に応じた所定箇所に粒子含有液をスポッティングすることが好ま しい。
[0063] 固体支持体としては、その表面に粒子含有液を一次元又は二次元にスポッティン グし得るものが選択される。このような固体支持体としては、例えば、糸状部材、紐状 部材、テープ状部材、シート状部材等が挙げられる。固体支持体の材質は、固体支 持体が可撓性を有するように選択される。
[0064] 工程 (a)におけるスポッティングは、例えば、先端部が一次元又は二次元に配列す る複数の突起部を有するスポッティング部材を用いて行なうことができる。同一箇所 へのスポッティング回数は 1回であっても複数回であってもよいが、スポット当たりの粒 子量を多くする点力 複数回であることが好まし 、。
[0065] 工程 (b)における固体支持体表面への粒子の固定は、固体支持体と粒子との所定 の結合様式によって行なうことができる。
[0066] 工程 (c)における固体支持体の変形は、固体支持体の可撓性を利用して容易に行 なうことができる。固体支持体表面に一次元又は二次元に配列している粒子は、固 体支持体を変形させることによって固体支持体表面に三次元に配列することとなる。 固体支持体の変形態様は、粒子が固体支持体表面に三次元に配列し得る限り特に 限定されるものでないが、固体支持体として糸状、紐状、棒状、テープ状等の細長形 状部材を使用する場合には、例えば螺旋状への変形が挙げられる。また、固体支持 体としてシート状部材を使用する場合には、例えば湾曲及び Z又は曲折よる変形が 挙げられる。
[0067] (20)本発明の作製方法の第一態様では、複数の粒子含有液収容部のそれぞれに 収容されて!、る粒子含有液を、前記複数の粒子含有液収容部の配置に対応して設 けられた複数の突起部を有するスポッティング部材を用いて前記固体支持体の表面 の複数箇所に一度にスポッティングする。
[0068] 本態様に係る作製方法にお!、ては、固体支持体表面の複数箇所に粒子含有液を 一度にスポッティングすることによって効率よく粒子三次元配列体を作製できる。固体 支持体表面に粒子含有液を三次元にスポッティングする場合、各突起部の形態 (例 えば突起部の長さ)を固体支持体表面の形態に応じて適宜変更させる必要があるの で、同一形態のスポッティング部材を使用できない。これに対して、本態様に係る作 製方法にぉ 、ては、固体支持体表面に粒子含有液を一次元又は二次元にスポッテ イングするので、各突起部の形態を固体支持体表面の形態に応じて適宜変更させる 必要がなぐ同一形態のスポッティング部材を繰り返り使用できる。したがって、粒子 含有液のスポッティングの自動化を図ることができる。
[0069] 粒子含有液収容部の構造は、粒子含有液を収容し得る限り特に限定されるもので はなぐ例えば、上端に開口部を有する凹部としてプラスチック製プレートに形成する ことができる。粒子含有液収容部の個数は複数である限り特に限定されるものではな いが、例えば、プラスチック製プレートに 8 X 12個形成することができる。
[0070] 突起部の形状、構造等は、粒子含有液収容部に進入し、粒子含有液収容部に収 容されて!/ヽる粒子含有液を保持し、固体支持体と接触することによって保持して!/、る 粒子含有液をスポッティングできる限り特に限定されるものではな 、。突起部の具体 例としては、先端が尖った突起部、先端に凹部が形成されている突起部、先端がフッ ク状の突起部等が挙げられる。
[0071] (21)本発明の作製方法の第二態様では、前記固体支持体がシート状部材であって 、前記工程 (c)において前記シート状部材を湾曲及び Z又は曲折させる。
本態様に係る作製方法においては、シート状部材を湾曲及び Z又は曲折させるこ とによりシート状部材を変形させる。シート状部材を湾曲させた部材の形状としては、 例えば、 u字状、波線状、円筒状等が挙げられ、シート状部材を曲折させた部材の 形状としては、例えば、「く」の字状、「コ」の字状、鋸歯状、角筒状等が挙げられる。 固体支持体としてシート状部材を使用する場合、工程 (a)において、シート状部材 の片面にのみ粒子含有液をスポッティングしてもよ ヽが、両面にスポッティングするこ とが好ましい。
[0072] (22)本発明の作製方法の第三態様では、前記固体支持体が細長形状部材であつ て、前記工程 (c)において前記細長形状部材を螺旋状に変形させる。
本態様に係る作製方法においては、細長形状部材を螺旋状に変形させる。細長形 状の具体例としては、糸状、紐状、棒状、テープ状等の形状が挙げられる。細長形状 部材は軸部材に卷装することにより螺旋状に変形させることができる。このような軸部 材は、細長形状部材が金属等のように形態保持性を有する材質力もなる場合には特 に必要な 、が、細長形状部材がそのような形態保持性を有しな 、場合には必要とな る。軸部材は卷く物の中心となり得る限り、その形状や構造は特に限定されるもので はなぐ棒状部材、円柱状部材、円筒状部材、角柱状部材、角筒状部材等を軸部材 として使用できる。
[0073] (23)本発明の作製方法の第四態様では、前記粒子が磁性粒子である。
本態様に係る作製方法においては、磁性粒子を利用するので粒子の操作性が向 上する。例えば、粒子へ磁石を作用させることによって粒子を容易に捕集できるので 、粒子の洗浄、高濃度の粒子含有液の調製等を容易に行なうことができる。
[0074] (24)本発明の作製方法の第五態様では、前記固体支持体が磁石で構成されて 、 る。
本態様に係る作製方法においては、磁性相互作用を利用することによって固体支 持体への磁性粒子の固定を容易に行なうことができる。また、磁石の強さを調節する ことによって、結合パートナー同士(固体支持体と磁性粒子)が容易に離脱しない結 合様式とすることができる。
[0075] (25)本発明の作製方法の第六態様では、前記固体支持体の表面の磁束密度が均 一である。
本態様に係る作製方法にぉ 、ては、固体支持体表面の磁束密度が均一であるの で、磁性粒子を固体支持体表面の所定箇所に確実に固定できる。したがって、各粒 子の表面に異なる反応物質が固定されている場合に粒子間のクロスコンタミネーショ ンを効果的に防止できる。
図面の簡単な説明
