WO2005062677A1 - 発光システム、発光方法及び発光用化学物質 - Google Patents

発光システム、発光方法及び発光用化学物質 Download PDF

Info

Publication number
WO2005062677A1
WO2005062677A1 PCT/JP2004/019252 JP2004019252W WO2005062677A1 WO 2005062677 A1 WO2005062677 A1 WO 2005062677A1 JP 2004019252 W JP2004019252 W JP 2004019252W WO 2005062677 A1 WO2005062677 A1 WO 2005062677A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
chemical substance
carbon atoms
halogen
substituted
Prior art date
Application number
PCT/JP2004/019252
Other languages
English (en)
French (fr)
Inventor
Yousuke Hoshi
Yoshii Morishita
Satoyuki Nomura
Yoshihiro Tsuda
Shigeaki Funyuu
Hiroshi Ikeda
Hayato Namai
Original Assignee
Hitachi Chemical Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd filed Critical Hitachi Chemical Co., Ltd
Priority to JP2005516518A priority Critical patent/JPWO2005062677A1/ja
Priority to US10/583,946 priority patent/US20070138945A1/en
Publication of WO2005062677A1 publication Critical patent/WO2005062677A1/ja
Priority to US12/372,437 priority patent/US20090163743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • Light emitting system Light emitting method and light emitting chemical
  • the present invention relates to a light emitting system, a light emitting method, and a light emitting chemical substance.
  • the present invention relates to a light emitting device, preferably an organic electroluminescent (EL) element using the light emitting system, the light emitting method and the light emitting chemical substance.
  • EL organic electroluminescent
  • Electroluminescent (EL) elements are attracting attention for use in large-area solid-state light sources, for example, as substitutes for incandescent lamps and gas-filled lamps. It is also attracting attention as the leading self-luminous display replacing LCD).
  • organic electroluminescent (EL) devices in which the device material is composed of organic materials, are being commercialized as low power consumption full color flat panel displays (FPDs).
  • Alq aluminum-quinolinol complex (tris (8-quinolinolato) aluminum)
  • NPD N, N'-Di-naphtnaien- 1-yl ⁇ N, N'-diphenyl-bipnenyl-4, 4-diamine
  • CBP 4,4'-N, N'-dicarbazole-biphenyl
  • BCP 2,9-dimethyl-4,7-diphenyl-l, 10-phenanthroline
  • the present invention is inexpensive and safe, and can be used to convert short wavelength (blue) to long wavelength.
  • Another object of the present invention is to provide a light emitting device using the light emitting system, the light emitting method, and the light emitting material, preferably an organic electroluminescent (EL) element.
  • EL organic electroluminescent
  • the inventors of the present invention have conducted intensive studies and as a result, the formation of a bond or the bond cleavage reaction has progressed due to the injection of electric charge, and after a change to a chemical substance different from the original chemical substance, light is emitted with high efficiency. Furthermore, they found a light-emitting system for regenerating the original chemical substance after light emission, and completed the present invention.
  • the present invention relates to a light-emitting system characterized in that a first chemical substance changes to a second chemical substance having a chemical structure different from that of the first chemical substance to emit light.
  • the present invention also relates to the light emitting system, wherein the second chemical substance returns to the first chemical substance after light emission.
  • the present invention generates an oxidized or reduced form of a second chemical substance having a chemical structure different from that of the first chemical substance by injecting a charge into the first chemical substance
  • the present invention relates to a method of emitting a chemical substance, which comprises generating a second chemical substance in an excited state by injecting an electric charge that is paired with the electric charge, and causing the second chemical substance to emit light.
  • the present invention provides the light emitting method, wherein the second chemical substance returns to the first chemical substance after light emission. About the law.
  • the present invention also relates to a luminescent chemical substance characterized in that the first chemical substance changes into a second chemical substance having a chemical structure different from that of the first chemical substance to emit light. .
  • the present invention also relates to the luminescent chemical substance, wherein the second chemical substance returns to the first chemical substance after light emission.
  • the present invention also relates to the luminescent chemical substance, wherein the second chemical substance is generated through a bond-forming reaction from the first chemical substance.
  • the present invention also relates to the luminescent chemical substance, wherein the second chemical substance is generated through a bond cleavage reaction from the first chemical substance.
  • the present invention also relates to the luminescent chemical substance, wherein the second chemical substance returns to the first chemical substance through a bond cleavage reaction.
  • the present invention also relates to the luminescent chemical substance, wherein the second chemical substance returns to the first chemical substance through a bond forming reaction.
  • the present invention also relates to the above luminescent chemical substance, wherein the second chemical substance is an open-shell species having a monoradical or a biradical.
  • the present invention also relates to the above-described luminescent chemical substance, wherein the basis multiplicity of the second chemical substance is a triplet.
  • the present invention also relates to the light emitting chemical substance represented by the following formula (1).
  • 16 is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, a mercapto group; a linear, cyclic or branched alkyl group, an alkoxy group or an alkylthio group having 11 to 22 carbon atoms; Aryl groups having 2 to 30 carbon atoms, aryloxy groups having 6 to 30 carbon atoms, heteroaryloxy groups having 2 to 30 carbon atoms, arylaryl groups having 6 to 30 carbon atoms, carbon atoms 2-30 heteroarylthio groups or carbons Represents 7 to 30 aralkyl groups, wherein R—R are the same or different
  • R and NR R (where R-R is a hydrogen atom, a halogen atom, a cyano group,
  • the present invention relates to the light emitting chemical substance represented by the following formula (4).
  • R is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group,
  • R-R is one R, one OR, one SR, one OCOR, one COOR, one Si
  • R R R and NR R (where R R is a hydrogen atom, a halogen atom,
  • the present invention also relates to the light emitting chemical substance represented by the following formula (7).
  • R is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group,
  • R-R is one R, one OR, one SR, one OCOR, one COOR, one Si
  • R R R and NR R (where R — R is hydrogen, halogen, cyano
  • a certain group strength may have a selected substituent.
  • m and n are integers of 1 to 3.
  • the present invention relates to the above-mentioned luminescent chemical substance represented by the following formula (10).
  • R is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group,
  • R-R is one R, one OR, one SR, one OCOR, one COOR, one Si
  • R R R and NR R (where R R is a hydrogen atom, a halogen atom,
  • a certain group strength may have a selected substituent.
  • m is an integer of 1 to 3.
  • the present invention also relates to a light-emitting device including the light-emitting chemical substance.
  • the present invention also relates to an electroluminescent device including the light emitting chemical substance.
  • the present invention relates to a luminescent mixture containing the above luminescent chemical substance, a low molecular compound and Z or a high molecular compound.
  • the present inventors have conducted intensive studies without being limited to such precedents, and as a result, have been able to construct a light-emitting system that actively utilizes changes in the chemical structure. That is, the light-emitting system of the present invention generates a second chemical substance (a chemical substance having a chemical structure different from that of the original chemical substance) from the first chemical substance (the original chemical substance) and emits light. It is a light emitting system characterized by making it.
  • the second chemical substance a chemical substance having a chemical structure different from that of the original chemical substance
  • chemical substances whose chemical structure has changed through chemical reactions such as bond formation reactions.
  • a chemical reaction such as a bond cleavage reaction or a bond generation reaction in the same molecule is caused by injecting a charge (hole or electron) into the first chemical substance,
  • An oxidized or reduced form of a second chemical substance having a chemical structure different from that of the original chemical substance is generated, and the oxidized or reduced form is injected with a pair of charges to be in an excited state.
  • a method for generating a second chemical substance and emitting light of the chemical substance can be provided.
  • the chemical substance used in the light-emitting system of the present invention is a chemical substance that emits light after being changed to a second chemical substance having a different chemical structure from the first chemical substance, and is preferably the same.
  • a chemical substance that emits light after a change in its chemical structure through a chemical reaction such as a bond cleavage reaction or a bond formation reaction in a molecule.
  • Examples of such chemical substances include small ring compounds such as cyclopropane, methylenecyclopropane, and bicyclopropane, and diolephines such as hexagene.
  • the small ring compounds may be monocyclic or polycyclic.
  • the changed second chemical substance returns to the first chemical substance immediately after the light emission.
  • the second chemical substance is preferably an open-shell species, and the open-shell species is preferably a monoradical or a monoradical. Preferably it is a biradical.
  • the basis multiplicity of the second chemical substance is a singlet, a doublet, or a triplet. It is preferable for obtaining a yield.
  • FIGS. 1 and 2 show one embodiment of the light emitting system of the present invention.
  • the original chemical substance is a chemical substance (e.g., an organic EL element) that causes light emission by causing a bond-cleavage reaction after charge injection from an electrode. It produces an oxidized form (compound 2 +) of the chemical substance with a chemical structure different from that of the chemical substance.
  • the exciton (compound 2 *) is generated by injecting a pair of charges into the oxidant, and emits light.
  • a chemical substance (compound 2) having a different chemical structure from the original chemical structure that has changed to the ground state after light emission regenerates the original chemical substance (compound 1) through the rapid progress of the bond formation reaction.
  • FIG. 1 shows that a hole is injected to generate a cation radical and the bond cleavage reaction proceeds.
  • the force to be injected and the charge to the conjugate may be different from this.
  • the number of chemical reactions in the same molecule until the generation of the chemical substance that controls the light emission is preferably 1 to 10. 1 to 2 are most desirable.
  • the number of chemical reactions from light emission until the original chemical substance is regenerated is preferably from 1 to 10, more preferably from 1 to 5, and most preferably from 1 to 2. If the number of chemical reactions is too large, a side reaction proceeds, and the luminous efficiency tends to decrease immediately.
  • the order of the bond cleavage reaction and the bond formation reaction may be different from the example shown in FIG. 1, as shown in FIG. That is, for example, in the case of an organic EL device, the base chemical substance (compound 1) is a chemical substance that controls light emission by causing a bond-forming reaction immediately after charge injection from the electrode (the original chemical substance). It produces an oxidized form (compound 2 +) of a chemical substance with a different chemical structure). When a pair of charges is injected into this chemical, excitons (compound 2 *) are generated and light is emitted.
  • a chemical substance (compound 2) having a chemical structure different from the original chemical structure that has changed to the ground state after light emission regenerates the original chemical substance through a rapid bond cleavage reaction.
  • Fig. 2 holes are injected to generate cation radicals, and the bond formation reaction proceeds. Indicated force
  • the injected charge and the charge of the compound may be different.
  • the number of chemical reactions in the same molecule until the generation of the chemical substance that controls the light emission is preferably 1 to 10. 1 to 2 are most desirable.
  • the number of chemical reactions from light emission until the original chemical substance is regenerated is preferably from 1 to 10, more preferably from 1 to 5, and most preferably from 1 to 2. If the number of chemical reactions is too large, a side reaction proceeds, and the luminous efficiency tends to decrease immediately.
  • the compounds shown below can be applied to the above-described light-emitting system, light-emitting method, and light-emitting chemical substance, and are preferably used for a light-emitting device, particularly preferably an organic EL element.
  • the compound of formula (1) (compound 1 in FIG. 1) rapidly undergoes a bond cleavage reaction upon injection of an anodic hole, and the compound of compound (2) represented by formula (2) The compound 2+) in FIG. 1 is produced.
  • the cathodic force also generates an excited state of the compound shown in formula (3) (compound 2 in FIG. 1) when electrons are injected, and emits light when the compound shown in formula (3) relaxes to the ground state.
  • the characteristic point is that the ground state of the compound shown in equation (3) is a triplet, and thus the compound shown in equation (3) has a 75%
  • the point is that multiplet excitons can be used efficiently.
  • the compound represented by the formula (3) promptly undergoes a bond formation reaction to regenerate the compound represented by the formula (1).
  • 16 is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, a mercapto group; a linear, cyclic or branched alkyl group, an alkoxy group or an alkylthio group having 11 to 22 carbon atoms;
  • Aryl groups having 2 to 30 carbon atoms, aryloxy groups having 6 to 30 carbon atoms, heteroaryloxy groups having 2 to 30 carbon atoms, arylaryl groups having 6 to 30 carbon atoms, carbon atoms Represents a heteroarylthio group having 2 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms.
  • R-R is a hydrogen atom, a halogen atom, a cyano group
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, cyclobutyl, pentyl, isopentyl, neopentyl, cyclopentyl, hexyl, and cyclohexyl.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, an octyloxy group, and a tert-octyloxy group.
  • alkylthio group examples include a methylthio group, an ethylthio group, a tert-butylthio group, a hexylthio group, and an octylthio group.
  • aryl groups include phenyl, tolyl, xylyl, mesityl, tamyl, biphenyl, terphenyl, naphthyl, anthryl, and fluorenyl groups.
  • Heteroaryl groups include furan, thiophene, pyrrole, oxazole, thiazole, imidazole, pyridine, pyrimidine, pyrazine, triazine, quinoline, and quinoline residues. And quinoxaline residues.
  • Examples of the aryloxy group include a phenoxy group, a 4 tert-butyl phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a 9-anthryloxy group.
  • Examples of the heteroaryloxy group include a pyridinoxy group and a quinolinoxy group.
  • Examples of the arylthio group include a phenylthio group, a 2-methylfluorothio group, and a 4tert-butylfluorothio group.
  • Examples of the heteroarylthio group include a pyridylthio group and a quinolinylthio group.
  • Aralkyl groups include benzyl, phenethyl, methyl Examples thereof include a benzyl group and a diphenylmethyl group.
  • R 7 examples include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a halogen atom such as an iodine atom, a cyano group, a nitro group, a methyl group, an ethyl group, a propyl group, an isopropyl group and a cyclopropyl group.
  • Examples thereof include a tert-butoxy group, an octyloxy group, a tert-butyloxy group, a phenoxy group, a 4tert-butylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a 9-anthryloxy group.
  • Examples of SR include mercapto, methylthio,
  • Examples thereof include an ethylthio group, a tert-butylthio group, a hexylthio group, an octylthio group, a phenylthio group, a 2-methylfluorothio group, and a 4tert-butylfluorothio group.
  • Examples of OCOR include formyloxy, acetoxy, and benzoyloxy.
  • COOR are carboxyl group, methoxycarbol group
  • NR R examples include amino group, N-methylamino group, N-ethylamino group, N, N—
  • Dimethylamino, N, N-diethylamino, N, N-diisopropylamino, N, N-dibutylamino, Nbenzylamino, N, N-dibenzylamino, N-phenylamino, N, N-diphenylamino Groups can be mentioned.
  • a chemical substance having a chemical structure different from the original chemical substance represented by the formula (3) used in the present invention The quality is different from phosphorescence, which utilizes the emission of the transition to the excited triplet force base triplet. Since this transition is spin-allowed, it proceeds more efficiently than phosphorescence emission.
  • the emission quantum yield can be as high as 11%, which is a material suitable for the light emitting material of the organic EL device.
  • the emission wavelength can be changed from 400 nm to 800 nm, so that a substance that emits an arbitrary emission color can be used. Obtainable. Specifically, when the substituent represented by R in Formulas (1)-(3) has a long conjugate length, or when the substituent is electron-donating, the emission wavelength tends to be long. Further, the substituent represented by R in the formulas (1) and (3) is preferably a substituent having a conjugated system capable of stabilizing cations and radicals.
  • At least one of R—R is preferably an aryl group.
  • aryl group may have a substituent represented by R or —OR.
  • OR is more preferably a methoxy group, which is preferably an alkoxy group.
  • R is a hydrogen atom, and R and R are methoxyphenyl.
  • the luminescence intensity is preferably increased by introducing a thiol group into the thiol group.
  • R-R is a hydrogen atom
  • R is a naphthyl group
  • R is a fuel group.
  • a red emission color can be obtained with a high emission quantum yield.
  • a red emission color is difficult to obtain with a conventional metal complex, and is a preferred emission color.
  • the compound represented by the above formula (1) can be synthesized by sequentially applying carbene addition reaction, methylation reaction, and dehydrobromination reaction with a base using olefins as starting materials.
  • the compound of formula (4) of the present invention (compound 1 in FIG. 2) immediately undergoes a bond-forming reaction when holes are injected from the anode, and is expressed by formula (5).
  • a conjugated product (compound 2+ in FIG. 2) is produced.
  • the cathodic force also generates an excited state of the compound (compound 2 in FIG. 2) represented by the formula (6) when electrons are injected, and relaxes to the ground state of the compound represented by the formula (6).
  • Light emission occurs when summing. After light emission, the compound represented by the formula (6) promptly undergoes a bond cleavage reaction to regenerate the compound represented by the formula (4).
  • R -R are hydrogen, halogen, cyano, nitro, hydroxyl, mercap
  • R — R may be the same or different.
  • R OR SR -OCOR one COOR -Si
  • R R R and one NR R (where R, R are hydrogen, halogen, cyano
  • Examples of R include the same as R—R described above, and examples of R—R 26 162736 include the same as R R described above.
  • the substituent represented by R in Formulas (4)-(6) is preferably a substituent having a conjugated system capable of stabilizing cations and radicals.
  • the compound represented by the above formula (4) may be synthesized by a Wittig reaction on 1,4-diketones. Can do.
  • the compound of formula (7) of the present invention (compound 1 in FIG. 1) rapidly undergoes a bond cleavage reaction when holes are injected from the anode, and is expressed by formula (8).
  • a conjugate (compound 2+ in FIG. 1) is produced.
  • the cathodic force also generates an excited state of the compound (compound 2 in FIG. 1) represented by the formula (9) when electrons are injected, and emits light when the compound is relaxed to the ground state of the formula (9) happenss. After the light emission, the compound represented by the formula (9) promptly causes a bond forming reaction to regenerate the compound represented by the formula (7).
