WO2005056146A2 - 発現微量タンパク質/ペプチドの検出・分離・同定法 - Google Patents

発現微量タンパク質/ペプチドの検出・分離・同定法 Download PDF

Info

Publication number
WO2005056146A2
WO2005056146A2 PCT/JP2004/018592 JP2004018592W WO2005056146A2 WO 2005056146 A2 WO2005056146 A2 WO 2005056146A2 JP 2004018592 W JP2004018592 W JP 2004018592W WO 2005056146 A2 WO2005056146 A2 WO 2005056146A2
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
protein
fluorescent
fluorescence
hplc
Prior art date
Application number
PCT/JP2004/018592
Other languages
English (en)
French (fr)
Other versions
WO2005056146A1 (ja
WO2005056146A3 (ja
Inventor
Kazuhiro Imai
Original Assignee
Kazuhiro Imai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhiro Imai filed Critical Kazuhiro Imai
Priority to EP04806953.8A priority Critical patent/EP1705482B1/en
Priority to US10/582,090 priority patent/US8796037B2/en
Priority to JP2005516223A priority patent/JP4679368B2/ja
Publication of WO2005056146A2 publication Critical patent/WO2005056146A2/ja
Publication of WO2005056146A1 publication Critical patent/WO2005056146A1/ja
Publication of WO2005056146A3 publication Critical patent/WO2005056146A3/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/101,2,5-Thiadiazoles; Hydrogenated 1,2,5-thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/13Labelling of peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • G01N33/6851Methods of protein analysis involving laser desorption ionisation mass spectrometry

