WO2005054534A1 - 高強度冷延鋼板およびその製造方法 - Google Patents

高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2005054534A1
WO2005054534A1 PCT/JP2004/017990 JP2004017990W WO2005054534A1 WO 2005054534 A1 WO2005054534 A1 WO 2005054534A1 JP 2004017990 W JP2004017990 W JP 2004017990W WO 2005054534 A1 WO2005054534 A1 WO 2005054534A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolled steel
strength cold
sol
Prior art date
Application number
PCT/JP2004/017990
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Ono
Yasunobu Nagataki
Yasushi Tanaka
Kozo Harada
Hisanori Ando
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US10/549,164 priority Critical patent/US7608156B2/en
Priority to CA002517499A priority patent/CA2517499C/en
Priority to EP04819917A priority patent/EP1616971B1/en
Publication of WO2005054534A1 publication Critical patent/WO2005054534A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet used for automobiles, home appliances, etc., and particularly to a high-strength press-formable sheet having a tensile strength TS of 340 MPa or more.
  • the present invention relates to a cold rolled steel sheet and a method for producing the same.
  • JP-A-2001-131681, JP-A-2002-12943, and JP-A-2002-12946 disclose a method for reducing YS without increasing the crystal grain size and obtaining a high n value.
  • the technology is disclosed.
  • the C content is reduced to about 0.004 to 0.02%, which is higher than that of the conventional ultra-low carbon steel sheet, and the YS is reduced from the conventional ultra-low carbon IF steel sheet by actively utilizing fine grain strengthening and precipitation strengthening. Is reduced by about 20 MPa.
  • the present invention provides YS ⁇ 270MPa. It is an object of the present invention to provide a high-strength cold-rolled steel sheet having a TS of 340 MPa or more, which is excellent in surface distortion resistance and overhanging property, having 0.20, and a method for producing the same.
  • the purpose is to consist of ferrite grains with an average grain size of ⁇ or less, and the ferrite grains have an average number of Nb (C, N) with a diameter of 50 nm or more per unit area (hereinafter referred to as average area density) of 7.0 ⁇ 10 — 2 / ⁇ 2 or less, and the width is 0.2-2.4 / m along the grain boundaries of ferrite grains, and the average area density of NbC is NbC precipitated in the center of ferrite grains.
  • This is achieved by a high-strength cold-rolled steel sheet in which an area (hereinafter, referred to as PFZ) that is 60 or less is formed.
  • the high-strength cold-rolled steel sheet is obtained by heating a steel slab having the above composition at a heating temperature SR that satisfies the following formulas (3) and (4), followed by hot rolling to form a hot-rolled steel sheet; Pickling, cold rolling, and annealing in a temperature range of a single phase of ferrite at a temperature equal to or higher than a recrystallization temperature.
  • FIG. 1 is a diagram showing the relationship between YS, n value, r value and sol.Al amount.
  • FIG. 2 is a diagram showing the relationship between the slab heating temperature, the amount of sol. Al, and YS. BEST MODE FOR CARRYING OUT THE INVENTION l. Control of precipitates containing Nb
  • the present inventors studied a method for reducing the YS of a high-strength cold-rolled steel sheet, and found that the structure was composed of ferrite grains having an average grain size of 10 / xra or less, and the ferrite grains contained Nb ( C, the average area density of 7.0 X 10- 2 amino N) // zm 2 were exist Zaisa below, and along the grain boundaries of the ferrite grains, the width is 0.2- 2.4 ⁇ , the average area density of NbC ferrite If the area where the average area density of NbC precipitated in the center of the grains is 60% or less, preferably 20% or less, that is, PFZ is formed,
  • the Nb (C, N) having a diameter of 50 nm or more precipitates in the hot rolling stage at a size of around 50 nm in diameter, and does not grow significantly during annealing after cold rolling. These are precipitates uniformly deposited in the grains.
  • NbC precipitated in the center of ferrite grains is a fine precipitate with a diameter of about 10 precipitated during annealing
  • NbC precipitated in PFZ is an extremely fine precipitate of about 2 nm in diameter uniformly precipitated during hot rolling. Precipitates grow by Ostold at the time of annealing and grow around 50niri in diameter.
  • the average area densities of NbC and Nb (C, N) were measured using a transmission electron microscope with an accelerating voltage of 300 kV at a magnification of 5,610 times as follows.
  • Nb (C, N) with a diameter of 50 nm or more which was almost uniformly precipitated in the ferrite grains, select any 50 places in the ferrite grains, and in each place, Nb (C, N) in a 2 ⁇ diameter perfect circle N) is measured, and the number per unit area (area density) is calculated and averaged.
  • NbC precipitated at the center of the ferrite grains is determined in the same manner as above.
  • the NbC precipitated in the PFZ an arbitrary 50 pieces of Ostwald growth were selected, and for each NbC, a circle inscribed in the NbC and a grain boundary adjacent to the NbC was set. Find the density and average it. Further, the width of the PFZ is obtained by averaging the diameters of the above-mentioned 50 perfect circles.
  • the area of the center of the hard ferrite grains where fine NbC with a diameter of about 10 nm precipitates at high density and the soft NbC with coarse NbC with a diameter of about 50 nm precipitate at low density It is thought that a low YS and a high n value can be obtained because PFZ is formed along the ferrite grain boundaries and this soft PFZ starts to deform with low stress in the initial stage of deformation.
  • a high TS is maintained.
  • C 0.004-0.02%
  • Si 1.5% or less
  • Mn 3 or less
  • P 0.15 or less
  • S 0.02 or less
  • sol.Al 0.1 -1.5%
  • N 0.001-0.007% Nb: 0.03-0.2
  • C, Nb, and sol. A1 play an important role in controlling NbC and Nb (C, N), and the reasons for limitation will be explained in the order of C, Nb, and sol ⁇ 1.
  • C plays an important role in controlling NbC and Nb (C, N) because it binds to Nb.
  • the amount of C must be 0.004-0.02, more preferably 0.004-0.01.
  • Nb In order to control NbC and Nb (C, N) as described above, the Nb amount needs to be 0.03% or more. On the other hand, if the amount exceeds 0.2%, the rolling load increases, the productivity decreases, and the cost increases. Therefore, the Nb amount must be 0.2% or less. In order to increase the r value, ([Nb] / [C] (12/93) 1 is preferable, and ([Nb] / [C]) X (12/93) is set to 1.5-3.0. Is more preferable.
  • the present inventors studied a method for suppressing the generation of coarse Nb (C, N) having a diameter of 50 nm or more and promoting the generation of NbC effective for the formation of PFZ. It was found that adding 0.1% or more was effective.
  • N in steel was combined with A1 and existed as A1N.However, in steels with a C content of 0.004 or more and Nb content of 0.03% or more, precipitation of Nb (C, N) The reaction is remarkably accelerated, and Nb (C, N) precipitates during finish rolling before A1N precipitates. Therefore, by including A1 at 0.1% or more, if A1N is deposited before Nb (C, N) is deposited, it is possible to promote the deposition of NbC effective for forming PFZ.
  • Figure 1 shows the relationship between YS, r value, n value and sol.Al content.
  • Fig. 1 results f, C: 0.0060%, Si: 0-0.45%, Mn: 1.5-2% s P: 0.02%, S: 0.002% N N: 0.003% N B: 0.0005% Nb: 0.11%, sol.Al: After smelting steel of 0.01-1.7 to form a slab, this slab is heated to 1150 ° C and 1250 ° C, then hot-rolled to a thickness of 3mm in the ⁇ range and wound at 560 ° C Further, cold rolling was performed to a sheet thickness of 0.8 mm and annealing was performed at 820 ° C for 80 seconds to produce a cold-rolled steel sheet, and the YS, r value, and n value were measured.
  • the cold rolled steel sheet with a C content of 0.00 ⁇ or more and Nb of 0.03% or more has lower YS and higher n and r values than the conventional ultra-low carbon cold rolled steel sheet.
  • YS is 270MPa or less and n-. Is 0 ⁇ 20 or more.
  • the sol. A1 amount is 0.2-0.6%, the YS is further reduced to 260 MPa or less regardless of whether the slab heating temperature is 1250 ° C or 1150 ° C.
  • the ferrite grains were fine as in the case where the sol.Al content was 0.1 or less.
  • Si is an element that increases the strength by solid solution strengthening, and can be added as needed. However, if the amount exceeds 1.5, ductility, deterioration of secondary work embrittlement resistance, and an increase in YS will occur, so the Si amount should be 1.5 or less. Since the addition of Si causes the deterioration of the chemical conversion property of the cold-rolled steel sheet and the poor appearance of the hot-dip galvanized steel sheet, the Si content is desirably 0.5 or less. To increase the strength, the amount of Si is preferably set to 0.003% or more.
