WO2005058456A1 - Absetzbecken einer kläranlage - Google Patents

Absetzbecken einer kläranlage Download PDF

Info

Publication number
WO2005058456A1
WO2005058456A1 PCT/EP2004/014296 EP2004014296W WO2005058456A1 WO 2005058456 A1 WO2005058456 A1 WO 2005058456A1 EP 2004014296 W EP2004014296 W EP 2004014296W WO 2005058456 A1 WO2005058456 A1 WO 2005058456A1
Authority
WO
WIPO (PCT)
Prior art keywords
basin
settling
inlet
sedimentation
sedimentation basin
Prior art date
Application number
PCT/EP2004/014296
Other languages
English (en)
French (fr)
Inventor
Martin Armbruster
Original Assignee
Hydrograv Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrograv Gmbh filed Critical Hydrograv Gmbh
Priority to EP04803914A priority Critical patent/EP1694421A1/de
Publication of WO2005058456A1 publication Critical patent/WO2005058456A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0042Baffles or guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2427The feed or discharge opening located at a distant position from the side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2433Discharge mechanisms for floating particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2444Discharge mechanisms for the classified liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/245Discharge mechanisms for the sediments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2488Feed or discharge mechanisms for settling tanks bringing about a partial recirculation of the liquid, e.g. for introducing chemical aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to settling tanks of sewage treatment plants in which an at least two-phase mixture is separated.
  • this invention relates to plants in which so-called settling basins with predominantly horizontal flow are used, for which it is known that high-level inlets to such basins in the prior art lead to poor cleaning performance. Definitions for when settling basins are considered to be predominantly horizontal can be found in the relevant design rules.
  • Such settling tanks are used worldwide in standard wastewater treatment processes in which wastewater ingredients are biodegraded.
  • Biological purification stages of sewage treatment plants often consist of aeration tanks as mixing reactors and secondary settling tanks as settling tanks.
  • activated sludge is circulated in a sludge-water suspension between the aeration tank and the secondary clarification tank.
  • Such a system describes, for example, patent specification DE 43 29 239 C2.
  • the primary task of the aeration tanks is to mix the biodegradable dirt in the wastewater with bacteria that decompose the dirt in the activated sludge to form a suspension and to optimize the biochemical degradation process by optimizing their ambient conditions, for example with regard to the oxygen content in the water.
  • Mixing reactors are therefore provided with devices which have a positive influence on the ambient conditions in order to increase the degradation effect. These can be surface aerators or pressure aerators, for example. Settling tanks are not provided with such devices.
  • Mixing reactors and sedimentation tanks are usually built as separate structures. However, solutions are also known in which the settling tank is arranged within the mixing reactor. On the one hand, this saves construction mass for external walls and, on the other hand, the sedimentation basin can be hydraulically loaded with suspension from the periphery. In the case of a combination of independent structures, settling tanks are often fed through central structures, the feed lines of which are generally laid as culverts below the settling tanks.
  • a maximum hydraulic load per tank surface is specified.
  • the required surface of the sedimentation basin results from the maximum hydraulic load on the sedimentation basin divided by the maximum surface loading.
  • an inlet structure When installing an inlet structure as a central structure within a secondary clarifier, its surface must be subtracted from the gross surface of the secondary clarifier.
  • state-of-the-art medium-sized structures are designed for secondary clarifiers with the smallest possible surface area to be installed individually on the respective sewage treatment plant in order to obtain the largest possible net surface area.
  • around 10% of the tank radius is considered to be a suitable size for the inlet radius for round secondary settling tanks, which means that the inlet structure takes up about 1% of the volume of the secondary settling tank.
  • the published patent application EP 1 354 614 AI discloses a technical solution with which the inlet energy to the secondary clarifier can be minimized with an adaptive inlet for all loads.
  • the inlet area of the inlet structure to the secondary clarifier is optimized depending on the existing load situation so that the lowest possible energy is given at the inlet surface for every situation. This is the case if, on the one hand, the vertical the entry surface to the separating mirror is small and on the other hand the entry surface has an optimal height h in for the current load situation.
  • Mixing processes caused by excess energy at the inlet and thus internal increases in the hydraulic load are then minimized in the secondary clarifier. Such intermixing processes return sludge that has already settled back into the stream of sludge that is still to be settled, and thus increase the internal load in the pool with constant external load.
  • a settling basin fed by a central structure is flowed through from the inside to the outside by the main flow.
  • the absolute hydraulic load-bearing capacity - that is the absolute flow rate of the mixture to be separated - can be increased paradoxically or over wide ranges by increasing the size of the circumference P; n at least does not decrease if the inlet structure is built within the sedimentation basin with a significantly larger diameter and circumference Pj n than in the prior art and thus deprives the basin of a comparatively large part of the space that is actually believed to be effective as a process space.
  • This is due to the fact that the effect of reducing the internal load on the pool through reduced interference for increasing inlet width B; n , e.g. B.
  • the invention is based on the object of reducing the overall construction volume of sewage treatment plants with a mixing reactor and downstream settling tank with a central structure in order to reduce the associated investment costs.