  • R is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group,
  • R-R is one R, one OR, one SR, one OCOR, one COOR, one Si
  • R R R and NR R (where R — R is hydrogen, halogen, cyano
  • R-R examples include those similar to R-R described above, and R-R
  • Examples of 37 42 1 6 43 52 include those similar to R—R described above.
  • the substituent represented by R in the formulas (7) to (9) is preferably a substituent having a conjugated system capable of stabilizing cations and radicals.
  • the compound represented by the above formula (7) is obtained by reacting tosylhydrazone with boron trifluoride to induce diazenes and denitrifying by heating. Can be synthesized.
  • the compound of formula (10) of the present invention (compound 1 in FIG. 1) rapidly undergoes a bond cleavage reaction upon injection of a hole from the anode, and the compound of formula (11) The compound shown (compound 2+ in FIG. 1) is produced.
  • the cathodic force generates an excited state of the compound represented by the formula (12) (compound 2 in FIG. 1) when electrons are injected, and light emission occurs when the compound is relaxed to the ground state of the compound represented by the formula (12). After the light emission, the compound represented by the formula (12) promptly undergoes a bond formation reaction to regenerate the compound represented by the formula (10).
  • R is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group,
  • R-R is one R, one OR, one SR, one OCOR, one COOR, one Si
  • R R R and NR R (where R R is a hydrogen atom, a halogen atom,
  • a certain group strength may have a selected substituent.
  • m is an integer of 1 to 3.
  • R-R examples include those similar to R-R described above, and R-R
  • Examples of 53 58 1 6 59 68 include the same ones as R R described above.
  • the substituent represented by R in the formulas (10) to (12) is preferably a conjugated substituent capable of stabilizing cations and radicals.
  • the compound of formula (10) can be synthesized by a carbene addition reaction to an olefin.
  • the compound can be synthesized by a hydrogen addition reaction by conducting a Mc-Murry reaction to 1,4-diketones or 1,5-diketones to derive cyclobutenes or cyclopentenes.
  • the light-emitting system involving a chemical reaction of the present invention can be provided at low cost because the underlying chemical substance does not contain metal atoms. Also, in the light emitting system of the present invention, since the original chemical substance and the chemical substance that actually emits light have different chemical structures, the chemical substance that actually emits light has an absorption wavelength of the original chemical substance. It shows a light emission wavelength that is significantly different from that shown in FIG. In the light emitting system of the present invention, as the highly transparent material, a chemical substance whose emission wavelength shifts to a longer wavelength side due to a chemical reaction can be preferably used.
  • the light emitting system involving a chemical reaction of the present invention can be used alone as a light emitting layer of an electroluminescent element. In addition, even when dispersed in a host material, it can be used as a light emitting layer of an EL luminescence element.
  • the host material the function of receiving holes from the anode (anode), the function of receiving electrons from the force sword (cathode), the function of transferring holes and electrons, and the provision of holes and electrons to the light-emitting system involving the chemical reaction of the present invention
  • a metal complex or a triphenylamine derivative can be used.
  • the oxidized form of the chemical substance responsible for light emission by hole injection In the case of generating a compound, a material having a high hole injection efficiency and a high hole transporting ability is desirable as a host material.
  • a mixture containing the chemical substance for light emission of the present invention, a low molecular compound and Z or a high molecular compound is preferably used for the production of an organic EL device.
  • the mixture containing the luminescent chemical substance of the present invention and a low-molecular compound includes a metal such as Alq
  • Examples thereof include a composition in which a 3 complex or a triphenylamine derivative such as ⁇ NPD is mixed.
  • Examples of the mixture containing the luminescent chemical substance of the present invention and a polymer compound include a polymer composition in which the above compound is mixed with a conjugated or non-conjugated polymer.
  • Examples of the conjugated or non-conjugated polymer that can be used as the polymer composition include polyphenylene derivatives, polyfluorene derivatives, polyfluorene-lenbilene derivatives, polythiophene derivatives, and polyquinoline, which may be substituted or unsubstituted.
  • conjugated or non-conjugated polymers include, as necessary, other monomer units such as benzene, biphenyl and terphenyl which are substituted or unsubstituted arylene and ⁇ or heteroarylene monomer units.
  • Triphenylamine a monomer unit having a substituted or unsubstituted triphenylamine skeleton, such as oxadiazonolone, benzothiadiazonole, benzotriazolone, and benzothiophene; ⁇ -Diphenyl-amine, ', N' -Diphenyl-, N'-Bis (3-methylphenyl)-[1,1'-biphenyl] 4,4'Diamine, N, N ' A polymer obtained by copolymerizing bis (3 methylphenyl) ⁇ , N'bis (2naphthyl)-[1,1'-biphenyl] 4,4'diamine may be used.
  • the luminescent chemical substance of the present invention has a concentration of 0.1 to 50% by weight relative to the low-molecular compound. Preferred 0.5 to 30% is more preferred 1 to 10% is most preferred. When mixed with ⁇ -NPD as a low molecular weight compound, for example, 2 to 10% is most preferable.
  • the luminescent chemical substance of the present invention is preferably 0.1 to 50% in terms of weight percent concentration relative to the polymer compound. 0.5 to 30% is even more preferred 1 to 10% is most preferred.
  • the polymer compound is mixed with, for example, a polyvinyl carbazole derivative, 2 to 10% is most preferable.
  • the light emitting chemical substance of the present invention has a weight percent concentration relative to the total amount of the low molecular weight compound and the high molecular weight compound. 0.1 to 50% is more preferable 0.5 to 30% is more preferable 2
  • the force is most preferably 10%. For example, when mixing into a mixture of a polybutyl rubazole derivative and an oxadiazole derivative, 2 to 10% is most preferred.
  • a polymer compound obtained by introducing the luminescent chemical substance of the present invention into the above-mentioned polymer compound such as a conjugated or non-conjugated polymer is used for the production of an organic EL device or the like.
  • the general structure of the device using the light emitting system involving the chemical reaction of the present invention specifically, the general structure of the electroluminescent device of the present invention comprising a mixture of the luminescent chemical substance of the present invention and a polymer is described in US Pat. No. 4,539,507 and U.S. Pat. No. 5,151,629. Further, a polymer-containing electroluminescent element is described, for example, in International Publication WO 90Z13148 or European Patent Publication 0 443 861.
  • electroluminescent layer between a force source (cathode) and an anode (anode) in which at least one of the electrodes is transparent.
  • one or more electron injection layers and Z or electron transfer layers may be inserted between the electroluminescent layer (light emitting layer) and the force sword, and Z or one or more hole injection layers.
  • a Z or hole transport layer can be inserted between the electroluminescent layer (light emitting layer) and the anode.
  • the force sword material for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is preferable.
  • Transparent as anode On a substrate (eg, glass or transparent polymer), using a metal (eg, Au) or other material with metal conductivity, eg, an oxide (eg, ITO: indium oxide, tin oxide). Monkey
  • a method known to those skilled in the art can be used from a solution of a simple substance or a mixture or on a substrate in a solid form.
  • a resistance heating evaporation method an electron beam evaporation method, a sputtering method, an ink jet method, a casting method, a dipping method, a printing method or a spin coating method.
  • Such a lamination method can be usually carried out in a temperature range of -20 to + 500 ° C, preferably 10 to 200 ° C, particularly preferably 15 to 100 ° C.
  • Drying of the laminated polymer solution can be usually carried out by drying at room temperature or by heating and drying with a hot plate.
  • Solvents used in the solution include chloroform, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, anisol, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, and ethyl acetate solvent acetate. it can.
  • the light-emitting system involving a chemical reaction of the present invention can be used for a light-emitting device using thermoluminescence.
  • a light emitting device using thermoluminescence generates an oxidized or reduced form of a chemical substance having a chemical structure different from that of the original chemical substance in a solid by irradiation with energy rays, and dissolves the solid by heating. It emits light by combining with a pair of charges.
  • the chemical substance of the present invention can be used in a state of being dissolved in various solvents.
  • the solvent is not particularly limited as long as the visible part is transparent, but 1-chlorobutane, 2-methyltetrahydrofuran, and methylcyclohexane, which have high solid transparency, are preferably used.
  • Irradiation with energy rays for generating an oxidized or reduced form of a chemical substance having a chemical structure different from that of the original chemical substance can be performed as long as it is at or below the melting point of the solvent.
  • the reaction is preferably performed at a low temperature of ⁇ 78 ° C. or less, more preferably ⁇ 100 ° C. or less, and most preferably ⁇ 180 ° C. or less.
  • An oxidized or reduced form of a chemical substance having a chemical structure different from that of the original chemical substance is produced.
  • any material can be used as long as the original chemical substance can be ionized.
  • ultraviolet rays, vacuum ultraviolet rays, X-rays, electron beams, gamma rays, and the like can be used. Irradiation of gamma rays is most preferred.
  • the light-emitting system of the present invention can be used, for example, for the above-mentioned organic electroluminescence element and the light-emitting device using thermoluminescence under various conditions where the light-emitting phenomenon can be sufficiently detected. It can be used for detecting agents, various luminescent probes, emergency light sources, and the like. In that case, if necessary, the luminescent substance of the present invention can be bound to various substances to be detected under conditions that do not impair the luminescence phenomenon. Examples of the substance to be detected include antibodies, antigens, various proteins such as in vivo proteins and synthetic proteins, biologically related substances such as nucleic acids such as polysaccharides, lipids, DNA and RNA, various polymer materials, and molded articles thereof. What is it?
  • the present invention can be applied, for example, for the treatment of missile therapy for cancer and the like.
  • a specific antibody against a surface antigen such as a cancer cell is modified with the luminescent substance of the present invention, and the modified antibody is introduced into the body, and a small amount of ⁇ from outside the body is bound to the cancer cell by an antigen-antibody reaction. Irradiation of a line or the like causes the luminescent substance to emit light, and the cancer cells can be killed by the thermal effect.
  • the chemical substance for light emission of the present invention is suitably used as a novel organic electroluminescent material.
  • the chemical substance represented by the specific structural formula is an inexpensive and safe compound containing no metal, and has a high internal quantum efficiency due to its triplet ground state. It can be used for various light emitting devices including organic electroluminescent devices.
  • a light-emitting device that emits light with high efficiency can be provided even when various compounds described above, which are not limited thereto, are used.
  • 1,1 bis (4-methoxyphenyl) ethylene (4.8 g, 20 mmol), bromoform (50.5 g, 200 mmol), 50% aqueous sodium hydroxide (16 g, 200 mmol), benzyltriethylammonium-dimethyl (185 mg (Lmmol) in an Erlenmeyer flask and stirred vigorously at room temperature for 2 days. 100 mL of water was added, extracted with methylene chloride, and the solvent was distilled off. The crude product was purified by column chromatography to obtain 1,1-bis (4-methoxyphenyl) -1,2,2-dibromocyclopropane. Yield 76%. 173-175 ° C.
  • a Grignard reagent was prepared from a solution of bromobenzene (4.98 g, 32 mmol) in dry THF (15 ml) and magnesium (717 mg, 30 mmol) under a nitrogen atmosphere. To this was added dropwise a solution of 1,5-dibutene moacetophenone (6.30 g, 2311111101) in dry 13 ⁇ 4? (301111), and the mixture was stirred at room temperature for 1 hour, and heated under reflux for 15 hours. After returning to room temperature, the mixture was extracted with ether, and the solvent was distilled off.
  • Example 1 Observation of Trimethylene Methane Cation Radical by CIDEP Method
  • the measurement of the CIDEP vector is a conventional method (for example, 4th edition Experimental Chemistry, Vol. 8, Spectroscopy III, 541). P. 1992, Maruzen). Transient changes were observed with a digital oscilloscope using Lumotas excimer laser EX600 as the light source, Varian electron spin resonance measurement device E-109 and Bruker electron spin resonance measurement device ESP-380E for spectrum measurement. .
  • chloral (10 mM) was added as a sensitizer.
  • an electron spin resonance measuring apparatus ESP-380E manufactured by Bruker was used for measurement of the ESR spectrum.
  • Anthraquinone (50 mM) as a sensitizer was added to the methylene chloride solution of 1,1-bis (4-methoxyphenyl) -2-methylenecyclopropane (50 mM) obtained in Synthesis Example 1. This The solution was cooled to 20K and irradiated with a Quanta-Ray YAG laser GCR-14 (355 nm) to measure the ESR ⁇ vector. The spectrum shown in Fig. 4 was obtained. Comparison with literature Ikeda et al., J. Am. Chem. Soc. 1998, 120, 5832-5833) confirmed that trimethylenemethane biradical was generated. Further cooling to 5K and observation of the temperature change of the signal intensity confirmed that this trimethylenemethane biradical was a basal triplet.
  • the transient absorption spectrum was measured by a conventional method (for example, see the fourth edition of Experimental Chemistry Course, Vol. 7, Spectroscopy II, p. 275, 1992, Maruzen).
  • An excimer laser EX600 manufactured by Le Monitors was used as a light source, and a detector US P-600 manufactured by Usok was used for spectrum measurement.
  • acetonitrile solution of 1,1-bis (4-methoxyphenyl) -12-methylenecyclopropane (3 mM) obtained in Synthesis Example 1 was added as a sensitizer.
  • the methylcyclohexane solution of 1,1-bis (4-methoxyphenyl) -2-methylenecyclopropane (5 mM) obtained in Synthesis Example 1 was placed in a synthetic quartz cell, and the tube was degassed and sealed. The cell was immersed in liquid nitrogen to solidify the solution, and gamma rays from cobalt 60 were irradiated for 40 hours.
  • the absorption spectrum was measured at 510 nm in liquid nitrogen with a Hewlett-Packard spectrophotometer HP8452A. From the comparison with Example 3, this absorption was identified as a trimethylenemethane cation radical.
  • the emission spectrum was measured with a multi-channel detector PMA11 manufactured by Hamamatsu Photo-TAS, the emission spectrum shown in FIG. 6 was obtained, and the emission maximum wavelength was 561 nm.
  • a polymer light emitting layer (film thickness 100 nm) was formed. Then, it was heated and dried on a hot plate at 80 ° C for 5 minutes in a dry nitrogen environment. The obtained glass substrate was transferred into a vacuum evaporation machine, and electrodes were formed on the light emitting layer in the order of Ca (film thickness: 20 nm) and A1 (film thickness: 100 nm).
  • the characteristics of the organic EL device were measured at room temperature, the current-voltage characteristics were measured with a micro-ammeter 4140B manufactured by Hewlett-Packard, and the emission luminance was measured with SR-3 manufactured by Topcon. When a voltage was applied using ITO as the anode and CaZAl as the cathode, pale yellow luminescence was observed at about 30V. The emission spectrum is shown by the solid line in FIG.
  • An ITOZ polymer light emitting layer ZCaZAl device was produced in the same manner as in Example 5, except that 1,1-bis (4-methoxyphenyl) -2-methylenecyclopropane was not added.
  • ITO / polymer light emitting layer / CaZAl element was connected to a power supply and a voltage was applied with ITO as the anode and CaZAl as the negative electrode, blue light emission was observed at about 20V. The emission spectrum is shown by the broken line in FIG.
  • a methylcyclohexane solution of 1 (2 naphthyl) -1 ferul-2-methylenecyclopropane (5 mM) obtained in Synthesis Example 2 was placed in a synthetic quartz cell, and the tube was degassed and sealed. The cell was immersed in liquid nitrogen to solidify the solution and irradiated with gamma rays from cobalt 60 for 40 hours. When taken out of liquid nitrogen and heated, red emission was observed. The emission spectrum is shown in FIG.
  • Example 7 Production of organic EL device using 1- (2-naphthyl) -1-fluoro-2-methylenecyclopropane Polybutylol rubazole (72 parts by weight), 2- (4-biphenyl) -5- (41; -butylphenyl) -1,3,4-oxadiazole (21 parts by weight), Synthesis example A mixture of 1 (2 naphthyl) 1 phenyl 2-methylenecyclopropane (7 parts by weight) obtained in 2 was dissolved in ethanol (concentration: 2 wt%) to prepare a coating solution. An organic EL device was prepared in the same manner as in Example 5. When voltage was applied using ITO as an anode and CaZAl as a cathode, pink luminescence was observed at about 20 V. The emission spectrum is shown by the solid line in FIG.
  • An organic EL device was produced in the same manner as in Example 7, except that 1- (2-naphthyl) -1 phenyl 2-methylenecyclopropane was not added.
  • the obtained organic EL device was connected to a power supply and a voltage was applied using ITO as an anode and CaZAl as a cathode, blue light emission was observed at about 15V.
  • the emission spectrum is shown by the broken line in FIG.
  • An organic EL device was produced in the same manner as in Example 9 except that 1,5-di (4-methoxyphenyl) bicyclo [3.1.0] hexane was not added. Connect the obtained organic EL device to a power supply When a voltage was applied using ITO as the anode and CaZAl as the cathode, blue light emission was observed at about 15V. The emission spectrum is shown by the broken line in FIG.
  • FIG. 1 is a conceptual diagram showing one embodiment of a light emitting system of the present invention.
  • FIG. 2 is a conceptual diagram showing one embodiment of a light emitting system of the present invention.
  • FIG. 3 is a CID EP spectrum of the trimethylenemethane cation radical observed in Example 1.
  • Fig. 4 shows the ESR ⁇ vector of trimethylenemethane biradical observed in Example 2.
  • FIG. 5 is a transient absorption spectrum of trimethylenemethane cation radical observed in Example 3.
  • FIG. 6 is an emission spectrum of a light emitting device using thermoluminescence observed in Example 4.
  • FIG. 7 is a drawing-substitute photograph showing light emission from a light-emitting device using thermoluminescence observed in Example 4.
  • FIG. 8 is an emission spectrum of a light emitting device using electroluminescence observed in Example 5 and Comparative Example 1.
  • FIG. 9 is an emission spectrum of a light emitting device using thermoluminescence observed in Example 6.
  • FIG. 10 is an emission spectrum of a light-emitting device using electroluminescence observed in Example 7 and Comparative Example 2.
  • FIG. 11 is an emission spectrum of a light-emitting device using thermoluminescence observed in Example 8.
  • FIG. 12 is an emission spectrum of a light emitting device using electroluminescence observed in Example 9 and Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、安価で安全に高効率で発光する新規な発光メカニズムに基づく発光システム、発光方法及び発光物質を提供することを目的とする。本発明は、第一の化学物質が、第一の化学物質とは異なる化学構造を有する第二の化学物質に変化し発光することを特徴とする発光システムに関する。好ましくは、本発明は、第二の化学物質が、発光後に第一の化学物質に戻る前記発光システムに関する。