  • is an element that increases the strength by solid solution strengthening like Si, and is an element that prevents red-hot embrittlement, so that it can be added as needed. However, if the amount exceeds 3, the ductility decreases and YS increases, so the Mn amount is set to 3 or less. In addition, it is desirable that the amount of Mn be 2 or less in order to obtain a good plating appearance in a zinc plated steel sheet. In order to increase the strength, the Mn content is preferably set to 0.1% or more.
  • P is an effective element for strengthening steel.
  • the excessive addition causes the deterioration of secondary brittle resistance and ductility, and the increase of YS. Therefore, the P content is set to 0.15% or less.
  • the P content is desirably 0.1% or less because the alloying processability is significantly deteriorated and the adhesion of the plating is poor.
  • the P content is preferably set to 0.01 or more.
  • S is present in steel as sulfide. If the S content is excessive, the ductility will deteriorate, so the S content is set to 0.02 or less. From the viewpoint of descaling, the amount of S is desirably 0.004% or more, and from the viewpoint of ductility, the amount of S is desirably 0.01% or less.
  • N Since N must be completely precipitated as A1N with the above 0.1-1.5% sol.Al, the N content should be 0.007 or less.
  • the N content is preferably as small as possible, but is set to 0.001% or more because it is impossible to make it less than ⁇ .001 with the current steelmaking technology.
  • the balance is Fe and inevitable impurities.
  • B 0.0001-0.003%
  • Cu 0.5 or less
  • Ni 0.5 or less
  • Mo 0.3 or less
  • Cr 0.5 or less
  • Ti 0.04% or less
  • Sb 0.2 or less
  • Sn 0.2 or less It is desirable to contain at least one element selected from the group for the following reasons.
  • B It is effective to increase the B content to 0.0001% or more to improve the resistance to secondary working brittleness. However, if the amount exceeds 0.003%, the effect is small and the rolling load increases, so the B amount is set to 0.0001-0.003.
  • Cu, Ni, Mo, Cr In order to increase strength, improve secondary work brittleness resistance, and improve r value, Cu content is 0.5 or less, Ni content is 0.5% or less, Mo is 0.3% or less, Cr is The amount can be added in the range of 0.5 or less. However, Cu, Cr, and Ni are expensive elements. If the force exceeds 0.5%, the surface quality deteriorates. Mo deteriorates secondary work brittleness resistance Although the strength can be increased without causing YS, the YS increases when it exceeds 0.3%. In addition, when adding Cu, Cr, and Ni, it is preferable that all the amounts are 0.03% or more. When Mo is added, the amount of Mo is preferably set to 0.05 or more. Further, when Cu is added, it is desirable that Ni be contained in the same amount as Cu.
  • the amount of Ti can be added in the range of 0.04 or less. However, if the amount exceeds 0.04%, coarse Ti-containing precipitates increase, causing a decrease in strength as well as causing a portion of the force A1N to be replaced by Ti-containing precipitates, which hinders a decrease in YS.
  • the amount of Ti is preferably set to 0.005% or more.
  • Sb, Sn Sb content of 0.2% or less, Sn content of 0.2% or less, and 0.002 in order to improve the plating appearance, plating adhesion, fatigue resistance, toughness of the drawn area, etc. of zinc plated steel sheet ⁇ [Sb] + l / 2x [Sn] ⁇ 0.2
  • the addition of S is effective.
  • [Sb] and [Sn] represent the contents (% by mass) of Sb and Sn, respectively.
  • Addition of Sb and Sn prevents surface nitridation and oxidation during slab heating, winding after hot rolling, annealing with CAL or CGL, and additional intermediate annealing, thus suppressing plating unevenness At the same time, the plating adhesion is improved. Further, since the adhesion of zinc oxide in the plating bath is prevented, the plating appearance is also improved. However, if the amount exceeds 0.2, Sb and Sn themselves deteriorate the plating adhesion and also reduce the toughness.
  • the high-strength cold-rolled steel sheet of the present invention is obtained by heating a steel slab having a composition within the range of the present invention at a heating temperature SRT that satisfies the following formulas (3) and (4) and then hot rolling the hot-rolled steel sheet. And hot-rolled steel sheet are pickled, cold-rolled, and then annealed in a temperature range consisting of a ferrite single phase at a recrystallization temperature or higher;
  • [sol.Al] represents the content (% by mass) of sol.Al.
  • the slab heating temperature SRT prior to hot rolling is set to 1150 ° C
  • the slab heating temperature SRT is set to 1150 ° C. Low YS can be obtained.
  • SR is less than 1050 ° C, rolling load increases and production efficiency decreases. If SR exceeds 1350 ° C, surface oxidation becomes remarkable and surface quality deteriorates, so SRT ⁇ 1350 ° C and 1050 ° C ⁇ SRT ⁇ ⁇ 770+ ([sol.Al] -0.085) ° ⁇ 24 ⁇ 820 ⁇ ° C. In order to provide excellent surface quality, it is desirable to sufficiently remove not only the primary scale generated during slab heating, but also the secondary scale generated during hot rolling. In addition, at the time of hot rolling, heating by a par heater or the like can be performed.
  • the winding temperature after hot rolling affects PFZ formation and r-value.
  • the winding temperature is preferably 480-700 ° C, more preferably 500-600 ° C.
  • the pressure ratio is preferably higher, but if it exceeds 85%, the rolling load increases and the productivity decreases, so it is preferably 85% or less.
  • the annealing temperature is preferably 820 ° C. or higher, because the higher the annealing temperature, the more the NbC coarsening near the grain boundaries is promoted, and the lower the YS and the higher the n value. If the annealing temperature is lower than the recrystallization temperature, sufficiently low YS and high n value cannot be obtained, so the annealing temperature must be at least higher than the recrystallization temperature. However, when the temperature exceeds the Acl transformation point, austenite is formed, and the transformation to ferrite significantly reduces the size. Since the grain size increases and the YR increases, the annealing temperature must be within the temperature range of the ferrite single phase below the Acl transformation point.
  • the longer the annealing time the more the grain boundary movement becomes remarkable and the generation of PFZ is promoted.
  • the annealed cold-rolled steel sheet may be galvanized steel sheet by electroplating or hot-dip plating. Similar formability can be obtained after plating.
  • Examples of the zinc-based plating include pure zinc plating, alloyed zinc plating (zinc plating subjected to alloying and heat treatment after zinc plating), and zinc-nickel alloy plating. Similar moldability can be obtained even if an organic film treatment is performed after plating.
  • hot dip galvanizing was performed at 460 ° C after annealing, and immediately heated to 500 ° C in an inline alloying furnace to alloy the deposited layer. At this time, the basis weight per unit area was 45 g / m 2 .
  • [V0] is the value of the characteristic V in the steel sheet rolling direction
  • [V45] is the characteristic of the 45 ° direction relative to the steel sheet rolling direction
  • [V90] is the characteristic of the 90 ° direction in the steel sheet rolling direction.
  • the grain size of the ferrite grains was measured in the rolling direction, the thickness direction, the rolling direction, and the 45 ° direction by the JIS cutting method in a thickness section parallel to the rolling direction, and the average value was obtained.
  • the size and average area density of NbC and Nb (C, N) were determined by the methods described above.
  • Samples 1-19 which are examples of the present invention, YS of 270 MPa or less and ⁇ of 0.20 or more were obtained. Is obtained. The r value is as high as 1.8 or more. In particular, in the range of sol. A1 force S 0.1-0.6, YS of 260MPa or less can be obtained in samples 2-6, 9-11, 15-17, and 19 with the optimized slab heating temperature.
  • both the average area density of diameter 50nm or more coarse b to inhibit the formation of PFZ (C, N) is a 7.0 X 10- 2 pieces / ⁇ 2 or less, the grain boundary portion 0.2 -A PFZ having a width of 2.4 m was formed.
  • Sample 22 which corresponds to a conventional ultra-low carbon high-strength cold-rolled steel sheet, the YS greatly exceeds 270 MPa, and the n value is less than 0.20.
  • the ferrite grain size of the sample 1-19 is the example of the present invention is less than both lO zm, a fine compared to Fuweraito particle size 11.4 ⁇ ⁇ of sample 22 which is a conventional example.
  • Sample 1-19 of the present invention is also excellent in rough surface resistance and secondary work brittleness resistance. Table 1 (% by mass)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、平均粒径10μm以下のフェライト粒からなる組織を有し、フェライト粒には、直径50nm以上のNb(C,N)の単位面積当りの平均個数(平均面積密度)が7.0×10-2個/μm2以下存在し、かつフェライト粒の粒界に沿って、幅が0.2-2.4μmであり、NbCの平均面積密度がフェライト粒の中央部に析出したNbCの平均面積密度の60%以下である領域が形成されている高強度冷延鋼板、例えば、質量%で、C:0.004-0.02%、Si:1.5%以下、Mn:3%以下、P:0.15%以下、S:0.02%以下、sol.Al:0.1-1.5%、N:0.001-0.007%、Nb:0.03-0.2%、残部Feおよび不可避的不純物からなる組成の高強度冷延鋼板に関する。本発明の高強度冷延鋼板は、340MPa以上の引張強度を有し、耐面歪性と張り出し性に優れているので、自動車パネル部品に最適である。