  • the object is surprisingly achieved in that settling tanks with flow through from inside to outside are removed from the inner space, which is counterproductive with regard to the phase separation, and made usable in terms of process technology by means of particularly large central structures.
  • This is particularly advantageous if a plant is designed so that the secondary settling tank has an internal inlet structure that is supplied with suspension by the mixing reactor.
  • the separated space can be used as an internal mixing reactor for substrate degradation. With a constant total volume of the basin, this creates additional process space that can be used in terms of process technology, without the efficiency of the sedimentation basin in terms of its function for phase separation being reduced by a smaller process space.
  • the function of the inlet structure goes beyond the hydraulic functions available in the prior art of guiding the incoming volume flow into the sedimentation basin as evenly and gently as possible with optimized shear gradients with optimized flocculation.
  • the resilience of the sedimentation basin i.e. the absolute amount of a multi-phase mixture that can be separated per time, may even increase due to the removal of part of its interior.
  • the inner space can also contain an additional sedimentation basin, which is flowed through from the outside in. This can be achieved by arranging an inlet structure within the sedimentation basin that separates the two rooms and that has at least two inlet surfaces.
  • the outer settling tank is fed through at least one outer inlet surface
  • the inner settling tank is fed through at least one inner inlet surface. translated basin.
  • At least one of the rooms intermittently for example as a mixing reactor and as a settling tank. This means that you can react to fluctuations in load, for example between dry and rainy weather. This means that a larger volume is available to the weaning process at least temporarily.
  • the volume flow of the mixture to be separated must be supplied to the outer sedimentation basin or, under certain circumstances, the two sedimentation basins at least as far as possible at the periphery in order to achieve the smallest possible inflow energy by means of an inflow width B ln that is as large as possible.
  • the inlet to the sedimentation basin / sedimentation basin should be at. at times relatively high up, in particular in the upper half of the basin, or in order to enable a high hydraulic load in predominantly horizontally flowed basins.
  • the process space of the mixing area can be enlarged by an additional mixing basin arranged within the settling basin.
  • an additional mixing basin arranged within the settling basin.
  • This system which has at least one independent mixing basin and at least one additional mixing basin as part of the basin, which serves as a sedimentation basin, with an inlet surface that at least largely encloses the mixing basin within the sedimentation basin and with regard to the inflow energy according to the statements in the published patent application EP 1 354 614 A1 has a favorable shape, the maximum wastewater load on the plant can be significantly increased compared to the prior art with the same construction volume due to its enlarged total mixing space and with optimized settling capacity.
  • An advantageous solution to the problem on which the invention is based arises from a hydraulic as well as from a procedural point of view for aeration systems, if sedimentation tanks are combined with inlet structures that are larger than in the prior art and that their interior by means of devices Use solutions other than phase separation.
  • a ventilation zone and a subsequent anaerobic degassing zone can usefully be provided within the inlet structure to a secondary clarifier.
  • inlet surfaces which are designed to be particularly energy-efficient and / or which, for example, B. by adapting the height of the inlet surface to the separating mirror position and / or by varying the height of the inlet surface hi n further reduce the inlet energy.
  • a further advantageous solution is obtained if load fluctuations caused by the system can be damped by the fact that within the system an additional volume flow from the system can be supplied to a volume flow entering a settling tank via a shortened flow path.
  • the basic function of the invention is independent of the precise geometric shape of the surface of the pool.
  • Fig. 1 combination of mixing reactor and secondary clarifier, in which the inlet structure to the secondary clarifier is equipped with additional devices, here a ventilation;
  • Fig. 2 plant in which the mixing reactor is arranged within the secondary clarifier
  • Fig. 3 secondary settling tank, in which a second settling tank is arranged within the secondary settling tank.
  • the system shown in Figure 1 is combined with an inlet structure 4, in which an additional device for procedural purposes, here a pressure ventilation in a ventilation zone, is installed.
  • the ventilation zone can extend over a partial volume or over the entire volume of the intake structure.
  • Mixers can also be installed in the intake structure.
  • FIG. 2 shows an example of a plant in which the mixing reactor 2 is arranged within the secondary settling tank 6 and thus also takes on the function as an inlet structure 4.
  • Figure 3 shows a secondary clarifier
  • the inlet structure 4 divides the basin into an inner and an outer space.
  • the outer space is operated as a settling basin through which the inlet flow flows from inside to outside, the inner basin as a settling basin through which outside flows.
  • the two tanks can also be operated alternately as mixing reactors and settling tanks.
  • fluctuations in load e.g. B. between dry and rainy weather can be reacted by using partial pools with low hydraulic load of the system as a vented mining volume, but with increased hydraulic load as a settling area.
  • the central structure can be designed so large that it can also be used again for process engineering purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Bei einem Absetzbecken (6) einer Kläranlage ist ein Raum abgetrennt, der zu verfah­renstechnischen Zwecken nutzbar gemacht ist. Beispielsweise ist ein Mischungsreak­tor (2) innerhalb des vom Absetzbecken (6) abgetrennten Raums angeordnet.