Description

明 細 書
発光システム、発光方法及び発光用化学物質
技術分野
[0001] 本発明は、発光システム、発光方法及び発光用化学物質に関する。また、本発明 は、前記発光システム、発光方法及び発光用化学物質を利用した発光装置、好まし くは有機エレクト口ルミネッセンス (EL)素子に関する。
背景技術
[0002] エレクトロルミネセンス (EL)素子は、例えば、白熱ランプ、ガス充填ランプの代替え として、大面積ソリッドステート光源用途に注目されており、また、フラットパネルデイス プレイ (FPD)分野における液晶ディスプレイ (LCD)に置き換わる最有力の自発光 ディスプレイとしても注目されている。特に、素子材料が有機材料によって構成されて V、る有機エレクトロルミネセンス (EL)素子は、低消費電力型のフルカラーフラットパ ネルディスプレイ (FPD)として製品化が進んで 、る。
[0003] 有機エレクトロルミネセンス (EL)素子にっ 、て、これまで、有機低分子型、有機高 分子型 ELとも精力的に研究が行われてきた力 発光効率が低ぐフルカラーデイス プレイを構築する上で、障害となっていた。
[0004] この問題を解決する一つの手段として、励起三重項からのりん光を利用する素子の 検討がなされている。励起三重項力 のりん光を利用できれば、励起一重項からの 蛍光を利用した場合に比べ原理的に少なくとも 3倍の発光量子収率が期待できる。さ らに、エネルギー的に高い励起一重項からのエネルギー的に低い励起三重項への 項間交差による励起子の利用も考え合わせると、原理的には蛍光のみを利用した場 合の 25%に比べ 4倍、即ち 100%の発光量子収率が期待できる。
[0005] これまでに、励起三重項からの発光を利用する研究例として、以下に示す材料が 用いられた報告がある(例えば、 M.A.Baldoら、 Appl. Phys. Lett. 1999.75.4参照。 )。
[0006] Alq :アルミ—キノリノール錯体(tris(8- quinolinolato)aluminum)
3
— NPD: N , N ' -Di-naphtnaien- 1 -yl~N , N ' -diphenyl-bipnenyl-4 , 4 -diamine CBP: 4,4'-N,N'-dicarbazole-biphenyl BCP: 2,9-dimethyl-4,7-diphenyl-l , 10-phenanthroline
Ir (ppy) :イリジウム—フエ-ルビリジン錯体(tris(2- phenylpyridine)iridium)
3
上記の他に、有機エレクトロルミネセンス (EL)素子として、金属錯体を用い励起三 重項からの発光を利用した例がある(例えば、特開平 11— 329739号公報、特開平 1 1—256148号公報、特開平 8-319482号公報等参照。 )0
[0007] しかし、りん光を利用できる化学物質は金属錯体を用いたものが大半であり、コスト 等の問題が解決されていない。また、金属錯体には重金属が含まれるものが多い。し たがって、金属錯体を用いない場合であっても、りん光を利用することができる化学 物質が望まれている。
発明の開示
[0008] 本発明は、上記した従来の問題に鑑み、安価で安全に、短波長 (青色)から長波長
(赤色)までの幅広!、可視光領域にお!、て発光する発光メカニズムに基づく発光シス テム、発光方法及び発光物質を提供することを目的とする。また、本発明は、前記発 光システム、発光方法及び発光物質を利用した発光装置、好ましくは有機エレ外口 ルミネセンス (EL)素子を提供することを目的とする。
[0009] 本発明の発明者らは、鋭意検討した結果、電荷の注入によって結合形成又は結合 開裂反応が進行し、元の化学物質とは異なる化学物質に変化した後、高効率で発光 し、さらに発光後に元の化学物質を再生する発光システムを見出し、本発明を完成 するに至った。
[0010] すなわち、本発明は、第一の化学物質が、第一の化学物質とは異なる化学構造を 有する第二の化学物質に変化し発光することを特徴とする発光システムに関する。
[0011] また、本発明は、第二の化学物質が、発光後に第一の化学物質に戻る上記発光シ ステムに関する。
[0012] また、本発明は、第一の化学物質に電荷を注入することにより、第一の化学物質と は異なる化学構造を有する第二の化学物質の酸化体又は還元体を生成し、さらに前 記電荷と対となる電荷を注入することにより励起状態にある第二の化学物質を生成し 発光させることを特徴とする化学物質の発光方法に関する。
[0013] また、本発明は、第二の化学物質が、発光後に第一の化学物質に戻る上記発光方 法に関する。
[0014] また、本発明は、第一の化学物質が、第一の化学物質とは異なる化学構造を有す る第二の化学物質に変化し発光することを特徴とする発光用化学物質に関する。
[0015] また、本発明は、第二の化学物質が、発光後に第一の化学物質に戻る上記発光用 化学物質に関する。
[0016] また、本発明は、第二の化学物質が、第一の化学物質からの結合生成反応を経て 生成する上記発光用化学物質に関する。
[0017] また、本発明は、第二の化学物質が、第一の化学物質からの結合開裂反応を経て 生成する上記発光用化学物質に関する。
[0018] また、本発明は、第二の化学物質が、結合開裂反応を経て第一の化学物質に戻る 上記発光用化学物質に関する。
[0019] また、本発明は、第二の化学物質が、結合生成反応を経て第一の化学物質に戻る 上記発光用化学物質に関する。
[0020] また、本発明は、第二の化学物質が、モノラジカル又はビラジカルを有する開殻種 である上記発光用化学物質に関する。
[0021] また、本発明は、第二の化学物質の基底多重度が三重項である上記発光用化学 物質に関する。
[0022] また、本発明は、下記式(1)で表される上記発光用化学物質に関する。
[化 1]
Figure imgf000005_0001
(式中、 R— R
1 6は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプト 基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアルキ ルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R— Rはそれぞれ同一であっても異なっていて
1 6
もよい nさらに、 R
1一 Rは、 R
6 7、 -OR C R 、 一 COOR 、 一 SiR R
8、 -SR
9、 -O O
10 11 12 13
R 、および NR R (ただし、 R一 R は水素原子、ハロゲン原子、シァノ基、ニトロ
14 15 16 7 16
基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の 一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7— 30個の ァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換され たハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換ァラルキ ル基を表し、 R一 R はそれぞれ同一であっても異なっていてもよい。)からなる群か
7 16
ら選択される置換基を有していてもよい。 )
また、本発明は、下記式 (4)で表される上記発光用化学物質に関する。
[化 2]
Figure imgf000006_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
17 26
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
17 26
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
17 26 27 28 29 30 31
R R R 、および NR R (ただし、 R R は水素原子、ハロゲン原子、シァノ
32 33 34 35 36 27 36
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
27 36
なる群力 選択される置換基を有していてもよい。 )
また、本発明は、下記式 (7)で表される上記発光用化学物質に関する。
[化 3]
Figure imgf000007_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
37 42
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
37 42
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
37 42 43 44 45 46 47
R R R 、および NR R (ただし、 R — R は水素原子、ハロゲン原子、シァノ
48 49 50 51 52 43 52
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
43 52
なる群力も選択される置換基を有していてもよい。 m及び nは、 1一 3の整数である。 ) また、本発明は、下記式(10)で表される上記発光用化学物質に関する。
[化 4]
Figure imgf000008_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
53 58
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
53 58
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
53 58 59 60 61 62 63
R R R 、および NR R (ただし、 R R は水素原子、ハロゲン原子、シァノ
64 65 66 67 68 59 68
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
59 68
なる群力も選択される置換基を有していてもよい。 mは、 1一 3の整数である。 )
[0026] また、本発明は、上記発光用化学物質を含む発光装置に関する。
[0027] また、本発明は、上記発光用化学物質を含むエレクト口ルミネッセンス素子に関す る。
[0028] さらに、本発明は、上記発光用化学物質と、低分子化合物及び Z又は高分子化合 物とを含有する発光用混合物に関する。
[0029] 本願の開示は、 2003年 12月 22日に出願された特願 2003— 424882号に記載の 主題と関連しており、それらの開示内容は引用によりここに援用される。
発明を実施するための最良の形態
[0030] これまで有機 EL素子においては、発光を司る化学物質は電荷を持った状態や励 起状態において化学構造が変化することはなぐまたそのような化学構造の変化は 望ましくないものであった。これは化学構造の変化によって異なる物質となり、発光を 司る化学物質が減少するため、有機 EL素子の寿命や効率に悪影響を及ぼすため であった。
[0031] 一方、本発明者らはこのような前例にとらわれることなく鋭意検討した結果、積極的 に化学構造の変化を利用した発光システムを構築することができた。すなわち、本発 明の発光システムは、第一の化学物質 (元となる化学物質)から、第二の化学物質( 元となる化学物質とは異なる化学構造を有する化学物質)を生成し、発光させること を特徴とする発光システムである。本発明において、第二の化学物質 (元となる化学 物質とは異なる化学構造を有する化学物質)とは、好ましくは第一の化学物質 (元と なる化学物質)の同一分子内における結合開裂反応、結合生成反応等の化学反応 を経て化学構造が変化した化学物質を ヽぅ。
[0032] 本発明の発光システムに基づき、例えば、第一の化学物質に電荷 (正孔又は電子) を注入することにより同一分子内における結合開裂反応、結合生成反応等の化学反 応を引き起こし、元の化学物質とは異なる化学構造を有する第二の化学物質の酸ィ匕 体又は還元体を生成し、さらにこの酸化体又は還元体に対となる電荷を注入すること により、励起状態にある第二の化学物質を生成し、発光させる化学物質の発光方法 を提供することができる。
[0033] また、本発明の発光システムに用いられる化学物質は、第一の化学物質とは異なる 化学構造を有する第二の化学物質に変化した後に発光する化学物質であり、好まし くは同一分子内において結合開裂反応、結合生成反応等の化学反応を経て化学構 造が変化した後に発光する化学物質である。このような化学物質として、例えば、シク 口プロパン、メチレンシクロプロパン、ビシクロプロパン等の小員環化合物類、へキサ ジェン等のジォレフイン類などが挙げられる。なお、小員環化合物類は、単環式であ つても多環式であつても良い。
[0034] 本発明の発光システムにおいて、変化した後の第二の化学物質は、発光後速やか に第一の化学物質に戻ることが好まし 、。
[0035] また、第二の化学物質は、開殻種であることが好ましぐ開殻種はモノラジカル又は ビラジカルであることが好まし 、。
[0036] 本発明の発光システムにおいて、第二の化学物質の基底多重度は、一重項、二重 項又は三重項であり、本発明にお 、ては三重項であることが高 、発光量子収率を得 る上で好ましい。
[0037] 図 1及び 2に、本発明の発光システムの一実施態様を示す。図 1に示すように、元に なる化学物質 (化合物 1)は、例えば、有機 EL素子の場合、電極からの電荷注入の 後、速やかに結合開裂反応を起こすことによって発光を司る化学物質 (元の化学物 質とは異なる化学構造を有する化学物質)の酸化体 (化合物 2 + )を生成する。この 酸化体に対となる電荷が注入されることで励起子 (化合物 2 * )が生成され、発光す る。発光後に基底状態となった元の化学構造と異なる化学構造を有する化学物質( 化合物 2)は、速やかに結合生成反応が進行することで元の化学物質 (化合物 1)を 再生するものである。