Description

明 細 書 高強度冷延鋼板およびその製造方法 技術分野 本発明は、 自動車、 家電製品等に使用される高強度冷延鋼板、 特に 340MPa 以上の引張強度 TSを有するプレス成形性に優れた高強度冷延鋼板、 およびそ の製造方法に関する。
背景技術 従来より、 サイドパネルやドアインナ一といつた複雑な形状を有し、 成形が 難しい自動車パネル部品には、 深絞り性と張り出し性に優れ、 270MPa程度の TSを有する interstitial free ( IF)の冷延鋼板(27 OE , F)力広く用レヽられ てきた。
近年、 自動車車体の軽量化や高強度化に対するニーズの一層の高まりから、 これらの難成形部品にも 340MPa以上、 とりわけ 390MPa以上の TSを有する 高強度冷延鋼板の適用が進みつつある。 また、 従来より高強度冷延鋼板が適用 されていたインナー部品などにおいても同様に一層の高強度化を図り、 補強部 品の削減や薄肉化により車体を軽量化しようとする動きがある。
しかしながら、 このような難成形部品の高強度化や薄肉化を図ると、 降伏強 度 YSの増加、 加工硬化指数 n値の低下および薄肉化に起因する面歪の発生頻 度が極端に増加する。 この面歪は、 プレス成形面のうねりやしわのような欠陥 であり、 プレス成形品の寸法不良や外観不良の原因となる。 したがって、 自動 車パネル部品のような難成形部品に高強度冷延鋼板を適用する場合は、 鋼板に は、 耐面歪性と張り出し性に優れていることが必要であり、 より具体的には、 YS≤270MPa, 。 0 . 20であることが望まれている。 ここで、 。は引張試 験で得られる応力-歪曲線の歪量 1%と 10%の 2点より求めた加工硬化指数であ る。
降伏比 YR (=YS/TS )を低減する手法としては、 Cと Nを極力低減して Tiや Nbを添加した鋼を用レ、、 熱間圧延後 680°C以上の温度で巻取って Tiや Nbを 含む析出物の数を低減して、 冷間圧延後の焼鈍時に粒成長を促進させる方法が 知られている。 また、 特開平 6- 108155号公報や特許 3291639号公報には、 Ti添加鋼の Cと S量を制御して Ti ( C, S )を析出させ、 微細な TiCの析出を抑 制して粒成長を促進させる方法が開示されている。
し力 し、 これらの方法は、 TSが 270MPa程度の軟質冷延鋼板では有効であ るが、 粒成長を促進させると YSの低下と同時に TSも低下するので、 TS力 s 340MPa以上の高強度冷延鋼板においては必ずしも有効とはいえない。 すなわ ち、 TSが低下した分 Si、 Mn、 Pといった合金元素を添加して強度を補完する 必要があるため、 製造コストが増加したり、 表面欠陥が生じたり、 270MPa以 下の YSが得られなくなるといった問題が生じる。 例えば、 結晶粒径を 10 /x m 程度から 20 x m程度に粗大化した場合、 Si、 Mn、 Pの添加で TSの低下を補完 しても、 同一の TSを有する従来の高強度冷延鋼板に比べ高々 l OMPa程度低い YSしか得られないばかり力 耐肌荒れ性ゃ耐二次加工脆性が劣化する。
—方、 特開 2001- 131681号公報、 特開 2002- 12943号公報、 特開 2002 - 12946号公報には、 結晶粒の粗大化を図ることなく YSを低減し、 高い n値を 得るための技術が開示されている。 この技術では、 C量を従来の極低炭素鋼板 より多い 0 . 004-0 . 02%程度にし、 細粒強化と析出強化を積極的に活用して従 来の極低炭素の IF鋼板より YSが約 20MPa低減される。
しかしながら、 こうした技術により 390MPaあるレヽは 440MPa程度の TSを 有する高強度冷延鋼板を製造した場合、 YSが 270MPaを超え、 面歪の発生を 完全に抑制することが難しくなる。 発明の開示 本発明は、 YS≤270MPa、 。 0.20が得られ、 耐面歪性と張り出し性に優 れた 340MPa以上の TSを有する高強度冷延鋼板およびその製造方法を提供す ることを目的とする。 この目的は、 平均粒径 ΙΟμια以下のフェライト粒からなり、 フェライト粒に は、 直径 50nm以上の Nb(C,N)の単位面積当りの平均個数(以後、 平均面積密 度と呼ぶ)が 7.0X10—2個/ μπι2以下存在し、 かつフェライト粒の粒界に沿って、 幅が 0.2- 2.4/ mであり、 NbCの平均面積密度がフェライト粒の中央部に析 出した NbCの平均面積密度の 60 以下である領域 (以後、 PFZ と呼ぶ)が形成さ れている高強度冷延鋼板によって達成される。
この高強度冷延鋼板は、 例えば、 質量%で、 C: 0.004-0.02%、 Si: 1.5 以下. Mn:3 以下、 P:0.15 以下、 S = 0.02%以下、 sol . A1 ·· 0.1 - 1.5%、 N: 0.001- 0.007 、 Nb: 0.03- 0.2 、 残部 Feおよび不可避的不純物からなる組成の高強 度冷延鋼板により実現できる。
また、 この高強度冷延鋼板は、 上記の組成を有する鋼スラブを下記の式(3) および(4)を満足する加熱温度 SR で加熱後熱間圧延して熱延鋼板とする工程 と、 この熱延鋼板を酸洗、 冷延後、 再結晶温度以上のフェライト単相からなる 温度域で焼鈍する工程とを有する製造方法によって製造できる; '
SRT≤1350°C ··· (3)
1050°C≤SRT≤ {770+ ( [sol.Al] -0.085) 0>2 X 820} °C -" (4)
ここで、 [sol.Al]は、 sol.Alの含有量(質量%)を表す。 図面の簡単な説明 図 1は、 YS、 n値、 r値と sol.Al量の関係を示す図である。
図 2は、 スラブ加熱温度、 sol.Al量と YSの関係を示す図である。 発明を実施するための形態 l.Nbを含む析出物の制御
本発明者等は、 高強度冷延鋼板の YSを低減する方法について検討を行った ところ、 平均粒径 10/xra以下のフェライト粒からなる組織とし、 フェライト粒 には、 直径 5Qnm以上の Nb(C,N)の平均面積密度を 7.0 X 10—2個// z m2以下存 在させ、 かつフェライト粒の粒界に沿って、 幅が 0.2- 2.4 ζπιであり、 NbC の平均面積密度がフェライト粒の中央部に析出した NbCの平均面積密度の 60 以下、 好ましくは 20%以下である領域、 すなわち PFZを形成させれば、
270MPa以下の YS 0.20以上の _1()、 '340MPa以上の TSを有する高強度冷 延鋼板が得られることを見出した。
