WO2005057328A2 - Touch pad for handheld device - Google Patents
Touch pad for handheld device Download PDFInfo
- Publication number
- WO2005057328A2 WO2005057328A2 PCT/US2004/027102 US2004027102W WO2005057328A2 WO 2005057328 A2 WO2005057328 A2 WO 2005057328A2 US 2004027102 W US2004027102 W US 2004027102W WO 2005057328 A2 WO2005057328 A2 WO 2005057328A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- touch pad
- native
- recited
- values
- pad assembly
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03547—Touch pads, in which fingers can move on a surface
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
- G06F3/04886—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
Definitions
- the present invention relates generally to a media player having a touch pad. More particularly, the present invention relates to improved touch pads.
- buttons, switches, keyboards, mice, trackballs, touch pads, joy sticks, touch screens and the like are examples of input devices.
- the input devices are generally selected from buttons and switches. Buttons and switches are generally mechanical in nature and provide limited control with regards to the movement of a cursor (or other selector) and making selections.
- the input devices tend to utilize touch-sensitive display screens.
- touch screen a user makes a selection on the display screen by pointing directly to objects on the screen using a stylus or finger.
- the input devices are commonly touch pads.
- the movement of an input pointer corresponds to the relative movements of the user's finger (or stylus) as the finger is moved along a surface of the touch pad.
- Touch pads can also make a selection on the display screen when one or more taps are detected on the surface of the touch pad. In some cases, any portion of the touch pad may be tapped, and in other cases a dedicated portion of the touch pad may be tapped.
- the input devices are generally selected from mice and trackballs. With a mouse, the movement of the input pointer corresponds to the relative movements of the mouse as the user moves the mouse along a surface.
- mice and trackballs generally include one or more buttons for making selections on the display screen.
- the input devices may also allow a user to scroll across the display screen in the horizontal or vertical directions.
- mice may include a scroll wheel that allows a user to simply roll the scroll wheel forward or backward to perform a scroll action.
- touch pads may provide dedicated active areas that implement scrolling when the user passes his or her finger linearly across the active area in the x and y directions.
- Both devices may also implement scrolling via horizontal and vertical scroll bars as part of the GUI.
- scrolling is implemented by positioning the input pointer over the desired scroll bar, selecting the desired scroll bar, and moving the scroll bar by moving the mouse or fmger in the y direction (forwards and backwards) for vertical scrolling or in the x direction (left and right) for horizontal scrolling.
- a Cartesian coordinate system is used to monitor the position of the finger, mouse and ball, respectively, as they are moved.
- the Cartesian coordinate system is generally defined as a two dimensional coordinate system (x, y) in which the coordinates of a point (e.g., position of finger, mouse or ball) are its distances from two intersecting, often perpendicular straight lines, the distance from each being measured along a straight line parallel to each other.
- x, y positions of the mouse, ball and fmger may be monitored.
- the x, y positions are then used to correspondingly locate and move the input pointer on the display screen.
- touch pads generally include one or more sensors for detecting the proximity of the finger thereto.
- the sensors are generally dispersed about the touch pad with each sensor representing an x, y position.
- the sensors are arranged in a grid of columns and rows. Distinct x and y position signals, which control the x, y movement of a pointer device on the display screen, are thus generated when a finger is moved across the grid of sensors within the touch pad.
- capacitive sensing technologies It should be noted, however, that the other technologies have similar features.
- Capacitive sensing touch pads generally contain several layers of material.
- the touch pad may include a protective shield, one or more electrode layers and a circuit board.
- the protective shield typically covers the electrode layer(s), and the electrode layer(s) is generally disposed on a front side of the circuit board.
- the protective shield is the part of the touch pad that is touched by the user to implement cursor movements on a display screen.
- the electrode layer(s) on the other hand, is used to interpret the x, y position of the user's fmger when the user's finger is resting or moving on the protective shield.
- the electrode layer (s) typically consists of a plurality of electrodes that are positioned in columns and rows so as to form a grid array. The columns and rows are generally based on the Cartesian coordinate system and thus the rows and columns correspond to the x and y directions.
- the touch pad may also include sensing electronics for detecting signals associated with the electrodes.
- the sensing electronics may be adapted to detect the change in capacitance at each of the electrodes as the finger passes over the grid.
- the sensing electronics are generally located on the backside of the circuit board.
- the sensing electronics may include an application specific integrated circuit (ASIC) that is configured to measure the amount of capacitance in each of the electrodes and to compute the position of finger movement based on the capacitance in each of the electrodes.
- ASIC application specific integrated circuit
- the ASIC may also be configured to report this information to the computing device.
- the touch pad 2 is generally a small rectangular area that includes a protective shield 4 and a plurality of electrodes 6 disposed underneath the protective shield layer 4. For ease of discussion, a portion of the protective shield layer 4 has been removed to show the electrodes 6.
- Each of the electrodes 6 represents a different x, y position.
- the circuit board/sensing electronics measures capacitance and produces an x, y input signal 10 corresponding to the active electrodes 6.
- the x, y input signal 10 is sent to a host device 12 having a display screen 14.
- the x, y input signal 10 is used to control the movement of a cursor 16 on the display screen 14. As shown, the input pointer moves in a similar x, y direction as the detected x, y fmger motion.
- the invention relates, in one embodiment, to a touch pad assembly.
- the touch pad assembly includes a touch pad having one or more sensors that map the touch pad plane into native sensor coordinates.
- the touch pad assembly also includes a controller that divides the surface of the touch pad into logical device units that represent areas of the touch pad that can be actuated by a user, receives the native values of the native sensor coordinates from the sensors, adjusts the native values of the native sensor coordinates into a new value associated with the logical device units and reports the new value of the logical device units to a host device.
- the invention relates, in another embodiment, to a method for a touch pad. The method includes mapping the touch pad into native sensor coordinates.
- the method also includes producing native values of the native sensor coordinates when events occur on the touch pad.
- the method further includes filtering the native values of the native sensor coordinates based on the type of events that occur on the touch pad.
- the method additionally includes generating a control signal based on the native values of the native sensor coordinates when a desired event occurs on the touch pad.
- the invention relates, in another embodiment, to a signal processing method.
- the method includes receiving a current user location.
- the method also includes determining the difference in user location by comparing the current user location to a last user location.
- the method further includes only outputting the current user location when the difference in user location is larger than a threshold value.
- the method additionally includes converting the outputted current user location into a logical device unit.
- the method includes generating a message for a host device.
- the message including the more logical user location.
- the more logical user location being used by the host device to move a control object in a specified manner.
- the invention relates, in another embodiment, to a message from a touch pad assembly to a host device in a computer system that facilitates bi-directional communications between the touch pad assembly and the host device.
- the message includes an event field identifying whether the message is a touch pad event or a button event.
- the message also includes an event identifier field identifying at least one event parameter, each event parameter having an event value, the event value for a touch pad event parameter indicating an absolute position, the event value for a button event parameter indicating button status.
- the invention relates, in another embodiment, to a touch pad assembly capable of transforming a user action into motion onto a display screen, the touch pad system including a touch pad having a plurality of independent and spatially distinct button zones each of which represents a different movement direction on the display screen so as to enable joystick implementations, multiple dimensional menu selection or photo image panning.
- Fig. 1 is a simplified diagram of a touch pad and display.
- Fig. 2 is a diagram of a computing system, in accordance with one embodiment of the present invention.
- Fig. 1 is a simplified diagram of a touch pad and display.
- Fig. 2 is a diagram of a computing system, in accordance with one embodiment of the present invention.
- Fig. 1 is a simplified diagram of a touch pad and display.
- Fig. 2 is a diagram of a computing system, in accordance with one embodiment of the present invention.
- Fig. 1 is a simplified diagram of a touch pad and display.
- Fig. 2 is a diagram of
- FIG. 3 is a flow diagram of signal processing, in accordance with one embodiment of the invention.
- Fig. 4 is a flow diagram of touch pad processing, in accordance with one embodiment of the invention.
- Fig. 5 is a flow diagram of a touch pad processing, in accordance with one embodiment of the invention.
- Fig. 6 is a diagram of a communication protocol, in accordance with one embodiment of the present invention.
- Fig. 7 is a diagram of a message format, in accordance with one embodiment of the present invention.
- Fig. 8 is a perspective view of a media player, in accordance with one embodiment of the invention.
- Fig. 9 is a front view of a media player, in accordance with one embodiment of the present invention.
- FIG. 10 is a front view of a media player, in accordance with one embodiment of the present invention.
- Figs. 11 A- 1 ID are top views of a media player in use, in accordance with one embodiment of the present invention.
- Fig. 12 is a partially broken away perspective view of an annular capacitive touch pad, in accordance with one embodiment of the present invention.
- Fig. 13 is a top view of a sensor arrangement of a touch pad, in accordance with another embodiment of the present invention.
- Fig. 14 is a top view of a sensor arrangement of a touch pad, in accordance with another embodiment of the present invention.
- Fig. 15 is a top view of a sensor arrangement of a touch pad, in accordance with another embodiment of the present invention.
- FIG. 2 is a diagram of a computing system 20, in accordance with one embodiment of the present invention.
- the computing system 20 includes at least a user interface 22 and a host device 24.
- the user interface 22 is configured to provide control information for performing actions in the host device 24.
- the actions may include making selections, opening a file or document, executing instructions, starting a program, viewing a menu, and/or the like.
- the actions may also include moving an object such as a pointer or cursor on a display screen of the host device 24.
- the user interface 22 may be integrated with the host device 24 (within the same housing) or it may be a separate component (different housing).
- the user interface 22 includes one or more touch buttons 34, a touch pad 36 and a controller 38.
- the touch buttons 34 generate button data when a user places their finger over the touch button 34.
- the touch pad on the other hand, generates position data when a user places their finger (or object) over the touch pad 36.
- the controller 38 is configured to acquire the button data from the touch buttons 34 and the position data from the touch pad 36.
- the controller is also configured to output control data associated with the button data and/or position data to the host device 24. In one embodiment, the controller 38 only outputs control data associated with the touch buttons when the button status has changed. In another embodiment, the controller 38 only outputs control data associated with the touch pad when the position data has changed.
- the control data which may include the raw data (button, position) or some form of thereof, may be used to implement a control function in the host device 24.
- the control data may be used to move an object on the display 30 of the host device 24 or to make a selection or issue a command in the host device 24.
- the touch buttons 34 and touch pad 36 generally include one or more sensors capable of producing the button and position data.
- the sensors of the touch buttons 34 and touch pad 36 may be distinct elements or they may be grouped together as part of a sensor arrangement, i.e., divided into sensors for the touch buttons 34 and sensors for the touch pad 36.
- the sensors of the touch buttons 34 are configured to produce signals associated with button status (activated, not activated). For example, the button status may indicate button activation when an object is positioned over the touch button and button deactivation at other times (or vice versa).
- the sensors of the touch pad 36 are configured produce signals associated with the absolute position of an object on or near the touch pad 36. In most cases, the sensors of the touch pad 36 map the touch pad plane into native or physical sensor coordinates 40.
- the native sensor coordinates 40 may be based on Cartesian coordinates or Polar coordinates (as shown). When Cartesian, the native sensor coordinates 40 typically correspond to x and y coordinates. When Polar (as shown), the native sensor coordinates typically correspond to radial and angular coordinates (r, ⁇ ).
- the sensors may be based on resistive sensing, surface acoustic wave sensing, pressure sensing (e.g., strain gauge), optical sensing, capacitive sensing and the like.
- the user interface 22 includes a sensor arrangement based on capacitive sensing.
- the user interface 22 is therefore arranged to detect changes in capacitance as a fmger moves, taps, or rests on the touch buttons 34 and touch pad 36.
- the capacitive touch assembly is formed from various layers including at least a set of labels, a set of electrodes (sensors) and a printed circuit board (PCB).
- the electrodes are positioned on the PCB, and the labels are position over the electrodes.
- the labels serve to protect the electrodes and provide a surface for receiving a finger thereon.
- the label layer also provides an insulating surface between the finger and the electrodes.
- the controller 38 can determine button status at each of the touch buttons 34 and position of the finger on the touch pad 36 by detecting changes in capacitance. In most cases, the controller 38 is positioned on the opposite side of the PCB.
- the controller 38 may correspond to an application specific integrated circuit (ASIC), and it may operate under the control of Firmware stored on the ASIC.
- ASIC application specific integrated circuit
- the controller 38 is configured to monitor the sensors of the touch buttons 34 and touch pad 36 and decide what information to report to the host device 24.
- the decision may include filtering and/or conversion processes.
- the filtering process may be implemented to reduce a busy data stream so that the host device 24 is not overloaded with redundant or non-essential data.
- a busy data stream may be created when multiple signals are produced at native sensor coordinates 40 that are in close proximity to one another.
- processing a busy data stream tends to require a lot of power, and therefore it can have a disastrous effect on portable devices such as media players that use a battery with a limited power supply.
- the filtering process throws out redundant signals so that they do not reach the host device 24.
- the controller 38 is configured to only output a control signal when a significant change in sensor signals is detected.
- a significant change corresponds to those changes that are significant, as for example, when the user decides to move his/her finger to a new position rather than when the user's finger is simply resting on a spot and moving ever so slightly because of finger balance (toggling back and forth).
- the filter process may be implemented through Firmware as part of the application specific integrated circuit.
- the conversion process is implemented to adjust the raw data into other form factors before sending or reporting them to the host device 24. That is, the controller 38 may convert the raw data into other types of data. The other types of data may have similar or different units as the raw data. In the case of the touch pad 36, the controller 38 may convert the position data into other types of position data. For example, the controller 38 may convert absolute position data to relative position data. As should be appreciated, absolute position refers to the position of the finger on the touch pad measured absolutely with respect to a coordinate system while relative position refers to a change in position of the finger relative to the finger's previous position.
- the controller 38 may also convert multiple absolute coordinates into a single absolute coordinate, Polar coordinates into Cartesian coordinates, and/or Cartesian coordinates into Polar coordinates.
- the controller 38 may also convert the position data into button data. For example, the controller may generate button control signals when an object is tapped on a predetermined portion of the touch pad or other control signals when an object is moved in a predetermined manner over the touch pad (e.g., gesturing).
- the conversion may also include placing the control signal in a format that the host device 24 can understand.
- the controller 38 may follow a predetermined communication protocol. As is generally well known, communication protocols are a set of rules and procedures for exchanging data between two devices such as the user interface 22 and the host device 24.
- Communication protocols typically transmit information in data blocks or packets that contain the data to be transmitted, the data required to guide the packet to its destination, and the data that corrects errors that occur along the way.
- the controller may support a variety of communication protocols for communicating with the host device, including but not limited to, PS/2, Serial, ADB and the like. In one particular implementation, a Serial protocol is used.
- the conversion process may include grouping at least a portion of the native coordinates 40 together to form one or more virtual actuation zones 42.
- the controller 38 may separate the surface of the touch pad 36 into virtual actuation zones 42A-D and convert the native values of the native sensor coordinates 40 into a new value associated with the virtual actuation zones 42A-D.
- the new value may have similar or different units as the native value.
- the new value is typically stored at the controller 38 and subsequently passed to the host device 24.
- the controller 38 outputs a control signal associated with a particular virtual actuation zone 42 when most of the signals are from native sensor coordinates 40 located within the particular virtual actuation zone 42.
- the virtual actuation zones 42 generally represent a more logical range of values than the native sensor coordinates 40 themselves, i.e., the virtual actuation zones 42 represent areas of touch pad 36 that can be better actuated by a user (magnitudes larger).
- the ratio of native sensor coordinates 40 to virtual actuation zones 42 may be between about 1024: 1 to about 1 :1, and more particularly about 8:1.
- the touch pad may include 128 virtual actuation areas based on 1024 native sensor coordinates.
- the virtual actuation zones 42 may be widely varied. For example, they may represent absolute positions on the touch pad 36 that are magnitudes larger than the native sensor coordinates 40. For example, the touch pad 36 can be broken up into larger slices than would otherwise be attainable using the native sensor coordinates 40. In one implementation, the virtual actuation zones 42 are distributed on the touch pad 36 within a range of 0 to 95 angular positions. The angular position is zero at the 12 o clock position and progresses clockwise to 95 as it comes around to 12 o'clock again.
- the virtual actuation zones 42 may also represent areas of the touch pad that can be actuated by a user to implement specific control functions such as button or movement functions.
- the virtual actuation zones 42 may correspond to button zones that act like touch buttons.
- each of the virtual actuation zones 42 may correspond to different movement directions such that they act like arrow keys.
- virtual actuation zone 42A may represent an upward movement
- virtual actuation zone 42B may represent a downward movement
- virtual actuation zone 42C may represent a left movement
- virtual actuation zone 42D may represent right movement.
- this type of touch pad configuration may enable game stick implementations, two dimensional menu selection, photo image panning and the like.
- the controller 38 may also include a storage element.
- the storage element may store a touch pad program for controlling different aspects of the user interface 22.
- the touch pad program may contain virtual actuation zone profiles that describe how the virtual actuation zones are distributed around the touch pad relative to the native sensor coordinates and what type of value to output based on the native values of the native sensor coordinates selected and the virtual actuation zone corresponding to the selected native sensor coordinates.
- the controller 38 receives the position data from the touch pad 36.
- the controller 38 passes the data through a filtering process.
- the filtering process generally includes determining if the data is based on noise events or actual events.
- Noise events are associated with non significant events such as when a user's finger is simply resting on a spot and moving ever so slightly because of finger balance.
- Actual events are associated with significant events such as when a user decides to move his/her finger to a new position on the touch pad.
- the noise events are filtered out and the actual events are passed through the controller 38.
- the controller 38 determines if the position data should be adjusted. If not, the position data is reported to the host device 24. If so, the position data is converted into other form factors including but not limited to other position data or button data. For example, the native values of the sensor coordinates are converted into a new value associated with a selected virtual actuation zone. After the conversion, the controller 38 reports the converted data to the host device 24.
- the controller 38 may pass the new value to a main system processor that executes the main application program running on the host device 24.
- the host device 24 generally includes a control circuit 26.
- the control circuit 26 is configured to execute instructions and carry out operations associated with the host device 24.
- the control circuit 26 may control the reception and manipulation of input and output data between the components of the computing system 20.
- the host device 24 may also include a hold switch 28 for activating or deactivating communications between the host device 24 and the user interface 22.
- the host device may additionally include a display 30 configured to produce visual information such as text and graphics on a display screen 32 via display commands from the control circuit 26.
- the visual information may be in the form of a graphical user interface (GUI).
- GUI graphical user interface
- the host device may additionally include one or more speakers or jacks that connect to headphones/speakers.
- the control circuit may be widely varied.
- the control circuit may include one or more processors 27 that together with an operating system operate to execute computer code and produce and use data.
- the processor 27 can be a single-chip processor or can be implemented with multiple components.
- the computer code and data may reside within data storage that is operatively coupled to the processor.
- Data storage generally provides a place to hold data that is being used by the computer system 20.
- the data storage may include Read-Only Memory (ROM), Random- Access Memory (RAM), hard disk drive and/or the like.
- the control circuit may also include an input/output controller that is operatively coupled to the processor.
- the input/output controller generally operates by exchanging data between the host device 24 and the I/O devices that desire to communicate with the host device 24 (e.g., touch pad assembly 22).
- the control circuit also typically includes a display controller that is operatively coupled to the processor.
- the display controller is configured to process display commands to produce text and graphics on the display screen 32 of the host device 24.
- the input/output controller and display controller may be integrated with the processor or they may be separate components.
- the control circuit 26 may be configured to perform some of the same functions as the controller 38. For example, the control circuit 26 may perform conversion processes on the data received from the controller 38. The conversion may be performed on raw data or on already converted data. [0033] Fig.
- Signal processing 50 is a flow diagram of signal processing 50, in accordance with one embodiment of the invention.
- the signal processing 50 may be performed by the computing system shown in Fig. 2.
- Signal processing 50 generally begins at block 52 where a user input is produced at the user interface 22.
- the user input is typically based on signals generated by the sensor arrangement of the touch buttons and touchpad.
- the user input may include raw data.
- the user input may also include filtered or converted data.
- the processing proceeds to block 54 where the user input is reported to the control circuit of the host device.
- the user input may contain both button and position data or it may only contain button data or position data.
- the user input is typically reported when a change is made and more particularly when a desired change is made at the user interface (filtered). For example, button data may be reported when the button status has changed and position data may be reported when the position of a finger has changed.
- Fig. 4 is a flow diagram of touch pad processing 60, in accordance with one embodiment of the invention.
- Touch pad processing 60 generally begins at block 62 where at least one control object is displayed on a graphical user interface.
- the control object may be a cursor, slider bar, image or the like.
- the GUI may be displayed on the display 30 of the host device 24.
- the GUI is typically under the control of the processor of the host device 24.
- an angular or radial referenced input is received.
- the angular or radial referenced input may be produced by the user interface 22 and received by the processor of the host device 24.
- the angular or radial referenced input may be raw data formed by the sensor arrangement or converted data formed at the controller. Furthermore, the raw or converted data may be filtered so as to reduce a busy data stream.
- touch pad processing proceeds to block 66 where the control object is modified based on the angular or radial referenced input. For example, the direction that a control object such as a football player in a football game is moving may be changed from a first direction to a second direction or a highlight bar may be moved through multiple images in a photo library.
- the modification is typically implemented by the processor of the host device.
- Fig. 5 is a flow diagram of a touch pad processing 70, in accordance with one embodiment of the invention.
- touch pad processing may be performed by the controller shown in Fig. 2.
- it may be associated with blocks 52/54 and 62 shown in Figs. 3 and 4.
- Touch pad processing 70 generally begins at block 72 where a current user location is received.
- the current user location corresponds to the current location of the user's finger on the touch pad.
- the controller may detect the changes in sensor levels at each of the native sensor coordinates and thereafter determine the current location of the user's finger on the touch pad based on the change in sensor levels at each of the native sensor coordinates.
- the process flow proceeds to block 74 where a determination is made as to whether the current user location is within a threshold from the last user location, i.e., the user location that precedes the current user location. In some cases, the current user location is compared to the last user location to determine the difference in user location, i.e., how much movement occurred between the current and last readings. If the current user location is within the threshold then an undesired change has been made and the process flow proceeds back to block 72. If the current location is outside the threshold then a desired change has been made and the process flow proceeds to block 76.
- a threshold from the last user location, i.e., the user location that precedes the current user location. In some cases, the current user location is compared to the last user location to determine the difference in user location, i.e., how much movement occurred between the current and last readings. If the current user location is within the threshold then an undesired change has been made and the process flow proceeds back to block 72. If the current location is outside the threshold then
- the threshold may be defined as the number of sensor levels that need to change in order to report a change in the user finger location to the main system processor of the host device. In one particular implementation, the threshold is equal to about 3.
- the threshold may be determined by the following equation:
- Threshold (T) C*(native sensor coordinate resolution/logical device unit resolution), where the native sensor coordinate resolution defines the maximum number of different positions that the sensors are able to detect for a specific plane coordinate system, the logical device unit resolution defines the number of values that are communicated to the main system processor of the host device for the said specific plane coordinate system, and coefficient C defines the width border area between the clusters of native sensor coordinates that define one logical device unit.