Description

Absetzbecken einer Kläranlage
Beschreibung
Die Erfindung betrifft Absetzbecken von Kläranlagen, in denen ein zumindest zweiphasiges Gemisch getrennt wird. Insbesondere betrifft diese Erfindung Anlagen, bei denen sogenannte überwiegend horizontal durchströmte Absetzbecken eingesetzt werden, für die bekannt ist, dass hoch liegende Einlaufe zu solchen Becken im Stand der Technik zu schlechten Reini- gungsleistungen führen. Definitionen dafür, wann Absetzbecken als überwiegend horizontal durchströmt gelten, können einschlägigen Bemessungsregeln entnommen werden.
Solche Absetzbecken werden weltweit in Standardverfahren der Abwasserreinigung eingesetzt, in denen Inhaltsstoffe von Abwasser biologisch abgebaut werden. Biologische Reinigungsstufen von Kläranlagen bestehen häufig aus Belebungsbecken als Mischungsreaktoren und Nachklärbecken als Absetzbecken. Zwischen Belebungsbecken und Nachklärbecken wird dabei Belebter Schlamm in einer Schlamm- Wasser-Suspension im Kreislauf geführt. Eine solche Anlage beschreibt zum Beispiel Patentschrift DE 43 29 239 C2.
Den Belebungsbecken kommt hauptsächlich die Aufgabe zu, die biologisch abbaubare Schmutzfracht des Abwassers mit Schmutzfracht zersetzenden Bakterien im Belebten Schlamm zu einer Suspension zu vermischen und durch Optimierung derer Umgebungsbedingungen, zum Beispiel bezüglich des Sauerstoffgehalts im Wasser, den biochemischen Ab- bauprozess günstig zu beeinflussen. Mischungsreaktoren werden daher mit Vorrichtungen versehen, die die Umgebungsbedingungen positiv beeinflussen, um die Abbauwirkung zu verstärken. Dies können zum Beispiel Oberflächenbelüfter oder Druckbelüfter sein. Absetzbecken werden nicht mit solchen Vorrichtungen versehen.
Zumeist werden Mischungsreaktoren und Absetzbecken als eigenständige Bauwerke erstellt. Es sind aber auch Lösungen bekannt, bei denen das Absetzbecken innerhalb des Mischungsreaktors angeordnet wird. Dadurch kann einerseits Baumasse für Außenwände eingespart werden und andererseits kann das Absetzbecken hydraulisch günstig von der Peripherie mit Suspension beschickt werden. Bei einer Kombination eigenständiger Bauwerke werden Absetzbecken häufig über Mittelbauwerke beschickt, deren Zulaufleitungen im allgemeinen als Düker unterhalb des Absetzbeckens verlegt sind.
Zur Bemessung der Baugröße eines Nachklärbeckens wird eine maximale hydraulische Belastung pro Beckenoberfläche, die sogenannte Oberflächenbeschickung, festgelegt. Die notwendige Oberfläche des Absetzbeckens ergibt sich aus der maximalen hydraulischen Belastung des Absetzbeckens dividiert durch die maximale Oberflächenbeschickung. Bei Einbau eines Einlaufbauwerks als Mittelbauwerk innerhalb eines Nachklärbeckens ist dessen Oberfläche von der Brutto-Oberfläche des Nachklärbeckens abzuziehen. Daraus resultiert, dass Mittelbauwerke im Stand der Technik für individuell auf der jeweiligen Kläranlage errichtete Nachklärbecken mit möglichst kleiner Oberfläche ausgeführt werden, um eine möglichst große Netto-Oberfläche zu erhalten. In der Praxis gelten für runde Nachklärbecken etwa 10 % des Beckenradius' als geeignete Größe für den Einlaufradius, womit das Einlaufbauwerk ca. 1 % des Volumens des Nachklärbeckens einnimmt.