[0076] [図 1]本発明の反応装置の一実施形態を示す一部断面図である。
[図 2]表面にオリゴヌクレオチド又はポリヌクレオチドからなるプローブが固定された粒 子の作製手順を示す説明図である。
[図 3]プローブ固定化粒子を用いて粒子三次元配列体を作製する手順を示す説明 図である。
[図 4]プローブ固定化粒子を用いて粒子三次元配列体を作製する手順を示す説明 図である(図 3の続き)。
[図 5]プローブ固定化粒子を作製する際に利用する分注機の一部断面図である。
[図 6]光照射'光検出装置の別の実施形態を示す斜視図である。
[図 7]粒子三次元配列体の別の実施形態を示す斜視図である。
[図 8]粒子三次元配列体の別の実施形態を示す斜視図である。
[図 9] (a)は、反応容器本体 21の別の実施形態を示す一部断面図であり、(b)及び( c)は、固体支持体の別の実施形態を示す一部断面図及び上面図である。
符号の説明
[0077] 1···反応装置
2···反応容器
21···反応容器本体
22···粒子三次元配列体
23···紐状部材(固体支持体)
24···粒子群
25···軸部材
26···反応室
3···液体吸引 ·吐出装置
4· ··光照射 ·光検出装置
発明を実施するための最良の形態
[0078] 以下、本発明の実施形態を図面に基づいて説明する。
図 1は、本発明の反応装置の一実施形態を示す一部断面図である。
図 1に示すように、反応装置 1は、反応容器 2と液体吸引 ·吐出装置 3と光照射,光 検出装置 4とを備える。
[0079] 反応容器 2は、反応室 26を有する反応容器本体 21と、反応室 26に収容された粒 子三次元配列体 22とを備える。反応容器本体 21は、円筒状の太径部 211と、太径 部 211よりも小さい径をもつ円筒状の細径部 212とを有し、太径部 211の下端部と細 径部 212の上端部とは連続している。反応容器本体 21の内部には反応室 26が形成 されており、反応室 26には液体を収容できるようになつている。細径部 212の下端部 には、反応室 26と連通する液体流入出口 213が設けられており、液体流入出口 213 を介して反応室 26へ液体の流入及び反応室 26からの液体の流出を行なうことがで きるようになつている。
[0080] 粒子三次元配列体 22は、円柱状の軸部材 25と、軸部材 25に卷装された紐状部材 23と、紐状部材 23の表面の所定箇所に固定された複数の粒子群 24とを備える。各 粒子群 24に複数の粒子が含まれており、同一の粒子群 24に含まれる各粒子の表面 には、同一の反応物質が固定されている。粒子表面に固定されている反応物質の種 類は粒子群 24間で異なっており、各粒子群 24は、粒子表面に固定されている反応 物質の種類に応じて紐状部材 23の表面の所定箇所に固定されている。したがって、 各粒子群 24の固定箇所に基づいて、各粒子群 24の粒子表面に固定されている反 応物質の種類を識別できるようになつている。紐状部材 23は、軸部材 25に卷装され ることによって螺旋状に成形されており、複数の粒子群 24は、螺旋状に成形された 紐状部材 23の表面に固定されることによって、反応室 26内に三次元に配列している
[0081] 液体吸引'吐出装置 3は、反応容器本体 21の太径部 211の上端開口部 214に 0- リング 30を介して装着されたノズル部 31と、ノズル部 31とパイプ 33を介して連通する シリンダ 32とを備え、反応室 26内を減圧又は加圧することによって、反応室 26に対 する液体の吸引及び吐出を、液体流入出口 213を介して行なうことができるようにな つている。
[0082] 光照射'光検出装置 4は、励起光 Eを発射する光源 41と、ミラー 42と、レンズ 43, 4 5と、光学フィルター 44と、電気的に接続された検出器 46、コントローラー 47及び表 示装置 48とを備える。光照射'光検出装置 4は、光源 41から発射される励起光 Eをミ ラー 42及びレンズ 43を介して反応室 26内に照射できるとともに、反応室 26内からの 蛍光をレンズ 43、ミラー 42、光学フィルター 44及びレンズ 45を介して検出器 46で検 出し、コントローラー 47でデータを処理して表示装置 48にデータを表示できるように なっている。また、光照射'光検出装置 4は、駆動装置(図示せず)によって上下方向 に移動して走査できるとともに、太径部 211の周囲を 360度回転移動して走査できる ようになっており、光照射'光検出装置 4を移動させることによって反応室 26の全体に 対して励起光の照射及び蛍光の検出を行なうことができるようになつている。
[0083] 反応装置 1における反応は、液体吸引'吐出装置 3を操作して標的物質を含有する 液体試料を液体流入出口 213から反応室 26内に吸引し、反応室 26内において、液 体試料中の標的物質と各粒子群 24の粒子表面の反応物質とを接触させることにより 生じさせ、その反応結果は光照射 ·光検出装置 4によって検出される。
[0084] 各粒子群 24の粒子表面に固定する反応物質の種類を適宜変更させることによって 、反応装置 1を多種多様な用途に用いることができる。例えば、各粒子群 24の粒子 表面に固定する反応物質として、オリゴヌクレオチド又はポリヌクレオチドからなるプロ ーブを選択することによって、反応装置 1を、標的核酸の塩基配列決定、標的核酸の 変異検出、標的核酸の多型解析 (SNPs解析)、遺伝子発現プロファイル解析等の 用途に用いることができる。
[0085] 反応装置 1の使用例として、反応装置 1を用いた遺伝子発現プロファイル解析を図 1に基づいて説明する。
図 1に示すように、反応容器 2の下方には容器 60が設置されており、容器 60内に は、蛍光標識された標的 DNA501を含有する液体試料 50が収容されている。標的 DNA501は、被験者の組織や細胞カゝら抽出した mRNAを、蛍光標識されたヌクレ ォチドを用いて逆転写することにより得られた、蛍光標識された DNAであり、標的 D NA501には多種多様な塩基配列力もなる DNAが含まれて 、る。