[0038] 図 1にはホールが注入されてカチオンラジカルが生成し、結合開裂反応が進行する ものを示した力 注入される電荷やィ匕合物の電荷はこれと異なっていてもよい。また、 元になる化学物質 (ィ匕合物 1)力 発光を司る化学物質 (ィ匕合物 2)を発生させるまで の同一分子内における化学反応の数は、 1から 10が望ましぐ 1から 5がさらに望まし ぐ 1から 2が最も望ましい。発光後に元になる化学物質を再生するまでの化学反応 の数は、 1から 10が望ましぐ 1から 5がさらに望ましぐ 1から 2が最も望ましい。化学 反応の数が多すぎると副反応が進行しやすぐ発光効率が低下する傾向がある。
[0039] また、本発明の発光システムでは、図 2に示すように結合開裂反応と結合生成反応 の順序が図 1に示す例と異なっていてもよい。すなわち、元になる化学物質 (化合物 1)は、例えば有機 EL素子の場合、電極からの電荷注入の後、速やかに結合生成反 応を起こすことによって発光を司る化学物質 (元の化学物質とは異なる化学構造を有 する化学物質)の酸化体 (化合物 2 + )を生成する。この化学物質に対となる電荷が 注入されることで励起子 (化合物 2 * )が生成し、発光する。発光後に基底状態となつ た元の化学構造と異なる化学構造を有する化学物質 (化合物 2)は、速やかに結合 開裂反応が進行することで元の化学物質を再生するものである。
[0040] 図 2にはホールが注入されてカチオンラジカルが生成し、結合生成反応が進行する ものを示した力 注入される電荷やィ匕合物の電荷はこれと異なっていてもよい。また、 元になる化学物質 (ィ匕合物 1)力 発光を司る化学物質 (ィ匕合物 2)を発生させるまで の同一分子内における化学反応の数は、 1から 10が望ましぐ 1から 5がさらに望まし ぐ 1から 2が最も望ましい。発光後に元になる化学物質を再生するまでの化学反応 の数は、 1から 10が望ましぐ 1から 5がさらに望ましぐ 1から 2が最も望ましい。化学 反応の数が多すぎると副反応が進行しやすぐ発光効率が低下する傾向がある。
[0041] 次に本発明の化学物質について具体的な化合物例を挙げて説明する。以下に示 す化合物は、上述した発光システム、発光方法及び発光用化学物質に適用すること が可能であり、好ましくは発光装置、特に好ましくは有機 EL素子に用いられる。
[0042] 式(1)で示すィ匕合物(図 1における化合物 1)は、陽極力 ホールが注入されること で速やかに結合開裂反応を起こし、式(2)で示すィ匕合物(図 1における化合物 2 + ) を生成する。さらに陰極力も電子が注入されると式 (3)で示すィ匕合物(図 1における 化合物 2)の励起状態を生成し、式 (3)で示す化合物が基底状態へ緩和する際に発 光が起こる。ここで特徴的な点は式 (3)で示すィ匕合物の基底状態は 3重項であり、よ つて、式 (3)で示すィ匕合物は励起状態において生成した 75%の 3重項励起子を、効 率よく利用することができる点である。発光後、式 (3)で示す化合物は速やかに結合 生成反応を起こし、式(1)で示す化合物を再生する。
[0043] [化 5]
Figure imgf000011_0001
(式中、 R— R
1 6は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプト 基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアルキ ルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R— Rはそれぞれ同一であっても異なっていて
1 6
もよい nさらに、 R一 Rは、 R、 -OR、 -SR、 -OCOR 、 一 COOR 、 一 SiR R R 、および NR R (ただし、 R一 R は水素原子、ハロゲン原子、シァノ基、ニトロ
14 15 16 7 16
基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の 一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7— 30個の ァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換され たハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換ァラルキ ル基を表し、 R一 R はそれぞれ同一であっても異なっていてもよい。)からなる群か
7 16
ら選択される置換基を有していてもよい。 )
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等を挙げるこ とができる。アルキル基としては、メチル基、ェチル基、プロピル基、イソプロピル基、 シクロプロピル基、ブチル基、イソブチル基、シクロブチル基、ペンチル基、イソペン チル基、ネオペンチル基、シクロペンチル基、へキシル基、シクロへキシル基、ヘプ チル基、シクロへプチル基、ォクチル基、ノニル基、デシル基等を挙げることができる 。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、 tert ブト キシ基、ォクチルォキシ基、 tert—才クチルォキシ基等を挙げることができる。アルキ ルチオ基としては、メチルチオ基、ェチルチオ基、 tert—ブチルチオ基、へキシルチ ォ基、ォクチルチオ基等を挙げることができる。ァリール基としては、フエ-ル基、トリ ル基、キシリル基、メシチル基、タメ-ル基、ビフヱ-ル残基、ターフヱ -ル残基、ナフ チル基、アントリル基、フルォレニル基等を挙げることができる。ヘテロァリール基とし ては、フラン残基、チォフェン残基、ピロール残基、ォキサゾール残基、チアゾール 残基、イミダゾール残基、ピリジン残基、ピリミジン残基、ピラジン残基、トリァジン残基 、キノリン残基、キノキサリン残基等を挙げることができる。ァリールォキシ基としては、 フエノキシ基、 4 tert ブチルフエノキシ基、 1 ナフチルォキシ基、 2 ナフチルォキ シ基、 9 アンスリルォキシ基等を挙げることができる。ヘテロァリールォキシ基として は、ピリジノキシ基、キノリノキシ基等を挙げることができる。ァリールチオ基としては、 フエ-ルチオ基、 2—メチルフヱ-ルチオ基、 4 tert—ブチルフヱ-ルチオ基等を挙 げることができる。ヘテロァリールチオ基としては、ピリジ-ルチオ基、キノリニルチオ 基等を挙げることができる。ァラルキル基としては、ベンジル基、フエネチル基、メチル ベンジル基、ジフエ-ルメチル基等を挙げることができる。
[0045] R7の例としては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子等の ハロゲン原子、シァノ基、ニトロ基、メチル基、ェチル基、プロピル基、イソプロピル基 、シクロプロピル基、ブチル基、イソブチル基、 tert ブチル基、シクロブチル基、ペン チル基、イソペンチル基、ネオペンチル基、シクロペンチル基、へキシル基、シクロへ キシル基、ヘプチル基、シクロへプチル基、ォクチル基、ノ-ル基、デシル基、フエ- ル基、トリル基、キシリル基、メシチル基、タメ-ル基、ビフヱ-ル残基、ターフェ-ル 残基、ナフチル基、アントリル基、フルォレニル基、フラン残基、チォフェン残基、ピロ ール残基、ォキサゾール残基、チアゾール残基、イミダゾール残基、ピリジン残基、ピ リミジン残基、ピラジン残基、トリァジン残基、キノリン残基、キノキサリン残基、ベンジ ル基、フエネチル基、メチルベンジル基、ジフエ-ルメチル基、またはこれらがフッ素 原子、塩素原子、臭素原子、ヨウ素原子等で置換されたハロゲン置換体を挙げること ができる。 ORの例としては、水酸基、メトキシ基、エトキシ基、プロポキシ基、ブトキ
8
シ基、 tert ブトキシ基、ォクチルォキシ基、 tert—才クチルォキシ基、フエノキシ基、 4 tert ブチルフエノキシ基、 1 ナフチルォキシ基、 2 ナフチルォキシ基、 9 アンス リルォキシ基を挙げることができる。 SRの例としては、メルカプト基、メチルチオ基、
9
ェチルチオ基、 tert—ブチルチオ基、へキシルチオ基、ォクチルチオ基、フ ニルチ ォ基、 2—メチルフヱ-ルチオ基、 4 tert—ブチルフヱ-ルチオ基を挙げることができ る。 OCOR の例としては、ホルミルォキシ基、ァセトキシ基、ベンゾィルォキシ基を
10
挙げることができる。 COOR の例としては、カルボキシル基、メトキシカルボ-ル基
11
、エトキシカルボニル基、 tert ブトキシカルボニル基、フエノキシカルボニル基、ナフ チルォキシカルボ二ル基を挙げることができる。— SiR R R の例としては、シリル
12 13 14
基、トリメチルシリル基、トリェチルシリル基、トリフエニルシリル基を挙げることができる NR R の例としては、アミノ基、 N—メチルァミノ基、 N—ェチルァミノ基、 N, N—
15 16
ジメチルァミノ基、 N, N—ジェチルァミノ基、 N, N—ジイソプロピルアミノ基、 N, N—ジ ブチルァミノ基、 N ベンジルァミノ基、 N, N—ジベンジルァミノ基、 N フエ-ルァミノ 基、 N, N—ジフエ-ルァミノ基を挙げることができる。
[0046] 本発明で用いた式 (3)で示した元の化学物質とは異なる化学構造を有する化学物 質は、励起 3重項力 基底 3重項への遷移の発光を利用しており、りん光発光とは異 なっている。この遷移はスピン許容であるため、りん光発光よりも効率よく進行する。 実際、式 (3)で表される化合物を用いた場合では発光量子収率は 1一 99%と高い値 までも得ることが可能であり、有機 EL素子の発光材料に適した材料である。
[0047] また、式(1)一(3)中の Rで表される置換基を変化させることで発光波長を 400nm 力も 800nmまで変化させることができることから、任意の発光色を発光する物質を得 ることができる。具体的には、式(1)一(3)中の Rで表される置換基の共役長が長い 場合、また、電子供与性である場合には発光波長が長波長となる傾向がある。また、 式(1)一(3)中の Rで表される置換基は、カチオン及びラジカルを安定ィ匕できるような 共役系を持った置換基であることが好まし 、。
[0048] 式(1)一(3)において、 R— Rのいずれか一つ以上がァリール基であることが好ま
1 6
しい。また、ァリール基は R又は—ORで表される置換基を有していてもよい。 R
7 8 7 としてはハロゲン原子であることが好ましぐフッ素原子であることがより好ましい。 O Rとしてはアルコキシ基であることが好ましぐメトキシ基であることがより好ましい。
8
例えば、式(1)一(3)において、 R Rを水素原子、 R及び Rをメトキシフエ二ル
1 4 5 6
基とすることにより、高い発光量子収率で緑色の発光色を得ることができる。また、式
(1)一(3)において、 R— Rのいずれかをァリール基とする場合、フルォロ基をァリ
1 6
ール基へ導入することにより発光強度を増加させることができ好ましい。さらに、式(1 )ー(3)において、 R一 Rを水素原子、 Rをナフチル基、 Rをフエ-ル基とすること
1 4 5 6
により、高い発光量子収率で赤色の発光色を得ることができる。赤色の発光色は、従 来の金属錯体では得ることが難 、発光色であり特に好ま 、。
[0049] 上記式(1)で示す化合物は、ォレフィン類を出発物質とし、カルベン付加反応、メ チル化反応、塩基による脱臭化水素反応を順次適用することで合成することができる
[0050] 次に本発明の式 (4)で示すィ匕合物(図 2における化合物 1)は、陽極からホールが 注入されることで速やかに結合生成反応を起こし、式(5)で示すィ匕合物(図 2におけ る化合物 2 + )を生成する。さらに陰極力も電子が注入されると式 (6)で示すィ匕合物( 図 2における化合物 2)の励起状態を生成し、式 (6)で示す化合物の基底状態へ緩 和する際に発光が起こる。発光後、式 (6)で示す化合物は速やかに結合開裂反応を 起こし、式 (4)で示す化合物を再生する。
[化 6]
Figure imgf000015_0001
(4) (5) (6)
(式中、 R -R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
17 26
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい てもよい。さらに、 R OR SR -OCOR 、 一 COOR -Si
29 30 31
R R R 、および一 NR R (ただし、 R 、 、R は水素原子、ハロゲン原子、シァノ
32 33 34 35 36 27 36
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
27 36
なる群力 選択される置換基を有していてもよい。 )
R
17一 R の例としては、上述の R— Rと同様のものを挙げることができ、 R — R 26 1 6 27 36 の例としては、上述の R R と同様のものを挙げることができる。
7 16
[0052] 式 (4)一 (6)中の Rで表される置換基は、カチオン及びラジカルを安定ィ匕できるよう な共役系を持った置換基であることが好まし 、。
[0053] 上記式 (4)で示す化合物は、 1, 4ージケトン類への Wittig反応により合成すること ができる。
[0054] また、本発明の式(7)で示すィ匕合物(図 1における化合物 1)は、陽極からホールが 注入されることで速やかに結合開裂反応を起こし、式 (8)で示すィ匕合物(図 1におけ る化合物 2 + )を生成する。さらに陰極力も電子が注入されると式 (9)で示すィ匕合物( 図 1における化合物 2)の励起状態を生成し、式 (9)で示す化合物の基底状態へ緩 和する際に発光が起こる。発光後、式 (9)で示す化合物は速やかに結合生成反応を 起こし、式 (7)で示す化合物を再生する。
[0055] [化 7]
Figure imgf000016_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
37 42
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
37 42
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
37 42 43 44 45 46 47
R R R 、および NR R (ただし、 R — R は水素原子、ハロゲン原子、シァノ
48 49 50 51 52 43 52
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