Die Offenlegungsschrift EP 1 354 614 AI offenbart eine technische Lösung, mit der die Einlaufenergie zum Nachklärbecken mit einem adaptiven Einlauf für alle Belastungen minimiert werden kann. Dabei wird die Einlauffläche des Einlaufbauwerks zum Nachklärbecken je nach vorliegender Belastungssituation so optimiert, dass für jede Situation die geringst mögliche Energie an der Einlauffläche gegeben ist. Dies ist der Fall, wenn einerseits der vertikale Ab- stand der Einlauffläche zum Trennspiegel klein ist und andererseits die Einlauffläche eine für die aktuelle Belastungssituation optimale Höhe hin aufweist. Andererseits ist aus Offenle- gungsschrift EP 1 354 614 AI auch bekannt, dass die Einlaufenergie umso kleiner ist, je größer die Einlaufbreite Bin ist. Dann werden im Nachklärbecken durch Energieüberschuss am Einlauf verursachte Einmischungsvorgänge und somit interne Erhöhungen der hydraulischen Belastung minimiert. Solche Einmischungsvorgänge führen bereits abgesetzten Schlamm in den Strom noch abzusetzenden Schlamms zurück und erhöhen somit bei konstanter externer Belastung die beckeninterne Belastung.
Ein von einem Mittelbauwerk beschicktes Absetzbecken wird von der Hauptströmung von innen nach außen durchströmt. Es kann gezeigt werden, dass bei einem solchen Absetzbecken die absolute hydraulische Belastbarkeit - also die absolute Durchflussmenge des zu trennenden Gemischs - paradoxer Weise gesteigert werden kann oder über weite Bereiche der einer Erhöhung der Größe des Umfangs P;n zumindest nicht sinkt, wenn das Einlaufbauwerk innerhalb des Absetzbeckens mit deutlich größerem Durchmesser und Umfang Pjn als im Stand der Technik gebaut wird und dem Becken somit einen vergleichsweise großen Teil des Raumes entzieht, dem eigentlich Wirksamkeit als Prozessraum zugeschrieben wird. Dies liegt daran, dass die Wirkung der Verminderung der beckeninternen Belastung durch reduzierte Einmischung für größer werdende Einlaufbreite B;n, z. B. Pjn =2 π • R für runde Mittelbauwerke, und damit sinkender Einlaufenergie sich bis hin zu großen Radien auf die Beckeneffϊzienz deutlich stärker positiv auswirkt, als die Wirkung des Verlusts an Absetzbeckenvolumen negativen Einfluß auf die Trennleistung hätte. Daraus resultiert überraschender Weise, dass in einem von innen nach außen durchströmten Absetzbecken der innere Raum des Absetzbeckens bei einem Radius kleiner ca. 30 bis 50 % des Gesamtradius' des Beckens für die Phasentrennung kontraproduktiv oder zumindest aber nutzlos ist. Der davon betroffene Bereich entspricht bei einem runden Becken folglich zumindest 10 % und bis zu 25 % des Gesamtvolumens. Diese Zusammenhänge gelten insbesondere für Absetzbecken, die der Definition eines überwiegend horizontal durchströmten Beckens genügen.
Der Erfindung liegt die Aufgabe zu Grunde, das Gesamt-Bauvolumen von Kläranlagen mit Mischungsreaktor und stromab angeordnetem Absetzbecken mit Mittelbauwerk zu verringern um damit verbundene Investitionskosten zu senken.
Die Aufgabe wird überraschend dadurch gelöst, dass von innen nach außen durchströmten Absetzbecken durch besonders große Mittelbauwerke der bezüglich der Phasentrennung kontraproduktive innere Raum entzogen und verfahrenstechnisch nutzbar gemacht wird. Dies ist besonders vorteilhaft, wenn eine Anlage so konzipiert ist, dass das Nachklärbecken über ein beckeninternes Einlaufbauwerk verfügt, das vom Mischungsreaktor mit Suspension versorgt wird. Zum Beispiel kann der abgetrennte Raum als beckeninterner Mischungsreaktor zum Substratabbau genutzt werden. Damit entsteht bei konstantem Gesamtvolumen des Beckens zusätzlicher verfahrenstechnisch nutzbarer Prozessraum, ohne dass die Leistungsfähigkeit des Absetzbeckens bezüglich seiner Funktion zur Phasentrennung durch kleineren Prozessraum vermindert würde. Die Funktion des Einlaufbauwerks geht mit der Erfindung über die im Stand der Technik vorhandenen hydraulischen Funktionen hinaus, den einlaufenden Volumenstrom bei möglichst moderaten