[0086] 各粒子群 24の粒子表面に固定されている反応物質は、特定の遺伝子と特異的に ハイブリダィズするオリゴヌクレオチドプローブ又はポリヌクレオチドプローブである。 各粒子群 24の粒子表面に固定されているプローブの種類 (すなわち、プローブが特 異的にハイブリダィズする遺伝子の種類)は、粒子群 24間で異なっており、各粒子群 24は、粒子表面に固定されているプローブの種類に応じて紐状部材 23の表面の所 定箇所に固定されている。したがって、各粒子群 24の固定箇所に基づいて、各粒子 群 24の粒子表面に固定されて 、るプローブの種類を識別できるようになって!/、る。
[0087] 反応装置 1を用 V、た遺伝子発現プロファイル解析は以下のステップ 1 a— 6aによつ て行なわれる。
ステップ laでは、液体流入出口 213を容器 60内に進入させ、液体吸引 ·吐出装置 3を操作して、容器 60内の液体試料 50を反応室 26内に吸引する。なお、反応装置 1 には、反応容器 2を上下方向に移動させる機構(図示せず)が設けられており、この 機構によって液体流入出口 213の各種容器内への進入及び各種容器内からの退出 を行なうことができるようになって 、る。
[0088] ステップ 2aでは、反応室 26内において標的 DNA501と各粒子群 24の粒子表面 のプローブとを反応させる。液体試料 50が反応室 26に収容されると、液体試料 50中 の標的 DNA501は反応室 26内に分散し、反応室 26内に三次元に存在する。一方 、反応室 26内には、表面にプローブが固定された複数の粒子力 なる複数の粒子 群 24が三次元に配列している。したがって、液体試料 50中の標的 DNA501と各粒 子群 24の粒子表面のプローブとの反応の場は三次元となり、両者の遭遇確率は高く 、両者の反応効率も高い。
[0089] ステップ 3aでは、液体吸引 ·吐出装置 3を操作して、反応室 26内の液体試料 50を 液体流入出口 213から反応室 26外へ吐出する。
[0090] ステップ 4aでは、反応容器 2を洗浄液 51が収容された容器 61の上方に移動させた 後、液体流入出口 213を容器 61内に進入させ、液体吸引'吐出装置 3を操作して、 容器 61内の洗浄液 51を反応室 26内に吸引する。なお、反応装置 1には、反応容器 2を左右方向に移動させる機構(図示せず)が設けられて 、る。
[0091] ステップ 5aでは、洗浄液 51によって反応室 26内を洗浄した後、液体吸引'吐出装 置 3を操作して、反応室 26内の洗浄液 51を反応室 26外へ吐出する。これにより、各 粒子群 24の粒子表面のプローブとハイブリダィズせずに反応室 26内に残存してい る標的 DNA501は、反応室 26内から除去される。
[0092] ステップ 6aでは、光照射 ·光検出装置 4を操作して、反応室 26内へ励起光を照射 するとともに、反応室 26内から発せられる蛍光 (すなわち、何れかの粒子群 24の粒 子表面のプローブとハイブリダィズした標的 DNA501が発する蛍光)を検出する。そ して、蛍光が発せられる部位を特定し、その部位力 標的 DNA501がハイブリダィズ したプローブを同定することにより、被験者の組織や細胞にぉ 、て発現して 、る遺伝 子を同定する。こうして、被験者の遺伝子発現プロファイルを解析することができ、あ る疾患とその疾患に罹病したときの遺伝子発現プロファイルとを関連付けておくことに より、被験者の遺伝子発現プロファイル力 被験者がある疾患に罹病して 、る力否か を診断することができる
[0093] 反応装置 1を用いた標的核酸の塩基配列決定、標的核酸の変異検出、標的核酸 の多型解析 (SNPs解析)等についても、蛍光標識された標的核酸と、各粒子群 24 の粒子表面に固定された塩基配列が既知のオリゴヌクレオチド又はポリヌクレオチド 力もなるプローブとを用いて、ステップ la— 6aと同様に行なうことができる。
[0094] 反応装置 1においては、例えば、次のような変更が可能である。なお、以下の変更 例において、図 1に示す部材及び部分と同一の部材及び部分は同一の符号で表す
[0095] 光照射 ·光検出装置 4を、図 6に示す光照射 ·光検出装置 7に変更が可能である。
光照射'光検出装置 7は、先端部が環状に整列した多数の光ファイバ 72と、光フアイ バ 72の先端部を支持する支持部材 71とを備え、光ファイバ 72を介して反応室 26内 に励起光を照射できるとともに、光ファイバ 72を介して反応室 26内からの蛍光を検 出できるようになつている。また、光照射'光検出装置 7は、支持部材 71を上下方向 に移動させる機構(図示せず)を備え、支持部材 71を上下方向に移動させることによ つて反応室 26の全体に対して励起光の照射及び蛍光の検出を行なうことができるよ うになつている。
[0096] 粒子三次元配列体 22を、図 7及び図 8の(a)— (h)に示す粒子三次元配列体 22a 一 22hに変更が可能である。粒子三次元配列体 22aは、円柱状部材 23aと、円柱状 部材 23aの側面に固定された複数の粒子群 24とからなり、粒子群 24は円柱状部材 2 3aの側面に三次元に配列している。粒子三次元配列体 22bは、円筒状部材 23bと、 円筒状部材 23bの外側面に固定された複数の粒子群 24とからなり、粒子群 24は円 筒状部材 23bの外側面に三次元に配列している。粒子三次元配列体 22c, 22dは、 可撓性を有するシート状部材 23c, 23dと、シート状部材 23c, 23dの両面に固定さ れた複数の粒子群 24と力もなり、シート状部材 23c, 23dの湾曲によって粒子群 24 はシート状部材 23c, 23dの表面に三次元に配列している。粒子三次元配列体 22e は、角柱状部材 23eと、角柱状部材 23eの側面に固定された複数の粒子群 24とから なり、粒子群 24は角柱状部材 23eの側面に三次元に配列している。粒子三次元配 列体 22fは、角筒状部材 23fと、角筒状部材 23f側面に固定された複数の粒子群 24 とからなり、粒子群 24は角筒状部材 23fの側面に三次元に配列している。粒子三次 元配列体 22g, 22hは、可撓性を有するシート状部材 23g, 23hと、シート状部材 23 g, 23hの両面に固定された複数の粒子群 24とからなり、シート状部材 23g, 23hの 曲折によって粒子群 24はシート状部材 23g, 23hの表面に三次元に配列している。 なお、粒子三次元配列体 22e— 22hにおいて、粒子群 24は角柱状部材 23e、角筒 状部材 23f及び曲折したシート状部材 23g, 23hの表面を構成する各平面に二次元 に配列している力 各平面は同一平面上にないので、粒子群 24は全体として三次元 に配列している。
