WO2005061886A1 - Turbine hydrodynamique alimentee par les courants marins - Google Patents

Turbine hydrodynamique alimentee par les courants marins Download PDF

Info

Publication number
WO2005061886A1
WO2005061886A1 PCT/ES2004/000571 ES2004000571W WO2005061886A1 WO 2005061886 A1 WO2005061886 A1 WO 2005061886A1 ES 2004000571 W ES2004000571 W ES 2004000571W WO 2005061886 A1 WO2005061886 A1 WO 2005061886A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
turbine
currents
hydrodynamic
axis
Prior art date
Application number
PCT/ES2004/000571
Other languages
English (en)
Spanish (es)
Inventor
Antonio Balseiro Pernas
Original Assignee
Antonio Balseiro Pernas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antonio Balseiro Pernas filed Critical Antonio Balseiro Pernas
Publication of WO2005061886A1 publication Critical patent/WO2005061886A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • This invention deals with a new design of the Hydrodynamic Turbine and its applications to take advantage of the enormous energy potential of marine currents, in order to reduce manufacturing, installation and maintenance costs in the always difficult marine environment and to minimize the environmental impact, helping to make this technology competitive with other renewable energy sources.
  • tidal currents are considered as priority in locations near the coast and reach speeds greater than 2.5 m / s (5 knots), with higher energy density than ocean currents. in general, although the latter have immense flows.
  • the diameter of the marine rotor is of the order of 3 times smaller for the same power, since the ratio of sea / air densities is of the order of 820.
  • the prediction in the generation of power by currents marine (following the time of rise and fall of the tides), as well as the high capacity factor that can be greater than 45%, are other comparative advantages.
  • the experience and wind technology, including offshore, is usable for the development of this new technology, it is necessary to continue deepening in various aspects of equipment, installation and maintenance in the marine environment, phenomena of cavitation in the blades, etc.
  • the innovative Hydrodynamic Turbine for marine currents has a horizontal axis (rotor axis aligned with currents) and comprises all the elements to transform the energy of the currents into "useful energy”.
  • the different elements that make it up can be seen, the most prominent being the rotor, which normally consists of the blades (1), the hub (3) that supports the blades and the bearing ( 5) which rests on the support structures and allows the rotor to rotate freely.
  • the hub and hollow blades are designed and shovel-tip nozzles (2) are incorporated such that there is an internal fluid vein between the center of the rotor and the pointed nozzles.
  • the hub has an open area in which a crown of fixed blades (4) is inserted, integral with the hub, and which serves as a connection between the hub and the bearing.
  • an internal current or "secondary current” is created at a higher speed, which flows from the center of the rotor through the interior of the blades to the outlet through the nozzles.
  • This current originates from the centrifugal effect inside the blades and from the venturi effect in the nozzles, so that the rotor, in addition to capturing energy, also performs the function of a suction pump.
  • the secondary current with higher energy density, can drive a turbine impeller (6) with a diameter much smaller than the rotor, which can be housed inside the hub as a bulb-type turbine aligned with the axis of the rotor.
  • Another very important advantage is to dispense with the mechanical multiplier (with all its problems of periodic maintenance, environmental impact due to the use of lubricants, etc.), since the rotor converts the captured energy into another of higher density, as a "hydrodynamic multiplier" .
  • Another advantage is that the rotor is self-regulating to operate or variable speed, thus avoiding the active control systems of the blades, which can be fixed. The greatest tendency to cavitation resides in the extrados of the blade end (which is one of the limitations of this technology), depending on the relative speed of the fluid at the tip of the blade and the hydrostatic pressure depending on the depth of the rotor. .
  • the secondary current has a speed of the order of Lambda times greater
  • a design speed of the marine current of 2.5 m / s and a rotor diameter of the order of 20 m (power of 1 Mw) at Lambda 6 we have the rotor rotating at 15 rpm, while the 1.2 m diameter turbine rotates at about 300 rpm.
  • the design parameters are highly dependent on the hub depth (rotor axis) in the marine currents at each site. The design strategies for different situations are outlined below.
  • variable speed of the rotor is self-regulating at "constant Lambda", since the speed of the marine current (which generates the rotor power) and the secondary current (which absorbs this power and transfers it to the turbine) must be kept at a constant ratio, with the ratio of rotor and turbine powers also constant proportional to Lambda.
  • the turbine's power limiting valve (9) is activated, since the differential pressure (outside and inside the hub) would overcome the resistance of the valve's "tared” spring that would allow an input of flow in by-pass, increasing the speed of the rotor (although limited by the viscous medium) to dissipate excess energy.
  • the synchronous generator can be permanent magnets, for simplicity and to avoid thermal dissipation (rotor coils). However, at variable speed currents, and therefore at variable power, the generator power factor could not be controlled with permanent magnets (constant magnetic flux). For this, a grid-connected transformer with load regulation is used. The number of pole pairs could even be reduced to 6, depending on the conditions of the location and arrangement of the turbine, modified bulb type, which in this case would operate at 500 rpm.
  • Kaplan turbine steererable impeller blades
  • semi-Kaplan which would be easier because only the flow deflector blades (8) could be steerable.
  • a propeller turbine is considered, which is the simplest because it has the deflector blades and the fixed impeller blades.
  • FIG-2 For currents due to tides, to depths not much greater than 30 m, it is possible to place two twin rotors (10) at both ends of a horizontal tubular structure (11), supported in a "T" shape on another anchored vertical structure to the bottom or pile (12), on which the turbine-generator group (13) is coupled by gravity.
  • the guided submarine coupling system of the group is made up of two or more guide cables (14) that can slide through holes (15) in the support base of the group on the pile.
  • the lower end of the cables is attached to a counterweight (16) that descends by gravity to the stops (17).
  • the upper end is provided with a float (18), whose upward thrust is less than the counterweight but maintains the hitch (19) at the preset height, making it possible to catch it from the surface barge.
  • a counterweight (23) is placed diametrically opposite the rotor, with respect to this axis, to locate the center of gravity of the assembly close to said axis.
  • the center of the axial thrust force (24) of the rotor is displaced from said axis, which contains the bearing (26), so that it keeps the rotor aft always aligned with the current.
  • Rotation of the horizontal structure on the vertical axis (25) can also be allowed, so that the plane of both rotors is auto-oriented perpendicular to the sea current, due to the axial thrust forces of both rotors, with the point of application behind the axis of rotation on the vertical structure.
  • the guided submarine coupling system is implemented for the set of the two rotors.
  • Figure-4 The previously described configurations can be used to desalinate water by the reverse osmosis method, replacing the electric generator with a pressure pump (27), which drives the pressurized seawater through the osmosis membranes (28). The fresh water is collected in the tank (29) and the brine is returned to the sea, its disposal not being a problem.
  • Figure-1 Represents a section of the rotor of the Hydrodynamic Turbine, which consists of the blades (1) with pointed nozzles (2), the hub (3) that supports the blades and the fixed blades (4) to the hub that connect it to the bearing (5).
  • the generator housing (7) supports said bearing, as well as that of the impeller of the turbine (6), which is equipped with flow baffles (8) and a power limiting valve (9).
  • Figure-2 Represents an embodiment of the turbine with two twin rotors (10), whose secondary current drives the turbine-generator group (13), located vertically on the pile (12) anchored to the seabed.
  • Figure-3 idem to the previous one, where the self-orientation of each rotor with respect to the horizontal axis (22) or the set of rotors with respect to the vertical axis (25) can be seen. It serves as a clarification to Claims 3 and 4.
  • Figure-4 Represents an application to desalinate water, either by reverse osmosis using a pressure pump turbine (27), osmosis membranes (28) and a fresh water collection tank (29), or by an evaporation method in throttle nozzles (30) and subsequent steam condensation in the condensation chamber (31). It serves as a clarification to Claim 5.
  • Figure-5 Represents another embodiment of the turbine, Floating Hydrodynamic Turbine, which remains self-oriented with the currents and in stable equilibrium, due to the configuration of the mooring to the ballast (32) and the float (33).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