43 52
なる群力も選択される置換基を有していてもよい。 m及び nは、 1一 3の整数である。 ) R 一 R の例としては、上述の R— Rと同様のものを挙げることができ、 R — R
37 42 1 6 43 52 の例としては、上述の R— R と同様のものを挙げることができる。
7 16
[0056] 式(7)— (9)中の Rで表される置換基は、カチオン及びラジカルを安定ィ匕できるよう な共役系を持った置換基であることが好まし 、。
[0057] 上記式(7)で示す化合物は、 m= 1、 n= 3の場合、トシルヒドラゾン類へ三フッ化ホ ゥ素を作用させてジァゼン類へ誘導し、加熱により脱窒素させることにより合成するこ とができる。 m= 2、 n= 2の場合、式 (4)に光増感電子移動反応を行うことにより合成 することができる。
[0058] さらに、本発明の式(10)で示すィ匕合物(図 1における化合物 1)は、陽極からホー ルが注入されることで速やかに結合開裂反応を起こし、式(11)で示すィ匕合物(図 1 における化合物 2 + )を生成する。さらに陰極力も電子が注入されると式(12)で示す 化合物(図 1における化合物 2)の励起状態を生成し、式(12)で示す化合物の基底 状態へ緩和する際に発光が起こる。発光後、式(12)で示す化合物は速やかに結合 生成反応を起こし、式(10)で示す化合物を再生する。
[0059] [化 8]
Figure imgf000017_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
53 58
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
53 58
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
53 58 59 60 61 62 63
R R R 、および NR R (ただし、 R R は水素原子、ハロゲン原子、シァノ
64 65 66 67 68 59 68
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
59 68
なる群力も選択される置換基を有していてもよい。 mは、 1一 3の整数である。 )
R 一 R の例としては、上述の R— Rと同様のものを挙げることができ、 R — R
53 58 1 6 59 68 の例としては、上述の R R と同様のものを挙げることができる。
7 16
[0060] 式(10)— (12)中の Rで表される置換基は、カチオン及びラジカルを安定ィ匕できる ような共役系を持った置換基であることが好ましい。
[0061] 上記式(10)で示すィ匕合物は、 m= lの場合、ォレフィン類へのカルベン付加反応 により合成することができる。 m= 2、 3の場合、 1, 4-ジケトン類または 1, 5-ジケトン 類へ Mc— Murry反応を行ってシクロブテン類またはシクロペンテン類へ誘導し、水 素付加反応によって合成することができる。
[0062] 本発明の化学反応を伴う発光システムは、元になる化学物質が金属原子を含有し ていないため、低価格で提供することが可能である。また、本発明の発光システム〖こ おいては、元の化学物質と、実際に発光する化学物質とが異なる化学構造を有する ことから、実際に発光する化学物質は元になる化学物質の吸収波長とは大きく異なる 発光波長を示すものである。本発明の発光システムにおいては、透明性の高い材料 として、化学反応によって発光波長が長波長側にシフトする化学物質を好ましく使用 することができる。
[0063] 本発明の化学反応を伴う発光システムは、単独でエレクトロルミネセンス素子の発 光層として使用することができる。また、ホスト材料中に分散させた状態でもエレ外口 ルミネセンス素子の発光層として使用することができる。ホスト材料としては、アノード( 陽極)からホールを受け取る機能、力ソード (陰極)から電子を受け取る機能、ホール と電子を移動する機能、ホールと電子を本発明の化学反応を伴う発光システムに授 与する機能があれば特に限定されず、例えば金属錯体又はトリフエニルァミン誘導体 などが使用可能である。特に、ホールの注入によって発光を担う化学物質の酸化体 を生成する場合、ホスト材料としてホールの注入効率、ホール輸送能が高い材料が 望ましい。
[0064] 本発明の発光用化学物質と、低分子化合物及び Z又は高分子化合物とを含む混 合物は、有機 EL素子の製造に好ましく使用される。
[0065] 本発明の発光用化学物質と低分子化合物とを含む混合物としては、 Alq等の金属
3 錯体や、 α NPD等のトリフエ-ルァミン誘導体等を混合させた組成物を挙げること ができる。
[0066] 本発明の発光用化学物質と高分子化合物とを含む混合物としては、上記化合物に 共役あるいは非共役ポリマーに混合させたポリマー組成物を挙げることができる。ポリ マー組成物として用いることができる共役あるいは非共役のポリマーとしては、例えば 、置換または非置換であってもよいポリフエ-レン誘導体、ポリフルオレン誘導体、ポ リフエ-レンビ-レン誘導体、ポリチォフェン誘導体、ポリキノリン誘導体、ポリトリフエ -ルァミン誘導体、ポリビュル力ルバゾール誘導体、ポリア-リン誘導体、ポリイミド誘 導体、ポリアミドイミド誘導体、ポリカーボネート誘導体、ポリアクリル誘導体、ポリスチ レン誘導体などが挙げられる。また、これら共役あるいは非共役のポリマーとしては、 必要に応じてその他モノマー単位として、置換または非置換であってもよいァリーレ ン及び Ζ又はへテロアリーレンモノマー単位であるベンゼン、ビフエ-ル、ターフェ二 ル、ナフタレン、アントラセン、テトラセン、フルオレン、フエナントレン、タリセン、ピリジ ン、ピラジン、キノリン、イソキノリン、アタリジン、フエナント口リン、フラン、ピロール、チ ォフェン、ォキサゾール、ォキサジァゾール、チアジアゾール、トリァゾール、ベンゾォ キサゾ一ノレ、ベンゾォキサジァゾーノレ、ベンゾチアジアゾーノレ、ベンゾトリァゾーノレ、 ベンゾチォフェンなど、置換または非置換のトリフエ-ルァミン骨格を有するモノマー 単位であるトリフエ-ルァミン、 Ν—(4 ブチルフエ-ル) Ν—ジフエ-ルァミン、 Ν, N' —ジフエ-ルー Ν, N'—ビス(3 メチルフエ-ル)— [1, 1'ービフエ-ル] 4, 4'ージァミン 、N, N' ビス(3 メチルフエ-ル) Ν, N' ビス(2 ナフチル)—[1, 1'ービフエ-ル] 4, 4'ージァミンなどを共重合したポリマーを用いてもょ 、。
[0067] 本発明の発光用化学物質と、低分子化合物との混合物において、低分子化合物 に対して本発明の発光用化学物質は、重量パーセント濃度にして 0. 1から 50%が 好ましぐ 0. 5から 30%がさらに好ましぐ 1から 10%が最も好ましい。低分子化合物 として、例えば α -NPDと混合する場合、 2から 10%が最も好ましい。
[0068] 本発明の発光用化学物質と、高分子化合物との混合物において、高分子化合物 に対して本発明の発光用化学物質は、重量パーセント濃度にして 0. 1から 50%が 好ましぐ 0. 5から 30%がさらに好ましぐ 1から 10%が最も好ましい。高分子化合物 として、例えばポリビニルカルバゾール誘導体と混合する場合、 2から 10%が最も好 ましい。
[0069] 本発明の発光用化学物質と、低分子化合物及び高分子化合物との混合物におい て、低分子化合物と高分子化合物の総量に対して本発明の発光用化学物質は、重 量パーセント濃度にして 0. 1から 50%が好ましぐ 0. 5から 30%がさらに好ましぐ 2 力も 10%が最も好ましい。例えばポリビュル力ルバゾール誘導体とォキサジァゾール 誘導体との混合物へ混合する場合、 2から 10%が最も好ましい。
[0070] さらに、本発明においては、本発明の発光用化学物質を上記の共役あるいは非共 役ポリマー等の高分子化合物中に導入した高分子化合物を、有機 EL素子の製造等 に使用することちできる。
[0071] 本発明の化学反応を伴う発光システムを用いた素子、具体的には本発明の発光用 化学物質とポリマーとの混合物からなる本発明のエレクトロルミネセンス素子の一般 構造は、米国特許第 4, 539, 507号および米国特許第 5, 151, 629号に記載され ている。また、ポリマー含有のエレクトロルミネセンス素子については、例えば、国際 公開 WO第 90Z13148号または欧州特許公開第 0 443 861号に記載されている
[0072] これらは通常、電極の少なくとも 1つが透明である力ソード(陰極)とアノード(陽極) との間に、エレクトロルミネセント層(発光層)を含むものである。さらに、 1つ以上の電 子注入層および Zまたは電子移動層力 エレクトロルミネセント層(発光層)と力ソード との間に挿入され得るもので、および Zまたは、 1つ以上の正孔注入層および Zまた は正孔移動層が、エレクトロルミネセント層(発光層)とアノードとの間に挿入され得る ものである。力ソード材料としては、例えば、 Li、 Ca、 Mg、 Al、 In、 Cs、 Ba, Mg/Ag 、 LiF、 CsFなどの金属または金属合金であるのが好ましい。アノードとしては、透明 基体 (例えば、ガラスまたは透明ポリマー)上に、金属(例えば、 Au)または金属導電 率を有する他の材料、例えば、酸化物(例えば、 ITO:酸化インジウム Z酸化錫)を使 用することちでさる。
[0073] 本発明の発光用化学物質をエレクトロルミネセンス素子の発光層材料として使用す るためには、単体、または混合物の溶液から、または、固体の形状で基体に、当業者 に公知の方法、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、ィ ンクジェット法、キャスト法、浸漬法、印刷法またはスピンコーティング法などを用いて 積層することにより達成することが可能で、これらに特に限定されることはない。このよ うな積層方法は、通常、—20— + 500°Cの温度範囲、好ましくは 10— 200°C、特に 好ましくは 15— 100°Cで実施することができる。また、積層されたポリマー溶液の乾 燥は、通常、常温乾燥、ホットプレートによる加熱乾燥などで実施することができる。 溶液に用いられる溶媒として、クロ口ホルム、塩化メチレン、ジクロロエタン、テトラヒド 口フラン、トルエン、キシレン、メシチレン、ァニソール、アセトン、メチルェチルケトン、 酢酸ェチル、酢酸ブチル、ェチルセ口ソルブアセテート等を用いることができる。
[0074] さらに、本発明の化学反応を伴う発光システムは、サーモルミネセンスを用いた発 光装置に利用することができる。サーモルミネセンスを用いた発光装置は、エネルギ 一線の照射によって固体中で元の化学物質とは異なる化学構造を有する化学物質 の酸化体または還元体を生成させ、加熱することによって固体を溶解させて対となる 電荷と結合させ、発光させるものである。
[0075] サーモルミネセンスを用いた発光装置において、本発明の化学物質は種々の溶媒 に溶解させた状態で使用することができる。溶媒は可視部が透明なものなら特に限 定されないが、固体の透明性が高い 1-クロロブタン、 2-メチルテトラヒドロフラン、メ チルシクロへキサンが好適に用いられる。
[0076] 元の化学物質とは異なる化学構造を有する化学物質の酸化体または還元体を生 成させるためのエネルギー線の照射は、溶媒の融点以下ならば実施することが可能 である。しかし、副反応を押えるためには— 78°C以下、さらに好ましくは— 100°C以下 、最も好ましくは- 180°C以下の低温で行うことが好ましい。
[0077] 元の化学物質とは異なる化学構造を有する化学物質の酸化体または還元体を生 成させるためのエネルギー線としては、元の化学物質をイオン化させることができれ ば使用することができる。例えば紫外線、真空紫外線、エックス線、電子線、ガンマ線 等を用いることができる力 ガンマ線の照射が最も好ま 、。
[0078] さらに、本発明の発光システムは、上述した有機エレクトロルミネセンス素子、サー モルミネセンスを用いた発光装置の他、その発光現象が十分に検出可能な条件の 下で、例えば、各種診断薬の検出剤、各種発光プローブ、非常用光源等に使用する ことができる。その場合、必要に応じて、本発明の発光物質を、発光現象を損なわな いような条件で、各種被検出物質に結合させることもできる。被検出物質としては、例 えば、抗体、抗原、生体内タンパク質、合成タンパク質等の各種タンパク質、多糖類、 脂質、 DNA、 RNA等の核酸などの生体関連物質、各種高分子材料、その成形体な どである。
[0079] また、例えば癌等のミサイル療法の治療用などとして適用することも可能である。具 体的には、本発明の発光物質で癌細胞等の表面抗原に対する特異的抗体を修飾し 、これを体内に入れ、癌細胞に抗原抗体反応によって結合させた状態で体外から微 量の γ線等を照射して前記発光物質を発光させ、その温熱効果により癌細胞を死滅 させることがでさる。
[0080] 本発明の発光システム、発光方法及び発光用化学物質を用いることにより、短波長
(青色)から長波長 (赤色)までの幅広!、可視光領域にお!、て発光する種々の発光装 置を提供することができる。例えば、本発明の発光システム、発光方法及び発光用化 学物質を有機エレクトロルミネセンス素子に適用した場合、金属錯体を用いな 、場合 であっても、短波長 (青色)から長波長 (赤色)までの幅広!、可視光領域にぉ 、て高 効率(内部量子効率)、高輝度で発光する新規な素子を提供することが可能である。 特に、元の化学物質の吸収波長が、元の化学物質とは異なる構造を有する化学物 質の発光波長よりも短い場合、光が元の化学物質に吸収されることがなぐ高い外部 量子効率を有する素子を提供することが可能である。
[0081] 本発明の発光用化学物質は、新規な有機エレクトロルミネセンス材料として好適に 用いられる。本発明において特定の構造式で表される化学物質は、金属を含まない 安価で安全な化合物であり、また、基底状態が三重項であるため内部量子効率が高 ぐ有機エレクトロルミネセンス素子をはじめとし種々の発光装置に使用することがで きる。
実施例
[0082] 本発明を以下の実施例により説明する力 これらに限定されるものではなぐ上述 の種々の化合物を用いた場合にも高効率で発光する発光装置を提供することができ る。
[0083] (合成例 1) 1, 1 ビス(4ーメトキシフエ-ル )ー2—メチレンシクロプロパンの合成