[0097] 反応容器本体 21を、図 9 (a)に示す反応容器本体 21aに変更が可能である。反応 容器本体 21aは液体流入出口 213を有せず、これに伴って液体吸引 ·吐出装置 3も 省略される。反応室 26内への液体の流入及び反応室 26内からの液体の流出は、反 応容器本体 21aの上端開口部を介して行なわれる。
[0098] 図 9 (a)に示す反応容器本体 21aの反応室 26内に収納された固体支持体 22を、 図 9 (b)及び (c)に示す固体支持体 22iに変更することが可能である。 5つの固体支 持体 22iは、反応容器本体 21aの上端開口部 214に装着された蓋部材 27に固定さ れた状態で、反応室 26内に収納されている。固体支持体 22iはシート状であり、その 両面に複数の粒子群 24がー次元に配列している。各固体支持体 22iの反応室 26内 における位置は、粒子群 24が同一平面上に位置することがないように調節されてお り、これによつて各固体支持体 22iの表面に一次元に配列している粒子群 24は全体 として反応室内 26内に三次元に配列している。
[0099] 表面にオリゴヌクレオチド又はポリヌクレオチド力 なるプローブが固定された粒子 の作製手順を図 2のステップ lb—ステップ 8bに示すとともに、当該粒子を用いて粒 子三次元配列体 22を作製する手順を、図 3及び図 4のステップ 9b—ステップ 14bに 示す。
[0100] 図 2に示すステップ lb—ステップ 8bは、図 5に示す分注機 9を用いて行なわれる。
図 5に示す分注機 9は、液体を収容する容器 91と、容器 91内に挿入して液体を吸引 又は吐出する先細りに形成された先端部 95、液体を貯溜する太めの貯溜部 92、並 びに先端部 95及び貯溜部 92を連通させる細めの液通路 93を有するピペットチップ Pと、貯溜部 92の開口にノズル Nを着脱自在に嵌着してピペットチップ P内を負圧又 は加圧してピペットチップ Pに液体を吸引又は吐出させる分注ユニット(図示せず)と 、液通路 93の外側面に対して近接離間自在に設けた磁石 Mと、磁石 Mを液通路 93 に近接離間させる磁石駆動装置(図示せず)と、分注ユニットの動作及び移動、ノズ ル Nとピペットチップ Pとの着脱、並びに磁石駆動装置のピペットチップ Pへの磁石 M の近接離間を制御する制御装置(図示せず)とを備える。液通路 93は、磁石 Mが作 用する磁石作用部 931を有し、磁石 Mがピペットチップ Pに最も近く接近した場合に は、磁石作用部 931の内壁面に磁性粒子を付着'保持させることができ、磁石 Mがピ ペットチップ Pから最も離れた場合には、磁石作用部 931の内壁面への磁性粒子の 付着'保持状態を解除させることができる。
[0101] ステップ lbでは、 PCRを利用して、ピオチン化されたオリゴヌクレオチド又はポリヌク レオチドからなるピオチンィ匕プローブ Prlを調製する。 PCR反応装置 10に装着され た容器 VIには PCR反応液 L1が収容されており、 PCR反応液 L1には、铸型となる 核酸、当該核酸に特異的にノ、イブリダィズし得るピオチンィ匕プライマー、 PCRバッフ ァ一等が含まれている。 PCR反応装置 10を操作して PCRを行なうと、 PCR反応液 L 1中でピオチン化プローブ Prlが増幅する。
[0102] ステップ 2bでは、容器 VI内の PCR反応液 L1に、ピペットチップ P内の粒子含有液 L2を吐出させる。粒子含有液 L2〖こは、表面がアビジンコーティングされた磁性粒子 MBが含まれている。
[0103] ステップ 3bでは、ピペットチップ Pによる吸引'吐出を繰り返し、 PCR反応液 L1と粒 子含有液 L2との混合液 L3を調製する。ピペットチップ Pによる吸引'吐出を繰り返す ことにより、ピオチン化プローブ Prlが磁性粒子 MBの表面にピオチン アビジン結合 を介して固定されて、プローブ固定化粒子 PB1が形成される。プローブ固定化粒子 PB1の表面には、複数のピオチン化プローブ Prlが固定されている(すなわち集積 化されている)。
[0104] ステップ 4bでは、プローブ固定化粒子 PB1を含む混合液 L3をピペットチップ P内 に吸引するとともに、磁石 Mをピペットチップ Pに接近させる。プローブ固定化粒子 P Blは、ピペットチップ Pの磁石作用部 931を通過する際に、ピペットチップ Pの外側に 配設された磁石 Mの作用によって磁石作用部 931の内壁面に捕集され、プローブ固 定化粒子 PB 1の粒子集合体 S 1が形成される。
[0105] ステップ 5bでは、ピペットチップ Pの内壁面に粒子集合体 S1を保持したまま、粒子 集合体 S1を除く混合液 L3を容器 VI内に吐出する。
[0106] ステップ 6bでは、ピペットチップ Pの内壁面に粒子集合体 S1を保持したまま、ピぺッ トチップ Pを、洗浄液 L4を収容する容器 V2の設置場所まで移送し、ピペットチップ P による洗浄液 L4の吸引及び吐出を繰り返す。これにより、粒子集合体 S1が洗浄され 、粒子集合体 S1に含まれる夾雑物(例えば、磁性粒子 MBに固定されていないピオ チン化プローブ Prl、 PCR反応液 L1に含まれる铸型となる核酸やプライマー等)が 除去される。
[0107] ステップ 7bでは、ピペットチップ Pの内壁面に粒子集合体 S1を保持したまま、ピぺッ トチップ Pを、緩衝液 L5を収容する容器 V3の設置場所まで移送し、ピペットチップ P による緩衝液 L5の吸引及び吐出を繰り返すとともに、磁石 Mをピペットチップ Pから 離反させる。