ここで、 上記の直径 50nm以上の Nb(C,N)は、 熱間圧延段階で直径 50nm前 後の大きで析出しており、 冷間圧延後の焼鈍においても大きく成長することは なく、 フェライト粒内に均一に析出した析出物である。
また、 フェライト粒の中央部に析出した NbCは、 焼鈍時に析出した直径 10 前後の微細な析出物であり、 PFZに析出した NbCは、 熱間圧延時に均一 に析出した直径 2nm前後の極めて微細な析出物が焼鈍時にォストヮルド成長し、 直径 50niri前後に成長した析出物である。
なお、 NbCと Nb(C,N)の平均面積密度の測定は、 加速電圧 300kVの透過電 子顕微鏡を用い 5, 610倍の倍率で観察し、 以下のように行った。
フェライト粒内にほぼ均一に析出した直径 50nm以上の Nb(C,N)については、 フェライト粒内の任意の 50箇所を選ぴ、 各々の箇所において直径 2 μπιの正円 内における Nb (C,N)の個数を測定し単位面積当りの個数(面積密度)を求めて、 平均する。
フェライト粒の中央部に析出した NbCについても、 上記と同様な方法で求め る。
PFZに析出した NbCについては、 ォストワルド成長した任意の 50個を選び、 それぞれの NbCについて NbCとそれに近接する粒界とに内接する円を設定し、 この正円内の NbCの個数を測定し面積密度を求めて、 平均する。 また、 PFZの幅は、 上記 50個の正円の直径を平均して求める。
本発明の高強度冷延鋼板では、 直径 10nm前後の微細な NbCが高密度で析出 している硬質なフェライト粒中央部の領域と直径 50nm前後の粗大な NbCが低 密度で析出している軟質なフェライト粒界に沿った PFZが形成され、 この軟質 な PFZが変形初期に低応力で変形を開始するために、 低 YSと高 n値が得られ ると考えられる。 また、 フェライト粒中央部の領域は硬質なので、 高 TSが維 持される。
また、 上述したように、 熱間圧延時に均一に析出した直径 2nm前後の極めて 微細な NbCは、 冷間圧延後、 連続焼鈍ライン( CAL )や連続亜鉛メツキライン (CGL)で行われる焼鈍時に再結晶フェライト粒の粒界上でォストワルド成長し て直径 50nm前後に粗大化するので、 粒界移動が促進され、 PFZが形成される と考えられる。
結晶粒を著しく粗大化させないためには、 再結晶直後のフェライト粒をでき るだけ微細にすることが好ましい。 また、 これによつて PFZをより効果的に形 成できる。
2·.組成
本発明の高強度冷延鋼板として、 例えば、 質量%で、 C: 0.004-0.02%、 Si: 1.5%以下、 Mn:3も以下、 P: 0.15 以下、 S: 0.02 以下、 sol.Al:0.1- 1.5%、 N:0.001-0.007% Nb: 0.03- 0.2 、 残部 Feおよび不可避的不純物 からなる糸且成の冷延鋼板が上げられる。 特に、 NbCや Nb(C,N)の制御には、 C、 Nb、 sol. A1が重要な役割を果たすので、 C、 Nb、 sol ·Α1の順で限定理由を 説明する。
C:Cは、 Nbと結合するので NbCや Nb(C,N)の制御に重要な役割を演ずる。 上記のように NbCや Nb(C,N)を制御するには、 C量を 0.004- 0.02 、 より好 ましくは 0.004- 0.01 とする必要がある。
Nb:上記のように NbCや Nb(C,N)を制御するには、 Nb量を 0.03%以上とす る必要がある。 また、 その量が 0.2%を超えると圧延負荷が増大して生産性が 低下したり、 コスト増にもなるので、 Nb量は 0.2%以下にする必要がある。 なお、 r値を高めるには、 ( [Nb]/[C] (12/93) 1とすることが好ましく、 ( [Nb]/[C] ) X (12/93)を 1.5-3.0とすることがより好ましい。
sol.Al量:上貢己のよう C量を 0.004-0.02%, Nb量を 0.03-0.2 こし ても、 必ずしも YS^270MPaが得られない場合がある。 この原因は、 熱間圧延 時に形成された粗大な Nb(C,N)によると考えられる。 すなわち、 上述したよう に、 直径 50ran前後の粗大な Nb(C,N)は熱間圧延時に形成されるが、 サイズが 大きく、 かつフェライト粒における固溶限も NbCと比べると小さいので、 その 後の焼鈍時にはォストワルド成長し難く、 PFZの形成を阻害し YSの低下を妨 げると考えられる。
そこで、 本発明者等は、 直径 50nm以上の粗大な Nb(C,N)の生成を抑制し、 PFZの形成に有効な NbCの生成を促進させるための方法を検討したところ、 sol.Al量を 0.1%以上添加することが有効であることを見出した。
従来より、 鋼中の Nは A1と結合して A1Nとして存在していると考えられて いたが、 C量が 0.004 以上、 Nb量が 0.03%以上の鋼では、 Nb(C,N)の析出 反応が著しく促進され、 A1Nが析出する以前の仕上圧延時に Nb(C,N)の析出が 進行する。 そこで、 A1を 0.1%以上含有させることで、 Nb(C,N)が析出する前 に A1Nを析出させれば、 PFZの形成に有効な NbCの析出を促進できることに なる。
図 1に、 YS、 r値、 n値と sol.Al量の関係を示す。
図 1の結果 fま、 C:0.0060%、 Si:0— 0.45%、 Mn:1.5-2%s P:0.02%、 S:0.002%N N: 0.003%N B:0.0005% Nb:0.11%、 sol . Al : 0.01 - 1.7 の鋼 を溶製しスラブとした後、 このスラブを 1150°Cと 1250°Cに加熱後、 γ域で板 厚 3mmに熱間圧延して 560°Cで巻取り、 さらに板厚 0.8mmに冷間圧延して 820°Cで 80secの焼鈍を行って冷延鋼板を製造して、 YS、 r値、 n値を測定し て求めたものである。 なお、 予め求めた Si、 Mn、 sol.Alの 1 あたりの TS 上昇量、 それぞれ 86MPa、 33MPa、 32 · 5MPaより、 Si、 Mn、 Al量を調整し て TSがほぼ 440MPaと一定になるようにした。 具体的には、 [Si] + [Mn] /2.6+[sol.Al] /2.6を 1.25 にした。 ここで、 [M]は元素 Mの 含有量(質量 )を表す。
また、 比較として、 C:0.0020%、 Si:0.75%、 Mn:2%、 P:0.02%、
S: 0.002%, N:0.003¾、 B:0.0005%、 Nb:0.015%、 Ti ·· 0.03 の鋼を溶製し、 同様の条件で製造した従来の極低炭素冷延鋼板の YS、 r値、 n値も合わせて示 してある。