L'invention concerne une turbine hydrodynamique équipée d'un rotor utilisant l'énergie fournie par les courants marins et servant en même temps de pompe d'aspiration, comportant des pales creuses avec des tuyères en pointe qui, par effet venturi et centrifuge, aspirent un courant intérieur à une vitesse supérieure. Cette caractéristique permet d'actionner une turbine de diamètre sensiblement inférieur tournant plus vite que le rotor, à laquelle peut être couplé de façon solidaire le générateur électrique, sans multiplicateur mécanique, ce qui permet ainsi d'obtenir un « multiplicateur hydrodynamique ». Le flux, avec une plus grande densité énergétique, peut être acheminé vers d'autres points de l'ensemble, par les structures tubulaires de support, pour des applications de dessalement de l'eau ou de production de H2 par électrolyse. L'invention concerne différentes configurations d'ancrage et d'auto-orientation des turbines, ainsi que des systèmes de couplage sous-marins destinés à des opérations d'entretien (minimal). La présente invention est compétitive par rapport à d'autres sources d'énergie et constitue par ailleurs une source d'énergie renouvelable.
PCT/ES2004/000571 2003-12-22 2004-12-21 Turbine hydrodynamique alimentee par les courants marins WO2005061886A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200303026 2003-12-22
ES200303026A ES2235647B1 (es) 2003-12-22 2003-12-22 Turbina hidrodinamica en corrientes marinas.