Definitions

  • the present invention relates to a method for detecting 'separation' of small amounts of expressed proteins and Z or peptides. More specifically, the present invention relates to a method for detecting minute amounts of expressed proteins and / or peptides produced by gene expression in a living body. The present invention relates to a novel “separation” identification method for an expressed protein and Z or peptide, which can be detected and identified with high sensitivity by a simple method, and an identification system thereof.
  • the present invention is useful as providing a new detection 'separation' identification technique in proteome technology that comprehensively analyzes expressed proteins and Z or peptides, which is expected to play an important role in the post-genome era. is there.
  • Non-Patent Document 1 a peptide fingerprinting method after two-dimensional electrophoresis has been widely used.
  • this method has a difficulty in reproducibility of the method due to complicated operations.
  • a separation and identification method using multidimensional high-performance liquid chromatography (multidimensional HPLC) or an ICAT method has recently been proposed (see Non-Patent Document 2).
  • the method of directly separating and identifying a protein Z peptide by multidimensional HPLC has a disadvantage that a large amount of labor and time are required for simultaneously processing all the protein Z peptides.
  • the thiol-containing protein / peptide is labeled with an isotope-coded affinity tags (ICAT) reagent, and then collected with a biotin-binding column.
  • the obtained peptide fragment mixture is separated by HPLC and mass analyzed by mass spectrometer (MS) to comprehensively analyze proteins / peptides.
  • MS mass spectrometer
  • this method enzymatically hydrolyzes all of the thiol-containing proteins / peptides, and is not intended for large quantities.
  • some protein / peptide fragments interfere with the detection and identification of the desired trace protein / peptide fragment, and further breakthroughs in the art are needed in the art.
  • Non-noon literature 1 Dunn MJ. Two— dimensional gel electropnoresis of proteins, J Chromatogr 1987; 418: 145-185
  • Non-Patent Document 2 Gygi S. P, Rist B, Gerber S. A, Turecek F, Gelb M. H, Aebersold R, Quantitative analysis of complex protein mixtures using isotope-coded affinitytags, Nature Biotechnology 1999; 17: 994- 999
  • the present inventors have conducted intensive studies in view of the above-described conventional technology with the goal of drastically solving the problems in the conventional technology, and as a result, the conventional technology Unlike the method, only the fluorescently labelable protein and Z or peptide in the test sample are separated by fluorescence, then subjected to enzymatic hydrolysis, and the fractionated fluorescent fraction is analyzed by mass spectrometry, database collation, and structural analysis.
  • the present inventors have found that trace amounts of expressed proteins and / or peptides that could not be detected by the conventional method can be detected and identified with high sensitivity, and the present invention has been completed.
  • the present invention relates to the above-mentioned expression protein and / or peptide, which enables highly sensitive detection and 'separation' of a small amount of expressed protein and / or peptide expressed via a gene by a simple measurement technique.
  • the present invention provides an expression protein and / or peptide identification system for detecting and separating with high sensitivity a small amount of an expressed protein and / or peptide used in the above-mentioned method for detecting and separating a small amount of separated and identified.
  • the purpose is.
  • the present invention provides a new analysis that enables ultra-sensitive detection and 'separation' identification of trace amounts of expressed proteins and / or peptides expressed through genes, which could not be detected by conventional methods. It is intended to provide methods and means. Means for solving the problem
  • the present invention for solving the above-mentioned problems includes the following technical means.
  • a functional group-specific fluorescent reagent is added to the aqueous solution of the protein and Z or peptide sample, and optionally a surfactant and / or a protein denaturant is added, and the protein and / or peptide is fluorescently labeled.
  • a functional group-specific fluorescent reagent is added to the aqueous solution of the protein and Z or peptide sample, and optionally a surfactant and / or a protein denaturant is added, and the protein and / or peptide is fluorescently labeled.
  • Fluorescently labeled protein and Z or peptide samples are subjected to separation means such as ion-exchange column HPLC with fluorescence detector, reversed-phase partition HPLC, gel filtration HPLC, or electrophoresis, and monitoring the fluorescence while monitoring the fluorescence.
  • separation means such as ion-exchange column HPLC with fluorescence detector, reversed-phase partition HPLC, gel filtration HPLC, or electrophoresis, and monitoring the fluorescence while monitoring the fluorescence.
  • Ion molecular weight information of each fragment obtained by mass spectrometry or MSZMS analysis is checked against a computer-generated protein and Z or peptide fragment database, structural analysis is performed, and the protein and / or 4.
  • test sample is a protein and Z or peptide sample collected from a biological sample.
  • a detection / separation identification system for detecting a trace amount of protein and / or peptide used in the method according to any one of (1) to (10), wherein the protein and / or peptide of the test sample is a fluorescent reagent
  • One or more types of structural analyzers equipped with a second-stage HPLC equipped with a fluorescence detector for fluorescence detection of fluorescently labeled fragments of enzyme hydrolysates and a database containing information on amino acids labeled with fluorescent reagents
  • the above-mentioned detection / separation / identification system comprising:
  • X is halogen
  • Y is ⁇ , Se or S
  • R is —NH
  • X is halogen
  • Y is ⁇ , Se or S
  • R is —NH
  • proteins and / or peptides in different samples A and B are each induced with at least two fluorescent derivatization reagents having different fluorescence wavelengths.
  • separation and detection are performed by HPLC with a fluorescence detector, and after fractionation, the respective fluorescent peaks are used as they are or are combined for quantification, and / or the respective fluorescent peaks are combined and subjected to enzymatic hydrolysis, and this hydrolyzate is obtained.
  • a hydrolyzate of the hydrolyzate is subjected to HPLC-mass spectrometry to identify the protein and / or peptide.
  • Sample A, B force The method according to the above (16), which is a sample of two types of cells, tissues or body fluids.
  • DAABD-X, DAASeBD-X, and DAAThBD-X are at least two fluorescent derivatization reagents having different fluorescence wavelengths, and proteins and / or Alternatively, the method according to (16), wherein the peptide is derivatized.
  • DAABD-X As a fluorescent derivatizing reagent having a different fluorescence wavelength, DAABD-X, DAASeBD-X, or DAAThBD-X (where X is C1 or F) and their respective isotopes are used in combination (21) ).
  • the enzyme hydrolyzed sample is directly subjected to mass spectrometry to obtain a peptide map, and at the same time, by utilizing the backbone and charge of the fluorescent reagent, the fluorescently labeled peptide fragment is extracted by the mass spectrometry measurement unit and contains cysteine.
  • (16) The method according to (16) above, wherein the structures of the peptide portions are obtained, and the protein and / or the peptide is identified based on the obtained structures.
  • Automatic minutes characterized by having (25) At least a microcolumn comprising a microcolumn-HPLC, a microfluorescence detector, a microfraction collector, an enzyme reaction device, and a microautomatic injection device, and optionally a mass spectrometry (MS) system.
  • MS mass spectrometry
  • the present invention has been made to overcome the above-mentioned drawbacks of the conventional method, 1) labeling a trace amount of expressed protein Z peptide with a fluorescent reagent, and 2) separating it at the first stage by HPLCZ fluorescence detection. 3) Fluorescence detection was performed, and 3) after collecting only the fluorescence fraction (the fluorescence fraction that increases or decreases specifically in the test sample compared to the control sample), hydrolyzes the enzyme,
  • the present invention relates to a method for separating by detection, confirming a fluorescence peak, performing HPLC / MS, identifying a fluorescence-labeled protein Z peptide fragment, and specifying the trace protein Z peptide.
  • the first-stage separation by HPLC / fluorescence detection can be omitted.
  • the method of the present invention has a feature that, unlike the conventional method, only a fluorescently labelable protein / peptide can be specifically extracted, detected and identified, and a small amount of expressed protein / peptide is identified. Therefore, it is a suitable method.
  • test sample a sample containing all kinds of proteins and / or peptides collected by biopower is targeted.
  • a trace amount of an expressed protein / peptide in a test sample is labeled with a fluorescent reagent and fluorescently derivatized.
  • a functional group-specific fluorescent reagent is added to the aqueous protein / peptide solution. Therefore, it is important to remove surfactants and / or protein denaturants and to quantitatively induce expressed proteins / peptides.
  • a surfactant and, if necessary, a reducing agent are added to an aqueous solution of a protein / peptide sample, and a functional group-specific fluorescent reagent is added thereto.
  • the peptide is fluorescently labeled.
  • nonionic, anionic, cationic and amphoteric surfactants are used as the surfactant.
  • Tris (2-carboxyethyl) phosphine ⁇ tributylphosphine force is preferably used as long as it has the same effect as that of the reducing agent. be able to.
  • examples of the functional group-specific fluorescent reagent include (for example, 4-fluoro-7-nitro-1,2,3-benzoxadiazole (NBD-F) 5- (N, N-dimethylammo naphth alene-l Amino-specific photoreagents such as -sulfonyl chloride (DNS-CL), Orthophthaldehyde (OPA), Flu orescamine, 9- Fluorenylmethyl chloroformate (FMOC), Ammonium 7- fluoro- 2, 1, 3-benzoxadiazole-4-sulfonate ( SBD—F), 4— (Aminosulfonyl) —7—fluoro—2,1,3—benzoxadiazole (ABD—F), 4— (Acetylaminosulfonyl) —7—fluoro—2,1,3—benzoxadiazole (AcABD—F ), 4—Fluoro— 7—trichloroacetylaminosulf
  • the protein / peptide is heated by heating (for example, 30 to 100 ° C., preferably 40 to 70 ° C. for 10 to 300 minutes, preferably 60 to 180 minutes). Label with fluorescent light. After that, almost the entire amount of the reaction solution is subjected to an ion exchange column HPLC with a fluorescence detector, reverse phase partition HPLC, or gel filtration HPLC, and a peak fraction is collected while monitoring the fluorescence. In this case, the fluorescence detection is performed by setting a wavelength corresponding to the excitation wavelength of the labeled phosphor.
  • the excitation wavelength is set to 480 nm or 380 nm, and the excitation wavelength is set to 520 nm or 505 nm.
  • a salt for example, a salt such as sodium sulfate, potassium perchlorate, or ammonium acetate, preferably a volatile salt such as ammonium acetate, is gradually increased, and each salt is gradually increased.
  • Obtain fractions. This fraction or a sample obtained by concentrating and drying this fraction is subjected to enzymatic hydrolysis.
  • an appropriate proteolytic enzyme such as various peptidases, trypsin and chymotrypsin is used. At this time, an enzyme column can be connected to perform enzyme hydrolysis online.
  • the fluorescence detector and the mass spectrometer can be connected in series.
  • the ion molecular weight information of each fragment obtained in this manner is compared with a protein Z peptide fragment database connected to a computer, and the structure is analyzed to identify proteins / peptides prior to enzymatic hydrolysis.
  • database collation is performed using a database containing information on protein and Z or peptide fragments, and information on amino acids labeled with a fluorescent reagent.
  • a protein and / or peptide in a test sample containing an expressed protein and / or peptide is converted into a fluorescent derivative, the fluorescent derivative is separated by HPLC / fluorescence detection, and the intensity of the fluorescent peak is compared.
  • the fluorescent derivative of the target expressed protein and / or peptide is separated, the obtained peak fraction of the target expressed protein and / or peptide is enzymatically degraded, and then mass spectrometry or MS / MS analysis, database matching, and structural analysis are performed.
  • the above proteins and / or peptides are identified.
  • FIG. 1 schematically shows an example of the process of the method of the present invention.
  • an important point of the method of the present invention is that the amount of protein in each tissue is determined by HPLC / fluorescence analysis. Prior to separation, the target expressed protein is quantitatively derivatized, for example, because it should be quantified and compared between normal and non-normal tissues. For this reason, in the present invention, the ability of an appropriate surfactant to be used. For example, when a number of surfactants were examined by BSA, CHAPS was compared with ⁇ -Dodecyl- / 3-D_maltopy ranoside. It showed high strength (see Fig. 2).
  • the present invention quantitative fluorescent derivatization is possible by setting optimal conditions for pH, temperature, reaction time, additives for derivatization reaction and the like according to the target expression protein and / or peptide.
  • these conditions can be appropriately set according to the type of the expressed protein / peptide, the purpose of the analysis, and the like.
  • the chromatogram of the test protein / peptide showed a single fluorescence peak (see FIG. 3).
  • the detection limit of the protein and / or peptide is 0.2-6. Ofmol, and the measurement of a good straight line ( ⁇ > 0.9994) in the range of 10-10 OOfmol under optimal conditions. A curve was obtained (see Table 1), indicating that the detection performance was remarkable compared to the conventional method.
  • Table 1 shows the detection limits of various proteins and / or peptides by fluorescence detection / HPLC.
  • a “separation” identification system for detecting a trace amount of expressed protein and / or peptide used in the above method a second method for labeling a protein and / or peptide of a test sample with a fluorescent reagent is used.
  • the above detection / separation / identification system uses one or two or more types of structural analyzers equipped with a HPLC with a fluorescence detector on the floor and a structural analysis device equipped with a database containing information on amino acids labeled with fluorescent reagents.
  • the first reactor, the two-dimensional HPLC with the fluorescence detector, the second reactor, and the second-stage HPLC with the fluorescence detector can be arranged in series. These devices can be arbitrarily designed in an appropriate capacity and form according to the purpose of use.
  • a protein and Z or peptide in a test sample are used as a fluorescent derivatization reagent by the above-mentioned general formula (1) wherein X is halogen, Y is 0, Se or S, R is _NH, or
  • the present invention can provide a novel fluorescent derivatization reagent containing any one of these compounds as an active ingredient.
  • TAABSeD CU—chloro—2,1,3—benzoselenadiazole—4—sulfonylamin oethyl trimethylammonium chloride)
  • DAABSeD F [4— (dimethylaminoethyl aminosulfonyl) — 7—fluoro— 2, 1, 3—benzoselenadiazolej
  • TAAB S eD— F (7—fluoro— 2, 1, 3—benzoselenadiazole— 4— sulfonylamino ethyl trimethylammonium chloride)
  • TAABThD— F 7— fluoro— 2, 1, 3— benzothiadiazole— 4— sulfonylamino ethyl trimethylammonium chloride
  • the fluorescent derivatization reagent for example, SBD—X, SBSeD—X, SBThD—X, DAABD-X, TAABD-X, DAABSeD_X, TAABSeD_X, DAABThD—X, TAABThD—X (where X Is Cl, or F), and their respective isotopes. All of these compounds can be synthesized in the same manner as in the case of the compounds shown in Examples described later. Further, in the present invention, the chain length of the alkyl group in the side chain of the compound represented by the general formula (1) can be arbitrarily changed.
  • two or more of these compounds can be used in combination by utilizing the difference between the fluorescence wavelength and the retention time in HPLC separation of these compounds. Elution from HPLC is slower, for example, in the order of DA ABSeD_F and DAABD-C1 or DAPABSeD_F (side-chain alkyl: propyl) ⁇ DAPABD-C1. Further, the use of each isotope of the above-mentioned compound makes it possible to detect a further small amount.
  • two protein samples having the same origin and different histories can be easily and simultaneously compared.
  • a chromatogram comparing one sample of a diseased patient, one sample of a healthy individual, or one cell or tissue sample, one sample treated with a drug, and the other untreated sample. Based on Thereby, it is possible to simply and accurately quantify each derivative of the protein and / or peptide derivatized with each fluorescent derivatization reagent, and the protein and / or Alternatively, simultaneous measurement and comparison of peptide profiles can be realized.
  • An automatic fractionating device with a micro-automatic injection device is provided.
  • at least a trace protein comprising a microcolumn-HPLC, a microfluorescence detector, a microfraction collector, an enzyme reaction device, and an automatic microinjection device, optionally having a mass spectrometry (MS) system, High performance ⁇ Simple quantification ⁇ Identification device for Z or peptide is provided.
  • MS mass spectrometry