C量が 0.00 ^以上、 Nbが 0.03%以上の冷延鋼板では、 従来の極低炭素冷延 鋼板に比べ、 低い YS、 高い n値と r値が得られることがわかる。 特に、 sol. A1量を 0.1— 1.5%にすると、 YSは 270MPa以下、 n—。は 0 · 20以上と なる。 また、 sol. A1量を 0.2- 0.6%にすると、 スラブ加熱温度が 1250°C、 1150°Cのいずれの場合でも YSが 260MPa以下とより一層低くなる。 なお、 フ ェライト粒は sol.Al量が 0.1 以下の場合と同様、 ナ分に微細であった。
なお、 sol.Al量が 0.1 未満の場合、 PFZ の形成を阻害する直径 50nm以上 の粗大 Nb(C,N)が多く認められていたのに対し、 sol.Al 量が 0.1- 1.5 の範 囲では、 この粗大 Nb(C,N)が平均面積密度で 0- 7.0X10-2個/ と大幅に減 り、 PFZの形成が促進されていることが分かった。
sol.Al量を 0.1 以上にすると r値が大きく向上する原因は必ずしも明確で はないが、 A1そのものによる冷間圧延時の変形帯の生成挙動や微量残存する固 溶 C等に何らかの影響を及ぼしていると考えられる。
Si:Siは、 固溶強化により強度を上昇させる元素であり、 必要に応じて添加 できる。 しかし、 その量が 1.5 を超えると延性ゃ耐二次加工脆性の劣化、 YS の上昇を招くため、 Si量は 1.5 以下とする。 なお、 Siの添加は冷延鋼板の 化成処理性の劣化、 溶融亜鉛めつき鋼板の外観不良を招くため、 Si量は 0.5 以下とすることが望ましい。 なお、 強度の上昇には、 Si量を 0.003%以上とす ることが好ましい。
Μη:Μηは、 Siと同様に固溶強化により強度を上昇させる元素であり、 また、 赤熱脆性を防止する元素であるので、 必要に応じて添カ卩できる。 し力 し、 その 量が 3 を超えると延性の低下、 YSの上昇を招くため、 Mn量は 3 以下とする。 なお、 亜鉛めつき鋼板において、 良好なめっき外観を得るために、 Mn量は 2 以下とすることが望ましい。 なお、 強度の上昇には、 Mn量を 0.1%以上とする ことが好ましい。
P:Pは、 鋼の強化に有効な元素である。 しかし、 その過剰の添加は耐二次加 ェ脆性や延性の劣化、 YSの上昇を招くため、 P量は 0.15%以下とする。 また、 亜鉛めつき鋼板においては、 合金化処理性を著しく劣化させ、 めっきの密着不 良を招くため、 P量は 0.1%以下とすることが望ましい。 なお、 強度の上昇には、 P量を 0.01 以上とすることが好ましい。
S:Sは、 硫化物として鋼中に存在する。 その量が過剰に含まれると延性の劣 化を招くため、 S量は 0.02 以下とする。 デスケーリング性の観点からは S量 を 0.004%以上とすることが望ましく、 また、 延性の観点からは S量は 0.01% 以下とすることが望ましい。
N:Nは、 上記した 0.1- 1.5%の sol.Alにより完全に A1Nとして析出させ る必要があるため、 N量は 0.007 以下とする。 また、 N量は、 少ないほど好 ましいが、 現状の製鋼技術では◦ .001 未満にすることは不可能であるので 0.001%以上とする。
なお、 残部は Feおよび不可避的不純物である。
以上の元素にカロえ、 B:0.0001-0.003%, Cu:0.5 以下、 Ni:0.5 以下、 Mo:0.3 以下、 Cr:0.5 以下、 Ti:0.04%以下、 Sb:0.2 以下、 Sn:0.2 以下 のグループから選ばれた少なくとも一種の元素を含有させることが、 以下の理 由により望ましい。
B:耐二次加工脆性の向上のために、 B量を 0.0001%以上にすることが効果的 である。 し力 し、 その量が 0.003%を超えるとその効果は小さく、 圧延負荷の 増大を招くので、 B量は 0.0001— 0.003 とする。
Cu、 Ni、 Mo、 Cr:強度の上昇、 耐二次加工脆性の向上、 r値の向上を図るた めに、 Cu量を 0.5 以下、 Ni量を 0.5%以下、 Mo を 0.3%以下、 Cr量を 0.5 以下の範囲で添加できる。 しかし、 Cu、 Cr、 Niは高価な元素であるばか り力 0.5%を超えると表面品質を劣化させる。 Moは耐二次加工脆性を劣化さ せることなく強度を上昇させることができるが、 0.3%を超えると YSを増加さ せる。 なお、 Cu、 Cr、 Niを添加する場合は、 いずれの量も 0.03%以上とする ことが好ましい。 また、 Moを添加する場合は、 Mo量.を 0.05 以上とすること が好ましい。 さらに、 Cuを添加する場合は、 Niを Cuと等量含有させること が望ましい。
Ti: r値を向上させるために、 Ti量を 0.04 以下の範囲で添加できる。 しか し、 その量が 0.04%を超えると粗大な Ti含有の析出物が増加して強度の低下 を招くばかり力 A1Nの一部が Ti含有析出物に置き換えられ、 YSの低下を阻 害する。 なお、 Tiを添加する場合は、 Ti量を 0.005%以上とすることが好ま しい。
Sb、 Sn:亜鉛めつき鋼板のめっき外観、 めっき密着性、 耐疲労特性、 絞り部 の靱性などを向上させるために、 Sb量を 0.2%以下、 Sn量を 0.2%以下の範囲 で、 かつ 0.002≤ [Sb]+l/2x[Sn]≤0.2を満足させるように添加すること力 S 効果的である。 ここで、 [Sb]と [Sn]は、 それぞれ Sbと Snの含有量(質量%) を表す。 Sb、 Snの添加により、 スラブ加熱時、 熱間圧延後の巻取り時、 CAL や CGLによる焼鈍時、 および付加的な中間焼鈍時において表層窒化ゃ酸化が防 止されるため、 めっきムラが抑制されるとともに、 めっき密着性が改善される。 また、 めっき浴中での亜鉛酸化物の付着が防止されるため、 めっき外観も向上 する。 しかし、 その量が 0.2 を超えると Sb、 Snそれ自体がめっき密着性を劣 化させ、 靱性も低下させる。
3.製造方法
本発明の高強度冷延鋼板は、 本発明範囲にある成分組成の鋼スラブを、 下記 の式( 3 )および( 4 )を満足する加熱温度 SRTで加熱後熱間圧延して熱延鋼板と する工程と、 熱延鋼板を酸洗、 冷延後、 再結晶温度以上のフェライト単相から なる温度域で焼鈍する工程とを有する製造方法によって製造できる;
SRT≤1350°C ··■ (3)
1050°C≤SRT≤ {770+ ( [sol.Al] -0.085) °·24 X 820} °C "- (4)
ここで、 [sol.Al]は、 sol.Alの含有量(質量%)を表す。 図 1に示すように、 sol. A1量が 0.1- 0.6 の場合は、 熱間圧延に先立つス ラブの加熱温度 SRTを 1150°Cとしたときの方が、 1250°Cの場合に比べ、 より 低い YSが得られる。