und optimierten Schergradienten mit optimierter Flockung möglichst gleichmäßig und schonend in das Absetzbecken zu leiten. Die Belastbarkeit des Absetzbeckens, also die absolute Menge eines mehrphasigen Gemischs, die pro Zeit getrennt werden kann, kann durch Entzug eines Teils seines Innenraums dabei unter Umständen sogar ansteigen. Auch kann der innere Raum ein zusätzliches Absetzbecken beinhalten, das von außen nach innen durchströmt wird. Dies kann erreicht werden, indem ein Einlaufbauwerk innerhalb des Absetzbeckens angeordnet wird, das die beiden Räume trennt und das über zumindest zwei Einlaufflächen verfügt. Über zumindest eine äußere Einlauffläche wird dabei das äußere Absetzbecken beschickt, über zumindest eine innere Einlauffläche das innere Ab- setzbecken. Es ist auch möglich, zumindest einen der Räume intermittierend zum Beispiel als Mischungsreaktor und als Absetzbecken zu nutzen. Somit kann auf Belastungsschwankungen, zum Beispiel zwischen Trockenwetter und Regenwetter reagiert werden. Damit steht dem Absetzprozess zumindest zeitweise ein größeres Volumen zur Verfügung. Der Volumenstrom des zu trennenden Gemischs muss dem äußeren Absetzbecken oder unter Umständen den beiden Absetzbecken zumindest weitestgehend an der Peripherie umlaufend zugeführt werden, um durch eine möglichst große Einlaufbreite Bln eine möglichst kleine Einlaufenergie zu erzielen. Der Einlauf zum Absetzbecken / zu den Absetzbecken sollte zum. zeitweise relativ weit oben, insbesondere in der oberen Hälfte des Beckens angeordnet sein oder sein können, um bei überwiegend horizontal durchströmten Becken eine hohe hydraulische Belastung zu ermöglichen.
In bestehenden und in neu zu bauenden Anlagen, die zumindest aus einem Mischungsbecken und zumindest einem nachgeschalteten Absetzbecken bestehen, kann der Prozessraum des Mischungsbereichs durch ein zusätzliches, innerhalb des Absetzbeckens angeordnetes Mischungsbecken vergrößert werden. Kombiniert man diese Anlage, die über zumindest ein eigenständiges Mischungsbecken verfügt und über zumindest ein zusätzliches Mischungsbecken als Teilraum des Beckens, das als Absetzbecken dient, mit einer Einlauffläche, die das Mischungsbecken innerhalb des Absetzbeckens zumindest großteils umschließt und bezüglich der Einlaufenergie gemäß den Ausführungen nach Offenlegungsschrift EP 1 354 614 A1 günstig geformt ist, so kann die maximale Abwasserbelastung der Anlage durch ihren vergrößerten gesamten Mischungsraum und mit optimierter Absetzleistung gegenüber dem Stand der Technik bei gleichem Bauvolumen deutlich erhöht werden.
Eine vorteilhafte Lösung der Aufgabe, die der Erfindung zu Grunde liegt, ergibt sich sowohl aus hydraulischer, als auch aus verfahrenstechnischer Sicht für Belebungsanlagen somit, wenn Absetzbecken mit Einlaufbauwerken kombiniert werden, die größer sind als im Stand der Technik und die ihren Innenraum mittels Vorrichtungen zu Lösung anderer Aufgaben als der Phasentrennung nutzen. So kann innerhalb des Einlaufbauwerks zu einem Nachklärbecken zum Beispiel sinnvoll eine Belüftungszone und eine anschließende anaerobe Entgasungszone vorgesehen werden.
Eine weitere vorteilhafte Lösung der Aufgabe, die der Erfindung zu Grunde liegt, ergibt sich, wenn der gesamte Mischungsreaktor innerhalb des Absetzbeckens angeordnet ist und somit selbst einem sehr großen Einlaufbauwerk entspricht das das Absetzbecken durch eine Einlauffläche entlang seiner Peripherie beschickt.