  • the present invention relates to, for example, a method of labeling a trace amount of phosphorylated protein or glycoprotein with a fluorescent derivatizing reagent, and then, using a microcolumn-HPLC-fluorescence detector, the modified phosphorylated portion and the protein with the sugar-binding portion retained. High-performance separation is detected as a sample, and collected by a microfraction collector. The enzyme is added thereto, the labeled protein is hydrolyzed with the enzyme, and the hydrolyzed sample is directly subjected to mass spectrometry. Based on the obtained peptide map and fluorescence-labeled peptide map information, identification including, for example, the modified portion of the post-translationally modified microprotein is performed using database search software.
  • the method of the present invention is a method combining fluorescence detection and micro-HPLC, for example, it is possible to identify ultra-trace proteins and to extract and analyze post-translationally modified proteins without decomposing them as they are.
  • Another advantage of the conventional analysis method is that it is possible to reliably identify the protein, which can be easily obtained by obtaining information on the phosphorylation site and the sugar-binding site.
  • the analysis method of the present invention is expected to be widely used in the fields of life science and pathochemistry, and can contribute to disease diagnosis, treatment, and maintenance of human health.
  • an expressed protein and / or peptide expressed via a gene can be detected and 'separated' with high sensitivity by a simple method and means.
  • the present invention has the effect of being useful as providing a proteome platform technology.
  • the above reaction solution was applied to an ion exchange column, and the fluorescent protein / peptide was eluted with a gradient of NaCl (0, 0.04, 0.08, 0.12, and 0.3M), and separated into five fractions. .
  • the fluorescent protein Z peptide was detected by fluorescence of the SBD skeleton.
  • the HPLC conditions are shown below.
  • HPLC reversed-phase column HPLC
  • MS / MS measurement by the electrospray method The HPLC conditions are shown below.
  • NCBI was used for the database and MASCOT was used for the search engine.
  • BSA derivatized with SBD-F is enzymatically hydrolyzed with trypsin by the process shown in Fig. 1, and the resulting peptide mixture is separated by reversed-phase liquid chromatography (RPLC) and detected with a fluorescence detector did.
  • RPLC reversed-phase liquid chromatography
  • each peptide was subjected to MS / MS analysis using an ion spray ion trap mass spectrometer.
  • tryptic digestion results in BSA producing 25 cysteine-containing peptides with more than 4 amino acid residues and 35 cysteine-free peptides, but in this example, 27 or more fluorescent peptides were produced. Fluorescence was detected and quantitative derivatization was performed (Figure 4, A).
  • the database was checked by MASCOT based on the probabilistic protein identification method, and as expected, the protein was completely identified as BSA (score: 39).
  • Dex induces type 2 diabetes, a major human diabetes, by increasing hepatic glucose production and inducing insulin resistance. Indeed, 24 hours after Dex treatment, blood glucose levels reached 209.8 mg / dL, significantly higher than the pre-treatment value of 1183 mg / dL (p ⁇ 0.05).
  • islets of Langernoens 60 islets
  • SBD-F derivatized with SBD-F.
  • An important aspect for applying the method of the present invention to a biological sample is to separate the expressed protein from the protein mixture by HPLC.
  • the fluorescent proteins were first separated by ion exchange chromatography (IEC) based on the many negative charges and acidic amino acid moieties generated by SBD-F.
  • Each peptide mixture was subjected to ordinary pore RPLC (10 nm pore diameter) and subjected to MSZMS analysis. According to the database comparison, the peaks that increased 2 days after Dex treatment were spiral polypeptide, proinsulin 2, 78 KD glucose monoregulatory protein, phosphatidylethanolamine binding protein, and thioredoxin, respectively. These were protein 31, dnak_type molecular chaperone hsp72-psl, and insulin, respectively.
  • FIG. 7 shows the relationship between the fluorescence derivatization reaction time and the fluorescence intensity (left figure: DAABD_C1, right figure: TABD-C1).
  • DAABD_C1 fluorescence derivatization reaction time
  • TABD-C1 fluorescence intensity
  • reaction time is preferably 20 minutes for DAABD-C1 and 30 minutes for TAABD-C1.
  • the sample prepared in (1) above was detected by LC-MS, and the relative intensities were compared with those not labeled with the fluorescent derivatization reagent and those derivatized with SBD-F.
  • Table 3 shows the relative intensities when the height of each of the label, label, cysteine, homocysteine, and GSH after labeling with a fluorescent derivatization reagent was set to 1. From this, DAABD-C1
  • the sensitivity in MS was found to be the highest. Also, since the mobile phase is acidic, the DAABD derivative is considered to be positively charged and water-soluble.
  • cysteine 23 3.0 x 10 3 2.0 x 10 3 homocysteine 4.0 2.3 x 10 2 1.6 x 10 2
  • 10 / i M of the following four peptide preparations 17.5 mM TAABD_C1, 10 mM EDTA, 50 mM CHAPS (surfactant), and 2.5 mM TCEP (reduced lj) Mix 50 / iL, pH 9.0, 40. The reaction was performed with C for 30, 60, 90, and 120 minutes. Each reagent was dissolved in a 0.10 M borate buffer (pH 9.0) containing 6.0 M guanidine hydrochloride (protein-modified IJ). The produced TAABD-peptide was measured using HPLC.
  • Figure 8 shows the relationship between the reaction time with TAABD-Cl and the fluorescence intensity.
  • the production amount increased up to the reaction time of 60 minutes. After stopping the reaction, it was stored under ice-cooling, and when stored at -20 ° C, it hardly decomposed for 48 hours.
  • vasopressin 1084 2 7.0 5.0 oxytocin 1007 2 4.5 1.3 somatostatin 1638 2 20 1.8 calcitonin 3418 2 5.0 6.0 amylin (rat) 3920 2 4.5 1.2 insulin 5808 6 2.2 0.7 alpha 1acid glycoprotein 21547 4 8.5 1.3 alpha-lactalbumin 16228 8 3.5 0.5 albumin (BSA) 66385 35 0.5 0.2 leptin 16014 2 30 3.0
  • N-thionylaniline (0.49 g, 3.5 mmol) was added to a solution of «r « j-fluoro-o-phenylenediamine (2 OOmg, 1.6 mmol) in toluene (2 ml).
  • the reaction mixture was heated at 100-120 ° C for 4 hours, the solvent was removed by filtration, the residue was dissolved in dichloromethane, and the solution was washed with a 10% HC1 solution and water.
  • the organic phase was dried and dried under reduced pressure. This was subjected to chromatography on silica gel, and eluted with chloroform as an eluent to obtain 4-fluoro-2,1,3-benzothiadiazole as a pale yellow oil.
  • the confirmation data of the obtained compound are shown below.
  • a 500 ⁇ l portion of a 0.1 M borate buffer (pH 9.0 or pHIO) containing 4 mM of each reagent, SBSeD_F, SBThD_F or SBD-F and ImM EDTA was added to a 0.1 M borate buffer ( ⁇ ⁇ 9.0 Or ⁇ ) with the same amount of cysteine solution (0.4 mM).
  • the reaction mixture was separated by HPLC and the reaction at 60 ° C was monitored.
  • SBD-F Water-soluble reagents, such as SBD-F, increase the solubility of the derivative in the aqueous form due to its sulfonic acid residue, resulting in reduced derivative absorption or precipitation. Therefore, derivatives of SBD-F of relatively hydrophobic peptides, such as insulin, are not
  • SBSeD_F and SBThD_F were synthesized as fluorescent reagents having a benzoselenadiazole or benzothiadiazole skeleton, and their reactivity to cysteine and the fluorescence characteristics of their derivatives were further elucidated. Examined.
  • Table 5 shows the maximum excitation ( ⁇ ex) and emission wavelength ( ⁇ ex), and the retention time of the derivative.
  • the mass number ([M + H]) of each cysteine derivative is expressed as SBSeD_F (mZz381. 9), SBThD-F (m / z334. 0) and SBD_F (m / z318. 0) (theoretical values (each The maximum excitation wavelengths of the derivatives are as follows: SBSeD_F (340 nm) and SBThD-F (315 nm) are shorter than SBD_F (365 nm). SBS eD-F (542 nm) was longer than SBSeD_F (517 nm) and SBD-F (514 nm).
  • SBSeD-F itself has little fluorescence, while SBThD_F gave some fluorescence ( ⁇ ex; 350 nm,; iem: 424 nm).
  • the retention times (t) of the cysteine derivatives of SBSeD-F, SBThD-F and SBD-F by the mobile phase at pH 2.0 with respect to the reversed-phase column (C) were 4.5 and 5.3, respectively.
  • SBSeD_F was the highest hydrophilic fluorescent reagent among them.
  • the optimal reaction condition is 1 hour at pH 9.5 at 60 ° C, but the reactivity of SBSeD-F and SBThD-F is lower than that of SBD-F.
  • the intensity gradually increased between 8 and 24 hours (Figs. 9 and 10), and the response did not reach the maximum even after 24 hours (Fig. 9).
  • the quantitative reaction time between SBSeD_F or SBThD_F and cysteine was 8 hours or more, and SBD-F completely reacted within 1 hour (Fig. 10).
  • the water-soluble fluorescent reagents SBSeD_F and SBThD_F are different from SBD-F in the fluorescent characteristics and hydrophobicity, and are useful as novel fluorescent inducing reagents for proteome analysis.
  • C. elegans (Bristol N2 strain) was cultured on NGM agar at 20 ° C. using E. coli OP50 strain as a nutrient, suspended in M9 buffer and separated from bacteria. After washing the above nematodes twice with M9 buffer, they were stored at _80 ° C and used. An equal amount of this nematode 1 It was suspended in OmM CHAPS and dissolved by sonication. The soluble fraction was collected by centrifugation at 10,000 rpm at 4 ° C for 5 minutes. The supernatant was stored at 20 ° C as a soluble fraction. The protein concentration of this fraction was determined by the Bradford method using BSA as a standard.
  • RP column is PROTEIN (30 nm pore size, 250 x 4.6 mm i.d.) (Imtakt), mobile phase is eluent (A) 0.1% trifluoroacetic acid and eluent (B) water ZCH CNZ trifluoroacetic acid
  • HPLC HPLC was performed under the conditions of a gradient system of 30% with a flow rate of 0.25 mLZmin for 30 minutes at a flow rate of 70% B. Fluorescence detection was performed at 508 nm and excitation wavelength was 387 nm. For identification several peak fractions of the fluorescent protein derivative were separated and concentrated to 10 under reduced pressure. Each fraction was diluted with 90 / iL of 5.OmM ammonium bicarbonate solution ( ⁇ 7.8) containing 2 ig / mL trypsin and 1 ⁇ OmM calcium chloride and incubated at 37 ° C for 2 hours.
  • 5.OmM ammonium bicarbonate solution ⁇ 7.8 containing 2 ig / mL trypsin and 1 ⁇ OmM calcium chloride
  • Each proteolytic peptide mixture was directly subjected to LC MS / MS using an electrospray ion trap mass spectrometer. Chromatography was performed using a HP1090 Series II system and a Cadenza TC-18 column (12 nm porous silica, 100 ⁇ 2.0 mm.d.). The mobile phases were eluent (A) l. OmM ammonium formate and eluent (B) l. OmM ammonium formate / CH CN (50/50). Gradient elution is performed at a flow rate of 0.2 mL / min over 60 minutes.
  • Protein identification was performed from the NCBInr database using the MASCOT (Matrix Science Ltd., UK) database search algorithm that stores DAABD bound to cysteine thiol residues.
  • FIG. 11 shows a chromatogram of the protein (about 10 zg) obtained from the soluble fraction of nematodes, derivatized with DAABD-C1.
  • separation of proteins, hydrolysis with trypsin, and LC-MSZMS analysis of arbitrarily selected peak fractions were performed. As a result, 10 proteins were identified.
  • the power of identification of ten arbitrarily selected proteins In the present invention, other proteins can be identified in the same manner.
  • Example 12 4-Chloro-7-chlorosulfonyl 2,1,3-benzoxadiazole (0.221 g, 0.88 mmol) was dissolved in acetonitrile (8 ml) and stirred at 0 ° C. Then, N, N-ethyl-1,3-propanediamine (0.20 ml, 1.25 mmol) and triethylamine (0.17 ml, 1.25 ml) were added thereto. The reaction mixture was stirred for 30 minutes and then concentrated under reduced pressure. The residue was dissolved in chloroform and washed with saturated aqueous ammonium chloride solution and brine, and the organic phase was dried over Na 2 SO and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (10%
  • ImM cystine, homocystin, alanine, serine, or daltathione
  • the HPLC system consisted of a pump (L_7100, manufactured by Hitachi, Ltd.), a separation column TSKge 1120-TQA (inner diameter 250 x 4.6 mm) (manufactured by Tosoh Corporation), and a fluorescence detector (FL_2025, manufactured by Jusco). Fluorescence detection was at 540 nm and excitation wavelength was at 420 nm.
  • the mobile phase was 150 mM phosphate buffer / CH CN (94/6) and the flow rate was 0.75 ml / min.
  • reaction mixture was directly injected onto a column of HP1090 series II system (Hewlett-Packard (GmbH)) to obtain MS and MS / MS by electrospray.
  • the analysis was performed on a TC-18 column (silica 12 nm pore, inner diameter 100 x 2. Omm) (Imtact Co., Ltd.)
  • the mobile phase was 0.1% formic acid eluate (8) and water / CH CN /
  • the eluate (B) of formic acid (50/50 / 0.1) was used.
  • each reaction mixture Heat at 60 ° C. for 60 minutes (DAABSeD_F) or 20 minutes (DAABD-Cl) and stop the reaction with 200 ⁇ L of 0.1% trifluoroacetic acid.
  • the mixture was diluted with 300 ⁇ L of methanol, and the fluorescence spectrum was measured with a fluorescence spectrometer. As a result, the maximum excitation wavelength was about 425 nm and the maximum fluorescence wavelength was about 535 nm.
  • the HPLC system consists of a pump (L-1100, manufactured by Hitachi), an RP column for proteins (30 nm pore size, 250 x 4.6 mm ID) (Imtact), and a fluorescence detector (FL_2025, manufactured by JASCO). Configured. Fluorescence detection was performed at 550 nm (excitation wavelength 450 nm) (DAABSeD-F) or 490 nm (excitation wavelength 370 nm) (DAABD-Cl). Eluate (A) is water / CH CNZ trif
  • the benzoxadiazole reagent 7chloro-N_ [2 (dimethylamino) ethyl] _2,1,3_benzoxadiazinole 4-sulfonamide (DAABD-C1)
  • DA ABD-C1 7chloro-N_ [2 (dimethylamino) ethyl] _2,1,3_benzoxadiazinole 4-sulfonamide
  • Thiol-specific reagent useful for proteomics research.
  • DA ABD-C1 reacts with peptide and protein thiols to derivatize it and emits fluorescence at 502 nm with 390 nm excitation.
  • DDABD-F 7-fluoro-N_ [2_ (dimethylamino) ethyl] 2,1,3_benzoselenadiazole-4-sulfonamide
  • the present inventor has proposed 7_fluoro-2,1,3_benzoselenadiazole-4-sulfonate (SBSeD_F) and 7_fluoro-2,1,3_benzothiadiazonol-4-sulfonate.
  • SBThD-F was synthesized as a thiol-specific fluorescent reagent.
  • the fluorescence wavelengths of the derivatives with these cysteines were 54,211,111 and 517 nm, respectively, with excitation wavelengths of 340 nm and 315 nm, respectively.
  • the corresponding benzoxadiazole reagent, 7_fluoro_2,1,3, -benzoxadiazonole-4-sulfonate gives a derivative that emits fluorescence at 514 nm when excited at 365 nm.
  • the present inventor synthesized the benzoselenadiazole reagent, DAABSeD_F, as the counterpart of DA ABD-C1 ( Figure 12). ).
  • Bo anhydrase, alpha _ lactalbumin, if such as BSA), to promote the reaction was performed in the presence of CHAPS and guanidine.
  • DAABSeD_F is compatible with thiol-free compounds such as aralin (containing amino and carboxyl groups), serine (containing carboxyl groups and hydroxyl groups) and tyrosine (carboxyl groups containing phenolic hydroxyl groups).
  • thiol compounds fluoresce and have a maximum intensity in 30 minutes.
  • DAA BSeD-F reacts specifically with low molecular weight thiols like peptides and proteins. Then, fluorescence was generated, indicating that the reaction rate was the same as that of DAABD-C1.
  • the DAABSeD derivative showed that the maximum excitation and emission wavelengths were in the range of 423-429 nm and 524_542 nm, respectively (Table 5).
  • the chromatogram obtained from the protein derivatized with DAABSeD-F showed a single peak for each derivative, with no overlapping peaks observed. Since the reagent itself did not fluoresce, no DAABSeD_F peak appeared. The peak height of the above derivatives was proportional to the injection volume.
  • the detection limits for vasopressin, 1-lactalbumin and BSA were 7.5, 7.2 and 7.2 fmol, respectively. These detection limits were similar to those of the DAABD derivative.
  • the DAABSeD derivative had a lower affinity for the HPLC stationary phase than the DAABD derivative because the DAABSeD derivative eluted faster than the DAABD derivative. A similar tendency was observed for the SBSeD derivative as compared to the SBD derivative.
  • the detection wavelength was 490 nm for the DAABD derivative at 370 nm excitation and 550 nm for the DAASeBD derivative at 450 nm excitation.
  • the two derivatives gave each single peak in the chromatogram.
  • the retention times of the DAABD derivative of human lactalbumin and the DAASeBD derivative of human lactalbumin were as follows: 53.3 minutes and 50.0 minutes.
  • the present invention relates to a method for detecting, separating, and identifying a trace amount of an expressed protein and / or peptide and a system thereof.
  • an expressed protein expressed through a gene And / or peptides can be detected, separated and identified with high sensitivity by simple methods and means.
  • a small amount of expressed protein and / or peptide which could not be detected by the conventional method, can be detected in a short time and with high sensitivity.
  • the present invention is useful as providing proteome platform technology.
  • FIG. 1 shows an example of operation steps of the method of the present invention.
  • FIG. 2 shows the relationship between the type of surfactant and the degree of generation of a fluorescent derivative.
  • FIG. 3 shows respective fluorescence peaks of the fluorescent derivative protein / peptide tested by the method of the present invention.
  • FIG. 4 shows a fluorescence chromatogram (A) and a mask mouth matogram (B) of the enzyme hydrolyzate.
  • FIG. 5 shows a mass spectrum by MS / MS.
  • FIG. 6 shows a chromatogram by reverse phase chromatography (RPLC) in Example 3.
  • FIG. 7 shows the relationship between the reaction time of fluorescence derivatization and the fluorescence intensity (left figure: DAABD-C1, right figure: TAABD_C1).
  • FIG. 8 shows the relationship between the reaction time with TAABD_C1 and the fluorescence intensity.
  • FIG. 9 shows the relationship between the reaction time of cysteine fluorescence derivatization (pH 9.0) with a novel fluorescent reagent and the peak area.
  • FIG. 10 shows the relationship between the reaction time of fluorescent derivatization of cysteine with a new fluorescent reagent ( ⁇ ⁇ ⁇ 0.0) and the peak region.
  • Fig. 11 shows a chromatogram of a protein (about 10 / g) derivatized with DAABD_C1 from which a soluble fraction of C. elegans was obtained.
  • FIG. 12 shows a synthesis route of DAABSeD—X.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Peptides Or Proteins (AREA)