1, 1 ビス(4-メトキシフエ-ル)エチレン(4. 8g、 20mmol)、ブロモホルム(50. 5g 、 200mmol)、 50%水酸化ナトリウム水溶液(16g、 200mmol)、塩化ベンジルトリエ チルアンモ -ゥム(185mg、 lmmol)を三角フラスコに入れ、室温で 2日間激しく攪 拌した。 lOOmLの水を加えて塩化メチレンで抽出し、溶媒を留去した。粗生成物を カラムクロマトグラフィーで精製することで 1, 1 ビス (4ーメトキシフエ二ル)一 2, 2—ジ ブロモシクロプロパンを得た。収率 76%。融点 173— 175°C。
[0084] 得られた 1, 1 ビス(4ーメトキシフエ-ル)— 2, 2 ジブ口モシクロプロパン(6. 2g、 1 5mmol)、ョードメタン(4. 4g、 30mmol)、乾燥 THFlOOmLを丸底フラスコに入れ 、窒素置換した。 78°Cに冷却しながら n ブチルリチウム溶液(l lmL、 18mmol)を 滴下し、 78°Cで 6時間攪拌した。室温に戻した後 lOOmLの水に注ぎ、塩化メチレ ンで抽出した。溶媒を留去して粗生成物をカラムクロマトグラフィーで精製することで 、 1, 1 ビス(4ーメトキシフエ-ル)— 2 ブロモ—2—メチルシクロプロパンを得た。収率 82%。融点 97—104。C。
[0085] 丸底フラスコに得られた 1, 1—ビス(4ーメトキシフエ-ル)— 2 ブロモ—2—メチルシク 口プロパン(4. 3g、 12mmol)、乾燥ジメチルスルホキシド(lOOmL)を入れ、窒素置 換した。カリウム t ブトキシド(1. 4g, 12mmol)を加え、室温で 2時間攪拌した。 10 OmLの水に注ぎ、塩化メチレンで抽出した。溶媒を留去し、カラムクロマトグラフィーと 再結晶により精製することで 1, 1 ビス (4ーメトキシフエニル) 2—メチレンシクロプロ パン(ィ匕(13) )を得た。収率 95%。融点 31— 32°C。 ^ NMR (200 MHz, CDC1 ) δ
3
1.81 (dd, J = 2.6, 2.0 Hz, 2 H), 3.77 (s, 6 H), 5.66 (t, J = 2.0 Hz, 1 H), 5.77 (d, J = 2.6 Hz, 1 H), 6.81 (ΑΑ'ΒΒ', J = 8.0 Hz, 4 H), 7.20 (ΑΑ'ΒΒ', J = 8.0 Hz, 4 H)。 [0086] [化 9]
Figure imgf000024_0001
( 1 3 )
[0087] (合成例 2) 1—(2 ナフチル )ー1 フエ-ルー 2—メチレンシクロプロパンの合成 丸底フラスコにマグネシウム(1. 94g、 80mmol)を入れ,窒素置換した。 50mLの 乾燥 THFに溶かしたブロモベンゼン(l lg、 70mmol)を攪拌しながらゆっくりと滴下 し、黒色のグリニャル試薬を得た。ここに 50mLの乾燥 THFに溶カゝした 2—ァセトナフ トン (8. 51g、 50mmol)をゆっくりと滴下し、室温で 1時間攪拌した。さらに 2時間加 熱還流したのち室温まで冷却し、水を加えた後にエーテルで抽出した。溶媒を留去 して得られた油状物を丸底フラスコに移し、 THFlOmL, 20%硫酸水溶液 50mLを 加え、 12時間加熱還流した。室温まで冷却し、水酸ィ匕ナトリウム水溶液を用いて中和 を行った。エーテルで抽出し、溶媒を留去した。得られた粗生成物をカラムクロマトグ ラフィ一で精製することにより 1 (2 ナフチル) 1 フエニルエチレンを得た。収率 75 %。 JH-NMR (200 MHz, CDC1 , δ ppm); 5.56 (s, 1Η), 5.60 (s, 1H), 7.33-7.86 (m,
3
12H)0
[0088] 丸底フラスコに得られた 1— (2—ナフチル )ー1 フエ-ルエチレン(8. 64g、 37. 5m mol)、塩化べンジルトリェチルアンモ -ゥム(lOmg)、ブロモホルム(28. 6g、 113m mol)を入れ、窒素置換した。攪拌しながら 50%水酸ィ匕ナトリウム水溶液 (9mL)をカロ え、室温で 18時間攪拌した。希硫酸で中和した後、エーテルで抽出した。溶媒を留 去し、得られた粗生成物をカラムクロマトグラフィーで生成することで 1 (2—ナフチル )—1 フエ-ルー 2, 2 ジブ口モシクロプロパンを得た。収率 44%。 NMR (200 MHz, CDC1 , δ ppm); 2.55 (ΑΑ'ΒΒ', J=7.8 Hz, 1Η), 2.62 (ΑΑ'ΒΒ', J=7.8 Hz,
3
1Η),7.18-7.90 (m, 12H)。
[0089] 丸底フラスコに得られた 1— (2 ナフチル )ー1 フエ-ルー 2, 2 ジブ口モシクロプロ パン(4. 02g、 lOmmol)、ョードメタン(2. 84g、 20mmol)、乾燥 THF (35mL)を 入れ、窒素置換した。— 78°Cに冷却ながら n ブチルリチウム溶液(7. 7mL, 12mm ol)をゆっくり滴下し、 2時間攪拌した。この混合物を室温に戻し、さらに 1時間攪拌し た。水を加えた後、エーテルで抽出した。溶媒を留去し、粗生成物をカラムクロマトグ ラフィ一で生成することで 1 (2—ナフチル )ー1 フエ-ルー 2—ブロモー 2—メチルシクロ プロパンを得た。収率 98%。 1H- NMR (200 MHz, CDC1 , δ ppm); 1.78-1.81 (m,
3
3H), 2.03-2.17 (m, 2H), 7.16-7.91 (m, 12H)。
[0090] 丸底フラスコにカリウム t ブトキシド(1. 55g、 13. 8mmol)、乾燥ジメチルスルホ キシド(35mL)を入れ、窒素置換した。ここに 1— (2 ナフチル)—1 フエ-ルー 2—ブ 口モー 2—メチルシクロプロパン(3. 3g、 9. 8mmol)を乾燥ジメチルスルホキシド(10 mL)に溶カゝした溶液をゆっくり滴下した。室温で 2時間攪拌し、水をカ卩えてエーテル で抽出した。溶媒を留去し、へキサン力ゝら再結晶することで 1 (2—ナフチル) 1ーフ ェ-ルー 2—メチレンシクロプロパン(ィ匕(14) )を得た。収率 67%。 NMR (200 MHz, CDC1 , δ ppm); 1.99 (s, 2H), 5.65 (s, 1H), 5.86 (s, 1H), 7.21-7.80 (m,12H)0
3
[0091] [化 10]
Figure imgf000025_0001
( 1 4 )
[0092] (合成例 3) 1 フエ-ルー 2—メチレンシクロプロパンの合成
スチレンを出発原料とし、合成例 1と同様の方法で合成を行った。 JH-NMR (200 MHz, CDC1 , δ ppm); 1.20 (m, 1Η), 1.71 (m, 1H), 2.58 (m, 1H), 5.56 (s,
3
2H),7.10-7.28 (m, 5H)。
[0093] (合成例 4) 1ーメチルー 1 フエ-ルー 2—メチレンシクロプロパンの合成
α—メチルスチレンを出発原料とし、合成例 1と同様の方法で合成を行った。 1 H-NMR (200 MHz, CDCl , δ ppm); 1.38—1.40 (m, 2H), 1.53 (s, IH), 5.47 (s, IH),
3
5.58 (s, IH), 7.11-7.32 (m, 5H)。
[0094] (合成例 5) 1—(1—ナフチル)—1—フエ-ルー 2—メチレンシクロプロパンの
合成
ブロモベンゼンと 1 ァセトナフトンを出発原料とし、合成例 2と同様の方法で合成を 行った。 NMR (200 MHz, CDCl , δ ppm); 2.01 (ddd, J = 8.8 Hz, J = 2.7 Hz, J =
3
2.7 Hz, IH), 2.14 (ddd, J = 8.8Hz, J = 2.7 Hz, J = 2.7 Hz, IH), 5.67 (br, IH), 5.89 (dd, J = 2.7 Hz, J = 2.7 Hz, IH), 7.06—8.13 (m, 12H)。
[0095] (合成例 6) 1 フエ-ルー 1— (4—フエ-ルフエ-ル)— 2—メチレンシクロプロパンの 合成
4 プロモビフエニルとァセトフエノンを出発原料とし、合成例 2と同様の方法で合成 を行った。 JH-NMR (200 MHz, CDCl , δ ppm); 1.94 (dd, J = 2.4 Hz, J = 2.2 Hz,
3
2H), 5.63 (dd, J = 1.8 Hz, J = 1.8Hz, IH), 5.84 (dd, J = 2.6 Hz, J = 2.4 Hz, IH), 7.26-7.59 (m, 14H)。
[0096] (合成例 7) 1— (4—ブロモフエ-ル)— 1 フエ-ルー 2—メチレンシクロプロパンの合 成
カリウム- -ブトキシド(6. 06g、 54mmol)の乾燥 THF (65ml)溶液とメチルホスホ -ゥム塩(27. 3g、 68mmol)力も窒素雰囲気下でウイッティヒ試薬を調整した。そこ へ 4—ブロモベンゾフエノン(11. 8g、 45mmol)の乾燥 THF (125ml)溶液を滴下し 、室温で 1時間撹拌後エーテルで抽出し、溶媒を留去した。カラムクロマトグラフィー により精製し、 1— (4 ブロモフエ-ル)— 1—フエ-ルエチレンを得た。収率 96%。
[0097] 得られた 1 (4 ブロモフエ-ル) 1 フエ-ルエチレンを用い、合成例 1と同様の方 法を適用することで 1— (4—ブロモフエ-ル)— 1 フエ-ルー 2—メチレンシクロプロパン の合成を行った。 JH-NMR (200 MHz, CDCl , δ ppm); 1.84 (d, J = 13.6 Hz, IH),
3
1.92 (d, J = 13.6 Hz, IH), 5.6 (s, 1H),5.78 (s, IH), 7.13 (d, J = 8.6 Hz, 2H), 7.20.7.28 (m, 5H), 7.38 (d, J = 8.6 Hz, 2H)。
[0098] (合成例 8) 1, 1 ビス(4 フルオロフェ-ル )ー2—メチレンシクロプロパンの合成
4、 4'ージフルォロベンゾフエノンを出発原料とし、合成例 7と同様の方法で合成を 行った。 JH-NMR (200 MHz, CDC1 , δ ppm); 1.85 (dd, J = 2.6 Hz, J = 2.0 Hz, 2H),
3
5.61 (dd, J = 2.1 Hz, J = 1.8 Ηζ,ΙΗ), 5.79 (dd, J = 2.6 Hz, J = 1.8 Hz, 1H), 6.91-7.00 (m, 4H), 7.19-7.26 (m, 4H)。
[0099] (合成例 9) 1, 1ージフエ-ルー 2—メチレンシクロプロパンの合成
ベンゾフエノンを出発原料とし、合成例 7と同様の方法で合成を行った。 JH-NMR (200 MHz, CDC1 , δ ppm); 1.90 (dd, J = 2.7 Hz, J = 2.0 Hz, 2H), 5.60 (t, J = 2.0
3
Hz, 1H),5.80 (d, J = 2.7 Hz, 1H), 7.21-7.30 (m, 10H)。
[0100] (合成例 10) 1— (3, 5 ジブロモフエ-ル)— 1—フエ-ルー 2—メチレンシクロプロパ ンの合成
窒素雰囲気下、丸底フラスコへ 1, 3, 5 トリブロモベンゼン(6. 3g、 20mmol)、乾 燥エーテル(150ml)を加えた。ここへ 78°Cに冷却しながら n ブチルリチウム溶液 ( 12. 5ml、 20mmol)を滴下し、— 78°Cで 2時間撹拌した。さらに N, N ジメチルァセ トアミド(1. 92g, 22mmol)の乾燥エーテル(15ml)溶液を滴下した。— 78°C力ら徐 々に室温に戻し 20時間撹拌した後、エーテルで抽出し溶媒を留去した。カラムクロ マトグラフィ一と再結晶により精製し, 3, 5 ジブ口モアセトフエノンを得た。収率 41%
[0101] ブロモベンゼン(4. 98g、 32mmol)の乾燥 THF (15ml)溶液とマグネシウム(717 mg、 30mmol)から窒素雰囲気下でグリニャール試薬を調製した。ここへ 3, 5—ジブ 口モアセトフエノン(6. 30g、 2311111101)の乾燥1¾? (301111)溶液を滴下し、室温で 1 時間撹拌後、 15時間加熱還流した。室温に戻した後エーテルで抽出し、溶媒を留去 した。これを丸底フラスコへ移し、トルエン(100ml)と p—トルエンスルホン酸 · 1水和 物 (432mg, 2. 3mmol)を加え、 15時間加熱還流した。溶媒を留去後、減圧蒸留に より精製し、 1— (3, 5 ジブロモフエ-ル)— 1 フエ-ルエチレンを得た。収率 78%。
[0102] 得られた 1ー(3, 5 ジブロモフエ-ル )ー1 フエ-ルエチレンを用いて、合成例 1と 同様の反応を行うことで 1— (3, 5—ジブロモフエ-ル)— 1 フエ-ルー 2—メチレンシク 口プロパンを合成した。 1H-NMR (200 MHz, CDC1 , δ ppm); 1.84 (d, J = 9.2 Hz,
3
1H), 1.95 (d, J = 9.2 Hz, 1H), 5.64 (s, 1H), 5.82 (s, 1H), 7.23-7.31 (m, 7H), 7.49 (s, 1H)。 [0103] (合成例 11) 1— (3, 5—ジフエ-ルフエ-ル)— 1 フエ-ルー 2—メチレンシクロプロ パンの合成
窒素雰囲気下、 1— (3, 5 ジブロモフエ-ル)— 1—フエ-ルー 2—メチレンシクロプロ ノ ン(130mg、 0. 36mmol)、フエ二ノレボロン酸(100mg、 0. 82mmol)、テトラキス 卜リフエ-ルホスフィンパラジウム(60. 2mg、 0. 054mmol)、炭酸カリウム(986mg、 7. 2mmol)、テトラブチルアンモ -ゥムクロライド(27. 8mg、 0. 089mmol)、ベンゼ ン(7ml)および水(7ml)を丸底フラスコに入れ、 75°Cで 48時間撹拌した。室温に戻 した後、エーテルで抽出し溶媒を留去した。カラムクロマトグラフィーにより精製するこ とで、 1— (3, 5—ジフエ-ルフエ-ル)— 1 フエ-ルー 2—メチレンシクロプロパンを得た 。収率 93%。 — NMR (200 MHz, CDC1 , δ ppm); 1.97 (m, 2Η), 5.65 (s, 1H), 5.88
3
(s, 1H), 7.21-7.65 (m, 18H)。