[0108] こうしてステップ 8bにおいて、プローブ固定化粒子 PB1を含有する粒子含有液 BL 1が容器 V3内に調製される。
[0109] ステップ lb—ステップ 8bを繰り返して、それぞれ異なる塩基配列を有するピオチン 化プローブ Prl, Pr2, Pr (n) (nは任意の自然数である。以下同様。)を調製 し、各プローブについてプローブ固定化粒子 PBl, PB2, PB (n)を含有する 粒子含有液 BL1, BL2, BL (n)を調製する。
[0110] ステップ 9bでは、 8 X 48個の粒子含有液収容部 C1一 C384が等間隔に設けられ たプレート PLTを準備し、粒子含有液収容部 C1一 C384にそれぞれ粒子含有液 BL 1一 BL384を収容する。なお、プレート PLTには、 8個の粒子含有液収容部からなる 列が 48列設けられており、第 1列は粒子含有液収容部 C1一 C8、第 2列は粒子含有 液収容部 C9一 16、第三列は粒子含有液収容部 C17— C24、 、第 48列は 粒子含有液収容部 C377— C384からなる。次いで、ステップ 9bでは、粒子含有液 収容部の配置に対応して設けられた 8本の突起部 J 1一 J8を有するスポッティング部 材 SPTを準備し、スポッティング部材 SPTの突起部 Jl一 J8をそれぞれ第 1列の粒子 含有液収容部 C1一 C8内に進入させる。なお、図 3に示すように、突起部 J1一 J8は、 粒子含有液を保持しやすいようにフック状となっている。また、突起部 J1一 J8は略同 一の長さを有しており、紐状部材 23の表面に一度に接触できるようになつている。
[Oil 1] ステップ 10bでは、スポッティング部材 SPTの突起部 J1一 J8を、それぞれ粒子含有 液収容部 C 1一 C8内の粒子含有液 BL 1— BL8に浸漬させて、スポッティング部材 S PTの突起部 J1一 J8に、それぞれ粒子含有液 BL1— BL8を保持させる。
[0112] ステップ l ibでは、スポッティング部材 SPTの突起部 J1一 J8を、紐状部材 23の表面 に一度に接触させ、紐状部材 23の表面の一次元に配列する所定箇所に粒子含有 液 BL 1— BL8を一度にスポッティングする。
[0113] ステップ 12bでは、紐状部材 23の表面にスポッティングされた粒子含有液 BL1— B L8を乾燥させ、プローブ固定化粒子 PB1— PB8を紐状部材 23の表面に固定させる 。第 2列一第 48列の粒子含有液収容部についてもステップ 9b— 12bを繰り返すこと により、紐状部材 23の表面の所定箇所にプローブ固定化粒子 PB1— PB384を固定 させる。第 2列一第 48列の粒子含有液収容部についてステップ 9b— 14bを繰り返す 際には、使用済みのスポッティング部材 SPTを洗浄して用いてもよいし、未使用のス ポッティング部材 SPTを用いてもょ 、。
[0114] プローブ固定化粒子 PB1— PB384のように表面がタンパク質でコーティングされた 粒子(プローブ固定化粒子 PB1— PB384の表面はアビジンコーティングされている) は、スポッティングされた粒子含有液を乾燥させることによって容易に紐状部材 23の 表面に固定することができる。スポッティングされた粒子含有液 BL1— BL384中には 、それぞれ複数個のプローブ固定化粒子 PB1— PB384が含有されており、プロ一 ブ固定化粒子 PB1— PB384はそれぞれ粒子群となって、紐状部材 23の表面の所 定箇所に固定される。
[0115] 粒子含有液 BL1— BL384は、紐状部材 23の表面の一次元に配列する所定箇所 にスポッティングされる力 スポッティングされた粒子含有液 BL1— BL384が紐状部 材 23の周囲に浸潤する場合があり、この場合、プローブ固定化粒子 PB1— PB384 は紐状部材 23の周囲に三次元に配列することとなる。したがって、粒子含有液 BL1 一 BL384を紐状部材 23の表面に一次元にスポッティングしたからといって、必ずし もプローブ固定化粒子 PB1— PB384が紐状部材 23の表面に一次元に配列するわ けではない。後述するステッププ 13bにおいて、プローブ固定化粒子 PB1— PB384 を最終的に三次元に配列させるのであるから、プローブ固定化粒子 PB1— PB384 の固定ィ匕段階で、プローブ固定化粒子 PB1— PB384が紐状部材 23の表面に三次 元に固定されたとしても何ら問題ない。
[0116] ステップ 13bでは、表面にプローブ固定化粒子 PB1— PB384が固定された紐状部 材 23を軸部材 25に卷装する。
[0117] こうしてステップ 14bにおいて、粒子三次元配列体 22が作製される。粒子三次元配 列体 22において、プローブ固定化粒子 PB1— PB384はそれぞれ粒子群となって、 紐状部材 23の表面に三次元に配列している。
[0118] プローブ固定化粒子 PB1— PB384を固定する固体支持体としては、紐状部材 23 以外にも、可撓性を有する種々の形状の固体支持体を用いることができる。例えば、 可撓性を有するテープ部材を用いる場合には、テープ状部材の表面の一次元又は 二次元に配列する所定箇所に粒子含有液 BL 1— BL384をスポッティングした後、テ ープ状部材を軸部材 25に卷装することによって、粒子三次元配列体(図示せず)を 作製することができる。また、可撓性を有するシート状部材を用いる場合には、シート 状部材の両面の一次元又は二次元に配列する所定箇所に粒子含有液 BL 1— BL3 84をスポッティングした後、シート状部材を湾曲及び Z又は曲折することによって、図 7 (c)及び (d)並びに図 8 (g)及び (h)に示す粒子三次元配列体 22c、 22d、 22g、 2 2hを作製することができる。
[0119] プローブ固定化粒子 PB1— PB384は磁性粒子 MBを含んで構成されるものである 力も (ステップ 2b参照)、プローブ固定化粒子 PB1— PB384を固定する固体支持体 として磁石を用いることにより、プローブ固定化粒子 PB1— PB384と固体支持体との 磁性相互作用を利用してプローブ固定化粒子 PB1— PB384の固定操作を容易に 行なうことができる。