Description

明 細 書
発現微量タンパク質 Zペプチドの検出 ·分離 ·同定法
技術分野
[0001] 本発明は、微量の発現タンパク質及び Z又はペプチドの検出 '分離'同定方法に 関するものであり、更に詳しくは、生体において遺伝子の発現により産生される微量 の発現タンパク質及び/又はペプチドを簡便な方法で、高感度に検出し、同定する ことを可能とする新規な発現タンパク質及び Z又はペプチドの検出 '分離'同定方法 、及びその同定システムに関するものである。
本発明は、ポストゲノム時代において重要な役割を果たすことが期待される、発現 タンパク質及び Z又はペプチドを網羅的に解析するプロテオーム技術における新し い検出 '分離'同定手法を提供するものとして有用である。
背景技術
[0002] ポストゲノム時代において重要な課題は、遺伝子を介して発現する発現タンパク質
/ペプチドの微量検出とその分離 ·同定である。従来、この課題達成のために、 2次 元電氣泳動後のペプチドフィンガープリント法が汎用されてきた (非特許文献 1参照) 。しかし、この方法は、煩雑な操作のために該方法の再現性に難点があった。この難 点を克服する手法として、最近、多次元高速液体クロマトグラフィー(多次元 HPLC) による分離 ·同定法、或いは ICATによる手法が提案されている(非特許文献 2参照)
[0003] これらのうち、タンパク質 Zペプチドを、直接、多次元 HPLCで分離'同定する方法 は、全てのタンパク質 Zペプチドを同時に処理するために、多大な労力と時間を要 するという欠点がある。また、 ICATによる手法は、チオール含有タンパク質/ぺプチ ドのチォーノレ基を isotope—coded affinity tags (ICAT) reagentで標識した 後、それをビォチン結合カラムにて捕集し、これら全てを酵素水解し、得られたぺプ チドフラグメント混合物を HPLCで分離、質量分析計 (MS)にて質量分析し、タンパ ク質/ペプチドを網羅的に解析しょうとするものである。しかし、この方法は、チォー ル含有タンパク質/ペプチドの全てを酵素水解するため、大量に存在する目的以外 のタンパク質/ペプチドのフラグメントが、 目的とする微量タンパク質/ペプチドのフ ラグメントの検出及びその同定を妨害する、と言う欠点があり、当技術分野において は、更なる方法のブレークスルーが必要とされてレ、た。
[0004] 非特午文献 1 : Dunn MJ. Two— dimensional gel electropnoresis of protei ns, J Chromatogr 1987 ; 418 : 145-185
非特許文献 2 : Gygi S. P, Rist B, Gerber S. A, Turecek F, Gelb M . H, Aebersold R、 Quantitative analysis of complex protein mixtu res using isotope— coded affinitytags, Nature Biotechnology 1999; 17 : 994-999
発明の開示
発明が解決しょうとする課題
[0005] このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術に おける諸問題を抜本的に解決することを目標として鋭意研究を積み重ねた結果、従 来法と異なり、被験試料中の蛍光標識可能なタンパク質及び Z又はペプチドのみを 蛍光選択的に分離した後、これを酵素水解に付し、分画した蛍光画分を質量分析、 データベース照合、構造解析に供することにより、従来法では検出不可能であった 微量の発現タンパク質及び/又はペプチドを高感度に検出し、同定することができる ことを見出し、本発明を完成するに至った。
[0006] 本発明は、遺伝子を介して発現する微量の発現タンパク質及び/又はペプチドを 、簡便な測定手法で、高感度に検出 '分離'同定することを可能とする上記発現タン パク質及び/又はペプチドの微量検出 '分離'同定方法を提供することを目的とする ものである。
また、本発明は、上記微量検出 '分離'同定方法に使用する微量の発現タンパク質 及び/又はペプチドを、高感度で検出 '分離'同定するための発現タンパク質及び /又はペプチド同定システムを提供することを目的とするものである。
更に、本発明は、従来法では検出することができなかった、遺伝子を介して発現す る微量の発現タンパク質及び/又はペプチドを超高感度で検出 '分離'同定すること を可能とする新しい分析方法及び手段を提供することを目的とする。 課題を解決するための手段
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)被験試料中の発現微量タンパク質及び/又はペプチドを高感度に検出 '分離- 同定する方法であって、被験試料中のタンパク質及び Z又はペプチドを蛍光誘導体 とした後、これを蛍光検出により分離し、その蛍光画分を質量分析に付するか、又は その蛍光画分を酵素水解に付し、そのペプチド断片を分離し、その画分を質量分析 に付し、データベース照合、構造解析に供して発現タンパク質及び/又はペプチド の同定を行うことを特徴とする上記発現タンパク質及び/又はペプチドの検出'分離 •同定方法。
(2)被験試料中のタンパク質及び/又はペプチドを蛍光誘導体とした後、 HPLCに 付し、その蛍光分画を捕集した後、酵素水解に付し、その蛍光標識フラグメント及び 非蛍光標識フラグメントを質量分析又は MS/MS分析して得られた各フラグメントの イオン分子量情報をタンパク質及び/又はペプチドフラグメントデータベースと照合 し、構造解析する、前記(1)に記載の方法。
(3) (a)被験試料中のタンパク質及び/又はペプチドを蛍光試薬で標識する、(b)そ れを 1次元又は 2次元の HPLCZ蛍光検出により、その蛍光分画を捕集する、(c)上 記蛍光分画を酵素水解に付する、 (d)それを第二段階の HPLCZ蛍光検出により、 その蛍光クロマトグラムを得ると共に、その全ピークを質量分析に付し、データベース 照合、構造解析に供する、前記(1)に記載の方法。
(4)タンパク質及び Z又はペプチド試料の水溶液に、官能基特異的蛍光試薬を加え 、場合により、界面活性剤及び/又はタンパク変性剤をカ卩え、タンパク質及び/又は ペプチドを蛍光標識する、前記(1)から(3)のレ、ずれかに記載の方法。
(5)蛍光標識したタンパク質及び Z又はペプチド試料を蛍光検出器付きイオン交換 カラム HPLC、逆相分配 HPLC、ゲル濾過 HPLC、又は電気泳動に代表される分離 手段に付し、蛍光をモニターしながらそのピーク分画を捕集する、前記(1)から(3)の いずれかに記載の方法。
(6)蛍光分画を、各種べプチダーゼ、トリプシン、キモトリブシンに代表されるタンパク 質分解酵素を用いて酵素水解する、前記(1)から(3)のいずれかに記載の方法。 (7)酵素水解物を蛍光検出器付き逆相 HPLCに付し、蛍光ピークを検出すると共に 、蛍光標識フラグメント及び蛍光非標識フラグメントの質量分析又は MS/MS分析 を行う、前記(1)から(3)のレ、ずれかに記載の方法。
(8)質量分析又は MSZMS分析に付して得られた各フラグメントのイオン分子量情 報を、コンピューターによるタンパク質及び Z又はペプチドフラグメントデータベース と照合し、構造解析して、酵素水解以前のタンパク質及び/又はペプチドの同定を 行う、請求項 1から 3のいずれかに記載の方法。
(9)被験試料が、生体試料から採取したタンパク質及び Z又はペプチド試料である、 前記(1)から(3)のいずれかに記載の方法。
(10)タンパク質及び Z又はペプチドフラグメント情報、及び蛍光試薬で標識したアミ ノ酸の情報を含んだデータベースを用いてデータベース照合する、前記(1)から(3) のレ、ずれかに記載の方法。
(11)前記(1)から(10)のいずれかに記載の方法に使用する発現微量タンパク質及 び/又はペプチド検出 '分離'同定システムであって、被験試料のタンパク質及び/ 又はペプチドを蛍光試薬で標識するための第一反応器、蛍光試薬で標識した蛍光 誘導体を蛍光分画するための 1次元又は 2次元の蛍光検出器付き HPLC、蛍光分 画を酵素水解するための第二反応器、酵素水解物の蛍光標識フラグメントを蛍光検 出するための第二段階の蛍光検出器付き HPLC、及び蛍光試薬で標識したアミノ酸 の情報を含んだデータベースを搭載した構造解析装置の 1種又は 2種以上を構成要 素として含むことを特徴とする上記検出'分離 ·同定システム。
(12)上記第一反応器、 1次元又は 2次元の蛍光検出器付き HPLC、第二反応器、 第二段階の蛍光検出器付き HPLCを直列に配置してなる、前記(11)に記載のシス テム。
(13)被験試料中のタンパク質及び/又はペプチドを、蛍光誘導体化試薬として、下 記の化 5の一般式(1) [0008] [化 5]
Figure imgf000007_0001
S02R
[0009] 〔式中、 Xは、ハロゲン、 Yは、〇、 Se又は S、 Rは、— NH、— NHR' (伹、 はァノレ
2
キル置換 Nアルキル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキル)、 又は—N ' ' ' ' (但し、 ' はアルキル、 ' ' はアルキル置換 Nアル キル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキルを示す。〕で表わさ れる化合物、又はその同位体化合物又は下記の化 2の一般式(2)
[0010] [化 6]
Figure imgf000007_0002
[0011] (式中、 Xは、ハロゲン、 Yは、 Se又は Sを示す。)で表わされる化合物又はその同位 体化合物、を用いて、蛍誘導体とする、請求項 1に記載の方法。
(14)前記(1)に記載の方法でタンパク質及び/又はペプチドを蛍光誘導体化する ために使用する蛍光誘導体化試薬であって、下記の化 7の一般式(1) [0012] [化 7]
Figure imgf000008_0001
S02R
[0013] 〔式中、 Xは、ハロゲン、 Yは、〇、 Se又は S、 Rは、— NH、— NHR' (伹、 はァノレ
2
キル置換 Nアルキル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキル)、 又は—N ' ' ' ' (但し、 ' はアルキル、 ' ' はアルキル置換 Nアル キル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキルを示す。〕で表わさ れる化合物、又はその同位体化合物又は下記の化 2の一般式(2)
[0014] [化 8]
Figure imgf000008_0002
[0015] (式中、 Xは、ハロゲン、 Yは、 Se又は Sを示す。)で表わされる化合物又はその同位 体化合物、を用いて、蛍誘導体とする、請求項 1に記載の方法。
(15)被検試料のタンパク質及び/又はペプチドを蛍光誘導体化後、 HPLCで分離 •検出し、分画後、酵素水解し、この水解物を直接質量分析で配列分析とタンパク質 の同定を行なうことを特徴とするタンパク質及び/又はペプチドの検出'分離 '同定 方法。
(16)被検試料として、異なる試料 A中及び試料 B中のタンパク質及び/又はぺプチ ドを、それぞれ蛍光波長の異なる少なくとも 2つの蛍光誘導体化試薬でそれぞれ誘 導体化後、蛍光検出器付き HPLCで分離'検出し、分画後、各蛍光ピークをそのまま 又は合体して定量に供する、及び/又は各蛍光ピークを合体して酵素水解に供し、 この水解物を定量に供する、又はこの水解物を HPLC-質量分析に供し、同定を行 なう、ことを特徴とするタンパク質及び/又はペプチドの検出'分離 ·同定方法。
(17)各蛍光ピークをそのまま又は合体して HPLCによる定量に供し、試料 A中及び 試料 B中のタンパク質及び Z又はペプチドの各誘導体の比率を算出する前記(16) に記載の方法。
(18)水解物を HPLCによる定量に供し、試料 A中及び試料 B中のタンパク質及び/ 又はペプチドの各誘導体の比率を算出する前記(16)に記載の方法。
(19)試料 A中及び試料 B中のタンパク質及び/又はペプチドの第 1の蛍光誘導体 化試薬との反応物及び第 2の蛍光誘導体化試薬との反応物を合体し、 2つの励起- 蛍光検出の可能な HPLCに供し、分画後、各蛍光ピークを合体して酵素水解に供し 、この水解物を HPLC-質量分析に供し、同定を行う前記(16)に記載の方法。
(20)試料 A、 B力 2種類の細胞又は組織又は体液試料である前記(16)に記載の 方法。
(21)蛍光誘導体化試薬として、 DAABD— X、 DAASeBD— X、及び DAAThBD— X (但し、 Xは C1又は F)のうちの励起'蛍光波長の異なる少なくとも 2つの蛍光誘導体 化試薬でタンパク質及び/又はペプチドを誘導体化する前記(16)に記載の方法。
(22)蛍光波長の異なる蛍光誘導体化試薬として、 DAABD— X、 DAASeBD— X、 又は DAAThBD— X (但し、 Xは C1又は F)と、それらの各同位体を組み合わせて使 用する前記(21)に記載の方法。
(23)酵素水解した試料を直接質量分析に付しペプチドマップを得ると同時に、蛍光 試薬の有する骨格並びに電荷を活用して、蛍光標識化ペプチド断片を質量分析測 定部で抽出してシスティン含有ペプチド部分の構造を取得し、これらを基にタンパク 質及び/又はペプチドの同定を行なう前記(16)に記載の方法。
(24)蛍光誘導体化試薬で誘導体化したタンパク質及び Z又はペプチドを分解する ことなく分画することが可能な、少なくともミクロカラム一 HPLC、ミクロ蛍光検出器、ミク zコレクター、及びミクロ自動注入装置を具備したことを特徴とする自動分 (25)少なくとも、ミクロカラム一 HPLC、ミクロ蛍光検出器、ミクロフラクションコレクター 、酵素反応装置、及びミクロ自動注入装置を備え、任意に、質量分析 (MS)システム を具備したことを特徴とする微量タンパク質の高性能'簡易定量'同定解析装置。
[0016] 次に、本発明について更に詳細に説明する。
本発明は、上記従来法の難点を克服するためになされたものであり、 1)微量の発 現タンパク質 Zペプチドを蛍光試薬で標識し、 2)それを HPLCZ蛍光検出にて第一 段の分離'蛍光検出を行い、 3)その蛍光分画 (コントロール試料と比べて、被験試料 に特異的に増減する蛍光画分)のみを捕集後、酵素水解し、それを第二段の HPLC /蛍光検出にて分離し、蛍光ピークの確認を行った後、 HPLC/MSに付し、蛍光 標識タンパク質 Zペプチドフラグメントの同定を行い、当該微量タンパク質 Zぺプチ ドの特定を行う方法に関するものである。尚、タンパク質/ペプチド試料が純度の高 い場合には、第一段の HPLC/蛍光検出による分離を省くことができる。本発明の 方法は、従来法と異なり、蛍光標識可能なタンパク質/ペプチドのみを特異的に抽 出し、検出 ·同定することができるという特徴を有し、微量の発現タンパク質/ぺプチ ドを特定するために尤も相応しレ、方法である。
[0017] 本発明では、被験試料として、生体力 採取したあらゆる種類のタンパク質及び/ 又はペプチドを含む試料が対象とされる。本発明の方法では、被験試料中の微量の 発現タンパク質/ペプチドを蛍光試薬で標識し、蛍光誘導体化するが、この場合、タ ンパク質/ペプチド水溶液に、官能基特異的蛍光試薬を加え、場合により、界面活 性剤及び/又はタンパク変性剤をカ卩え、発現タンパク質/ペプチドを定量的に誘導 体化することが重要である。即ち、本発明では、タンパク質/ペプチド試料の水溶液 に、界面活性剤と場合によっては還元剤を添加し、これに官能基特異的蛍光試薬を 加え、必要により、加温することにより、タンパク質及び Z又はペプチドを蛍光標識す る。本発明では、上記界面活性剤として、非イオン性、陰イオン性、陽イオン性及び 両イオン性界面活性剤が用いられる。また、本発明では、上記還元剤として、好適に は、 Tris (2— carboxyethyl) phosphine^ tributylphosphine力 S用レヽられる力 これ らに制限されるものではなぐ同効のものであれば同様に使用することができる。 [0018] 本発明において、上記官能基特異的蛍光試薬として、(例えば、 4一 Fluoro_7— ni tro— 2, 1 , 3— benzoxadiazole (NBD— F) 5— (N, N— Dimethylammo naphth alene-l-sulfonyl chloride (DNS-CL)、 Orthophthaldehyde (OPA)、 Flu orescamine, 9— Fluorenylmethyl chloroformate (FMOC)等のアミノ基特異 的 光試薬、 Ammonium 7— fluoro— 2, 1 , 3— benzoxadiazole— 4— sulfonate ( SBD— F)、 4— (Aminosulfonyl)— 7— fluoro— 2, 1, 3— benzoxadiazole (ABD—F )、 4— (Acetylaminosulf onyl)—7— fluoro— 2, 1, 3— benzoxadiazole (AcABD— F)、 4— Fluoro— 7— trichloroacetylaminosulfonyl— 2, 1, 3— benzoxadiazole (T cAcABD-F)、 monobromobimane等のチオール基特異的蛍光試薬、 4_Nitro_ 7-N-piperazino-2, 1, 3_benzoxadiazole (NBD—PZ)、 4_N, N-Dimethyla minosulfonyl— 7— N— piperazino— 2, 1, 3_benzoxadiazole (DBD—PZ)と縮合 剤との組み合わせによるカルボキシル基特異的蛍光試薬、又は、 4_ (N_Chlorofor my lme thy 1— N— me tny 1 ) amino— 7— nitr o— 2 , 1, 3— benzoxadiazole (NBD— C OCL)等の水酸基用蛍光試薬)が例示されるが、これらに制限されない。
[0019] 本発明においては、必要により、加温する(例えば、 30-100°C、望ましくは 40-70 °Cで 10-300分間、望ましくは 60-180分間)ことにより、タンパク質/ペプチドを蛍 光標識する。その後、反応液のほぼ全量を蛍光検出器付きイオン交換カラム HPLC 、又は逆相分配 HPLC、又はゲル濾過 HPLCに付し、蛍光をモニターしながらピー ク分画を分取する。この場合、蛍光検出は、標識蛍光体の励起'蛍光波長に相当す る波長に設定して行う。例えば、 NBD_F、又は SBD— Fで標識した場合には、励起 波長 480nm或レヽ ίま 380nm、励起波長 520nm又 ίま 505nm【こ設定する。イオン交換 HPLCの場合には、塩、例えば、食塩、硫酸ナトリウム、過塩素酸カリウム、酢酸アン モニゥムなど、望ましくは酢酸アンモニゥムのような揮発性の塩を段階的に増量し、そ れぞれの画分を得る。この画分そのもの又はこの画分を濃縮 ·乾固した試料を、酵素 水解に付す。酵素としては、各種ぺプチダーゼ、トリプシン、キモトリブシンなど、適宜 のタンパク質分解酵素が用いられる。この際、酵素カラムを接続してオンラインで酵 素水解を行うこともできる。
[0020] この溶液の一部を蛍光検出器付き逆相分配 HPLCに付し、蛍光標識体の溶出位 置を確認する。次いで、この逆相 HPLCカラムの出口を質量分析計(どの様な質量 分析計でも対応可能である力 望ましくはエレクトロスプレー型質量分析計を用いる) に接続し、酵素水解物の蛍光標識フラグメント及び蛍光非標識フラグメントの質量分 析 (蛍光標識フラグメントは一回の質量分析、蛍光非標識フラグメントは親イオンを更 に質量分析する)又は質量分析 Z質量分析 (MSZMS)を行う。この際、蛍光検出 器と質量分析計を直列に接続することも可能である。このようにして得られた各フラグ メントのイオン分子量情報を、コンピューターに接続したタンパク質 Zペプチドフラグ メントデータベースと照合し、構造解析することにより、酵素水解以前のタンパク質/ ペプチドの同定を行う。この場合、本発明では、タンパク質及び Z又はペプチドフラ グメント情報、及び蛍光試薬で標識したアミノ酸の情報を含んだデータベースを用い てデータベース照合を行う。
[0021] 本発明では、発現タンパク質及び/又はペプチドを含む被験試料中のタンパク質 及び/又はペプチドを蛍光誘導体化し、この蛍光誘導体を HPLC/蛍光検出で分 離し、蛍光ピークの強さを比較して標的発現タンパク質及び/又はペプチドの蛍光 誘導体を分離し、得られた標的発現タンパク質及び/又はペプチドのピーク画分を 酵素分解し、次いで、質量分析又は MS/MS分析、データベース照合、構造解析 により、上記タンパク質及び/又はペプチドを同定する。タンパク質及び/又はぺプ チドのァミノ基、チオール基、水酸基及びカルボキシル基などの機能性部分を誘導 化するための多くの蛍光試薬が存在するので、本発明では、その目的に応じて、適 当な試薬を任意に選択して使用することができる。後記する実施例に示されるように 、例えば、 Cys-含有タンパク質を誘導化するためには、チオール基に特異的な試薬 である、 Ammonium 7— fluoro— 2, 1, 3— benzoxadizole— 4— sulfonate (SBD— F)を使用すること力 Sできる。図 1に、本発明の方法のプロセスの一例を模式的に示す 。後記する実施例に示されるように、実際、このようにして、ラットに 10mgのデキサメ タゾンを投与して 2日後のランゲルハンス島における Pancreatic polypeptide,プ 口インシュリン 2、 78KD Glucose-regulated protein,プロテイン結合フォスフ ァチジルァミン及びチォレドキシンが強く誘導されたことが示された。