- the coefficient C is generally determined by the sensitivity needed to initiate a user event to the main system processor of the host device. It customizes the threshold value to the physical limitations of the sensor technology and the expected noise of the user finger events. Larger values tend to filter more events and reduce sensitivity.
- the system designer may pick the exact value of C by testing several values to strike optimal balance between sensitivity and stability of the user finger location.
- the coefficient C is typically a value between 0 and 0.5, and more particularly about 0.25.
- the threshold (T) is about 2 when the native sensor coordinate resolution is about 1024, the logical device unit resolution is about 128 and the coefficient is about 0.25.
- a new value associated with a particular logical device unit is generated based on the changed native sensor coordinates associated with the particular logical device unit.
- the raw number of slices in the form of native sensor coordinates are grouped into a more logical number of slices in the form of logical device units (e.g., virtual actuation zones).
- the process flow proceeds to block 78 where the last user location is updated. That is, the last current location is changed to the current user location. The current user location now acts as the last user location for subsequent processing.
- the process flow proceeds to block 80 where a message is sent.
- the message is sent when the difference between the current and last user location is larger than the threshold value.
- the message generally includes the new value associated with the selected logical device unit.
- the touch pad may send a message to the main system processor of the host device. When received by the main system processor, the message may be used to make an adjustment in the host device, i.e., cause a control object to move in a specified manner.
- Fig. 6 is a diagram of a communication protocol 82, in accordance with one embodiment of the present invention.
- the communication protocol may be used by the user interface and host device of Fig. 2.
- the user interface 22 has one dedicated input ACTIVE line that is controlled by the control circuit 26.
- the state of the ACTIVE line signal may be set at LOW or HIGH.
- the hold switch 28 may be used to change the state of the ACTIVE line signal (for example when the hold switch is in a first position or second position).
- the ACTIVE signal when the ACTIVE signal is set to HIGH, the user interface 22 sends a synch message to the control circuit 26 that describes the Button and Touch pad status (e.g., button state and touch pad position).
- new synch messages are only sent when the Button state and/or the Touch Pad status changes. For example, when the touch pad position has changed within a desired limit.
- the ACTIVE signal is set to LOW, the user interface 22 does not send a synch message to the control circuit 26.
- the ACTIVE signal is toggled from LOW to HIGH, the user interface 22 sends a Button state and touch pad position message. This may be used on startup to initialize the state.
- the ACTIVE signal is toggled from HIGH to LOW, the user interface 22 does not send a synch message to the control circuit 26.
- the user interface 22 is configured to send a two data byte message if both the Buttons and touch pad positions changes since the last message was sent, and a one data byte message if only one button state or touch pad position changes.
- Fig. 7 is a diagram of a message format 86, in accordance with one embodiment of the present invention.
- the message format 86 may correspond to the synch message described in Fig. 6.
- the message format 86 may form a two data byte message or a one data byte message. Each data byte is configured as an 8 bit message.
- the upper Most Significant Bit (MSB) of the message is the event type (1 bit) and the lower Least Significant Bits (LSB) are the event value (7 bits).
- MSB Most Significant Bit
- LSB Least Significant Bits
- the event value is event type specific. In Fig. 7, the event type bits are marked as EO, and the event value is marked as D0-D6.
- the event type may be a touch pad position change El or a button state change E0 when the button is being touched or El when the button is not being touched.
- the event values may correspond to different button events such as seeking forwards (D4), seeking backwards (D3), playing and pausing (D2), providing a menu (Dl) and making selections (DO).
- the event values may also correspond to touch pad events such as touchpad position (D5). For example, in a touch pad that defines the logical coordinates in polar coordinates from 0-127, the event value may correspond to an absolute touch pad position in the range of 0-127 angular positions where zero is 12 o clock, 32 is 3 o clock, 64 is 6 o clock and 96 is 9 o clock, etc. going clockwise.
- the event values may also correspond to a reserve (D6).
- the reserve is an unused bit that may be used to extend the API. .
- Fig. 8 is a perspective diagram of a media player 100, in accordance with one embodiment of the present invention.
- the media player 100 may generally correspond to the host device shown in Fig. 2.
- the term "media player” generally refers to computing devices that are dedicated to processing media such as audio, video or other images, as for example, music players, game players, video players, video recorders, cameras, and the like.
- the media players contain single functionality (e.g., a media player dedicated to playing music) and in other cases the media players contain multiple functionality (e.g., a media player that plays music, displays video, stores pictures and the like).
- these devices are generally portable so as to allow a user to listen to music, play games or video, record video or take pictures wherever the user travels.
- the media player 100 is a handheld device that is sized for placement into a pocket of the user.
- the user does not have to directly carry the device and therefore the device can be taken almost anywhere the user travels (e.g., the user is not limited by carrying a large, bulky and often heavy device, as in a laptop or notebook computer).
- a user may use the device while working out at the gym.
- a user may use the device while mountain climbing.
- the user can use the device while traveling in a car.
- the device may be operated by the users hands, no reference surface such as a desktop is needed (this is shown in greater detail in Fig.
- the media player 100 is a pocket sized hand held MP3 music player that allows a user to store a large collection of music (e.g., in some cases up to 4,000 CD-quality songs).
- the MP3 music player may correspond to the iPod MP3 player manufactured by Apple Computer of Cupertino, C A.
- the MP3 music player shown herein may also include additional functionality such as storing a calendar and phone lists, storing and playing games, storing photos and the like. In fact, in some cases, it may act as a highly transportable storage device.
- the media player 100 includes a housing 102 that encloses internally various electrical components (including integrated circuit chips and other circuitry) to provide computing operations for the media player 100.
- the housing may also define the shape or form of the media player. That is, the contour of the housing 102 may embody the outward physical appearance of the media player 100.
- the integrated circuit chips and other circuitry contained within the housing may include a microprocessor (e.g., CPU), memory (e.g., ROM, RAM), a power supply (e.g., battery), a circuit board, a hard drive, other memory (e.g., flash) and/or various input/output (I O) support circuitry.
- a microprocessor e.g., CPU
- memory e.g., ROM, RAM
- a power supply e.g., battery
- I O input/output
- the electrical components may also include components for inputting or outputting music or sound such as a microphone, amplifier and a digital signal processor (DSP).
- the electrical components may also include components for capturing images such as image sensors (e.g., charge coupled device (CCD) or complimentary oxide semiconductor (CMOS)) or optics (e.g., lenses, splitters, filters).
- image sensors e.g., charge coupled device (CCD) or complimentary oxide semiconductor (CMOS)
- CMOS complimentary oxide semiconductor
- optics e.g., lenses, splitters, filters.
- the media player 100 includes a hard drive thereby giving the media player 100 massive storage capacity.
- a 20GB hard drive can store up to 4000 songs or about 266 hours of music.
- flash- based media players on average store up to 128MB, or about two hours, of music.
- the hard drive capacity may be widely varied (e.g., 5, 10, 20 MB, etc.).
- the media player 100 shown herein also includes a battery such as a rechargeable lithium polymer battery. These type of batteries are capable of offering about 10 hours of continuous playtime to the media player 100.
- the media player 100 also includes a display screen 104 and related circuitry.
- the display screen 104 is used to display a graphical user interface as well as other information to the user (e.g., text, objects, graphics).
- the display screen 104 may be a liquid crystal display (LCD).
- the display screen 104 corresponds to a 160-by- 128-pixel high-resolution display, with a white LED backlight to give clear visibility in daylight as well as low-light conditions. As shown, the display screen 104 is visible to a user of the media player 100 through an opening 105 in the housing 102.
- the media player 100 also includes a touch pad 110.
- the touch pad is an intuitive interface that provides easy one-handed operation, i.e., lets a user interact with the media player 100 with one or more fingers.
- the touch pad 110 is configured to provide one or more control functions for controlling various applications associated with the media player 100.
- the touch initiated control function may be used to move an object on the display screen 104 or to make selections or issue commands associated with operating the media player 100.
- the touch pad 110 may be arranged to receive input from a finger moving across the surface of the touch pad 110, from a fmger holding a particular position on the touch pad and/or by a finger tapping on a particular position of the touch pad.
- the touch pad 110 generally consists of a touchable outer surface 111 for receiving a finger for manipulation on the touch pad 110.
- Beneath the touchable outer surface 111 is a sensor arrangement 112.
- the sensor arrangement 112 includes one or more sensors that are configured to activate as the finger sits on, taps on or passes over them.
- the sensor arrangement 112 may be based on a Cartesian coordinate system, a Polar coordinate system or some other coordinate system. In the simplest case, an electrical signal is produced each time the finger is positioned over a sensing coordinate of the sensor arrangement 112.
- the number of signals in a given time frame may indicate location, direction, speed and acceleration of the finger on the touch pad, i.e., the more signals, the more the user moved his or her finger.
- the signals are monitored by a control assembly that converts the number, combination and frequency of the signals into location, direction, speed and acceleration information and reports this information to the main system processor of the media player. This information may then be used by the media player 100 to perform the desired control function on the display screen 104.
- the surface of the touch pad 110 is divided into several independent and spatially distinct actuation zones 113A-D disposed around the periphery of the touch pad 110.
- the actuation zones generally represent a more logical range of user inputs than the sensors themselves.
- the touch pad 110 outputs a control signal associated with a particular actuation zone 113 when most of the signals are from sensing coordinates located within the particular actuation zone 113.
- a position signal is generated at one or more sensing coordinates.
- the position signals generated by the one or more sensing coordinates may be used to inform the media player 100 that the object is at a specific zone 113 on the touch pad 110.
- the actuation zones may be button zones or positional zones.
- button zones a button control signal is generated when an object is placed over the button zone.
- the button control signal may be used to make selections, open a file, execute instructions, start a program, view a menu in the media player.
- positional zones a position control signal is generated when an object is placed over the positional zone.
- the position signals may be used to control the movement of an object on a display screen of the media player.
- the distribution of actuation zones may be controlled by touch pad translation software or firmware that converts physical or native coordinates into virtual representation in the form of actuation zones.
- the touch pad translation software may be run by the control assembly of the touch pad or the main system processor of the media player.
- the position control signals may be associated with a Cartesian coordinate system (x and y) or a Polar coordinate system (r, ⁇ ). Furthermore, the position signals may be provided in an absolute or relative mode. In absolute mode, the absolute coordinates of where it is being touched on the touch pad are used. For example x, y in the case of the Cartesian coordinate system or (r, ⁇ ) in the case of the Polar coordinate system. In relative mode, the change in position of the finger relative to the finger's previous position is used.
- the touch pad may be configured to operate in a Cartesian-absolute mode, a Cartesian-relative mode, a Polar-absolute mode or a Polar-relative mode.
- the mode may be controlled by the touch pad itself or by other components of the media player system.
- a user may select which mode that they would like to operate in the media player system or the applications running on the media player system may automatically set the mode of the media player system.
- a game application may inform the media player system to operate in an absolute mode so that the touch pad can be operated as a joystick or a list application may inform the media player system to operate in a relative mode so that the touch pad can be operated as a scroll bar.
- each of the zones 113 represents a different polar angle that specifies the angular position of the zone 113 in the plane of the touch pad 110.
- the zones 113 may be positioned at 90 degree increments all the way around the touch pad 110 or something smaller as for example 2 degree increments all the way around the touch pad 110.
- the touch pad 110 may convert 1024 physical positions in the form of sensor coordinates, to a more logical range of 0 to 127 in the form of positional zones.
- the touch pad internal accuracy (1024 positions) is much larger than the accuracy (128 positions) needed for making movements on the display screen.
- the position of the touch pad 110 relative to the housing 102 may be widely varied.
- the touch pad 110 may be placed at any external surface (e.g., top, side, front, or back) of the housing 102 that is accessible to a user during manipulation of the media player 100. In most cases, the touch sensitive surface 111 of the touch pad 110 is completely exposed to the user. In the illustrated embodiment, the touch pad 110 is located in a lower, front area of the housing 102. Furthermore, the touch pad 110 may be recessed below, level with, or extend above the surface of the housing 102. In the illustrated embodiment, the touch sensitive surface 111 of the touch pad 110 is substantially flush with the external surface of the housing 102. [0062] The shape of the touch pad 110 may also be widely varied. For example, the touch pad 110 may be circular, rectangular, triangular, and the like.
- the outer perimeter of the shaped touch pad defines the working boundary of the touch pad.
- the touch pad 110 is circular. This particular shape works well with Polar coordinates. More particularly, the touch pad is annular, i.e., shaped like or forming a ring. When annular, the inner and outer perimeter of the shaped touch pad defines the working boundary of the touch pad.
- the media player 100 may also include one or more buttons 114. The buttons 114 are configured to provide one or more dedicated control functions for making selections or issuing commands associated with operating the media player 100.
- the button functions may be associated with opening a menu, playing a song, fast forwarding a song, seeking through a menu and the like.
- the buttons 114 may be mechanical clicking buttons and/or they may be touch buttons.
- the buttons are touch buttons that receive input from a finger positioned over the touch button.
- the touch buttons 114 generally consist of a touchable outer surface for receiving a finger and a sensor arrangement disposed below the touchable outer surface.
- the touch buttons and touch pad may generally correspond to the touch buttons and touch pad shown in Fig. 2.
- the position of the touch buttons 114 relative to the touch pad 110 may be widely varied.
- buttons 114 are placed above the touch pad 110 in a linear manner as well as in the center of the annular touch pad 110.
- the plurality of buttons 114 may consist of a menu button, play/stop button, forward seek button, a reverse seek button, and the like.
- the media player 100 may also include a hold switch 115.
- the hold switch 115 is configured to activate or deactivate the touch pad and/or buttons. This is generally done to prevent unwanted commands by the touch pad and/or buttons, as for example, when the media player is stored inside a user's pocket. When deactivated, signals from the buttons and/or touch pad are not sent or are disregarded by the media player. When activated, signals from the buttons and/or touch pad are sent and therefore received and processed by the media player.
- the media player 100 may also include one or more headphone jacks 116 and one or more data ports 118.
- the headphone jack 116 is capable of receiving a headphone connector associated with headphones configured for listening to sound being outputted by the media device 100.
- the data port 118 is capable of receiving a data connector/cable assembly configured for transmitting and receiving data to and from a host device such as a general purpose computer (e.g., desktop computer, portable computer).
- a host device such as a general purpose computer (e.g., desktop computer, portable computer).
- the data port 118 may be used to upload or down load audio, video and other images to and from the media device 100.
- the data port may be used to download songs and play lists, audio books, ebooks, photos, and the like into the storage mechanism of the media player.
- the data port 118 may be widely varied.
- the data port may be a PS/2 port, a serial port, a parallel port, a USB port, a Firewire port and/or the like.
- the data port 118 may be a radio frequency (RF) link or optical infrared (IR) link to eliminate the need for a cable.
- the media player 100 may also include a power port that receives a power connector/cable assembly configured for delivering powering to the media player 100.
- the data port 118 may serve as both a data and power port.
- the data port 118 is a Firewire port having both data and power capabilities.
- the data port may include multiple data functionality, i.e., integrating the functionality of multiple data ports into a single data port.
- the position of the hold switch, headphone jack and data port on the housing may be widely varied. That is, they are not limited to the positions shown in Fig. 2. They may be positioned almost anywhere on the housing (e.g., front, back, sides, top, bottom). For example, the data port may be positioned on the bottom surface of the housing rather than the top surface as shown. [0069] Referring to Fig. 9, the touch pad 110 will be described in greater detail.
- the touch pad is operating in an absolute mode. That is, the touch pad reports the absolute coordinates of where it is being touched.
- the touch pad 110 includes one or more zones 124.
- the zones 124 represent regions of the touch pad 110 that may be actuated by a user to implement one or more actions or movements on the display screen 104.
- the distribution of the zones 124 may be widely varied.
- the zones 124 may be positioned almost anywhere on the touch pad 110.
- the position of the zones 124 may depend on the coordinate system of the touch pad 110.
- the zones 124 may have one or more radial and/or angular positions.
- the zones 124 are positioned in multiple angular positions of the Polar coordinate system.
- the zones 124 may be formed from almost any shape whether simple (e.g., squares, circles, ovals, triangles, rectangles, polygons, and the like) or complex (e.g., random shapes).
- the shape of multiple button zones 124 may have identical shapes or they may have different shapes.
- the size of the zones 124 may vary according to the specific needs of each device. In some cases, the size of the zones 124 corresponds to a size that allows them to be easily manipulated by a user (e.g., the size of a finger tip or larger). In other cases, the size of the zones 124 are small so as to improve resolution of the touch pad 110. Moreover, any number of zones 124 may be used. In the illustrated embodiment, four zones 124A-D are shown. It should be noted, however, that this is not a limitation and that the number varies according to the specific needs of each touch pad. For example, Fig. 5 shows the media player 100 with 16 button zones 124A-P.
- the number of zones 124 generally depends on the number of sensor coordinates located within the touch pad 110 and the desired resolution of the touch pad 110.
- the sensors are configured to sense user actions on the zones 124 and to send signals corresponding to the user action to the electronic system.
- the sensors may be capacitance sensors that sense capacitance when a finger is in close proximity.
- the arrangement of the sensors typically varies according to the specific needs of each device.
- the touch pad 110 includes 1024 sensor coordinates that work together to form 128 zones.
- the zones 124 when actuated are used to produce on screen movements 126.
- the control signal for the on screen movements may be initiated by the touch pad electronics or by the main system processor of the media player.
- each zone 124 may be configured to represent a particular movement on the display screen 104.
- each of the zones 124 represents a particular direction of movement.
- the directions may be widely varied, however, in the illustrated embodiment, the directions generally correspond to angular directions (e.g., similar to the arrow keys on the keyboard).
- the touch pad 110 is divided into several independent and spatially distinct zones 124A-D, each of which corresponds to a particular movement direction 126A-D (as shown by arrows), respectively.
- zone 124A When zone 124A is actuated, on screen movements 126 A (to the right) are implemented.
- zone 124B is actuated, on screen movements 126B (upwards) are implemented.
- zone 124C When zone 124C is actuated, on screen movements 126C (to the left) are implemented.
- zone 124D is actuated, on screen movements 126D (down wards) are implemented.
- these embodiments are well suited for joystick implementations, two dimensional menu selection, photo image panning and the like.
- Figs. 11 A-l ID show the media player 100 of Fig. 8 being used by a user 130, in accordance with one embodiment of the invention.
- the media player 100 is being addressed for one handed operation in which the media player 100 is held in the user's hand 136 while the buttons and touch pad 110 are manipulated by the thumb 138 of the same hand 136.
- the palm 140 and rightmost fingers 141 (or leftmost fingers if left handed) of the hand 136 are used to grip the sides of the media player 100 while the thumb 138 is used to actuate the touch pad 110.
- the entire top surface of the touch pad 110 is accessible to the user's thumb 138. Referring to Fig.
- the media device may comfortably held by one hand while being comfortably addressed by the other hand.
- This configuration generally allows the user to easily actuate the touch pad with one or more fingers.
- the thumb and rightmost fingers (or leftmost fingers if left handed) of the first hand are used to grip the sides of the media player while a finger of the opposite hand is used to actuate the touch pad.
- the entire top surface of the touch pad is accessible to the user's finger.
- Figs. 12 is a partially broken away perspective view of an annular capacitive touch pad 150, in accordance with one embodiment of the present invention.
- the annular capacitive touch pad 150 is arranged to detect changes in capacitance as the user moves, taps, rests an object such as a fmger on the touch pad 150.
- the annular capacitive touch pad 150 is formed from various layers including at least a label layer 152, an electrode layer 154 and a circuit board 156.
- the label layer 152 is disposed over the electrode layer 154 and the electrode layer 154 is disposed over the circuit board 156.
- At least the label 152 and electrode layer 154 are annular such that they are defined by concentric circles, i.e., they have an inner perimeter and an outer perimeter.
- the circuit board 156 is generally a circular piece having an outer perimeter that coincides with the outer perimeter of the label 152 and electrode layer 154. It should be noted, however, that in some cases the circuit board 156 may be annular or the label 152 and electrode layer 154 may be circular. [0077]
- the label layer 152 serves to protect the underlayers and to provide a surface for allowing a finger to slide thereon. The surface is generally smooth so that the finger does not stick to it when moved.
- the label layer 152 also provides an insulating layer between the finger and the electrode layer 154.
- the electrode layer 154 includes a plurality of spatially distinct electrodes 158 that have positions based on the polar coordinate system.
- the electrodes 158 are positioned angularly and/or radically on the circuit board 156 such that each of the electrodes 158 defines a distinct angular and/or radial position thereon. Any suitable number of electrodes 158 may be used. In most cases, it would be desirable to increase the number of electrodes 158 so as to provide higher resolution, i.e., more information can be used for things such as acceleration.
- the electrode layer 154 is broken up into a plurality of angularly sliced electrodes 158. The angularly sliced electrodes 158 may be grouped together to form one or more distinct button zones 159. In one implementation, the electrode layer 154 includes about 1024 angularly sliced electrodes that work together to form 128 angularly sliced button zones 159.
- the touch pad 150 provides a touch sensitive surface that works according to the principals of capacitance.
- the first electrically conductive member is one or more of the electrodes 158 and the second electrically conductive member is the finger of the user. Accordingly, as the finger approaches the touch pad 150, a tiny capacitance forms between the finger and the electrodes 158 in close proximity to the fmger. The capacitance in each of the electrodes 158 is measured by control circuitry 160 located on the backside of the circuit board 156.
- the control circuitry 160 can determine the angular and/or radial location, direction, speed and acceleration of the finger as it is moved across the touch pad 150.
- the control circuitry 160 can also report this information in a form that can be used by a computing device such as a media player.
- the control circuitry may include an ASIC (application specific integrated circuit).
- ASIC application specific integrated circuit
- the touch pad 178 may be divided into several independent and spatially distinct button zones 180 that are positioned radically from the center 182 of the touch pad 178 to the perimeter 184 of the touch pad 178. Any number of radial zones may be used. In one embodiment, each of the radial zones 180 represents a radial position in the plane of the touch pad 178. By way of example, the zones 180 may be spaced at 5 mm increments. Like above, each of the button zones 180 has one or more electrodes 186 disposed therein for detecting the presence of an object such as a finger. In the illustrated embodiment, a plurality of radial electrodes 186 are combined to form each of the button zones 180.
- the touch pad 188 may be divided into several independent and spatially distinct button zones 190 that are positioned both angularly and radically about the periphery of the touch pad 188 and from the center of the touch pad 188 to the perimeter of the touch pad 138. Any number of combination zones may be used.
- each of the combination button zones 190 represents both an angular and radial position in the plane of the touch pad 188.
- the zones may be positioned at both 2 degrees and 5 mm increments.
- each of the combination zones 190 has one or more electrodes 192 disposed therein for detecting the presence of an object such as a finger.
- a plurality of angular/radial electrodes 192 are combined to form each of the button zones 190.