Claims

請求の範囲
[1] 液体試料を収容し得る反応室を有する反応容器本体と、前記反応室内に収納され た固体支持体と、表面に所定の反応物質が固定された複数の粒子とを備えた反応 容器であって、
前記粒子が、前記固体支持体の表面に固定された状態で前記反応室内に三次元 に配列して!/ヽることを特徴とする前記反応容器。
[2] 前記反応室内に複数の固体支持体が収納されており、前記粒子が各固体支持体 の表面に一次元、二次元又は三次元に配列していることを特徴とする請求項 1記載 の反応容器。
[3] 前記固体支持体の表面が、曲面又は同一平面上にない複数の平面を含んで構成 されており、前記粒子が、前記曲面に三次元に配列している力、あるいは前記複数 の平面に一次元又は二次元に配列していることを特徴とする請求項 1又は 2記載の 反 J心容器。
[4] 前記固体支持体が螺旋状部材からなることを特徴とする請求項 3記載の反応容器
[5] 前記固体支持体が、可撓性を有するシート状部材を湾曲及び Z又は曲折させた部 材からなることを特徴とする請求項 3記載の反応容器。
[6] 前記粒子が、前記反応物質の種類に応じて前記固体支持体の表面の所定箇所に 固定されていることを特徴とする請求項 1又は 2記載の反応容器。
[7] 前記粒子が、前記反応物質の種類に応じて所定の標識物質を有することを特徴と する請求項 1又は 2記載の反応容器。
[8] 前記固体支持体又は前記粒子が、乾燥により接着力を発揮するポリマーを表面に 有しており、前記ポリマーの接着力により前記粒子が前記固体支持体の表面に固定 されていることを特徴とする請求項 1又は 2記載の反応容器。
[9] 前記粒子が磁性粒子であって、前記粒子が磁力によって前記固体支持体の表面 に固定されていることを特徴とする請求項 1又は 2記載の反応容器。
[10] 前記固体支持体に磁石が設けられており、前記磁石の作用によって前記粒子が前 記固体支持体の表面に固定されていることを特徴とする請求項 9記載の反応容器。
[11] 前記固体支持体が磁石で構成されており、前記磁石の作用によって前記粒子が前 記固体支持体の表面に固定されていることを特徴とする請求項 9記載の反応容器。
[12] 前記固体支持体の表面の磁束密度が均一であることを特徴とする請求項 9記載の 反 J心容器。
[13] 前記反応物質が、生体関連物質であることを特徴とする請求項 1又は 2記載の反応 谷器。
[14] 前記生体関連物質が核酸又はタンパク質であることを特徴とする請求項 13記載の 反 J心容器。
[15] 前記反応容器本体が光透過性材料で構成されていることを特徴とする請求項 1又 は 2記載の反応容器。
[16] 前記反応容器本体が、前記反応室内に連通する液体流入出口を有することを特 徴とする請求項 1又は 2記載の反応容器。
[17] 請求項 15記載の反応容器と、前記反応容器の反応室内へ光を照射する光源と、 前記反応室内からの光を検出する検出部とを備えたことを特徴とする反応装置。
[18] 請求項 16記載の反応容器と、前記反応容器の液体流入出口を介して前記反応容 器の反応室への液体の吸弓 I及び前記反応室からの液体の吐出を行なう液体吸弓 I · 吐出装置とを備えたことを特徴とする反応装置。
[19] 以下の工程 (a)一 (c)を含むことを特徴とする粒子三次元配列体の作製方法。
(a)可撓性を有する固体支持体の表面の一次元又は二次元に配列する複数箇所に 、粒子含有液を一度にスポッティングする工程
(b)前記粒子含有液中の粒子を前記固体支持体の表面に固定させる工程
(c)前記固体支持体を変形させて前記粒子を前記固体支持体の表面に三次元に配 列させる工程
[20] 前記工程 (a)にお 、て、複数の粒子含有液収容部のそれぞれに収容されて!、る粒 子含有液を、前記複数の粒子含有液収容部の配置に対応して設けられた複数の突 起部を有するスポッティング部材を用いて、前記固体支持体の表面の複数箇所に一 度にスポッティングすることを特徴とする請求項 19記載の作製方法。
[21] 前記固体支持体がシート状部材であって、前記工程 (c)にお 、て前記シート状部 材を湾曲及び Z又は曲折させることを特徴とする請求項 19記載の作製方法。
[22] 前記固体支持体が細長形状部材であって、前記工程 (c)にお 、て前記細長形状 部材を螺旋状に変形させることを特徴とする請求項 19記載の作製方法。
[23] 前記粒子が磁性粒子であることを特徴とする請求項 19記載の作製方法。
[24] 前記固体支持体が磁石で構成されていることを特徴とする請求項 23記載の作製方 法。
[25] 前記固体支持体の表面の磁束密度が均一であることを特徴とする請求項 24記載 の反応容器。
PCT/JP2004/019638 2003-12-30 2004-12-28 粒子三次元配列体を利用した反応容器及び反応装置 WO2005064334A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005516707A JPWO2005064334A1 (ja) 2003-12-30 2004-12-28 粒子三次元配列体を利用した反応容器及び反応装置
EP04807993A EP1712912A1 (en) 2003-12-30 2004-12-28 Reaction vessel utilizing article having three-dimensionally arranged particles and reaction apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53339103P 2003-12-30 2003-12-30
US60/533,391 2003-12-30

Publications (1)

Publication Number Publication Date
WO2005064334A1 true WO2005064334A1 (ja) 2005-07-14

Family