Publications (1)

Publication Number Publication Date
WO2005061886A1 true WO2005061886A1 (fr) 2005-07-07

Family

ID=34707592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000571 WO2005061886A1 (fr) 2003-12-22 2004-12-21 Turbine hydrodynamique alimentee par les courants marins

Country Status (2)

Country Link
ES (1) ES2235647B1 (fr)
WO (1) WO2005061886A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086037A1 (fr) * 2006-01-24 2007-08-02 William Kingston Système d'énergie marémotrice
GB2445413A (en) * 2007-01-04 2008-07-09 Uwe Bernhard Pascal Stein Fluid turbine with secondary turbine driven by induced flow
WO2008100157A1 (fr) * 2007-02-16 2008-08-21 Hydra Tidal Energy Technology As Dispositif flottant pour production d'énergie à partir de courants aquatiques
DE102007015834A1 (de) * 2007-03-30 2008-10-02 Voith Patent Gmbh Anlage zur Energiegewinnung aus einer Gewässerströmung
GB2458353A (en) * 2008-03-20 2009-09-23 Christopher Bradley Waterwheel generates power from secondary flow in rotating conduit
NO20082921L (no) * 2008-06-27 2009-12-28 Hydra Tidal Energy Tech As System for forankring av et flytende anlegg for produksjon av energi fra strømmer i en vannmasse
GB2486699A (en) * 2010-12-23 2012-06-27 Tidal Generation Ltd Rotor blades and rotor assemblies for water flow generator turbines
CN104246211A (zh) * 2013-03-05 2014-12-24 株式会社协和工程顾问 潜水式发电机
CN103306735B (zh) * 2012-04-28 2016-04-06 王政玉 一种混合动力机
US9506450B2 (en) 2012-10-17 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU547546A1 (ru) * 1973-04-23 1977-02-25 Ветроэлектрический агрегат
US4205943A (en) * 1978-01-25 1980-06-03 Philippe Vauthier Hydro-electric generator
US4350897A (en) * 1980-10-24 1982-09-21 Benoit William R Lighter than air wind energy conversion system
DE4100190A1 (de) * 1991-01-05 1992-07-09 Friedrich Becker Windkraftwandler
GB2256011A (en) * 1991-05-22 1992-11-25 I T Power Limited Floating water current turbine system
EP1199098A1 (fr) * 2000-10-19 2002-04-24 Gerardine Bowler Appareil de purification d'eau
US6652221B1 (en) * 1999-02-24 2003-11-25 Peter Praenkel Water current turbine sleeve mounting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU547546A1 (ru) * 1973-04-23 1977-02-25 Ветроэлектрический агрегат
US4205943A (en) * 1978-01-25 1980-06-03 Philippe Vauthier Hydro-electric generator
US4350897A (en) * 1980-10-24 1982-09-21 Benoit William R Lighter than air wind energy conversion system
DE4100190A1 (de) * 1991-01-05 1992-07-09 Friedrich Becker Windkraftwandler
GB2256011A (en) * 1991-05-22 1992-11-25 I T Power Limited Floating water current turbine system
US6652221B1 (en) * 1999-02-24 2003-11-25 Peter Praenkel Water current turbine sleeve mounting
EP1199098A1 (fr) * 2000-10-19 2002-04-24 Gerardine Bowler Appareil de purification d'eau