- the touch pad 200 may include angular and radial electrodes 202 that are broken up such that consecutive zones do not coincide exactly.
- the touch pad 200 has an annular shape and the electrodes 202 follow a spiral path around the touch pad 200 from the center to the outer perimeter of the touch pad 200.
- the electrodes 202 may be grouped together to form one or more distinct button zones 204.
- touch pads herein are all shown as circular that they may take on other forms such as other curvilinear shapes (e.g., oval, annular and the like), rectilinear shapes (e.g., hexagon, pentagon, octagon, rectangle, square, and the like) or a combination of curvilinear and rectilinear (e.g., dome).
- curvilinear shapes e.g., oval, annular and the like
- rectilinear shapes e.g., hexagon, pentagon, octagon, rectangle, square, and the like
- a combination of curvilinear and rectilinear e.g., dome.
- the various aspects of the inventions described above can be used alone or in various combinations.
- the invention is preferably implemented by a combination of hardware and software, but can also be implemented in hardware or software.
- the invention can also be embodied as computer readable code on a computer readable medium.
- the computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over a network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
- the touch pad assembly may communicate with the host device via a serial interface.
- a serial interface An example of a serial interface will now be described.
- the serial interface consists of at least four signals including a clock, ATN, DATA- IN, and DATA_OUT.
- the clock and DATA_OUT are driven by the touch pad assembly.
- the ATN and DATA_IN are driven by the host device.
- packet transfers are initiated by the touch pad assembly, clocked by the touch pad assembly and done at a time convenient to the touch pad assembly.
- the host device relies on the touch pad assembly to initiate transfers.
- the touch pad assembly transfers a packet when it detects a change in button status or touch pad position or if it detects an ATN signal from the host. If the host wishes to send data to the touch pad assembly it asserts the ATN signal and keeps it asserted until after the packet it wants to send has been transferred.
- the touch pad assembly monitors the ATN signal and initiates a transfer if it sees it asserted.
- the touch pad assembly There are typically several defined packets types that the touch pad assembly can transmit.
- the touch pad assembly sends unsolicited packets unless specifically asked by the host to send another type.
- unsolicited packets the unsolicited packets are sent periodically whenever it detects a change in button status or touch pad position.
- solicited packets the touch pad assembly typically only sends one for each request by the host and then reverts back to unsolicited packets.
- Unsolicited packets generally have a delay between them while response packets may be sent at any time in response to the ATN signal.
- the touch pad may also be used a stand alone input device that connects to a desktop or portable computer.
- the touch pad may also be used a stand alone input device that connects to a desktop or portable computer.
- touch pad has been described in terms of being actuated by a finger, it should be noted that other objects may be used to actuate it in some cases.
- a stylus or other object may be used in some configurations of the touch pad. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04781727A EP1687684A4 (en) | 2003-11-25 | 2004-08-19 | Touch pad for handheld device |
DE202004021283U DE202004021283U1 (en) | 2003-11-25 | 2004-08-19 | Touchpad for a portable device |
EP10011080.8A EP2284658B1 (en) | 2003-11-25 | 2004-08-19 | Touch pad for a handheld device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/722,948 | 2003-11-25 | ||
US10/722,948 US7495659B2 (en) | 2003-11-25 | 2003-11-25 | Touch pad for handheld device |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005057328A2 true WO2005057328A2 (en) | 2005-06-23 |
WO2005057328A3 WO2005057328A3 (en) | 2006-09-21 |
Family
ID=34592119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/027102 WO2005057328A2 (en) | 2003-11-25 | 2004-08-19 | Touch pad for handheld device |
Country Status (7)
Country | Link |
---|---|
US (4) | US7495659B2 (en) |
EP (2) | EP1687684A4 (en) |
CN (2) | CN100369054C (en) |
DE (1) | DE202004021283U1 (en) |
HK (1) | HK1123860A1 (en) |
TW (1) | TWI262427B (en) |
WO (1) | WO2005057328A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007105151A1 (en) * | 2006-03-13 | 2007-09-20 | Koninklijke Philips Electronics N.V. | Control device for controlling the hue of light emitted from a light source |
GB2436135B (en) * | 2006-03-09 | 2011-09-14 | Pretorian Technologies Ltd | User input device for electronic equipment |
RU2719401C1 (en) * | 2018-06-29 | 2020-04-17 | Кэнон Кабусики Кайся | Electronic device |
US10897568B2 (en) | 2018-06-29 | 2021-01-19 | Canon Kabushiki Kaisha | Electronic device |
Families Citing this family (379)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6323846B1 (en) | 1998-01-26 | 2001-11-27 | University Of Delaware | Method and apparatus for integrating manual input |
US7614008B2 (en) * | 2004-07-30 | 2009-11-03 | Apple Inc. | Operation of a computer with touch screen interface |
US9292111B2 (en) | 1998-01-26 | 2016-03-22 | Apple Inc. | Gesturing with a multipoint sensing device |
US8479122B2 (en) | 2004-07-30 | 2013-07-02 | Apple Inc. | Gestures for touch sensitive input devices |
US7808479B1 (en) | 2003-09-02 | 2010-10-05 | Apple Inc. | Ambidextrous mouse |
US7663607B2 (en) | 2004-05-06 | 2010-02-16 | Apple Inc. | Multipoint touchscreen |
US7844914B2 (en) | 2004-07-30 | 2010-11-30 | Apple Inc. | Activating virtual keys of a touch-screen virtual keyboard |
US9239673B2 (en) | 1998-01-26 | 2016-01-19 | Apple Inc. | Gesturing with a multipoint sensing device |
US7483967B2 (en) * | 1999-09-01 | 2009-01-27 | Ximeta Technology, Inc. | Scalable server architecture based on asymmetric 3-way TCP |
US7792923B2 (en) | 2000-10-13 | 2010-09-07 | Zhe Khi Pak | Disk system adapted to be directly attached to network |
US7030861B1 (en) * | 2001-02-10 | 2006-04-18 | Wayne Carl Westerman | System and method for packing multi-touch gestures onto a hand |
US20050134578A1 (en) * | 2001-07-13 | 2005-06-23 | Universal Electronics Inc. | System and methods for interacting with a control environment |
AU2002319929A1 (en) | 2001-07-16 | 2003-03-03 | Han Gyoo Kim | Scheme for dynamically connecting i/o devices through network |
US20050149682A1 (en) * | 2001-10-09 | 2005-07-07 | Han-Gyoo Kim | Virtual multiple removable media jukebox |
US20070085841A1 (en) * | 2001-10-22 | 2007-04-19 | Apple Computer, Inc. | Method and apparatus for accelerated scrolling |
US7312785B2 (en) | 2001-10-22 | 2007-12-25 | Apple Inc. | Method and apparatus for accelerated scrolling |
US7345671B2 (en) * | 2001-10-22 | 2008-03-18 | Apple Inc. | Method and apparatus for use of rotational user inputs |
JP2003241682A (en) * | 2002-01-03 | 2003-08-29 | Samsung Electronics Co Ltd | Display apparatus, rotating position detector thereof and computer |
US7333092B2 (en) | 2002-02-25 | 2008-02-19 | Apple Computer, Inc. | Touch pad for handheld device |
US7656393B2 (en) | 2005-03-04 | 2010-02-02 | Apple Inc. | Electronic device having display and surrounding touch sensitive bezel for user interface and control |
US11275405B2 (en) * | 2005-03-04 | 2022-03-15 | Apple Inc. | Multi-functional hand-held device |
CA2496463A1 (en) * | 2002-08-23 | 2004-03-04 | Pfizer Products Inc. | Apparatus for dispensing articles |
US7358963B2 (en) * | 2002-09-09 | 2008-04-15 | Apple Inc. | Mouse having an optically-based scrolling feature |
US20070152977A1 (en) * | 2005-12-30 | 2007-07-05 | Apple Computer, Inc. | Illuminated touchpad |
US7499040B2 (en) * | 2003-08-18 | 2009-03-03 | Apple Inc. | Movable touch pad with added functionality |
US20060181517A1 (en) * | 2005-02-11 | 2006-08-17 | Apple Computer, Inc. | Display actuator |
US7457880B1 (en) * | 2003-09-26 | 2008-11-25 | Ximeta Technology, Inc. | System using a single host to receive and redirect all file access commands for shared data storage device from other hosts on a network |
US8059099B2 (en) | 2006-06-02 | 2011-11-15 | Apple Inc. | Techniques for interactive input to portable electronic devices |
US7495659B2 (en) * | 2003-11-25 | 2009-02-24 | Apple Inc. | Touch pad for handheld device |
US7664836B2 (en) * | 2004-02-17 | 2010-02-16 | Zhe Khi Pak | Device and method for booting an operation system for a computer from a passive directly attached network device |
US20050193017A1 (en) * | 2004-02-19 | 2005-09-01 | Han-Gyoo Kim | Portable multimedia player/recorder that accesses data contents from and writes to networked device |
US20060069884A1 (en) * | 2004-02-27 | 2006-03-30 | Han-Gyoo Kim | Universal network to device bridge chip that enables network directly attached device |
US7554531B2 (en) * | 2004-05-18 | 2009-06-30 | Interlink Electronics, Inc. | Annular potentiometric touch sensor |
US7310089B2 (en) * | 2004-05-18 | 2007-12-18 | Interlink Electronics, Inc. | Annular potentiometric touch sensor |
US7515431B1 (en) * | 2004-07-02 | 2009-04-07 | Apple Inc. | Handheld computing device |
US7724532B2 (en) * | 2004-07-02 | 2010-05-25 | Apple Inc. | Handheld computing device |
US7746900B2 (en) | 2004-07-22 | 2010-06-29 | Zhe Khi Pak | Low-level communication layers and device employing same |
US20080129707A1 (en) * | 2004-07-27 | 2008-06-05 | Pryor Timothy R | Method and apparatus employing multi-functional controls and displays |
JP4439351B2 (en) * | 2004-07-28 | 2010-03-24 | アルパイン株式会社 | Touch panel input device with vibration applying function and vibration applying method for operation input |
US7653883B2 (en) | 2004-07-30 | 2010-01-26 | Apple Inc. | Proximity detector in handheld device |
US8381135B2 (en) | 2004-07-30 | 2013-02-19 | Apple Inc. | Proximity detector in handheld device |
JP2008511045A (en) | 2004-08-16 | 2008-04-10 | フィンガーワークス・インコーポレーテッド | Method for improving the spatial resolution of a touch sense device |
US7860943B2 (en) * | 2004-08-23 | 2010-12-28 | Zhe Khi Pak | Enhanced network direct attached storage controller |
JP3734820B1 (en) * | 2004-09-03 | 2006-01-11 | 任天堂株式会社 | GAME PROGRAM, GAME DEVICE, AND INPUT DEVICE |
US20100231506A1 (en) * | 2004-09-07 | 2010-09-16 | Timothy Pryor | Control of appliances, kitchen and home |
JP4583893B2 (en) * | 2004-11-19 | 2010-11-17 | 任天堂株式会社 | GAME PROGRAM AND GAME DEVICE |
TWI273497B (en) * | 2004-12-14 | 2007-02-11 | Elan Microelectronics Corp | Dual-axis unequal-interval interlacing-type sensing-scan capacitance-type touch panel |
US7849257B1 (en) | 2005-01-06 | 2010-12-07 | Zhe Khi Pak | Method and apparatus for storing and retrieving data |
PL1851943T3 (en) * | 2005-02-02 | 2018-07-31 | Audiobrax Indústria E Comércio De Produtos Eletrônicos S.A. | Mobile communication device with music instrumental functions |
KR20160150116A (en) * | 2005-03-04 | 2016-12-28 | 애플 인크. | Multi-functional hand-held device |
US20060227117A1 (en) * | 2005-04-07 | 2006-10-12 | Microsoft Corporation | Circular touch sensor |
US9727082B2 (en) * | 2005-04-26 | 2017-08-08 | Apple Inc. | Back-side interface for hand-held devices |
CN100455171C (en) * | 2005-06-21 | 2009-01-21 | 华硕电脑股份有限公司 | Action electronic device |
CH697974B1 (en) * | 2005-07-01 | 2009-04-15 | Saeco Ipr Ltd | Operating device for hot beverage vending machines. |
KR20070010589A (en) * | 2005-07-19 | 2007-01-24 | 엘지전자 주식회사 | Mobile communication terminal with turn-table and its operating method |
US9122518B2 (en) | 2005-08-11 | 2015-09-01 | Pantech Co., Ltd. | Method for selecting and controlling second work process during first work process in multitasking mobile terminal |
US7294089B2 (en) * | 2005-08-15 | 2007-11-13 | Ford Global Technologies, Llc | Multiple-speed automatic transmission |
EP1758013B1 (en) * | 2005-08-24 | 2018-07-04 | LG Electronics Inc. | Mobile communications terminal having a touch input unit and controlling method thereof |
JP4590328B2 (en) * | 2005-08-30 | 2010-12-01 | 任天堂株式会社 | Input data processing program and information processing apparatus |
US7825907B2 (en) * | 2005-08-30 | 2010-11-02 | Lg Electronics Inc. | Touch key assembly for a mobile terminal |
JP4716956B2 (en) * | 2005-08-30 | 2011-07-06 | エルジー電子株式會社 | Touch key assembly and mobile communication terminal having the same |
KR100652755B1 (en) * | 2005-08-30 | 2006-12-01 | 엘지전자 주식회사 | Portable phone of a touching and pushing type able to be backlighted |
US7671837B2 (en) * | 2005-09-06 | 2010-03-02 | Apple Inc. | Scrolling input arrangements using capacitive sensors on a flexible membrane |
JP2009523267A (en) * | 2005-09-15 | 2009-06-18 | アップル インコーポレイテッド | System and method for processing raw data of a trackpad device |
JP4819467B2 (en) * | 2005-10-04 | 2011-11-24 | 任天堂株式会社 | Object movement control program and information processing apparatus |
JP2007102664A (en) * | 2005-10-07 | 2007-04-19 | Smk Corp | Method for use of rotation input device |
US7880729B2 (en) | 2005-10-11 | 2011-02-01 | Apple Inc. | Center button isolation ring |
US7808480B2 (en) * | 2005-10-28 | 2010-10-05 | Sap Ag | Method and system for secure input |
US20070097089A1 (en) * | 2005-10-31 | 2007-05-03 | Battles Amy E | Imaging device control using touch pad |
TWM289905U (en) * | 2005-11-10 | 2006-04-21 | Elan Microelectronics Corp | Touch-control shaft having pushbutton function |
US7868874B2 (en) | 2005-11-15 | 2011-01-11 | Synaptics Incorporated | Methods and systems for detecting a position-based attribute of an object using digital codes |
US20070109275A1 (en) * | 2005-11-16 | 2007-05-17 | Chen-Ting Chuang | Method for controlling a touch screen user interface and device thereof |
US20070137462A1 (en) * | 2005-12-16 | 2007-06-21 | Motorola, Inc. | Wireless communications device with audio-visual effect generator |
US7701440B2 (en) * | 2005-12-19 | 2010-04-20 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Pointing device adapted for small handheld devices having two display modes |
CN1988374B (en) * | 2005-12-20 | 2010-10-06 | 太瀚科技股份有限公司 | Inductance control system and method for control sound volume |
US8077147B2 (en) * | 2005-12-30 | 2011-12-13 | Apple Inc. | Mouse with optical sensing surface |
US20070152983A1 (en) * | 2005-12-30 | 2007-07-05 | Apple Computer, Inc. | Touch pad with symbols based on mode |
KR101287497B1 (en) * | 2006-01-06 | 2013-07-18 | 삼성전자주식회사 | Apparatus and method for transmitting control command in home network system |
WO2007082037A2 (en) * | 2006-01-10 | 2007-07-19 | Cirque Corporation | Touchpad control of character actions in a virtual environment using gestures |
US20070171188A1 (en) * | 2006-01-25 | 2007-07-26 | Nigel Waites | Sensor for handheld device control illumination |
JP4926494B2 (en) * | 2006-02-20 | 2012-05-09 | キヤノン株式会社 | Image processing apparatus and control method |
US20070268250A1 (en) * | 2006-02-27 | 2007-11-22 | Nubron Inc. | Remote input device for computers |
KR100746874B1 (en) * | 2006-03-16 | 2007-08-07 | 삼성전자주식회사 | Method and apparatus for providing of service using the touch pad in a mobile station |
US20070220443A1 (en) * | 2006-03-17 | 2007-09-20 | Cranfill David B | User interface for scrolling |
US20070222765A1 (en) * | 2006-03-22 | 2007-09-27 | Nokia Corporation | Slider input lid on touchscreen |
US7787618B2 (en) | 2006-03-29 | 2010-08-31 | Nokia Corporation | Portable electronic device |
CN101432681B (en) * | 2006-03-30 | 2013-01-16 | 塞奎公司 | System and method for enabling function inspiration and operation of circular touchpad |
US7538760B2 (en) * | 2006-03-30 | 2009-05-26 | Apple Inc. | Force imaging input device and system |
US7511702B2 (en) * | 2006-03-30 | 2009-03-31 | Apple Inc. | Force and location sensitive display |
US8040142B1 (en) | 2006-03-31 | 2011-10-18 | Cypress Semiconductor Corporation | Touch detection techniques for capacitive touch sense systems |
US8866750B2 (en) * | 2006-04-10 | 2014-10-21 | Microsoft Corporation | Universal user interface device |
US7978181B2 (en) | 2006-04-25 | 2011-07-12 | Apple Inc. | Keystroke tactility arrangement on a smooth touch surface |
US8279180B2 (en) | 2006-05-02 | 2012-10-02 | Apple Inc. | Multipoint touch surface controller |
US8004497B2 (en) | 2006-05-18 | 2011-08-23 | Cypress Semiconductor Corporation | Two-pin buttons |
KR102481798B1 (en) | 2006-06-09 | 2022-12-26 | 애플 인크. | Touch screen liquid crystal display |
CN104965621B (en) | 2006-06-09 | 2018-06-12 | 苹果公司 | Touch screen LCD and its operating method |
US8552989B2 (en) | 2006-06-09 | 2013-10-08 | Apple Inc. | Integrated display and touch screen |
KR100839696B1 (en) * | 2006-06-20 | 2008-06-19 | 엘지전자 주식회사 | Input device |
US8022935B2 (en) | 2006-07-06 | 2011-09-20 | Apple Inc. | Capacitance sensing electrode with integrated I/O mechanism |
US8743060B2 (en) | 2006-07-06 | 2014-06-03 | Apple Inc. | Mutual capacitance touch sensing device |
US9360967B2 (en) | 2006-07-06 | 2016-06-07 | Apple Inc. | Mutual capacitance touch sensing device |
US20080006454A1 (en) * | 2006-07-10 | 2008-01-10 | Apple Computer, Inc. | Mutual capacitance touch sensing device |
US7889176B2 (en) * | 2006-07-18 | 2011-02-15 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Capacitive sensing in displacement type pointing devices |
KR100781706B1 (en) * | 2006-08-16 | 2007-12-03 | 삼성전자주식회사 | Device and method for scrolling list in mobile terminal |
US20100289737A1 (en) * | 2006-08-25 | 2010-11-18 | Kyocera Corporation | Portable electronic apparatus, operation detecting method for the portable electronic apparatus, and control method for the portable electronic apparatus |
JP5064395B2 (en) * | 2006-08-25 | 2012-10-31 | 京セラ株式会社 | Portable electronic device and input operation determination method |
US8014760B2 (en) | 2006-09-06 | 2011-09-06 | Apple Inc. | Missed telephone call management for a portable multifunction device |
US20080055263A1 (en) * | 2006-09-06 | 2008-03-06 | Lemay Stephen O | Incoming Telephone Call Management for a Portable Multifunction Device |
US8736557B2 (en) * | 2006-09-11 | 2014-05-27 | Apple Inc. | Electronic device with image based browsers |
US8036766B2 (en) * | 2006-09-11 | 2011-10-11 | Apple Inc. | Intelligent audio mixing among media playback and at least one other non-playback application |
US7795553B2 (en) | 2006-09-11 | 2010-09-14 | Apple Inc. | Hybrid button |
US7729791B2 (en) * | 2006-09-11 | 2010-06-01 | Apple Inc. | Portable media playback device including user interface event passthrough to non-media-playback processing |
US7581186B2 (en) * | 2006-09-11 | 2009-08-25 | Apple Inc. | Media manager with integrated browsers |
US8564543B2 (en) * | 2006-09-11 | 2013-10-22 | Apple Inc. | Media player with imaged based browsing |
US7946918B2 (en) * | 2006-09-11 | 2011-05-24 | Apple Inc. | Allowing media and gaming environments to effectively interact and/or affect each other |
US8421602B2 (en) * | 2006-09-13 | 2013-04-16 | Savant Systems, Llc | Remote control unit for a programmable multimedia controller |
KR101241907B1 (en) * | 2006-09-29 | 2013-03-11 | 엘지전자 주식회사 | Remote controller and Method for generation of key code on remote controller thereof |
KR101319871B1 (en) * | 2006-09-29 | 2013-10-18 | 엘지전자 주식회사 | Apparatus of coordinates cognition and Method for generation of key code on the apparatus thereof |
KR101259116B1 (en) * | 2006-09-29 | 2013-04-26 | 엘지전자 주식회사 | Controller and Method for generation of key code on remote controller thereof |
US20080088600A1 (en) * | 2006-10-11 | 2008-04-17 | Apple Inc. | Method and apparatus for implementing multiple push buttons in a user input device |
US20080088597A1 (en) * | 2006-10-11 | 2008-04-17 | Apple Inc. | Sensor configurations in a user input device |
US8274479B2 (en) | 2006-10-11 | 2012-09-25 | Apple Inc. | Gimballed scroll wheel |
US8090087B2 (en) * | 2006-10-26 | 2012-01-03 | Apple Inc. | Method, system, and graphical user interface for making conference calls |