[0022] 本発明の方法で重要な点は、各組織におけるタンパク質の量は、 HPLC/蛍光検 出で分離する前に、例えば、正常組織と非正常組織との組織間で定量、比較される べきであることから、標的発現タンパク質を定量的に誘導体化することである。そのた めに、本発明では、適宜の界面活性剤が用いられる力 例えば、レ、くつかの界面活 性剤について BSAにより検討したところ、 CHAPSが η—Dodecyl— /3— D_maltopy ranosideと比べて高い強度を示した(図 2参照)。本発明では、 pH、温度、反応時間 及び誘導体化反応の添加剤等について、標的発現タンパク質及び/又はペプチド に応じて、最適条件を設定することで定量的な蛍光誘導体化が可能である。本発明 では、これらの条件は、発現タンパク質/ペプチドの種類、分析目的等に応じて、適 宜設定することができる。本発明の方法により、試験タンパク質/ペプチドのクロマト グラムは単一の蛍光ピークを示した(図 3参照)。本発明の方法において、タンパク質 及び/又はペプチドの検出限界は、 0. 2-6. Ofmolであり、最適条件下での 10—10 OOfmolの範囲で良好な直線(γ >0. 9994)の測定曲線が得られ (表 1参照)、検出 性能は、従来法に比べて、顕著であることが分かる。表 1に、蛍光検出/ HPLCによ る各種タンパク質及び/又はペプチドの検出限界を示した。
[0023] [表 1]
Peptides and Molecular weight Number of Detection limit Calibration curve proteins (Da) cystein residues (fmol) (r) vasopressin 1084 2 5 0.9998 calcitonin 3418 2 6 0.9994 somatostatin 1638 2 1.8 0.9999 oxytocin 1007 2 1.3 0.9997 amylin 3920 2 1.2 0.9997
16014 2 3 0.9999 alphal-acid glycoprotein 21547 4 1.3 0.9995
insulin 5808 6 0.7 0.9999 alpha-lactalbumin 16228 8 0.5 0.9999
albumin 66385 35 0.2 0.9999
[0024] 更に、本発明では、上記方法に使用する微量の発現タンパク質及び/又はぺプチ ド検出 '分離'同定システムとして、被験試料のタンパク質及び/又はペプチドを蛍 光試薬で標識するための第一反応器、蛍光試薬で標識した蛍光誘導体を蛍光分画 するための 1次元又は 2次元の蛍光検出器付き HPLC、蛍光分画を酵素水解するた めの第二反応器、酵素水解物の蛍光標識フラグメントを蛍光検出するための第二段 階の蛍光検出器付き HPLC、及び蛍光試薬で標識したアミノ酸の情報を含んだデー タベースを搭載した構造解析装置の 1種又は 2種以上を構成要素として含む上記検 出 ·分離 ·同定システムが用いられる。この場合、上記第一反応器、 2次元の蛍光検 出器付き HPLC、第二反応器、第二段階の蛍光検出器付き HPLCを直列に配置す ること力 Sできる。これらの装置は、その使用目的に応じて、適宜の容量、形態に任意 に設計することができる。
[0025] 本発明は、被験試料中のタンパク質及び Z又はペプチドを、蛍光誘導体化試薬と して、前記一般式(1)〔式中、 Xは、ハロゲン、 Yは、 0、 Se又は S、 Rは、 _NH、又は
2
-NHR (但し、 は N置換アルキル)を示す。〕で表わされる化合物、又は前記一 般式(2) (式中、 Xは、ハロゲン、 Yは、 Se又は Sを示す。)で表わされる化合物、を用 いて、蛍光誘導体とすることができる。更に、本発明は、これらの化合物のいずれか 1 種を有効成分とする新規蛍光誘導体化試薬を提供することができる。
[0026] これらの化合物の具体例としては、好適には、例えば、以下の例があげられる力 こ れらに制限されるものではなぐこれらと同等ないし類似の化合物であれば同様に使 用することができる。本発明の化合物は、後記する実施例に具体的に記載した方法 と同様にして容易に合成することができる。
( 1 ) DAABD— C1 [4— (dimethylammoethyl ammosulf onyl)— 7— chloro— 2, 丄 , 3— benzoxadiazole]
(2) TAABD—し l (7_cnloro_2, 1, 3_benzoxadiazole_4_sulfony丄 aminoethy丄 rimethylammonium chloriae )
(3) DAABD— F [4— (dimethylaminoethyl aminosulfonyl)— 7— fluoro— 2, 1, 3— benzoxadiazolej
(4) TAABD— F (7— fluoro— 2, 1, 3— benzoxadiazole— 4— sulfonylaminoethyl trimethylammonium chloride)
(5) DAABSeD— CI [4— (dimethylaminoethyl aminosulfonyl)— 7— chloro— 2 , 1, 3— benzoselenadiazole]
(6) TAABSeD— CU —chloro— 2, 1, 3— benzoselenadiazole— 4— sulfonylamin o ethyl trimethylammonium chloride) (7) DAABSeD— F [4— (dimethylaminoethyl aminosulf onyl)— 7— fluoro— 2, 1 , 3— benzoselenadiazolej
(8) TAAB S eD— F ( 7— fluoro— 2 , 1 , 3— benzoselenadiazole— 4— sulfonylamino ethyl trimethylammonium chloride)
(9) DAABThD— CI [4— (dimethylaminoethyl aminosulf onyl)— 7— chloro— 2 , 1 , 3— benzothiadiazolej
(10) TAABThD-Cl ( 7-chloro-2 , 1 , 3— benzothiadiazole— 4— sulfonylamin o ethyl trimethylammonium chloride)
(11) DAABThD— F [4_ (dimethylaminoethyl aminosulf onyl)—7— fluoro— 2 , 1 , 3— benzothiadiazolej
( 12) TAABThD— F (7— fluoro— 2, 1, 3— benzothiadiazole— 4— sulfonylamino ethyl trimethylammonium chloride)
[0027] 本発明では、蛍光誘導体化試薬として、例えば、 SBD— X、 SBSeD— X、 SBThD— X、 DAABD-X, TAABD-X, DAABSeD_X、 TAABSeD_X、 DAABThD—X 、 TAABThD— X (但し、 Xは Cl、又は F)、及びそれらの各同位体が提供される。これ らの化合物は、いずれも、後記する実施例に示した化合物の場合と同様にして合成 すること力 Sできる。また、本発明では、前記一般式(1)で表わされる化合物の側鎖の アルキル基の鎖長を任意に変更することが可能である。本発明では、これらの化合 物の、蛍光波長と HPLC分離における保持時間の相違を利用して、これらの化合物 を 2つ以上組み合わせて使用することができる。 HPLCからの溶出は、例えば、 DA ABSeD_Fく DAABD—C1又は DAPABSeD_F (側鎖のアルキル:プロピル) < D APABD—C1の順に遅くなる。また、上記化合物の各同位体を使用することにより、更 なる微量検出が可能となる。
[0028] 本発明では、蛍光波長の異なる少なくとも 2つの蛍光誘導体化試薬を利用すること により、例えば、同一起源の異なる歴史を有する二つのタンパク質試料の比較を簡 便、かつ同時に行なうことができる。例えば、一方が病態患者試料で一方が健常者 力 の試料、あるいは一つの細胞又は組織試料で、一方がある薬剤で処理された試 料で、他方が未処理の試料の比較を同一のクロマトグラムに基づいて同時に行なうこ と、それにより、各蛍光誘導体化試薬で誘導体化されたタンパク質及び/又はぺプ チドの各誘導体を簡便、かつ正確に定量すること、が可能であり、 2つの試料中のタ ンパク質及び/又はペプチドのプロファイルを同時的に測定し、比較することが実現 できる。
[0029] 本発明では、蛍光誘導体化試薬で誘導体化したタンパク質及び Z又はペプチドを 分解することなく分画することが可能な、少なくともミクロカラム一 HPLC、ミクロ蛍光検 出器、ミクロフラクションコレクター、及びミクロ自動注入装置を具備した自動分画装 置が提供される。また、本発明では、少なくとも、ミクロカラム- HPLC、ミクロ蛍光検出 器、ミクロフラクションコレクター、酵素反応装置、及びミクロ自動注入装置を備え、任 意に、質量分析 (MS)システムを具備した微量タンパク質及び Z又はペプチドの高 性能 ·簡易定量 ·同定装置が提供される。
[0030] 本発明は、例えば、微量リン酸化タンパク質や糖タンパク質を蛍光誘導体化試薬で 蛍光標識後、ミクロカラム一 HPLC-蛍光検出器により修飾リン酸化部分並びに糖結 合部分を保持したままのタンパク質として高性能分離 '検出し、ミクロフラクションコレ クタ一にて分取する。これに酵素を添加し、標識化タンパク質を酵素水解し、次いで 、この水解試料を直接質量分析に付す。得られたペプチドマップと蛍光標識化ぺプ チドマップ情報を基に、データベース検索ソフトを利用して、例えば、翻訳後修飾微 量タンパク質の修飾部分を含む同定を行なう。本発明の手法は、蛍光検出法とミクロ HPLCとを組み合わせた方法であるため、例えば、超微量タンパク質を同定できるこ と、翻訳後修飾タンパク質をそのまま分解することなく抽出して解析できること、その ため、リン酸化部位や糖結合部位の情報を確実に得られるば力りでなぐ当該タンパ ク質を確実に同定できること、という従来の解析手法にはない利点を有している。本 発明の解析手法は、生命科学、病態化学分野で広く使われることが期待され、疾患 診断、治療、人類の健康維持へ貢献することができる。
発明の効果
[0031] 本発明により、 1)遺伝子を介して発現する発現タンパク質及び/又はペプチドを簡 便な方法及び手段で、高感度に検出 '分離'同定することができる、 2)本発明の方法 により、従来法では検出できなかった微量の発現タンパク質及び/又はペプチドを 短時間で、感度良く検出 '分離'同定することができる、 3)また、上記検出 '分離'同 定方法に使用する微量の発現タンパク質及び/又はペプチドの微量検出 ·分離 ·同 定システムを提供することができる、 4)本発明は、プロテオームのプラットフォーム技 術を提供するものとして有用である、という効果が奏される。
発明を実施するための最良の形態
[0032] 次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例 によって何ら限定されるものではない。
実施例 1
[0033] ラット膝ランゲルノ、ンス島(ラ島)中チオール含有タンパク質/ペプチドの分離 ·同 定(1)ラ島中チオール含有タンパク質/ペプチドの蛍光誘導体化
ラ島に 0. 1Mホウ酸緩衝液(pH9. 0)に溶解した 6M塩酸グァニジン溶液 50 μ 1を 加えて可溶化した。これに 6Μ塩酸グァニジン溶液に溶解した 17. 5mMTCEP、 17 . 5mMSBD— F、 lOmMEDTA及び 50mMCHAPSをそれぞれ 50 μ 1ずつ加え、 混合した。この溶液を 40°Cにて 3時間反応させることにより蛍光誘導体化を行った。
(2)イオン交換 HPLCによる 1次分離
上記の反応溶液をイオン交換カラムに付し、 NaClのグラジェント(0、 0. 04、 0. 08 、 0. 12及び 0. 3M)により蛍光タンパク質/ペプチドを溶出させ、 5つのフラクション に分離した。なお、蛍光タンパク質 Zペプチドの検出は SBD骨格の蛍光により行つ た。 HPLC条件を以下に示す。
[0034] (HPLC条件)
カラム: TSKgel DEAE-5PW 7. 5 X 75mm (東ソ一(株))
ガードカラム: C8—300—S 54. 0 X 10mm (YMC (株))
移動相:段階溶離〔0—5分: C100%、 5-15分: A100%、 15—25分: A87%B13% 、 25-35分 A73%B27%、 35—45分: A60%B40%、 45—55分: B100%〕
A: 5mMトリス塩酸緩衝液(ρΗ8· 0) /ァセトニトリル(50: 50)
Β: 5mMトリス塩酸緩衝液 (pH8. 0) /ァセトニトリル(50: 50)
(0. 3MNaCl含有)
C: 5mMトリス塩酸緩衝液 (pH8. 0) カラム温度:室温 (約 25°C) )
流速: 0. 5ml/ min
検出: Ex380應、 Em505nm
注入量: 200
[0035] (3)逆相 HPLCによる 2次分離
上記の各画分を濃縮し、ァセトニトリルを蒸発させた後、逆相カラムに付し、ァセトニ トリルの勾配溶離によりタンパク質 ζペプチドをカラムから溶出させた。なお、タンパク 質/ペプチドの検出は SBD骨格の蛍光によりモニターした。 HPLC条件を以下に示 す。
[0036] (HPLC条件)
カラム:カプセルパック C8 SG300 2. O X 100mm ( (株)資生堂)
移動相:勾配溶離(0→60分: B40%→100%)
A: 0. 05%トリフルォロ酢酸
B: 0. 05%トリフルォロ酢酸/ァセトニトリル(40: 60)
カラム温度:室温 (約 25°C)
流速: 0. 2ml/min
検出: Ex380應、 Em505nm
注入量: 50 /i l
[0037] (4)酵素処理
採取した HPLCの各ピーク画分をそれぞれのチューブに 0. 5M炭酸水素アンモニ ゥム溶液 5 μ 1をカ卩えてトリフルォロ酢酸を中和後、濃縮してァセトニトリルを蒸発させ た。残渣(約 80 μ 1)に 20 μ g/mlトリプシン(プロメガ)及び 10mM塩化カルシウムを それぞれ 10 μ ΐずつ添加した。これを 37°Cで 2時間インキュベートし、 HPLC-MS/
MS測定用の試料とした。
[0038] (5) MSZMS測定によるタンパク質 Zペプチドの同定
上記の試料を逆相カラム HPLCに付し、エレクトロスプレー法による MS/MS測定 を行った。 HPLC条件を以下に示す。なお、タンパク質 Zペプチドの同定はデータ ベースに NCBI、サーチエンジンに MASCOTを使用した。 [0039] (HPLC条件)
カラム: Cadenza TC— C18 2. 0 X 100mm (Imtact (株))
移動相:勾配溶離(0→30分: B20%→100%)
A: 0. 1%ギ酸
B : 0. 1 %ギ酸/ァセトニトリル(50 : 50)
カラム温度:室温 (約 25°C)
流速: 0. 2ml/ min
測定モード: positive
測定範囲: 500 - 3000mZz
注入量: 50 μ 1
[0040] 上記の方法により、約 130のタンパク質 Ζペプチドのピークが分離できた。
そのうち、約 50のタンパク質 Ζペプチドが同定できた(表 2、図 6参照)。
[0041] [表 2]
Peak no. Ratio Protein Mw Database
(Dex Control) accession no.
12 0.5 protein P31 13284 CSRT31
15 0.4 dnaK-type molecular chaperone hsp72-psl 70884 S31716
24 2.1 pancreatic polypeptide 10968 NP— 036758
29 0.5 insulin 2 5797 P一 062003
30 6.0 jxOinsulin 2 12331 NP— 062003
36 1.9 78 KD glucose-regulated protein 72302 P06761
61 1.8 phosphati^lethanolamine binding protein 20788 NP— 058932
121 1.8 thioredoxin 12854 NP 446252 実施例 2
[0042] SBD— Fで誘導体化した BSAを、図 1に示されるプロセスにより、トリプシンで酵素 水解し、得られたペプチド混合物を逆相液体クロマトグラフィー (RPLC)で分離し、 蛍光検出器で検出した。次いで、各ペプチドをイオンスプレーイオントラップ質量分 析計による MS/MS分析に供した。原理的には、トリプシン分解により、 BSAは、 4 個のアミノ酸残基以上の 25のシスティン含有ペプチド及び 35のシスティン非含有べ プチドが生成されるが、本実施例では、 27以上の蛍光ペプチドが蛍光検出され、定 量的に誘導体化が行われた(図 4、 A)。 [0043] また、 11のシスティン含有ペプチド及び 17の非システィン含有ペプチドがマスク口 マトグラフィ一で検出された(図 4、 B)。 図 5に、 (M + 2H) 2+プレカーサ一、 m/z = 873. 4 (図 4で矢印で示した)から得た MS/MSスペクトルを示す。
全てのペプチドフラグメントの CIDスぺクトノレにより、確率的プロテイン同定法に基 づく MASCOTによるデータベース照合を行レ、、予測通り、完全に BSAとしてタンパ ク質を同定した (スコア: 39)。
実施例 3
[0044] デキサメタゾン (Dex)投与及び非投与のラット膝臓にっレ、て試験した。
Dexは、肝臓のグルコース産生の増加とインシュリン耐性の誘導により主なヒト糖尿 病であるタイプ 2の糖尿病を誘発する。実際に、 Dex処理の 24時間後に、血中ダル コースレベルは 209· 8mg/dLに達し、処理前の値の 118· 3mg/dLより著しく高 い(pく 0. 05)。本実施例では、 2日間 Dexで処理又は未処理のラット膝臓からラン ゲルノヽンス島(60島)を採取し、 SBD-Fで誘導体化した。本発明の方法を生物試料 に適用するための重要な態様は、タンパク質混合物から HPLCで発現タンパク質を 分離することである。本実施例では、蛍光タンパク質は、まず、 SBD— Fにより生成し た多くのマイナス電荷と酸性アミノ酸部分に基づいてイオン交換クロマトグラフィー(I EC)で分離された。
[0045] IECは、塩ィ匕ナトリウムの段 P皆溶離(0、 0. 04、 0. 08、 0. 12、及び 0. 3M NaCl) により行レ、、蛍光タンパク質混合物を 5つの画分として得た。次いで、各画分は、更に 、それらの疎水性に基づいて、逆相液体クロマトグラフィー(RPLC)により分離された 。この実験でのピークの容量 (n = L/ (4 σ )、但し、 Lは分析のトータル時間及び 4 σ はピーク幅、としての HPLCの性能の理論値)は、各 RPLCフラクションにっき 40と計 算され、 IEC— RPLC法の 5つのステップのピーク容量は、約 200であった。本実施例 では、各 RPLCサイクルで約 3—50ピーク、合計で 129ピークであった(図 6)。
[0046] 微量タンパク質を検出するために、 IECの段階溶離ステップを増やしてピーク容量 を増加させた。未処理及び Dex処理ラットから得られた RPLCクロマトグラムの全ての 蛍光ピークを比較した。その結果、 5本の蛍光ピークが 1. 8以上増加し、 3本の蛍光 ピークが Dex処理で約 1 · 5倍減少したことが見出された(表 2)。表 2に、 Dex投与 2 日後の発現タンパク質の変化を示した。これらのタンパク質 (即ち、標的発現タンパク 質)は、広い小孔を有する RPLC (30nm小孔径)で分離され、トリプシンで分解し、各 ペプチド混合物とした。各ペプチド混合物は、通常の小孔を有する RPLC (10nm小 孔径)に供し、 MSZMS分析した。データベース照合により、 Dex処理後 2日で増加 したピークは、各々、瞎臓ポリペプチド、プロインシュリン 2、 78KDグルコース一調節 タンパク質、ホスファチジルエタノールァミン結合タンパク質、及びチォレドキシンであ り、減少したピークは、各々、プロテイン 31、 dnak_タイプ分子シャペロン hsp72—psl 、及びインシュリンであった。
実施例 4
[0047] 本実施例では、以下の化 9の(1)及び(2)の反応式により、新規蛍光誘導体化試 薬の合成を行った。
[0048] [化 9]
Figure imgf000021_0001
DAABD-Cl
[0049] ( 1 ) DAAB—Clの合成
4-chlorosulfonyl-7-chloro-2, 1, 3— benzoxadiazole (CBD— CI) (126. 53 mg)を CH CNに溶解し、 N, N— dimethylethylenediamineを滴下し、 triethyla
3
mineをカ卩えた。室温で約 10分間攪拌後、反応液を減圧乾固した後、シリカゲルカラ ム (し H CI ) 1:、ls"製し、 4— (dimethvlammoethv lammosulionyl)— 7— chloro—
2 2
2, 1 , 3-benzoxadiazole (DAABD-Cl) (20. 2mg, 87. 4%)を得た。
得られた化合物の確認データを以下に示す。
'H-NMR CCD OD) : 7. 94 (1H, d, J = 7. 5) , 7. 65 (1H, d, J = 7. 5) , 3. 06 (
3
2H, t, J = 6. 7) , 2. 30 (2H, t, J = 6. 7) , 2. 02 (6H, s)。 ESト MS : m/z305
(M + H) + [0050] (2) TAABD— CIの合成
4— chlorosulfonyl— 7— chloro— 2, 1 , 3— benzoxadiazole (CBD— CI) ( 126. 53 mg)を CH CNに溶角早し、 H Oに溶かした aminoethyl trimethylammonium c
3 2
hlorideを滴下し、 triethylamineを加えた。室温で約 20分間攪拌後、反応液を減 圧乾固した後、 0. 1 %トリフルォロ酢酸 (TFA)に溶かし、 ODSカラムを用いて分取し 、画分には、 SBD—C1 (化 10)が不純物として入っていたため、陰イオン交換カラムを 用いて分取し、減圧乾固して、 7_chloro_2, 1, 3_benzoxadiazole_4_sulfonea minoetnyl trimethylammonium chloride (TAABD—Cl)、丄 27. 2mg, 58. 8 %)を得た。