そこで、 図 1の結果を得るために用いた上記の鋼を用い、 SRTを変えて冷延 鋼板を作製し、 SRT、 sol. A1量と YSの関係を調査した。
図 2に示すように、 sol.Al:0.1— 0.6%、 力つ SRT^ {770+ ( [sol.Al] - 0.085)°·24Χ820} °Cとすると、 260MPa以下のより低い YSが得られることが わかる。 これは、 SRTを制御して A1Nの溶解を抑制することにより、 熱間圧延 時に Nb(C,N)の析出が完全に抑制されるためと考えられる。 また、 このとき粒 径が 10 μπι以下の微細なフェライト粒が得られた。
SR が 1050°C未満では、 圧延負荷が高くなり生産効率が低下し、 1350°Cを 超えると表面酸化が顕著になり表面品質が劣化するので、 SRT≤1350°C、 かつ 1050°C≤SRT≤ {770+ ( [sol.Al] -0.085) °·24Χ 820} °Cとする必要カある。 優れた表面品質を付与するためには、 スラブ加熱時に生成する一次スケール のみならず熱間圧延時に生成する二次スケールについても十分に除去すること が望ましい。 なお、 熱間圧延時には、 パーヒーターなどによる加熱を行うこと もできる。
熱間圧延後の卷取温度は、 PFZの形成や r値に影響を及ぼす。 PFZをより効 果的に形成させるには微細な NbCを析出させる必要があり、 高い r値を得るに は固溶 Cを十分に低減する必要がある。 それには、 卷取温度は 480- 700°Cとす ることが好ましく、 500 - 600°Cとすることがより好ましい。
冷間圧延時の?^圧率は、 高い方が好ましいが、 85%を超えると圧延負荷が高 くなり生産性を低下させるため、 85%以下が好ましい。
焼鈍温度は、 高いほど粒界近傍での NbCの粗大化が促進され、 より低い YS、 より高い n値が得られるため、 820°C以上とすることが好ましい。 焼鈍温度が 再結晶温度未満の場合、 十分な低い YSや高い n値が得られないので、 焼鈍温 度は少なくとも再結晶温度以上とする必要がある。 ただし、 Acl変態点を超え ると、 オーステナイトが生成し、 その後のフェライトへの変態により著しく細 粒化して YRは高くなるので、 焼鈍温度は Acl変態点以下のフェライト単相の 温度域とする必要がある。
焼鈍時間は、 長いほど粒界移動が顕著になり PFZの生成が促進されるので、 40sec以上の均熱時間が取れるようにすることが望ましい。
焼鈍後の冷延鋼板には、 電気めつきまたは溶融めつきによつて亜鉛系めっき 鋼板とすることもできる。 めっき後も同様な成形性が得られる。 亜鉛系めつき としては、 純亜鉛めつき、 合金化亜鉛めつき(亜鉛めつき後に合金化加熱処理さ れた亜鉛めつき)、 亜鉛-ニッケル合金めつき等が挙げられる。 また、 めっき後 に有機皮膜処理を施しても同様な成形性が得られる。 実施例 1
表 1に示す成分の鋼 A-Vを溶製後、 230 厚のスラブに連続鑄造した。 こ のスラブを 1090- 1325°Cに加熱後、 表 2に示す熱延条件で熱間圧延して板厚 3 . 2mmの熱延板とした。 この熱延板を冷間圧延して板厚 0 . 8mmの冷延板とし、 引続き表 2に示す焼鈍条件で連続焼鈍ライン( CAL 、 溶融亜鉛めっきライン ( CGL)、 箱焼鈍(BAF)により焼鈍を行い、 伸長率 0 . 5%の調質圧延を行って、 試料 1-27を作製した。
CGLでは、 焼鈍後 460°Cで溶融亜鉛めつき処理を行い、 直ちにインライン合 金化処理炉で 500°Cに加熱してめつき層の合金化処理を行った。 このときのめ つき目付量は片面あたり 45g/m2であった。
作製した試料より圧延方向、 圧延方向に対して 45° 方向、 圧延方向に対して 90° 方向より JIS5号試験片を採取し、 引張試験を行い、 YS、 ni_10, r値、 TS の特性の平均値を次ぎの式から求めた。
特性 Vの平均値 = ( [V0 ] +2 [V45 ] + [V90 ] ) /4
ここで、 [V0 ]は鋼板圧延方向の特性 Vの値、 [V45 ]は鋼板圧延方向に対して 45 °方向の特性 Vの値、 [V90 ]は鋼板圧延方向に対して 90 °方向の特性 Vの値 を表す。 また、 フェライト粒の結晶粒径を、 圧延方向に平行な板厚断面において JIS 切断法により圧延方向、 板厚方向、 圧延方向と 45° 方向の粒径を測定し、 その 平均値で求めた。 NbCや Nb(C,N〉のサイズや平均面積密度については、 上述し た方法により求めた。
結果を表 2に示す。
本発明例である試料 1-19では、 いずれも 270MPa以下の YS、 0.20以上の ^。が得られる。 また、 r値は 1.8以上と高い。 特に、 sol . A1力 S 0.1— 0.6 の範囲で、 スラブ加熱温度が適正化された試料 2 - 6、 9-11、 15 - 17、 19では、 260MPa以下の YSが得られる。 なお、 本発明例では、 いずれも PFZの形成を 阻害する直径 50nm以上の粗大 b (C,N)の平均面積密度は 7.0 X 10— 2個 / μια2 以下であり、 粒界部分には 0.2- 2.4 mの幅を有する PFZが形成されていた。 一方、 比較例の試料 20- 27では、 直径 50ηπι以上の粗大 Nb(C,N)の平均面 積密度、 PFZのいずれか満たされていないため、 YSが高く、 n値が低い。 すな わち、 sol. A1量の少なレヽ試料 20で fま、 YS力 S 270MPaを超え、 n :^ 0.20 未満で、 r値が 1.8未満である。 sol.Alが過剰に添加されている試料 21で は、 YSカ 270MPaを超え、 n値カ 0 · 20未満である。 また、 C, Si、 Mn、 P力 S 本発明の範囲外である試料 23、 24、 25、 26では、 YS力 S 27 OMPaを大きく超 える。 Nbが本発明の範囲外である試料 27は、 YSが 270MPaを大きく超え、 n値は 0.20未満と低く、 r値も大幅に低下している。
従来の極低炭素高強度冷延鋼板に相当する試料 22では、 YSが 270MPaを大 きく超え、 n値が 0.20未満である。
なお、 本発明例である試料 1-19のフェライト粒径はいずれも lO zm未満で あり、 従来例である試料 22のフヱライト粒径 11.4 μπιと比べて微細である。 このため、 本発明例の試料 1-19は耐肌荒れ性ゃ耐二次加工脆性にも優れてい る。 表 1 (質量%)
Figure imgf000015_0001
下線部:発明範囲外
Figure imgf000016_0001
下 : 発明 囲
※1350°Cを超えるものは、 1350°Cとした。