US8482530B2 (en) | 2006-11-13 | 2013-07-09 | Apple Inc. | Method of capacitively sensing finger position |
US8547114B2 (en) | 2006-11-14 | 2013-10-01 | Cypress Semiconductor Corporation | Capacitance to code converter with sigma-delta modulator |
US20080143681A1 (en) * | 2006-12-18 | 2008-06-19 | Xiaoping Jiang | Circular slider with center button |
US8493330B2 (en) | 2007-01-03 | 2013-07-23 | Apple Inc. | Individual channel phase delay scheme |
US7639234B2 (en) * | 2007-01-04 | 2009-12-29 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Capacitive sensing and absolute position mapping in displacement type pointing devices |
US9710095B2 (en) | 2007-01-05 | 2017-07-18 | Apple Inc. | Touch screen stack-ups |
US7975242B2 (en) * | 2007-01-07 | 2011-07-05 | Apple Inc. | Portable multifunction device, method, and graphical user interface for conference calling |
US8519963B2 (en) * | 2007-01-07 | 2013-08-27 | Apple Inc. | Portable multifunction device, method, and graphical user interface for interpreting a finger gesture on a touch screen display |
US10437459B2 (en) * | 2007-01-07 | 2019-10-08 | Apple Inc. | Multitouch data fusion |
US8607167B2 (en) * | 2007-01-07 | 2013-12-10 | Apple Inc. | Portable multifunction device, method, and graphical user interface for providing maps and directions |
US9001047B2 (en) | 2007-01-07 | 2015-04-07 | Apple Inc. | Modal change based on orientation of a portable multifunction device |
US20080165135A1 (en) * | 2007-01-10 | 2008-07-10 | Jao-Ching Lin | Functional expansion system for a touch pad |
US8058937B2 (en) | 2007-01-30 | 2011-11-15 | Cypress Semiconductor Corporation | Setting a discharge rate and a charge rate of a relaxation oscillator circuit |
US20080180399A1 (en) * | 2007-01-31 | 2008-07-31 | Tung Wan Cheng | Flexible Multi-touch Screen |
US20080196945A1 (en) * | 2007-02-21 | 2008-08-21 | Jason Konstas | Preventing unintentional activation of a sensor element of a sensing device |
FR2913272B1 (en) * | 2007-03-02 | 2010-06-25 | Dav | SENSOR WITH TOUCH SURFACE |
US7999789B2 (en) * | 2007-03-14 | 2011-08-16 | Computime, Ltd. | Electrical device with a selected orientation for operation |
TW200839587A (en) * | 2007-03-16 | 2008-10-01 | Inventec Appliances Corp | Touch sensing device and method for electrical apparatus |
TW200841531A (en) * | 2007-04-02 | 2008-10-16 | Asustek Comp Inc | Slot device |
TWI339806B (en) * | 2007-04-04 | 2011-04-01 | Htc Corp | Electronic device capable of executing commands therein and method for executing commands in the same |
JP4333768B2 (en) * | 2007-04-06 | 2009-09-16 | ソニー株式会社 | Display device |
JP2008276548A (en) * | 2007-04-27 | 2008-11-13 | Toshiba Corp | Electrostatic pad apparatus and information processing apparatus |
US20080270900A1 (en) * | 2007-04-27 | 2008-10-30 | Wezowski Martin M R | Device, method and computer program product for switching a device between application modes |
US20080273017A1 (en) * | 2007-05-04 | 2008-11-06 | Woolley Richard D | Touchpad using a combination of touchdown and radial movements to provide control signals |
PL1988445T3 (en) * | 2007-05-04 | 2016-08-31 | Whirlpool Co | User interface and cooking oven provided with such user interface |
US7911771B2 (en) * | 2007-05-23 | 2011-03-22 | Apple Inc. | Electronic device with a metal-ceramic composite component |
US8185839B2 (en) * | 2007-06-09 | 2012-05-22 | Apple Inc. | Browsing or searching user interfaces and other aspects |
US8201096B2 (en) * | 2007-06-09 | 2012-06-12 | Apple Inc. | Browsing or searching user interfaces and other aspects |
US9772667B2 (en) | 2007-06-13 | 2017-09-26 | Apple Inc. | Integrated multi-touch surface having varying sensor granularity |
US9052817B2 (en) * | 2007-06-13 | 2015-06-09 | Apple Inc. | Mode sensitive processing of touch data |
US8350815B2 (en) | 2007-06-20 | 2013-01-08 | Sony Mobile Communications | Portable communication device including touch input with scrolling function |
US9933937B2 (en) | 2007-06-20 | 2018-04-03 | Apple Inc. | Portable multifunction device, method, and graphical user interface for playing online videos |
US8302033B2 (en) | 2007-06-22 | 2012-10-30 | Apple Inc. | Touch screen device, method, and graphical user interface for providing maps, directions, and location-based information |
US9500686B1 (en) | 2007-06-29 | 2016-11-22 | Cypress Semiconductor Corporation | Capacitance measurement system and methods |
US8570053B1 (en) | 2007-07-03 | 2013-10-29 | Cypress Semiconductor Corporation | Capacitive field sensor with sigma-delta modulator |
US8169238B1 (en) | 2007-07-03 | 2012-05-01 | Cypress Semiconductor Corporation | Capacitance to frequency converter |
US9654104B2 (en) | 2007-07-17 | 2017-05-16 | Apple Inc. | Resistive force sensor with capacitive discrimination |
TW200907768A (en) * | 2007-08-09 | 2009-02-16 | Asustek Comp Inc | Portable apparatus and rapid cursor positioning method |
US8683378B2 (en) | 2007-09-04 | 2014-03-25 | Apple Inc. | Scrolling techniques for user interfaces |
US7910843B2 (en) | 2007-09-04 | 2011-03-22 | Apple Inc. | Compact input device |
US20090058801A1 (en) * | 2007-09-04 | 2009-03-05 | Apple Inc. | Fluid motion user interface control |
US20090073130A1 (en) * | 2007-09-17 | 2009-03-19 | Apple Inc. | Device having cover with integrally formed sensor |
US20090096749A1 (en) * | 2007-10-10 | 2009-04-16 | Sun Microsystems, Inc. | Portable device input technique |
US8234262B2 (en) * | 2007-10-24 | 2012-07-31 | The Invention Science Fund I, Llc | Method of selecting a second content based on a user's reaction to a first content of at least two instances of displayed content |
US20090112696A1 (en) * | 2007-10-24 | 2009-04-30 | Jung Edward K Y | Method of space-available advertising in a mobile device |
US9513699B2 (en) * | 2007-10-24 | 2016-12-06 | Invention Science Fund I, LL | Method of selecting a second content based on a user's reaction to a first content |
US8001108B2 (en) * | 2007-10-24 | 2011-08-16 | The Invention Science Fund I, Llc | Returning a new content based on a person's reaction to at least two instances of previously displayed content |
US20090112694A1 (en) * | 2007-10-24 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Targeted-advertising based on a sensed physiological response by a person to a general advertisement |
US20090112849A1 (en) * | 2007-10-24 | 2009-04-30 | Searete Llc | Selecting a second content based on a user's reaction to a first content of at least two instances of displayed content |
US9582805B2 (en) * | 2007-10-24 | 2017-02-28 | Invention Science Fund I, Llc | Returning a personalized advertisement |
US8112407B2 (en) * | 2007-10-24 | 2012-02-07 | The Invention Science Fund I, Llc | Selecting a second content based on a user's reaction to a first content |
US8126867B2 (en) * | 2007-10-24 | 2012-02-28 | The Invention Science Fund I, Llc | Returning a second content based on a user's reaction to a first content |
US20090112693A1 (en) * | 2007-10-24 | 2009-04-30 | Jung Edward K Y | Providing personalized advertising |
US20090113297A1 (en) * | 2007-10-24 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Requesting a second content based on a user's reaction to a first content |
US20090112697A1 (en) * | 2007-10-30 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Providing personalized advertising |
TWI406551B (en) * | 2007-11-06 | 2013-08-21 | Lg Electronics Inc | Mobile terminal |
US8416198B2 (en) | 2007-12-03 | 2013-04-09 | Apple Inc. | Multi-dimensional scroll wheel |
US20090146970A1 (en) * | 2007-12-10 | 2009-06-11 | Research In Motion Limited | Electronic device and touch screen having discrete touch-sensitive areas |
US8446371B2 (en) | 2007-12-19 | 2013-05-21 | Research In Motion Limited | Method and apparatus for launching activities |
TWI368161B (en) * | 2007-12-21 | 2012-07-11 | Htc Corp | Electronic apparatus and input interface thereof |
US8947383B2 (en) | 2008-01-04 | 2015-02-03 | Tactus Technology, Inc. | User interface system and method |
US8553005B2 (en) | 2008-01-04 | 2013-10-08 | Tactus Technology, Inc. | User interface system |
US8922510B2 (en) | 2008-01-04 | 2014-12-30 | Tactus Technology, Inc. | User interface system |
US8547339B2 (en) | 2008-01-04 | 2013-10-01 | Tactus Technology, Inc. | System and methods for raised touch screens |
US8154527B2 (en) | 2008-01-04 | 2012-04-10 | Tactus Technology | User interface system |
US8179375B2 (en) | 2008-01-04 | 2012-05-15 | Tactus Technology | User interface system and method |
US8456438B2 (en) | 2008-01-04 | 2013-06-04 | Tactus Technology, Inc. | User interface system |
US9052790B2 (en) | 2008-01-04 | 2015-06-09 | Tactus Technology, Inc. | User interface and methods |
US8207950B2 (en) * | 2009-07-03 | 2012-06-26 | Tactus Technologies | User interface enhancement system |
US8243038B2 (en) | 2009-07-03 | 2012-08-14 | Tactus Technologies | Method for adjusting the user interface of a device |
US9557915B2 (en) | 2008-01-04 | 2017-01-31 | Tactus Technology, Inc. | Dynamic tactile interface |
US9430074B2 (en) | 2008-01-04 | 2016-08-30 | Tactus Technology, Inc. | Dynamic tactile interface |
US9423875B2 (en) | 2008-01-04 | 2016-08-23 | Tactus Technology, Inc. | Dynamic tactile interface with exhibiting optical dispersion characteristics |
US9274612B2 (en) | 2008-01-04 | 2016-03-01 | Tactus Technology, Inc. | User interface system |
US8922502B2 (en) | 2008-01-04 | 2014-12-30 | Tactus Technology, Inc. | User interface system |
US9588683B2 (en) | 2008-01-04 | 2017-03-07 | Tactus Technology, Inc. | Dynamic tactile interface |
US9013417B2 (en) | 2008-01-04 | 2015-04-21 | Tactus Technology, Inc. | User interface system |
US9612659B2 (en) | 2008-01-04 | 2017-04-04 | Tactus Technology, Inc. | User interface system |
US9063627B2 (en) | 2008-01-04 | 2015-06-23 | Tactus Technology, Inc. | User interface and methods |
US9128525B2 (en) | 2008-01-04 | 2015-09-08 | Tactus Technology, Inc. | Dynamic tactile interface |
US9552065B2 (en) | 2008-01-04 | 2017-01-24 | Tactus Technology, Inc. | Dynamic tactile interface |
US20160187981A1 (en) | 2008-01-04 | 2016-06-30 | Tactus Technology, Inc. | Manual fluid actuator |
US9720501B2 (en) | 2008-01-04 | 2017-08-01 | Tactus Technology, Inc. | Dynamic tactile interface |
US8928621B2 (en) | 2008-01-04 | 2015-01-06 | Tactus Technology, Inc. | User interface system and method |
US9298261B2 (en) | 2008-01-04 | 2016-03-29 | Tactus Technology, Inc. | Method for actuating a tactile interface layer |
US8570295B2 (en) | 2008-01-04 | 2013-10-29 | Tactus Technology, Inc. | User interface system |
US8327272B2 (en) * | 2008-01-06 | 2012-12-04 | Apple Inc. | Portable multifunction device, method, and graphical user interface for viewing and managing electronic calendars |
US8125461B2 (en) | 2008-01-11 | 2012-02-28 | Apple Inc. | Dynamic input graphic display |
ES2374208T3 (en) * | 2008-01-24 | 2012-02-14 | Koninklijke Philips Electronics N.V. | COLOR SELECTION INPUT DEVICE AND METHOD. |
US8525798B2 (en) | 2008-01-28 | 2013-09-03 | Cypress Semiconductor Corporation | Touch sensing |
US8820133B2 (en) | 2008-02-01 | 2014-09-02 | Apple Inc. | Co-extruded materials and methods |
US8319505B1 (en) | 2008-10-24 | 2012-11-27 | Cypress Semiconductor Corporation | Methods and circuits for measuring mutual and self capacitance |
US8358142B2 (en) | 2008-02-27 | 2013-01-22 | Cypress Semiconductor Corporation | Methods and circuits for measuring mutual and self capacitance |
US9104273B1 (en) | 2008-02-29 | 2015-08-11 | Cypress Semiconductor Corporation | Multi-touch sensing method |
CN101533296A (en) * | 2008-03-12 | 2009-09-16 | 深圳富泰宏精密工业有限公司 | Touch control system and method for hand-hold mobile electronic device |
US9454256B2 (en) | 2008-03-14 | 2016-09-27 | Apple Inc. | Sensor configurations of an input device that are switchable based on mode |
US9448721B2 (en) * | 2008-03-19 | 2016-09-20 | Blackberry Limited | Electronic device including touch-sensitive input device and method of determining selection |
US20090289917A1 (en) * | 2008-03-20 | 2009-11-26 | Saunders Samuel F | Dynamic visual feature coordination in an electronic hand held device |
CN101551726A (en) * | 2008-04-03 | 2009-10-07 | 深圳富泰宏精密工业有限公司 | Touch control system and method of electronic device |
US9189102B2 (en) * | 2008-05-16 | 2015-11-17 | 8631654 Canada Inc. | Data filtering method and electronic device using the same |
TW200949616A (en) * | 2008-05-16 | 2009-12-01 | High Tech Comp Corp | Data filtering method and electronic device and readable recording medium using the same |
TWI396967B (en) * | 2008-05-16 | 2013-05-21 | Htc Corp | Signal filtering method and electronic device and readable recording medium using the same |
TWI358029B (en) | 2008-05-16 | 2012-02-11 | Htc Corp | Method for filtering out signals from touch device |
KR100957836B1 (en) * | 2008-06-02 | 2010-05-14 | 주식회사 애트랩 | Touch panel device and contact position detection method of it |
US8217908B2 (en) | 2008-06-19 | 2012-07-10 | Tactile Displays, Llc | Apparatus and method for interactive display with tactile feedback |
US8665228B2 (en) | 2008-06-19 | 2014-03-04 | Tactile Displays, Llc | Energy efficient interactive display with energy regenerative keyboard |
US8115745B2 (en) | 2008-06-19 | 2012-02-14 | Tactile Displays, Llc | Apparatus and method for interactive display with tactile feedback |
US9513705B2 (en) * | 2008-06-19 | 2016-12-06 | Tactile Displays, Llc | Interactive display with tactile feedback |
US20090327974A1 (en) * | 2008-06-26 | 2009-12-31 | Microsoft Corporation | User interface for gestural control |
JP4636141B2 (en) * | 2008-08-28 | 2011-02-23 | ソニー株式会社 | Information processing apparatus and method, and program |
WO2010027492A2 (en) * | 2008-09-04 | 2010-03-11 | Savant Systems Llc | Touch-sensitive wireless device and on screen display for remotely controlling a system |
US8341557B2 (en) * | 2008-09-05 | 2012-12-25 | Apple Inc. | Portable touch screen device, method, and graphical user interface for providing workout support |
US8810542B2 (en) * | 2008-09-10 | 2014-08-19 | Apple Inc. | Correction of parasitic capacitance effect in touch sensor panels |
IT1393376B1 (en) | 2008-09-12 | 2012-04-20 | Sicam Srl | BALANCING MACHINE FOR WHEEL BALANCING OF VEHICLES |
US8259082B2 (en) | 2008-09-12 | 2012-09-04 | At&T Intellectual Property I, L.P. | Multimodal portable communication interface for accessing video content |
IT1393377B1 (en) | 2008-09-12 | 2012-04-20 | Sicam Srl | BALANCING MACHINE FOR WHEEL BALANCING OF VEHICLES |
US8816967B2 (en) | 2008-09-25 | 2014-08-26 | Apple Inc. | Capacitive sensor having electrodes arranged on the substrate and the flex circuit |
US8321174B1 (en) | 2008-09-26 | 2012-11-27 | Cypress Semiconductor Corporation | System and method to measure capacitance of capacitive sensor array |
US10289199B2 (en) * | 2008-09-29 | 2019-05-14 | Apple Inc. | Haptic feedback system |
US8368654B2 (en) * | 2008-09-30 | 2013-02-05 | Apple Inc. | Integrated touch sensor and solar assembly |
KR101323015B1 (en) * | 2008-10-20 | 2013-10-29 | 엘지디스플레이 주식회사 | Touch sensing deving and method for correcting output thereof |
US8477103B2 (en) | 2008-10-26 | 2013-07-02 | Microsoft Corporation | Multi-touch object inertia simulation |
US8466879B2 (en) * | 2008-10-26 | 2013-06-18 | Microsoft Corporation | Multi-touch manipulation of application objects |
KR101016221B1 (en) * | 2008-11-14 | 2011-02-25 | 한국표준과학연구원 | Method for Embodiment of Algorism Using Force Sesor |
US9128543B2 (en) * | 2008-12-11 | 2015-09-08 | Pixart Imaging Inc. | Touch pad device and method for determining a position of an input object on the device using capacitive coupling |
US9075457B2 (en) * | 2008-12-12 | 2015-07-07 | Maxim Integrated Products, Inc. | System and method for interfacing applications processor to touchscreen display for reduced data transfer |
US8395590B2 (en) | 2008-12-17 | 2013-03-12 | Apple Inc. | Integrated contact switch and touch sensor elements |
US9600070B2 (en) | 2008-12-22 | 2017-03-21 | Apple Inc. | User interface having changeable topography |
US8623494B2 (en) | 2008-12-29 | 2014-01-07 | Otter Products, Llc | Protective cushion cover for an electronic device |
WO2010078597A1 (en) * | 2009-01-05 | 2010-07-08 | Tactus Technology, Inc. | User interface system |
US9588684B2 (en) | 2009-01-05 | 2017-03-07 | Tactus Technology, Inc. | Tactile interface for a computing device |
WO2010078596A1 (en) * | 2009-01-05 | 2010-07-08 | Tactus Technology, Inc. | User interface system |
US8487975B2 (en) | 2009-01-27 | 2013-07-16 | Lifesize Communications, Inc. | Conferencing system utilizing a mobile communication device as an interface |
US20100220063A1 (en) * | 2009-02-27 | 2010-09-02 | Panasonic Corporation | System and methods for calibratable translation of position |
JP5392900B2 (en) * | 2009-03-03 | 2014-01-22 | 現代自動車株式会社 | In-vehicle device operation device |
US8570280B2 (en) * | 2009-03-25 | 2013-10-29 | Lenovo (Singapore) Pte. Ltd. | Filtering of inadvertent contact with touch pad input device |
TWI469015B (en) * | 2009-03-27 | 2015-01-11 | Hon Hai Prec Ind Co Ltd | Electronic device with sliding touch control function and control method thereof |
US8154529B2 (en) | 2009-05-14 | 2012-04-10 | Atmel Corporation | Two-dimensional touch sensors |
US9354751B2 (en) | 2009-05-15 | 2016-05-31 | Apple Inc. | Input device with optimized capacitive sensing |
TWI419017B (en) * | 2009-05-25 | 2013-12-11 | Micro Nits Co Ltd | Input system having a sheet-like light shield |
US8549432B2 (en) * | 2009-05-29 | 2013-10-01 | Apple Inc. | Radial menus |
US8464182B2 (en) * | 2009-06-07 | 2013-06-11 | Apple Inc. | Device, method, and graphical user interface for providing maps, directions, and location-based information |
US8872771B2 (en) | 2009-07-07 | 2014-10-28 | Apple Inc. | Touch sensing device having conductive nodes |
US8654524B2 (en) | 2009-08-17 | 2014-02-18 | Apple Inc. | Housing as an I/O device |
US8965458B2 (en) | 2009-08-21 | 2015-02-24 | Otter Products, Llc | Protective cushion cover for an electronic device |
US9176962B2 (en) * | 2009-09-07 | 2015-11-03 | Apple Inc. | Digital media asset browsing with audio cues |
KR101624218B1 (en) * | 2009-09-14 | 2016-05-25 | 삼성전자주식회사 | Digital photographing apparatus and controlling method thereof |
JP5218353B2 (en) * | 2009-09-14 | 2013-06-26 | ソニー株式会社 | Information processing apparatus, display method, and program |
US20110078626A1 (en) * | 2009-09-28 | 2011-03-31 | William Bachman | Contextual Presentation of Digital Media Asset Collections |
US9158409B2 (en) * | 2009-09-29 | 2015-10-13 | Beijing Lenovo Software Ltd | Object determining method, object display method, object switching method and electronic device |
TW201120689A (en) * | 2009-12-10 | 2011-06-16 | Chih-Ming Tsao | Processing method of input device to perform multi-directional control. |
WO2011087817A1 (en) | 2009-12-21 | 2011-07-21 | Tactus Technology | User interface system |
US9239623B2 (en) | 2010-01-05 | 2016-01-19 | Tactus Technology, Inc. | Dynamic tactile interface |
US20110163977A1 (en) * | 2010-01-06 | 2011-07-07 | Ulrich Barnhoefer | Mode Dependent Configuration of Portable Electronic Device |
US8736561B2 (en) * | 2010-01-06 | 2014-05-27 | Apple Inc. | Device, method, and graphical user interface with content display modes and display rotation heuristics |
US8456297B2 (en) * | 2010-01-06 | 2013-06-04 | Apple Inc. | Device, method, and graphical user interface for tracking movement on a map |
US8862576B2 (en) * | 2010-01-06 | 2014-10-14 | Apple Inc. | Device, method, and graphical user interface for mapping directions between search results |
US8866791B2 (en) * | 2010-01-06 | 2014-10-21 | Apple Inc. | Portable electronic device having mode dependent user input controls |
US8619035B2 (en) | 2010-02-10 | 2013-12-31 | Tactus Technology, Inc. | Method for assisting user input to a device |
WO2011112984A1 (en) | 2010-03-11 | 2011-09-15 | Tactus Technology | User interface system |
US9025317B2 (en) | 2010-03-17 | 2015-05-05 | Otter Products, Llc | Multi-material protective case for sliding/articulating/rotating handheld electronic devices |
US10719131B2 (en) | 2010-04-05 | 2020-07-21 | Tactile Displays, Llc | Interactive display with tactile feedback |