得られた化合物の確認データを以下に示す。
'H-NMR CCD OD) : 8. 01 ( 1H, d, J = 7. 3) , 7. 69 ( 1H, d, J = 7. 3) , 3. 46
3
-3. 48 (4H, m), 3. 12 (9H, s)。 ESト MS : m/z319 (M) +
[0051] [化 10]
Figure imgf000022_0001
[0052] 本実施例では、新規蛍光誘導体化試薬の反応性にっレ、て検討した。
DAABD-C1, TAABDD—C1の SBD—Fとの比較
Ι Ο β M還元型グルタチオン、システィン、ホモシスティン混合液 100 β Lと DAAB D— C1又は TAABD— C1 100 μ Lを混合し、 pH9、 40°C、 10 120分間反応させた 。尚、各試薬は 5mM EDTAを含む 0. 10M ホウ酸緩衝液(pH 9)に溶解した。 0 . 1 %ぎ酸で反応停止後、生成物を HPLCを用いて測定した。
[0053] 図 7に、蛍光誘導体化反応時間と蛍光強度との関係(左図: DAABD_C1、右図: T AABD-C1)を示す。 SBD-F (化 11)の場合、 40°Cで誘導体化を行うと 120分間の反応時間が必要で あつたが、 DAABD—C1は 10— 20分、 TAABD—C1は 20— 30分で反応が終了する ことがわかった。
したがって、反応時間は DAABD—C1の場合は 20分、 TAABD—C1の場合は 30分 が好適である。
[0054] [化 11]
Figure imgf000023_0001
[0055] (2)新規蛍光誘導体化試薬の MSでの感度
上記(1)で作成したサンプルを LC一 MSにより検出し、蛍光誘導体化試薬でラベル 化していないもの及び SBD— Fで誘導体化したものと、相対強度を比較した。
[0056] 蛍光誘導体化試薬でラベル化してレ、なレ、cysteine、 homocysteine, GSHの高さ をそれぞれ 1としたときの相対強度は表 3の通りであった。これより、 DAABD—C1が
MSでの感度が最も高いことがわかった。また、移動相が酸性であるので、 DAABD 化誘導体はプラスに荷電され水溶性であると考えられる。
[0057] [表 3]
SBD-F DAABD-C1 TAABD-C1
cysteine 23 3.0 x 103 2.0 x 103 homocysteine 4.0 2.3 x 102 1.6 x 102
GSH 1.6 2.1 x 102 1.7 x 102 実施例 6
[0058] (1) TAABD_C1のペプチドへの応用
10 /i Mの以下に示した 4種類のペプチド標品、 17. 5mM TAABD_C1、 10 m M EDTA、 50mM CHAPS (界面活性剤)、 2· 5mM TCEP (還元斉 lj)それぞれ 50 /i Lを混合し、 pH9. 0、 40。Cで、 30, 60, 90, 120分間反応させた。尚、各試薬 は 6· 0M 塩酸グァニジン(タンパク変性斉 IJ)を含む 0. 10 M ホウ酸緩衝液(pH9 . 0)に溶解した。生成した TAABD化ペプチドを HPLCを用いて測定した。
1. vasopressin
2. oxytocin
ύ . somatostatin
4. amylirurat)
図 8に TAABD—Clとの反応時間と蛍光強度との関係を示す。
図 8より、反応時間が 60分までは生成量が増加した。反応停止後は氷冷下で保存 し、 _20°Cにて保存すると、 48時間はほとんど分解しな力、つた。
[0059] (2) DAABD化ペプチド 'タンパクの検出限界
表 4に示した 10種類のペプチド 'タンパク質標品 10 μ Μ混合液、 2. 5mM TCEP 、 17· 5mM DAABD-C1, 10mM EDTA、 50mM CHAPSそれぞれ 50 μ Lを 混合し、 pH9. 0、 40°Cで、 30分間反応させた。尚、各試薬は 6. 0 M 塩酸グァニ ジンを含む 0. 10M ホウ酸緩衝液(pH9. 0)に溶解した。生成した DAABD化ぺプ チド'タンパク質は HPLCを用いて測定し、蛍光検出の検出限界を SBD-Fと比較し た。
[0060] [表 4] 各種ペプチド ·タンパク質の HPLC-蛍光検出法による検出限界
Number of Detection limit (fmol)
Moleculer c stenyl
Peptides and proteins DAABD-C1 SBD-F weight (Da) residues
vasopressin 1084 2 7.0 5.0 oxytocin 1007 2 4.5 1.3 somatostatin 1638 2 20 1.8 calcitonin 3418 2 5.0 6.0 amylin (rat) 3920 2 4.5 1.2 insulin 5808 6 2.2 0.7 alpha 1· acid glycoprotein 21547 4 8.5 1.3 alpha-lactalbumin 16228 8 3.5 0.5 albumin (BSA) 66385 35 0.5 0.2 leptin 16014 2 30 3.0
[0061] (3) DAABD化ペプチド 'タンパク質の同定 上記 (2)で誘導体ィ匕した物質のうち、 vasopressin、 oxytocin^ somatostatin^ ca lcitonin, amylinは LC MSにより同定できた。それらの分子量を以下に示す。 m/z 541. 8 (M + 3H) 3+ [DAABD— vasopressin]
516. 0 (M + 3H) 3+ [DAABD-oxytocin]
726. 6 (M + 3H) 3+ [DAABD-somatostatin]
989. 9 (M + 4H) 4+ [DAABD-calcitonin]
892. 8 (M + 5H) 5+ [DAABD— amylin]
[0062] これら全ての分子量は、それぞれのペプチドの 2つのシスティン残基に DAABDが 付加したとしたときの分子量であり、多価イオンピークの検出結果より DAABD—C1に よる誘導体化において、これらのペプチドのシスティン残基間の S—S結合が還元さ れ、二つのチオール基両方に試薬が反応したことがわかった。
また、タンパク質の場合は酵素によってペプチドに分解する必要があるため、酵素ト リプシンで消化し、 LC MS/MS検出及び MASCOTによるデータベース検索を 行って同定を試みた結果、システィンを含まないペプチドのアミノ酸配列も併せて決 定し、タンパク質を同定することができた。
実施例 7
[0063] (SBSeD Fの合成)
2_fiuoroacetanilide 石肖酸で処理して、 1— acetylamino— 2— nitro— 6— fluorob enzeneとし、これを脱ァセチル化して、 2— fluoro— 6— nitroanillineとし、次いで、ノ ラジウム担持炭素触媒を用いて水素化して、 3_fluoro_o_phenylenediamineを得 た。
Selenium dioxideエタノーノレカ卩熱'/容¾¾ 'を、 3— fluoro— o—phenylenediamine (6 Omg, 0. 48mmol)のエタノーノレカ卩熱溶液に加え、混合物を 30分加熱した。これを、 シリカゲルカラムによるクロマトグラフィーに供し、溶離液のジクロロメタンで溶出し、 4 -fluoro-2, 1 , 3_benzoselenadiazoleを白色粉末(88mg)として得た。得られた 化合物の確認データを以下に示す。
mp. 129。C、 NMR (methanol-d ): δ H7. 55 (1Η, d, J = 9. 2)、 7. 41 (1H,
4
m)、 7. 06 (1H, m)、 ESト MS : m/z202. 8 [ (M + H) ]。 [0064] このようにして得た 4_fluoro_2, 1, 3_benzoselenadiazoleを fuming sulfuric acid (60%)に溶かし、 130°Cで 3時間還流した。この溶液を冷却し、冷水(30ml) に注ぎ、 28%ammonium hydroxideで中和した。この中性溶液にエタノール 100 mlを加え、濾過物を減圧乾固させた。残渣を水(1. 0ml)に溶解し、更に、以下の H PLCで精製した。即ち、残渣の ΙΟΟ μ Ιを HPLC分離に供した。 HPLCカラム: TSK -gel ODS— 120T、 150 X 4. 6mm i. d.、東ソ一、溶離液:蒸留水、流速 0. 5ml /min、検出: 280nm。 SBSeD— Fに相当するフラクションを集め、減圧して白色粉 末(50mg)を得た。得られた化合物の確認データを以下に示す。
m. P. > 300°C, NMR (methanol-d ) : δ H7. 97 (1Η, d d, J = 7. 6, J = 5. 4
4
)、 7. 11 (1H, dd, J = 7. 6, J= 10. 1)、 ESト MS : m/z280. 8 [ (M— H) ]。
実施例 8
[0065] (SBThD— Fの合成)
N— thionylaniline (0. 49g, 3. 5mmol) ¾r«j— fluoro— o—phenylenediamine (2 OOmg, 1. 6mmol)トルエン(2ml)溶液に加えた。反応混合物を 100—120°Cで 4時 間加熱し、溶媒を濾別した後、残渣をジクロロメタンに溶かし、溶液を 10%HC1溶液 及び水で各々洗浄した。有機相を乾燥し、減圧乾固させた。これをシリカゲルによる クロマトグラフィーに供し、溶離液のクロ口ホルムで溶出し、 4— fluoro— 2, 1 , 3-benz othiadiazoleを淡黄色油として得た。得られた化合物の確認データを以下に示す。
NMR (methanol-d ): δ H7. 69 (1H, d, J = 8. 9)、 7. 50 (1H, m)、 7. 20 (1
4
H, m) , ESI-MS : m/zl54. 9 [ (M + H) ]。
[0066] このようにして得た 4— fluoro— 2, 1, 3— benzothiadiazole (30ml)を fuming sulf uric acid (60%)に溶かし、 130°Cで 3時間還流した。次いで、この溶液を冷却し、 ゆっくり冷水(30ml)に注ぎ、 28%ammonium hydroxideで中和した。中性溶液 にエタノール 100mlを加え、得られた濾過物を減圧乾固した。残渣を水(1. 0ml)に 溶かし、更に、以下の条件で HPLCで精製した。 SBThD— Fに相当するフラクション を集め、減圧し、白色粉末(25mg)を得た。得られた化合物の確認データを以下に 示す。
decomp. 265。C、 NMR (methanol-d ) : δ H8. 06 (1Η, dd, J = 7. 9, J = 4. 9
4 )、 7. 11 (1H, dd, J = 7. 9, J = 9. 8)、 ESト MS : m/z232. 8 [ (M_H) ]。
上記方法により合成した SBSeD-F及び SBThD-Fを下記の化 12に示す。
[0067] [化 12]
Figure imgf000027_0001
実施例 9
[0068] (1)システィン誘導体の蛍光スペクトル
ImMEDTAを含む 0· 1Mホウ酸緩衝液(ρΗ9· 0)による上記 SBSeD_F、 SBTh D-F又は SBD-Fの各蛍光試薬溶液(4mM)の 500 μ 1部分を、 0. 1Mホウ酸緩衝 液(ρΗ9· 0)によるシスティン(0· 4mM)溶液の同量と混合した。この混合物を 60°C で 8時間放置した。反応の後、反応混合物を HPLC分離し、各システィン誘導体に 相当するフラクションを集め、それらの蛍光スペクトルを測定した。
[0069] SBSeD_Fと SBThD_Fのシスティンに対する反応性
4mMの各試薬、 SBSeD_F、 SBThD_F又は SBD—F及び ImM EDTAを含む 0. 1Mホウ酸緩衝液(pH9. 0又は pHIO)の 500 μ 1部分を、 0. 1Mホウ酸緩衝液(ρ Η9. 0又は ρΗΙΟ)によるシスティン溶液(0. 4mM)の同量と混合した。反応混合物 を HPLC分離し、 60°Cでの反応をモニターした。
[0070] (2)結果
SBD—Fのような水溶性試薬は、その sulfonic acid残渣により水溶体中での誘導 体の可溶性を増加させ、結果として、誘導体の吸収又は沈殿が減少する。したがつ て、インシュリンのような比較的疎水性ペプチドの SBD— Fによる誘導体は、逆相カラ ムで溶出され、高感度に検出されたが、本実施例では、更に、 benzoselenadiazole 又は benzothiadiazole骨格をもつ蛍光試薬として SBSeD_F及び SBThD_Fを合 成し、それらのシスティンに対する反応性及びその誘導体の蛍光特性を調べた。
[0071] 最大励起( λ ex)及び発光波長( λ ex)、及び誘導体の保持時間を表 5に示す。各 システィン誘導体の質量数([M + H] )は、 SBSeD_F (mZz381. 9)、 SBThD-F (m/z334. 0)及び SBD_F (m/z318. 0) (こつレヽて、理論値(各々 382. 0、 334. 0及び 318. 0)と一致した。誘導体の最大励起波長は、 SBSeD_F (340nm)及び S BThD-F (315nm)は SBD_F (365nm)より短ぐ誘導体の最大発光波長は、 SBS eD-F (542nm)は、 SBSeD_F (517nm)及び SBD—F (514nm)よりも長かった。
SBSeD-F自体は蛍光が少ないが、 SBThD_Fは多少の蛍光を与えた( λ ex; 350 nm, ;i em : 424nm)。 SBSeD— F、 SBThD— F及び SBD— Fのシスティン誘導体の 逆相カラム(C )に対する pH2. 0の移動相による保持時間(t )は、各々 4. 5、 5. 3
18 R 及び 4. 8分であった。これから、 SBSeD_Fは、これらの中で最も高い親水性の蛍光 試薬であった。
[0072] SBD—Fの場合、至適反応条件は 60°Cで pH9. 5で 1時間であるが、 SBSeD— F及 び SBThD— Fの反応性は、 SBD—Fと比べて低ぐ蛍光強度は 8_24時間で徐々に 増加し(図 9、 10)、 24時間後でも、反応は最大に達しなかった(図 9)。 pH10. 0及 び 60°Cでは、 SBSeD_F又は SBThD_Fとシスティンの量的反応時間は、 8時間以 上であり、 SBD— Fでは、 1時間以内で完全に反応した(図 10)。
このように、水溶性の蛍光試薬 SBSeD_F及び SBThD_Fは、 SBD—Fと比べて蛍 光特性及び疎水性の点で異なっており、プロテオーム解析のための新規蛍光誘導 体化試薬として有用である。
実施例 10
[0073] DAABD—C1による線虫(C. elegans)タンパク質の誘導体化及び同定
(1)方法
線虫(Bristol N2株)を、大腸菌(E. coli)の OP50株を栄養源として 20°Cで、 N GM寒天上に培養し、 M9バッファ一により浮遊させてバクテリアから分離した。上記 線虫を M9バッファーで 2回洗った後、 _80°Cで保管して用いた。この線虫を等量の 1 OmM CHAPSに懸濁し、超音波で溶解した。可溶性のフラクションを 4°Cで 10, 00 Orpm、 5分の遠心分離により集めた。上澄を可溶性フラクションとして 20°Cで保管 した。このフラクションのタンパク質濃度を BSAを標準に用いる Bradford method で決定した。上澄の約 20 z L (100 x gタンパク質)を同容量の 2. 5mM TCEP, 1 7. 5mM DAABD-C1, lOmM Na EDTA及び 50mM CHAPSを 6. 0Mグ
2
ァニジンを含む lOOmMホウ酸塩緩衝液(pH9. 0)中で混合した。反応混合物を 40 °Cで 30分インキュベートした後、反応を 200 x Lの 0. 1 %ギ酸で停止し、次いで、反 応混合物(10 μ gタンパク質)の 30 μ Lを HPLCシステムに注入した。
[0074] RPカラムが PROTEIN (30nm孔径、 250 X 4. 6mm i. d. ) (Imtakt)、移動相が 溶離液 (A) 0. 1%トリフルォロ酢酸及び溶離液(B)水 ZCH CNZトリフルォロ酢酸
3
(70/30/0. 1)、グラジェントシステムが流速 0. 25mLZminで 100分力けて 30 力、ら 70%Bの条件で HPLCを行った。蛍光検出は 508nm、励起波長は 387nmで 行った。同定のために、蛍光タンパク質誘導体のいくつかのピークフラクションを分離 し、減圧下に 10 に濃縮した。各フラクションは、 2 i g/mLトリプシン及び 1 · Om M塩化カルシウムを含む 90 /i Lの 5. OmM重炭酸アンモニゥム溶液(ρΗ7· 8)で希 釈し、 37°Cで 2時間インキュベートした。各タンパク質加水分解ペプチド混合物を直 接エレクトロスプレーイオントラップ質量分析装置を用いた LC MS/MSに供した。 クロマトグラフィーは、 HP1090シリーズ IIシステム及び Cadenza TC— 18 column (12nmポーラスシリカ、 100 X 2. Omm i. d. )のカラムを用いて実施した。移動相 は溶離液 (A) l . OmMギ酸アンモニゥム及び溶離液(B) l . OmMギ酸アンモニゥム /CH CN (50/50)とした。グラジェント溶出は、流速 0· 2mL/minで 60分かけて
3
0力、ら 100%で行った。タンパク質の同定は、システィンのチオール残基に結合した DAABDを記憶する MASCOT (Matrix Science Ltd. , U. K. )データベース サーチアルゴリズムを用いて NCBInrデータベースより行った。
[0075] (2)結果
図 11は、 DAABD— C1で誘導体化した、線虫の可溶性フラクションから得られたタ ンパク質 (約 10 z g)のクロマトグラムを示す。本実施例では、タンパク質の分離、トリ プシンによる加水分解及び任意に選択されたピークフラクションの LC—MSZMS同 定により、 10種類のタンパク質が同定された。
図中、 1はリボゾームタンパク質 S3a(MW=28942)、 2はカルレティキュリン(calre ticulin)前駆体(MW=45588)、 3はリボゾームタンパク質 LI (MW=38635)、 4 は伸長因子(elongation factor) 1_アルファ(MW= 50636)、 5はリンゴ酸デヒド ロゲナーゼ(MW= 35098)、 6は 40Sリボゾームタンノ ク質(MW= 22044)、 7はビ テロゲニン(vitellogenin) (MW=193098)、 8はアルギニンキナーゼ(MW=419 69)、 9は HSP—1熱ショック(heat shock) 70kdタンパク質 A (MW = 69680)及び 10はリボゾームタンパク質 L7Ae(MW=13992)を示す。本実施例では、任意に選 択された 10種類のタンパク質が同定された力 本発明では、同様にして、他のタンパ ク質の同定をすることが可能である。
実施例 11
7_クロ口 _N_(2—ジメチルァミノプロピル)_2, 1, 3_ベンゾキサジァゾ一ノレ- 4_ス ノレフォンアミド
4—クロ口一 7—クロロスルフォニノレー 2, 1, 3—ベンゾキサジァゾ一ノレ(0. 25g、 0. 99m mol)をァセトニトリル(8ml)に溶解し、室温で撹拌した。次いで、これに N, N-ジェ チルエチレンジァミン(0. 21ml, 1. 49mmol)及びトリェチルァミン(0. 21ml, 1. 4 9ml)を加えた。反応混合物を 30分間撹拌し、次いで、減圧で濃縮した。残渣をクロ 口ホルムに溶解し、飽和アンモニゥムクロライド水溶液及び塩水で洗浄し、有機相を Na SOで乾燥し、減圧で濃縮した。残渣をシリカゲルクロマトグラフィー(10%メタノ
2 4
'ロロホルム)で精製し、生成物を得た。得られた固体をメチレンクロライド及び 再結晶し、明るい黄色の小板状の生成物(0. 22g、 0. 6 6mmol、 67%)を得た。 ^—NMR CDCl , 500ΜΗζ) δ 7. 97 (d, J = 7. 4Hz, 1
3
H), 7. 53 (d, J=7. 4Hz, 1H), 3. 05 (t, J = 5. 7Hz, 2H) , 2. 48 (t, J = 5. 7H z, 2H), 2. 33 (q, J = 7. 5Hz, 4H) , 0. 87 (t, J = 7. 5Hz, 6H) ;13C— NMR(CD CI , 125MHz) 5 148. 77, 145. 00, 133. 40, 129. 15, 127. 88, 127. 47,
3
51. 14, 46. 09, 40. 45, 11. 36;IR(KBr, cm"1) 3446, 3209, 3101, 2976, 2817, 1525, 1347, 1164.
実施例 12 [0077] 4—クロ口— 7—クロロスルフォ二ルー 2, 1, 3—ベンゾキサジァゾール(0· 21g、 0. 88 mmol)をァセトニトリル(8ml)に溶解し、 0°Cで撹拌した。次いで、これに N, N—ジェ チルー 1, 3_プロパンジァミン(0· 20ml, 1. 25mmol)及びトリェチルァミン(0· 17m 1、 1. 25ml)を加えた。反応混合物を 30分間撹拌し、次いで、減圧で濃縮した。残渣 をクロ口ホルムに溶解し、飽和アンモニゥムクロライド水溶液及び塩水で洗浄し、有機 相を Na SOで乾燥し、減圧で濃縮した。残渣をシルカゲルクロマトグラフィー(10%
2 4
メタノール/クロ口ホルム)で精製し、明るい黄色固体の生成物(0. 10g、0. 29mmo 1、 35%)を得た。 NMR (CD OD, 500ΜΗζ) δ 8. 06 (d, J = 7. 5Hz, 1H), 7
3