Claims

1. 平均粒径 10 xm以下のフヱライト粒からなり、 前記フヱライト粒には、 直 径 50nm以上の Nb(C,N)の単位面積当りの平均個数 (平均面積密度と呼ぶ)が 7.0X10— 2個/ μιτι2以下存在し、 かつ前記フェライト粒の粒界に沿って、 幅が 0.2- 2.4/xmであり、 NbCの平均面積密度が前記フェライト粒の中央部に析出 した NbCの平均面積密度の 60%以下である領域が形成されている高強度冷延鋼 求
板。
¾早
2. 質量 で、 C:0.004-0.02%, Si:1.5%以下囲、 Mn:3%以下、 P:0.15 以下、 S:0.02 以下、 sol.Al:0.1- 1.5も、 N: 0.001 - 0.007%、 Nb: 0.03-0.2%、 残部 Feおよび不可避的不純物からなる請求の範囲 1の高強度冷延鋼板。
3. sol.Al:0.2- 0.6%である請求の範囲 2の高強度冷延鋼板。
4. 下記の式(1)を満足する請求の範囲 2の高強度冷延鋼板;
( [Nb]/ [C] ) x (12/93)≥1 ·'·(1)
ここで、 [Nb]と [C]は、 それぞれ Nbと Cの含有量(質量 )を表す。
5. 下記の式(1)を満足する請求の範囲 3の高強度冷延鋼板;
( [Nb]/[C] ) x (12/93)≥l '·· (1)
ここで、 [Nb]と [C]は、 それぞれ Nbと Cの含有量(質量 )を表す。
6. さらに、 B: 0.0001-0.003 を含有する請求の範囲 2の高強度冷延鋼板。
7. さらに、 B: 0.0001 - 0.003%を含有する請求の範囲 5の高強度冷延鋼板。
8. さらに、 Cu:0.5%以下、 Ni:0.5%以下、 Μο:0·3¾以下、 Cr:0.5%以下、 Ti:0.04 以下のグループから選ばれた少なくとも一種の元素を含有する請求 の範囲 2の高強度冷延鋼板。
9. さらに、 Cu:0.5 以下、 Ni:0.5%以下、 Μο:0·3 以下、 Cr:0.5 以下、 Ti: 0.04%以下のグループから選ばれた少なくとも一種の元素を含有する請求 の範囲 7の高強度冷延鋼板。
10. さらに、 Sb:0.2 以下、 Sn:0.2¾以下のうち少なくとも一種の元素を含 有し、 かつ下記の式(2)を満足する請求の範囲 2の高強度冷延鋼板;
0.002≤ [Sb]+l/2x [Sn]≤0.2 "- (2)
ここで、 [Sb]と [Sn]は、 それぞれ Sbと Snの含有量(質量%)を表す。
11. さらに、 Sb:0.2%以下、 Sn:0.2 以下のうち少なくとも一種の元素を含 有し、 かつ下記の式(2)を満足する請求の範囲 9の高強度冷延鋼板;
0.002≤ [Sb]+l/2x [Sn]≤0.2 ··· (2)
ここで、 [Sb]と [Sn]は、 それぞれ Sbと Snの含有量(質量 )を表す。
12. 請求の範囲 2から 11に記載のいずれか一つ E成を有する鋼スラブを、 下 記の式(3〉および(4)を満足する加熱温度 SR で加熱後熱間圧延して熱延鋼板 とする工程と、
前記熱延鋼板を、 酸洗、 冷延後、 再結晶温度以上のフェライト単相からな る温度域で焼鈍する工程と、
を有する高強度冷延鋼板の製造方法;
SRT≤1350°C … (3)
1050°C≤SRT≤ {770+ ( [sol . A1] -0.085 ) °·24 X 820} 。C ··· (4)
ここで、 [sol.Al]は、 sol ·Α1の含有量(質量 )を表す。
PCT/JP2004/017990 2003-12-05 2004-11-26 高強度冷延鋼板およびその製造方法 WO2005054534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/549,164 US7608156B2 (en) 2003-12-05 2004-11-26 High strength cold rolled steel sheet and method for manufacturing the same
CA002517499A CA2517499C (en) 2003-12-05 2004-11-26 High strength cold rolled steel sheet and method for manufacturing the same
EP04819917A EP1616971B1 (en) 2003-12-05 2004-11-26 High strength cold rolled steel sheet and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-407124 2003-12-05
JP2003407124 2003-12-05

Publications (1)

Publication Number Publication Date
WO2005054534A1 true WO2005054534A1 (ja) 2005-06-16