TWI514127B (en) * | 2010-04-16 | 2015-12-21 | Via Tech Inc | A computer system with an e-reader mode and e-book processing method thereof |
WO2011133605A1 (en) | 2010-04-19 | 2011-10-27 | Tactus Technology | Method of actuating a tactile interface layer |
US8591334B2 (en) * | 2010-06-03 | 2013-11-26 | Ol2, Inc. | Graphical user interface, system and method for implementing a game controller on a touch-screen device |
CN103098483A (en) * | 2010-07-26 | 2013-05-08 | 安纳科梅得泰克 | Control device for audio-visual display |
US8824140B2 (en) | 2010-09-17 | 2014-09-02 | Apple Inc. | Glass enclosure |
US9549598B2 (en) | 2010-10-12 | 2017-01-24 | Treefrog Developments, Inc. | Housing for encasing an electronic device |
EP2628064A2 (en) | 2010-10-12 | 2013-08-21 | Tree Frog Developments, Inc. | Housing for encasing an object |
KR20140037011A (en) | 2010-10-20 | 2014-03-26 | 택투스 테크놀로지, 아이엔씨. | User interface system |
CN102169397A (en) * | 2010-11-19 | 2011-08-31 | 苏州瀚瑞微电子有限公司 | Wiring method of capacitance touch screen |
JP5691464B2 (en) * | 2010-12-09 | 2015-04-01 | ソニー株式会社 | Information processing device |
US8804056B2 (en) * | 2010-12-22 | 2014-08-12 | Apple Inc. | Integrated touch screens |
EP2474886A1 (en) * | 2011-01-05 | 2012-07-11 | Research In Motion Limited | Electronic device and method of controlling same |
TWI573048B (en) * | 2011-01-26 | 2017-03-01 | 奇景光電股份有限公司 | Sensing device and sensing module |
US9615476B2 (en) | 2011-06-13 | 2017-04-04 | Treefrog Developments, Inc. | Housing for encasing a mobile device |
CA2838333C (en) | 2011-06-13 | 2021-07-20 | Treefrog Developments, Inc. | Housing for encasing a tablet computer |
USD736777S1 (en) | 2012-06-13 | 2015-08-18 | Treefrog Developments, Inc. | Case for an electronic device |
US9204094B2 (en) | 2011-06-28 | 2015-12-01 | Lifesize Communications, Inc. | Adjusting volume of a videoconference using touch-based gestures |
US8605872B2 (en) | 2011-06-28 | 2013-12-10 | Lifesize Communications, Inc. | Muting a videoconference using touch-based gestures |
US8605873B2 (en) | 2011-06-28 | 2013-12-10 | Lifesize Communications, Inc. | Accessing settings of a videoconference using touch-based gestures |
US8194036B1 (en) | 2011-06-29 | 2012-06-05 | Google Inc. | Systems and methods for controlling a cursor on a display using a trackpad input device |
US8319746B1 (en) * | 2011-07-22 | 2012-11-27 | Google Inc. | Systems and methods for removing electrical noise from a touchpad signal |
US9047007B2 (en) | 2011-07-28 | 2015-06-02 | National Instruments Corporation | Semantic zoom within a diagram of a system |
US8782525B2 (en) | 2011-07-28 | 2014-07-15 | National Insturments Corporation | Displaying physical signal routing in a diagram of a system |
US8713482B2 (en) | 2011-07-28 | 2014-04-29 | National Instruments Corporation | Gestures for presentation of different views of a system diagram |
US20130143657A1 (en) * | 2011-11-14 | 2013-06-06 | Amazon Technologies, Inc. | Input Mapping Regions |
RU2583754C2 (en) * | 2011-12-15 | 2016-05-10 | Тойота Дзидося Кабусики Кайся | Control device |
WO2013106474A1 (en) | 2012-01-10 | 2013-07-18 | The Joy Factory, Inc. | Protective casing providing impact absorption and water resistance for portable electronic devices |
US10216286B2 (en) * | 2012-03-06 | 2019-02-26 | Todd E. Chornenky | On-screen diagonal keyboard |
CN103425362A (en) * | 2012-05-23 | 2013-12-04 | 南京华睿川电子科技有限公司 | Round projected capacitive touch screen |
WO2013181644A1 (en) | 2012-06-01 | 2013-12-05 | Treefrog Developments, Inc. | Housing for an electronic device with camera, microphone and flash isolation |
CN103455254B (en) * | 2012-06-05 | 2018-05-22 | 腾讯科技(深圳)有限公司 | Interface focus control method for movement and control device |
US9241551B2 (en) | 2012-06-13 | 2016-01-26 | Otter Products, Llc | Protective case with compartment |
US8934675B2 (en) * | 2012-06-25 | 2015-01-13 | Aquifi, Inc. | Systems and methods for tracking human hands by performing parts based template matching using images from multiple viewpoints |
US20140055368A1 (en) * | 2012-08-22 | 2014-02-27 | Ming-Hsein Yu | Method and Apparatus by Using Touch Screen to Implement Functions of Touch Screen and Keypad |
CN103677376B (en) * | 2012-09-21 | 2017-12-26 | 联想(北京)有限公司 | The method and electronic equipment of information processing |
WO2014047656A2 (en) | 2012-09-24 | 2014-03-27 | Tactus Technology, Inc. | Dynamic tactile interface and methods |
US9405417B2 (en) | 2012-09-24 | 2016-08-02 | Tactus Technology, Inc. | Dynamic tactile interface and methods |
US9557846B2 (en) | 2012-10-04 | 2017-01-31 | Corning Incorporated | Pressure-sensing touch system utilizing optical and capacitive systems |
GB2506676B (en) * | 2012-10-08 | 2015-03-25 | Touchnetix Ltd | Touch sensors and touch sensing methods |
US10130286B2 (en) | 2012-10-12 | 2018-11-20 | Medicustek Inc. | Pressure-sensing device with biplanar sensor array |
US9030839B2 (en) * | 2012-10-18 | 2015-05-12 | Apple Inc. | Track pad acoustic features related to a portable computer |
DE102013201458A1 (en) * | 2013-01-30 | 2014-07-31 | Robert Bosch Gmbh | Method and device for detecting at least one signal |
EP2963530A4 (en) * | 2013-02-27 | 2016-10-26 | Alps Electric Co Ltd | Operation detection device |
KR102092062B1 (en) * | 2013-04-30 | 2020-03-23 | 인텔렉추얼디스커버리 주식회사 | Input device of display system and input method thereof |
CN104156147A (en) * | 2013-05-15 | 2014-11-19 | 中兴通讯股份有限公司 | Self-adaptive adjusting method of terminal interface display mode and terminal |
WO2014189807A2 (en) | 2013-05-18 | 2014-11-27 | Otter Products, Llc | Waterproof protective case for an electronic device |
CN105452992B (en) * | 2013-05-30 | 2019-03-08 | Tk控股公司 | Multidimensional Trackpad |
US9557813B2 (en) | 2013-06-28 | 2017-01-31 | Tactus Technology, Inc. | Method for reducing perceived optical distortion |
EP2824426B1 (en) | 2013-07-09 | 2018-05-09 | Leica Geosystems AG | Capacitative rotation angle sensor |
US9300078B2 (en) | 2013-08-23 | 2016-03-29 | Otter Products, Llc | Waterproof housing for mobile electronic device and waterproof adapter for accessory device |
CN105612476B (en) | 2013-10-08 | 2019-09-20 | Tk控股公司 | Self-alignment stereognosis tactile multi-touch Multifunctional switch panel |
US9304575B2 (en) | 2013-11-26 | 2016-04-05 | Apple Inc. | Reducing touch sensor panel power consumption |
CN103716672B (en) * | 2013-12-19 | 2016-06-08 | 京东方科技集团股份有限公司 | A kind of remote controller, display device and remote control display system |
CN104793774A (en) * | 2014-01-20 | 2015-07-22 | 联发科技(新加坡)私人有限公司 | Electronic device control method |
US20150363026A1 (en) * | 2014-06-16 | 2015-12-17 | Touchplus Information Corp. | Control device, operation mode altering method thereof, control method thereof and battery power warning method thereof |
US9280228B1 (en) * | 2014-08-13 | 2016-03-08 | Anacom Medtek | Patient-actuated control device for controlling an audio-visual display and ancillary functions in a hospital room |
US10048754B2 (en) * | 2014-08-27 | 2018-08-14 | Grayhill, Inc. | Localized haptic response |
US10466826B2 (en) | 2014-10-08 | 2019-11-05 | Joyson Safety Systems Acquisition Llc | Systems and methods for illuminating a track pad system |
USD787553S1 (en) * | 2014-11-20 | 2017-05-23 | General Electric Company | Display screen or portion thereof with icon |
US9910531B2 (en) * | 2015-01-12 | 2018-03-06 | Synaptics Incorporated | Circular outline single layer pattern |
CN106293425A (en) * | 2015-05-14 | 2017-01-04 | 冠捷投资有限公司 | There is the display device of touch control screen regulation menu |
US9577697B2 (en) | 2015-05-27 | 2017-02-21 | Otter Products, Llc | Protective case with stylus access feature |
US20160356602A1 (en) | 2015-06-03 | 2016-12-08 | Reginald K. Puana | E-Car Trip Planner |
CN105068693B (en) * | 2015-08-28 | 2018-01-02 | 京东方科技集团股份有限公司 | Touch electrode structure, contact panel and display device |
CN105242814B (en) * | 2015-09-14 | 2018-11-06 | 友达光电(苏州)有限公司 | Capacitance type touch-control structure and its touch control display apparatus |
CN105094495B (en) * | 2015-09-15 | 2018-05-18 | 京东方科技集团股份有限公司 | Touch electrode structure, touch-screen and display device |
US10496271B2 (en) * | 2016-01-29 | 2019-12-03 | Bose Corporation | Bi-directional control for touch interfaces |
US9960521B2 (en) | 2016-02-24 | 2018-05-01 | Otter Products, Llc | Connector for fluidly sealing an aperture of a protective case |
CN106020678A (en) * | 2016-04-29 | 2016-10-12 | 青岛海信移动通信技术股份有限公司 | Method and device for implementing touch operation in mobile equipment |
US11228754B2 (en) | 2016-05-06 | 2022-01-18 | Qualcomm Incorporated | Hybrid graphics and pixel domain architecture for 360 degree video |
US9922679B2 (en) | 2016-06-01 | 2018-03-20 | James Tallantyre | Slow motion video playback method for computing devices with touch interfaces |
CN106055163A (en) * | 2016-06-30 | 2016-10-26 | 北京集创北方科技股份有限公司 | Touch display control method, touch display control device and touch display module |
US10159320B2 (en) | 2016-09-07 | 2018-12-25 | Otter Products, Llc | Protective enclosure for encasing an electronic device |
CN106775216B (en) * | 2016-11-30 | 2020-07-17 | 努比亚技术有限公司 | Terminal and input box self-adaption method |
CN107528958B (en) * | 2017-08-04 | 2019-03-12 | Oppo广东移动通信有限公司 | Method for controlling mobile terminal, device, readable storage medium storing program for executing and mobile terminal |
CN107661630A (en) * | 2017-08-28 | 2018-02-06 | 网易(杭州)网络有限公司 | A kind of control method and device of shooting game, storage medium, processor, terminal |
CN107741819B (en) * | 2017-09-01 | 2018-11-23 | 网易(杭州)网络有限公司 | Information processing method, device, electronic equipment and storage medium |
CN107648848B (en) * | 2017-09-01 | 2018-11-16 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
US10847330B2 (en) | 2017-10-06 | 2020-11-24 | Grayhill, Inc. | No/low-wear bearing arrangement for a knob system |
CN109656392A (en) * | 2017-10-10 | 2019-04-19 | 芋头科技(杭州)有限公司 | A kind of multidirectional touch control operation system and method for multiple spot |
CN107890664A (en) * | 2017-10-23 | 2018-04-10 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
EP3735629A4 (en) | 2018-01-03 | 2021-10-06 | Grayhill, Inc. | Touch encoder, touch panel, and input method editor with integrated development environment and methods thereof |
US10827809B2 (en) | 2018-04-05 | 2020-11-10 | Otter Products, Llc | Protective case for electronic device |
US11036390B2 (en) * | 2018-05-25 | 2021-06-15 | Mpi Corporation | Display method of display apparatus |
DE102018120575A1 (en) * | 2018-07-12 | 2020-01-16 | Preh Gmbh | Input device with a movable handle on a capacitive detection surface and capacitive coupling devices |
CN109395382A (en) * | 2018-09-12 | 2019-03-01 | 苏州蜗牛数字科技股份有限公司 | A kind of linear optimization method for rocking bar |
US10775853B2 (en) * | 2018-10-16 | 2020-09-15 | Texas Instruments Incorporated | Secondary back surface touch sensor for handheld devices |
JP7224874B2 (en) * | 2018-11-29 | 2023-02-20 | 株式会社ジャパンディスプレイ | sensor device |
CN112558802A (en) * | 2019-09-26 | 2021-03-26 | 深圳市万普拉斯科技有限公司 | Device and method for mode switching and electronic equipment |
US11422629B2 (en) | 2019-12-30 | 2022-08-23 | Joyson Safety Systems Acquisition Llc | Systems and methods for intelligent waveform interruption |
JP2023526928A (en) | 2020-05-18 | 2023-06-26 | アップル インコーポレイテッド | USER INTERFACE FOR DISPLAYING AND IMPROVING THE CURRENT LOCATION OF AN ELECTRONIC DEVICE |
US11625131B2 (en) | 2021-03-12 | 2023-04-11 | Apple Inc. | Continous touch input over multiple independent surfaces |
CN113687729B (en) * | 2021-08-11 | 2023-11-28 | 合肥联宝信息技术有限公司 | Remote control equipment |
CN113437960A (en) * | 2021-08-13 | 2021-09-24 | 四川中微芯成科技有限公司 | Method for realizing annular touch by capacitive touch key |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030076306A1 (en) | 2001-10-22 | 2003-04-24 | Zadesky Stephen Paul | Touch pad handheld device |
Family Cites Families (550)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1061578A (en) | 1912-03-25 | 1913-05-13 | Heinrich Wischhusen | Push-button switch. |
US2063276A (en) | 1932-05-25 | 1936-12-08 | Servel Inc | Absorption type refrigerating system |
GB765556A (en) | 1953-04-21 | 1957-01-09 | Castelco Great Britain Ltd | Improvements in rotary electric switches |
US2903229A (en) | 1956-02-24 | 1959-09-08 | Robert F Lange | Device for supporting a frying pan in tilted position |
US3005055A (en) | 1957-10-08 | 1961-10-17 | Bell Telephone Labor Inc | Tilting dial circuit selector |
US2945111A (en) | 1958-10-24 | 1960-07-12 | Thomas C Mccormick | Push button electrical switch |
US3996441A (en) | 1973-07-09 | 1976-12-07 | Shigeo Ohashi | Switch with rocker actuator having detachable cover |
US3965399A (en) | 1974-03-22 | 1976-06-22 | Walker Jr Frank A | Pushbutton capacitive transducer |
JPS5168726A (en) | 1974-12-12 | 1976-06-14 | Hosiden Electronics Co | |
US4115670A (en) | 1976-03-15 | 1978-09-19 | Geno Corporation | Electrical switch assembly |
US4071691A (en) | 1976-08-24 | 1978-01-31 | Peptek, Inc. | Human-machine interface apparatus |
US4103252A (en) | 1976-11-26 | 1978-07-25 | Xerox Corporation | Capacitive touch-activated transducer system including a plurality of oscillators |
US4121204A (en) | 1976-12-14 | 1978-10-17 | General Electric Company | Bar graph type touch switch and display device |
US4110749A (en) | 1977-05-06 | 1978-08-29 | Tektronix, Inc. | Touch display to digital encoding system |
US4242676A (en) | 1977-12-29 | 1980-12-30 | Centre Electronique Horloger Sa | Interactive device for data input into an instrument of small dimensions |
US4158216A (en) | 1978-02-21 | 1979-06-12 | General Electric Company | Capacitive touch control |
US4177421A (en) | 1978-02-27 | 1979-12-04 | Xerox Corporation | Capacitive transducer |
US4338502A (en) | 1978-04-27 | 1982-07-06 | Sharp Kabushiki Kaisha | Metallic housing for an electronic apparatus with a flat keyboard |
US4264903A (en) | 1978-06-12 | 1981-04-28 | General Electric Company | Capacitive touch control and display |
USD264969S (en) | 1978-11-08 | 1982-06-15 | Pye (Electronic Products) Limited | Cabinet for electronic equipment |
US4246452A (en) | 1979-01-05 | 1981-01-20 | Mattel, Inc. | Switch apparatus |
US4293734A (en) | 1979-02-23 | 1981-10-06 | Peptek, Incorporated | Touch panel system and method |
US4266144A (en) | 1979-05-14 | 1981-05-05 | Emhart Industries, Inc. | Detection means for multiple capacitive sensing devices |
CA1152603A (en) | 1979-09-28 | 1983-08-23 | Bfg Glassgroup | Capacitive systems for touch control switching |
JPS56114028A (en) | 1980-02-12 | 1981-09-08 | Kureha Chem Ind Co Ltd | Capacity-type coordinate input device |
DE3119495A1 (en) | 1980-05-27 | 1982-02-25 | Playmont AG, St. Gallen | "APPROACH SWITCH" |
US4394649A (en) | 1980-07-28 | 1983-07-19 | I/O Corporation | Communication terminal providing user communication of high comprehension |
JPS57152725U (en) | 1981-03-20 | 1982-09-25 | ||
US4583161A (en) | 1981-04-16 | 1986-04-15 | Ncr Corporation | Data processing system wherein all subsystems check for message errors |
US4739191A (en) | 1981-04-27 | 1988-04-19 | Signetics Corporation | Depletion-mode FET for the regulation of the on-chip generated substrate bias voltage |
JPS5837784A (en) | 1981-08-28 | 1983-03-05 | Toshiba Corp | Coordinate input device |
US4604786A (en) | 1982-11-05 | 1986-08-12 | The Grigoleit Company | Method of making a composite article including a body having a decorative metal plate attached thereto |
US4570149A (en) | 1983-03-15 | 1986-02-11 | Koala Technologies Corporation | Simplified touch tablet data device |
US4866602A (en) | 1983-11-02 | 1989-09-12 | Microsoft Corporation | Power supply for a computer peripheral device which positions a cursor on a computer display |
US5125077A (en) | 1983-11-02 | 1992-06-23 | Microsoft Corporation | Method of formatting data from a mouse |
US5838304A (en) | 1983-11-02 | 1998-11-17 | Microsoft Corporation | Packet-based mouse data protocol |
GB8409877D0 (en) | 1984-04-17 | 1984-05-31 | Binstead Ronald Peter | Capacitance effect keyboard |
US4587378A (en) | 1984-07-30 | 1986-05-06 | Koala Technologies Corporation | Two-layer touch tablet |
CA1306539C (en) | 1984-10-08 | 1992-08-18 | Takahide Ohtani | Signal reproduction apparatus including touched state pattern recognitionspeed control |
US4752655A (en) | 1984-11-16 | 1988-06-21 | Nippon Telegraph & Telephone Corporation | Coordinate input device |
US4822957B1 (en) | 1984-12-24 | 1996-11-19 | Elographics Inc | Electrographic touch sensor having reduced bow of equipotential field lines therein |
US4644100A (en) | 1985-03-22 | 1987-02-17 | Zenith Electronics Corporation | Surface acoustic wave touch panel system |
US4734034A (en) | 1985-03-29 | 1988-03-29 | Sentek, Incorporated | Contact sensor for measuring dental occlusion |
US4856993A (en) | 1985-03-29 | 1989-08-15 | Tekscan, Inc. | Pressure and contact sensor system for measuring dental occlusion |
JPS6226532A (en) | 1985-07-19 | 1987-02-04 | リチヤ−ド エル.ジエンキンス | Isometric controller |
US4736191A (en) | 1985-08-02 | 1988-04-05 | Karl E. Matzke | Touch activated control method and apparatus |
US4810992A (en) | 1986-01-17 | 1989-03-07 | Interlink Electronics, Inc. | Digitizer pad |
US4739299A (en) | 1986-01-17 | 1988-04-19 | Interlink Electronics, Inc. | Digitizer pad |
US5179648A (en) | 1986-03-24 | 1993-01-12 | Hauck Lane T | Computer auxiliary viewing system |
DE3615742A1 (en) | 1986-05-09 | 1987-11-12 | Schoeller & Co Elektrotech | Push-button film switch |
US4771139A (en) | 1986-06-27 | 1988-09-13 | Desmet Gregory L | Keyboard with metal cover and improved switches |
US5416498A (en) | 1986-10-21 | 1995-05-16 | Ergonomics, Inc. | Prehensile positioning computer keyboard |
US4764717A (en) | 1986-10-27 | 1988-08-16 | Utah Scientific Advanced Development Center, Inc. | Touch-sensitive potentiometer for operator control panel |
US5194852A (en) * | 1986-12-01 | 1993-03-16 | More Edward S | Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information |
US4755765A (en) | 1987-01-16 | 1988-07-05 | Teradyne, Inc. | Differential input selector |
US4917516A (en) | 1987-02-18 | 1990-04-17 | Retter Dale J | Combination computer keyboard and mouse data entry system |
US5856645A (en) * | 1987-03-02 | 1999-01-05 | Norton; Peter | Crash sensing switch |
GB2204131B (en) | 1987-04-28 | 1991-04-17 | Ibm | Graphics input tablet |
US5053757A (en) * | 1987-06-04 | 1991-10-01 | Tektronix, Inc. | Touch panel with adaptive noise reduction |
JPS63314633A (en) | 1987-06-17 | 1988-12-22 | Gunze Ltd | Method for detecting contact position of touch panel |
US4990900A (en) | 1987-10-01 | 1991-02-05 | Alps Electric Co., Ltd. | Touch panel |
US4860768A (en) | 1987-11-09 | 1989-08-29 | The Hon Group | Transducer support base with a depending annular isolation ring |
US5450075A (en) | 1987-11-11 | 1995-09-12 | Ams Industries Plc | Rotary control |
US4831359A (en) | 1988-01-13 | 1989-05-16 | Micro Research, Inc. | Four quadrant touch pad |
US4914624A (en) | 1988-05-06 | 1990-04-03 | Dunthorn David I | Virtual button for touch screen |
US4951036A (en) | 1988-08-04 | 1990-08-21 | The Grass Valley Group, Inc. | Touchpad jogger |
US4849852A (en) | 1988-09-30 | 1989-07-18 | Alps Electric (U.S.A.), Inc. | Variable capacitance push-button switch |
US4976435A (en) | 1988-10-17 | 1990-12-11 | Will Shatford | Video game control adapter |
CA2002912A1 (en) * | 1988-11-14 | 1990-05-14 | William A. Clough | Portable computer with touch screen and computer system employing same |
JPH0322259A (en) | 1989-03-22 | 1991-01-30 | Seiko Epson Corp | Small-sized data display and reproducing device |
GB8914235D0 (en) | 1989-06-21 | 1989-08-09 | Tait David A G | Finger operable control devices |
JP2934672B2 (en) | 1989-07-03 | 1999-08-16 | 直之 大纒 | Capacitive detector |
US5305017A (en) | 1989-08-16 | 1994-04-19 | Gerpheide George E | Methods and apparatus for data input |
US5036321A (en) | 1989-08-31 | 1991-07-30 | Otis Elevator Company | Capacitive sensing, solid state touch button system |