. 77 (d, J = 7. 5Hz, 1H), 3. 19 (m, 8H) , 1. 93 (m, 2H) , 1. 32 (t, J = 7. 5Hz , 6H) ; 13C-NMR (CD〇D, 125MHz) δ 150. 39, 146. 66, 135. 58, 131. 3
3
3, 129. 33, 128. 10, 50. 41 , 41. 21, 25. 69, 9. 26 ; IR (KBr, cm"1) 3501, 3428, 3209, 2973, 2733, 2675, 1524, 1338, 1160.
実施例 13
[0078] N, N—ジメチルエチレンジァミン— dの合成
6
ジメチルアンモニゥムクロライド— d (2. 46g)及びブロモアセトニトリル(3· 37g)をジ
6
ェチルエーテル(20ml)に溶解した。 10°Cでこれに 50%Na〇H (4. 5g)を添加した 後、混合物を同じ温度で 2時間撹拌した。エーテル層を分離し、水層をエーテル(10 mi x 3)で抽出した。合体したエーテル層を MgSOで乾燥し、次いで、減圧で濃縮
4
して N, N—ジメチルアミノアセトニトリル一 d溶液(10g)を得て、次いで、それを 10°C
6
でテトラハイド口フラン(40ml)中の LiAlH (1. 28g)及びスルフォン酸(1. 69g)の
4
混合物に加えた。反応混合物を室温で 13時間よく撹拌、混合した。これにエーテル( 30ml)を加えた後、混合物を Na〇H (水 6mlに 4g溶解)で処理した。エーテル層を 分離し、水層をエーテル(10ml X 2)で抽出した。合体したエーテル層を MgSOで
4 乾燥し、次いで、 (5gになるまで)減圧濃縮した。残渣を希釈し、フラクション(70—80 °C)を合わせて、 1. 79g (収率 52. 5%)の N, N—ジメチルエチレンジァミン一 d (77.
6
4% THF溶液)を得た。 H-NMI^CDCl ): δ 1. 82-1. 88 (1. 54Η, m f or T
3
HF, 4H) , 2. 33 (2H, t, J = 6Hz) , 2. 77 (2H, t, J= 6. 4Hz) , 3. 72-3. 76 (1 . 48H, m for THF, 4H) 実施例 14
[0079] 7—クロ口 _4— (ジメチルアミノエチルアミノスルフォニル)— 2, 1, 3_ベンゾキサジァ ゾール _d (DAABD-Cl-d6)の合成
6
4—クロ口— 7—クロロスルフォ二ノレ—2, 1, 3—ベンゾキサジァゾール(3. 28g)を CH
3
CN (60ml)に溶解した。この溶液に、 N, N—ジメチルエチレンジァミン— d6 (1. Og) 及びトリェチルァミン(1. 92ml)を各々加えて、氷で冷却して、同じ温度に 1時間保 持し、室温で 1. 5時間撹拌、混合した。次いで、反応混合を減圧濃縮し、残渣を Ac OEtに溶解した。ェチルアセテート溶液を飽和 NaHCO、蒸留水、飽和 NaCl溶液
3
で各々洗浄し、 MgSOで乾燥した。ろ過した溶液を減圧濃縮し、残渣を CH C1 : M
4 2 2 eOH (50: 1)を溶出液としてシリカゲルカラムで精製した。溶出した溶液を減圧乾燥 し、残渣を EtOH-AcOEtで再結晶して 1· 36g (収率 41. 3%)の DAABD_Cl_d6 : mp、 110。Cを得た。 ^-NMR CDCl ) : 57. 99 (1H, d, J = 7. 3Hz), 7. 54(1
3
H, d, J = 7. 3Hz), 3. 13(2H, m) , 2. 33 (2H, m) , ESト MS:m/z311 (M + H)+, IR (KBr) cm-1; 1342andl 166.
実施例 15
[0080] 7_フルォロ— N_[2_ (ジメチルァミノ)ェチノレ ]_2, 1, 3_ベンゾセレナジァゾーノレ— 4—スルフォンアミド(DAABSeD_F)の合成
7—フルォロ一 2, 1, 3—ベンゾセレナジァゾーノレ一 4_スルフォニルクロライド(75mg) を 3mlのァセトニトリルに溶解した。これに、 N, N—ジメチルエチレンジァミン一(22m g)及びトリェチルァミン(35 μ 1)をカ卩えた後、混合物を氷の上で 30分間撹拌した。反 応混合を減圧で関そうし、残渣を CH C1に溶解し, CH CI -CH ΟΗ(93:7)を用
2 2 2 2 3
いてシリカゲルクロマトグラフィーに供し、 7_フルォロ— Ν_[2_ (ジメチルァミノ)ェチ ノレ]— 2, 1, 3_ベンゾセレナジァゾーノレ一 4ースルフォンアミド(49mg、 56%)を赤い粉 末として生成した。 mp: 117-120。C。 ^-NMRS 8. 09(1H, d, J = 7. 5Hz) , 7
H
. 24(1H, d, J=7. 5Hz), 2. 93 (2H, t, J = 6. 7Hz) , 2. 27 (2H, t, J = 6. 7Hz ), 1. 98 (6H, s)in CD OD;ESI— MSm/z353[ (M + H) +]
3
実施例 16
[0081] (1) DAABSeD - Fによる低分子量チオールの誘導体化反応及び誘導体の蛍光特 性
ImM (システィン、ホモシスティン、ァラニン、セリン、又はダルタチオン)溶液の 20 i Lを、同容量の 2· 5mMTCEP、 17. 5mMDAANSeD— F、 lOmMNa EDTA
2 及び 50mMCHAPSと混合した。各試薬は、 6. 0Mグァニジンを含む lOOmMホウ 酸バッファーに溶解した。反応混合物を 40°Cで 10-120分間加熱し、反応を 0. 1% トリフルォロ酢酸の 200 μ Lで停止した。混合溶液を 300 μ Lのメタノーノレで希釈し、 蛍光スペクトルを蛍光スぺクトロメーターで測定した。その結果、最大励起波長は約 4 20nm、最大蛍光波長は約 540nmであった。
[0082] (2)低分子量チオールの DAABSeD -誘導体の分離及び同定
0. 1%トリフルォロ酢酸で反応を停止した上記反応混合物の 10 μ Lを HPLCシス テムに供した。 HPLCシステムは、ポンプ(L_7100、 日立社製)、分離カラム TSKge 1120—TQA (内径 250 X 4. 6mm) (東ソ一社製)及び蛍光検出器(FL_2025、ジャ スコ社製)で構成した。蛍光検出は 540nmで、励起波長は 420nmで行った。移動 相は、 150mMリン酸バッファー/ CH CN (94/6)であり、流速は 0. 75ml/分とし
3 同定のために、反応混合物を HP1090シリーズ IIシステム(Hewlett—Packard (G mbH)のカラムに直接注入して、エレクトロスプレー法による MS及び MS/MSスぺ タトルを得た。クロマトグラフィーは、 Cadenza TC— 18カラム(シリカの 12nm孔、内 径 100 X 2. Omm) (Imtact (株))で行った。移動相は、 0. 1 %ギ酸の溶出液(八)及 び水/ CH CN/ギ酸(50/50/0. 1)の溶出液(B)で構成した。 0力ら 100%Bで
3
流速 0. 2ml/分で 15分間グラジェント溶出を行った。このとき得られたクロマトグラム は、システィン、ホモシスティン、グルタチオンの 3つのピークを与えた。
[0083] (3) DAABSeD_Fによるペプチド及びタンパク質の誘導体化反応
100 μ Μのペプチド及びタンパク質(インシュリン、トリプシン阻害剤、 ひ—酸グリコプ 口ティン、カルボニックアンヒドラーゼ、 ひ一ラクトアルブミン)溶液又は 10 μ Μ BSA 溶液の 20 x Lを同容量の 2. 5mM TCEP、 17. 5mM DAABD—C 比較として) 、 10mM Na EDTA及び 50mM CHAPSと混合した。各反応混合物を 6. 0Mグ
2
ァニジンを含む lOOmMホウ酸バッファー(pH9. 0)に溶解した。各反応混合物を 40 °Cで 60分間(DAABSeD_F)又は 20分間(DAABD—Cl)加熱し、反応を 0. 1 %ト リフルォロ酢酸の 200 μ Lで停止した。混合物をメタノール 300 μ Lで希釈し、蛍光ス ベクトルを蛍光スぺクトロメーターで測定した。その結果、最大励起波長は約 425nm 、最大蛍光波長は約 535nmであった。
[0084] (4)ペプチド及びタンパク質の DAABSeD誘導体の分離
メタノールを除いた上記反応混合物の 55 μ Lを HPLCカラムに供した。 HPLCシス テムは、ポンプ(L一 7100、 日立社製)、タンパク質用の RPカラム(30nm孔サイズ、 内径 250 X 4. 6mm) (Imtact社製)及び蛍光検出器(FL_2025、ジヤスコ社製)で 構成した。蛍光検出は、 550nm (励起波長 450nm) (DAABSeD— F)又は 490nm (励起波長 370nm) (DAABD—Cl)で行った。溶出液 (A)は、水/ CH CNZトリフ
3 ルォロ酢酸(90Z10Z0. 1)からなり、溶出液(B)は、水 ZCH CNZトリフルォロ酢
3
酸(30/70/0. 1)で構成した。 0から 100%Bで流速 0. 5mL/分で 200分間のグ ラジェント溶出を行った。
[0085] (5)異なる波長でのタンパク質誘導体の HPLC分離'定量及びタンパク質の同定 ひ—ラクトアルブミンを含み、 10mMEDTA、 50mMCHAPS、 2. 5mMTCEP、 6 . 0Mグァニジンを含む混合溶液を 2つの部分に分け、試料 Aには 1 μ Μの α _ラクト アルブミン及び試料 Βには 2 μ Μの α _ラクトアルブミンを含むように調整した。試料 A は DAABD—Clと 40°Cで 20分間反応させ、試料 Bは DAABSeD_Fと 40°Cで 30分 間反応させ、両者の反応溶液を再度混合した。混合物を 2つの蛍光検出器に直列に 連結した HPLCに供した。一つは、 370nmで励起して蛍光波長 490nmで DAABD 誘導体をモニターし、もう一つは、 450nmで励起して蛍光波長 550nmで DAABSe D誘導体をモニターした。 HPLCシステムは上記(4)と同じである。
[0086] タンパク質の同定のために、試料 A中のひ—ラクトアルブミンの DAABD誘導体及 び試料 B中のひ—ラクトアルブミンの DAABSeD誘導体に相当するピークフラクション を合体し、 pH7. 8に調整し、トリプシンでカ卩水分解した。次いで、得られたペプチド 混合物を窒素ガスで濃縮し、タンパク質同定アルゴリズムを備えた、シスラインのチォ ール基に結合した DAABD (MW、 3900)又は DAABSeD (MW、 4539)を記憶し ている MASCOTを有する HPLC— MS/MSに供した。クロマトグラフィーは、 Agile ntl 100シリーズシステム(Agilent Technologies社製)及び分離カラム、 Cadenz a TC— 18カラム(シリカの 12nm孑し、内径 100 X 2. 0mm) (Imtact社製)、 0· 1 %ギ 酸の溶出液 (Α)及び水/ CH CN/キ酸(50/50/0. 1)の溶出液 (Β)で構成した
3
。 0力、ら 100%Βで流速 0. 2mLZ分で 60分間のグラジェント溶出を行った。その結 果、実施例 10と同様にひ-ラタトアルブミン (MW16228)が同定できた。
実施例 17
[0087] (l) DAABSeD_Fの合成
前述のように、ベンゾキサジァゾール試薬の、 7 クロロー N_[2 (ジメチルァミノ)ェ チル ]_2, 1 , 3_ベンゾキサジァゾ一ノレ 4ースルフォンアミド(DAABD—C1)は、感度 のよい、選択的なチオール特異的試薬であり、プロテオミクス研究に有用である。 DA ABD—C1は、ペプチド及びタンパク質のチオールと反応して誘導体化し、 390nmの 励起で 502nmで蛍光を発する。本実施例では、図 12の合成経路により、 7 フルォ 口— N_[2_ (ジメチルァミノ)ェチル] 2, 1, 3_ベンゾセレナジァゾールー 4ースルフォ ンアミド(DAABSeD— F)を DDABD— C1のカウンターパートとして合成した。
[0088] 本発明者は、 7_フルォロ—2, 1, 3_ベンゾセレナジァゾールー 4—スルフォネート(S BSeD_F)及び 7_フルオロー 2, 1 , 3_ベンゾチアジアゾーノレ— 4—スルフォネート(S BThD-F)をチオール特異的蛍光試薬として合成した。これらのシスティンとの誘導 体の蛍光波長は、各 340nm及び 315nmの励起波長で、それぞれ54211111及び517 nmであった。対応するべンゾキサジァゾール試薬の、 7_フルォロ _2, 1, 3—べンゾ キサジァゾーノレ— 4—スルフォネート(SBD—F)は、 365nmの励起で 514nmで蛍光 を発する誘導体を与える。 SBSeD— Fと SBD— Fでの誘導体の最大波長の大きな相 違にヒントを得て、本発明者は、ベンゾセレナジァゾール試薬、 DAABSeD_Fを DA ABD—C1のカウンターパートとして合成した(図 12)。
[0089] (2)チオールに対する DAABSeD - Fの誘導体化反応の反応条件及び反応性
DAABSeD_Fによる低分子量チオール(システィン、ホモシスティン、ダルタチォ ン、ァラニン、セリン及びトリプシン)の誘導体化反応を 40°C (pH9. 0)で行った。ぺ プチド及びタンパク質 (インシュリン、 a -酸グリコタンパク質、トリプシン阻害剤、カル
1
ボニックアンヒドラーゼ、 α _ラクトアルブミン、 BSA等)の場合、反応を促進するため に、 CHAPS及びグァニジンの存在下で行った。予測したように、 DAABSeD_Fは 、ァラリン(ァミノ及びカルボキシル基を含む)セリン(アミ入カルボキシル及び水酸基 を含む)及びチロシン(アミ入カルボキシル、フエノール性水酸基を含む)のようなチ オールを含まない化合物との反応では蛍光を示さな力、つた。これに対して、チオール 化合物の場合には、蛍光を発し、その強度は 30分で最大に達した力 これは、 DAA BSeD— Fはペプチド及びタンパク質と同様に低分子量のチオールと特異的に反応 し、蛍光を生じ、反応速度は、 DAABD—C1と同様であることを示してレヽる。
[0090] (3) DAABD—Fと比較した DAABSeD_F誘導体の蛍光特性
DAABSeD誘導体は、最大励起及び蛍光波長が、それぞれ 423 - 429nm及び 5 24_542nmの範囲にあることを示した(表 5)。
[0091] [表 5]
DAABSeD 及び DAABD誘導体の蛍光特性
Exmm)_ Em(nm _
DAABSeD 尊体
BSA 429 524
Trypsin inhibitor 423 536
1― acid glycoprotein 423 536
— lactalbmin 426 534
Insulin 425 537
Glutathioue (re duse d form) 423 542
Homocysteine 425 541 MABZ?誘導体
Trypsin inhibitor 392 502
Insulin 393 502
Glutathioue(redused form上 394 507
[0092] (4) LC-MSによるチオールの DAABSeD誘導体の同定及び検出
DAABSeD_Fで誘導体化したチオール混合物をエレクトロスプレーイオントラップ 質量分析計を備えた HPLCに供した。各チオールについて単一ピークが得られた。 マススペクトルから、各低分子量チオールの DAABSeD誘導体が、システィン(MW = 121)、ホモシスティン(MW= 135)及びグルタチオン誘導体(MW= 307)につ いて、ベースイオンピークが m/z = 454 (M + H) +、 468 (M + H) +及び 640 (M + H) +として検出された。本実験では、用いたエレクトロスプレー法による分子イオン検 出の限界(MWが 3000以下)のため、タンパク質の DAASeD誘導体の同定は困難 であった。
[0093] (5) DAABSeDで誘導体化したペプチド及びタンパク質の検出限界
DAABSeD— Fで誘導体化したタンパク質から得られるクロマトグラムは、各誘導体 の単一ピークを示し、重なるピークは観察されなかった。試薬自体は蛍光を発しない ので、 DAABSeD_Fピークは現れなかった。上述の誘導体のピーク高さは、注入量 に比例した。バソプレシン、 ひ一ラクトアルブミン及び BSAの検出限界は、それぞれ、 7. 5、 7. 2、及び 7. 2fmolであった。これらの検出限界は DAABD誘導体のものと 同様であった。 DAABD誘導体に比較して、 DAABSeD誘導体は早く溶出したので 、 DAABSeD誘導体は、 DAABD誘導体よりも、 HPLC固定相に対する低い親和性 を有していた。同様の傾向は、 SBD誘導体と比べて、 SBSeD誘導体についても観 察された。
[0094] (6) DAABSeD及び DAABD誘導体の同時検出
DAABD及び DAABSeD誘導体を併用した、二つの誘導体の同時蛍光検出は、 同一起源の異なる歴史を有する二つのタンパク質試料の比較を簡便にする。例えば 、一方が病態患者試料で一方が健常者からの試料、あるいは、二つの細胞又は組 織試料で、一方がある薬剤で処理され、他方が未処理のものが例示される。本実験 では、試料 A中のひ—ラクトアルブミンの DAABD誘導体の反応溶液と、試料 B中の ひ-ラタトアルブミンの DAASeBD誘導体の反応溶液を合体し、二つの蛍光検出器 に連結した HPLCに供した。それぞれの検出波長は、 DAABD誘導体では 370nm の励起で 490nmで行い、 DAASeBD誘導体では、 450nmの励起で 550nmで行 なった。二つの誘導体は、クロマトグラムで各単一ピークを与えた。 ひ—ラクトアルブミ ンの DAABD誘導体及びひ—ラクトアルブミンの DAASeBD誘導体の保持時間は、 53. 3分、及び 50. 0分であった。
[0095] 試料 A中の α—ラクトアルブミンの DAABD誘導体は、観察されたが、試料 Β中の α —ラタトアルブミンの DAABSeD誘導体は観察されなかった。試料 B中の α _ラタトァ ルブミンの DAABSeD誘導体は観察され、試料 A中のひ—ラクトアルブミンの DAAB D誘導体は観察されな力、つた。したがって、この方法で、試料 A中に存在するひ一ラタ トアルブミンと試料 B中に存在するひ一ラクトアルブミンを区別することができ、同じ試 料中のそれらの量を計測し、比較することができる。
[0096] 分離された相当するピークフラクションを合体した混合物をトリプシンのような酵素で 処理することで、タンパク質の定量及び同定が可能であった。例えば、試料 A中の D AABD誘導体及び試料 B中のひ—ラクトアルブミンの DAABSeDに相当する各ピー クを合体し、トリプシンで分解し、得られたペプチド混合物を、 2つの蛍光検出器に直 結した HPLCにて分離'定量するとそのタンパク質(ひ—ラクトアルブミン)の定量が可 能であり、更に得られたペプチド混合物をシスティンのチオール残基に結合した DA ABD又は DAABSeDを記憶している、タンパク質の同定アルゴリズム、 MASCOT を備えた、 HPLC— MS/MSに供した。その結果、実施例 10と同様に α—ラクトアル ブミン(MW16228)が同定された。
[0097] 本実験では、異なった試料 Α及び Β中のタンパク質 α—ラクトアルブミンを取り上げ、 比較した。これに対して、一つの試料中に多くの化合物が存在する実際のバイオ試 料の、誘導化したタンパク質溶液を合体した混合物は、複雑な HPLCクロマトグラム のパターンを与えるので、クロマトグラムでタンパク質ピークを区別することは非常に 困難になる。しかし、標的タンパク質の標準品があり、異なったクロマトフラフィー条件 で二次元クロマトグラフィーを行なえば、二つのクロマトグラフィー上のタンパク質の二 つの誘導体の保持時間を知ることができるので、クロマトグラム上で DAABD—C1及 び DAABSeD— Fの各誘導体のピーク分画を分離した後、これらを合体したピークフ ラタシヨンを第 2のクロマトグラフィーで再クロマトすることにより、精製されたタンパク質 の各誘導体が定量できる。更に、ピーク分画を上記の酵素処理、蛍光検出 HPLC又 は LC一質量分析計に付し、異なった試料中のタンパク質の定量又は同定ができる。 産業上の利用可能性 [0098] 以上詳述したように、本発明は、微量の発現タンパク質及び/又はペプチドの検出 •分離'同定方法及びそのシステムに係るものであり、本発明により、遺伝子を介して 発現する発現タンパク質及び/又はペプチドを簡便な方法及び手段で、高感度に 検出'分離 ·同定することができる。本発明の方法により、従来法では検出できなかつ た微量の発現タンパク質及び/又はペプチドを短時間で、感度良く検出 '分離'同定 すること力 Sできる。また、上記検出 '分離'同定方法に使用する微量の発現タンパク質 及び/又はペプチドの微量検出 ·分離 ·同定システムを提供することができる。本発 明は、プロテオームのプラットフォーム技術を提供するものとして有用である。
図面の簡単な説明
[0099] [図 1]本発明の方法の操作工程の一例を示す。
[図 2]界面活性剤の種類と蛍光誘導体の生成の度合いとの関係を示す。
[図 3]本発明の方法により試験した蛍光誘導体タンパク質/ペプチドのそれぞれの蛍 光ピークを示す。
[図 4]酵素水解物の蛍光クロマトグラム (A)、及びマスク口マトグラム(B)を示す。
[図 5]MS/MSによるマススペクトルを示す。
[図 6]実施例 3における逆相クロマトグラフィー(RPLC)によるクロマトグラムを示す。
[図 7]蛍光誘導体化の反応時間と蛍光強度との関係を示す (左図: DAABD— C1,右 図: TAABD_C1)。
[図 8]TAABD_C1との反応時間と蛍光強度との関係を示す。
[図 9]新規蛍光試薬によるシスティンの蛍光誘導体化 (pH9. 0)の反応時間とピーク 領域との関係を示す。
[図 10]新規蛍光試薬によるシスティンの蛍光誘導体化 (ρΗ Ι Ο . 0)の反応時間とピー ク領域との関係を示す。
[図 11]DAABD_C1で誘導体化した、線虫(C . elegans)の可溶性フラクションが得 られたタンパク質 (約 10 / g)のクロマトグラムを示す。
[図 12]DAABSeD— Xの合成経路を示す。