Besonders vorteilhafte Lösungen ergeben sich, wenn vorgenannte Lösungen mit Einlaufflä- chen versehen werden, die besonders energieeffϊzient gestaltet sind oder/und die z. B. durch Adaption der Höhenlage der Einlauffläche auf die Trennspiegellage und/oder durch Variation der Höhe des Einlauffläche hin die Einlaufenergie weiter reduzieren.
Eine weitere vorteilhafte Lösung ergibt sich, wenn Anlagen-extern bedingte Belastungsschwankungen dadurch gedämpft werden können, dass innerhalb der Anlage einem in ein Absetzbecken einlaufendem Volumenstrom zusätzlicher Volumenstrom aus der Anlage auf verkürztem Fließweg zugeführt werden kann.
Technische Einbauten in bestehenden Nachklärbecken, wie zum Beispiel Räumeinrichtungen für die abgesetzte Phase, können dazu führen, dass bei Nachrüstung eines größeren Einlaufbauwerks dem Absetzbecken nicht der gesamte unwirksame Raum entzogen und anderweitig genutzt werden kann. Vorteilhaft gegenüber dem Stand der Technik sind aber bereits Lösungen, die ca. 10 % des Beckenvolumens einnehmen, da hierdurch die Einlaufenergie gegenüber Einlaufbauwerken nach dem Stand der Technik bereits deutlich reduziert werden kann und gleichzeitig in deutlichem Maße nutzbarer Raum gewonnen wird. Bei einem runden Nach- klärbecken hat ein Innenraum, der 10 % des Gesamtvolumens einnimmt, einen Radius von ungefähr 30 % des Gesamtradius' des Nachklärbeckens.
Die prinzipielle Funktion der Erfindung ist unabhängig von der genauen geometrischen Form der Oberfläche des Beckens.
Ausführungsbeispiele der Erfindung werden nachstehend unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Gleiche Elemente sind jeweils mit denselben Bezugszeichen versehen.
Fig. 1 Kombination aus Mischungsreaktor und Nachklärbecken, in dem das Einlaufbauwerk zum Nachklärbecken mit zusätzlichen Vorrichtungen, hier einer Belüftung, ausgerüstet ist;
Fig. 2 Anlage, bei der der Mischungsreaktor innerhalb des Nachklärbeckens angeordnet ist;
Fig. 3 Nachklärbecken, bei dem innerhalb des Nachklärbeckens ein zweites Absetzbecken angeordnet ist.
Die in Figur 1 dargestellte Anlage ist kombiniert mit einem Einlaufbauwerk 4, in das eine zusätzliche Einrichtung zu verfahrenstechnischen Zwecken, hier eine Druckbelüftung in einer Belüftungszone, eingebaut ist. Die Belüftungszone kann sich über ein Teilvolumen oder über das gesamte Volumen des Einlaufbauwerks erstrecken. Im Einlaufbauwerk können auch Mischer eingebaut sein.
Figur 2 zeigt beispielhaft eine Anlage, bei der der Mischungsreaktor 2 innerhalb des Nachklärbeckens 6 angeordnet ist und somit selbst auch die Funktion als Einlaufbauwerk 4 übernimmt.
Figur 3 zeigt ein Nachklärbecken, dessen Einlaufbauwerk 4 das Becken in einen inneren und einen äußeren Raum teilt. Der äußere Raum wird als von der Zulaufströmung von innen nach außen durchströmtes Absetzbecken betrieben, das innere Becken als von außen nach innen durchströmtes Absetzbecken. Die beiden Becken können auch alternierend als Mischungsreaktoren und Absetzbecken betrieben werden. Somit kann auf Belastungsschwankungen, z. B. zwischen Trocken- und Regenwetter, reagiert werden, indem Teilbecken bei geringer hydraulischer Belastung der Anlage als belüftetes Abbauvolumen, bei erhöhter hydraulischer Belastung hingegen als Absetzraum genutzt werden. Schließlich kann das Mittelbauwerk so groß gestaltet werden, dass es ebenfalls wieder zu verfahrenstechnischen Zwecken genutzt werden kann.
Zusammenstellung der Bezugszeichen
1 Zuleitung zur Anlage
2 Mischungsreaktor
3 Zuleitung zum Absetzbecken
4 Einlaufbauwerk des Absetzbeckens
5 Einlauffläche zum Absetzbecken
6 Absetzbecken
7 Trennspiegel unterschiedlich dichter Phasen im Absetzbecken
8 Abzug leichterer Phase aus dem Absetzbecken
9 Rückfuhrleitung zum Mischungsreaktor