[0104] (合成例 12) 1, 5—ジ (4ーメトキシフエ-ル)ビシクロ [3. 1. 0]へキサンの合成
窒素気流下、丸底フラスコにトリフエ-ルメチルホスホ-ゥムョージド(8. 08g、 20m mol)、乾燥 THF (60mL)を入れ、カリウム—t—ブトキシド(2. 24g、 20mmol)を加え て 30分間室温で攪拌し、黄色溶液を得た。この溶液を、別の丸底フラスコに入れた 1 , 5—ジ(4ーメトキシフエ-ル)— 1, 5 ペンタジオン(6. 25g、 20mmol)の乾燥 THF 溶液(140mL)にゆっくり加えた。 12時間攪拌した後、水を加え、エーテルで抽出し た。カラムクロマトグラフィーによって精製し、 1, 5—ジ (4ーメトキシフエ-ル) 5—へキ セン一 1 オンを得た。収率 56%。 NMR (200 MHz, CDC1 , δ ppm); 1.89 (tt, J =
3
7.3, 7.3 Hz, 2H), 2.59 (t, J = 7.3 Hz, 2H), 2.92 (t, J = 7.3 Hz, 2H), 3.81 (s, 3H), 3.86 (s, 3H), 5.00 (s, 1H), 5.25 (s, 1H), 6.87 (ΑΑ'ΧΧ', J = 6.5 Hz, 2H), 6.91 (ΑΑ'ΧΧ', J = 8.8 Hz, 2H), 7.38 (ΑΑ'ΧΧ', J = 8.8 Hz, 2H), 7.89 (ΑΑ'ΧΧ', J = 6.5 Hz, 2H)0
[0105] 窒素気流下、フラスコに 1, 5—ジ(4ーメトキシフエ-ル)— 5—へキセン 1 オン(1. 5 5g、 5mmol)、メタノーノレ(15mL)を人れ、 4—トシノレヒドラゾン(1. 02g、 5. 5mmol) のメタノール(5mL)溶液を一気に加えた。室温で 5日間攪拌し、析出した粉末をろ過 した。この粉末をへキサンでよく洗浄し、 5— (4 トシルヒドラゾノ) 1, 5— (4ーメトキシ フエ-ノレ)一ペンタン一 1—オンを得た。収率 93%。 JH-NMR (200 MHz, CDC1 , δ ppm);1.54 (m, 2H), 2.39 (s, 3H), 2.50 (m, 4H), 3.80 (s, 3H), 3.84 (s, 3H), 4.98 (s, 1H), 5.27 (s, 1H), 6.78 (ΑΑ'ΧΧ', J = 9.0 Hz, 2H), 6.89 (ΑΑ'ΧΧ', J = 8.8 Hz, 2H), 7.26 (ΑΑ'ΧΧ', J = 8.4 Hz, 2H), 7.31 (ΑΑ'ΧΧ', J = 8.8 Hz, 2H), 7.45 (ΑΑ'ΧΧ', J = 9.0 Hz, 2H), 7.79 (ΑΑ'ΧΧ', J = 8.4 Hz, 2H)。
[0106] 窒素気流下、フラスコに 5— (4 トシルヒドラゾノ)ー1, 5— (4ーメトキシフエ-ル) ペン タン 1 オン(476. 8mg、 1. Ommol) ,乾燥塩化メチレン lOmLを入れ、遮光、氷 浴しながらトリフルォロボラン'エーテラート(0. 14mL、 1. lmmol)を加え、 20分間 攪拌した。さらに室温で 3時間攪拌し、水(5mL)をカ卩えた。暗所にて塩化メチレンで 抽出し、溶媒を留去した。ここにベンゼン(lOmL)を入れ、窒素下で 2時間加熱還流 した。溶媒を留去し、カラムクロマトグラフィーと再結晶により精製することで 1, 5 ジ( 4ーメトキシフエ-ル)ビシクロ [3. 1. 0]へキサンを得た。収率 40%。融点 92— 93°C。 JH-NMR (200 MHz, CDC1 , δ ppm); 1.24—1.50 (m, 3 H), 1.79 (m, 1H), 2.052.37
3
(m, 4H), 3.72 (s, 6 H), 6.69 (d, J = 8.8 Hz, 4H), 6.98 (d, J = 8.8 Hz, 4H)。
[0107] (実施例 1) CIDEP法によるトリメチレンメタンカチオンラジカルの観測 CIDEPス ベクトルの測定には従来より行われている方法 (例えば、第 4版実験化学講座、第 8 卷、分光 III、 541頁、 1992、丸善を参照)によって行った。光源にルモ-タス社製ェ キシマーレーザー EX600、スペクトル測定にバリアン社製電子スピン共鳴測定装置 E-109およびブルカー社製電子スピン共鳴測定装置 ESP-380Eを用い、デジタル オシロスコープによって過渡変化を観測した。合成例 1で得た 1, 1 ビス (4ーメトキシ フエ-ル )ー2—メチレンシクロプロパン(50mM)の DMSO溶液に、増感剤としてクロ ラ-ル(10mM)を加えた。この溶液に室温でクマリン 440を用いた XeClレーザー(4 41nm)を照射しながら CIDEPスペクトルを測定したところ、図 3に示すスペクトルが 得られた。文献 . Ikedaら、 J. Am. Chem. Soc. 2003, 125, 9147-9157)との比較から 、トリメチレンメタンカチオンラジカルが発生して 、ることが確認された。
[0108] (実施例 2) ESRによるトリメチレンメタンビラジカルの観測
ESRスペクトルの測定には、ブルカー社製電子スピン共鳴測定装置 ESP-380Eを 用いた。合成例 1で得た 1, 1 ビス (4ーメトキシフエ二ル )ー2—メチレンシクロプロパン( 50mM)の塩化メチレン溶液に、増感剤としてアントラキノン(50mM)をカ卩えた。この 溶液を 20Kに冷却し、 Quanta— Ray社製 YAGレーザー GCR— 14 (355nm)を照射 して ESR ^ベクトルを測定したところ、図 4に示すスペクトルが得られた。文献 . Ikedaら、 J. Am. Chem. Soc. 1998, 120, 5832-5833)との比較から、トリメチレンメタン ビラジカルが発生していることが確認された。 5Kまでさらに冷却し、シグナル強度の 温度変化の観測を行ったところ、このトリメチレンメタンビラジカルは基底 3重項である ことが確認された。
[0109] (実施例 3) トリメチレンメタンカチオンラジカルの過渡吸収スペクトル観測
過渡吸収スペクトルの測定には、従来より行われている方法 (例えば、第 4版実験 化学講座、第 7卷、分光 II、 275頁、 1992、丸善を参照)によって行った。光源にル モニタス社製エキシマーレーザー EX600、スペクトル測定にュ-ソク社製検出器 US P- 600を用いた。合成例 1で得た 1, 1—ビス(4ーメトキシフエ-ル)一 2—メチレンシクロ プロパン(3mM)のァセトニトリル溶液に、増感剤としてテトラシァノベンゼン(0. 8m M)を加えた。この溶液に室温で XeClレーザー(308nm)を照射しながら過渡吸収ス ベクトルを測定したところ、図 5に示すトリメチレンメタンカチオンラジカルの吸収スぺク トルが得られ、吸収極大波長は 500nmであった。
[0110] (実施例 4) サーモルミネセンスの観測
合成例 1で得た 1 , 1—ビス(4ーメトキシフエ-ル)—2—メチレンシクロプロパン(5mM )のメチルシクロへキサン溶液を合成石英製セルに入れ、脱気封管した。このセルを 液体窒素中に浸して溶液を凝固させ、コバルト 60からのガンマ線を 40時間照射した 。液体窒素中で吸収スペクトルをヒューレットパッカード製分光光度計 HP8452Aで 測定したところ、 510nmに吸収を観測した。実施例 3との比較から、この吸収はトリメ チレンメタンカチオンラジカルと同定された。このセルを液体窒素より取り出して昇温 すると、緑色の発光が観測された。発光スペクトルを浜松フォト-タス社製マルチチヤ ンネル検出器 PMA11で測定したところ、図 6に示した発光スペクトルが得られ、発光 極大波長は 561nmであった。
[0111] つまり、 1, 1—ビス(4ーメトキシフエ-ル)— 2—メチレンシクロプロパンの一電子酸化 によってトリメチレンメタンカチオンラジカルが発生し、電子との再結合によってトリメチ レンメタンビラジカルからの発光が進行した。 [0112] (実施例 5) 1, 1—ビス(4ーメトキシフエ-ル)— 2—メチレンシクロプロパンを用いた 有機 EL素子の作製
ポリビュル力ルバゾール(77重量部)、 2—(4ービフェ-ルィル)ー5—(4 1;—ブチルフ ェ-ル )ー1, 3, 4ーォキサジァゾール(15重量部)、合成例 1で得た 1, 1 ビス (4ーメト キシフエ-ル)ー2—メチレンシクロプロパン(8重量部)の混合物をァ-ノールに溶解し (濃度 2wt%)、塗布溶液を調製した。 ITO (酸化インジウム錫)を 1. 6mm幅にバタ ーンユングしたガラス基板上に、乾燥窒素環境下でスピン塗布して 1, 1 ビス (4ーメト キシフエ-ル )ー2—メチレンシクロプロパンを共存させたポリマー発光層(膜厚 lOOnm )を形成した。次いで、乾燥窒素環境下、ホットプレート上で 80°CZ5分間加熱乾燥 した。得られたガラス基板を真空蒸着機中に移し、上記発光層上に Ca (膜厚 20nm) 、 A1 (膜厚 lOOnm)の順に電極を形成した。有機 EL素子の特性は室温にて、電流 電圧特性をヒューレットパッカード社製の微小電流計 4140Bで測定し、発光輝度はト プコン社製 SR— 3で測定した。 ITOを陽極、 CaZAlを陰極にして電圧を印加したとこ ろ、約 30Vで淡黄色発光が観測された。発光スペクトルを図 8の実線で示す。
[0113] (比較例 1)
1 , 1 ビス(4ーメトキシフエ-ル)—2—メチレンシクロプロパンを添カ卩しな!/、こと以外 は、実施例 5と同様にして ITOZポリマー発光層 ZCaZAl素子を作製した。得られ た ITO/ポリマー発光層/ CaZAl素子を電源に接続し、 ITOを陽極、 CaZAlを陰 極にして電圧を印加したところ、約 20Vで青色発光が観測された。発光スペクトルを 図 8の破線で示す。
[0114] (実施例 6) サーモルミネセンスの観測
合成例 2で得た 1 (2 ナフチル)ー1 フエ-ルー 2—メチレンシクロプロパン(5mM) のメチルシクロへキサン溶液を合成石英製セルに入れ、脱気封管した。このセルを液 体窒素中に浸して溶液を凝固させ、コバルト 60からのガンマ線を 40時間照射した。 液体窒素より取り出して昇温すると、赤色の発光が観測された。発光スペクトルを図 9 に示す。
[0115] (実施例 7) 1— (2—ナフチル)—1—フエ-ルー 2—メチレンシクロプロパンを用いた有 機 EL素子の作製 ポリビュル力ルバゾール(72重量部)、 2—(4ービフェ-ルィル)ー5—(4 1;—ブチルフ ェ-ル )— 1, 3, 4ーォキサジァゾール(21重量部)、合成例 2で得た 1 (2 ナフチル) 1 フエ-ルー 2—メチレンシクロプロパン(7重量部)の混合物をァ-ノールに溶解し (濃度 2wt%)、塗布溶液を調製した。実施例 5と同様にして有機 EL素子を作成し、 I TOを陽極、 CaZAlを陰極にして電圧を印加したところ、約 20Vでピンク色発光が観 測された。発光スペクトルを図 10の実線で示す。
[0116] (比較例 2)
1— (2—ナフチル)—1 フエ-ルー 2—メチレンシクロプロパンを添カ卩しないこと以外は 、実施例 7と同様にして有機 EL素子を作製した。得られた有機 EL素子を電源に接 続し、 ITOを陽極、 CaZAlを陰極にして電圧を印加したところ、約 15Vで青色発光 が観測された。発光スペクトルを図 10の破線で示す。
[0117] (実施例 8) サーモルミネセンスの観測
合成例 12で得た 1, 5—ジ (4ーメトキシフエ-ル)ビシクロ [3. 1. 0]へキサン(5mM) のメチルシクロへキサン溶液を合成石英製セルに入れ、脱気封管した。このセルを液 体窒素中に浸して溶液を凝固させ、コバルト 60からのガンマ線を 40時間照射した。 液体窒素より取り出して昇温すると、黄色の発光が観測された。発光スペクトルを図 1 1に示す。
[0118] (実施例 9) 1, 5—ジ (4ーメトキシフエニル)ビシクロ [3. 1. 0]へキサンを用いた有機 EL素子の作製
ポリビュル力ルバゾール(72重量部)、 2—(4ービフェ-ルィル)ー5—(4 1;—ブチルフ ェニル) 1, 3, 4ーォキサジァゾール(21重量部)、合成例 12で得た 1, 5—ジ (4ーメト キシフエ-ル)ビシクロ [3. 1. 0]へキサン(7重量部)の混合物をァ-ソールに溶解し (濃度 2wt%)、塗布溶液を調製した。実施例 5と同様にして有機 EL素子を作成し、 I TOを陽極、 CaZAlを陰極にして電圧を印加したところ、約 25Vで淡ピンク色発光が 観測された。発光スペクトルを図 12の実線で示す。
[0119] (比較例 3)
1, 5—ジ (4ーメトキシフエ-ル)ビシクロ [3. 1. 0]へキサンを添カ卩しないこと以外は、 実施例 9と同様にして有機 EL素子を作製した。得られた有機 EL素子を電源に接続 し、 ITOを陽極、 CaZAlを陰極にして電圧を印加したところ、約 15Vで青色発光が 観測された。発光スペクトルを図 12の破線で示す。
図面の簡単な説明
[図 1]図 1は、本発明の発光システムの一実施態様を示す概念図である。
[図 2]図 2は、本発明の発光システムの一実施態様を示す概念図である。
[図 3]図 3は、実施例 1において観測されたトリメチレンメタンカチオンラジカルの CID EPスペクトル。
[図 4]図 4は、実施例 2において観測されたトリメチレンメタンビラジカルの ESR^ぺクト ル。
[図 5]図 5は、実施例 3において観測されたトリメチレンメタンカチオンラジカルの過渡 吸収スペクトル。
[図 6]図 6は、実施例 4にお 、て観測されたサーモルミネッセンスを利用した発光装置 の発光スペクトル。
[図 7]図 7は、実施例 4にお 、て観測されたサーモルミネッセンスを利用した発光装置 からの発光を示す図面代用写真。
[図 8]図 8は、実施例 5及び比較例 1にお 、て観測されたエレクトロルミネセンスを利 用した発光装置の発光スペクトル。
[図 9]図 9は、実施例 6にお 、て観測されたサーモルミネッセンスを利用した発光装置 の発光スペクトル。
[図 10]図 10は、実施例 7及び比較例 2において観測されたエレクトロルミネセンスを 利用した発光装置の発光スペクトル。
[図 11]図 11は、実施例 8において観測されたサーモルミネッセンスを利用した発光装 置の発光スペクトル。
[図 12]図 12は、実施例 9及び比較例 3において観測されたエレクトロルミネセンスを 利用した発光装置の発光スペクトル。