ID=34738861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019638 WO2005064334A1 (ja) 2003-12-30 2004-12-28 粒子三次元配列体を利用した反応容器及び反応装置

Country Status (3)

Country Link
EP (1) EP1712912A1 (ja)
JP (1) JPWO2005064334A1 (ja)
WO (1) WO2005064334A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181819A (ja) * 2000-09-25 2002-06-26 Olympus Optical Co Ltd 立体基体を用いた検出用アレイ
WO2007145206A1 (ja) * 2006-06-13 2007-12-21 Universal Bio Research Co., Ltd. 担体封入変形容器、担体封入変形容器処理装置、および担体封入変形容器処理方法
JP2008014858A (ja) * 2006-07-07 2008-01-24 Gastec:Kk 吸光光度法用の発色カラム及びこれを用いた測定方法
JP2011247859A (ja) * 2010-05-31 2011-12-08 Universal Bio Research Co Ltd バイオチップ
JP2012150118A (ja) * 2012-02-20 2012-08-09 Universal Bio Research Co Ltd 担体封入変形容器、担体封入変形容器処理装置、および担体封入変形容器処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414771B (zh) * 2009-11-03 2013-11-11 Apex Biotechnology Corp 反應卡匣、檢測裝置、及檢測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160737A (ja) * 1996-12-03 1998-06-19 Dainippon Printing Co Ltd 光学的分析装置用測定チップ及びその製造方法
JP2000270878A (ja) * 1999-03-26 2000-10-03 Mitsubishi Rayon Co Ltd 核酸固定化ゲル保持中空繊維並びに該中空繊維配列体及びその薄片
WO2001053831A1 (fr) * 2000-01-17 2001-07-26 Unitec Co., Ltd. Support integre, micro-recipient integre et membrane permeable, et procede de production et d'utilisation correspondants
WO2002043855A1 (fr) * 2000-11-29 2002-06-06 Comissariat A L'energie Atomique Micro reseau statique de sondes biologiques ou chimiques, immobilisees sur un support par attraction magnetique
WO2002063300A1 (fr) * 2001-02-09 2002-08-15 Bio Strand, Inc. Equipement et procede de mesure d'une reaction de stockage
JP2003527569A (ja) * 1999-07-30 2003-09-16 ラージ スケール プロテオミクス コーポレーション マイクロアレイおよびその製造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160737A (ja) * 1996-12-03 1998-06-19 Dainippon Printing Co Ltd 光学的分析装置用測定チップ及びその製造方法
JP2000270878A (ja) * 1999-03-26 2000-10-03 Mitsubishi Rayon Co Ltd 核酸固定化ゲル保持中空繊維並びに該中空繊維配列体及びその薄片
JP2003527569A (ja) * 1999-07-30 2003-09-16 ラージ スケール プロテオミクス コーポレーション マイクロアレイおよびその製造
WO2001053831A1 (fr) * 2000-01-17 2001-07-26 Unitec Co., Ltd. Support integre, micro-recipient integre et membrane permeable, et procede de production et d'utilisation correspondants
WO2002043855A1 (fr) * 2000-11-29 2002-06-06 Comissariat A L'energie Atomique Micro reseau statique de sondes biologiques ou chimiques, immobilisees sur un support par attraction magnetique
WO2002063300A1 (fr) * 2001-02-09 2002-08-15 Bio Strand, Inc. Equipement et procede de mesure d'une reaction de stockage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181819A (ja) * 2000-09-25 2002-06-26 Olympus Optical Co Ltd 立体基体を用いた検出用アレイ
WO2007145206A1 (ja) * 2006-06-13 2007-12-21 Universal Bio Research Co., Ltd. 担体封入変形容器、担体封入変形容器処理装置、および担体封入変形容器処理方法