Family

ID=34650297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017990 WO2005054534A1 (ja) 2003-12-05 2004-11-26 高強度冷延鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US7608156B2 (ja)
EP (1) EP1616971B1 (ja)
JP (1) JP4507851B2 (ja)
KR (1) KR100733017B1 (ja)
CN (1) CN100453675C (ja)
CA (1) CA2517499C (ja)
TW (1) TWI291494B (ja)
WO (1) WO2005054534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040317A1 (en) 2005-10-06 2007-04-12 Posco The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040069B2 (ja) * 2005-05-23 2012-10-03 住友金属工業株式会社 高張力冷延鋼板およびその製造方法
KR100711362B1 (ko) * 2005-12-07 2007-04-27 주식회사 포스코 도금특성 및 연신특성이 우수한 고강도 박강판 및 그제조방법
WO2007067014A1 (en) * 2005-12-09 2007-06-14 Posco Tole d'acier laminee a froid de haute resistance possedant une excellente propriete de formabilite et de revetement, tole d'acier plaquee de metal a base de zinc fabriquee a partir de cette tole et procece de fabrication de celle-ci
CN100334248C (zh) * 2005-12-30 2007-08-29 武汉钢铁(集团)公司 冷轧耐候深冲汽车板及其制备方法
JP2007211337A (ja) * 2006-01-12 2007-08-23 Jfe Steel Kk 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板およびその製造方法
JP2008308718A (ja) * 2007-06-13 2008-12-25 Sumitomo Metal Ind Ltd 高強度鋼板およびその製造方法
JP5082773B2 (ja) * 2007-10-31 2012-11-28 Jfeスチール株式会社 高張力冷延鋼板およびその製造方法
KR100957960B1 (ko) * 2007-12-26 2010-05-17 주식회사 포스코 가공성 및 표면품질이 우수한 냉연강판 및 그 제조방법
JP5391607B2 (ja) * 2008-08-05 2014-01-15 Jfeスチール株式会社 外観に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101153485B1 (ko) * 2008-12-24 2012-06-11 주식회사 포스코 딥드로잉성이 우수하고 고항복비를 갖는 고강도 냉연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
KR101228746B1 (ko) * 2009-02-09 2013-01-31 주식회사 포스코 가공성이 우수한 심가공용 냉연강판 및 그 제조방법
JP5423092B2 (ja) 2009-03-27 2014-02-19 Jfeスチール株式会社 絞りおよびしごき加工後の表面性状に優れた缶用鋼板およびその製造方法
JP5041096B2 (ja) * 2011-11-24 2012-10-03 住友金属工業株式会社 高張力冷延鋼板およびその製造方法
JP5310920B2 (ja) * 2011-12-08 2013-10-09 Jfeスチール株式会社 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
KR102060522B1 (ko) * 2012-03-30 2019-12-30 뵈스트알파인 스탈 게엠베하 고강도 냉연 강판 및 그의 제조 방법
JP6211784B2 (ja) * 2013-03-29 2017-10-11 山陽特殊製鋼株式会社 疲労強度に優れた自動車用機械部品の製造方法および該方法による自動車用機械部品
CN103320577A (zh) * 2013-06-11 2013-09-25 鞍钢股份有限公司 一种真空循环脱气炉生产汽车面板控碳控氮的方法
JP6402830B2 (ja) * 2015-08-24 2018-10-10 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板及びその製造方法
CN111088461B (zh) * 2020-01-03 2021-06-11 北京科技大学 一种纳米增强抗氢脆钢及其制备方法
CN115558858A (zh) * 2022-10-08 2023-01-03 北京首钢股份有限公司 一种钢带其制备方法、汽车外板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558347A (en) * 1978-10-25 1980-05-01 Sumitomo Metal Ind Ltd Low alloy, high tensile steel and manufacture thereof
JPH0280539A (ja) * 1988-09-16 1990-03-20 Nisshin Steel Co Ltd 窒化用鋼素材
JPH05287547A (ja) * 1992-04-06 1993-11-02 Kawasaki Steel Corp 溶接性に優れた缶用鋼板およびその製造方法ならびに製缶方法
JPH06330180A (ja) * 1993-05-25 1994-11-29 Kawasaki Steel Corp 深絞り性に優れた高強度冷延鋼板の製造方法
EP1318205A1 (en) 2000-06-20 2003-06-11 Nkk Corporation Thin steel sheet and method for production thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853903A (en) 1996-05-07 1998-12-29 Nkk Corporation Steel sheet for excellent panel appearance and dent resistance after panel-forming
ES2197338T3 (es) 1996-12-06 2004-01-01 Jfe Steel Corporation Lamina de acero para tubo de laminado doble y procedimiento de fabricacion.
CN1119428C (zh) * 1998-12-07 2003-08-27 日本钢管株式会社 高强度冷轧钢板及其制造方法
AU773014B2 (en) 1999-10-22 2004-05-13 Jfe Steel Corporation Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
JP4214664B2 (ja) * 2000-06-30 2009-01-28 Jfeスチール株式会社 プレス成形用薄鋼板およびその製造方法
JP4013505B2 (ja) * 2000-11-27 2007-11-28 住友金属工業株式会社 極低炭素薄鋼板とその製造方法
EP1354970B1 (en) * 2000-12-29 2011-02-16 Nippon Steel Corporation High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558347A (en) * 1978-10-25 1980-05-01 Sumitomo Metal Ind Ltd Low alloy, high tensile steel and manufacture thereof
JPH0280539A (ja) * 1988-09-16 1990-03-20 Nisshin Steel Co Ltd 窒化用鋼素材
JPH05287547A (ja) * 1992-04-06 1993-11-02 Kawasaki Steel Corp 溶接性に優れた缶用鋼板およびその製造方法ならびに製缶方法
JPH06330180A (ja) * 1993-05-25 1994-11-29 Kawasaki Steel Corp 深絞り性に優れた高強度冷延鋼板の製造方法
EP1318205A1 (en) 2000-06-20 2003-06-11 Nkk Corporation Thin steel sheet and method for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1616971A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040317A1 (en) 2005-10-06 2007-04-12 Posco The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
EP1934380A1 (en) * 2005-10-06 2008-06-25 Posco The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
EP1934380A4 (en) * 2005-10-06 2011-12-28 Posco COLD-HARDENING COLD-ROLLED STEEL PLATE WITH EXCELLENT BENDING RATIO RANGE AND MANUFACTURING METHOD THEREFOR
US8398786B2 (en) 2005-10-06 2013-03-19 Posco Precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
US8864922B2 (en) 2005-10-06 2014-10-21 Posco Method for manufacturing a precipitation-hardening cold-rolled steel sheet having excellent yield ratios

Also Published As

Publication number Publication date
US7608156B2 (en) 2009-10-27
EP1616971B1 (en) 2012-03-21
TW200532031A (en) 2005-10-01
EP1616971A4 (en) 2006-05-17
KR100733017B1 (ko) 2007-06-27
JP4507851B2 (ja) 2010-07-21
CA2517499A1 (en) 2005-06-16
KR20060007400A (ko) 2006-01-24
CN1780928A (zh) 2006-05-31
EP1616971A1 (en) 2006-01-18
CN100453675C (zh) 2009-01-21
TWI291494B (en) 2007-12-21
JP2005187939A (ja) 2005-07-14
CA2517499C (en) 2009-09-29
US20060169365A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
KR101615463B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
KR101399741B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
KR100931140B1 (ko) 성형성이 우수한 고장력 강판 및 그 제조 방법
JP4507851B2 (ja) 高強度冷延鋼板およびその製造方法
JP4542515B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
WO2011004779A1 (ja) 高強度鋼板およびその製造方法
EP1642990A1 (en) High strength steel plate excellent in formability and method for production thereof
KR20140031337A (ko) 합금화 용융 아연 도금층 및 그것을 가진 강판 및 그 제조 방법
JP5765116B2 (ja) 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2001098552A1 (en) Thin steel sheet and method for production thereof
JP6443492B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
KR101989726B1 (ko) 고강도 강판 및 그 제조 방법
JP4696870B2 (ja) 高強度鋼板及びその製造方法
JP4500197B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5256689B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR20200075949A (ko) 액상금속취화(lme) 균열 저항성이 우수한 초고강도 고연성 냉연강판, 도금강판 및 이들의 제조방법
JP5031751B2 (ja) 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法
JP2012031466A (ja) 高強度鋼板およびその製造方法
CN114807737B (zh) 一种热镀锌钢及其制造方法
WO2021020439A1 (ja) 高強度鋼板、高強度部材及びそれらの製造方法
JPH06122939A (ja) 焼付硬化性と成形性とに優れた冷延鋼板あるいは溶融亜鉛メッキ冷延鋼板およびそれらの製造方法
JP2002003993A (ja) 高強度薄鋼板および高強度亜鉛系めっき鋼板
WO2023073410A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP2002161317A (ja) 伸びフランジ成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2517499

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1795/KOLNP/2005

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006169365

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10549164

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004819917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057020337

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048114350

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004819917

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057020337

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10549164

Country of ref document: US