Claims

Patentansprüche
Anspruch 1: Absetzbecken einer Kläranlage, dadurch gekennzeichnet, dass Raum innerhalb des Beckens abgetrennt und dieser abgetrennte Raum zu verfahrenstechnischen Zwecken nutzbar gemacht ist.
Anspruch 2: Absetzbecken nach Anspruch 1, dadurch gekennzei chnet, dass zumindest ein Mischungsreaktor innerhalb des vom Absetzbecken abgetrennten Raums angeordnet ist.
Anspruch 3 : Absetzbecken nach Anspruch 1 , dadurch gekennze i chnet, dass zumindest ein Absetzbecken innerhalb des vom Becken abgetrennten Raums angeordnet ist.
Anspruch 4: Absetzbecken nach einem der vorhergehenden Ansprüche, dadurch gekennzei chnet, dass zumindest einer der Räume des Beckens alternierend zu unterschiedlichen verfahrenstechnischen Zwecken eingesetzt werden kann.
Anspruch 5 : Absetzbecken nach einem der vorhergehenden Ansprüche, dadurch gekennze i chnet, dass das Volumen des abgetrennten Raums innerhalb des Absetzbeckens zumindest 10 % des Gesamtvolumens des Absetzbeckens einnimmt.
Anspruch 6 : Absetzbecken nach einem der vorhergehenden Ansprüche, dadurch gekennzei chnet, dass es zumindest mit einer Einlauffläche zum Absetzbecken ausgeführt wird, die so gestaltet ist, dass der Überschuss der Einlaufenergie durch Höhenvariabilität der Lage des einlaufenden Volumenstroms verändert werden kann.
Anspruch 7 : Absetzbecken nach einem der vorhergehenden Ansprüche, dadurch gekennze i chnet, dass es zumindest mit einer Einlauffläche zum Absetzbecken ausgeführt wird, die so gestaltet ist, dass der Überschuss der Einlaufenergie durch Veränderbarkeit der durchströmten Einlauffläche verändert werden kann.
Anspruch 8 : Absetzbecken nach einem der vorhergehenden Ansprüche, dadurch gekennze i chnet, dass es mit einer Vorrichtung kombiniert wird, die es ermöglicht, dem in das Absetzbecken einlaufenden Volumenstrom zusätzlichen Volumenstrom auf verkürztem Fließweg zuzuführen.
PCT/EP2004/014296 2003-12-16 2004-12-14 Absetzbecken einer kläranlage WO2005058456A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04803914A EP1694421A1 (de) 2003-12-16 2004-12-14 Absetzbecken einer kl ranlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10361145.2 2003-12-16
DE10361145 2003-12-16

Publications (1)

Publication Number Publication Date
WO2005058456A1 true WO2005058456A1 (de) 2005-06-30

Family

ID=34683874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014296 WO2005058456A1 (de) 2003-12-16 2004-12-14 Absetzbecken einer kläranlage

Country Status (2)