GB8921473D0 (en) | 1989-09-22 | 1989-11-08 | Psion Plc | Input device |
GB9004532D0 (en) * | 1990-02-28 | 1990-04-25 | Lucas Ind Plc | Switch assembly |
US5008497A (en) | 1990-03-22 | 1991-04-16 | Asher David J | Touch controller |
JP3301079B2 (en) | 1990-06-18 | 2002-07-15 | ソニー株式会社 | Information input device, information input method, information processing device, and information processing method |
US5192082A (en) | 1990-08-24 | 1993-03-09 | Nintendo Company Limited | TV game machine |
US5086870A (en) * | 1990-10-31 | 1992-02-11 | Division Driving Systems, Inc. | Joystick-operated driving system |
JP3192418B2 (en) | 1990-11-30 | 2001-07-30 | 株式会社リコー | Electrostatic latent image developing carrier and developer |
US5159159A (en) | 1990-12-07 | 1992-10-27 | Asher David J | Touch sensor and controller |
DE69027778T2 (en) | 1990-12-14 | 1997-01-23 | Ibm | Coordinate processor for a computer system with a pointer arrangement |
US5204600A (en) | 1991-02-06 | 1993-04-20 | Hewlett-Packard Company | Mechanical detent simulating system |
US5841423A (en) | 1991-02-15 | 1998-11-24 | Carroll, Jr.; George L. | Multifunction space bar for video screen graphics cursor control |
US5479192A (en) | 1991-02-15 | 1995-12-26 | Carroll, Jr.; George L. | Multifunction space bar for video screen graphics cursor control |
US5272469A (en) * | 1991-07-01 | 1993-12-21 | Ncr Corporation | Process for mapping high resolution data into a lower resolution depiction |
US5237311A (en) | 1991-08-01 | 1993-08-17 | Picker International, Inc. | Hingedly supported integrated trackball and selection device |
JPH0620570A (en) | 1991-12-26 | 1994-01-28 | Nippon Kaiheiki Kogyo Kk | Display-equipped push button switch |
US5186646A (en) | 1992-01-16 | 1993-02-16 | Pederson William A | Connector device for computers |
FR2686440B1 (en) | 1992-01-17 | 1994-04-01 | Sextant Avionique | DEVICE FOR MULTIMODE MANAGEMENT OF A CURSOR ON THE SCREEN OF A DISPLAY DEVICE. |
US5231326A (en) | 1992-01-30 | 1993-07-27 | Essex Electronics, Inc. | Piezoelectric electronic switch |
JPH05233141A (en) | 1992-02-25 | 1993-09-10 | Mitsubishi Electric Corp | Pointing device |
JPH05258641A (en) | 1992-03-16 | 1993-10-08 | Matsushita Electric Ind Co Ltd | Panel switch |
US5367199A (en) | 1992-05-01 | 1994-11-22 | Triax Technologies | Sliding contact control switch pad |
US5543591A (en) | 1992-06-08 | 1996-08-06 | Synaptics, Incorporated | Object position detector with edge motion feature and gesture recognition |
US5880411A (en) | 1992-06-08 | 1999-03-09 | Synaptics, Incorporated | Object position detector with edge motion feature and gesture recognition |
DE69324067T2 (en) | 1992-06-08 | 1999-07-15 | Synaptics Inc | Object position detector |
US5889236A (en) * | 1992-06-08 | 1999-03-30 | Synaptics Incorporated | Pressure sensitive scrollbar feature |
US5543588A (en) | 1992-06-08 | 1996-08-06 | Synaptics, Incorporated | Touch pad driven handheld computing device |
US5861875A (en) * | 1992-07-13 | 1999-01-19 | Cirque Corporation | Methods and apparatus for data input |
US5508717A (en) | 1992-07-28 | 1996-04-16 | Sony Corporation | Computer pointing device with dynamic sensitivity |
AR247303A1 (en) | 1992-08-21 | 1994-11-30 | Gilligan Federico Gustavo Y Fa | New computer keyboard. |
JP3227218B2 (en) | 1992-09-11 | 2001-11-12 | キヤノン株式会社 | Information processing device |
JPH0696639A (en) | 1992-09-14 | 1994-04-08 | Smk Corp | Membrane switch having jog function |
US5907152A (en) | 1992-10-05 | 1999-05-25 | Logitech, Inc. | Pointing device utilizing a photodetector array |
US6084574A (en) | 1992-10-05 | 2000-07-04 | Logitech, Inc. | Compact cursor pointing device utilizing photodetector array |
US5703356A (en) | 1992-10-05 | 1997-12-30 | Logitech, Inc. | Pointing device utilizing a photodetector array |
USD349280S (en) | 1992-10-06 | 1994-08-02 | Microsoft Corporation | Computer mouse |
US5414445A (en) | 1992-10-07 | 1995-05-09 | Microsoft Corporation | Ergonomic pointing device |
US5632679A (en) | 1992-10-26 | 1997-05-27 | Tremmel; Michael | Touch sensitive computer interface controller |
US5561445A (en) | 1992-11-09 | 1996-10-01 | Matsushita Electric Industrial Co., Ltd. | Three-dimensional movement specifying apparatus and method and observational position and orientation changing apparatus |
US5339213A (en) | 1992-11-16 | 1994-08-16 | Cirque Corporation | Portable computer touch pad attachment |
US5521617A (en) | 1993-04-15 | 1996-05-28 | Sony Corporation | Three-dimensional image special effect apparatus |
JP2986047B2 (en) | 1993-04-29 | 1999-12-06 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Digital input display device and input processing device and method |
US5424756A (en) | 1993-05-14 | 1995-06-13 | Ho; Yung-Lung | Track pad cursor positioning device and method |
US5408621A (en) | 1993-06-10 | 1995-04-18 | Ben-Arie; Jezekiel | Combinatorial data entry system having multi-position switches, each switch having tiltable control knob |
NO932270D0 (en) | 1993-06-21 | 1993-06-21 | Steinar Pedersen | GUIDELINES FOR PC MARKETS |
US5959610A (en) | 1993-06-21 | 1999-09-28 | Euphonix | Computer-mirrored panel input device |
US5581670A (en) | 1993-07-21 | 1996-12-03 | Xerox Corporation | User interface having movable sheet with click-through tools |
CA2124624C (en) | 1993-07-21 | 1999-07-13 | Eric A. Bier | User interface having click-through tools that can be composed with other tools |
CA2124505C (en) | 1993-07-21 | 2000-01-04 | William A. S. Buxton | User interface having simultaneously movable tools and cursor |
US5555004A (en) | 1993-08-30 | 1996-09-10 | Hosiden Corporation | Input control device |
AU7727694A (en) | 1993-09-13 | 1995-04-03 | David J. Asher | Joystick with membrane sensor |
US5956019A (en) | 1993-09-28 | 1999-09-21 | The Boeing Company | Touch-pad cursor control device |
US5596697A (en) * | 1993-09-30 | 1997-01-21 | Apple Computer, Inc. | Method for routing items within a computer system |
US5564112A (en) | 1993-10-14 | 1996-10-08 | Xerox Corporation | System and method for generating place holders to temporarily suspend execution of a selected command |
US5661632A (en) | 1994-01-04 | 1997-08-26 | Dell Usa, L.P. | Hand held computer with dual display screen orientation capability controlled by toggle switches having first and second non-momentary positions |
US5473344A (en) | 1994-01-06 | 1995-12-05 | Microsoft Corporation | 3-D cursor positioning device |
CA2140164A1 (en) | 1994-01-27 | 1995-07-28 | Kenneth R. Robertson | System and method for computer cursor control |
US5613137A (en) * | 1994-03-18 | 1997-03-18 | International Business Machines Corporation | Computer system with touchpad support in operating system |
EP0674288A1 (en) | 1994-03-24 | 1995-09-27 | AT&T Corp. | Multidimensional mouse |
MY118477A (en) | 1994-04-20 | 2004-11-30 | Sony Corp | Communication terminal apparatus and control method thereof |
WO1995031791A1 (en) | 1994-05-12 | 1995-11-23 | Apple Computer, Inc. | Method and apparatus for noise filtering for an input device |
USD362431S (en) | 1994-05-18 | 1995-09-19 | Microsoft Corporation | Computer input device |
US5473343A (en) | 1994-06-23 | 1995-12-05 | Microsoft Corporation | Method and apparatus for locating a cursor on a computer screen |
US5559943A (en) | 1994-06-27 | 1996-09-24 | Microsoft Corporation | Method and apparatus customizing a dual actuation setting of a computer input device switch |
US5565887A (en) | 1994-06-29 | 1996-10-15 | Microsoft Corporation | Method and apparatus for moving a cursor on a computer screen |
US5559301A (en) | 1994-09-15 | 1996-09-24 | Korg, Inc. | Touchscreen interface having pop-up variable adjustment displays for controllers and audio processing systems |
US5627531A (en) | 1994-09-30 | 1997-05-06 | Ohmeda Inc. | Multi-function menu selection device |
US5494157A (en) * | 1994-11-14 | 1996-02-27 | Samsonite Corporation | Computer bag with side accessible padded compartments |
US5495566A (en) | 1994-11-22 | 1996-02-27 | Microsoft Corporation | Scrolling contents of a window |
US5589893A (en) | 1994-12-01 | 1996-12-31 | Zenith Electronics Corporation | On-screen remote control of a television receiver |
US5805144A (en) | 1994-12-14 | 1998-09-08 | Dell Usa, L.P. | Mouse pointing device having integrated touchpad |
US5585823A (en) | 1994-12-30 | 1996-12-17 | Apple Computer, Inc. | Multi-state one-button computer pointing device |
US5828364A (en) | 1995-01-03 | 1998-10-27 | Microsoft Corporation | One-piece case top and integrated switch for a computer pointing device |
JP3442893B2 (en) | 1995-01-27 | 2003-09-02 | 富士通株式会社 | Input device |
US5611060A (en) | 1995-02-22 | 1997-03-11 | Microsoft Corporation | Auto-scrolling during a drag and drop operation |
US6323845B1 (en) | 1995-03-06 | 2001-11-27 | Ncr Corporation | Single finger controlled computer input apparatus and method |
US5959611A (en) | 1995-03-06 | 1999-09-28 | Carnegie Mellon University | Portable computer system with ergonomic input device |
US5611040A (en) | 1995-04-05 | 1997-03-11 | Microsoft Corporation | Method and system for activating double click applications with a single click |
GB9507817D0 (en) * | 1995-04-18 | 1995-05-31 | Philips Electronics Uk Ltd | Touch sensing devices and methods of making such |
US5825353A (en) | 1995-04-18 | 1998-10-20 | Will; Craig Alexander | Control of miniature personal digital assistant using menu and thumbwheel |
US6122526A (en) | 1997-04-24 | 2000-09-19 | Eastman Kodak Company | Cellular telephone and electronic camera system with programmable transmission capability |
JPH08307954A (en) * | 1995-05-12 | 1996-11-22 | Sony Corp | Device and method for coordinate input and information processor |
JPH0934644A (en) | 1995-07-21 | 1997-02-07 | Oki Electric Ind Co Ltd | Pointing device |
JP3743458B2 (en) * | 1995-07-29 | 2006-02-08 | ソニー株式会社 | Input pad device |
US5790769A (en) | 1995-08-04 | 1998-08-04 | Silicon Graphics Incorporated | System for editing time-based temporal digital media including a pointing device toggling between temporal and translation-rotation modes |
US5751274A (en) | 1995-09-14 | 1998-05-12 | Davis; Michael | Foot-operable cursor control device |
US6025832A (en) * | 1995-09-29 | 2000-02-15 | Kabushiki Kaisha Toshiba | Signal generating apparatus, signal inputting apparatus and force-electricity transducing apparatus |
US5764066A (en) | 1995-10-11 | 1998-06-09 | Sandia Corporation | Object locating system |
US5884323A (en) | 1995-10-13 | 1999-03-16 | 3Com Corporation | Extendible method and apparatus for synchronizing files on two different computer systems |
US5856822A (en) * | 1995-10-27 | 1999-01-05 | 02 Micro, Inc. | Touch-pad digital computer pointing-device |
US6473069B1 (en) | 1995-11-13 | 2002-10-29 | Cirque Corporation | Apparatus and method for tactile feedback from input device |
US6100874A (en) * | 1995-11-17 | 2000-08-08 | Immersion Corporation | Force feedback mouse interface |
US5964661A (en) | 1995-11-24 | 1999-10-12 | Dodge; Samuel D. | Apparatus and method for timing video games |
US5730165A (en) * | 1995-12-26 | 1998-03-24 | Philipp; Harald | Time domain capacitive field detector |
US5825352A (en) | 1996-01-04 | 1998-10-20 | Logitech, Inc. | Multiple fingers contact sensing method for emulating mouse buttons and mouse operations on a touch sensor pad |
USD385542S (en) | 1996-01-05 | 1997-10-28 | Microsoft Corporation | Pointing device |
USD382550S (en) | 1996-01-16 | 1997-08-19 | Microsoft Corporation | Rear portion of a pointing device |
US5754890A (en) | 1996-02-01 | 1998-05-19 | Microsoft Corporation | System for automatic identification of a computer data entry device interface type using a transistor to sense the voltage generated by the interface and output a matching voltage level |
JP3280559B2 (en) | 1996-02-20 | 2002-05-13 | シャープ株式会社 | Jog dial simulation input device |
FR2745400B1 (en) | 1996-02-23 | 1998-05-07 | Asulab Sa | DEVICE FOR ENTERING DATA IN ELECTRONIC MEANS FOR PROCESSING SUCH DATA |
US5808602A (en) | 1996-03-15 | 1998-09-15 | Compaq Computer Corporation | Rotary cursor positioning apparatus |
US5721849A (en) * | 1996-03-29 | 1998-02-24 | International Business Machines Corporation | Method, memory and apparatus for postponing transference of focus to a newly opened window |
US5815141A (en) | 1996-04-12 | 1998-09-29 | Elo Touch Systems, Inc. | Resistive touchscreen having multiple selectable regions for pressure discrimination |
AU2808697A (en) | 1996-04-24 | 1997-11-12 | Logitech, Inc. | Touch and pressure sensing method and apparatus |
US5859629A (en) * | 1996-07-01 | 1999-01-12 | Sun Microsystems, Inc. | Linear touch input device |
US5748185A (en) | 1996-07-03 | 1998-05-05 | Stratos Product Development Group | Touchpad with scroll and pan regions |
US6009336A (en) | 1996-07-10 | 1999-12-28 | Motorola, Inc. | Hand-held radiotelephone having a detachable display |
US5729219A (en) * | 1996-08-02 | 1998-03-17 | Motorola, Inc. | Selective call radio with contraposed touchpad |
US5943044A (en) | 1996-08-05 | 1999-08-24 | Interlink Electronics | Force sensing semiconductive touchpad |
DE19639119A1 (en) | 1996-09-24 | 1998-03-26 | Philips Patentverwaltung | Electronic device with a bidirectional rotary switch |
US5812239A (en) | 1996-10-22 | 1998-09-22 | Eger; Jeffrey J. | Method of and arrangement for the enhancement of vision and/or hand-eye coordination |
US5883619A (en) * | 1996-11-12 | 1999-03-16 | Primax Electronics Ltd. | Computer mouse for scrolling a view of an image |
US6128006A (en) | 1998-03-26 | 2000-10-03 | Immersion Corporation | Force feedback mouse wheel and other control wheels |
US6636197B1 (en) | 1996-11-26 | 2003-10-21 | Immersion Corporation | Haptic feedback effects for control, knobs and other interface devices |
JPH10188720A (en) * | 1996-12-26 | 1998-07-21 | Smk Corp | Keyboard switch |
US5889511A (en) * | 1997-01-17 | 1999-03-30 | Tritech Microelectronics International, Ltd. | Method and system for noise reduction for digitizing devices |
US5907318A (en) | 1997-01-17 | 1999-05-25 | Medina; Carlos A. | Foot-controlled computer mouse |
US6300946B1 (en) | 1997-01-29 | 2001-10-09 | Palm, Inc. | Method and apparatus for interacting with a portable computer |
US6227966B1 (en) | 1997-02-19 | 2001-05-08 | Kabushiki Kaisha Bandai | Simulation device for fostering a virtual creature |
JP2957507B2 (en) | 1997-02-24 | 1999-10-04 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Small information processing equipment |
US6222528B1 (en) | 1997-03-07 | 2001-04-24 | Cirque Corporation | Method and apparatus for data input |
US5909211A (en) | 1997-03-25 | 1999-06-01 | International Business Machines Corporation | Touch pad overlay driven computer system |
FI115689B (en) | 1997-05-21 | 2005-06-15 | Nokia Corp | Procedure and arrangement for scrolling information presented on mobile display |
US6031518A (en) | 1997-05-30 | 2000-02-29 | Microsoft Corporation | Ergonomic input device |
DE19722636A1 (en) | 1997-06-01 | 1998-12-03 | Kilian Fremmer | Multi function mouse for control of computer system |
US5953000A (en) | 1997-06-02 | 1999-09-14 | Weirich; John P. | Bounded-display-surface system for the input and output of computer data and video graphics |
JP4137219B2 (en) | 1997-06-05 | 2008-08-20 | アルプス電気株式会社 | Data input device |
US5910802A (en) | 1997-06-11 | 1999-06-08 | Microsoft Corporation | Operating system for handheld computing device having taskbar auto hide |
JP3820595B2 (en) | 1997-06-13 | 2006-09-13 | セイコーエプソン株式会社 | Display device, electronic device using the same, and polarization separator |
USD402281S (en) | 1997-06-18 | 1998-12-08 | Microsoft Corporation | Positional control device |
JPH1115596A (en) | 1997-06-19 | 1999-01-22 | Alps Electric Co Ltd | Data input device |
US6020760A (en) | 1997-07-16 | 2000-02-01 | Altera Corporation | I/O buffer circuit with pin multiplexing |
TW462026B (en) | 1997-07-19 | 2001-11-01 | Primax Electronics Ltd | Method for applying a 3D mouse in windows software |
US6166721A (en) | 1997-07-25 | 2000-12-26 | Mitsumi Electric Co., Ltd. | Mouse as computer input device having additional mechanism for controlling additional function such as scrolling |
KR100294260B1 (en) * | 1997-08-06 | 2001-07-12 | 윤종용 | Touch panel device and portable computer installing the touch panel device |
KR19990015738A (en) | 1997-08-08 | 1999-03-05 | 윤종용 | Handheld Computer with Touchpad Input Control |
JP3978818B2 (en) | 1997-08-08 | 2007-09-19 | ソニー株式会社 | Manufacturing method of micro head element |
US5933102A (en) | 1997-09-24 | 1999-08-03 | Tanisys Technology, Inc. | Capacitive sensitive switch method and system |
KR200225264Y1 (en) | 1997-10-01 | 2001-06-01 | 김순택 | Portable display |
US6496181B1 (en) | 1997-10-03 | 2002-12-17 | Siemens Information And Communication Mobile Llc | Scroll select-activate button for wireless terminals |
FR2770022B1 (en) * | 1997-10-20 | 1999-12-03 | Itt Mfg Enterprises Inc | MULTIPLE ELECTRIC SWITCH WITH SINGLE OPERATION LEVER |
US6181322B1 (en) * | 1997-11-07 | 2001-01-30 | Netscape Communications Corp. | Pointing device having selection buttons operable from movement of a palm portion of a person's hands |
US6243078B1 (en) | 1998-06-23 | 2001-06-05 | Immersion Corporation | Pointing device with forced feedback button |
US6211861B1 (en) * | 1998-06-23 | 2001-04-03 | Immersion Corporation | Tactile mouse device |
JP3865169B2 (en) | 1997-11-28 | 2007-01-10 | ソニー株式会社 | COMMUNICATION TERMINAL DEVICE AND COMMUNICATION TERMINAL DEVICE CONTROL METHOD |
US6256011B1 (en) | 1997-12-03 | 2001-07-03 | Immersion Corporation | Multi-function control device with force feedback |
JP3861273B2 (en) | 1997-12-18 | 2006-12-20 | ソニー株式会社 | Portable information terminal device and information display control method for portable information terminal device |
JPH11184601A (en) | 1997-12-22 | 1999-07-09 | Sony Corp | Portable information terminal device, screen scroll method, recording medium and microcomputer device |
US5933141A (en) | 1998-01-05 | 1999-08-03 | Gateway 2000, Inc. | Mutatably transparent displays |
JPH11194863A (en) | 1998-01-06 | 1999-07-21 | Poseidon Technical Systems:Kk | Touch input detecting method and touch input detector |
JPH11194883A (en) | 1998-01-06 | 1999-07-21 | Poseidon Technical Systems:Kk | Touch operation type computer |
JPH11194872A (en) | 1998-01-06 | 1999-07-21 | Poseidon Technical Systems:Kk | Contact operation type input device and its electronic part |
GB2333215B (en) | 1998-01-13 | 2002-05-08 | Sony Electronics Inc | Systems and methods for enabling manipulation of a plurality of graphic images on a display screen |
US6323846B1 (en) | 1998-01-26 | 2001-11-27 | University Of Delaware | Method and apparatus for integrating manual input |
US7663607B2 (en) | 2004-05-06 | 2010-02-16 | Apple Inc. | Multipoint touchscreen |
US8479122B2 (en) * | 2004-07-30 | 2013-07-02 | Apple Inc. | Gestures for touch sensitive input devices |
US7800592B2 (en) | 2005-03-04 | 2010-09-21 | Apple Inc. | Hand held electronic device with multiple touch sensing devices |
US6225980B1 (en) | 1998-02-06 | 2001-05-01 | Carnegie Mellon University | Multi-functional, rotary dial input device for portable computers |
US6259491B1 (en) | 1998-02-06 | 2001-07-10 | Motorola, Inc. | Double sided laminated liquid crystal display touchscreen and method of making same for use in a wireless communication device |
TW469379B (en) | 1998-02-16 | 2001-12-21 | Sony Computer Entertainment Inc | Portable electronic device |
US6313853B1 (en) * | 1998-04-16 | 2001-11-06 | Nortel Networks Limited | Multi-service user interface |
JPH11311523A (en) | 1998-04-28 | 1999-11-09 | Aisin Aw Co Ltd | Navigation apparatus for vehicle |
USD412940S (en) | 1998-05-14 | 1999-08-17 | Sega Enterprises, Ltd. | Video game machine |
TW541193B (en) | 1998-06-01 | 2003-07-11 | Sony Computer Entertainment Inc | Portable electronic machine and entertaining system |
USD437860S1 (en) * | 1998-06-01 | 2001-02-20 | Sony Corporation | Selector for audio visual apparatus |
US6563487B2 (en) | 1998-06-23 | 2003-05-13 | Immersion Corporation | Haptic feedback for directional control pads |