Claims

請求の範囲
[1] 被験試料中の発現微量タンパク質及び/又はペプチドを高感度に検出 '分離'同 定する方法であって、被験試料中のタンパク質及び Z又はペプチドを蛍光誘導体と した後、これを蛍光検出により分離し、その蛍光画分を質量分析に付するか、又はそ の蛍光画分を酵素水解に付し、そのペプチド断片を分離し、その画分を質量分析に 付し、データベース照合、構造解析に供して発現タンパク質及び/又はペプチドの 同定を行うことを特徴とする上記発現タンパク質及び/又はペプチドの検出'分離 · 同定方法。
[2] 被験試料中のタンパク質及び/又はペプチドを蛍光誘導体とした後、 HPLCに付 し、その蛍光分画を捕集した後、酵素水解に付し、その蛍光標識フラグメント及び非 蛍光標識フラグメントを質量分析又は MS/MS分析して得られた各フラグメントのィ オン分子量情報をタンパク質及び/又はペプチドフラグメントデータベースと照合し 、構造解析する、請求項 1に記載の方法。
[3] (1)被験試料中のタンパク質及び/又はペプチドを蛍光試薬で標識する、 (2)そ れを 1次元又は 2次元の HPLC/蛍光検出により、その蛍光分画を捕集する、(3)上 記蛍光分画を酵素水解に付する、 (4)それを第二段階の HPLC/蛍光検出により、 その蛍光クロマトグラムを得ると共に、その全ピークを質量分析に付し、データベース 照合、構造解析に供する、請求項 1に記載の方法。
[4] タンパク質及び Z又はペプチド試料の水溶液に、官能基特異的蛍光試薬を加え、 場合により、界面活性剤及び/又はタンパク変性剤をカ卩え、タンパク質及び/又は ペプチドを蛍光標識する、請求項 1から 3のいずれかに記載の方法。
[5] 蛍光標識したタンパク質及び Z又はペプチド試料を蛍光検出器付きイオン交換力 ラム HPLC、逆相分配 HPLC、ゲル濾過 HPLC、又は電気泳動に代表される分離手 段に付し、蛍光をモニターしながらそのピーク分画を捕集する、請求項 1から 3のいず れかに記載の方法。
[6] 蛍光分画を、各種べプチダーゼ、トリプシン、キモトリブシンに代表されるタンパク質 分解酵素を用いて酵素水解する、請求項 1から 3のいずれかに記載の方法。
[7] 酵素水解物を蛍光検出器付き逆相 HPLCに付し、蛍光ピークを検出すると共に、 蛍光標識フラグメント及び蛍光非標識フラグメントの質量分析又は MS/MS分析を 行う、請求項 1から 3のいずれかに記載の方法。
[8] 質量分析又は MS/MS分析に付して得られた各フラグメントのイオン分子量情報 を、コンピューターによるタンパク質及び z又はペプチドフラグメントデータベースと 照合し、構造解析して、酵素水解以前のタンパク質及び/又はペプチドの同定を行 う、請求項 1から 3のいずれかに記載の方法。
[9] 被験試料が、生体試料力 採取したタンパク質及び/又はペプチド試料である、請 求項 1から 3のいずれかに記載の方法。
[10] タンパク質及び Z又はペプチドフラグメント情報、及び蛍光試薬で標識したアミノ酸 の情報を含んだデータベースを用いてデータベース照合する、請求項 1から 3のいず れかに記載の方法。
[11] 請求項 1から 10のいずれかに記載の方法に使用する発現微量タンパク質及び Z 又はペプチド検出 '分離'同定システムであって、被験試料のタンパク質及び/又は ペプチドを蛍光試薬で標識するための第一反応器、蛍光試薬で標識した蛍光誘導 体を蛍光分画するための 1次元又は 2次元の蛍光検出器付き HPLC、蛍光分画を酵 素水解するための第二反応器、酵素水解物の蛍光標識フラグメントを蛍光検出する ための第二段階の蛍光検出器付き HPLC、及び蛍光試薬で標識したアミノ酸の情報 を含んだデータベースを搭載した構造解析装置の 1種又は 2種以上を構成要素とし て含むことを特徴とする上記検出'分離 ·同定システム。
[12] 上記第一反応器、 1次元又は 2次元の蛍光検出器付き HPLC、第二反応器、第二 段階の蛍光検出器付き HPLCを直列に配置してなる、請求項 11に記載のシステム。
[13] 被験試料中のタンパク質及び/又はペプチドを、蛍光誘導体化試薬として、下記 の化 1の一般式(1)
[化 1]
Figure imgf000042_0001
S02R
〔式中、 Xは、ハロゲン、 Yは、〇、 Se又は S、 Rは、— NH、— NHR' (但、 R' はァノレ
2
キル置換 Nアルキル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキル)、 又は—N ' ' ' ' (但し、 ' はアルキル、 ' ' はアルキル置換 Nアル キル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキルを示す。〕で表わさ れる化合物、又はその同位体化合物又は下記の化 2の一般式(2)
[化 2]
Figure imgf000042_0002
(式中、 Xは、ハロゲン、 Yは、 Se又は Sを示す。)で表わされる化合物又はその同位 体化合物、を用いて、蛍誘導体とする、請求項 1に記載の方法。
[14] 請求項 1に記載の方法でタンパク質及び/又はペプチドを蛍光誘導化するために 使用する蛍光誘導体化試薬であって、下記の化 3の一般式(1)
[化 3]
Figure imgf000043_0001
S02R
〔式中、 Xは、ハロゲン、 Yは、〇、 Se又は S、 Rは、— NH、— NHR' (但、 R' はァノレ
2
キル置換 Nアルキル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキル)、 又は—N ' ' ' ' (但し、 ' はアルキル、 ' ' はアルキル置換 Nアル キル、ジアルキル置換 Nアルキル又はトリアルキル置換 Nアルキルを示す。〕で表わさ れる化合物、又はその同位体化合物又は下記の化 2の一般式(2)
[化 4]
Figure imgf000043_0002
(式中、 Xは、ハロゲン、 Yは、 Se又は Sを示す。)で表わされる化合物又はその同位 体化合物、を用いて、蛍誘導体とする、請求項 1に記載の方法。
[15] 被検試料のタンパク質及び/又はペプチドを蛍光誘導体化後、 HPLCで分離'検 出し、分画後、酵素水解し、この水解物を直接質量分析で配列分析とタンパク質の 同定を行なうことを特徴とするタンパク質及び Z又はペプチドの検出'分離 ·同定方 法。
[16] 被検試料として、異なる試料 A中及び試料 B中のタンパク質及び/又はペプチドを 、それぞれ蛍光波長の異なる少なくとも 2つの蛍光誘導体化試薬でそれぞれ誘導体 化後、蛍光検出器付き HPLCで分離 ·検出し、分画後、各蛍光ピークをそのまま又は 合体して定量に供する、及び/又は各蛍光ピークを合体して酵素水解に供し、この 水解物を定量に供する、又はこの水解物を HPLC-質量分析に供し、同定を行なう、 ことを特徴とするタンパク質及び/又はペプチドの検出 '分離'同定方法。
[17] 各蛍光ピークをそのまま又は合体して HPLCによる定量に供し、試料 A中及び試 料 B中のタンパク質及び Z又はペプチドの各誘導体の比率を算出する請求項 16に 記載の方法。
[18] 水解物を HPLCによる定量に供し、試料 A中及び試料 B中のタンパク質及び/又は ペプチドの各誘導体の比率を算出する請求項 16に記載の方法。
[19] 試料 A中及び試料 B中のタンパク質及び/又はペプチドの第 1の蛍光誘導体化試 薬との反応物及び第 2の蛍光誘導体化試薬との反応物を合体し、 2つの励起'蛍光 検出の可能な HPLCに供し、分画後、各蛍光ピークを合体して酵素水解に供し、こ の水解物を HPLC—質量分析に供し、同定を行う請求項 16に記載の方法。
[20] 試料 A、 B力 S、 2種類の細胞又は組織又は体液試料である請求項 16に記載の方法
[21] 蛍光誘導体化試薬として、 DAABD - X、 DAASeBD - X、及び DAAThBD - X ( 但し、 Xは C1又は F)のうちの励起 ·蛍光波長の異なる少なくとも 2つの蛍光誘導体化 試薬でタンパク質及び/又はペプチドを誘導体化する請求項 16に記載の方法。
[22] 蛍光波長の異なる蛍光誘導体化試薬として、 DAABD— X、 DAASeBD— X、又は DAAThBD— X (但し、 Xは C1又は F)と、それらの各同位体を組み合わせて使用する 請求項 21に記載の方法。
[23] 酵素水解した試料を直接質量分析に付しペプチドマップを得ると同時に、蛍光試 薬の有する骨格並びに電荷を活用して、蛍光標識化ペプチド断片を質量分析測定 部で抽出してシスティン含有ペプチド部分の構造を取得し、これらを基にタンパク質 及び/又はペプチドの同定を行なう請求項 16に記載の方法。
[24] 蛍光誘導体化試薬で誘導体化したタンパク質及び Z又はペプチドを分解すること なく分画することが可能な、少なくともミクロカラム一 HPLC、ミクロ蛍光検出器、ミクロ zコレクター、及びミクロ自動注入装置を具備したことを特徴とする自動分 [25] 少なくとも、ミクロカラム一 HPLC、ミクロ蛍光検出器、ミクロフラクションコレクター、酵 素反応装置、及びミクロ自動注入装置を備え、任意に、質量分析 (MS)システムを具 備したことを特徴とする微量タンパク質の高性能'簡易定量'同定解析装置。
PCT/JP2004/018592 2003-12-11 2004-12-13 発現微量タンパク質/ペプチドの検出・分離・同定法 WO2005056146A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04806953.8A EP1705482B1 (en) 2003-12-11 2004-12-13 Method of detection, separation and identification for expressed trace protein/peptide
US10/582,090 US8796037B2 (en) 2003-12-11 2004-12-13 Method of detection, separation and identification for expressed trace protein/peptide
JP2005516223A JP4679368B2 (ja) 2003-12-11 2004-12-13 発現微量タンパク質/ペプチドの検出・分離・同定法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003412810 2003-12-11
JP2003-412810 2003-12-11

Publications (3)

Publication Number Publication Date
WO2005056146A2 true WO2005056146A2 (ja) 2005-06-23
WO2005056146A1 WO2005056146A1 (ja) 2005-06-23
WO2005056146A3 WO2005056146A3 (ja) 2005-08-18

Family

ID=

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309707A (ja) * 2006-05-16 2007-11-29 Kazuhiro Imai 蛍光試薬
CN100465640C (zh) * 2005-11-30 2009-03-04 上海特敏生物医药科技有限公司 一种高灵敏血浆总同型半胱氨酸测定试剂盒
JP2010071986A (ja) * 2008-08-20 2010-04-02 Kazuhiro Imai 蛍光試薬
CN104730049A (zh) * 2015-03-02 2015-06-24 齐齐哈尔大学 一种在模拟环境中测试肽段的离子传输情况的方法
JP2021179322A (ja) * 2020-05-11 2021-11-18 株式会社島津製作所 アルブミン分析方法及びアルブミン分析装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DUNN MJ.: "Two-dimensional gel electrophoresis of proteins", J CHROMATOGR, vol. 418, 1987, pages 145 - 185
GYGI S. P ET AL.: "Quantitative analysis of complex protein mixtures using isotope-coded affinitytags", NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 994 - 999
See also references of EP1705482A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465640C (zh) * 2005-11-30 2009-03-04 上海特敏生物医药科技有限公司 一种高灵敏血浆总同型半胱氨酸测定试剂盒
JP2007309707A (ja) * 2006-05-16 2007-11-29 Kazuhiro Imai 蛍光試薬
JP2010071986A (ja) * 2008-08-20 2010-04-02 Kazuhiro Imai 蛍光試薬
CN104730049A (zh) * 2015-03-02 2015-06-24 齐齐哈尔大学 一种在模拟环境中测试肽段的离子传输情况的方法
JP2021179322A (ja) * 2020-05-11 2021-11-18 株式会社島津製作所 アルブミン分析方法及びアルブミン分析装置

Also Published As

Publication number Publication date
JP4679368B2 (ja) 2011-04-27
JPWO2005056146A1 (ja) 2007-12-06
EP1705482A4 (en) 2009-05-06
EP1705482B1 (en) 2017-09-27
US20080280316A1 (en) 2008-11-13
EP1705482A2 (en) 2006-09-27
US8796037B2 (en) 2014-08-05
WO2005056146A3 (ja) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4300029B2 (ja) ゲルフリー定性及び定量的プロテオーム分析のための方法及び装置、ならびにその使用
Trnka et al. Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites
CA2545685A1 (en) Fluorous labeling for selective processing of biologically-derived samples
Qin et al. Isobaric cross-sequence labeling of peptides by using site-selective N-terminus dimethylation
US20110028330A1 (en) Compounds and methods for the labelling and affinity-selection of proteins
WO2020072907A1 (en) Solid-phase n-terminal peptide capture and release
US20090053817A1 (en) Fixed charge reagents
CN101339187A (zh) 甲砜基嘧啶类同位素标记试剂、合成方法及其用途
WO2005012247A1 (en) Compounds and methods for the rapid quantitative analysis of proteins and polypeptides
JP4679368B2 (ja) 発現微量タンパク質/ペプチドの検出・分離・同定法
EP1589341A2 (en) Method of selective peptide isolation for the identification and quantitative analysis of proteins in complex mixtures
US20080050736A1 (en) Fluorescent Affinity Tag to Enhance Phosphoprotein Detection and Characterization
WO2004002950A1 (ja) スルフェニル化合物、ラベル化試薬、及びペプチドの解析方法
JP4271687B2 (ja) リン酸化タンパク質の質量分析及びリン酸化位置分析用標識物質
JP4558297B2 (ja) 発現微量タンパク質/ペプチドの検出・分離・同定法
NZ529987A (en) Characterising polypeptides which includes the use of a lysine selective agent, amine reactive agent and recovering N-terminal peptide fragments
EP4130022A1 (en) Phosphorylated protein labeling reagent containing equal-weight stable isotopes, preparation method therefor and use thereof
US20070128729A1 (en) Method for the identification and relative quantification of proteins based on the selective isolation of RRnK peptides for the simplification of complex mixtures of proteins
Guo et al. A novel quantitative proteomics reagent based on soluble nanopolymers
Goodlett et al. Stable isotopic labeling and mass spectrometry as a means to determine differences in protein expression
Ramanoudjame et al. Chemoselective Acylation of Hydrazinopeptides to Access Fluorescent Probes for Time-Resolved FRET Assays on GPCRs
US20060234314A1 (en) Selective binding and analysis of macromolecules
JP2010071986A (ja) 蛍光試薬
CN117946081A (zh) 一种质谱可裂解异型双功能交联剂及其制备方法与应用
CN116337567A (zh) 一种快速高效的化学蛋白质组学样品制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10582090

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2004806953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004806953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005516223

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004806953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10582090

Country of ref document: US