Claims

請求の範囲
[I] 第一の化学物質が、第一の化学物質とは異なる化学構造を有する第二の化学物 質に変化し発光することを特徴とする発光システム。
[2] 第二の化学物質が、発光後に第一の化学物質に戻る請求項 1記載の発光システム
[3] 第一の化学物質に電荷を注入することにより、第一の化学物質とは異なる化学構 造を有する第二の化学物質の酸化体又は還元体を生成し、さらに前記電荷と対とな る電荷を注入することにより励起状態にある第二の化学物質を生成し発光させること を特徴とする化学物質の発光方法。
[4] 第二の化学物質が、発光後に第一の化学物質に戻る請求項 3記載の発光方法。
[5] 第一の化学物質が、第一の化学物質とは異なる化学構造を有する第二の化学物 質に変化し発光することを特徴とする発光用化学物質。
[6] 第二の化学物質が、発光後に第一の化学物質に戻る請求項 5記載の発光用化学 物質。
[7] 第二の化学物質が、第一の化学物質からの結合生成反応を経て生成する請求項
5又は 6記載の発光用化学物質。
[8] 第二の化学物質が、第一の化学物質力 の結合開裂反応を経て生成する請求項
5又は 6記載の発光用化学物質。
[9] 第二の化学物質が、結合開裂反応を経て第一の化学物質に戻る請求項 5— 7いず れか記載の発光用化学物質。
[10] 第二の化学物質が、結合生成反応を経て第一の化学物質に戻る請求項 5、 6又は
8記載の発光用化学物質。
[II] 第二の化学物質が、モノラジカル又はビラジカルを有する開殻種である請求項 5— 10 ヽずれか記載の発光用化学物質。
[12] 第二の化学物質の基底多重度が三重項である請求項 5— 1 IV、ずれか記載の発光 用化学物質。
[13] 下記式(1)で表される請求項 5— 12いずれか記載の発光用化学物質。
[化 1]
Figure imgf000035_0001
(1 )
(式中、 R— Rは、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプト
1 6
基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアルキ ルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R— Rはそれぞれ同一であっても異なっていて
1 6
もよい nさらに、 R一 Rは、 R、 -OR、 -SR、 -OCOR 、 一 COOR 、 一 SiR R
1 6 7 8 9 10 11 12 13
R 、および NR R (ただし、 R一 R は水素原子、ハロゲン原子、シァノ基、ニトロ
14 15 16 7 16
基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の 一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7— 30個の ァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換され たハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換ァラルキ ル基を表し、 R一 R はそれぞれ同一であっても異なっていてもよい。)からなる群か
7 16
ら選択される置換基を有していてもよい。 )
下記式 (4)で表される請求項 5— 12V、ずれか記載の発光用化学物質。
[化 2]
Figure imgf000035_0002
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
17 26
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
17 26
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
17 26 27 28 29 30 31
R R R 、および NR R (ただし、 R R は水素原子、ハロゲン原子、シァノ
32 33 34 35 36 27 36
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
27 36
なる群力 選択される置換基を有していてもよい。 )
[15] 下記式(7)で表される請求項 5— 121、ずれか記載の発光用化学物質。
[化 3]
Figure imgf000036_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
37 42
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
37 42
てもよい。さらに、 R OR 、 一 COOR 、 一 Si
37一 R は、 一 R 、 一 OR 、 一 SR , -OC
42 43 44 45 46 47
R R R 、および NR R (ただし、 R — R は水素原子、ハロゲン原子、シァノ
48 49 50 51 52 43 52
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
43 52
なる群力も選択される置換基を有していてもよい。 m及び nは、 1一 3の整数である。 ) 下記式(10)で表される請求項 5— 12いずれか記載の発光用化学物質。
[化 4]
Figure imgf000037_0001
(式中、 R は、水素原子、ハロゲン原子、シァノ基、ニトロ基、水酸基、メルカプ
53 58
ト基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基、アルコキシ基又はアル キルチオ基;炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基、炭 素数 6— 30個のァリールォキシ基、炭素数 2— 30個のへテロアリールォキシ基、炭 素数 6— 30個のァリールチオ基、炭素数 2— 30個のへテロアリールチオ基又は炭素 数 7— 30個のァラルキル基を表し、 R — R はそれぞれ同一であっても異なってい
53 58
てもよい。さらに、 R 一 R は、 一 R 、 一 OR 、 一 SR 、 一 OCOR 、 一 COOR 、 一 Si
53 58 59 60 61 62 63
R R R 、および NR R (ただし、 R R は水素原子、ハロゲン原子、シァノ
64 65 66 67 68 59 68
基、ニトロ基;炭素数 1一 22個の直鎖、環状もしくは分岐アルキル基又はそれらの水 素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基; 炭素数 6— 30個のァリール基、炭素数 2— 30個のへテロアリール基もしくは炭素数 7 一 30個のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で 置換されたハロゲン置換ァリール基、ハロゲン置換へテロアリール基、ハロゲン置換 ァラルキル基を表し、 R — R はそれぞれ同一であっても異なっていてもよい。)から
59 68
なる群力も選択される置換基を有していてもよい。 mは、 1一 3の整数である。 ) 請求項 5— 16いずれか記載の発光用化学物質を含む発光装置。 請求項 5— 16いずれか記載の発光用化学物質を含むエレクト口ルミネッセンス素 子。
請求項 5— 16いずれか記載の発光用化学物質と、低分子化合物及び Z又は高分 子化合物とを含有する発光用混合物。
PCT/JP2004/019252 2003-12-22 2004-12-22 発光システム、発光方法及び発光用化学物質 WO2005062677A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005516518A JPWO2005062677A1 (ja) 2003-12-22 2004-12-22 発光システム、発光方法及び発光用化学物質
US10/583,946 US20070138945A1 (en) 2003-12-22 2004-12-22 Luminescence system, method of luminescence, and chemical substance for luminescence
US12/372,437 US20090163743A1 (en) 2003-12-22 2009-02-17 Luminescence system, method of luminescence, and chemical substance for luminescence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-424882 2003-12-22
JP2003424882 2003-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/372,437 Division US20090163743A1 (en) 2003-12-22 2009-02-17 Luminescence system, method of luminescence, and chemical substance for luminescence

Publications (1)

Publication Number Publication Date
WO2005062677A1 true WO2005062677A1 (ja) 2005-07-07

Family

ID=34708803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019252 WO2005062677A1 (ja) 2003-12-22 2004-12-22 発光システム、発光方法及び発光用化学物質

Country Status (5)

Country Link
US (2) US20070138945A1 (ja)
JP (1) JPWO2005062677A1 (ja)
KR (1) KR100806989B1 (ja)
CN (1) CN100512582C (ja)
WO (1) WO2005062677A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139501A1 (en) * 2008-05-16 2009-11-19 Canon Kabushiki Kaisha Organic light emitting device, image display apparatus, camera

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072100A1 (en) 2018-05-05 2020-04-09 Azoulay Jason D Open-shell conjugated polymer conductors, composites, and compositions
EP3853288A4 (en) 2018-09-21 2022-07-27 Joshua Tropp THIOL-BASED POST MODIFICATION OF CONJUGATED POLYMERS
US11781986B2 (en) 2019-12-31 2023-10-10 University Of Southern Mississippi Methods for detecting analytes using conjugated polymers and the inner filter effect

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333987A (en) * 1976-09-10 1978-03-30 Seiko Instr & Electronics Ltd Electrochemical luminous display device
JPS61258889A (ja) * 1985-05-14 1986-11-17 Canon Inc 照明装置
JPH01234489A (ja) * 1988-03-12 1989-09-19 Daiso Co Ltd フォトクロミック蛍光色素
JPH07150136A (ja) * 1993-04-02 1995-06-13 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JPH1121285A (ja) * 1990-08-30 1999-01-26 Tropix Inc 化学発光性1,2−ジオキセタン化合物
JP2002196375A (ja) * 2000-12-27 2002-07-12 Sharp Corp 表示・調光素子、その制御方法およびその製造方法
JP2002256261A (ja) * 2001-02-28 2002-09-11 Matsushita Electric Ind Co Ltd 発光材料及びそれを用いた発光表示装置及びその製造方法
JP2003005678A (ja) * 2001-06-25 2003-01-08 Tsubasa System Co Ltd 発光ステッカー
JP2004026665A (ja) * 2002-06-21 2004-01-29 Sangaku Renkei Kiko Kyushu:Kk 化学発光性インドール誘導体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121638A1 (en) * 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333987A (en) * 1976-09-10 1978-03-30 Seiko Instr & Electronics Ltd Electrochemical luminous display device
JPS61258889A (ja) * 1985-05-14 1986-11-17 Canon Inc 照明装置
JPH01234489A (ja) * 1988-03-12 1989-09-19 Daiso Co Ltd フォトクロミック蛍光色素
JPH1121285A (ja) * 1990-08-30 1999-01-26 Tropix Inc 化学発光性1,2−ジオキセタン化合物
JPH07150136A (ja) * 1993-04-02 1995-06-13 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JP2002196375A (ja) * 2000-12-27 2002-07-12 Sharp Corp 表示・調光素子、その制御方法およびその製造方法
JP2002256261A (ja) * 2001-02-28 2002-09-11 Matsushita Electric Ind Co Ltd 発光材料及びそれを用いた発光表示装置及びその製造方法
JP2003005678A (ja) * 2001-06-25 2003-01-08 Tsubasa System Co Ltd 発光ステッカー
JP2004026665A (ja) * 2002-06-21 2004-01-29 Sangaku Renkei Kiko Kyushu:Kk 化学発光性インドール誘導体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139501A1 (en) * 2008-05-16 2009-11-19 Canon Kabushiki Kaisha Organic light emitting device, image display apparatus, camera
US8354788B2 (en) 2008-05-16 2013-01-15 Canon Kabushiki Kaisha Organic light emitting device

Also Published As

Publication number Publication date
US20070138945A1 (en) 2007-06-21
KR20060103926A (ko) 2006-10-04
CN100512582C (zh) 2009-07-08
CN1898995A (zh) 2007-01-17
KR100806989B1 (ko) 2008-02-25
US20090163743A1 (en) 2009-06-25
JPWO2005062677A1 (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
JP6825195B2 (ja) 有機電界発光素子
JP6466913B2 (ja) 発光材料、有機発光素子および化合物
JP6754422B2 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP5835061B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
KR20150005583A (ko) 유기 발광 소자 그리고 그것에 사용하는 발광 재료 및 화합물
JP6374329B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
JP5920013B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
WO2007119816A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006001842A (ja) 化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007132886A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016532288A (ja) 有機発光ダイオードにおいて使用するための一置換されたジアザベンゾイミダゾールカルベン金属錯体
TWI518166B (zh) An organic electroluminescent device polymer, and an organic electroluminescent device using the cured product thereof
JP2019505505A (ja) 光電子部品および電子部品、特に有機発光ダイオード(oled)のための新しいエミッタ材料およびマトリクス材料
TW201514169A (zh) 有機電場發光元件用材料及使用其的有機電場發光元件
WO2019004254A1 (ja) 発光材料、化合物、遅延蛍光体および発光素子
JP6387311B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
TW200906764A (en) Charge transport materials for luminescent applications
JP6215674B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
Cho et al. Regioisomer effects of dibenzofuran-based bipolar host materials on yellow phosphorescent OLED device performance
WO2021251461A1 (ja) 化合物、発光材料および発光素子
JP4525190B2 (ja) 金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス素子
KR101576921B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP4525187B2 (ja) 金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス素子
US20090163743A1 (en) Luminescence system, method of luminescence, and chemical substance for luminescence
KR101562882B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038418.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516518

Country of ref document: JP

Ref document number: 1020067012230

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007138945

Country of ref document: US

Ref document number: 10583946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067012230

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10583946

Country of ref document: US