JP2007333488A (ja) * 2006-06-13 2007-12-27 Universal Bio Research Co Ltd 担体封入変形容器、担体封入変形容器処理装置、および担体封入変形容器処理方法
US8486347B2 (en) 2006-06-13 2013-07-16 Universal Bio Research Co., Ltd. Carrier-enclosed transformable container, carrier-enclosed transformable container processing apparatus, and carrier-enclosed transformable container processing method
US9476814B2 (en) 2006-06-13 2016-10-25 Universal Bio Research Co., Ltd. Carrier-enclosed transformable container, carrier-enclosed transformable container processing apparatus, and carrier-enclosed transformable container processing method
JP2008014858A (ja) * 2006-07-07 2008-01-24 Gastec:Kk 吸光光度法用の発色カラム及びこれを用いた測定方法
JP2011247859A (ja) * 2010-05-31 2011-12-08 Universal Bio Research Co Ltd バイオチップ
JP2012150118A (ja) * 2012-02-20 2012-08-09 Universal Bio Research Co Ltd 担体封入変形容器、担体封入変形容器処理装置、および担体封入変形容器処理方法

Also Published As

Publication number Publication date
JPWO2005064334A1 (ja) 2007-12-20
EP1712912A1 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP4454155B2 (ja) 化学種を接触させるためのファイバーアレイならびにファイバーアレイを使用および作製する方法
US10927406B2 (en) Microarray system and a process for detecting target analytes using the system
US7147362B2 (en) Method of mixing by intermittent centrifugal force
JP5396857B2 (ja) 分析用チップ及び分析方法
US20020106661A1 (en) Optical disk-based assay devices and methods
JP3593525B2 (ja) 微粒子アレー作製方法およびその装置
WO1999060170A1 (en) Linear arrays of immobilized compounds and methods of using same
JP5696477B2 (ja) 分析チップ、分析方法及び溶液の攪拌方法
CA2487933A1 (en) Novel high density arrays and methods for analyte analysis
JP4411661B2 (ja) 生体物質検出方法
US20210016283A1 (en) Ultrahigh throughput protein discovery
EP1718411B1 (en) A device for analysing an interaction between target and probe molecules
JP2005077284A (ja) 粒子アレイの製造装置及び製造方法と標的物質の検出方法
JP2001108683A (ja) Dna断片固定固相担体、dna断片の固定方法および核酸断片の検出方法
WO2005064334A1 (ja) 粒子三次元配列体を利用した反応容器及び反応装置
JP4857882B2 (ja) 検体溶液の撹拌方法
JPWO2004068144A1 (ja) 液体試料の分析方法及び分析装置
US20050282182A1 (en) Reaction vessel and reaction apparatus comprising three-dimensional particle array
US20060073598A1 (en) Particle complex and method for producing the same
JP2000270879A (ja) 核酸固定化ゲル保持繊維並びに該繊維配列体及びその薄片
JP4845307B2 (ja) 立体基体を用いた検出用アレイ
JP2000270877A (ja) 核酸固定化ゲル保持多孔質繊維並びに該多孔質繊維配列体及びその薄片
US20050112588A1 (en) Methods and apparatus for analyzing arrays
US20080032311A1 (en) Low volume mixing of sample
JP2010256150A (ja) 標的物質の処理方法及び標的物質の総量を求める方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807993

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004807993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005516707

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2004807993

Country of ref document: EP