Country Link
EP (1) EP1694421A1 (de)
WO (1) WO2005058456A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB956941A (en) * 1962-04-19 1964-04-29 Paterson Engineering Company L Improved clarifier tank
DE4033038A1 (de) * 1990-10-18 1992-04-23 Schreiber Berthold Belebungsanlage mit trichterfoermigem nachklaerbecken
US5192441A (en) * 1989-02-14 1993-03-09 Omnium De Traitements Et De Valorisation (Otv) Process and installation for biological treatment, e.g. by nitrification and/or denitrification, of an effluent including nitrated pollution
DE10220256A1 (de) * 2001-11-14 2003-08-07 Oms Verwaltungs Und Beteiligun Kläreinheit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB956941A (en) * 1962-04-19 1964-04-29 Paterson Engineering Company L Improved clarifier tank
US5192441A (en) * 1989-02-14 1993-03-09 Omnium De Traitements Et De Valorisation (Otv) Process and installation for biological treatment, e.g. by nitrification and/or denitrification, of an effluent including nitrated pollution
DE4033038A1 (de) * 1990-10-18 1992-04-23 Schreiber Berthold Belebungsanlage mit trichterfoermigem nachklaerbecken
DE10220256A1 (de) * 2001-11-14 2003-08-07 Oms Verwaltungs Und Beteiligun Kläreinheit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GÜNTHERT F W: "Gestaltung und Ausrüstung von Nachklärbecken", KURSUNTERLAGEN ZUM ATV-FORTBILDUNGSKURS FÜR WASSERGÜTEWIRTSCHAFT UND ABWASSERTECHNIK I/2, KOMMUNALE ABWASSERBEHANDLUNG, 15.-17. OKTOBER 1997 IN FULDA, 15 October 1997 (1997-10-15), HENNEF, DE, pages 4-1 - 4-20, XP002322300 *
KEMMER F N: "The NALCO Water Handbook, Second Edition", 1988, MCGRAW-HILL, NEW YORK, US, XP002322297 *

Also Published As

Publication number Publication date
EP1694421A1 (de) 2006-08-30

Similar Documents

Publication Publication Date Title
EP0689523B1 (de) Verfahren zur Reinigung von Abwasser,insbesondere kommunalem Abwasser
EP1919833B1 (de) Vorrichtung zur abwasserreinigung
EP0595359A1 (de) Verfahren und Vorrichtung zum Reinigen von Abwasser
WO2008012030A1 (de) Verfahren und vorrichtung zur biologischen abwasserreinigung
AT396681B (de) Kleinkläranlage mit einer mehrkammergrube
DE4435304C1 (de) Anlage für die Reinigung von Grauwasser im Rahmen eines Grauwasser-Recycling-Systems
DE4213015C2 (de) Biogasreaktor
EP2289855B1 (de) Abwasserreinigungsanlage sowie Verfahren zur Abwasserreinigung
WO2011023408A1 (de) Abwasserreinigungsanlage sowie verfahren zur abwasserreinigung
DE2239205A1 (de) Verfahren und vorrichtung zur abwasserreinigung
WO2005058456A1 (de) Absetzbecken einer kläranlage
EP3046880B1 (de) Trägervorrichtung zum einbau in einen bioreaktor und bioreaktor sowie fahrzeugwaschanlage eine solche trägervorrichtung aufweisend
WO1982002874A1 (en) Method,device and means for purifying waste waters
DE102004021022B3 (de) Vorrichtung zur anaeroben Reinigung von Abwasser
DE19800664C2 (de) Verfahren zur biologischen Abwasserreinigung und Anlage zur Durchführung des Verfahrens
DE3235992C2 (de) Anlage zur biologischen Reinigung und Denitrifikation von Abwasser
DE2757860A1 (de) Verfahren und einrichtung zur abwasserreinigung mittels belebtschlamm
DE4207077C2 (de) Kompaktkläranlage mit besonderem Schlammrückführelement
DE3326326C2 (de)
AT411679B (de) Verfahren zur reinigung von abwasser
DE2255703A1 (de) Mechanisch-biologische abwasserreinigungsanlage
EP1434740B1 (de) Vorrichtung zur biologischen abwasseraufbereitung
EP0466973B1 (de) Verfahren und Anlage zur biologischen Abwasserklärung mittels aerober Schlammstabilisierung, insbesondere unter Verwendung einer Kleinkläranlage
AT406153B (de) Modul zur aufrüstung einer klärtechnischen abwasser-behandlungsanlage sowie mit dem modul ausgerüstete abwasser-behandlungsanlage
DE60319208T2 (de) Kreisförmige vorrichtung zur biologischen behandlung von abwasser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2004803914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004803914

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004803914

Country of ref document: EP