US6429846B2 (en) | 1998-06-23 | 2002-08-06 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US6262717B1 (en) | 1998-07-02 | 2001-07-17 | Cirque Corporation | Kiosk touch pad |
US6452427B1 (en) | 1998-07-07 | 2002-09-17 | Wen H. Ko | Dual output capacitance interface circuit |
US6188391B1 (en) * | 1998-07-09 | 2001-02-13 | Synaptics, Inc. | Two-layer capacitive touchpad and method of making same |
US6243080B1 (en) | 1998-07-14 | 2001-06-05 | Ericsson Inc. | Touch-sensitive panel with selector |
TW383883U (en) | 1998-08-18 | 2000-03-01 | Ind Tech Res Inst | Remote network browser with turning button selection element |
JP4019515B2 (en) | 1998-08-21 | 2007-12-12 | 松下電器産業株式会社 | Push / turn operation type electronic component and communication terminal device using the same |
US6002093A (en) | 1998-08-21 | 1999-12-14 | Dell Usa, L.P. | Button with flexible cantilever |
US6188393B1 (en) * | 1998-10-05 | 2001-02-13 | Sysgration Ltd. | Scroll bar input device for mouse |
US6198473B1 (en) * | 1998-10-06 | 2001-03-06 | Brad A. Armstrong | Computer mouse with enhance control button (s) |
US6225976B1 (en) | 1998-10-30 | 2001-05-01 | Interlink Electronics, Inc. | Remote computer input peripheral |
US6678891B1 (en) * | 1998-11-19 | 2004-01-13 | Prasara Technologies, Inc. | Navigational user interface for interactive television |
GB2345193B (en) | 1998-12-22 | 2002-07-24 | Nokia Mobile Phones Ltd | Metallic keys |
JP2000200147A (en) | 1999-01-06 | 2000-07-18 | Fujitsu Takamisawa Component Ltd | Input device |
US6552719B2 (en) * | 1999-01-07 | 2003-04-22 | Microsoft Corporation | System and method for automatically switching between writing and text input modes |
JP2000215549A (en) | 1999-01-22 | 2000-08-04 | Sony Corp | Portable audio reproducing device |
WO2000044018A1 (en) | 1999-01-26 | 2000-07-27 | Harald Philipp | Capacitive sensor and array |
US6104790A (en) | 1999-01-29 | 2000-08-15 | International Business Machines Corporation | Graphical voice response system and method therefor |
US6373265B1 (en) | 1999-02-02 | 2002-04-16 | Nitta Corporation | Electrostatic capacitive touch sensor |
US6377530B1 (en) * | 1999-02-12 | 2002-04-23 | Compaq Computer Corporation | System and method for playing compressed audio data |
JP4172867B2 (en) | 1999-02-22 | 2008-10-29 | 富士通コンポーネント株式会社 | Mouse with wheel |
SE513866C2 (en) | 1999-03-12 | 2000-11-20 | Spectronic Ab | Hand- or pocket-worn electronic device and hand-controlled input device |
JP2000267797A (en) | 1999-03-15 | 2000-09-29 | Seiko Epson Corp | Information processor |
JP2000267777A (en) | 1999-03-16 | 2000-09-29 | Internatl Business Mach Corp <Ibm> | Method for inputting numerical value using touch panel and inputting device |
JP2000267786A (en) | 1999-03-16 | 2000-09-29 | Ntt Docomo Inc | Information communication equipment |
US6338013B1 (en) | 1999-03-19 | 2002-01-08 | Bryan John Ruffner | Multifunctional mobile appliance |
US6147856A (en) | 1999-03-31 | 2000-11-14 | International Business Machine Corporation | Variable capacitor with wobble motor disc selector |
TW431607U (en) | 1999-04-02 | 2001-04-21 | Quanta Comp Inc | Touch plate structure for notebook computer |
USD443616S1 (en) | 1999-04-06 | 2001-06-12 | Microsoft Corporation | Portion of a computer input device |
USD442592S1 (en) | 1999-04-06 | 2001-05-22 | Microsoft Corporation | Portion of a computer input device |
JP3742529B2 (en) | 1999-05-10 | 2006-02-08 | アルプス電気株式会社 | Coordinate input device |
US6357887B1 (en) * | 1999-05-14 | 2002-03-19 | Apple Computers, Inc. | Housing for a computing device |
US6977808B2 (en) | 1999-05-14 | 2005-12-20 | Apple Computer, Inc. | Display housing for computing device |
US6297811B1 (en) | 1999-06-02 | 2001-10-02 | Elo Touchsystems, Inc. | Projective capacitive touchscreen |
JP2000353045A (en) | 1999-06-09 | 2000-12-19 | Canon Inc | Portable information processor and focus movement control method |
US7151528B2 (en) * | 1999-06-22 | 2006-12-19 | Cirque Corporation | System for disposing a proximity sensitive touchpad behind a mobile phone keypad |
US6639584B1 (en) | 1999-07-06 | 2003-10-28 | Chuang Li | Methods and apparatus for controlling a portable electronic device using a touchpad |
JP2001023473A (en) | 1999-07-07 | 2001-01-26 | Matsushita Electric Ind Co Ltd | Mobile communication terminal unit and transparent touch panel switch for use in it |
US6396523B1 (en) | 1999-07-29 | 2002-05-28 | Interlink Electronics, Inc. | Home entertainment device remote control |
US6677927B1 (en) * | 1999-08-23 | 2004-01-13 | Microsoft Corporation | X-Y navigation input device |
JP2001076582A (en) | 1999-09-01 | 2001-03-23 | Matsushita Electric Ind Co Ltd | Electronic apparatus |
US6492979B1 (en) | 1999-09-07 | 2002-12-10 | Elo Touchsystems, Inc. | Dual sensor touchscreen utilizing projective-capacitive and force touch sensors |
US6641154B1 (en) | 1999-09-09 | 2003-11-04 | Jeffrey Vey | Air bladder suspension for three-wheeled vehicle |
US6606244B1 (en) * | 1999-09-10 | 2003-08-12 | Saint Song Corp. | Pointing device having computer host |
US6865718B2 (en) | 1999-09-29 | 2005-03-08 | Microsoft Corp. | Accelerated scrolling |
US6424338B1 (en) | 1999-09-30 | 2002-07-23 | Gateway, Inc. | Speed zone touchpad |
JP4222704B2 (en) | 1999-10-12 | 2009-02-12 | 株式会社ノーバス | Information input device |
US6757002B1 (en) | 1999-11-04 | 2004-06-29 | Hewlett-Packard Development Company, L.P. | Track pad pointing device with areas of specialized function |
US6844871B1 (en) | 1999-11-05 | 2005-01-18 | Microsoft Corporation | Method and apparatus for computer input using six degrees of freedom |
US7006077B1 (en) | 1999-11-30 | 2006-02-28 | Nokia Mobile Phones, Ltd. | Electronic device having touch sensitive slide |
USD430169S (en) | 1999-12-15 | 2000-08-29 | Advanced Communication Design, Inc. | Interactive multimedia control panel with speakers |
US6978127B1 (en) | 1999-12-16 | 2005-12-20 | Koninklijke Philips Electronics N.V. | Hand-ear user interface for hand-held device |
US6248017B1 (en) | 1999-12-23 | 2001-06-19 | Hasbro, Inc | Hand-held electronic game with rotatable display |
US6179496B1 (en) * | 1999-12-28 | 2001-01-30 | Shin Jiuh Corp. | Computer keyboard with turnable knob |
US20040252867A1 (en) | 2000-01-05 | 2004-12-16 | Je-Hsiung Lan | Biometric sensor |
US6844872B1 (en) * | 2000-01-12 | 2005-01-18 | Apple Computer, Inc. | Computer mouse having side areas to maintain a depressed button position |
US6373470B1 (en) | 2000-01-12 | 2002-04-16 | Apple Computer, Inc. | Cursor control device having an integral top member |
GB2359177A (en) | 2000-02-08 | 2001-08-15 | Nokia Corp | Orientation sensitive display and selection mechanism |
AU2001231524A1 (en) | 2000-02-10 | 2001-08-20 | Ergomouse Pty. Ltd. | Pointing means for a computer |
US6492602B2 (en) | 2000-02-10 | 2002-12-10 | Alps Electric Co., Ltd. | Two-position pushbutton switch |
US20010050673A1 (en) | 2000-02-14 | 2001-12-13 | Davenport Anthony G. | Ergonomic fingertip computer mouse |
DE10011645A1 (en) | 2000-03-10 | 2001-09-13 | Ego Elektro Geraetebau Gmbh | Touch switch with an LC display |
JP3754268B2 (en) | 2000-04-07 | 2006-03-08 | 三洋電機株式会社 | KEY INPUT DEVICE AND MOBILE PHONE WITH THE SAME |
US6765557B1 (en) * | 2000-04-10 | 2004-07-20 | Interlink Electronics, Inc. | Remote control having touch pad to screen mapping |
CA2405846C (en) * | 2000-04-11 | 2007-09-04 | Cirque Corporation | Efficient entry of characters into a portable information appliance |
JP4325075B2 (en) * | 2000-04-21 | 2009-09-02 | ソニー株式会社 | Data object management device |
AU144018S (en) | 2000-05-09 | 2001-05-24 | Sony Computer Entertainment Inc | Control unit |
US6340800B1 (en) * | 2000-05-27 | 2002-01-22 | International Business Machines Corporation | Multiplexing control device and method for electronic systems |
US6640250B1 (en) | 2000-05-31 | 2003-10-28 | 3Com Corporation | Method and apparatus for previewing and selecting a network resource using a rotary knob for user input |
US6724817B1 (en) | 2000-06-05 | 2004-04-20 | Amphion Semiconductor Limited | Adaptive image data compression |
JP2001350188A (en) | 2000-06-06 | 2001-12-21 | Olympus Optical Co Ltd | Camera apparatus |
FI108901B (en) | 2000-06-26 | 2002-04-15 | Nokia Corp | Touch-sensitive electromechanical data input mechanism |
JP3785902B2 (en) * | 2000-07-11 | 2006-06-14 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Device, device control method, pointer movement method |
USD454568S1 (en) * | 2000-07-17 | 2002-03-19 | Apple Computer, Inc. | Mouse |
US7117136B1 (en) | 2000-08-18 | 2006-10-03 | Linden Research, Inc. | Input and feedback system |
JP2002077329A (en) | 2000-08-31 | 2002-03-15 | Nintendo Co Ltd | Electronic device |
US6497412B1 (en) | 2000-09-08 | 2002-12-24 | Peter J. Bramm | Method and apparatus for playing a quiz game |
US6788288B2 (en) * | 2000-09-11 | 2004-09-07 | Matsushita Electric Industrial Co., Ltd. | Coordinate input device and portable information apparatus equipped with coordinate input device |
JP2002107806A (en) | 2000-09-29 | 2002-04-10 | Fuji Photo Optical Co Ltd | Structure of operation button part |
US7667123B2 (en) * | 2000-10-13 | 2010-02-23 | Phillips Mark E | System and method for musical playlist selection in a portable audio device |
US6810271B1 (en) | 2000-10-31 | 2004-10-26 | Nokia Mobile Phones Ltd. | Keypads for electrical devices |
DE20019074U1 (en) | 2000-11-09 | 2001-01-18 | Siemens Ag | Mobile electronic device with display and control element |
US6897853B2 (en) * | 2000-11-10 | 2005-05-24 | Microsoft Corp. | Highlevel active pen matrix |
USD455793S1 (en) * | 2000-12-04 | 2002-04-16 | Legend Technology Co., Ltd. | Liquid crystal display monitor for multi-media games |
USD452250S1 (en) | 2000-12-06 | 2001-12-18 | Perfect Union Co., Ltd. | MP3 player |
US7054441B2 (en) | 2000-12-12 | 2006-05-30 | Research In Motion Limited | Mobile device having a protective user interface cover |
US20070018970A1 (en) * | 2000-12-22 | 2007-01-25 | Logitech Europe S.A. | Optical slider for input devices |
JP2002202855A (en) | 2000-12-28 | 2002-07-19 | Matsushita Electric Ind Co Ltd | Touch panel and electronic equipment using the same |
US6999804B2 (en) | 2001-01-22 | 2006-02-14 | Wildseed, Ltd. | Interchangeable covering additions to a mobile communication device for display and key reorientation |
JP2002215311A (en) | 2001-01-22 | 2002-08-02 | Sony Corp | Portable terminal device, image plane information selecting method, and recording-readable medium |
US20020103796A1 (en) | 2001-01-31 | 2002-08-01 | Sonicblue, Inc. | Method for parametrically sorting music files |
US6686904B1 (en) * | 2001-03-30 | 2004-02-03 | Microsoft Corporation | Wheel reporting method for a personal computer keyboard interface |
US6750803B2 (en) * | 2001-02-23 | 2004-06-15 | Interlink Electronics, Inc. | Transformer remote control |
US6738045B2 (en) | 2001-02-26 | 2004-05-18 | Microsoft Corporation | Method and system for accelerated data navigation |
US6781576B2 (en) | 2001-03-14 | 2004-08-24 | Sensation, Inc. | Wireless input apparatus and method using a three-dimensional pointing device |
USD450713S1 (en) | 2001-03-16 | 2001-11-20 | Sony Corporation | Audio player |
US6873863B2 (en) | 2001-03-19 | 2005-03-29 | Nokia Mobile Phones Ltd. | Touch sensitive navigation surfaces for mobile telecommunication systems |
US6879930B2 (en) * | 2001-03-30 | 2005-04-12 | Microsoft Corporation | Capacitance touch slider |
US6822640B2 (en) | 2001-04-10 | 2004-11-23 | Hewlett-Packard Development Company, L.P. | Illuminated touch pad |
US6587091B2 (en) | 2001-04-23 | 2003-07-01 | Michael Lawrence Serpa | Stabilized tactile output mechanism for computer interface devices |
US6608616B2 (en) | 2001-04-23 | 2003-08-19 | Silitek Corporation | Ergonomic scrolling device |
AU2002257217A1 (en) * | 2001-04-24 | 2002-11-05 | Broadcom Corporation | Alerting system, architecture and circuitry |
US6700564B2 (en) | 2001-04-30 | 2004-03-02 | Microsoft Corporation | Input device including a wheel assembly for scrolling an image in multiple directions |
US7239800B2 (en) | 2001-05-02 | 2007-07-03 | David H. Sitrick | Portable player for personal video recorders |
US7206599B2 (en) | 2001-05-09 | 2007-04-17 | Kyocera Wireless Corp. | Integral navigation keys for a mobile handset |
US20050024341A1 (en) * | 2001-05-16 | 2005-02-03 | Synaptics, Inc. | Touch screen with user interface enhancement |
US20030043121A1 (en) * | 2001-05-22 | 2003-03-06 | Richard Chen | Multimedia pointing device |
FI20015005A (en) | 2001-05-31 | 2002-12-01 | Nokia Corp | A mobile station comprising a display element |
US7113196B2 (en) | 2001-06-15 | 2006-09-26 | Apple Computer, Inc. | Computing device with dynamic ornamental appearance |
US7452098B2 (en) * | 2001-06-15 | 2008-11-18 | Apple Inc. | Active enclosure for computing device |
US7766517B2 (en) | 2001-06-15 | 2010-08-03 | Apple Inc. | Active enclosure for computing device |
US20020196239A1 (en) | 2001-06-26 | 2002-12-26 | Lee Siew Fei | Joy-dial for providing input signals to a device |
US6791533B2 (en) | 2001-06-28 | 2004-09-14 | Behavior Tech Computer Corporation | Seamless mouse |
JP2003015796A (en) | 2001-07-02 | 2003-01-17 | Sharp Corp | Key inputting device |
JP2003022057A (en) | 2001-07-09 | 2003-01-24 | Alps Electric Co Ltd | Image signal driving circuit and display device equipped with image signal driving circuit |
US20030050092A1 (en) * | 2001-08-03 | 2003-03-13 | Yun Jimmy S. | Portable digital player--battery |
KR100474724B1 (en) * | 2001-08-04 | 2005-03-08 | 삼성전자주식회사 | Apparatus having touch screen and external display device using method therefor |
JP4485103B2 (en) | 2001-08-10 | 2010-06-16 | 京セラ株式会社 | Mobile terminal device |
US6985137B2 (en) * | 2001-08-13 | 2006-01-10 | Nokia Mobile Phones Ltd. | Method for preventing unintended touch pad input due to accidental touching |
US6690365B2 (en) * | 2001-08-29 | 2004-02-10 | Microsoft Corporation | Automatic scrolling |
US6727889B2 (en) * | 2001-09-14 | 2004-04-27 | Stephen W. Shaw | Computer mouse input device with multi-axis palm control |
JP2003099198A (en) | 2001-09-25 | 2003-04-04 | Shinichi Komatsu | Touch panel using four-contact input |
US6703550B2 (en) * | 2001-10-10 | 2004-03-09 | Immersion Corporation | Sound data output and manipulation using haptic feedback |
USD469109S1 (en) * | 2001-10-22 | 2003-01-21 | Apple Computer, Inc. | Media player |
US20070085841A1 (en) | 2001-10-22 | 2007-04-19 | Apple Computer, Inc. | Method and apparatus for accelerated scrolling |
US7084856B2 (en) * | 2001-10-22 | 2006-08-01 | Apple Computer, Inc. | Mouse having a rotary dial |
US7312785B2 (en) * | 2001-10-22 | 2007-12-25 | Apple Inc. | Method and apparatus for accelerated scrolling |
US7345671B2 (en) * | 2001-10-22 | 2008-03-18 | Apple Inc. | Method and apparatus for use of rotational user inputs |
TWI220491B (en) | 2001-11-09 | 2004-08-21 | Prolific Technology Inc | Input device and input method thereof |
JP2003150303A (en) | 2001-11-09 | 2003-05-23 | Ota Kazuhiko | Two-stage selection type character input device |
US7009599B2 (en) | 2001-11-20 | 2006-03-07 | Nokia Corporation | Form factor for portable device |
KR200265059Y1 (en) | 2001-11-30 | 2002-02-21 | 주식회사 성림정공 | Can cap |
US6825833B2 (en) | 2001-11-30 | 2004-11-30 | 3M Innovative Properties Company | System and method for locating a touch on a capacitive touch screen |
AU2002356643A1 (en) | 2001-12-11 | 2003-06-23 | Wolfgang Fallot-Burghardt | Combination consisting of a computer keyboard and mouse control device |
FI20012610A (en) | 2001-12-31 | 2003-07-01 | Nokia Corp | Electronic device and control element |
JP2003296015A (en) | 2002-01-30 | 2003-10-17 | Casio Comput Co Ltd | Electronic equipment |
JP2005301322A (en) | 2002-02-07 | 2005-10-27 | Kathenas Inc | Input device, cellular phone, and portable information device |
US7333092B2 (en) | 2002-02-25 | 2008-02-19 | Apple Computer, Inc. | Touch pad for handheld device |
US6795057B2 (en) | 2002-02-28 | 2004-09-21 | Agilent Technologies, Inc. | Facile ergonomic computer pointing device |
US6658773B2 (en) | 2002-03-11 | 2003-12-09 | Dennis Rohne | Label with luminescence inside |
USD468365S1 (en) * | 2002-03-12 | 2003-01-07 | Digisette, Llc | Dataplay player |
US7233318B1 (en) | 2002-03-13 | 2007-06-19 | Apple Inc. | Multi-button mouse |
JP4175007B2 (en) | 2002-03-22 | 2008-11-05 | 松下電器産業株式会社 | Rotation operation type input device |
JP2003280799A (en) | 2002-03-25 | 2003-10-02 | Sony Corp | Information input device and electronic equipment using the same |
EP1351121A3 (en) | 2002-03-26 | 2009-10-21 | Polymatech Co., Ltd. | Input Device |
JP4020246B2 (en) | 2002-03-26 | 2007-12-12 | ポリマテック株式会社 | Touchpad device |
TW564694U (en) | 2002-03-28 | 2003-12-01 | Universal Trim Supply Co Ltd | Safety surface buckle capable of preventing children from biting |
US7466307B2 (en) | 2002-04-11 | 2008-12-16 | Synaptics Incorporated | Closed-loop sensor on a solid-state object position detector |
US7111788B2 (en) | 2002-04-22 | 2006-09-26 | Nokia Corporation | System and method for navigating applications using a graphical user interface |
JP2003323259A (en) | 2002-05-02 | 2003-11-14 | Nec Corp | Information processing apparatus |
DE50308334D1 (en) | 2002-05-07 | 2007-11-22 | Schott Ag | Lighting device for buttons |
USD483809S1 (en) | 2002-05-13 | 2003-12-16 | Storm Electronics Company Limited | System selector for electronic game console |
JP4090939B2 (en) | 2002-05-29 | 2008-05-28 | ニッタ株式会社 | Capacitive sensor and manufacturing method thereof |
US7780463B2 (en) | 2002-06-11 | 2010-08-24 | Henry Milan | Selective flash memory drive with quick connector |
US7327352B2 (en) | 2002-06-14 | 2008-02-05 | 3M Innovative Properties Company | Linearized conductive surface |
DE10228185A1 (en) | 2002-06-24 | 2004-01-22 | Völckers, Oliver | Device for detecting a mechanical actuation of an input element using digital technology and method for processing and converting the digital input signal into commands for controlling a consumer |
JP4147839B2 (en) | 2002-06-26 | 2008-09-10 | ポリマテック株式会社 | Sliding multi-directional input key |
JP4086564B2 (en) | 2002-07-04 | 2008-05-14 | キヤノン株式会社 | Switch button and recording device |
US7743000B2 (en) * | 2002-07-16 | 2010-06-22 | Hewlett-Packard Development Company, L.P. | Printer |
TW547716U (en) | 2002-07-31 | 2003-08-11 | Jia-Jen Wu | Positioning structure for the cursor on a touch panel of portable computer |
US7446757B2 (en) * | 2002-09-17 | 2008-11-04 | Brother Kogyo Kabushiki Kaisha | Foldable display, input device provided with the display and foldable keyboard, and personal computer provided with the input device |
US7196931B2 (en) | 2002-09-24 | 2007-03-27 | Sandisk Corporation | Non-volatile memory and method with reduced source line bias errors |
TWM243724U (en) | 2002-09-26 | 2004-09-11 | Wistron Corp | Button illumination module for data processing device |
US6894916B2 (en) | 2002-09-27 | 2005-05-17 | International Business Machines Corporation | Memory array employing single three-terminal non-volatile storage elements |
US20040080682A1 (en) | 2002-10-29 | 2004-04-29 | Dalton Dan L. | Apparatus and method for an improved electronic display |
JP3900063B2 (en) | 2002-10-30 | 2007-04-04 | 株式会社デンソー | Mobile phone case |
MXPA03009945A (en) | 2002-11-05 | 2007-04-16 | Lg Electronics Inc | Touch screen mounting assembly for lcd monitor. |
JP4205408B2 (en) | 2002-11-20 | 2009-01-07 | 大日本印刷株式会社 | Product information management system and product information management program |
US6784384B2 (en) | 2002-12-03 | 2004-08-31 | Samsung Electronics Co., Ltd. | Rotation key device for a portable terminal |
US7236154B1 (en) | 2002-12-24 | 2007-06-26 | Apple Inc. | Computer light adjustment |
TWI237282B (en) * | 2003-01-07 | 2005-08-01 | Pentax Corp | Push button device having an illuminator |
US7730430B2 (en) | 2003-01-24 | 2010-06-01 | Microsoft Corporation | High density cursor system and method |
JP4344639B2 (en) | 2003-04-11 | 2009-10-14 | 日本航空電子工業株式会社 | Press operation type switch unit |
US7392411B2 (en) | 2003-04-25 | 2008-06-24 | Ati Technologies, Inc. | Systems and methods for dynamic voltage scaling of communication bus to provide bandwidth based on whether an application is active |
USD497618S1 (en) | 2003-04-25 | 2004-10-26 | Apple Computer, Inc. | Media device |
US7627343B2 (en) | 2003-04-25 | 2009-12-01 | Apple Inc. | Media player system |
EP1621000B1 (en) | 2003-05-08 | 2011-02-23 | Nokia Corporation | A mobile telephone having a rotator input device |
GB0312465D0 (en) | 2003-05-30 | 2003-07-09 | Therefore Ltd | A data input method for a computing device |
US20040239622A1 (en) | 2003-05-30 | 2004-12-02 | Proctor David W. | Apparatus, systems and methods relating to improved user interaction with a computing device |
JP2004362097A (en) | 2003-06-03 | 2004-12-24 | Fujitsu Ltd | Glide point device with scroll function, personal computer, keyboard and program |
US20040253989A1 (en) | 2003-06-12 | 2004-12-16 | Tupler Amy M. | Radio communication device having a navigational wheel |
FI116548B (en) | 2003-06-18 | 2005-12-15 | Nokia Corp | Digital multidirectional control switch |
US9160714B2 (en) | 2003-06-30 | 2015-10-13 | Telefonaktiebolaget L M Ericsson (Publ) | Using tunneling to enhance remote LAN connectivity |
US7250907B2 (en) | 2003-06-30 | 2007-07-31 | Microsoft Corporation | System and methods for determining the location dynamics of a portable computing device |
JP2005030901A (en) | 2003-07-11 | 2005-02-03 | Alps Electric Co Ltd | Capacitive sensor |
US7265686B2 (en) | 2003-07-15 | 2007-09-04 | Tyco Electronics Corporation | Touch sensor with non-uniform resistive band |
KR100522940B1 (en) * | 2003-07-25 | 2005-10-24 | 삼성전자주식회사 | Touch screen system having active area setting function and control method thereof |
US20050030048A1 (en) * | 2003-08-05 | 2005-02-10 | Bolender Robert J. | Capacitive sensing device for use in a keypad assembly |
USD489731S1 (en) | 2003-08-05 | 2004-05-11 | Tatung Co., Ltd. | Portable media player |
US20070152977A1 (en) * | 2005-12-30 | 2007-07-05 | Apple Computer, Inc. | Illuminated touchpad |
US7499040B2 (en) * | 2003-08-18 | 2009-03-03 | Apple Inc. | Movable touch pad with added functionality |
US20060181517A1 (en) | 2005-02-11 | 2006-08-17 | Apple Computer, Inc. | Display actuator |
DE212004000044U1 (en) | 2003-08-21 | 2006-06-01 | Philipp, Harald, Hamble | Capacitive position sensor |
US6930494B2 (en) | 2003-08-29 | 2005-08-16 | Agilent Technologies, Inc. | Capacitive probe assembly with flex circuit |
JP4214025B2 (en) | 2003-09-04 | 2009-01-28 | 株式会社東海理化電機製作所 | Monitor display control device |
US20050052426A1 (en) * | 2003-09-08 | 2005-03-10 | Hagermoser E. Scott | Vehicle touch input device and methods of making same |
US7411575B2 (en) | 2003-09-16 | 2008-08-12 | Smart Technologies Ulc | Gesture recognition method and touch system incorporating the same |
US7280346B2 (en) | 2003-09-29 | 2007-10-09 | Danger, Inc. | Adjustable display for a data processing apparatus |
US8068186B2 (en) | 2003-10-15 | 2011-11-29 | 3M Innovative Properties Company | Patterned conductor touch screen having improved optics |
US7181251B2 (en) | 2003-10-22 | 2007-02-20 | Nokia Corporation | Mobile communication terminal with multi orientation user interface |
US7495659B2 (en) | 2003-11-25 | 2009-02-24 | Apple Inc. | Touch pad for handheld device |
US8059099B2 (en) | 2006-06-02 | 2011-11-15 | Apple Inc. | Techniques for interactive input to portable electronic devices |
US20050113144A1 (en) | 2003-11-26 | 2005-05-26 | Tupler Amy M. | Pivotal display for a mobile communications device |
KR100754687B1 (en) | 2003-12-12 | 2007-09-03 | 삼성전자주식회사 | Multi input device of wireless terminal and his control method |
JP4165646B2 (en) | 2003-12-25 | 2008-10-15 | ポリマテック株式会社 | Key sheet |
US7307624B2 (en) | 2003-12-30 | 2007-12-11 | 3M Innovative Properties Company | Touch sensor with linearized response |
US7085590B2 (en) | 2003-12-31 | 2006-08-01 | Sony Ericsson Mobile Communications Ab | Mobile terminal with ergonomic imaging functions |
CA106580S (en) | 2004-01-05 | 2005-10-31 | Apple Computer | Media device |
US20050162402A1 (en) | 2004-01-27 | 2005-07-28 | Watanachote Susornpol J. | Methods of interacting with a computer using a finger(s) touch sensing input device with visual feedback |
WO2005076117A1 (en) | 2004-02-10 | 2005-08-18 | Takuya Ogihara | Touch screen-type input device |
KR100611182B1 (en) * | 2004-02-27 | 2006-08-10 | 삼성전자주식회사 | Portable electronic device for changing menu display state according to rotating degree and method thereof |
US7487441B2 (en) | 2004-03-11 | 2009-02-03 | Yahoo!Inc. | Method and system of enhanced messaging |
US7623119B2 (en) | 2004-04-21 | 2009-11-24 | Nokia Corporation | Graphical functions by gestures |
ATE375544T1 (en) | 2004-04-22 | 2007-10-15 | Sony Ericsson Mobile Comm Ab | CONTROL INTERFACE FOR AN ELECTRONIC DEVICE |
US7310089B2 (en) | 2004-05-18 | 2007-12-18 | Interlink Electronics, Inc. | Annular potentiometric touch sensor |
US7382139B2 (en) | 2004-06-03 | 2008-06-03 | Synaptics Incorporated | One layer capacitive sensing apparatus having varying width sensing elements |
CN100483319C (en) | 2004-06-17 | 2009-04-29 | 皇家飞利浦电子股份有限公司 | Use of a two finger input on touch screens |
JP2008511045A (en) * | 2004-08-16 | 2008-04-10 | フィンガーワークス・インコーポレーテッド | Method for improving the spatial resolution of a touch sense device |
US7737953B2 (en) * | 2004-08-19 | 2010-06-15 | Synaptics Incorporated | Capacitive sensing apparatus having varying depth sensing elements |
WO2006021211A2 (en) | 2004-08-23 | 2006-03-02 | Bang & Olufsen A/S | Operating panel |
DE102004043663B4 (en) | 2004-09-07 | 2006-06-08 | Infineon Technologies Ag | Semiconductor sensor component with cavity housing and sensor chip and method for producing a semiconductor sensor component with cavity housing and sensor chip |
US7735012B2 (en) | 2004-11-04 | 2010-06-08 | Apple Inc. | Audio user interface for computing devices |
FR2878646B1 (en) | 2004-11-26 | 2007-02-09 | Itt Mfg Enterprises Inc | ELECTRICAL SWITCH WITH MULTIPLE SWITCHES |
JP4319975B2 (en) | 2004-12-21 | 2009-08-26 | アルプス電気株式会社 | Input device |
EP1677182B1 (en) | 2004-12-28 | 2014-04-23 | Sony Mobile Communications Japan, Inc. | Display method, portable terminal device, and display program |
JP4238222B2 (en) | 2005-01-04 | 2009-03-18 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Object editing system, object editing method, and object editing program |
US7593782B2 (en) | 2005-01-07 | 2009-09-22 | Apple Inc. | Highly portable media device |
US7471284B2 (en) | 2005-04-15 | 2008-12-30 | Microsoft Corporation | Tactile scroll bar with illuminated document position indicator |
US7466040B2 (en) | 2005-04-19 | 2008-12-16 | Frederick Johannes Bruwer | Touch sensor controlled switch with intelligent user interface |
US7710397B2 (en) | 2005-06-03 | 2010-05-04 | Apple Inc. | Mouse with improved input mechanisms using touch sensors |
US8300841B2 (en) | 2005-06-03 | 2012-10-30 | Apple Inc. | Techniques for presenting sound effects on a portable media player |
KR100538572B1 (en) | 2005-06-14 | 2005-12-23 | (주)멜파스 | Apparatus for controlling digital device based on touch input interface capable of visual input feedback and method for the same |
US7279647B2 (en) | 2005-06-17 | 2007-10-09 | Harald Philipp | Control panel |
US7288732B2 (en) | 2005-07-06 | 2007-10-30 | Alps Electric Co., Ltd. | Multidirectional input device |
JP4256866B2 (en) * | 2005-09-01 | 2009-04-22 | ポリマテック株式会社 | Key sheet and key sheet manufacturing method |
US7503193B2 (en) | 2005-09-02 | 2009-03-17 | Bsh Home Appliances Corporation | Button apparatus and method of manufacture |
US7671837B2 (en) * | 2005-09-06 | 2010-03-02 | Apple Inc. | Scrolling input arrangements using capacitive sensors on a flexible membrane |
US7880729B2 (en) | 2005-10-11 | 2011-02-01 | Apple Inc. | Center button isolation ring |
JP2007123473A (en) | 2005-10-27 | 2007-05-17 | Alps Electric Co Ltd | Soft magnetic film, its manufacturing method, thin film magnetic head using the same and its manufacturing method |
US8552988B2 (en) | 2005-10-31 | 2013-10-08 | Hewlett-Packard Development Company, L.P. | Viewing device having a touch pad |
US7839391B2 (en) | 2005-11-04 | 2010-11-23 | Electronic Theatre Controls, Inc. | Segmented touch screen console with module docking |
US7834850B2 (en) | 2005-11-29 | 2010-11-16 | Navisense | Method and system for object control |
US7788607B2 (en) | 2005-12-01 | 2010-08-31 | Navisense | Method and system for mapping virtual coordinates |
US20070152983A1 (en) | 2005-12-30 | 2007-07-05 | Apple Computer, Inc. | Touch pad with symbols based on mode |
US7509588B2 (en) | 2005-12-30 | 2009-03-24 | Apple Inc. | Portable electronic device with interface reconfiguration mode |
US7860536B2 (en) | 2006-01-05 | 2010-12-28 | Apple Inc. | Telephone interface for a portable communication device |
JP4463770B2 (en) | 2006-01-25 | 2010-05-19 | Ykk株式会社 | Manufacturing method of physical quantity detector |
KR100767686B1 (en) | 2006-03-30 | 2007-10-17 | 엘지전자 주식회사 | Terminal device having touch wheel and method for inputting instructions therefor |
DE202007005237U1 (en) | 2006-04-25 | 2007-07-05 | Philipp, Harald, Southampton | Touch-sensitive position sensor for use in control panel, has bus bars arranged at distance to substrate, and detection region with units that are arranged at distance by non-conductive openings such that current flows into region |
US20070247421A1 (en) | 2006-04-25 | 2007-10-25 | Timothy James Orsley | Capacitive-based rotational positioning input device |
US20070252853A1 (en) | 2006-04-28 | 2007-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus to control screen orientation of user interface of portable device |
US7996788B2 (en) | 2006-05-18 | 2011-08-09 | International Apparel Group, Llc | System and method for navigating a dynamic collection of information |
US8059102B2 (en) | 2006-06-13 | 2011-11-15 | N-Trig Ltd. | Fingertip touch recognition for a digitizer |
US20070291016A1 (en) | 2006-06-20 | 2007-12-20 | Harald Philipp | Capacitive Position Sensor |
US8068097B2 (en) | 2006-06-27 | 2011-11-29 | Cypress Semiconductor Corporation | Apparatus for detecting conductive material of a pad layer of a sensing device |
US8743060B2 (en) | 2006-07-06 | 2014-06-03 | Apple Inc. | Mutual capacitance touch sensing device |
US9360967B2 (en) * | 2006-07-06 | 2016-06-07 | Apple Inc. | Mutual capacitance touch sensing device |
US8022935B2 (en) * | 2006-07-06 | 2011-09-20 | Apple Inc. | Capacitance sensing electrode with integrated I/O mechanism |
US20080007529A1 (en) | 2006-07-07 | 2008-01-10 | Tyco Electronics Corporation | Touch sensor |
US20080006454A1 (en) * | 2006-07-10 | 2008-01-10 | Apple Computer, Inc. | Mutual capacitance touch sensing device |
US7688080B2 (en) * | 2006-07-17 | 2010-03-30 | Synaptics Incorporated | Variably dimensioned capacitance sensor elements |
US7253643B1 (en) | 2006-07-19 | 2007-08-07 | Cypress Semiconductor Corporation | Uninterrupted radial capacitive sense interface |
CN101110299B (en) | 2006-07-21 | 2012-07-25 | 深圳富泰宏精密工业有限公司 | Key structure and portable electronic device with this structure |
US7645955B2 (en) * | 2006-08-03 | 2010-01-12 | Altek Corporation | Metallic linkage-type keying device |
US20080036473A1 (en) * | 2006-08-09 | 2008-02-14 | Jansson Hakan K | Dual-slope charging relaxation oscillator for measuring capacitance |
US8564544B2 (en) * | 2006-09-06 | 2013-10-22 | Apple Inc. | Touch screen device, method, and graphical user interface for customizing display of content category icons |
US7795553B2 (en) | 2006-09-11 | 2010-09-14 | Apple Inc. | Hybrid button |
US20080069412A1 (en) | 2006-09-15 | 2008-03-20 | Champagne Katrina S | Contoured biometric sensor |
US7965281B2 (en) | 2006-10-03 | 2011-06-21 | Synaptics, Inc. | Unambiguous capacitance sensing using shared inputs |
US8786553B2 (en) | 2006-10-06 | 2014-07-22 | Kyocera Corporation | Navigation pad and method of using same |
US20080088600A1 (en) | 2006-10-11 | 2008-04-17 | Apple Inc. | Method and apparatus for implementing multiple push buttons in a user input device |
US20080088597A1 (en) | 2006-10-11 | 2008-04-17 | Apple Inc. | Sensor configurations in a user input device |
US8274479B2 (en) | 2006-10-11 | 2012-09-25 | Apple Inc. | Gimballed scroll wheel |
US7772507B2 (en) | 2006-11-03 | 2010-08-10 | Research In Motion Limited | Switch assembly and associated handheld electronic device |
US20080110739A1 (en) | 2006-11-13 | 2008-05-15 | Cypress Semiconductor Corporation | Touch-sensor device having electronic component situated at least partially within sensor element perimeter |
US8482530B2 (en) | 2006-11-13 | 2013-07-09 | Apple Inc. | Method of capacitively sensing finger position |
US20080143681A1 (en) | 2006-12-18 | 2008-06-19 | Xiaoping Jiang | Circular slider with center button |
JP5041135B2 (en) | 2006-12-26 | 2012-10-03 | ライオン株式会社 | Oral composition and oral biofilm formation inhibitor |
US9710095B2 (en) | 2007-01-05 | 2017-07-18 | Apple Inc. | Touch screen stack-ups |
WO2008090516A1 (en) | 2007-01-22 | 2008-07-31 | Nokia Corporation | System and method for screen orientation in a rich media environment |
GB2446702A (en) | 2007-02-13 | 2008-08-20 | Qrg Ltd | Touch Control Panel with Pressure Sensor |
US20080196945A1 (en) | 2007-02-21 | 2008-08-21 | Jason Konstas | Preventing unintentional activation of a sensor element of a sensing device |
KR100868353B1 (en) | 2007-03-08 | 2008-11-12 | 한국화학연구원 | Piperazinyl-propyl-pyrazole derivatives as dopamine D4 receptor antagonists, and pharmaceutical compositions containing them |
US20090033635A1 (en) * | 2007-04-12 | 2009-02-05 | Kwong Yuen Wai | Instruments, Touch Sensors for Instruments, and Methods or Making the Same |
CN101295595B (en) | 2007-04-26 | 2012-10-10 | 鸿富锦精密工业(深圳)有限公司 | Key |
US7742783B2 (en) | 2007-05-10 | 2010-06-22 | Virgin Mobile Usa, L.P. | Symmetric softkeys on a mobile electronic device |
US20090036176A1 (en) * | 2007-08-01 | 2009-02-05 | Ure Michael J | Interface with and communication between mobile electronic devices |
US20090058802A1 (en) | 2007-08-27 | 2009-03-05 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Input device |
US20090058801A1 (en) | 2007-09-04 | 2009-03-05 | Apple Inc. | Fluid motion user interface control |
US7910843B2 (en) | 2007-09-04 | 2011-03-22 | Apple Inc. | Compact input device |
US20090073130A1 (en) | 2007-09-17 | 2009-03-19 | Apple Inc. | Device having cover with integrally formed sensor |
KR100836628B1 (en) | 2007-09-20 | 2008-06-10 | 삼성전기주식회사 | Rotational inputting apparatus |
US20090109181A1 (en) | 2007-10-26 | 2009-04-30 | Research In Motion Limited | Touch screen and electronic device |
JP5080938B2 (en) | 2007-10-31 | 2012-11-21 | 株式会社竹中工務店 | Vibration control device |
US8416198B2 (en) | 2007-12-03 | 2013-04-09 | Apple Inc. | Multi-dimensional scroll wheel |
US8125461B2 (en) | 2008-01-11 | 2012-02-28 | Apple Inc. | Dynamic input graphic display |
JP5217464B2 (en) | 2008-01-31 | 2013-06-19 | 株式会社ニコン | Lighting device, projector, and camera |
US8820133B2 (en) | 2008-02-01 | 2014-09-02 | Apple Inc. | Co-extruded materials and methods |
US9454256B2 (en) | 2008-03-14 | 2016-09-27 | Apple Inc. | Sensor configurations of an input device that are switchable based on mode |
US20100058251A1 (en) | 2008-08-27 | 2010-03-04 | Apple Inc. | Omnidirectional gesture detection |
US20100060568A1 (en) | 2008-09-05 | 2010-03-11 | Apple Inc. | Curved surface input device with normalized capacitive sensing |
JP5274956B2 (en) | 2008-09-19 | 2013-08-28 | 株式会社ニューギン | Game machine |
US8816967B2 (en) | 2008-09-25 | 2014-08-26 | Apple Inc. | Capacitive sensor having electrodes arranged on the substrate and the flex circuit |
US8395590B2 (en) | 2008-12-17 | 2013-03-12 | Apple Inc. | Integrated contact switch and touch sensor elements |
JP5298955B2 (en) | 2009-03-02 | 2013-09-25 | 日本電気株式会社 | Node device, operation monitoring device, processing method, and program |
US9354751B2 (en) | 2009-05-15 | 2016-05-31 | Apple Inc. | Input device with optimized capacitive sensing |
US8872771B2 (en) * | 2009-07-07 | 2014-10-28 | Apple Inc. | Touch sensing device having conductive nodes |
JP5211021B2 (en) | 2009-11-26 | 2013-06-12 | 東芝テック株式会社 | Product information input device and control program thereof |
JP5265656B2 (en) | 2010-12-27 | 2013-08-14 | ヤフー株式会社 | Clustering apparatus and clustering method |
JP5205565B2 (en) | 2011-03-03 | 2013-06-05 | 株式会社カラット | Oil separation method and oil drain trap |
JP5101741B2 (en) | 2011-04-08 | 2012-12-19 | シャープ株式会社 | Semiconductor device and inverter, converter and power conversion device using the same |
-
2003
- 2003-11-25 US US10/722,948 patent/US7495659B2/en not_active Expired - Lifetime
-
2004
- 2004-08-19 DE DE202004021283U patent/DE202004021283U1/en not_active Expired - Lifetime
- 2004-08-19 EP EP04781727A patent/EP1687684A4/en not_active Withdrawn
- 2004-08-19 WO PCT/US2004/027102 patent/WO2005057328A2/en active Application Filing
- 2004-08-19 EP EP10011080.8A patent/EP2284658B1/en not_active Expired - Lifetime
- 2004-09-08 TW TW093127177A patent/TWI262427B/en active
- 2004-11-24 CN CNB2004100978148A patent/CN100369054C/en active Active
- 2004-11-24 CN CN2008100000646A patent/CN101201715B/en active Active
-
2007
- 2007-08-01 US US11/882,422 patent/US8552990B2/en active Active
-
2008
- 2008-12-18 HK HK08113734.6A patent/HK1123860A1/en unknown
-
2013
- 2013-10-08 US US14/048,924 patent/US20140191990A1/en not_active Abandoned
-
2018
- 2018-07-13 US US16/035,353 patent/US20190033996A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030076306A1 (en) | 2001-10-22 | 2003-04-24 | Zadesky Stephen Paul | Touch pad handheld device |
Non-Patent Citations (1)
Title |
---|
See also references of EP1687684A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2436135B (en) * | 2006-03-09 | 2011-09-14 | Pretorian Technologies Ltd | User input device for electronic equipment |
WO2007105151A1 (en) * | 2006-03-13 | 2007-09-20 | Koninklijke Philips Electronics N.V. | Control device for controlling the hue of light emitted from a light source |
US7948394B2 (en) | 2006-03-13 | 2011-05-24 | Koninklijke Philips Electronics N.V. | Control device for controlling the hue of light emitted from a light source |
US8279079B2 (en) | 2006-03-13 | 2012-10-02 | Koninklijke Philips Electronics N.V. | Control device for controlling the hue of light emitted from a light source |
RU2719401C1 (en) * | 2018-06-29 | 2020-04-17 | Кэнон Кабусики Кайся | Electronic device |
US10897568B2 (en) | 2018-06-29 | 2021-01-19 | Canon Kabushiki Kaisha | Electronic device |
Also Published As
Publication number | Publication date |
---|---|
HK1123860A1 (en) | 2009-06-26 |
US20050110768A1 (en) | 2005-05-26 |
CN1637776A (en) | 2005-07-13 |
US7495659B2 (en) | 2009-02-24 |
CN101201715B (en) | 2012-02-15 |
CN100369054C (en) | 2008-02-13 |
CN101201715A (en) | 2008-06-18 |
US8552990B2 (en) | 2013-10-08 |
EP1687684A4 (en) | 2007-05-09 |
TWI262427B (en) | 2006-09-21 |
EP2284658A2 (en) | 2011-02-16 |
TW200517928A (en) | 2005-06-01 |
DE202004021283U1 (en) | 2007-05-24 |
EP2284658B1 (en) | 2018-11-28 |
EP2284658A3 (en) | 2014-09-24 |
US20140191990A1 (en) | 2014-07-10 |
US20190033996A1 (en) | 2019-01-31 |
EP1687684A2 (en) | 2006-08-09 |
US20080012837A1 (en) | 2008-01-17 |
WO2005057328A3 (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190033996A1 (en) | Touch pad for handheld device | |
US10353565B2 (en) | Input apparatus and button arrangement for handheld device | |
US7348967B2 (en) | Touch pad for handheld device | |
AU2004267727C1 (en) | An input device for a portable media device | |
US8330061B2 (en) | Compact input device | |
US20080087476A1 (en) | Sensor configurations in a user input device | |
WO2010027803A1 (en) | Omnidirectional gesture detection | |
WO2008045830A1 (en) | Method and apparatus for implementing multiple push buttons in a user input device | |
WO2010028139A2 (en) | Curved surface input device with normalized capacitive sensing | |
AU2008100398A4 (en) | A portable media device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004781727 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004781727 Country of ref document: EP |