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086037A1 (fr) * 2006-01-24 2007-08-02 William Kingston Système d'énergie marémotrice
GB2445413A (en) * 2007-01-04 2008-07-09 Uwe Bernhard Pascal Stein Fluid turbine with secondary turbine driven by induced flow
WO2008100157A1 (fr) * 2007-02-16 2008-08-21 Hydra Tidal Energy Technology As Dispositif flottant pour production d'énergie à partir de courants aquatiques
US8668452B2 (en) 2007-02-16 2014-03-11 Hydra Tidal Energy Technology As Floating device for production of energy from water currents
DE102007015834A1 (de) * 2007-03-30 2008-10-02 Voith Patent Gmbh Anlage zur Energiegewinnung aus einer Gewässerströmung
GB2458353A (en) * 2008-03-20 2009-09-23 Christopher Bradley Waterwheel generates power from secondary flow in rotating conduit
US8446026B2 (en) 2008-06-27 2013-05-21 Hydra Tidal Energy Technology As System for mooring a floating plant for the production of energy from currents in water
NO20082921L (no) * 2008-06-27 2009-12-28 Hydra Tidal Energy Tech As System for forankring av et flytende anlegg for produksjon av energi fra strømmer i en vannmasse
WO2009157778A2 (fr) * 2008-06-27 2009-12-30 Hydra Tidal Energy Technology As Dispositif de production d'énergie à partir de courants d'une masse d'eau
WO2009157778A3 (fr) * 2008-06-27 2010-05-14 Hydra Tidal Energy Technology As Dispositif de production d'énergie à partir de courants d'une masse d'eau
GB2486699A (en) * 2010-12-23 2012-06-27 Tidal Generation Ltd Rotor blades and rotor assemblies for water flow generator turbines
GB2486699B (en) * 2010-12-23 2012-12-26 Tidal Generation Ltd Rotor blades
CN103306735B (zh) * 2012-04-28 2016-04-06 王政玉 一种混合动力机
US10094355B2 (en) 2012-10-03 2018-10-09 Kyowa Engineering Consultants Co., Ltd. Water turbine generator
US9506450B2 (en) 2012-10-17 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator
CN104246211A (zh) * 2013-03-05 2014-12-24 株式会社协和工程顾问 潜水式发电机
EP2896822A4 (fr) * 2013-03-05 2016-02-24 Kyowa Engineering Consultants Co Ltd Générateur submersible
US9506449B2 (en) 2013-03-05 2016-11-29 Kyowa Engineering Consultants Co., Ltd. Submersible power generator

Also Published As

Publication number Publication date
ES2235647A1 (es) 2005-07-01
ES2235647B1 (es) 2006-11-01

Similar Documents

Publication Publication Date Title
EP2603692B1 (fr) Système et procédé de génération d'électricité à partir d'un courant de fluide
JP4629050B2 (ja) 水により駆動される少なくともひとつのタービンのための支持装置
US7291936B1 (en) Submersible electrical power generating plant
JP5242135B2 (ja) 水流発電装置
ES2235647B1 (es) Turbina hidrodinamica en corrientes marinas.
JP2007515588A5 (fr)
JP2016113996A (ja) 風力発電システム
ES2905779T3 (es) Dispositivo de almacenamiento de energía de volante y método de su uso
US10151294B2 (en) Buoyant housing device enabling large-scale power extraction from fluid current
JP2004169564A (ja) 河川水流発電設備
JP4702652B2 (ja) 潮流発電装置を兼ねた風力発電装置
JP2014001689A (ja) 水流エネルギーを利用した発電装置
US11353001B1 (en) Hydrokinetic generator
KR20100135010A (ko) 수중부양회전체를 이용한 수중 발전장치
US20080014089A1 (en) Device For Utilizing The Kinetic Energy Of Flowing Water
JP2019515193A (ja) 潮流発電機
US20210363964A1 (en) Energy collecting systems of the marine, river and wind currents
EP3816433A1 (fr) Générateur d'énergie mobile et semi-immergé utilisant une turbine à roue d'eau
KR100849673B1 (ko) 복류식 조류발전장치 케이슨
KR101717425B1 (ko) 계류식 조류발전기
US20240141865A1 (en) Power plant
WO2020008236A1 (fr) Centrale électrique submersible fonctionnant avec les courants
WO2024189248A1 (fr) Système de génération d'énergie marémotrice à action verticale
ES2330174B1 (es) Sistema para el aprovechamiento electrico del movimiento de una masa de agua.
ES1286106U (es) Sistema captador de energía hidráulica

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase