WO2005053010A1 - Annealed wafer and annealed wafer manufacturing method - Google Patents

Annealed wafer and annealed wafer manufacturing method Download PDF

Info

Publication number
WO2005053010A1
WO2005053010A1 PCT/JP2004/016394 JP2004016394W WO2005053010A1 WO 2005053010 A1 WO2005053010 A1 WO 2005053010A1 JP 2004016394 W JP2004016394 W JP 2004016394W WO 2005053010 A1 WO2005053010 A1 WO 2005053010A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
temperature
silicon wafer
silicon
heat treatment
Prior art date
Application number
PCT/JP2004/016394
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoji Hoshi
Hiroshi Takeno
Izumi Fusegawa
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2005053010A1 publication Critical patent/WO2005053010A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Definitions

  • Anneal eha and method for producing annea eha are identical to Anneal eha and method for producing annea eha
  • the present invention relates to an anneal wafer having both an ea wafer surface layer having excellent oxide film breakdown voltage characteristics and an evaha balta part having excellent gettering ability, and a method of manufacturing the anneal wafer.
  • CZ method silicon substrates manufactured by using the Czochralski method (hereinafter abbreviated as CZ method) serving as a substrate thereof are used.
  • Quality requirements for C are increasing.
  • FPD LSTD
  • COP COP
  • V Volancy, hereinafter abbreviated as V
  • I interstitial silicon
  • the V region is a region having many vacancies, that is, recesses and holes generated due to lack of silicon atoms, and the I region has extra silicon atoms.
  • This is a region with many dislocations and extra silicon lump generated due to the occurrence of atoms, and there is no lack or excess of atoms between V region and I region !, (less! /,) Neutral ( Neutral (hereinafter sometimes abbreviated as N).
  • the above-mentioned green-in defects (FPD, LSTD, COP, etc.) are generated only when V and I are supersaturated. However, it has been found that it does not exist as a green-in defect.
  • OSF Oxidation Induced Stacking Fault
  • LZD Large Dislocation: an abbreviation for interstitial dislocation loop, LSEPD, LFPD, etc.
  • LSEPD interstitial dislocation loop
  • LFPD LFPD
  • N region there is a region called the N region, as described above, in which neither FPD, LSTD, or COP caused by vacancies nor LSEPD or LFPD caused by a dislocation loop exists. ing.
  • This N region is outside the OSF ring, and when oxygen precipitation heat treatment is performed and the contrast of the precipitation is confirmed by X-ray observation, etc., almost no oxygen precipitation occurs and L SEPD and LFPD are formed. It is reported that the region is not as rich as the I region. Furthermore, in recent years, the existence of an N region inside the OSF ring has been confirmed without defects caused by vacancies or defects caused by dislocation loops.
  • the pulling speed in the crystal radial direction plane Since the degree should be constant, in a general single crystal growth, G has a distribution in the plane.For example, at a certain pulling speed, the center becomes V region and the N region becomes Only a single crystal that could be the I region was obtained.
  • Nv region a region with many vacancies
  • Ni region a region with a large amount of interstitial silicon
  • SEPD Secco Etch Pit Defect
  • LSTD Laser Scattering Tomography Defect
  • COP Crystal Originated Particle
  • the diameter of this pit is less than 1 ⁇ m and is examined by the light scattering method.
  • L / D Large Dislocation: abbreviation for interstitial dislocation loop
  • LSEPD is a large SEPD of 10 m or more as described above.
  • the LFPD is one of the above-mentioned FPDs having a tip pit size of 10 ⁇ m or more.
  • the silicon single crystal grown by the CZ method contains interstitial oxygen as an impurity at a concentration of about 10 18 atoms / cm 3 .
  • the interstitial oxygen is used in a heat history (hereinafter, may be abbreviated as a crystal heat history) from solidification in a crystal growth process to cooling to room temperature, or a heat treatment process in a semiconductor device manufacturing process.
  • a precipitate of silicon oxide hereinafter sometimes referred to as an oxygen precipitate, BMD (Bulk Micro Defects), or simply a precipitate
  • the oxygen precipitate effectively functions as a gettering site for capturing heavy metal impurities mixed in the device process (Internal Gettering: IG), and can improve device characteristics and yield.
  • IG Internal Gettering
  • the wafer is not only subject to the heat history in the device process, but also the crystal heat. Received history. Therefore, oxygen precipitate nuclei (grain-in precipitate nuclei) formed by the heat history of the crystal already exist in the as-grown crystals, and the presence of the grow-in precipitate nuclei makes it more difficult to control the oxygen precipitates. ing.
  • the process of oxygen precipitation consists of the formation of a precipitate nucleus and its growth process.
  • nucleation proceeds in the heat history of crystallization, grows larger due to the heat history of the subsequent device process and the like, and is detected as an oxygen precipitate. Therefore, the oxygen precipitates present in the wafer at the stage prior to the injection of the device process have extremely small IG capability. However, through the device process, the oxygen precipitate grows greatly and has IG capability.
  • oxygen precipitates of a detectable size having high IG capability be formed at a high density in a stage before the device process is introduced, for a device process at a low temperature and a short time.
  • oxygen precipitates exist in the device fabrication region near the wafer surface, the device characteristics are degraded. Therefore, it is desirable that oxygen precipitates do not exist near the wafer surface.
  • the single crystal when a single crystal is grown by the CZ method, the single crystal may be grown in a V region where the pulling speed can be increased for reasons such as improvement in productivity.
  • voids such as COPs formed by the aggregation of atomic vacancies (vacancies)
  • vacancies There are (hole) type defects. It is known that the presence of such a void type defect such as COP in the device fabrication region deteriorates the device characteristics, particularly the breakdown voltage characteristics of the oxide film, which is an important characteristic. Therefore, the device fabrication area It is desirable that void-type defects do not exist in the surface layer of the wafer (usually, the area of the wafer surface force of about several meters) as well as oxygen precipitates.
  • the wafer is subjected to a high-temperature heat treatment at about 1200 ° C. in an inert atmosphere such as hydrogen or argon. Is being done. Furthermore, in order to eliminate void-type defects such as COP existing in the surface layer of the wafer and to form oxygen precipitates inside the wafer (balta), for example, a method of adding nitrogen during crystal growth has been proposed.
  • a high-temperature heat treatment at about 1200 ° C. in an inert atmosphere such as hydrogen or argon.
  • a method of adding nitrogen during crystal growth has been proposed.
  • an object of the present invention is to provide The oxide surface of the wafer surface area, which is a vice manufacturing area, has excellent withstand voltage characteristics, and the density of oxygen precipitates in the wafer balta section is uniform and high in the plane before the device process is introduced.
  • An object of the present invention is to provide an annealed wafer having excellent IG capability and a method of manufacturing the annealed wafer.
  • an annealed wafer obtained by subjecting a silicon wafer produced from a silicon single crystal grown by the Czochralski method to a heat treatment, wherein the entire surface of the wafer has a grown-in defect.
  • the non-defective rate of the oxide film breakdown voltage characteristic is 95% or more in the region where the surface tension of the wafer is at least 5 ⁇ m, and the density of the oxygen precipitate inside the wafer is less than 95%.
  • Aniruueha is provided, wherein a value of the ratio between the maximum value and the minimum value of the density of oxygen precipitates in Ueha plane (maximum value Z minimum value) is 1 one 10 Is done.
  • the annealed wafer of the present invention has an N region on the entire surface of the wafer, a non-defective rate of oxide film breakdown voltage characteristics of 95% or more, and an oxygen precipitate density of 1 ⁇ 10 9 Zcm inside the wafer (balta portion). Since the value of (maximum value Z minimum value) of the oxygen precipitate density in the wafer surface is 1 to 10 when it is 3 or more, the oxide film breakdown voltage characteristics of the wafer surface layer, which is the device fabrication area, are very low. It is excellent, and the density of oxygen precipitates is uniform and high density in the plane at the stage before the device process is injected into the Ehbar balta part.
  • the present invention also relates to an annealed wafer obtained by subjecting a silicon wafer produced from a silicon single crystal grown by the Czochralski method to a heat treatment, wherein the entire surface of the silicon wafer has neither a grown-in defect nor an OSF. !, An anneal wafer characterized by having a large number of vacancies in the Nv region and heat-treating the silicon wafer.
  • the entire surface of the wafer has neither a grown-in defect nor OSF! If the silicon wafer in the Nv region with many vacancies is subjected to a heat treatment, not only the surface of the wafer but also the surface of the wafer, for example, The region from to 5 ⁇ m is the defect-free layer (DZ layer), which makes it possible to make the wafer excellent in the breakdown voltage characteristics of the oxide film on the surface layer of the wafer.
  • the object has a high density of, for example, 1 X 10 9 Zcm 3 or more. Since it is formed uniformly inside, it is possible to obtain a wafer having excellent IG capability.
  • the diameter of the annealing wafer can be 200 mm or more.
  • the anneal wafer of the present invention has oxygen precipitates formed at high density and in-plane uniformly as described above, and the oxygen precipitates have, for example, slip dislocation due to thermal stress when the wafer is heat-treated. It is known to have the effect of suppressing the occurrence. Therefore, as long as the anneal ⁇ eno of the present invention has a diameter of 200 mm or more in which slip dislocation is easily generated by heat treatment, for example, a large diameter wafer that can suppress the occurrence of slip dislocation due to thermal stress during a device process is used. It will be a very effective wafer especially for wafers of 300mm or more, which will become mainstream in the future.
  • a silicon wafer having an Nv region with many vacancies in which the entire surface of the wafer does not have a green-in defect or OSF was prepared, and then the prepared silicon wafer was heated at a temperature of 500 ° C or more to 700 ° C or more. Temperature T below ° C
  • a silicon wafer having a large number of atomic vacancies and an Nv region is produced, and the silicon wafer is held at a temperature of 500 ° C or more and 700 ° C or less for a predetermined time.
  • the grown-in precipitate nuclei in C become difficult to grow and disappear, and new oxygen precipitate nuclei can be generated on the wafer.
  • at a temperature rise rate of 5 ° CZ or less 1000 ° C or more and 1 230 ° C
  • high-density glowin precipitate nuclei and oxygen precipitate nuclei existing in the ewa can be efficiently grown without extinction, and then maintained at that temperature for a predetermined period of time.
  • the silicon wafer is kept at a temperature T ° C of 500 ° C. or more and 700 ° C. or less.
  • the time t is 15 minutes or more.
  • the time t for holding the silicon wafer at a temperature of 500 ° C or more and 700 ° C or less is set as follows.
  • the interval t be 30 minutes or more.
  • oxygen precipitates can be grown stably to a size having gettering ability, and a DZ layer can be formed with a sufficient width near the wafer surface.
  • a silicon wafer having an Nv region with many vacancies in which the entire surface of the wafer has neither a glow-in defect nor an OSF was manufactured, and then the manufactured silicon wafer was heated at a temperature of at least T ° C. T ° C
  • a heating step A in which the temperature is raised at a heating rate of R ° CZ at 22 ° C, and the temperature T ° C to T ° C
  • a heat treatment including a temperature raising step B for raising the temperature at a rate of 2 ° CZ and a holding step C for holding the temperature T ° C. for a predetermined time t is performed.
  • a method for producing an annealed wafer is provided.
  • a silicon wafer having a large number of vacancies and an Nv region is produced, and the silicon wafer is subjected to a temperature raising step so that the grown-in precipitation nuclei in the wafer are reduced as much as possible.
  • Oxygen precipitates near the wafer surface can be grown without being extinguished, and then heated to a high temperature in a short time by performing a heating process with a heating rate different from that of the heating process.
  • the fine oxygen precipitates grown in the heating step A and the heating step B can be further grown to a size having IG capability in the evaporator section. In the vicinity of the wafer surface, oxygen precipitates disappear and a DZ layer can be formed.
  • the oxide film withstand voltage characteristics of the surface layer of the wafer, which is the device fabrication area, are extremely excellent, and oxygen precipitates are uniformly present at a high density in the wafer, at the stage before the device process is introduced. Annealed wafers having excellent IG capability can be easily manufactured.
  • the temperature raising step A, the temperature raising step B, and the holding step C are performed successively.
  • the process time of the entire heat treatment process can be shortened, and the efficiency of the heat treatment process and the productivity can be improved. Can be planned.
  • the temperature T is set to 700 ° C. or less and the temperature T is set to 800
  • the heating rate R is not more than 3 ° CZ and not more than 1000 ° C.
  • the temperature T may be maintained at the temperature T for 30 minutes or more before performing the temperature raising step A.
  • the silicon wafer is held at the temperature T for 30 minutes or more.
  • the growth nuclei of the grown-in nuclei can be made more difficult to be eliminated.
  • new oxygen nuclei can be effectively generated, and a higher-density oxygen nuclei can be formed on the silicon wafer. Can be formed.
  • the temperature T is set to 800 ° C. or more and 1000 ° C. or less
  • the temperature T should be 1050 ° C or more and 1230 ° C or less, and the heating rate R should be 5 ° CZ minutes or more.
  • the temperature T is set to 1050 ° C or more and 1230 ° C or less
  • the holding time t is 30 minutes or more.
  • the oxygen precipitates in the ehabalta part grown in the heating steps A and B can be grown stably, and at the same time, the oxygen precipitates in the vicinity of the ewa surface A DZ layer free of oxygen precipitates can be formed stably with a sufficient width.
  • a silicon wafer produced from a silicon single crystal grown without adding nitrogen as the silicon wafer to be subjected to the heat treatment it is preferable to use a silicon wafer produced from a silicon single crystal grown without adding nitrogen as the silicon wafer to be subjected to the heat treatment.
  • a thermally stable grown-in precipitation nucleus for example, Since there is no precipitation nucleus with a diameter of 40 nm or more, the force near the surface of the evaporator during thermal treatment can easily eliminate the grown-in precipitation nuclei and form a DZ layer. In addition, since it is not necessary to add nitrogen when growing a silicon single crystal, there is an advantage that the crystal growing process is not complicated and work and management are easy.
  • the oxygen concentration of the silicon wafer subjected to the heat treatment be 14 ppma or more.
  • the heat treatment can form a higher density of oxygen precipitates in the ember barta portion, and the IG capability which is superior to the anneal wafer Can be added.
  • the growth rate of oxygen precipitates is increased, so that the overall process time can be reduced.
  • the diameter of the annealed wafer to be manufactured is 200 mm or more. be able to.
  • the method for producing annealed wafers of the present invention can be particularly suitably applied to the case of producing large-diameter annealed wafers having a diameter of 200 mm or more, in which slip dislocations are easily generated by heat treatment in the past. That is, according to the present invention, oxygen precipitates having a large size can be uniformly formed at a high density in the wafer surface as described above, so that the slip dislocation generated during the heat treatment is more likely to be pinned and the slip dislocation is increased. Can be suppressed. Therefore, it is possible to stably produce a large-diameter annealed wafer having no slip dislocation.
  • heat treatment is performed under predetermined conditions on a silicon wafer that has many atomic vacancies and an Nv region in which the entire surface of the wafer has neither a grown-in defect nor an OSF.
  • the oxide film withstand voltage characteristic of the surface layer of the wafer, which is the device fabrication area, is extremely excellent, and the oxygen precipitates are uniformly distributed in the plane before the device process is injected into the wafer barrier part.
  • the present invention can provide an annealed wafer having excellent IG capability.
  • FIG. 1 is a flowchart showing an example of a method for producing an annealing machine according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view schematically showing a pattern of a heat treatment applied to a silicon wafer in the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing an example of a method for producing an annealing device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic view schematically showing a pattern of a heat treatment applied to a silicon wafer in a second embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing an example of a single crystal pulling apparatus that can be used in the method for producing annealed wafers of the present invention.
  • FIG. 6 is a graph showing temperature distributions of the single crystal pulling apparatus used in the example and the single crystal pulling apparatus used in the comparative example.
  • FIG. 7 is a diagram showing a result of identifying a crystal defect region and a result of obtaining an initial oxygen concentration and an amount of precipitated oxygen with respect to a vertically divided sample of an example.
  • FIG. 8 is a view showing a result of identifying a crystal defect region in a vertically divided sample of a comparative example.
  • FIG. 9 is a graph showing density values and in-plane distributions of oxygen precipitates (BMD) in annealed wafers manufactured in Examples and Comparative Examples.
  • the inventors of the present invention have reported that the ⁇ wafer surface layer has a very excellent oxygen-withstand voltage characteristic, and the ⁇ ⁇ wafer, in which oxygen precipitates are uniformly and densely present in the plane before the device process is introduced, in the ⁇ ⁇ balta section.
  • intensive experiments and studies were repeated.
  • the oxygen precipitation amount i.e., the initial oxygen concentration before the oxygen precipitation heat treatment and the oxygen Silicon wafers with a difference from oxygen concentration
  • Ippma CiEIDA Jopan Electronic Industry Development Association standard
  • the grown-in precipitate nuclei could be grown in the ⁇ eno and Balta portions without disappearing, and oxygen precipitates could be formed stably.
  • a silicon wafer whose entire surface is an N region where neither a grown-in defect nor an OSF exists is used.
  • a DZ layer can be formed near the surface of the wafer, and oxygen precipitates can be formed on the Balta portion of the wafer.
  • the N region includes the Nv region and the Ni region as described above, and the Ni region is a region in which oxygen precipitation is less likely to occur than the Nv region.
  • the density of oxygen precipitates becomes non-uniform in the plane of the wafer, and as a result, the gettering ability of the wafer becomes non-uniform in the plane. It became clear that it becomes. Furthermore, in this case, the wafer may be warped due to the in-plane variation in the density of the oxygen precipitate. I also understood.
  • the present inventors have conducted further experiments and studies and found that, in the Nv region of silicon wafer, the amount of precipitated oxygen becomes lppma or more when the above oxygen precipitation heat treatment is performed. If annealed silicon wafers are manufactured by heat-treating silicon wafers in which the Nv region spreads over the entire surface of the wafer, the oxide film withstand pressure characteristics of the surface layer of the wafer are extremely excellent, and oxygen precipitates are formed on the wafer bar.
  • the present invention has been completed by conceiving that a high-quality annealed wafer can be obtained in which the particles exist uniformly at high density in the plane.
  • the annealing wafer of the present invention is an annealing wafer obtained by subjecting a silicon wafer produced from a silicon single crystal grown by the CZ method to a heat treatment, and the entire silicon wafer has both a grown-in defect and an OSF. It is characterized by having a large number of atomic vacancies and being in the Nv region, which is obtained by subjecting the silicon wafer to a heat treatment.
  • such an anneal wafer of the present invention is a non-defective product having excellent surface pressure characteristics of an oxidized film in an area where the entire surface of the wafer is free of a grown-in defect and an OSF, and the surface area of the wafer is at least up to a depth of 5 m.
  • Ratio is 95% or more, and the density of oxygen precipitates inside the eaves is 1 ⁇ 10 9 Zcm 3 or more, and the ratio (maximum value)
  • the characteristic value is that the value of (Z minimum value) is 1 to 10.
  • the yield rate is 95%. % Or more, and has excellent withstand voltage characteristics of the oxide film.
  • the oxide film compression characteristic in the present invention means a TZDB (Time Zero Dielectric Breakdown) characteristic
  • the non-defective rate is, for example, assuming that the determination current value is ImAZcm 2 and the dielectric breakdown electric field is 8 MVZcm or more. Show the ratio of
  • the density of Ueha internal (Butler portion) oxygen precipitate above size having an IG capability is detected Te odor as described above is 1 X 10 9 Zcm 3 or more, It has excellent IG capability at the stage before device process introduction, and even in recent years of low temperature and short-time device processes, the oxygen precipitates in the Aehbarta part are also used as gettering sites for the initial stage of the device process. It can function as an aera that can exhibit sufficient gettering ability without adding special heat treatment.
  • the density of oxygen precipitates is preferably set to 1 ⁇ 10 13 Zcm 3 or less in order to prevent deterioration due to excessive precipitation.
  • the size of the oxygen precipitate having IG capability is based on the size of the oxygen precipitate (for example, about 30 to 40 nm in diameter) which can be detected experimentally.
  • the size of the oxygen precipitate having the ability is preferably about 40 nm or more in diameter.
  • an oxygen precipitate having a size that cannot be detected experimentally has IG capability. It can be determined that it has sufficient IG capability.
  • Such oxygen precipitates can be detected, for example, by infrared scattering tomography, which is one of the light scattering methods.
  • the value of the ratio (maximum value Z minimum value) between the maximum value and the minimum value of the density of oxygen precipitates in the ⁇ a plane is 20 or more, or an order of magnitude higher!
  • the ratio of the maximum density to the minimum density (maximum value Z minimum value) of the oxygen precipitates in the wafer surface is 110, and more preferably 115. Therefore, the in-plane variation of the IG capability at the ehabalta section can be significantly reduced, and the ewa can have an extremely excellent gettering ability uniformly over the entire surface of the eha. In this case, the density of oxygen precipitates in the Problems such as warpage of the wafer, which have occurred due to the knock, can be easily solved.
  • oxygen precipitates having an effect of suppressing the occurrence of slip dislocation are uniformly formed on the surface of the wafer. Because of its high density and high density, it becomes a large-diameter wafer that suppresses the occurrence of slip dislocations in the device process, and becomes a very effective wafer especially in the future mainstream wafers of 300 mm or more.
  • the method for manufacturing an annealing wafer according to the first aspect of the present invention is a method for manufacturing a silicon wafer from a silicon single crystal grown by the CZ method and subjecting the manufactured silicon wafer to a heat treatment to manufacture an annealing wafer.
  • a silicon wafer having an Nv region with many vacancies in which the entire surface of the wafer has neither a grown-in defect nor an OSF is prepared.
  • FIG. 1 is a flow chart showing an example of a method for producing an annealing wafer according to the first embodiment of the present invention
  • FIG. 2 is a schematic drawing schematically showing a heat treatment pattern applied to a silicon wafer. It is.
  • a silicon wafer which is a raw material for annealed wafer, is produced from a silicon single crystal grown by the CZ method (Step 101 in FIG. 1). At this time, there is no grown-in defect or OSF on the entire surface of the silicon wafer to be manufactured. If there is a lot of atomic vacancies and Nv region, the manufacturing method is particularly limited. For example, as described in WO 01Z057293 pamphlet, WO 02,002852 pamphlet, and Japanese Patent Publication No. 2002-226296, the pulling speed when growing a single crystal The ratio between F and the temperature gradient G near the solid-liquid interface in the pulled crystal. A wafer can be manufactured using a method of pulling a crystal. Here, an example of a method for manufacturing a silicon wafer in the present invention will be specifically described.
  • FIG. 5 shows an example of a single crystal pulling apparatus for pulling a silicon single crystal.
  • the single crystal pulling apparatus 20 includes a crucible driving mechanism including a quartz crucible 5 containing a raw material melt 4 and a graphite crucible 6 protecting the quartz crucible 5 in a main chamber 1. (Not shown) rotatably and vertically supported by a holding shaft 19, and a heater 7 and a heat insulating material 8 are arranged so as to surround these crucibles 5 and 6.
  • a pulling chamber 2 for containing and removing the grown single crystal 3 is connected to the upper portion of the main chamber 1, and a single crystal 3 is pulled above the pulling chamber 2 while rotating the single crystal 3 with a wire 16 above the pulling chamber 2.
  • a lifting mechanism (not shown) is provided.
  • a gas rectifying cylinder 13 is provided inside the main chamber 1, and a heat shield member 14 is provided below the gas rectifying cylinder 13 so as to face the raw material melt 4.
  • the radiation from the surface of the melt 4 is cut, and the surface of the raw material melt 4 is kept warm.
  • the heat shield member 14 is installed such that the distance between the lower end thereof and the surface of the raw material melt 4 is about 2 to 20 cm, for example.
  • a cooling cylinder 11 is provided above the gas rectification cylinder 13 so that the single crystal 3 can be forcibly cooled by flowing a cooling medium from the refrigerant inlet 12.
  • an inert gas such as argon gas or the like can be introduced from a gas inlet 10 provided in the upper part of the pulling chamber 2, and passes between the single crystal 3 being pulled and the gas rectifying cylinder 13. After that, it can pass between the heat shield member 14 and the melt surface of the raw material melt 4 and be discharged from the gas outlet 9.
  • a magnet (not shown) can be provided outside the main chamber 1 in the horizontal direction, whereby a magnetic field such as a horizontal direction or a vertical direction is applied to the raw material melt 4 so that the raw material melt 4 is applied.
  • the so-called MCZ method which suppresses the convection of the crystal and stably grows the single crystal, can be used.
  • a silicon single crystal is grown by the CZ method using such a single crystal pulling apparatus 20, for example, first, a high-purity polycrystalline silicon material is melted in a quartz crucible 5 at a melting point (about 1420 ° C.). Heat and melt as above. Next, the wire 16 is unwound and the silicon melt 4 is unwound. The seed crystal 17 fixed to the seed holder 18 is brought into contact with or immersed in the approximate center of the surface of the substrate. After that, the crucible holding shaft 19 is rotated in an appropriate direction, and the wire 16 is wound while the wire 16 is not rotated and the seed crystal is pulled up to start growing the single crystal. Thereafter, by adjusting the pulling speed of the single crystal and the temperature of the silicon melt appropriately, a substantially cylindrical silicon single crystal 3 can be grown.
  • the pulling speed when growing the single crystal straight body portion was F [mmZmin], and the crystal temperature gradient in the pulling axis direction from the melting point of silicon to 1400 ° C was represented by G [° CZmm].
  • a silicon single crystal is grown by controlling the pulling speed F so that the value of FZG [mm 2 Z ° C ⁇ min] is in the Nv region.
  • the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal can be obtained.
  • the furnace temperature can be controlled so that the difference in crystallinity is small, and the temperature gradient around the crystal is lower than the crystal center, so that the entire surface in the crystal diameter direction can easily be in the Nv region. It becomes possible.
  • the cooling zone 11 installed above the gas flow straightening column 13 can rapidly cool the temperature zone (1080-1150 ° C) in which void defects are formed, thereby expanding the Nv region in the crystal growth axis direction. Therefore, it is possible to easily grow a single crystal in which the entire body is in the Nv region over the entire radial direction.
  • the silicon wafer obtained by slicing the silicon single crystal obtained as described above is a silicon wafer that has no atomic defects and no OSF and is an Nv region with many atomic vacancies. With such a silicon wafer, it is preferable to use a silicon wafer that does not have any grown-in defects or oxygen precipitates in the surface layer of the wafer when heat treatment is performed thereafter, and that a high oxygen deposition amount can be obtained in the wafer bar part. it can.
  • the silicon wafer is preferably manufactured from a silicon single crystal grown without adding nitrogen.
  • a silicon wafer fabricated from a silicon single crystal grown without adding nitrogen as described above there is no thermally stable grown-in precipitation nucleus, for example, a precipitation nucleus having a diameter of 40 nm or more in the wafer.
  • the force near the surface of the wafer can eliminate the grown-in precipitate nuclei and form the DZ layer stably.
  • the crystal growing process is not complicated, and the operation and management are simplified. Have.
  • the method for producing a silicon wafer from a silicon single crystal is not particularly limited. For example, after slicing a silicon wafer from a silicon single crystal, chamfering, lapping, By sequentially performing each process such as etching and mirror polishing, a silicon wafer can be easily manufactured.
  • the temperature is maintained at the temperature T ° C. for a predetermined time t (step 103 in FIG. 1). Like this
  • the holding temperature T is a temperature at which the grown-in precipitation nuclei can be grown.
  • the temperature T is 500 ° C or more. Is desirable. On the other hand, when the temperature T exceeds 700 ° C
  • the density of oxygen precipitates may not be sufficiently increased.
  • the time t for holding the silicon wafer at the temperature T is 15 minutes or more.
  • Holding time t is about 6
  • the time is set to 0 minutes or less. Incidentally, the silicon wafer is maintained at the temperature T as described above.
  • the temperature is not limited to being maintained at a constant temperature with high accuracy.
  • the temperature T may be 500 ° C or more and 700 ° C or less, and when maintaining the temperature,
  • the term “maintaining at a temperature T ° C for a predetermined time” in the present invention means that the temperature T 500-700 ° C This includes the case where it is varied and held.
  • FIG. 2 shows a silicon wafer held at a temperature T of 500 ° C. or more and 700 ° C. or less.
  • step 104 Warm up (step 104).
  • the temperature of the silicon wafer at a rate of 5 ° CZ or less, high-density grown-in precipitate nuclei existing in the wafer can be grown efficiently without disappearing as much as possible.
  • the lower the heating rate the higher the precipitate density. Therefore, by performing the temperature raising step in this manner, the grown-in precipitation nuclei formed when growing a single crystal can be effectively grown, so that, for example, oxygen precipitation nuclei are newly formed on the wafer.
  • the precipitate density can be sufficiently increased without separately performing a heat treatment step, and the entire process time can be reduced. At this time, the temperature T
  • the lower the temperature T the longer the holding time t at the temperature T.
  • Holding time t, and heating rate from temperature T to temperature T can be set as appropriate.
  • the silicon wafer is heated to a temperature T ° C of not less than 1000 ° C and not more than 1230 ° C.
  • step 12 After the temperature is raised in step 12, the temperature is maintained at the temperature T ° C for a predetermined time t (step 105). Like this
  • Oxygen precipitates in Aehbarta are further grown by holding at a temperature ⁇ for a predetermined time.
  • oxygen can be increased to a size having gettering ability, and at the same time, oxygen in the vicinity of the surface of the evaporator can be diffused outward to eliminate oxygen precipitate nuclei, thereby forming a DZ layer free of oxygen precipitates on the surface layer of the evaporator.
  • the higher the temperature T the more the oxygen precipitates have a desired size, that is, the gettering ability.
  • the time required to grow to a size having a short time and the power that can shorten the overall process time is preferably set to 1230 ° C or lower. Furthermore, during heat treatment,
  • the temperature T should be 1200 ° C or less.
  • the silicon wafer it is more preferable to keep the silicon wafer at a temperature of 1200 ° C or less, and even 1150 ° C or less, so that the oxygen precipitate in the wafer balta part grows.
  • a DZ layer can be formed on the surface of the wafer, which is particularly effective when heat-treating large-diameter wafers with a diameter of 200 mm or more, in which slip dislocations are likely to occur.
  • the time t maintained at this temperature T is determined by the growth-in precipitation nuclei in the Ehabarta part.
  • the heating time is 30 minutes or more in order to surely grow the DZ layer to a size having gettering ability, and to form a DZ layer having a sufficient width on the surface layer of the wafer.
  • the time t should be about 4 hours or less, or even about 2 hours or less, as this may reduce productivity.
  • the size of the oxygen precipitate to be grown is less than 100 nm.
  • the holding time t is shorter than 30 minutes.
  • step 105 the silicon wafer is heated
  • step 102-104 from the time of charging into the processing furnace until the temperature rises to the temperature T ° C
  • the purpose is to further grow oxygen precipitates in the grown barta and to form a DZ layer near the surface. Therefore, if the purpose can be achieved, it is not limited to maintaining the temperature at a constant temperature with high accuracy.
  • the oxygen formed on the anneal wafer is adjusted.
  • the size of the precipitate can be easily controlled.
  • the silicon wafer is taken out of the heat treatment furnace (step 107).
  • the temperature drop rate and the temperature at which the wafer is taken out after the temperature is lowered are not particularly limited. For example, it is preferable that slip dislocation due to thermal stress does not occur when the temperature of the wafer is dropped or when the wafer is taken out.
  • the heat treatment atmosphere when performing the above heat treatment is not particularly limited.
  • the heat treatment can be performed in an oxygen atmosphere, a mixed atmosphere of oxygen and nitrogen, an argon atmosphere, a hydrogen atmosphere, or the like.
  • a non-oxidizing atmosphere of argon or hydrogen since an oxide film is not formed on the surface of the evaporator, outward diffusion of oxygen is promoted as compared with the case of the oxidizing atmosphere, which may be more preferable.
  • the manufactured silicon wafer is subjected to a heat treatment under the above conditions, whereby the above-described anneal wafer of the present invention, that is, the silicon wafer is manufactured.
  • the entire surface is free of any grown-in defects or OSFs. ⁇
  • the area is ⁇ A surface area of the wafer.
  • the non-defective rate of the oxide film breakdown voltage characteristic is at least 95% in the area up to a depth of 5 ⁇ m.
  • a high quality value of the ratio between the maximum value and the minimum value of the density of oxygen precipitates in Ueha plane is 1 one 10 Aniruueha Can be easily and stably manufactured.
  • the oxygen concentration of the wafer being 14 ppma or more, it is possible to form oxygen precipitates at a higher density on the wafer barter part. With better IG capability for Anil @ eha can do.
  • the oxygen concentration of silicon wafer is increased to 14 ppma or more, the growth rate of oxygen precipitates is increased, so that the entire process time can be shortened.
  • the oxygen concentration of the silicon wafer subjected to the heat treatment is preferably 23 ppma or less, more preferably 17 ppma or less.
  • a method for producing an annealing wafer according to the second embodiment of the present invention will be described.
  • a silicon wafer is grown from a silicon single crystal grown by the CZ method.
  • the silicon wafer does not have any grown-in defects or OSF on the entire surface of the silicon wafer !, a large number of atomic vacancies, Nv
  • the manufactured silicon wafer is at least heated to a temperature T.
  • FIG. 3 is a flow chart showing a method for producing an annealing wafer according to the second embodiment of the present invention
  • FIG. 4 is a schematic drawing showing a pattern of a heat treatment applied to a silicon wafer.
  • a silicon wafer to be used as a raw material for annealed silicon is produced from a silicon single crystal grown by the CZ method (Step 201 in FIG. 3).
  • the silicon wafer can be manufactured using the same method as the method for manufacturing the silicon wafer in the first embodiment (step 101 in FIG. 1).
  • the produced silicon wafer is subjected to a heat treatment maintained at, for example, a temperature T ° C.
  • Heating process A is performed in which the temperature is raised at a rate of R ° CZ up to 21-22 (Step 203 in Fig. 3).
  • the density of oxygen precipitates can be increased by efficiently growing the grown-in precipitation nuclei formed in the crystal growth step without extinction as much as possible.
  • the temperature T is preferably set to 700 ° C or lower, since the concentration of oxygen precipitates in the annealed wafer after the heat treatment may not be sufficiently obtained because the precipitate nuclei easily disappear.
  • the temperature exceeds 1 21 22 1 ° CZ, the growth-in precipitation nuclei may not be sufficiently grown, and the growth-in precipitation nuclei may disappear in the subsequent process. It is preferable that the temperature be not more than ° CZ. Also, the lower the heating rate R, the lower the rate of growth of the grown-in precipitation nuclei without extinction, which is desirable.However, if the heating rate R is too low, the process time becomes longer and it is not efficient. Is preferably 0.5 ° CZ or more.
  • the temperature T after the heating is increased to 800
  • the rate of disappearance in the subsequent heating step B1 increases, and the density of oxygen precipitates may not be sufficiently obtained.
  • the temperature T the rate of disappearance in the subsequent heating step B1 increases, and the density of oxygen precipitates may not be sufficiently obtained.
  • the temperature of 22 exceeds 1000 ° C, the grown-in precipitation nuclei near the wafer surface also grow large, and the oxygen precipitates remain near the surface even after the subsequent heating step B and holding step C. DBecause a DZ layer cannot be formed on the surface of the wafer, the breakdown voltage characteristics of the oxide film may be reduced.
  • the silicon wafer is kept at the temperature T for 30 minutes or more.
  • the growth-in precipitation nuclei can be further eliminated, and new oxygen precipitation nuclei can be effectively generated in addition to the growth-in precipitation nuclei, so that a higher oxygen concentration can be obtained in the silicon wafer.
  • Precipitation nuclei can be formed. At this time, hold at temperature T
  • the time is too long, the process time becomes unnecessarily long. Therefore, it is preferable to set the time to about 4 hours or less.
  • the temperature is kept constant. Not only high accuracy is maintained, but also slight temperature change around temperature ⁇ depending on conditions.
  • Heating process B in which the temperature is raised at a rate of R ° CZ faster than that of temperature process A, is performed (step in Fig. 3).
  • the heating rate R2 in the heating step B1 should be 5 ° CZ min or more. preferable.
  • the heating rate R2 is too high, the oxygen precipitates in the ehabalta area may disappear in the holding step C, and it is considered that the oxygen precipitate density may decrease. Is desirably 10 ° CZ or less.
  • the temperature T after the heating is set to 1050 ° C or more and 1230 ° C or less.
  • oxygen near the surface can be diffused outward to eliminate oxygen precipitate nuclei near the surface.
  • T the higher the temperature T, the larger the oxygen precipitates in the balter section and the larger the DZ width.
  • the temperature T is preferably set to 1230 ° C or less. In addition, it occurs on wafers during heat treatment
  • the temperature T should be 1200 ° C or less, or 1150 ° C
  • the temperature is maintained at a temperature T ° C for a predetermined time t.
  • the holding process C is performed (step 205 in FIG. 3).
  • the fine oxygen precipitates grown in the temperature raising step and in the temperature raising step are grown to a size having an IG capability in the Aehark section, for example, a diameter of about 40 nm or more, and further, a diameter of about 5 Onm or more.
  • oxygen precipitates can be more completely eliminated near the wafer surface, an extremely high-quality DZ layer can be efficiently formed.
  • the retention time t is preferably set to 30 minutes or more, since oxygen precipitates and DZ widths of desired sizes may not be obtained due to the above. Also, as the holding time t becomes longer,
  • the retention time t be about 4 hours or less.
  • the temperature T and the temperature at which the silicon wafer is held at a high temperature are held at a high temperature.
  • the constant temperature T is used as in the method according to the first embodiment of the present invention.
  • the temperature T is more than 1050 ° C and 1230 ° C
  • the silicon wafer is taken out of the heat treatment furnace (Step 207).
  • the temperature drop rate and the temperature at which the wafer is taken out after the temperature is lowered are not particularly limited. For example, it is preferable to set conditions such that slip dislocation due to thermal stress does not occur when the temperature of the wafer is lowered or when the wafer is taken out. .
  • the heat treatment atmosphere when performing the heat treatment is also the first mode. There is no particular limitation as in the above.
  • the wafer is heated between the above-mentioned heating step A and the heating step B and between the heating step B and the holding step C.
  • the heating step A, the heating step B, and the holding step C are continuously performed. It is preferable to perform the heat treatment step, whereby the entire process time of the heat treatment step can be shortened, and the efficiency of the heat treatment step can be improved and the productivity can be improved.
  • the manufactured silicon wafer is subjected to a heat treatment including at least the temperature raising step A, the temperature raising step B, and the holding step C.
  • a heat treatment including at least the temperature raising step A, the temperature raising step B, and the holding step C.
  • the oxygen concentration of silicon wafer subjected to the heat treatment is preferably 23 ppma or less, particularly preferably 17 ppma or less.
  • the method for producing an anneal wafer according to the first and second aspects of the present invention is suitable for producing a large-diameter anneal wafer having a diameter of 200 mm or more, in which slip dislocations are easily generated by heat treatment. It can be particularly preferably used. That is, according to the present invention, as described above, large-size oxygen precipitates can be uniformly formed at high density in the wafer surface, so that the slip dislocation generated during the heat treatment is more likely to be pinned and the slip dislocation is reduced. Can be suppressed. Therefore, it is effective for large-diameter wafers in which slip dislocations are easily generated, and large-diameter annealed wafers in which slip dislocations are not generated. Ichino, in particular, will be able to produce stable, high-yield annealed wafers with a diameter of 200 mm or even 300 mm or more, which will become the mainstream in the future.
  • a 24-inch quartz crucible is charged with 150 kg of silicon polycrystal, and while applying a horizontal magnetic field of a central magnetic field strength of 4000 Gauss, a silicon single crystal having a diameter of 200 mm, an orientation of 100> and an oxygen concentration of about 15 ppma (j EIDA) is directly transferred. It was raised so that the length of its torso was about 130 cm.
  • the distance between the silicon melt surface and the heat-insulating member 14 was set to 60 mm so as to keep the crystal growth small, and a single crystal was grown by gradually lowering the crystal growth rate in the crystal growth axis direction.
  • FIG. 7 shows a graph showing the measured initial oxygen concentration and the amount of precipitated oxygen.
  • the silicon single crystal was pulled at a growth rate such that a single crystal only in the Nv region was obtained.
  • the initial oxygen concentration is 15 ppm as above.
  • the production conditions were adjusted to be a.
  • the silicon single crystal thus obtained was sampled at intervals of 2 Ocm in the growth axis direction, and the initial oxygen concentration was measured at in-plane intervals of 10 mm for the sampled wafer.
  • a heat treatment at 800 ° C. for 4 hours and a heat treatment for precipitation at 1000 ° C. for 16 hours were applied to the sample wafer to remove an oxide film caused by the heat treatment, and then the oxygen concentration was measured in the same manner as before the heat treatment.
  • the amount of precipitated oxygen which was obtained by subtracting the oxygen concentration after the precipitation heat treatment from the initial oxygen concentration force, exceeded lppma at all the measurement points in the plane for all of the sampled wafers. From this, it is considered that the silicon single crystal grown this time was able to be Nv region over the entire region of the single crystal straight body.
  • the wafer was subjected to a thermal oxidation treatment in a dry atmosphere to form a 25 nm gate oxide film, and 8 mm of the gate oxide film was formed thereon.
  • a phosphorus-doped polysilicon electrode having an electrode area of 2 was formed.
  • this A voltage was applied to the polysilicon electrode formed on the silicon oxide film, and the TZDB evaluation was performed with the judgment current value set to ImAZcm 2 and the dielectric breakdown electric field set to 8 MVZcm or more. As a result, it was found that the yield rate of the oxide film pressure resistance was 100%.
  • FIG. 6 shows the result of analyzing the temperature distribution of the single crystal pulling apparatus used in the above example and comparative example. As shown in FIG. 6, it can be confirmed that the single crystal pulling apparatus of the comparative example has a lower degree of rapid cooling as compared with the example having the cooling cylinder.
  • a vertically divided sample was prepared from the grown silicon single crystal, and a crystal defect region of the silicon single crystal was identified.
  • Fig. 8 shows the results. As shown in FIG. 8, it can be seen that it is almost impossible to grow a single crystal in which the defect-free region (N region) is very narrow and the entire surface is an Nv region as compared with the above example.
  • the silicon single crystal was pulled at a growth rate such that a single crystal having a defect-free region having both the Nv region and the Ni region was obtained.
  • the production conditions were adjusted so that the initial oxygen concentration was 15 ppma.
  • Sample silicon was cut out from the silicon single crystal thus obtained at intervals of 20 cm in the growth axis direction, and the amount of precipitated oxygen was determined in the same manner as in the above example.
  • a mirror-polished silicon wafer was produced from the silicon single crystal having the Nv region and the Ni region in the same manner as in the example, and was subjected to a heat treatment under the same conditions as in the example.
  • the density of oxygen precipitates (BMD) inside the wafers was measured by infrared scattering tomography at 10 mm intervals from the center of the wafers at 10 mm intervals, and the in-plane distribution was investigated. The results are shown in FIG.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is a mere example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect will be described. Are also included in the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

An annealed wafer manufactured by subjecting a silicon wafer fabricated from a silicon single crystal grown by the Czochralski method to a heat treatment. The annealed wafer is characterized in that the whole surface of the wafer is an N region where no grow-in defects and no OSFs are present, the yield rate in the oxide film breakdown voltage characteristic in the region to the depth of at least 5 μm from the wafer surface is 95% or more, the density of the oxygen precipitates in the wafer is 1×109/cm3 or more, and the ratio of the maximum value to the minimum value (maximum value/minimum value) of the density of the oxygen precipitates in the surface of the wafer is 1 to 10. Therefore, the oxide film breakdown voltage characteristic in the wafer surface layer portion, namely the device fabrication region, is excellent, the density of the oxygen precipitates is high uniformly in the plane in the wafer bulk portion at the stage before the wafer is put into a device process, and the wafer has an excellent IG capability. A method for manufacturing such an annealed wafer is also disclosed.

Description

ァニールゥエーハ及びァニールゥエーハの製造方法  Anneal eha and method for producing annea eha
技術分野  Technical field
[0001] 本発明は、優れた酸化膜耐圧特性を有するゥエーハ表層部と、優れたゲッタリング 能力を有するゥエーハバルタ部を兼ね備えたァニールゥエーハ及びそのァニールゥ エーハの製造方法に関する。 背景技術  The present invention relates to an anneal wafer having both an ea wafer surface layer having excellent oxide film breakdown voltage characteristics and an evaha balta part having excellent gettering ability, and a method of manufacturing the anneal wafer. Background art
[0002] 近年、半導体回路の高集積ィ匕に伴う素子の微細化が進むにつれて、その基板とな るチヨクラルスキー法 (以下、 CZ法と略記する)を利用して作製されたシリコンゥエー ハに対する品質要求が高まってきている。特に、 FPD、 LSTD、 COP等のグローンィ ン (Grown— in)欠陥と呼ばれる酸化膜耐圧特性やデバイスの特性を悪化させる、単 結晶成長起因の欠陥が存在し、その密度とサイズの低減が重要視されて 、る。  [0002] In recent years, as the miniaturization of elements accompanying the high integration of semiconductor circuits progresses, silicon substrates manufactured by using the Czochralski method (hereinafter abbreviated as CZ method) serving as a substrate thereof are used. Quality requirements for C are increasing. In particular, there is a single crystal growth-induced defect, such as FPD, LSTD, COP, etc., which deteriorates oxide film breakdown voltage characteristics and device characteristics called grown-in defects, and it is important to reduce the density and size of these defects. Being done.
[0003] これらの欠陥を説明するに当たって、先ず、シリコン単結晶に取り込まれるペイカン  [0003] In describing these defects, first, a pay-can incorporated into a silicon single crystal is used.
(Vacancy,以下 Vと略記することがある)と呼ばれる原子空孔型の点欠陥と、ィ ンターステイシアル シリコン(Interstitia卜 Si、以下 Iと略記することがある)と呼ばれ る格子間シリコン型の点欠陥のそれぞれの取り込まれる濃度を決定する因子につい て、一般的に知られていることを説明する。  (Vacancy, hereinafter abbreviated as V), and an interstitial silicon type called interstitial silicon (hereinafter sometimes abbreviated as I). The factors that determine the concentration of each of the point defects to be incorporated are generally known.
[0004] シリコン単結晶において、 V領域とは、 Vacancy,つまりシリコン原子の不足から発 生する凹部、穴のようなものが多い領域であり、 I領域とは、シリコン原子が余分に存 在することにより発生する転位や余分なシリコン原子の塊が多い領域のことであり、そ して V領域と I領域の間には、原子の不足や余分が無!、 (少な!/、)ニュートラル (Neut ral、以下 Nと略記することがある)領域が存在していることになる。そして、上記のグロ ーンイン欠陥(FPD、 LSTD、 COP等)というのは、あくまでも Vや Iが過飽和な状態 の時に発生するものであり、多少の原子の偏りがあっても、飽和以下であれば、グロ ーンイン欠陥としては存在しないことが判ってきた。  [0004] In a silicon single crystal, the V region is a region having many vacancies, that is, recesses and holes generated due to lack of silicon atoms, and the I region has extra silicon atoms. This is a region with many dislocations and extra silicon lump generated due to the occurrence of atoms, and there is no lack or excess of atoms between V region and I region !, (less! /,) Neutral ( Neutral (hereinafter sometimes abbreviated as N). The above-mentioned green-in defects (FPD, LSTD, COP, etc.) are generated only when V and I are supersaturated. However, it has been found that it does not exist as a green-in defect.
[0005] これらの両点欠陥の濃度は、 CZ法における結晶の引上げ速度 F (成長速度)と結 晶中の固液界面近傍の温度勾配 Gとの関係力も決まることが知られている。また、 V 領域と I領域との間の N領域には OSF (酸化誘起積層欠陥、 Oxidation Induced Stacking Fault)と呼ばれる欠陥(以下、 OSFリングということがある)力 結晶成長 軸に対する垂直方向の断面で見た時にリング状に分布していることが確認されてい る。 [0005] The concentration of these two-point defects depends on the crystal pulling rate F (growth rate) in the CZ method. It is known that the relationship with the temperature gradient G near the solid-liquid interface in the crystal is also determined. In the N region between the V region and the I region, a defect (hereinafter, referred to as an OSF ring) called an OSF (Oxidation Induced Stacking Fault) is a cross section in a direction perpendicular to the crystal growth axis. It has been confirmed that they are distributed in a ring when viewed.
[0006] これら結晶成長起因の欠陥を分類すると、例えば成長速度が 0. 6mmZmin程度 以上と比較的高速の場合には、空孔タイプの点欠陥が集合したボイド起因とされて いる FPD、 LSTD、 COP等のグローンイン欠陥が結晶径方向全域に高密度に存在 する V領域となる。  [0006] When these defects caused by crystal growth are classified, for example, when the growth rate is relatively high, such as about 0.6 mmZmin or more, FPD, LSTD, FPD, LSTD, This is a V region in which grown-in defects such as COP exist at high density throughout the crystal diameter direction.
[0007] また、成長速度が 0. 6mmZmin程度以下の場合は、成長速度の低下に伴!、、 O SFリングが結晶の周辺力も発生し、このリングの外側に転位ループ起因と考えられて いる LZD (Large Dislocation:格子間型転位ループの略号、 LSEPD、 LFPD等 )の欠陥が低密度に存在する I領域 (LZD領域ということがある)となる。さらに、成長 速度を 0. 4mmZmin前後以下と低速にすると、 OSFリングがゥエーハの中心に凝 集して消滅し、ゥエーハ全面力 領域となる。  [0007] Further, when the growth rate is about 0.6 mmZmin or less, the peripheral force of the crystal is generated in the OSF ring as the growth rate decreases, and it is considered that a dislocation loop is caused outside the ring. LZD (Large Dislocation: an abbreviation for interstitial dislocation loop, LSEPD, LFPD, etc.) is an I region (sometimes called an LZD region) where defects exist at low density. Furthermore, when the growth rate is set to a low speed of about 0.4 mmZmin or less, the OSF ring condenses at the center of the ハ and disappears, and the ゥ becomes the entire area of the ゥ.
[0008] さらに、 V領域と I領域の中間には、上記のように N領域と呼ばれる、空孔起因の FP D、 LSTD、 COPも、転位ループ起因の LSEPD、 LFPDも存在しない領域が存在し ている。この N領域は OSFリングの外側にあり、そして、酸素析出熱処理を施し、 X— r ay観察等で析出のコントラストを確認した場合に、酸素析出がほとんどなぐかつ、 L SEPD、 LFPDが形成されるほどリッチではない I領域側であると報告されている。さ らに、近年では、 OSFリングの内側にも、空孔起因の欠陥も、転位ループ起因の欠 陥も存在しな 、N領域の存在が確認されて 、る。  [0008] Further, between the V region and the I region, there is a region called the N region, as described above, in which neither FPD, LSTD, or COP caused by vacancies nor LSEPD or LFPD caused by a dislocation loop exists. ing. This N region is outside the OSF ring, and when oxygen precipitation heat treatment is performed and the contrast of the precipitation is confirmed by X-ray observation, etc., almost no oxygen precipitation occurs and L SEPD and LFPD are formed. It is reported that the region is not as rich as the I region. Furthermore, in recent years, the existence of an N region inside the OSF ring has been confirmed without defects caused by vacancies or defects caused by dislocation loops.
[0009] これらの N領域は、通常の方法では、成長速度を下げて単結晶の育成を行った場 合に成長軸方向に対して斜めに存在するため、ゥエーハ面内では一部分にしか存 在しなかった。この N領域についても、ボロンコフ理論(V. V. Voronkov, Journal of Crystal Growth, vol. 59 (1982) , pp. 625— 643)では、引上げ速度 Fと結 晶固液界面近傍の温度勾配 Gの比である FZGというパラメータが点欠陥のトータル な濃度を決定すると唱えている。このことから考えると、結晶径方向面内で引上げ速 度は一定のはずであるから、一般的な単結晶の育成では面内で Gが分布を持った めに、例えば、ある引上げ速度では中心部が V領域となり、 N領域を挟んで周辺部で I領域となるような単結晶しか得られな力つた。 [0009] These N regions exist obliquely with respect to the growth axis direction when a single crystal is grown at a reduced growth rate in a normal method, and therefore exist only partially in the wafer surface. Did not. For this N region, the Voronkov theory (VV Voronkov, Journal of Crystal Growth, vol. 59 (1982), pp. 625–643) is the ratio of the pulling rate F to the temperature gradient G near the crystal-solid interface. He claims that the parameter FZG determines the total density of point defects. Considering this, the pulling speed in the crystal radial direction plane Since the degree should be constant, in a general single crystal growth, G has a distribution in the plane.For example, at a certain pulling speed, the center becomes V region and the N region becomes Only a single crystal that could be the I region was obtained.
[0010] そこで近年、面内の Gの分布を改良して、例えば、引上げ速度 Fを徐々に下げなが ら単結晶を引上げた時に、従来では斜めでしか存在しな力つた N領域を径方向に拡 大することができるようになり、ある引上げ速度で径方向全面が N領域となる単結晶を 製造することが可能となった。また、この N領域が径方向全面に広がった時の引上げ 速度を維持して単結晶の育成を行うことにより、全面 N領域の結晶を長さ方向へ拡大 することができる。特に、結晶が成長するに従って Gが変化することを考慮して、あく までも FZGが一定になるように引上げ速度を補正 ·調節することにより、全面 N領域 となる結晶を結晶成長方向に大きく拡大できるようになった (例えば、特開平 8— 330 316号公報)。 [0010] In recent years, by improving the distribution of G in the plane, for example, when pulling a single crystal while gradually lowering the pulling speed F, a force N region, which has conventionally only existed obliquely, has been reduced in diameter. As a result, it became possible to produce a single crystal in which the entire area in the radial direction was an N region at a certain pulling speed. In addition, by maintaining the pulling speed when the N region spreads over the entire surface in the radial direction and growing the single crystal, the crystal in the entire N region can be expanded in the length direction. In particular, taking into account that G changes as the crystal grows, the pulling speed is corrected and adjusted so that the FZG remains constant, so that the entire N region crystal is greatly expanded in the crystal growth direction. (For example, JP-A-8-330316).
[0011] また、 OSFリングの外側にある N領域をさらに分類すると、 OSFリングの外側に隣 接する Nv領域 (原子空孔の多い領域)と、 I領域に隣接する Ni領域 (格子間シリコン の多い領域)とがあることがゎカゝつている(例えば、特開 2001— 139396号公報)。  [0011] Further, when the N region outside the OSF ring is further classified, an Nv region (a region with many vacancies) adjacent to the outside of the OSF ring and a Ni region (a region with a large amount of interstitial silicon) adjacent to the I region (For example, JP-A-2001-139396).
[0012] 尚、ここで上記に示した各用語について説明しておく。  [0012] Here, the terms described above will be described.
1) FPD (Flow Pattern Defect)とは、成長後のシリコン単結晶棒からゥエーハ を切り出し、表面の歪み層をフッ酸と硝酸の混合液でエッチングして取り除いた後、 K Cr Oとフッ酸と水の混合液で表面をエッチング(Seccoエッチング)することにより、 1) With FPD (Flow Pattern Defect), a wafer is cut out from a silicon single crystal rod after growth, and the strained layer on the surface is removed by etching with a mixed solution of hydrofluoric acid and nitric acid. By etching the surface with a mixture of water (Secco etching)
2 2 7 2 2 7
ピットおよびさざ波模様 (流れ模様: Flow Pattern)が生じる。この流れ模様を FPD と称し、ゥエーハ面内の FPD密度が高いほど酸ィ匕膜耐圧の不良が増える(特開平 4 —192345号公報参照)。  Pits and ripples (Flow Pattern) occur. This flow pattern is referred to as FPD. The higher the FPD density in the wafer surface, the more the breakdown voltage of the oxide film increases (see Japanese Patent Application Laid-Open No. 4-192345).
[0013] 2) SEPD (Secco Etch Pit Defect)とは、 FPDと同一の Seccoエッチングを施 した時に、流れ模様を伴うものを FPDと呼び、流れ模様を伴わないものを SEPDと呼 ぶ。この中で 10 μ m以上の大き!/、SEPD (LSEPD)は転位クラスターに起因すると 考えられ、デバイスに転位クラスターが存在する場合、この転位を通じて電流がリーク し、 P— Nジャンクションとしての機能を果たさなくなる。  [0013] 2) SEPD (Secco Etch Pit Defect) refers to those with a flow pattern when subjected to the same Secco etching as FPD, and those without the flow pattern are called SEPD. Among these, SEPD (LSEPD) is considered to be caused by dislocation clusters.If a dislocation cluster exists in the device, current leaks through the dislocation and the function as a PN junction Will not work.
[0014] 3) LSTD (Laser Scattering Tomography Defect)とは、成長後のシリコン 単結晶からゥエーハを切り出し、表面の歪み層をフッ酸と硝酸の混合液でエッチング して取り除いた後、ゥエーハを劈開する。この劈開面 (またはゥエーハ表面)より赤外 光を入射し、ゥエーハ表面 (または劈開面)から出た光を検出することで、ゥエーハ内 に存在する欠陥による散乱光を検出することができる。ここで観察される散乱体につ いては学会等ですでに報告があり、酸素析出物とみなされている(Shinsuke Sada mitsu et al. Japanese Journal of Applied Pnysics Vol. 32 (1993) , p . 3679参照)。また、最近の研究では、八面体のボイド (空洞)であるという結果も報 告されている。 [0014] 3) LSTD (Laser Scattering Tomography Defect) is the growth of silicon The wafer is cut out of the single crystal, and the strained layer on the surface is removed by etching with a mixed solution of hydrofluoric acid and nitric acid, and then the wafer is cleaved. By irradiating infrared light from the cleavage plane (or the wafer surface) and detecting light emitted from the wafer surface (or the cleavage plane), scattered light due to defects existing in the wafer can be detected. The scatterers observed here have already been reported by academic societies and are regarded as oxygen precipitates (Shinsuke Sada mitsu et al. Japanese Journal of Applied Pnysics Vol. 32 (1993), p. 3679). reference). Recent studies have also reported octahedral voids.
[0015] 4) COP (Crystal Originated Particle)とは、ゥエーハの酸化膜而圧を劣化さ せる原因となる欠陥で、 Seccoエッチでは FPDになる欠陥力 SC— 1洗浄(NH OH  [0015] 4) COP (Crystal Originated Particle) is a defect that causes deterioration of the oxide film pressure of the wafer. The defect force that becomes FPD in Secco etch SC-1 cleaning (NH OH
4 Four
: H O: H 0 = 1 : 1 : 10の混合液による洗浄)では選択エッチング液として働き、 CO: H O: H 0 = 1: 1: 10 mixture cleaning) works as a selective etching solution, CO
2 2 2 2 2 2
Pになる。このピットの直径は 1 μ m以下で光散乱法で調べる。  Become P. The diameter of this pit is less than 1 μm and is examined by the light scattering method.
[0016] 5) L/D (Large Dislocation:格子間型転位ループの略号)には、 LSEPD、 LF PD等があり、転位ループ起因と考えられている欠陥である。 LSEPDは、上記したよ うに SEPDの中でも 10 m以上の大きいものをいう。また、 LFPDは、上記した FPD の中でも先端ピットの大きさが 10 μ m以上の大き 、ものを 、う。  [0016] 5) L / D (Large Dislocation: abbreviation for interstitial dislocation loop) includes LSEPD, LF PD, etc., and is a defect considered to be caused by the dislocation loop. LSEPD is a large SEPD of 10 m or more as described above. The LFPD is one of the above-mentioned FPDs having a tip pit size of 10 μm or more.
[0017] また一方、 CZ法により育成されたシリコン単結晶中には、およそ 1018atoms/cm3 の濃度で格子間酸素が不純物として含まれる。この格子間酸素は、結晶育成工程中 の固化してから室温まで冷却されるまでの熱履歴 (以下、結晶熱履歴と略すことがあ る。 )や半導体素子の作製工程における熱処理工程にぉ 、て過飽和状態となるため に析出して、シリコン酸ィ匕物の析出物(以下、酸素析出物、 BMD (Bulk Micro De fects)、または単に析出物と呼ぶことがある)が形成される。 On the other hand, the silicon single crystal grown by the CZ method contains interstitial oxygen as an impurity at a concentration of about 10 18 atoms / cm 3 . The interstitial oxygen is used in a heat history (hereinafter, may be abbreviated as a crystal heat history) from solidification in a crystal growth process to cooling to room temperature, or a heat treatment process in a semiconductor device manufacturing process. As a result, a precipitate of silicon oxide (hereinafter sometimes referred to as an oxygen precipitate, BMD (Bulk Micro Defects), or simply a precipitate) is formed.
[0018] この酸素析出物は、デバイスプロセスにおいて混入する重金属不純物を捕獲する ゲッタリングサイトとして有効に働き(Internal Gettering: IG)、デバイス特性や歩 留りを向上させることができる。しかしながら、酸素析出物は熱処理条件に強く依存 するために、ユーザー毎に異なるデバイスプロセスにおいて適切な酸素析出物を得 ることは極めて難しぐ酸素析出物の制御は非常に重要な課題となっている。  [0018] The oxygen precipitate effectively functions as a gettering site for capturing heavy metal impurities mixed in the device process (Internal Gettering: IG), and can improve device characteristics and yield. However, since oxygen precipitates are highly dependent on heat treatment conditions, it is extremely difficult to obtain appropriate oxygen precipitates in different device processes for each user.Control of oxygen precipitates is a very important issue. .
[0019] さらに、ゥエーハはデバイスプロセスで熱履歴を受けるだけでなぐもともと結晶熱 履歴を受けている。従って、ァズーグローン (as grown)結晶中には結晶熱履歴で形 成された酸素析出核 (グローンイン析出核)がすでに存在しており、このグローンイン 析出核の存在が酸素析出物の制御をさらに難しくしている。 [0019] Furthermore, the wafer is not only subject to the heat history in the device process, but also the crystal heat. Received history. Therefore, oxygen precipitate nuclei (grain-in precipitate nuclei) formed by the heat history of the crystal already exist in the as-grown crystals, and the presence of the grow-in precipitate nuclei makes it more difficult to control the oxygen precipitates. ing.
[0020] 酸素析出の過程は、析出核形成とその成長過程から成る。通常のァズーグローンゥ エーハの場合、結晶熱履歴において核形成が進行し、その後のデバイスプロセス等 の熱履歴により大きく成長し、酸素析出物として検出されるようになる。従って、デバ イスプロセス投入前の段階でゥエーハに存在している酸素析出物は極めて小さぐ I G能力を持たない。しかし、デバイスプロセスを経ることにより、酸素析出物は大きく成 長して IG能力を有するようになる。  [0020] The process of oxygen precipitation consists of the formation of a precipitate nucleus and its growth process. In the case of a normal azglow wafer, nucleation proceeds in the heat history of crystallization, grows larger due to the heat history of the subsequent device process and the like, and is detected as an oxygen precipitate. Therefore, the oxygen precipitates present in the wafer at the stage prior to the injection of the device process have extremely small IG capability. However, through the device process, the oxygen precipitate grows greatly and has IG capability.
[0021] しかしながら、近年のデバイスプロセスでは使用するゥエーハの大口径化に伴い、 低温化 ·短時間化が進行しており、例えば、一連のデバイスプロセスにおいて熱処理 が全て 1000°C以下の温度で行われたり、数十秒程度の熱処理時間しか行わな ヽ R TP (Rapid Thermal Processing)が頻繁に用いられるようになってきている。この ようなデバイスプロセスでは、例えば全ての熱処理の熱履歴をトータルしても 1000°C 、 2時間程度の熱処理にしか相当しない場合があるため、従来のように、デバイスプロ セス中での酸素析出物の成長が期待できない。そのため、低温化'短時間化された デバイスプロセスに対しては、デバイスプロセス投入前の段階で IG能力を有するよう な検出可能なサイズの酸素析出物が高密度で形成されていることが望ましい。また、 その一方で、酸素析出物がゥエーハ表面近傍のデバイス作製領域に存在すると、デ バイス特性を劣化させるため、ゥエーハ表面近傍では酸素析出物が存在しないこと が望ましい。  [0021] However, in recent device processes, as the diameter of wafers used has been increased, the temperature has been reduced and the time has been shortened. For example, in a series of device processes, heat treatment is performed at a temperature of 1000 ° C or less. RTP (Rapid Thermal Processing), which only requires a heat treatment time of about several tens of seconds, has been frequently used. In such a device process, for example, the total thermal history of all heat treatments may only correspond to a heat treatment of about 1000 ° C for about 2 hours. I can't expect things to grow. Therefore, it is desirable that oxygen precipitates of a detectable size having high IG capability be formed at a high density in a stage before the device process is introduced, for a device process at a low temperature and a short time. On the other hand, if oxygen precipitates exist in the device fabrication region near the wafer surface, the device characteristics are degraded. Therefore, it is desirable that oxygen precipitates do not exist near the wafer surface.
[0022] また、一般的に、 CZ法により単結晶を育成する場合、生産性の向上等の理由から 引き上げ速度を速くできる V領域で単結晶の育成が行われることがあるが、この場合 、作製した CZゥエーハには、上記のグローンイン析出核の他に、結晶引上げ時の熱 履歴により導入されるグローンイン欠陥として、例えば前述のような原子空孔の凝集 により形成された COP等のボイド (空孔)型の欠陥が存在する。このような COP等の ボイド型欠陥がデバイス作製領域に存在すると、デバイス特性、特に重要な特性であ る酸ィ匕膜耐圧特性を劣化させることが知られている。したがって、デバイス作製領域 となるゥエーハ表層部(通常はゥエーハ表面力 数 m程度の領域)には、酸素析出 物と同様に、ボイド型欠陥も存在しな 、ことが望ま U、。 In general, when a single crystal is grown by the CZ method, the single crystal may be grown in a V region where the pulling speed can be increased for reasons such as improvement in productivity. In this case, In addition to the above-described grown-in precipitation nuclei, voids such as COPs formed by the aggregation of atomic vacancies (vacancies), There are (hole) type defects. It is known that the presence of such a void type defect such as COP in the device fabrication region deteriorates the device characteristics, particularly the breakdown voltage characteristics of the oxide film, which is an important characteristic. Therefore, the device fabrication area It is desirable that void-type defects do not exist in the surface layer of the wafer (usually, the area of the wafer surface force of about several meters) as well as oxygen precipitates.
[0023] そこで、このようなゥエーハ表層部に存在するボイド型欠陥を消滅させるために、例 えば、ゥエーハに水素あるいはアルゴンなどの不活性雰囲気下で 1200°C程度の高 温熱処理を施すことが行われている。さらに、ゥエーハ表層部に存在する COP等の ボイド型欠陥を消滅させるとともに、ゥエーハ内部 (バルタ部)に酸素析出物を形成す るために、例えば、結晶育成時に窒素を添加する方法が提案されている(例えば、特 開平 11— 322490号公報、特開平 11— 322491号公報、特開 2000— 211995号公 報など)。 Therefore, in order to eliminate such void-type defects existing in the surface layer of the wafer, for example, the wafer is subjected to a high-temperature heat treatment at about 1200 ° C. in an inert atmosphere such as hydrogen or argon. Is being done. Furthermore, in order to eliminate void-type defects such as COP existing in the surface layer of the wafer and to form oxygen precipitates inside the wafer (balta), for example, a method of adding nitrogen during crystal growth has been proposed. (For example, Japanese Patent Publication No. 11-322490, Japanese Patent Application Laid-Open No. 11-322491, Japanese Patent Application Laid-Open No. 2000-211995).
[0024] このように窒素を添加して単結晶を育成し、その単結晶からゥエーハを作製すること により、ゥエーハに存在するボイドのサイズが小さくなるためにゥエーハ表面近傍では 高温熱処理で欠陥が消滅しやすくなり、また、結晶熱履歴で単結晶中に形成される グローンイン析出核が大きくなるために、高温熱処理を行ってもゥエーハバルタ部で 析出核は消滅せずに成長して酸素析出物を形成することができ、ゥエーハに IG能力 を付加できる。さらに、最近では、この酸素析出物の密度の面内分布を均一にする方 法にっ 、ても提案されて ヽる(特開 2002— 57160号公報)。  [0024] As described above, by growing a single crystal by adding nitrogen and manufacturing a wafer from the single crystal, the size of the voids existing in the wafer becomes smaller. In addition, the growth nuclei formed in the single crystal due to the thermal history of the crystal grow larger, so even if high-temperature heat treatment is performed, the precipitate nuclei grow without forming an disappearance in the Ahabarta part and form oxygen precipitates. IG capability can be added to e-ha. Furthermore, recently, a method of making the in-plane distribution of the density of oxygen precipitates uniform has also been proposed (Japanese Patent Application Laid-Open No. 2002-57160).
[0025] しかし、窒素が添加されたゥエーハを作製した場合でも、ゥエーハ表層部のボイド 型欠陥を消滅させるためには、 1200°C程度の高温の熱処理が必要であり、場合に よっては、高温熱処理を行っても検出できない程度の小さなボイド型欠陥が残留する 恐れがある。また、サイズの大きなグローンイン析出核は、熱的に安定なためにゥェ ーハ表層部でも消滅しにくぐ表層部に残留する恐れがある。このようなボイド型欠陥 ゃグローンイン析出核がゥエーハ表層部に残留していると、その後デバイスを作製す る際にデバイス特性が劣化する等の問題が生ずる。 [0025] However, even when a wafer to which nitrogen is added is manufactured, a heat treatment at a high temperature of about 1200 ° C is necessary to eliminate void-type defects in the surface layer of the wafer. There is a possibility that small void-type defects that cannot be detected even after heat treatment may remain. In addition, large-sized growth-in precipitation nuclei may remain on the wafer surface layer because they are thermally stable and are hardly extinguished. If such void-type defects, ie, grown-in precipitation nuclei, remain in the surface layer of the wafer, problems may occur such as deterioration of device characteristics when the device is manufactured thereafter.
さらに、上記のように結晶育成時に窒素を添加する場合は、結晶製造工程が複雑 になると共に、窒素濃度の管理などに手間がかかるという問題があった。  Furthermore, when nitrogen is added during crystal growth as described above, there are problems that the crystal manufacturing process becomes complicated and that it takes time to control the nitrogen concentration.
発明の開示 Disclosure of the invention
[0026] そこで、本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、デ バイス作製領域であるゥエーハ表層部の酸ィ匕膜耐圧特性が優れており、且つ、ゥェ ーハバルタ部にデバイスプロセス投入前の段階で酸素析出物の密度が面内均一に 高密度で存在し、優れた IG能力を有するァニールゥエーハ及びそのァニールゥェ ーハを製造する方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide The oxide surface of the wafer surface area, which is a vice manufacturing area, has excellent withstand voltage characteristics, and the density of oxygen precipitates in the wafer balta section is uniform and high in the plane before the device process is introduced. An object of the present invention is to provide an annealed wafer having excellent IG capability and a method of manufacturing the annealed wafer.
[0027] 上記目的を達成するために、本発明によれば、チヨクラルスキー法により育成された シリコン単結晶から作製したシリコンゥエーハに熱処理を施したァニールゥエーハで あって、ゥエーハ全面がグローンイン欠陥も OSFも存在しない N領域であり、ゥエー ハ表面力 少なくとも深さ 5 μ mまでの領域における酸ィ匕膜耐圧特性の良品率が 95 %以上であり、且つ、ゥエーハ内部における酸素析出物の密度が I X 109Zcm3以 上で、ゥエーハ面内における酸素析出物の密度の最大値と最小値との比(最大値 Z 最小値)の値が 1一 10であることを特徴とするァニールゥエーハが提供される。 [0027] In order to achieve the above object, according to the present invention, there is provided an annealed wafer obtained by subjecting a silicon wafer produced from a silicon single crystal grown by the Czochralski method to a heat treatment, wherein the entire surface of the wafer has a grown-in defect. In the N region where OSF does not exist, the non-defective rate of the oxide film breakdown voltage characteristic is 95% or more in the region where the surface tension of the wafer is at least 5 μm, and the density of the oxygen precipitate inside the wafer is less than 95%. in IX 10 9 ZCM 3 than on, Aniruueha is provided, wherein a value of the ratio between the maximum value and the minimum value of the density of oxygen precipitates in Ueha plane (maximum value Z minimum value) is 1 one 10 Is done.
[0028] 本発明のァニールゥエーハは、ゥエーハ全面が N領域で、酸化膜耐圧特性の良品 率が 95%以上であり、且つ、ゥエーハ内部 (バルタ部)における酸素析出物の密度が 1 X 109Zcm3以上で、ゥエーハ面内における酸素析出物密度の(最大値 Z最小値) の値が 1一 10であるものであるので、デバイス作製領域であるゥエーハ表層部の酸 化膜耐圧特性が非常に優れており、ゥエーハバルタ部にデバイスプロセス投入前の 段階で酸素析出物の密度が面内均一に高密度で存在し、優れた IG能力を有するァ ニールゥエーハとすることができる。 The annealed wafer of the present invention has an N region on the entire surface of the wafer, a non-defective rate of oxide film breakdown voltage characteristics of 95% or more, and an oxygen precipitate density of 1 × 10 9 Zcm inside the wafer (balta portion). Since the value of (maximum value Z minimum value) of the oxygen precipitate density in the wafer surface is 1 to 10 when it is 3 or more, the oxide film breakdown voltage characteristics of the wafer surface layer, which is the device fabrication area, are very low. It is excellent, and the density of oxygen precipitates is uniform and high density in the plane at the stage before the device process is injected into the Ehbar balta part.
[0029] また、本発明は、チヨクラルスキー法により育成されたシリコン単結晶から作製したシ リコンゥエーハに熱処理を施したァニールゥエーハであって、前記シリコンゥエーハ の全面がグローンイン欠陥も OSFも存在しな!、、原子空孔の多 ヽ Nv領域のものであ り、該シリコンゥエーハに熱処理を施したものであることを特徴とするァニールゥエー ハを提供する。  [0029] The present invention also relates to an annealed wafer obtained by subjecting a silicon wafer produced from a silicon single crystal grown by the Czochralski method to a heat treatment, wherein the entire surface of the silicon wafer has neither a grown-in defect nor an OSF. !, An anneal wafer characterized by having a large number of vacancies in the Nv region and heat-treating the silicon wafer.
[0030] このように、ゥエーハ全面がグローンイン欠陥も OSFも存在しな!、、原子空孔の多 い Nv領域のシリコゥエーハに熱処理を施したァニールゥエーハであれば、ゥエーハ 表面のみならず、例えばゥエーハ表面から 5 μ mまでの領域が無欠陥層(DZ層)とな るので、ゥエーハ表層部の酸ィ匕膜耐圧特性が非常に優れたゥエーハとすることがで き、また、ゥエーハバルタ部に酸素析出物が例えば 1 X 109Zcm3以上の高密度で面 内均一に形成されたものとなるので、優れた IG能力を有するゥエーハとすることがで きる。 As described above, the entire surface of the wafer has neither a grown-in defect nor OSF! If the silicon wafer in the Nv region with many vacancies is subjected to a heat treatment, not only the surface of the wafer but also the surface of the wafer, for example, The region from to 5 μm is the defect-free layer (DZ layer), which makes it possible to make the wafer excellent in the breakdown voltage characteristics of the oxide film on the surface layer of the wafer. The object has a high density of, for example, 1 X 10 9 Zcm 3 or more. Since it is formed uniformly inside, it is possible to obtain a wafer having excellent IG capability.
[0031] この場合、前記ァニールゥエーハの直径が 200mm以上であるものとすることがで きる。  [0031] In this case, the diameter of the annealing wafer can be 200 mm or more.
本発明のァニールゥエーハは、上記のように酸素析出物が高密度で面内均一に形 成されたものであり、またこの酸素析出物は、例えばゥエーハを熱処理した際の熱応 力によるスリップ転位の発生を抑制する効果があることが知られて 、る。したがって、 本発明のァニールゥエーノ、が、熱処理によってスリップ転位の発生し易い 200mm以 上の直径を有するものであれば、例えばデバイスプロセス中の熱応力によるスリップ 転位の発生を抑制できる大口径のゥエーハとすることができ、特に今後の主流となる 300mm以上のゥエーハにおいて非常に有効なゥエーハとなる。  The anneal wafer of the present invention has oxygen precipitates formed at high density and in-plane uniformly as described above, and the oxygen precipitates have, for example, slip dislocation due to thermal stress when the wafer is heat-treated. It is known to have the effect of suppressing the occurrence. Therefore, as long as the anneal 本 eno of the present invention has a diameter of 200 mm or more in which slip dislocation is easily generated by heat treatment, for example, a large diameter wafer that can suppress the occurrence of slip dislocation due to thermal stress during a device process is used. It will be a very effective wafer especially for wafers of 300mm or more, which will become mainstream in the future.
[0032] また、本発明によれば、チヨクラルスキー法により育成したシリコン単結晶からシリコ ンゥエーハを作製し、該作製したシリコンゥエーハに熱処理を施してァニールゥエー ハを製造する方法において、前記シリコンゥエーハとして、ゥエーハの全面がグロ一 ンイン欠陥も OSFも存在しない、原子空孔の多い Nv領域となるシリコンゥエーハを作 製した後、該作製したシリコンゥエーハに、少なくとも、 500°C以上 700°C以下の温度 T [0032] Further, according to the present invention, in the method for producing a silicon wafer by producing a silicon wafer from a silicon single crystal grown by the Czochralski method and subjecting the produced silicon wafer to a heat treatment, As a wafer, a silicon wafer having an Nv region with many vacancies in which the entire surface of the wafer does not have a green-in defect or OSF was prepared, and then the prepared silicon wafer was heated at a temperature of 500 ° C or more to 700 ° C or more. Temperature T below ° C
11 °Cで所定時間 t 保持し、次に  Hold at 11 ° C for a predetermined time t, then
11 5°CZ分以下の昇温速度で 1000°C以上 1230°C 以下の温度 τ 12 °cまで昇温し、その後、該温度 τ 12 °cで所定時間 t 保持する熱処理  11 Heat treatment at a temperature rise rate of 5 ° CZ or less to a temperature of 1000 ° C or more and 1230 ° C or less to a temperature τ12 ° C, and then hold at the temperature τ12 ° c for a predetermined time t
12  12
を行うことを特徴とするァニールゥエーハの製造方法が提供される。  And a method for producing annealed wafers.
[0033] このように、原子空孔の多!ヽ Nv領域となるシリコンゥエーハを作製して、そのシリコ ンゥエーハを、 500°C以上 700°C以下の温度で所定時間保持することにより、ゥエー ハ中のグローンイン析出核を成長させて消滅させにくくし、さらに新たな酸素析出核 をゥエーハに発生させることができ、次に 5°CZ分以下の昇温速度で 1000°C以上 1 230°C以下の温度まで昇温することにより、ゥエーハに存在する高密度のグローンィ ン析出核や酸素析出核を消滅させずに効率的に成長させ、その後その温度で所定 時間保持することにより、ゥエーハバルタ部のグロ一イン析出核や酸素析出核を酸素 析出物に成長させることにより酸素析出物の密度を高めると同時に、ゥエーハ表面近 傍の酸素を外方拡散させてゥエーハ表層部のグローイン析出核や酸素析出核を消 滅させ、ゥエーハ表層部に酸素析出物もグローンイン析出核も存在しない DZ層を形 成することができる。それによつて、デバイス作製領域であるゥエーハ表層部の酸ィ匕 膜耐圧特性が非常に優れており、且つ、ゥエーハバルタ部にデバイスプロセス投入 前の段階で酸素析出物が面内均一に高密度で存在して優れた IG能力を有するァニ ールゥエーハを容易に製造することができる。 [0033] As described above, a silicon wafer having a large number of atomic vacancies and an Nv region is produced, and the silicon wafer is held at a temperature of 500 ° C or more and 700 ° C or less for a predetermined time. The grown-in precipitate nuclei in C become difficult to grow and disappear, and new oxygen precipitate nuclei can be generated on the wafer.Then, at a temperature rise rate of 5 ° CZ or less, 1000 ° C or more and 1 230 ° C By raising the temperature to the following temperature, high-density glowin precipitate nuclei and oxygen precipitate nuclei existing in the ewa can be efficiently grown without extinction, and then maintained at that temperature for a predetermined period of time. Growing green precipitate nuclei and oxygen precipitate nuclei into oxygen precipitates increases the density of the oxygen precipitates, and at the same time, diffuses oxygen near the surface of the wafer outward and grows glow-in precipitate nuclei and oxygen on the surface layer of the wafer. Eliminate precipitation nuclei It is possible to form a DZ layer free of oxygen precipitates and grown-in precipitation nuclei on the surface layer of e-wafer. As a result, the oxide film withstand voltage characteristics of the surface layer portion of the wafer, which is the device fabrication area, are extremely excellent, and the oxygen precipitates are uniformly present at high density in the plane before the device process is injected into the wafer barrier section. As a result, it is possible to easily manufacture an aniline wafer having excellent IG capability.
[0034] このとき、前記シリコンゥエーハを 500°C以上 700°C以下の温度 T °Cで保持する At this time, the silicon wafer is kept at a temperature T ° C of 500 ° C. or more and 700 ° C. or less.
11  11
時間 t を 15分以上とすることが好ましい。  Preferably, the time t is 15 minutes or more.
11  11
このように、シリコンゥエーハを 500°C以上 700°C以下の温度で保持する時間 t を  Thus, the time t for holding the silicon wafer at a temperature of 500 ° C or more and 700 ° C or less is set as follows.
11 11
15分以上とすることにより、グローンイン析出核をより消滅しに《することができ、さら に新たな酸素析出核を効果的にゥエーハに発生させることができ、酸素析出核をより 高密度に形成できる。 By setting the time to 15 minutes or longer, it is possible to more effectively eliminate the grown-in precipitate nuclei, further effectively generate new oxygen precipitate nuclei in the wafer, and form oxygen precipitate nuclei with higher density it can.
[0035] また、前記シリコンゥエーハを 1000°C以上 1230°C以下の温度 T °Cで保持する時  Further, when the silicon wafer is held at a temperature T ° C. of 1000 ° C. or more and 1230 ° C. or less,
12  12
間 t を 30分以上とすることが好ましい。  It is preferable that the interval t be 30 minutes or more.
12  12
このように、シリコンゥエーハを 1000°C以上 1230°C以下の温度で保持する時間 t  Thus, the time to hold the silicon wafer at a temperature of 1000 ° C or more and 1230 ° C or less t
12 を 30分以上とすることにより、酸素析出物をゲッタリング能力を有するサイズに安定し て成長させることができ、また、ゥエーハ表面近傍に DZ層を十分な幅で形成すること ができる。  By setting 12 to 30 minutes or more, oxygen precipitates can be grown stably to a size having gettering ability, and a DZ layer can be formed with a sufficient width near the wafer surface.
[0036] さらに、本発明によれば、チヨクラルスキー法により育成したシリコン単結晶からシリ コンゥエーハを作製し、該作製したシリコンゥエーハに熱処理を施してァニールゥェ ーハを製造する方法において、前記シリコンゥエーハとして、ゥエーハの全面がグロ ーンイン欠陥も OSFも存在しない、原子空孔の多い Nv領域となるシリコンゥエーハを 作製した後、該作製したシリコンゥエーハに、少なくとも、温度 T °Cから温度 T °Cま  Further, according to the present invention, in the method for producing a silicon wafer from a silicon single crystal grown by the Czochralski method and subjecting the produced silicon wafer to a heat treatment to produce an annealed wafer, As a silicon wafer, a silicon wafer having an Nv region with many vacancies in which the entire surface of the wafer has neither a glow-in defect nor an OSF was manufactured, and then the manufactured silicon wafer was heated at a temperature of at least T ° C. T ° C
21 22 で R °CZ分の昇温速度で昇温する昇温工程 Aと、前記温度 T °Cから温度 T °Cま 21 A heating step A in which the temperature is raised at a heating rate of R ° CZ at 22 ° C, and the temperature T ° C to T ° C
1 1 22 23 で前記昇温工程 A 1 1 22 23
1の昇温速度とは異なる R  R different from 1 heating rate
2 °CZ分の昇温速度で昇温する昇温ェ 程 Bと、前記温度 T °Cで所定時間 t 保持する保持工程 Cとを有する熱処理を行う A heat treatment including a temperature raising step B for raising the temperature at a rate of 2 ° CZ and a holding step C for holding the temperature T ° C. for a predetermined time t is performed.
1 23 21 1 1 23 21 1
ことを特徴とするァニールゥエーハの製造方法が提供される。  A method for producing an annealed wafer is provided.
[0037] このように、原子空孔の多!ヽ Nv領域となるシリコンゥエーハを作製して、そのシリコ ンゥエーハに昇温工程 Αを施すことにより、ゥエーハ中のグローンイン析出核を極力 消滅させることなく成長させることができ、次に昇温速度が昇温工程八ェとは異なる昇 温工程 を施して短時間で高温まで昇温することにより、ゥエーハ表面近傍におけ る酸素析出物の成長を抑制でき、その後、保持工程 Cを施すことによりゥエーハバ ルク部では昇温工程 A及び昇温工程 Bで成長した微小な酸素析出物を IG能力を 有するようなサイズにさらに成長させることができ、ゥエーハ表面近傍では酸素析出 物を消滅させて DZ層を形成することができる。それによつて、デバイス作製領域であ るゥエーハ表層部の酸化膜耐圧特性が非常に優れており、且つ、ゥエーハバルタ部 にデバイスプロセス投入前の段階で酸素析出物が面内均一に高密度で存在して優 れた IG能力を有するァニールゥエーハを容易に製造することができる。 As described above, a silicon wafer having a large number of vacancies and an Nv region is produced, and the silicon wafer is subjected to a temperature raising step so that the grown-in precipitation nuclei in the wafer are reduced as much as possible. Oxygen precipitates near the wafer surface can be grown without being extinguished, and then heated to a high temperature in a short time by performing a heating process with a heating rate different from that of the heating process. After that, by applying the holding step C, the fine oxygen precipitates grown in the heating step A and the heating step B can be further grown to a size having IG capability in the evaporator section. In the vicinity of the wafer surface, oxygen precipitates disappear and a DZ layer can be formed. As a result, the oxide film withstand voltage characteristics of the surface layer of the wafer, which is the device fabrication area, are extremely excellent, and oxygen precipitates are uniformly present at a high density in the wafer, at the stage before the device process is introduced. Annealed wafers having excellent IG capability can be easily manufactured.
[0038] このとき、前記昇温工程 A、昇温工程 B、及び保持工程 Cを連続して行うことが好 ましい。 At this time, it is preferable that the temperature raising step A, the temperature raising step B, and the holding step C are performed successively.
このように昇温工程 A、昇温工程 B及び保持工程 Cの 3工程を連続して行うことに より、熱処理工程全体の工程時間を短縮でき、熱処理工程の効率化や生産性の向 上を図ることができる。  As described above, by continuously performing the temperature raising process A, the temperature raising process B, and the holding process C, the process time of the entire heat treatment process can be shortened, and the efficiency of the heat treatment process and the productivity can be improved. Can be planned.
[0039] また、前記昇温工程 Aにおいて、前記温度 T を 700°C以下、前記温度 T を 800  In the temperature raising step A, the temperature T is set to 700 ° C. or less and the temperature T is set to 800
1 21 22 1 21 22
°C以上 1000°C以下、前記昇温速度 Rを 3°CZ分以下とすることが好ましい。 It is preferable that the heating rate R is not more than 3 ° CZ and not more than 1000 ° C.
このような条件で昇温工程 Aを行うことにより、結晶成長工程で形成されたグローン イン析出核を極力消滅させることなく効率的に成長させて酸素析出物の密度を高め ることができ、さらに工程時間の短縮にもつながる。  By performing the temperature raising step A under such conditions, it is possible to grow the grown-in precipitation nuclei formed in the crystal growth step efficiently without extinction as much as possible and to increase the density of oxygen precipitates. This leads to a reduction in the processing time.
[0040] この場合、前記昇温工程 Aを行う前に、前記温度 T で 30分以上保持することが In this case, the temperature T may be maintained at the temperature T for 30 minutes or more before performing the temperature raising step A.
1 21  1 21
好ましい。  preferable.
このように、昇温工程 Aを行う前にシリコンゥエーハを温度 T で 30分以上保持す  Thus, before performing the heating step A, the silicon wafer is held at the temperature T for 30 minutes or more.
1 21  1 21
ることにより、グローンイン析出核をより消滅しにくくすることができるだけでなぐさらに グローンイン析出核に加えて新たな酸素析出核を効果的に発生させて、シリコンゥェ ーハに一層高密度の酸素析出核を形成することができる。  As a result, the growth nuclei of the grown-in nuclei can be made more difficult to be eliminated.In addition to the nuclei of the grown-in nuclei, new oxygen nuclei can be effectively generated, and a higher-density oxygen nuclei can be formed on the silicon wafer. Can be formed.
[0041] さらに、前記昇温工程 Bにおいて、前記温度 T を 800°C以上 1000°C以下、前記  Further, in the temperature raising step B, the temperature T is set to 800 ° C. or more and 1000 ° C. or less,
1 22  1 22
温度 T を 1050°C以上 1230°C以下、前記昇温速度 Rを 5°CZ分以上とすることが The temperature T should be 1050 ° C or more and 1230 ° C or less, and the heating rate R should be 5 ° CZ minutes or more.
23 2 23 2
好ましい。 このような条件で昇温工程 を行うことにより、保持工程 の保持温度まで短時間 で昇温することができ、それにより、ゥエーハ表面近傍における酸素析出物の成長を 抑制して、その後の保持工程 Cで表面近傍の酸素析出物を消滅させやすくすること ができる。 preferable. By performing the temperature raising step under such conditions, it is possible to raise the temperature to the holding temperature of the holding step in a short time, thereby suppressing the growth of oxygen precipitates in the vicinity of the wafer surface. C can make oxygen precipitates near the surface disappear easily.
[0042] また、前記保持工程 Cにおいて、前記温度 T を 1050°C以上 1230°C以下、前記  [0042] In the holding step C, the temperature T is set to 1050 ° C or more and 1230 ° C or less,
1 23  one two Three
保持時間 t を 30分以上とすることが好ましい。  Preferably, the holding time t is 30 minutes or more.
21  twenty one
このような条件で保持工程 Cを行うことにより、上記昇温工程 A及び昇温工程 Bで 成長したゥエーハバルタ部の酸素析出物を安定して成長させることができ、また同時 に、ゥエーハ表面近傍に酸素析出物のない DZ層を十分な幅で安定して形成するこ とがでさる。  By performing the holding step C under these conditions, the oxygen precipitates in the ehabalta part grown in the heating steps A and B can be grown stably, and at the same time, the oxygen precipitates in the vicinity of the ewa surface A DZ layer free of oxygen precipitates can be formed stably with a sufficient width.
[0043] また、本発明のァニールゥエーハの製造方法では、前記熱処理を施すシリコンゥェ ーハとして、窒素を添加せずに育成したシリコン単結晶から作製したものを用いること が好ましい。  [0043] In the method for producing an annealing wafer of the present invention, it is preferable to use a silicon wafer produced from a silicon single crystal grown without adding nitrogen as the silicon wafer to be subjected to the heat treatment.
[0044] このように、シリコンゥエーハとして窒素を添加せずに育成したシリコン単結晶から 作製したものを用いることにより、熱処理が加えられるシリコンゥエーハに熱的に安定 なグローンイン析出核、例えば、直径 40nm以上の析出核が存在しないので、熱処 理を行った際にゥエーハ表面近傍力 グローンイン析出核を容易に消滅させて DZ 層を形成することができる。また、シリコン単結晶を育成する際に窒素を添加する必 要がないので、結晶育成工程が複雑にならず、作業や管理などが容易になるという 利点も有する。  [0044] As described above, by using a silicon wafer fabricated from a silicon single crystal grown without adding nitrogen, a thermally stable grown-in precipitation nucleus, for example, Since there is no precipitation nucleus with a diameter of 40 nm or more, the force near the surface of the evaporator during thermal treatment can easily eliminate the grown-in precipitation nuclei and form a DZ layer. In addition, since it is not necessary to add nitrogen when growing a silicon single crystal, there is an advantage that the crystal growing process is not complicated and work and management are easy.
[0045] さらに、前記熱処理を施すシリコンゥエーハの酸素濃度を 14ppma以上とすること が好ましい。  Further, it is preferable that the oxygen concentration of the silicon wafer subjected to the heat treatment be 14 ppma or more.
このように熱処理を施すシリコンゥエーハの酸素濃度が 14ppma以上であれば、熱 処理をおこなうことによってゥエーハバルタ部に酸素析出物を一層高密度で形成す ることができ、ァニールゥエーハに一層優れた IG能力を付加することができる。また、 シリコンゥエーハの酸素濃度を 14ppma以上と高くすることにより、酸素析出物の成 長速度が速くなるので、全体の工程時間の短縮を図ることができる。  When the oxygen concentration of the silicon wafer subjected to the heat treatment is 14 ppma or more, the heat treatment can form a higher density of oxygen precipitates in the ember barta portion, and the IG capability which is superior to the anneal wafer Can be added. In addition, by increasing the oxygen concentration of silicon wafer to 14 ppma or more, the growth rate of oxygen precipitates is increased, so that the overall process time can be reduced.
[0046] そして、本発明では、前記製造するァニールゥエーハの直径を 200mm以上とする ことができる。 [0046] In the present invention, the diameter of the annealed wafer to be manufactured is 200 mm or more. be able to.
本発明のァニールゥエーハの製造方法は、従来では熱処理でスリップ転位が発生 し易かった直径 200mm以上の大口径のァニールゥエーハを製造する場合に特に 好適に適用することができる。すなわち、本発明は、上述のようにゥエーハ面内に大 きなサイズの酸素析出物を高密度で均一に形成できるため、熱処理中に生じるスリツ プ転位がピンユングされる確率が高くなり、スリップ転位の発生を抑制できる。したが つて、スリップ転位の発生してない大口径のァニールゥエーハを安定して製造するこ とが可能となる。  The method for producing annealed wafers of the present invention can be particularly suitably applied to the case of producing large-diameter annealed wafers having a diameter of 200 mm or more, in which slip dislocations are easily generated by heat treatment in the past. That is, according to the present invention, oxygen precipitates having a large size can be uniformly formed at a high density in the wafer surface as described above, so that the slip dislocation generated during the heat treatment is more likely to be pinned and the slip dislocation is increased. Can be suppressed. Therefore, it is possible to stably produce a large-diameter annealed wafer having no slip dislocation.
[0047] 以上のように、本発明によれば、ゥエーハの全面がグローンイン欠陥も OSFも存在 しな 、、原子空孔の多 、Nv領域となるシリコンゥエーハに所定の条件で熱処理を行 つてァニールゥエーハを製造することにより、デバイス作製領域であるゥエーハ表層 部の酸ィヒ膜耐圧特性が非常に優れており、ゥエーハバルタ部にデバイスプロセス投 入前の段階で酸素析出物が面内均一に高密度で存在して優れた IG能力を有する ァニールゥエーハを提供することができる。  As described above, according to the present invention, heat treatment is performed under predetermined conditions on a silicon wafer that has many atomic vacancies and an Nv region in which the entire surface of the wafer has neither a grown-in defect nor an OSF. By manufacturing an anneal wafer, the oxide film withstand voltage characteristic of the surface layer of the wafer, which is the device fabrication area, is extremely excellent, and the oxygen precipitates are uniformly distributed in the plane before the device process is injected into the wafer barrier part. The present invention can provide an annealed wafer having excellent IG capability.
図面の簡単な説明 Brief Description of Drawings
[0048] [図 1]本発明の第 1の態様に係るァニールゥエーハの製造方法の一例を示すフロー 図である。  FIG. 1 is a flowchart showing an example of a method for producing an annealing machine according to a first embodiment of the present invention.
[図 2]本発明の第 1の態様においてシリコンゥエーハに施す熱処理のパターンを模式 的に示す模式図である。  FIG. 2 is a schematic view schematically showing a pattern of a heat treatment applied to a silicon wafer in the first embodiment of the present invention.
[図 3]本発明の第 2の態様に係るァニールゥエーハの製造方法の一例を示すフロー 図である。  FIG. 3 is a flowchart showing an example of a method for producing an annealing device according to a second embodiment of the present invention.
[図 4]本発明の第 2の態様においてシリコンゥエーハに施す熱処理のパターンを模式 的に示す模式図である。  FIG. 4 is a schematic view schematically showing a pattern of a heat treatment applied to a silicon wafer in a second embodiment of the present invention.
[図 5]本発明のァニールゥエーハの製造方法で用いることのできる単結晶引上げ装 置の一例を示す構成概略図である。  FIG. 5 is a schematic configuration diagram showing an example of a single crystal pulling apparatus that can be used in the method for producing annealed wafers of the present invention.
[図 6]実施例で使用した単結晶引上げ装置と、比較例で使用した単結晶引上げ装置 の温度分布を示すグラフである。 [図 7]実施例の縦割りサンプルについて、結晶欠陥領域を同定した結果と初期酸素 濃度及び酸素析出量を求めた結果を示す図である。 FIG. 6 is a graph showing temperature distributions of the single crystal pulling apparatus used in the example and the single crystal pulling apparatus used in the comparative example. FIG. 7 is a diagram showing a result of identifying a crystal defect region and a result of obtaining an initial oxygen concentration and an amount of precipitated oxygen with respect to a vertically divided sample of an example.
[図 8]比較例の縦割りサンプルについて結晶欠陥領域を同定した結果を示す図であ る。  FIG. 8 is a view showing a result of identifying a crystal defect region in a vertically divided sample of a comparative example.
[図 9]実施例及び比較例で製造したァニールゥエーハにおける酸素析出物(BMD) の密度の値及び面内分布を示すグラフである。  FIG. 9 is a graph showing density values and in-plane distributions of oxygen precipitates (BMD) in annealed wafers manufactured in Examples and Comparative Examples.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、本発明について実施の形態を説明するが、本発明はこれらに限定されるも のではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
本発明者等は、ゥエーハ表層部の酸ィヒ膜耐圧特性が非常に優れており、ゥエーハ バルタ部にデバイスプロセス投入前の段階で酸素析出物が面内均一に高密度で存 在するゥエーハを製造するために鋭意実験及び検討を重ねた。その結果、例えば 8 00°Cで 4時間 + 1000°Cで 16時間というような酸素析出熱処理を行った際に酸素析 出量 (すなわち、酸素析出熱処理前の初期酸素濃度と酸素析出熱処理後の酸素濃 度との差)が Ippma CiEIDA:日本電子工業振興協会規格)以上となるようなシリコン ゥエーハは、熱的に安定なグローンイン析出核を適度に有しているので、このような シリコンゥエーハに熱処理を行うことにより、ゥエーノ、バルタ部でグローンイン析出核 を消滅させずに成長させて、酸素析出物を安定して形成できることがわかった。  The inventors of the present invention have reported that the ィ wafer surface layer has a very excellent oxygen-withstand voltage characteristic, and the バ ル wafer, in which oxygen precipitates are uniformly and densely present in the plane before the device process is introduced, in the バ ル balta section. In order to manufacture it, intensive experiments and studies were repeated. As a result, when oxygen precipitation heat treatment was performed, for example, at 800 ° C for 4 hours + 1000 ° C for 16 hours, the oxygen precipitation amount (i.e., the initial oxygen concentration before the oxygen precipitation heat treatment and the oxygen Silicon wafers with a difference from oxygen concentration) of Ippma CiEIDA (Japan Electronic Industry Development Association standard) or higher have moderately thermally stable glow-in deposition nuclei. It was found that by performing the heat treatment, the grown-in precipitate nuclei could be grown in the で eno and Balta portions without disappearing, and oxygen precipitates could be formed stably.
[0050] 一方、ゥエーハの酸ィ匕膜耐圧特性の向上を図るために、ゥエーハ全面がグローン イン欠陥も OSFも存在しない N領域となるシリコンゥエーハを用い、さらにこの N領域 となるシリコンゥエーハに酸素析出物を形成するために熱処理を行った場合、ゥエー ハ表面近傍には DZ層を形成でき、またゥエーハのバルタ部には酸素析出物を形成 することができる。し力しながら、 N領域には前述のように Nv領域と Ni領域があり、ま た Ni領域は Nv領域に比較して酸素析出が発生しにくい領域であるため、ゥエーハ 面内に Ni領域と Nv領域が混在するようなシリコンゥエーハに熱処理を行った場合に は、酸素析出物の密度がゥエーハ面内で不均一となり、その結果、ゥエーハの有す るゲッタリング能力が面内で不均一となることが明らかとなった。さらに、この場合、酸 素析出物の密度の面内バラツキに起因してゥエーハに反り等が発生することがあるこ ともわかった。 On the other hand, in order to improve the breakdown voltage characteristics of the silicon oxide film of the wafer, a silicon wafer whose entire surface is an N region where neither a grown-in defect nor an OSF exists is used. When heat treatment is performed to form oxygen precipitates on the wafer, a DZ layer can be formed near the surface of the wafer, and oxygen precipitates can be formed on the Balta portion of the wafer. As described above, the N region includes the Nv region and the Ni region as described above, and the Ni region is a region in which oxygen precipitation is less likely to occur than the Nv region. When heat treatment is performed on silicon wafers in which Nv regions are mixed, the density of oxygen precipitates becomes non-uniform in the plane of the wafer, and as a result, the gettering ability of the wafer becomes non-uniform in the plane. It became clear that it becomes. Furthermore, in this case, the wafer may be warped due to the in-plane variation in the density of the oxygen precipitate. I also understood.
[0051] そこで、本発明者等はさらに実験及び検討を重ねた結果、シリコンゥエーハの Nv 領域では、上記のような酸素析出熱処理を行った際に酸素析出量が lppma以上と なることを見出し、そして、このような Nv領域がゥエーハ全面に広がるシリコンゥエー ハに熱処理を行ってァニールゥエーハを製造すれば、ゥエーハ表層部の酸化膜耐 圧特性が非常に優れており、ゥエーハバルタ部に酸素析出物が面内均一に高密度 で存在するような高品質のァニールゥエーハが得られることに想到し、本発明を完成 させた。  Thus, the present inventors have conducted further experiments and studies and found that, in the Nv region of silicon wafer, the amount of precipitated oxygen becomes lppma or more when the above oxygen precipitation heat treatment is performed. If annealed silicon wafers are manufactured by heat-treating silicon wafers in which the Nv region spreads over the entire surface of the wafer, the oxide film withstand pressure characteristics of the surface layer of the wafer are extremely excellent, and oxygen precipitates are formed on the wafer bar. The present invention has been completed by conceiving that a high-quality annealed wafer can be obtained in which the particles exist uniformly at high density in the plane.
[0052] すなわち、本発明のァニールゥエーハは、 CZ法により育成されたシリコン単結晶か ら作製したシリコンゥエーハに熱処理を施したァニールゥエーハであって、前記シリコ ンゥエーハの全面がグローンイン欠陥も OSFも存在しな!、、原子空孔の多 、Nv領域 のものであり、該シリコンゥエーハに熱処理を施したものであることに特徴を有するも のである。  That is, the annealing wafer of the present invention is an annealing wafer obtained by subjecting a silicon wafer produced from a silicon single crystal grown by the CZ method to a heat treatment, and the entire silicon wafer has both a grown-in defect and an OSF. It is characterized by having a large number of atomic vacancies and being in the Nv region, which is obtained by subjecting the silicon wafer to a heat treatment.
[0053] また、このような本発明のァニールゥエーハは、ゥエーハ全面がグローンイン欠陥も OSFも存在しない N領域であり、ゥエーハ表面力 少なくとも深さ 5 mまでの領域に おける酸ィ匕膜耐圧特性の良品率が 95%以上であり、且つ、ゥエーハ内部における 酸素析出物の密度が 1 X 109Zcm3以上で、ゥエーハ面内における酸素析出物の密 度の最大値と最小値との比(最大値 Z最小値)の値が 1一 10であることに特徴を有す るちのとすることがでさる。 [0053] Further, such an anneal wafer of the present invention is a non-defective product having excellent surface pressure characteristics of an oxidized film in an area where the entire surface of the wafer is free of a grown-in defect and an OSF, and the surface area of the wafer is at least up to a depth of 5 m. Ratio is 95% or more, and the density of oxygen precipitates inside the eaves is 1 × 10 9 Zcm 3 or more, and the ratio (maximum value) The characteristic value is that the value of (Z minimum value) is 1 to 10.
[0054] このように、本発明のァニールゥエーハは、ゥエーハ表面のみならず、ゥエーハ表 面力も少なくとも深さ 5 μ mまでの領域において無欠陥層が形成されたものとなるの で、良品率が 95%以上となる優れた酸ィ匕膜耐圧特性を有するものとなり、例えばゥ エーハ表層部の比較的深 ヽ領域までデバイスを作製する場合であっても、デバイス 特性を劣化させることのないゥエーハとすることができる。ここで、本発明における酸 化膜而圧特性とは、 TZDB (Time Zero Dielectric Breakdown)特性のことを 意味し、その良品率は、例えば、判定電流値を ImAZcm2として、絶縁破壊電界が 8MVZcm以上となるものの割合を示す。 As described above, in the anneal wafer of the present invention, since the defect-free layer is formed not only on the surface of the wafer but also on the surface of the wafer at a depth of at least 5 μm, the yield rate is 95%. % Or more, and has excellent withstand voltage characteristics of the oxide film. For example, even when a device is manufactured up to a relatively deep region of the surface portion of the wafer, the wafer is not degraded in device characteristics. be able to. Here, the oxide film compression characteristic in the present invention means a TZDB (Time Zero Dielectric Breakdown) characteristic, and the non-defective rate is, for example, assuming that the determination current value is ImAZcm 2 and the dielectric breakdown electric field is 8 MVZcm or more. Show the ratio of
[0055] 尚、ゥエーハ表層部の欠陥を検出する簡便な方法として、例えばパーティクルカウ ンターや選択エッチング法がある。しかし、これらの方法を用いて欠陥の検査を行う 場合でも、検出下限以下の小さいサイズの欠陥が存在し、酸化膜耐圧特性を劣化さ せる場合がある。したがって、上記のように、本発明のァニールゥエーハカ 良品率 が 95%以上、さらに 100%であるような優れた酸ィ匕膜耐圧特性を有することは極めて 重要である。 As a simple method for detecting a defect on the surface layer of the wafer, for example, a particle cow And selective etching methods. However, even when a defect is inspected by using these methods, a defect having a small size equal to or smaller than the lower detection limit may be present, which may deteriorate the withstand voltage characteristics of the oxide film. Therefore, as described above, it is extremely important to have an excellent silicon oxide film withstand voltage characteristic such that the non-defective product of the present invention is 95% or more and further 100%.
[0056] また、本発明のァニールゥエーハは、上記のようにゥエーハ内部(バルタ部)におい て検出される IG能力を有するサイズ以上の酸素析出物の密度が 1 X 109Zcm3以上 であるので、デバイスプロセス投入前の段階で優れた IG能力を有するものとなり、近 年の低温化'短時間化が進むデバイスプロセスにおいても、ゥエーハバルタ部の酸 素析出物がデバイスプロセスの初期段階力もゲッタリングサイトとして働き、特別な熱 処理を追加しなくても十分なゲッタリング能力を発揮できるゥエーハとすることができ る。このとき、ァニールゥエーハの機械的強度を考慮すると、析出過多による劣化を 防止するため、酸素析出物の密度は 1 X 1013Zcm3以下とすることが好ましい。 [0056] Further, Aniruueha of the present invention, the density of Ueha internal (Butler portion) oxygen precipitate above size having an IG capability is detected Te odor as described above is 1 X 10 9 Zcm 3 or more, It has excellent IG capability at the stage before device process introduction, and even in recent years of low temperature and short-time device processes, the oxygen precipitates in the Aehbarta part are also used as gettering sites for the initial stage of the device process. It can function as an aera that can exhibit sufficient gettering ability without adding special heat treatment. At this time, in consideration of the mechanical strength of the anneal wafer, the density of oxygen precipitates is preferably set to 1 × 10 13 Zcm 3 or less in order to prevent deterioration due to excessive precipitation.
[0057] 尚、本発明において、 IG能力を有する酸素析出物のサイズは、実験的に検出可能 な酸素析出物のサイズ (例えば、直径 30— 40nm程度)を目安にしており、特に、ゲ ッタリング能力を有する酸素析出物のサイズとしては直径約 40nm以上であることが 好ましい。一般的には、実験的に検出できないサイズの酸素析出物でも IG能力を有 すると考えられているので、このように実験的に検出可能なサイズ、例えば直径 40η m以上の酸素析出物であれば十分に IG能力を有するものと判断できる。このような 酸素析出物は、例えば、光散乱法の 1つである赤外散乱トモグラフ法により検出可能 である。  In the present invention, the size of the oxygen precipitate having IG capability is based on the size of the oxygen precipitate (for example, about 30 to 40 nm in diameter) which can be detected experimentally. The size of the oxygen precipitate having the ability is preferably about 40 nm or more in diameter. In general, it is considered that an oxygen precipitate having a size that cannot be detected experimentally has IG capability. It can be determined that it has sufficient IG capability. Such oxygen precipitates can be detected, for example, by infrared scattering tomography, which is one of the light scattering methods.
[0058] さらに、従来のゥエーハではゥエーハ面内における酸素析出物の密度の最大値と 最小値との比(最大値 Z最小値)の値が 20以上、あるいは桁違 、の数値を示して!/ヽ た力 本発明のァニールゥエーハは、ゥエーハ面内における酸素析出物の密度の最 大値と最小値との比(最大値 Z最小値)の値が 1一 10、さらには 1一 5となるものであ るので、ゥエーハバルタ部における IG能力の面内バラツキを著しく低減でき、ゥエー ハ全面に渡って非常に優れたゲッタリング能力を均一に有するゥエーハとすることが できる。またこの場合、従来のァニールゥエーハにおいて酸素析出物の密度の面内 ノ ツキに起因して発生していたゥエーハの反り等の問題も容易に解決することがで きる。 [0058] Furthermore, in the case of the conventional ゥ Aha, the value of the ratio (maximum value Z minimum value) between the maximum value and the minimum value of the density of oxygen precipitates in the ゥ a plane is 20 or more, or an order of magnitude higher! According to the present invention, the ratio of the maximum density to the minimum density (maximum value Z minimum value) of the oxygen precipitates in the wafer surface is 110, and more preferably 115. Therefore, the in-plane variation of the IG capability at the ehabalta section can be significantly reduced, and the ewa can have an extremely excellent gettering ability uniformly over the entire surface of the eha. In this case, the density of oxygen precipitates in the Problems such as warpage of the wafer, which have occurred due to the knock, can be easily solved.
[0059] また、本発明のァニールゥエーハカ 熱処理によってスリップ転位の発生し易い直 径 200mm以上のゥエーハであれば、スリップ転位の発生を抑制する効果のある酸 素析出物をゥエーハ面内で均一にかつ高密度で有しているため、デバイスプロセス においてスリップ転位の発生が抑制される大口径のゥエーハとなり、特に今後の主流 となる 300mm以上のゥエーハにおいて非常に有効なゥエーハとなる。  [0059] In addition, in the case of a wafer having a diameter of 200 mm or more in which slip dislocation is likely to be generated by the annealing treatment of the present invention, oxygen precipitates having an effect of suppressing the occurrence of slip dislocation are uniformly formed on the surface of the wafer. Because of its high density and high density, it becomes a large-diameter wafer that suppresses the occurrence of slip dislocations in the device process, and becomes a very effective wafer especially in the future mainstream wafers of 300 mm or more.
[0060] 次に、上記のような本発明のァニールゥエーハを製造するための方法について、図 面を参照しながら説明するが、本発明はこれに限定されるものではない。  Next, a method for producing the above-described anneal wafer of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
先ず、本発明の第 1の態様に係るァニールゥエーハの製造方法は、 CZ法により育 成したシリコン単結晶からシリコンゥエーハを作製し、該作製したシリコンゥエーハに 熱処理を施してァニールゥエーハを製造する方法にお!、て、前記シリコンゥエーハと して、ゥエーハの全面がグローンイン欠陥も OSFも存在しない、原子空孔の多い Nv 領域となるシリコンゥエーハを作製した後、該作製したシリコンゥエーハに、少なくとも 、 500°C以上 700°C以下の温度 T °Cで所定時間 保持し、次に 5  First, the method for manufacturing an annealing wafer according to the first aspect of the present invention is a method for manufacturing a silicon wafer from a silicon single crystal grown by the CZ method and subjecting the manufactured silicon wafer to a heat treatment to manufacture an annealing wafer. In addition, as the silicon wafer, a silicon wafer having an Nv region with many vacancies in which the entire surface of the wafer has neither a grown-in defect nor an OSF is prepared. , At least at a temperature of 500 ° C or more and 700 ° C or less at T ° C for a predetermined time,
11 t 11 °CZ分以下の昇 温速度で 1000°C以上 1230°C以下の温度 T °Cまで昇温し、その後、該温度 T °C  11 t 11 ° C At a heating rate of 11 ° C or less, the temperature is raised to a temperature T ° C of 1000 ° C or more and 1230 ° C or less, and then the temperature T ° C
12 12 で所定時間 t 保持する熱処理を行うことに特徴を有するものである。  It is characterized in that a heat treatment for holding for a predetermined time t is performed at 12 12.
12  12
[0061] 以下、本発明の第 1の態様に係るァニールゥエーハの製造方法について、より具体 的に説明する。ここで、図 1は、本発明の第 1の態様に係るァニールゥエーハの製造 方法の一例を示すフロー図であり、また図 2は、シリコンゥエーハに施す熱処理のパ ターンを模式的に示す模式図である。  [0061] Hereinafter, the method for producing an anneal wafer according to the first embodiment of the present invention will be described more specifically. Here, FIG. 1 is a flow chart showing an example of a method for producing an annealing wafer according to the first embodiment of the present invention, and FIG. 2 is a schematic drawing schematically showing a heat treatment pattern applied to a silicon wafer. It is.
[0062] 先ず、ァニールゥエーハの原料となるシリコンゥエーハを、 CZ法で育成したシリコン 単結晶から作製する(図 1のステップ 101)。このとき、作製するシリコンゥエーハカ ゥ エーハの全面がグローンイン欠陥も OSFも存在しな!、、原子空孔の多 、Nv領域とな るものとなれば、その作製方法は特に限定されるものではなぐ例えば国際公開第 W O 01Z057293号パンフレツ卜、国際公開第 WO 02,002852号パンフレツ卜、特 開 2002— 226296号公報などに記載されているように、単結晶を育成する際の引上 げ速度 Fと引上げ結晶中の固液界面近傍の温度勾配 Gとの比 FZGを制御して単結 晶の引上げを行う方法を利用してゥエーハの作製を行うことができる。ここで、本発明 においてシリコンゥエーハを作製する方法の一例を具体的に説明する。 First, a silicon wafer, which is a raw material for annealed wafer, is produced from a silicon single crystal grown by the CZ method (Step 101 in FIG. 1). At this time, there is no grown-in defect or OSF on the entire surface of the silicon wafer to be manufactured. If there is a lot of atomic vacancies and Nv region, the manufacturing method is particularly limited. For example, as described in WO 01Z057293 pamphlet, WO 02,002852 pamphlet, and Japanese Patent Publication No. 2002-226296, the pulling speed when growing a single crystal The ratio between F and the temperature gradient G near the solid-liquid interface in the pulled crystal. A wafer can be manufactured using a method of pulling a crystal. Here, an example of a method for manufacturing a silicon wafer in the present invention will be specifically described.
[0063] シリコン単結晶を引上げるための単結晶引上げ装置の一例を図 5に示す。図 5に示 すように、この単結晶引上げ装置 20は、メインチャンバ 1内に、原料融液 4を収容す る石英ルツボ 5と、この石英ルツボ 5を保護する黒鉛ルツボ 6とがルツボ駆動機構 (不 図示)によって回転 ·昇降自在に保持軸 19で支持されており、またこれらのルツボ 5、 6を取り囲むように加熱ヒーター 7と断熱材 8が配置されている。メインチャンバ 1の上 部には育成した単結晶 3を収容し、取り出すための引上げチャンバ 2が連接されてお り、引上げチャンバ 2の上部には単結晶 3をワイヤー 16で回転させながら引上げる引 上げ機構 (不図示)が設けられて 、る。  FIG. 5 shows an example of a single crystal pulling apparatus for pulling a silicon single crystal. As shown in FIG. 5, the single crystal pulling apparatus 20 includes a crucible driving mechanism including a quartz crucible 5 containing a raw material melt 4 and a graphite crucible 6 protecting the quartz crucible 5 in a main chamber 1. (Not shown) rotatably and vertically supported by a holding shaft 19, and a heater 7 and a heat insulating material 8 are arranged so as to surround these crucibles 5 and 6. A pulling chamber 2 for containing and removing the grown single crystal 3 is connected to the upper portion of the main chamber 1, and a single crystal 3 is pulled above the pulling chamber 2 while rotating the single crystal 3 with a wire 16 above the pulling chamber 2. A lifting mechanism (not shown) is provided.
[0064] また、メインチャンバ 1の内部にはガス整流筒 13が設けられており、このガス整流筒 13の下部には原料融液 4と対向するように遮熱部材 14を設置して、原料融液 4の表 面からの輻射をカットするとともに原料融液 4の表面を保温するようにしている。このと き、遮熱部材 14は、例えばその下端と原料融液 4の表面との間隔が 2— 20cm程度と なるように設置されている。さらに、ガス整流筒 13の上方には冷却筒 11が設置されて おり、冷媒導入口 12から冷却媒体を流すことによって単結晶 3を強制冷却できるよう になっている。  A gas rectifying cylinder 13 is provided inside the main chamber 1, and a heat shield member 14 is provided below the gas rectifying cylinder 13 so as to face the raw material melt 4. The radiation from the surface of the melt 4 is cut, and the surface of the raw material melt 4 is kept warm. At this time, the heat shield member 14 is installed such that the distance between the lower end thereof and the surface of the raw material melt 4 is about 2 to 20 cm, for example. Further, a cooling cylinder 11 is provided above the gas rectification cylinder 13 so that the single crystal 3 can be forcibly cooled by flowing a cooling medium from the refrigerant inlet 12.
[0065] さらに、引上げチャンバ 2の上部に設けられたガス導入口 10からはアルゴンガスの ような不活性ガス等を導入でき、引上げ中の単結晶 3とガス整流筒 13との間を通過さ せた後、遮熱部材 14と原料融液 4の融液面との間を通過させ、ガス流出口 9から排 出することができる。  Further, an inert gas such as argon gas or the like can be introduced from a gas inlet 10 provided in the upper part of the pulling chamber 2, and passes between the single crystal 3 being pulled and the gas rectifying cylinder 13. After that, it can pass between the heat shield member 14 and the melt surface of the raw material melt 4 and be discharged from the gas outlet 9.
[0066] また、メインチャンバ 1の水平方向の外側に磁石 (不図示)を設置することができ、そ れによって、原料融液 4に水平方向あるいは垂直方向等の磁場を印加して原料融液 の対流を抑制し、単結晶の安定成長をはかる、いわゆる MCZ法を用いることができ る。  Further, a magnet (not shown) can be provided outside the main chamber 1 in the horizontal direction, whereby a magnetic field such as a horizontal direction or a vertical direction is applied to the raw material melt 4 so that the raw material melt 4 is applied. The so-called MCZ method, which suppresses the convection of the crystal and stably grows the single crystal, can be used.
[0067] このような単結晶引上げ装置 20を用いて、例えばシリコン単結晶を CZ法により育 成する場合、まず、石英ルツボ 5内でシリコンの高純度多結晶原料を融点 (約 1420 °C)以上に加熱して融解する。次に、ワイヤー 16を巻き出すことによりシリコン融液 4 の表面略中心部に種ホルダー 18に固定された種結晶 17を接触又は浸漬させる。そ の後、ルツボ保持軸 19を適宜の方向に回転させるとともに、ワイヤー 16を回転させな 力 Sら卷き取って種結晶を引上げることにより、単結晶の育成が開始される。以後、単 結晶の引上げ速度とシリコン融液の温度を適切に調節することにより略円柱形状の シリコン単結晶 3を成長させることができる。 When a silicon single crystal is grown by the CZ method using such a single crystal pulling apparatus 20, for example, first, a high-purity polycrystalline silicon material is melted in a quartz crucible 5 at a melting point (about 1420 ° C.). Heat and melt as above. Next, the wire 16 is unwound and the silicon melt 4 is unwound. The seed crystal 17 fixed to the seed holder 18 is brought into contact with or immersed in the approximate center of the surface of the substrate. After that, the crucible holding shaft 19 is rotated in an appropriate direction, and the wire 16 is wound while the wire 16 is not rotated and the seed crystal is pulled up to start growing the single crystal. Thereafter, by adjusting the pulling speed of the single crystal and the temperature of the silicon melt appropriately, a substantially cylindrical silicon single crystal 3 can be grown.
[0068] このとき、単結晶直胴部を育成する際の引上げ速度を F[mmZmin]とし、シリコン 融点から 1400°Cの間の引上げ軸方向の結晶温度勾配を G[°CZmm]で表した時、 FZG [mm2Z°C · min]の値が Nv領域となるように引上げ速度 Fを制御してシリコン 単結晶を育成する。この場合、例えば上記のように遮熱部材 14の下端と原料融液 4 の表面との間隔を 2— 20cm程度に設定することにより結晶中心部分の温度勾配 Gc と結晶周辺部分の温度勾配 Geとの差を小さくしたり、また結晶周辺の温度勾配の方 が結晶中心より低くなるように炉内温度を制御することができ、結晶径方向の全面を 容易に Nv領域となるようにすることが可能となる。さらに、例えばガス整流筒 13の上 方に設置した冷却筒 11によってボイド欠陥を形成する温度帯(1080— 1150°C)を 急冷して、結晶成長軸方向に Nv領域を広げることが可能となるので、直胴部全体が 径方向全面で Nv領域となる単結晶を容易に育成することができる。 [0068] At this time, the pulling speed when growing the single crystal straight body portion was F [mmZmin], and the crystal temperature gradient in the pulling axis direction from the melting point of silicon to 1400 ° C was represented by G [° CZmm]. At this time, a silicon single crystal is grown by controlling the pulling speed F so that the value of FZG [mm 2 Z ° C · min] is in the Nv region. In this case, for example, by setting the distance between the lower end of the heat shield member 14 and the surface of the raw material melt 4 to about 2 to 20 cm as described above, the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal can be obtained. In addition, the furnace temperature can be controlled so that the difference in crystallinity is small, and the temperature gradient around the crystal is lower than the crystal center, so that the entire surface in the crystal diameter direction can easily be in the Nv region. It becomes possible. Furthermore, for example, the cooling zone 11 installed above the gas flow straightening column 13 can rapidly cool the temperature zone (1080-1150 ° C) in which void defects are formed, thereby expanding the Nv region in the crystal growth axis direction. Therefore, it is possible to easily grow a single crystal in which the entire body is in the Nv region over the entire radial direction.
[0069] このようにして得られたシリコン単結晶をスライスして得られるシリコンゥエーハは、グ ローンイン欠陥も OSFも存在しない、原子空孔の多い Nv領域となるシリコンゥエーハ となる。このようなシリコンゥエーハであれば、その後熱処理を行った際にゥエーハ表 層部にグローンイン欠陥や酸素析出物が存在せず、またゥエーハバルタ部で高い酸 素析出量が得られるゥエーハとすることができる。  [0069] The silicon wafer obtained by slicing the silicon single crystal obtained as described above is a silicon wafer that has no atomic defects and no OSF and is an Nv region with many atomic vacancies. With such a silicon wafer, it is preferable to use a silicon wafer that does not have any grown-in defects or oxygen precipitates in the surface layer of the wafer when heat treatment is performed thereafter, and that a high oxygen deposition amount can be obtained in the wafer bar part. it can.
[0070] この場合、シリコンゥエーハは、窒素を添加せずに育成したシリコン単結晶から作製 することが好ましい。このように窒素を添加せずに育成したシリコン単結晶から作製し たシリコンゥエーハであれば、ゥエーハに熱的に安定なグローンイン析出核、例えば 直径 40nm以上の析出核が存在しないので、以下に示すような本発明の熱処理を行 つた際にゥエーハ表面近傍力 グローンイン析出核を消滅させて DZ層を安定して形 成することができる。また、シリコン単結晶を育成する際に窒素を添加する必要がな いので、結晶育成工程が複雑にならず、作業や管理などが簡便になるという利点を 有する。 [0070] In this case, the silicon wafer is preferably manufactured from a silicon single crystal grown without adding nitrogen. In the case of a silicon wafer fabricated from a silicon single crystal grown without adding nitrogen as described above, there is no thermally stable grown-in precipitation nucleus, for example, a precipitation nucleus having a diameter of 40 nm or more in the wafer. When the heat treatment of the present invention is performed as shown in the figure, the force near the surface of the wafer can eliminate the grown-in precipitate nuclei and form the DZ layer stably. Also, since it is not necessary to add nitrogen when growing a silicon single crystal, the crystal growing process is not complicated, and the operation and management are simplified. Have.
[0071] 尚、本発明では、シリコン単結晶からシリコンゥエーハを作製する方法も特に限定さ れず、例えばシリコン単結晶からシリコンゥエーハをスライスした後、従来行われてい るような面取り、ラッピング、エッチング、鏡面研磨等の各工程を順次施すことによって 、シリコンゥエーハを容易に作製することができる。  In the present invention, the method for producing a silicon wafer from a silicon single crystal is not particularly limited. For example, after slicing a silicon wafer from a silicon single crystal, chamfering, lapping, By sequentially performing each process such as etching and mirror polishing, a silicon wafer can be easily manufactured.
[0072] 次に、上記のように作製したシリコンゥエーハを、例えば 500°C以上 700°C以下の 温度 T °Cに維持されている熱処理炉に投入した後(図 1のステップ 102)、図 2に示 Next, after the silicon wafer manufactured as described above is put into a heat treatment furnace maintained at a temperature T ° C. of, for example, 500 ° C. or more and 700 ° C. or less (Step 102 in FIG. 1), Shown in Figure 2
11 11
すように、その温度 T °Cで所定時間 t 保持する(図 1のステップ 103)。このように温  As a result, the temperature is maintained at the temperature T ° C. for a predetermined time t (step 103 in FIG. 1). Like this
11 11  11 11
度 T °Cで所定時間 t 保持することにより、単結晶の育成で形成されたゥエーハ中 By holding for a predetermined time t at a temperature T ° C, the wafers
11 11 11 11
のグローンイン析出核を成長させて、ゥエーハバルタ部に存在する析出核を消滅さ せに《することができ、さらに新たな酸素析出核をゥエーハに発生させることができ る。  By growing the grown-in precipitation nuclei, it is possible to eliminate the precipitation nuclei existing in the ehabalta part, and to generate new oxygen precipitation nuclei in the eha.
[0073] このとき、保持温度 T は、グローンイン析出核を成長させることが出来る温度であ  At this time, the holding temperature T is a temperature at which the grown-in precipitation nuclei can be grown.
11  11
れば、低い温度であるほど熱処理後のァニールゥエーハにおける酸素析出物の密 度を高めることができる力 工程時間が長くなつて生産性の低下を招く恐れがあるの で、温度 T は 500°C以上にすることが望ましい。また一方、温度 T が 700°Cを超え  Therefore, the lower the temperature, the higher the density of the oxygen precipitates in the annealed wafer after heat treatment.The longer the process time, the lower the productivity may be.Therefore, the temperature T is 500 ° C or more. Is desirable. On the other hand, when the temperature T exceeds 700 ° C
11 11  11 11
る温度にすると、酸素析出物の密度を十分に高めることができなくなる恐れがある。  If the temperature is too high, the density of oxygen precipitates may not be sufficiently increased.
[0074] さらにこの場合、シリコンゥエーハを温度 T で保持する時間 t は 15分以上とする  [0074] Further, in this case, the time t for holding the silicon wafer at the temperature T is 15 minutes or more.
11 11  11 11
ことが好ましぐそれによつて、グローンイン析出核をより消滅しにくくすることができる とともに、新たな酸素析出核を効果的にゥエーハに発生させて、酸素析出核をより高 密度に形成することができる。また、保持時間 t を余り長くし過ぎると全体の工程時  Therefore, it is possible to make the grown-in precipitation nuclei more difficult to eliminate, and to generate new oxygen precipitation nuclei effectively on the wafer to form oxygen precipitation nuclei with higher density. it can. In addition, if the holding time t is too long,
11  11
間が長くなり、生産性に影響を及ぼすことが考えられるため、保持時間 t はおよそ 6  Holding time t is about 6
11  11
0分以下とすることが好ましい。尚、このようにシリコンゥエーハを温度 T で保持する  It is preferable to set the time to 0 minutes or less. Incidentally, the silicon wafer is maintained at the temperature T as described above.
11 場合、一定温度に高精度に保持するだけに限らず、条件に応じて温度 T 付近で若  In the case of 11, the temperature is not limited to being maintained at a constant temperature with high accuracy.
11 干の温度変化 (例えば ± 100°C程度の昇温、降温等)を伴うこともできる。すなわち、 温度 T は、 500°C以上 700°C以下であれば良いので、温度を保持する場合はこの It can also be accompanied by a temperature change (eg, temperature rise or fall of about ± 100 ° C). That is, the temperature T may be 500 ° C or more and 700 ° C or less, and when maintaining the temperature,
11 11
温度範囲で保持すれば良ぐ必ずしも一定の温度とする必要はない。つまり、本発明 でいう温度 T °Cで所定時間保持するとは、このように温度 T 500— 700°Cの範囲 内で変動させて保持する場合を含む。 It is not always necessary to keep the temperature constant, as long as it is maintained within the temperature range. In other words, the term “maintaining at a temperature T ° C for a predetermined time” in the present invention means that the temperature T 500-700 ° C This includes the case where it is varied and held.
[0075] 次に、 500°C以上 700°C以下の温度 T で保持したシリコンゥエーハを、図 2に示  Next, FIG. 2 shows a silicon wafer held at a temperature T of 500 ° C. or more and 700 ° C. or less.
11  11
すように、 5°CZ分以下の昇温速度で 1000°C以上 1230°C以下の温度 T °Cまで昇  As a result, the temperature rises from 1000 ° C to 1230 ° C at a temperature increase rate of 5 ° CZ or less to T ° C.
12 温する(ステップ 104)。このように、シリコンゥエーハを 5°CZ分以下の速度で昇温す ることにより、ゥエーハに存在する高密度のグローンイン析出核を極力消滅させずに 効率的に成長させることができ、特に昇温速度を低速にするほど析出物密度を高め ることができる。したがって、このように昇温工程を行うことにより、単結晶を育成する 際に形成されたグローンイン析出核を効果的に成長させることができるので、例えば 酸素析出核をゥエーハに新たに形成するための熱処理工程を別途に行わなくても析 出物密度を十分に高くすることができるし、さらに、全体の工程時間の短縮を図ること ができる。このとき、温度 T  12 Warm up (step 104). As described above, by raising the temperature of the silicon wafer at a rate of 5 ° CZ or less, high-density grown-in precipitate nuclei existing in the wafer can be grown efficiently without disappearing as much as possible. The lower the heating rate, the higher the precipitate density. Therefore, by performing the temperature raising step in this manner, the grown-in precipitation nuclei formed when growing a single crystal can be effectively grown, so that, for example, oxygen precipitation nuclei are newly formed on the wafer. The precipitate density can be sufficiently increased without separately performing a heat treatment step, and the entire process time can be reduced. At this time, the temperature T
11から温度 T  11 to temperature T
12 °Cまで昇温する速度が 5°CZ分を越えるよう な高速になると、グローンイン析出核が成長できずに消滅してしまう割合が高くなり、 酸素析出物の密度が十分に得られない場合がある。また一方、あまり低速過ぎるとェ 程時間が必要以上に長くなるので、昇温速度は約 cz分以上とすることが好ましい  If the rate of temperature rise to 12 ° C is so high as to exceed 5 ° CZ, the rate at which the grown-in precipitate nuclei do not grow and disappear will increase, resulting in insufficient density of oxygen precipitates. There is. On the other hand, if the speed is too low, the process time becomes longer than necessary.
[0076] 尚、本発明において、上記温度 T が低いほど、また温度 T での保持時間 t が長 In the present invention, the lower the temperature T, the longer the holding time t at the temperature T.
11 11 11 いほど、さらに温度 τ から温度 τ までの昇温速度が遅いほど、シリコンゥエーハに  11 11 11 The lower the rate of temperature rise from temperature τ to the temperature τ,
11 12  11 12
新たな酸素析出核を形成させ易ぐ熱処理後のァニールゥエーハにおける酸素析出 物の密度を高くすることができ、所望するァニールゥエーハの品質に応じて、温度 τ It is possible to increase the density of oxygen precipitates in the annealed wafer after the heat treatment, which facilitates the formation of new oxygen precipitated nuclei, and to increase the temperature τ according to the desired quality of the annealed wafer.
、保持時間 t 、及び温度 T から温度 T までの昇温速度を適宜設定することができ, Holding time t, and heating rate from temperature T to temperature T can be set as appropriate.
1 11 11 12 1 11 11 12
る。  The
[0077] そして、上記のようにシリコンゥエーハを 1000°C以上 1230°C以下の温度 T °Cま  [0077] Then, as described above, the silicon wafer is heated to a temperature T ° C of not less than 1000 ° C and not more than 1230 ° C.
12 で昇温した後、その温度 T °Cで所定時間 t 保持する (ステップ 105)。このように温  After the temperature is raised in step 12, the temperature is maintained at the temperature T ° C for a predetermined time t (step 105). Like this
12 12  12 12
度 τ で所定時間保持することにより、ゥエーハバルタ中の酸素析出物をさらに成長 Oxygen precipitates in Aehbarta are further grown by holding at a temperature τ for a predetermined time.
12 12
させてゲッタリング能力を有するサイズまで大きくすると同時にゥエーハ表面近傍の 酸素を外方拡散させて酸素析出核を消滅させ、ゥエーハ表層部に酸素析出物のな い DZ層を形成することができる。  As a result, oxygen can be increased to a size having gettering ability, and at the same time, oxygen in the vicinity of the surface of the evaporator can be diffused outward to eliminate oxygen precipitate nuclei, thereby forming a DZ layer free of oxygen precipitates on the surface layer of the evaporator.
[0078] このとき、上記温度 T が 1000°Cよりも低くなると、ゥエーハバルタ部の酸素析出物 を大きく成長させるための時間が長くなり、全体の工程時間が長くなつてしまう。一方 、この温度 T を高くするほど酸素析出物を所望のサイズ、すなわちゲッタリング能力 At this time, when the temperature T becomes lower than 1000 ° C., the oxygen precipitates The time required to grow large amounts of metal becomes longer, and the overall process time becomes longer. On the other hand, the higher the temperature T, the more the oxygen precipitates have a desired size, that is, the gettering ability.
12  12
を有するサイズまで成長させる時間が短くなり、全体の工程時間を短くすることができ る力 約 1230°Cを超える高温では熱処理炉カもの金属汚染が顕著に発生する恐れ があるため、温度 T は 1230°C以下とすることが好ましい。さらに、熱処理中にゥェ  The time required to grow to a size having a short time and the power that can shorten the overall process time.At high temperatures exceeding about 1230 ° C, there is a risk of significant metal contamination in the heat treatment furnace. The temperature is preferably set to 1230 ° C or lower. Furthermore, during heat treatment,
12  12
ーハに生じるスリップ転位の発生を抑制するためには、温度 T は 1200°C以下、さら  In order to suppress the occurrence of slip dislocations that occur in wafers, the temperature T should be 1200 ° C or less.
12  12
には 1150°C以下とすることがより好ましぐこのように 1200°C以下、さらには 1150°C 以下の温度でシリコンゥエーハを保持することにより、ゥエーハバルタ部の酸素析出 物を成長させると同時にゥエーハ表層部に DZ層を形成できるので、従来ではスリツ プ転位の発生し易カゝつた直径 200mm以上の大口径ゥエーハを熱処理する場合に 特に有効となる。  In this way, it is more preferable to keep the silicon wafer at a temperature of 1200 ° C or less, and even 1150 ° C or less, so that the oxygen precipitate in the wafer balta part grows. At the same time, a DZ layer can be formed on the surface of the wafer, which is particularly effective when heat-treating large-diameter wafers with a diameter of 200 mm or more, in which slip dislocations are likely to occur.
[0079] また、この温度 T で保持する時間 t は、ゥエーハバルタ部のグローンイン析出核  [0079] The time t maintained at this temperature T is determined by the growth-in precipitation nuclei in the Ehabarta part.
12 12  12 12
をゲッタリング能力を有するサイズに確実に成長させるため、また、ゥエーハ表層部 に十分な幅をもつ DZ層を形成するために 30分以上とすることが好ま 、。保持時間 t をこのように 30分、またはそれ以上に長くすることにより、バルタ部の酸素析出物 It is preferable that the heating time is 30 minutes or more in order to surely grow the DZ layer to a size having gettering ability, and to form a DZ layer having a sufficient width on the surface layer of the wafer. By increasing the retention time t in this way to 30 minutes or longer, oxygen precipitates in the
12 12
のサイズを大きくして、直径 30nm— 40nm程度、さらには約 50nm以上のサイズを有 するように成長させることができるし、またそれと同時に、ゥエーハ表面近傍に DZ幅 を形成してその幅を広げることができる。し力しながら、時間 t が長くなり過ぎると生  Can be grown to have a diameter of about 30 nm to 40 nm, or even about 50 nm or more, and at the same time, to form a DZ width near the wafer surface and increase its width be able to. If the time t becomes too long,
12  12
産性の低下を招く恐れがあるので、時間 t は約 4時間以下、さらには約 2時間以下と  The time t should be about 4 hours or less, or even about 2 hours or less, as this may reduce productivity.
12  12
するのが好ましぐまた成長させる酸素析出物のサイズは lOOnm以下とすることが好 ましい。一方、保持時間 t が 30分より短くなると、時間の僅かなばらつきにより所望  Preferably, the size of the oxygen precipitate to be grown is less than 100 nm. On the other hand, if the holding time t is shorter than 30 minutes,
12  12
のサイズの酸素析出物や DZ幅が得られなくなる可能性がある。  There is a possibility that oxygen precipitates and DZ widths of the same size cannot be obtained.
[0080] さらに、このような温度 T で保持する工程 (ステップ 105)は、シリコンゥエーハを熱 Further, in the step of maintaining the temperature at the temperature T (step 105), the silicon wafer is heated
12  12
処理炉に投入してから温度 T °Cまで昇温するまでの工程 (ステップ 102— 104)で  In the process (steps 102-104) from the time of charging into the processing furnace until the temperature rises to the temperature T ° C
12  12
成長したバルタ中の酸素析出物をさらに成長させること、および表面近傍に DZ層を 形成することを目的としている。従って、その目的が達成できるのであれば、一定温 度に高精度に保持するだけに限らず、条件に応じて温度 T 付近で若干の温度変化  The purpose is to further grow oxygen precipitates in the grown barta and to form a DZ layer near the surface. Therefore, if the purpose can be achieved, it is not limited to maintaining the temperature at a constant temperature with high accuracy.
12  12
(例えば ± 100°C程度の昇温、降温等)を伴うこともできる。すなわち、温度 T は、 1 000°C以上 1230°C以下であれば良いので、温度を保持する場合はこの温度範囲で 保持すれば良ぐ必ずしも一定の温度とする必要はない。本発明でいう温度 T でで (For example, temperature rise and fall of about ± 100 ° C.). That is, the temperature T is 1 It is sufficient if the temperature is maintained between 000 ° C and 1230 ° C, so it is sufficient to maintain the temperature within this temperature range, and it is not necessary to keep the temperature constant. At the temperature T in the present invention,
12 所定時間保持するとは、このように温度 T を 1000 1230°Cの範囲内で変動させ  12 To hold for a specified time means to change the temperature T within the range of 1000
12  12
て保持する場合を含む。さら〖こ、本発明ではシリコンゥエーハを高温で保持する温度 τ 及びその保持時間 t を調整することにより、ァニールゥエーハに形成される酸素 Including the case of holding. Furthermore, in the present invention, by adjusting the temperature τ for holding the silicon wafer at a high temperature and the holding time t, the oxygen formed on the anneal wafer is adjusted.
12 12 12 12
析出物のサイズを容易に制御することができる。  The size of the precipitate can be easily controlled.
[0081] 上記のようにして熱処理を行った後、図 2に示すように、例えば熱処理炉内の温度 を T After performing the heat treatment as described above, for example, as shown in FIG.
12 °Cから 700°Cまでおよそ 2°CZ分程度の速度で降温した後(降温工程:ステップ After cooling down from 12 ° C to 700 ° C at a rate of about 2 ° CZ (temperature lowering step: Step
106)、シリコンゥエーハを熱処理炉外に取り出す (ステップ 107)。なお、上記降温速 度及び降温した後のゥエーハ取り出し温度については特に限定されないが、例えば ゥエーハの降温時、または取り出し時に熱応力によるスリップ転位が発生しな 、ような 条件とすることが望ましい。 106), the silicon wafer is taken out of the heat treatment furnace (step 107). The temperature drop rate and the temperature at which the wafer is taken out after the temperature is lowered are not particularly limited. For example, it is preferable that slip dislocation due to thermal stress does not occur when the temperature of the wafer is dropped or when the wafer is taken out.
[0082] さらに、本発明では、上記熱処理を行う際の熱処理雰囲気も特に限定されない。例 えば、酸素雰囲気、酸素と窒素の混合雰囲気、アルゴン雰囲気、水素雰囲気などで 上記熱処理を行うことができる。特に、アルゴンや水素の非酸化性雰囲気の場合は、 ゥエーハ表面に酸化膜が形成されないので、酸化性雰囲気の場合と比べると酸素の 外方拡散が促進され、より好ましい場合がある。 [0082] Further, in the present invention, the heat treatment atmosphere when performing the above heat treatment is not particularly limited. For example, the heat treatment can be performed in an oxygen atmosphere, a mixed atmosphere of oxygen and nitrogen, an argon atmosphere, a hydrogen atmosphere, or the like. In particular, in the case of a non-oxidizing atmosphere of argon or hydrogen, since an oxide film is not formed on the surface of the evaporator, outward diffusion of oxygen is promoted as compared with the case of the oxidizing atmosphere, which may be more preferable.
[0083] 以上のようにして、 Nv領域となるシリコンゥエーハを作製した後、その作製したシリ コンゥエーハに上記の条件で熱処理を行うことによって、前記で説明した本発明のァ ニールゥエーハ、すなわち、ゥエーハ全面がグローンイン欠陥も OSFも存在しない Ν 領域であり、ゥエーハ表面力 少なくとも深さ 5 μ mまでの領域における酸ィ匕膜耐圧 特性の良品率が 95%以上であり、且つ、ゥエーハ内部における酸素析出物の密度 が I X 109/cm3以上で、ゥエーハ面内における酸素析出物の密度の最大値と最小 値との比(最大値 Z最小値)の値が 1一 10である高品質のァニールゥエーハを容易 にかつ安定して製造することができる。 As described above, after the silicon wafer serving as the Nv region is manufactured, the manufactured silicon wafer is subjected to a heat treatment under the above conditions, whereby the above-described anneal wafer of the present invention, that is, the silicon wafer is manufactured. The entire surface is free of any grown-in defects or OSFs.Ν The area is ゥ A surface area of the wafer. The non-defective rate of the oxide film breakdown voltage characteristic is at least 95% in the area up to a depth of 5 μm. at a density of things IX 10 9 / cm 3 or more, a high quality value of the ratio between the maximum value and the minimum value of the density of oxygen precipitates in Ueha plane (maximum value Z minimum value) is 1 one 10 Aniruueha Can be easily and stably manufactured.
[0084] また、本発明では、上記熱処理を施すシリコンゥエーハとして、ゥエーハの酸素濃 度が 14ppma以上であるものを使用することにより、ゥエーハバルタ部に酸素析出物 を一層高密度で形成することができ、ァニールゥエーハに一層優れた IG能力を付カロ することができる。また、シリコンゥエーハの酸素濃度を 14ppma以上と高くすれば、 酸素析出物の成長速度が速くなるので、全体の工程時間の短縮を図ることができる 力 一方、シリコン単結晶製造の容易性を考慮すると、熱処理を施すシリコンゥエー ハの酸素濃度は 23ppma以下、さらに 17ppma以下とするのが好ましい。 Further, in the present invention, by using a silicon wafer to be subjected to the above heat treatment, the oxygen concentration of the wafer being 14 ppma or more, it is possible to form oxygen precipitates at a higher density on the wafer barter part. With better IG capability for Anil @ eha can do. In addition, if the oxygen concentration of silicon wafer is increased to 14 ppma or more, the growth rate of oxygen precipitates is increased, so that the entire process time can be shortened. Then, the oxygen concentration of the silicon wafer subjected to the heat treatment is preferably 23 ppma or less, more preferably 17 ppma or less.
[0085] 次に、本発明の第 2の態様に係るァニールゥエーハの製造方法について説明する 本発明の第 2の態様に係るァニールゥエーハの製造方法は、 CZ法により育成した シリコン単結晶からシリコンゥエーハを作製し、該作製したシリコンゥエーハに熱処理 を施してァニールゥエーハを製造する方法において、前記シリコンゥエーハとして、ゥ エーハの全面がグローンイン欠陥も OSFも存在しな!、、原子空孔の多 、Nv領域とな るシリコンゥエーハを作製した後、該作製したシリコンゥエーハに、少なくとも、温度 T Next, a method for producing an annealing wafer according to the second embodiment of the present invention will be described. In the method for manufacturing an annealing wafer according to the second embodiment of the present invention, a silicon wafer is grown from a silicon single crystal grown by the CZ method. In the method of producing and subjecting the produced silicon wafer to a heat treatment to produce an annealing wafer, the silicon wafer does not have any grown-in defects or OSF on the entire surface of the silicon wafer !, a large number of atomic vacancies, Nv After the silicon wafer serving as a region is manufactured, the manufactured silicon wafer is at least heated to a temperature T.
2 2
°Cから温度 T °Cまで R °CZ分の昇温速度で昇温する昇温工程 Aと、前記温度 TFrom the temperature T to the temperature T ° C at a temperature rise rate of R ° CZ.
1 22 1 1 21 22 1 1 2
°Cから温度 T °Cまで前記昇温工程 Aの昇温速度とは異なる R °CZ分の昇温速度From ° C to temperature T ° C, the heating rate of R ° CZ different from the heating rate in the heating step A
2 23 1 2 2 23 1 2
で昇温する昇温工程 Bと、前記温度 T °Cで所定時間 t 保持する保持工程 Cとを  And a holding step C of holding the temperature T ° C for a predetermined time t.
1 23 21 1 有する熱処理を行うことに特徴を有するものである。  1 23 21 1 is performed.
[0086] 以下、本発明の第 2の態様に係るァニールゥエーハの製造方法について、より具体 的に説明する。ここで、図 3は、本発明の第 2の態様に係るァニールゥエーハの製造 方法を示すフロー図であり、また図 4は、シリコンゥエーハに施す熱処理のパターンを 模式的に示す模式図である。 [0086] Hereinafter, the method for producing an anneal wafer according to the second embodiment of the present invention will be described more specifically. Here, FIG. 3 is a flow chart showing a method for producing an annealing wafer according to the second embodiment of the present invention, and FIG. 4 is a schematic drawing showing a pattern of a heat treatment applied to a silicon wafer.
[0087] 先ず、ァニールゥエーハの原料となるシリコンゥエーハを CZ法で育成したシリコン 単結晶から作製する(図 3のステップ 201)。シリコンゥエーハの作製は、前述した第 1 の態様でゥエーハを作製した方法(図 1のステップ 101 )と同様の方法を用 、て行うこ とがでさる。 [0087] First, a silicon wafer to be used as a raw material for annealed silicon is produced from a silicon single crystal grown by the CZ method (Step 201 in FIG. 3). The silicon wafer can be manufactured using the same method as the method for manufacturing the silicon wafer in the first embodiment (step 101 in FIG. 1).
[0088] 次に、この作製したシリコンゥエーハを、例えば温度 T °Cに維持されている熱処理  Next, the produced silicon wafer is subjected to a heat treatment maintained at, for example, a temperature T ° C.
21  twenty one
炉に投入した後(図 3のステップ 202)、図 4に示すように、温度 T °Cから温度 T °C  After charging the furnace (step 202 in FIG. 3), as shown in FIG.
21 22 まで R °CZ分の昇温速度で昇温する昇温工程 Aを行う(図 3のステップ 203)。この ように昇温工程 Aを行うことにより、結晶成長工程で形成されたグローンイン析出核 を極力消滅させることなく効率的に成長させて酸素析出物の密度を高めることができ る。 Heating process A is performed in which the temperature is raised at a rate of R ° CZ up to 21-22 (Step 203 in Fig. 3). By performing the heating step A as described above, the density of oxygen precipitates can be increased by efficiently growing the grown-in precipitation nuclei formed in the crystal growth step without extinction as much as possible. The
[0089] このとき、上記温度 T 力 S700°Cを超える温度であると、ゥエーハに存在するグロ一  At this time, if the temperature T exceeds the temperature S 700 ° C., the gross
21  twenty one
ンイン析出核が消滅し易ぐ熱処理後のァニールゥエーハにおける酸素析出物の濃 度が十分に得られなくなる恐れがあるので、温度 T は 700°C以下とすることが好まし  The temperature T is preferably set to 700 ° C or lower, since the concentration of oxygen precipitates in the annealed wafer after the heat treatment may not be sufficiently obtained because the precipitate nuclei easily disappear.
21  twenty one
い。また、温度 τ は低くするほど成長可能なグローンイン析出核の密度が高くなるの  No. Also, the lower the temperature τ, the higher the density of grown-in precipitate nuclei
21  twenty one
で酸素析出物の密度を一層高めることができるが、グローンイン析出核を成長させる のに必要な工程時間が長くなり、生産性の低下を招く恐れがあるので、温度 T は 50  Can further increase the density of oxygen precipitates, but the process time required to grow the grown-in precipitation nuclei increases, which may lead to a decrease in productivity.
21 twenty one
0°C以上とすることが好まし!/、。 It is preferable to be 0 ° C or more!
[0090] また、昇温工程 Aにおける温度 T から温度 T までの昇温速度 R力 S3 [0090] In addition, the heating rate R from the temperature T to the temperature T in the heating step A
1 21 22 1 °CZ分を超 えると、グローンイン析出核を十分に成長させることができず、その後の工程でグロ一 ンイン析出核が消滅してしまう恐れがあるので、昇温速度 Rは 3°CZ分以下とするこ とが好ましい。また、昇温速度 Rは低速であるほどグローンイン析出核が消滅せずに 成長する割合が高くなるため望ましいが、あまり低速すぎると工程時間が長くなつてし まい効率的でないので、昇温速度 Rは 0. 5°CZ分以上とすることが好ましい。  If the temperature exceeds 1 21 22 1 ° CZ, the growth-in precipitation nuclei may not be sufficiently grown, and the growth-in precipitation nuclei may disappear in the subsequent process. It is preferable that the temperature be not more than ° CZ. Also, the lower the heating rate R, the lower the rate of growth of the grown-in precipitation nuclei without extinction, which is desirable.However, if the heating rate R is too low, the process time becomes longer and it is not efficient. Is preferably 0.5 ° CZ or more.
[0091] さらにこの場合、昇温後の温度 T を 800 [0091] Further, in this case, the temperature T after the heating is increased to 800
22 °C以上 1000°C以下とすることが好ましい Preferably between 22 ° C and 1000 ° C
。この温度 T 力 800°C未満であると昇温工程 Aにおいてグローンイン析出核が十 . If the temperature T is less than 800 ° C, there are not enough grown-in precipitation nuclei in the heating step A.
22 1  22 1
分に成長できず、その後の昇温工程 B1で消滅する割合が高くなり、酸素析出物の 密度が十分に得られない場合がある。一方、温度 T  In some cases, the rate of disappearance in the subsequent heating step B1 increases, and the density of oxygen precipitates may not be sufficiently obtained. On the other hand, the temperature T
22が 1000°Cを越える温度である と、ゥエーハ表面近傍のグローンイン析出核も大きく成長してしまい、その後の昇温 工程 B及び保持工程 Cを経ても酸素析出物が表面近傍に残存して、ゥエーハ表層 部に DZ層を形成できず、酸化膜耐圧特性の低下を招く恐れがある。  If the temperature of 22 exceeds 1000 ° C, the grown-in precipitation nuclei near the wafer surface also grow large, and the oxygen precipitates remain near the surface even after the subsequent heating step B and holding step C. DBecause a DZ layer cannot be formed on the surface of the wafer, the breakdown voltage characteristics of the oxide film may be reduced.
[0092] また、本発明では、この昇温工程 Aを行う前に温度 T で 30分以上保持することが [0092] Further, in the present invention, it is possible to maintain the temperature T at the temperature T for 30 minutes or more before performing the heating step A.
1 21  1 21
好ましい。このように、昇温工程 Aの前にシリコンゥエーハを温度 T で 30分以上保  preferable. Thus, before the heating step A, the silicon wafer is kept at the temperature T for 30 minutes or more.
1 21  1 21
持することにより、グローンイン析出核を一層消滅しに《することができ、さらにグロ ーンイン析出核に加えて新たな酸素析出核を効果的に発生させて、シリコンゥエー ハに一層高密度の酸素析出核を形成することができる。このとき、温度 T での保持  With this, the growth-in precipitation nuclei can be further eliminated, and new oxygen precipitation nuclei can be effectively generated in addition to the growth-in precipitation nuclei, so that a higher oxygen concentration can be obtained in the silicon wafer. Precipitation nuclei can be formed. At this time, hold at temperature T
21 時間を長くし過ぎると工程時間が必要以上に長くなるので、約 4時間以下とすること が好ましい。尚、このようにシリコンゥエーハを温度 T で保持する場合、一定温度に 高精度に保持するだけに限らず、条件に応じて温度 τ 付近で若干の温度変化を伴 If the time is too long, the process time becomes unnecessarily long. Therefore, it is preferable to set the time to about 4 hours or less. When the silicon wafer is held at the temperature T, the temperature is kept constant. Not only high accuracy is maintained, but also slight temperature change around temperature τ depending on conditions.
21  twenty one
うこともできる。すなわち、温度 T は 700°C以下であれば、必ずしも一定の温度とす  You can also. In other words, if the temperature T is 700 ° C or less,
21  twenty one
る必要はなぐ 700°C以下の範囲で変動させて保持する場合を含む。  It is necessary to keep the temperature within the range of 700 ° C or less.
[0093] 上記昇温工程 Aを行った後、図 4に示すように、温度 T °Cから温度 T °Cまで昇 [0093] After performing the heating step A, as shown in Fig. 4, the temperature is raised from the temperature T ° C to the temperature T ° C.
1 22 23 温工程 Aよりも速い R °CZ分の昇温速度で昇温する昇温工程 Bを行う(図 3のステ  1 22 23 Heating process B, in which the temperature is raised at a rate of R ° CZ faster than that of temperature process A, is performed (step in Fig. 3).
1 2 1 ップ 204)。このように昇温工程 Bを行うことにより、ゥエーハ表面近傍における酸素 析出物の成長を抑制して短時間で高温の温度 T まで昇温することができ、ゥエーハ  1 2 1 up 204). By performing the heating step B in this manner, the growth of oxygen precipitates in the vicinity of the wafer surface can be suppressed, and the temperature can be raised to the high temperature T in a short time.
23  twenty three
表層部の酸素析出物が必要以上に成長するのを抑制して、その後の保持工程 Cで ゥエーハ表面近傍の酸素析出物を消滅し易くすることができる。  It is possible to suppress the growth of the oxygen precipitate in the surface layer more than necessary, and to easily eliminate the oxygen precipitate in the vicinity of the wafer surface in the subsequent holding step C.
[0094] このとき、温度 T から温度 T までの昇温速度 R 1S 5°CZ分未満であると表面近  [0094] At this time, if the heating rate from temperature T to temperature T is less than 5 ° C
22 23 2  22 23 2
傍の酸素析出物が大きく成長してしまい、その後の保持工程 Cにおいて消滅しにく くなる恐れがあるので、昇温工程 B 1における昇温速度 R 2は 5°CZ分以上とすることが 好ましい。また一方、昇温速度 R 2が高速過ぎるとゥエーハバルタ部の酸素析出物も 保持工程 Cで消滅する恐れがあり、酸素析出物密度が低下してしまうことが考えられ るので、昇温速度 R 2は 10°CZ分以下であることが望ましい。  Since there is a risk that oxygen precipitates in the vicinity will grow large and become difficult to disappear in the subsequent holding step C, the heating rate R2 in the heating step B1 should be 5 ° CZ min or more. preferable. On the other hand, if the heating rate R2 is too high, the oxygen precipitates in the ehabalta area may disappear in the holding step C, and it is considered that the oxygen precipitate density may decrease. Is desirably 10 ° CZ or less.
[0095] またこの昇温工程 Bでは、昇温後の温度 T を 1050°C以上 1230°C以下とすること  [0095] In the heating step B, the temperature T after the heating is set to 1050 ° C or more and 1230 ° C or less.
1 23  one two Three
が好ましい。温度 T 力 S1050°C未満の場合、保持工程 Cでバルタ部の酸素析出物  Is preferred. Temperature T force S If the temperature is lower than 1050 ° C, the oxygen precipitates in the
23 1  23 1
を所望のサイズに成長させるために長い時間が必要となり、生産性の低下を招く恐 れがある力 このように温度 T を 1050°C以上とすることにより、保持工程 Cにおい  It takes a long time to grow the desired size, and there is a risk that productivity may be reduced. By setting the temperature T to 1050 ° C or more, the holding process C
23 1 てバルタ部の酸素析出物を効率的に十分な大きさに成長させるとともに、表面近傍 の酸素を外方拡散させて表面近傍の酸素析出核を消滅させることができる。また、温 度 T が高くなるほどバルタ部の酸素析出物が大きくなり、また DZ幅が広くなるものの 23 1 In addition to efficiently growing oxygen precipitates in the Balta part to a sufficient size, oxygen near the surface can be diffused outward to eliminate oxygen precipitate nuclei near the surface. The higher the temperature T, the larger the oxygen precipitates in the balter section and the larger the DZ width.
23 twenty three
、 1230°Cを越える高温では熱処理炉カもの金属汚染が発生する恐れがあるので、 温度 T は 1230°C以下とすることが好ましい。さらに、熱処理中にゥエーハに生じる If the temperature is higher than 1230 ° C, metal contamination of the heat treatment furnace may occur, so the temperature T is preferably set to 1230 ° C or less. In addition, it occurs on wafers during heat treatment
23 twenty three
スリップ転位の発生を抑制するためには、温度 T は 1200°C以下、さらには 1150°C  In order to suppress the occurrence of slip dislocation, the temperature T should be 1200 ° C or less, or 1150 ° C
23  twenty three
以下とすることがより好ま 、。  The following is more preferable.
[0096] そして、昇温工程 Bを行った後、図 4に示すように、温度 T °Cで所定時間 t 保持 [0096] After performing the temperature raising step B, as shown in Fig. 4, the temperature is maintained at a temperature T ° C for a predetermined time t.
1 23 21 する保持工程 Cを行う(図 3のステップ 205)。このように保持工程 Cを行うことにより 、上記の昇温工程へ及び昇温工程 で成長した微小な酸素析出物をゥエーハバル ク部では IG能力を有するようなサイズ、例えば直径約 40nm以上、さらには直径約 5 Onm以上のサイズに成長させることができ、またゥエーハ表面近傍では酸素析出物 をより完全に消滅させることができるので、極めて高品質の DZ層を効率的に形成す ることがでさる。 The holding process C is performed (step 205 in FIG. 3). By performing the holding process C in this manner, The fine oxygen precipitates grown in the temperature raising step and in the temperature raising step are grown to a size having an IG capability in the Aehark section, for example, a diameter of about 40 nm or more, and further, a diameter of about 5 Onm or more. In addition, since oxygen precipitates can be more completely eliminated near the wafer surface, an extremely high-quality DZ layer can be efficiently formed.
[0097] このとき、保持工程 Cの保持時間 t が 30分より短くなると、時間の僅かなばらつき  [0097] At this time, if the holding time t of the holding step C is shorter than 30 minutes, slight variations in the time may occur.
1 21  1 21
により所望のサイズの酸素析出物や DZ幅が得られなくなる可能性があるので、保持 時間 t は 30分以上とすることが好ましい。また、この保持時間 t が長くなるほどバル Therefore, the retention time t is preferably set to 30 minutes or more, since oxygen precipitates and DZ widths of desired sizes may not be obtained due to the above. Also, as the holding time t becomes longer,
21 21 21 21
ク部の酸素析出物のサイズが大きくなり、また DZ幅が広くなるため好ましいが、了二 ールゥエーハの生産性を考慮すると、保持時間 t は約 4時間以下とするのが望まし  This is preferable because the size of oxygen precipitates in the weld zone increases and the DZ width increases.However, in consideration of the productivity of Rinyl wafers, it is desirable that the retention time t be about 4 hours or less.
21  twenty one
い。  No.
[0098] また、この保持工程 Cにおいて、シリコンゥエーハを高温で保持する温度 T 及び  [0098] In the holding step C, the temperature T and the temperature at which the silicon wafer is held at a high temperature.
1 23 保持時間 t を調整することにより、ァニールゥエーハのバルタ部に形成される酸素析  1 23 By adjusting the retention time t, the oxygen precipitation formed on the
21  twenty one
出物のサイズゃゥエーハ表層部の DZ幅を容易に制御することができ、所望の品質を 有するァニールゥエーハを効率的に安定して得ることができる。尚、保持工程 Cでは 、前記本発明の第 1の態様に係る方法と同様に、一定の温度 T  It is possible to easily control the size of the product and the DZ width of the surface layer of the wafer, and it is possible to efficiently and stably obtain an anneal wafer having a desired quality. Note that, in the holding step C, the constant temperature T is used as in the method according to the first embodiment of the present invention.
23で高精度に保持す るだけに限らず、条件に応じて温度 T 付近で若干の温度変化 (例えば ± 100°C程  In addition to maintaining high accuracy at 23, slight temperature changes around temperature T (for example, about ± 100 ° C)
23  twenty three
度の昇温、降温等)を伴うこともできる。すなわち、温度 T は、 1050°C以上 1230°C  Temperature rise, temperature decrease, etc.). That is, the temperature T is more than 1050 ° C and 1230 ° C
23  twenty three
以下であれば良いので、温度を保持する場合はこの温度範囲で保持すれば良ぐ必 ずしも一定の温度とする必要はない。本発明でいう温度 T °cで所定時間保持すると  If the temperature is maintained, it is sufficient to maintain the temperature within this temperature range, but it is not necessary to keep the temperature constant. When maintained for a predetermined time at the temperature T ° c referred to in the present invention.
23  twenty three
は、このように温度 T を 1050 1230°Cの範囲内で変動させて保持する場合を含  This includes the case where the temperature T is maintained within the range of 1050-1230 ° C.
23  twenty three
む。  No.
[0099] 上記のようにして熱処理を行った後、図 4に示すように、例えば温度 T °Cから 700  [0099] After performing the heat treatment as described above, as shown in FIG.
23  twenty three
°Cまでおよそ 3°C/分程度の速度で降温した後(降温工程:ステップ 206)、シリコン ゥエーハを熱処理炉外に取り出す (ステップ 207)。なお、上記降温速度及び降温し た後のゥエーハ取り出し温度については特に限定されないが、例えばゥエーハの降 温時、または取り出し時に熱応力によるスリップ転位が発生しな 、ような条件とするこ とが望ましい。さらに、本発明では、熱処理を行う際の熱処理雰囲気も前記第 1の態 様と同様に特に限定されない。 After the temperature is lowered to about 3 ° C / minute to about ° C (temperature drop process: Step 206), the silicon wafer is taken out of the heat treatment furnace (Step 207). The temperature drop rate and the temperature at which the wafer is taken out after the temperature is lowered are not particularly limited. For example, it is preferable to set conditions such that slip dislocation due to thermal stress does not occur when the temperature of the wafer is lowered or when the wafer is taken out. . Further, in the present invention, the heat treatment atmosphere when performing the heat treatment is also the first mode. There is no particular limitation as in the above.
[0100] また、本発明の第 2の態様に係るァニールゥエーハの製造方法において、例えば 上記の昇温工程 Aと昇温工程 Bの間、及び昇温工程 Bと保持工程 Cの間におい てゥエーハを熱処理炉外に取り出して、昇温工程 A、昇温工程 B及び保持工程 C を個々に行うこともできる力 本発明では、これらの昇温工程 A、昇温工程 B、及び 保持工程 Cを連続して行うことが好ましぐそれにより、熱処理工程全体の工程時間 を短縮でき、熱処理工程の効率ィ匕ゃ生産性の向上を図ることができる。  [0100] In the method for producing an anneal wafer according to the second aspect of the present invention, for example, the wafer is heated between the above-mentioned heating step A and the heating step B and between the heating step B and the holding step C. A force that can be taken out of the heat treatment furnace and individually perform the heating step A, the heating step B, and the holding step C. In the present invention, the heating step A, the heating step B, and the holding step C are continuously performed. It is preferable to perform the heat treatment step, whereby the entire process time of the heat treatment step can be shortened, and the efficiency of the heat treatment step can be improved and the productivity can be improved.
[0101] 以上のようにして、 Nv領域となるシリコンゥエーハを作製した後、その作製したシリ コンゥエーハに、少なくとも昇温工程 A、昇温工程 B及び保持工程 Cを有する熱処 理を行うことによって、前記本発明のァニールゥエーハを容易にかつ安定して製造す ることがでさる。  [0101] After the silicon wafer serving as the Nv region is manufactured as described above, the manufactured silicon wafer is subjected to a heat treatment including at least the temperature raising step A, the temperature raising step B, and the holding step C. As a result, the above-described anneal wafer can be easily and stably manufactured.
[0102] またこの場合、上記熱処理を施すシリコンゥエーハとして、ゥエーハの酸素濃度が 1 4ppma以上であるものを使用することが好ましぐそれにより、ゥエーハバルタ部に酸 素析出物を一層高密度で形成することができ、ァニールゥエーハに一層優れた IG能 力を付加することができる。さらに、シリコンゥエーハの酸素濃度を 14ppma以上と高 くすれば、酸素析出物の成長速度が速くなるので、全体の工程時間の短縮を図るこ とができる。しかしながら、シリコンゥエーハの酸素濃度を高くし過ぎてしまうと、シリコ ンゥエーハに熱処理を行った際にゥエーハ表面近傍の酸素析出物が高温で消滅し にくくなる恐れがあるし、またシリコン単結晶の製造が困難になる可能性も考えられる ので、熱処理を施すシリコンゥエーハの酸素濃度は 23ppma以下、特に 17ppma以 下とするのが好ましい。  [0102] Further, in this case, it is preferable to use silicon wafers having an oxygen concentration of 14 ppma or more as the silicon wafer to be subjected to the heat treatment. It is possible to add even better IG capability to annealed wafers. Furthermore, if the oxygen concentration of silicon / a wafer is increased to 14 ppma or more, the growth rate of oxygen precipitates is increased, so that the overall process time can be reduced. However, if the oxygen concentration of the silicon wafer is too high, oxygen precipitates near the surface of the silicon wafer may not easily disappear at a high temperature when heat treatment is performed on the silicon wafer. Therefore, the oxygen concentration of the silicon wafer subjected to the heat treatment is preferably 23 ppma or less, particularly preferably 17 ppma or less.
[0103] そして、上記本発明の第 1の態様及び第 2の態様に係るァニールゥエーハの製造 方法は、従来では熱処理でスリップ転位の発生し易かった直径 200mm以上の大口 径のァニールゥエーハを製造する場合に特に好適に用いることができる。すなわち、 本発明は、上述のようにゥエーハ面内に大きなサイズの酸素析出物を高密度で均一 に形成できるため、熱処理中に生じるスリップ転位がピンユングされる確率が高くなり 、スリップ転位の発生を抑制できる。したがって、スリップ転位の発生し易い大口径の ゥエーハにお 、て有効であり、スリップ転位の発生して ヽな ヽ大口径のァニールゥェ 一ノ、、特に今後の主流となる直径 200mm、さらには 300mm以上のァニールゥエー ハを、安定して高歩留まりで製造することができる。 [0103] The method for producing an anneal wafer according to the first and second aspects of the present invention is suitable for producing a large-diameter anneal wafer having a diameter of 200 mm or more, in which slip dislocations are easily generated by heat treatment. It can be particularly preferably used. That is, according to the present invention, as described above, large-size oxygen precipitates can be uniformly formed at high density in the wafer surface, so that the slip dislocation generated during the heat treatment is more likely to be pinned and the slip dislocation is reduced. Can be suppressed. Therefore, it is effective for large-diameter wafers in which slip dislocations are easily generated, and large-diameter annealed wafers in which slip dislocations are not generated. Ichino, in particular, will be able to produce stable, high-yield annealed wafers with a diameter of 200 mm or even 300 mm or more, which will become the mainstream in the future.
[0104] 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこ れらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例)  (Example)
図 5に示したような、冷却媒体を流して単結晶を強制冷却する冷却筒 11を具備し、 原料融液に水平方向の磁場を印加できる単結晶弓 Iき上げ装置 20を使用して、 24ィ ンチ石英ルツボにシリコン多結晶を 150kgをチャージし、中心磁場強度 4000ガウス の水平磁場を印加しながら直径 200mm、方位く 100>、酸素濃度が約 15ppma (j EIDA)のシリコン単結晶を直胴部の長さが約 130cmとなるように育成した。  As shown in FIG. 5, using a single crystal bow I pumping device 20 comprising a cooling cylinder 11 for forcibly cooling the single crystal by flowing a cooling medium and capable of applying a horizontal magnetic field to the raw material melt, A 24-inch quartz crucible is charged with 150 kg of silicon polycrystal, and while applying a horizontal magnetic field of a central magnetic field strength of 4000 Gauss, a silicon single crystal having a diameter of 200 mm, an orientation of 100> and an oxygen concentration of about 15 ppma (j EIDA) is directly transferred. It was raised so that the length of its torso was about 130 cm.
[0105] このとき、育成する単結晶に窒素は添加せず、また単結晶面内の結晶温度勾配 G の差 (すなわち、結晶中心部分の温度勾配 Gcと結晶周辺部分の温度勾配 Geの差) を小さく保つようにシリコン融液面と遮熱部材 14の間隔を 60mmとし、さらに結晶成 長軸方向に対して結晶成長速度を徐々に低下させるようにして単結晶を育成した。  At this time, no nitrogen was added to the single crystal to be grown, and the difference between the crystal temperature gradients G in the single crystal plane (ie, the difference between the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the periphery of the crystal) The distance between the silicon melt surface and the heat-insulating member 14 was set to 60 mm so as to keep the crystal growth small, and a single crystal was grown by gradually lowering the crystal growth rate in the crystal growth axis direction.
[0106] 次に育成したシリコン単結晶を縦割りにしてサンプルを作製し、その縦割りサンプル を選択エッチングによって FPD、 LEPDの発生状況を確認し、また 1150°Cで 100分 間の熱酸化処理を行い OSFの発生状況を確認した。そして、 800°C、 4時間後 100 0°C、 16時間の析出熱処理を行いライフタイムマッピングなどから、シリコン単結晶の 結晶欠陥領域を同定した。その結果を図 7に示す。図 7に示したように、冷却筒 11の 急冷効果により無欠陥領域、特に Nv領域が非常に大きく広がっていることがわかる。  [0106] Next, a sample was prepared by dividing the grown silicon single crystal vertically, and the vertically divided sample was subjected to selective etching to check the occurrence of FPD and LEPD, and was also subjected to thermal oxidation treatment at 1150 ° C for 100 minutes. And confirmed the occurrence of OSF. After 4 hours at 800 ° C, precipitation heat treatment was performed at 1000 ° C for 16 hours, and crystal defect regions of the silicon single crystal were identified by lifetime mapping and the like. Figure 7 shows the results. As shown in FIG. 7, it can be seen that the defect-free region, particularly the Nv region, is very large due to the quenching effect of the cooling cylinder 11.
[0107] また、上記で作製した縦割りサンプルについて、成長軸方向に析出熱処理前の初 期酸素濃度と析出熱処理後の析出酸素濃度とを測定し、この初期酸素濃度と析出 熱処理後の析出酸素濃度との差である酸素析出量を求めた。図 7に測定した初期酸 素濃度と酸素析出量を表すグラフを示す。その結果、 Nv領域では酸素析出量が lp pma QEIDA)以上であるのに対し、 Ni領域ではほとんど析出してないことがわ力る。  [0107] In addition, the initial oxygen concentration before the precipitation heat treatment and the precipitated oxygen concentration after the precipitation heat treatment were measured in the growth axis direction of the vertically divided sample prepared above, and the initial oxygen concentration and the precipitated oxygen concentration after the precipitation heat treatment were measured. The oxygen precipitation amount, which is the difference from the concentration, was determined. FIG. 7 shows a graph showing the measured initial oxygen concentration and the amount of precipitated oxygen. As a result, it is clear that the amount of precipitated oxygen is equal to or more than lp pma QEIDA) in the Nv region, but hardly precipitates in the Ni region.
[0108] 次に、上記の結果を踏まえて、 Nv領域のみの単結晶が得られるような成長速度で シリコン単結晶の引き上げを行った。このとき、初期酸素濃度は上記と同様に 15ppm aとなるように製造条件を調整した。こうして得られたシリコン単結晶を成長軸方向に 2 Ocm間隔でサンプルゥエーハを切り出し、切り出したサンプルゥエーハにつ ヽて面内 を 10mm間隔で初期酸素濃度を測定した。その後、このサンプルゥエーハに 800°C 、 4時間の熱処理後 1000°C、 16時間の析出熱処理を加え、熱処理起因の酸化膜を 取り除いた後に、熱処理前と同じように酸素濃度を測定した。その結果、初期酸素濃 度力も析出熱処理後の酸素濃度を差し引いて求めた酸素析出量は、切り出した全て のサンプルゥエーハにおいて、面内全ての測定点で lppmaを上回った。このことか ら、今回育成したシリコン単結晶は単結晶直胴部の全域に亘り、全面 Nv領域にする ことができたと考えられる。 [0108] Next, based on the above results, the silicon single crystal was pulled at a growth rate such that a single crystal only in the Nv region was obtained. At this time, the initial oxygen concentration is 15 ppm as above. The production conditions were adjusted to be a. The silicon single crystal thus obtained was sampled at intervals of 2 Ocm in the growth axis direction, and the initial oxygen concentration was measured at in-plane intervals of 10 mm for the sampled wafer. After that, a heat treatment at 800 ° C. for 4 hours and a heat treatment for precipitation at 1000 ° C. for 16 hours were applied to the sample wafer to remove an oxide film caused by the heat treatment, and then the oxygen concentration was measured in the same manner as before the heat treatment. As a result, the amount of precipitated oxygen, which was obtained by subtracting the oxygen concentration after the precipitation heat treatment from the initial oxygen concentration force, exceeded lppma at all the measurement points in the plane for all of the sampled wafers. From this, it is considered that the silicon single crystal grown this time was able to be Nv region over the entire region of the single crystal straight body.
[0109] そして、上記の Nv領域を有するシリコン単結晶からゥエーハをスライスした後、面取 り、ラッピング、エッチング、鏡面研磨を施して鏡面研磨シリコンゥエーハを作製し、そ のゥエーハに対してアルゴン雰囲気下で以下の熱処理を施した。すなわち、シリコン ゥエーハを 700°Cに加熱した熱処理炉に投入してから 30分間保持した後、 900°Cま で 3°CZ分の速度で昇温し、さらに 1150°Cまで 5°CZ分の速度で昇温し、 1150°C で 2時間保持した。その後、熱処理炉内温度を 700°Cまで 3°CZ分の速度で降温し てから、ゥエーハを熱処理炉から取り出した。  [0109] Then, after slicing the wafer from the silicon single crystal having the Nv region, chamfering, lapping, etching, and mirror polishing are performed to produce a mirror-polished silicon wafer, and argon is applied to the wafer. The following heat treatment was performed in an atmosphere. That is, after placing the silicon wafer in the heat treatment furnace heated to 700 ° C, holding it for 30 minutes, raise the temperature at a rate of 3 ° CZ up to 900 ° C, and further increase the temperature by 5 ° CZ up to 1150 ° C. The temperature was raised at a rate and maintained at 1150 ° C for 2 hours. After that, the temperature in the heat treatment furnace was lowered to 700 ° C at a rate of 3 ° CZ, and the wafer was taken out of the heat treatment furnace.
[0110] 上記の熱処理を行ったァニールゥエーハについて、ゥエーハ内部の酸素析出物( BMD)の密度を赤外散乱トモグラフ法によりゥエーハ中心より 10mmの位置から 10 mm間隔で測定し、面内分布を調査した。この赤外散乱トモグラフ法によれば、直径 40nm以上のサイズを有する酸素析出物を検出することができる。その結果を図 9に 示す。  [0110] With respect to the annealed wafer subjected to the above heat treatment, the density of oxygen precipitates (BMD) inside the wafer was measured at 10 mm intervals from a position 10 mm from the center of the wafer by infrared scattering tomography, and the in-plane distribution was investigated. . According to the infrared scattering tomography method, an oxygen precipitate having a diameter of 40 nm or more can be detected. Figure 9 shows the results.
[0111] 図 9に示したように、ゥエーハ面内の全ての測定点で酸素析出物の密度は 1 X 109 Zcm3以上となり、また、このときのゥエーハ面内における酸素析出物の密度の最大 値と最小値との比(最大値 Z最小値)の値は 2. 7であり、ゥエーハバルタ部に酸素析 出物が面内均一に高密度で存在していることがわ力つた。 [0111] As shown in FIG. 9, the density of all of the oxygen precipitates in the measuring points Ueha plane becomes 1 X 10 9 Zcm 3 or more, the density of the oxygen precipitates in Ueha plane at this time The value of the ratio of the maximum value to the minimum value (maximum value Z minimum value) was 2.7, indicating that oxygen precipitates existed uniformly and at high density in the Ehabarta area.
[0112] さらに、上記で製造したァニールゥエーハの酸ィ匕膜耐圧特性を調べるために、ゥェ ーハに乾燥雰囲気中で熱酸化処理を行って 25nmのゲート酸化膜を形成し、その上 に 8mm2の電極面積を有するリンをドープしたポリシリコン電極を形成した。そして、こ の酸ィ匕膜上に形成したポリシリコン電極に電圧を印加し、判定電流値を ImAZcm2 、絶縁破壊電界を 8MVZcm以上として TZDB評価を行った。その結果、酸化膜耐 圧特性の良品率は 100%であることがわ力つた。 [0112] Further, in order to examine the breakdown voltage characteristics of the oxidized film of the above-described annealed wafer, the wafer was subjected to a thermal oxidation treatment in a dry atmosphere to form a 25 nm gate oxide film, and 8 mm of the gate oxide film was formed thereon. A phosphorus-doped polysilicon electrode having an electrode area of 2 was formed. And this A voltage was applied to the polysilicon electrode formed on the silicon oxide film, and the TZDB evaluation was performed with the judgment current value set to ImAZcm 2 and the dielectric breakdown electric field set to 8 MVZcm or more. As a result, it was found that the yield rate of the oxide film pressure resistance was 100%.
さらに、上記で製造した別のァニールゥエーハを機械的化学的研磨により表面力 5 m研磨加工した後、上記と同様の TZDB評価を行った。その結果、酸化膜耐圧 特性の良品率は 97%であった。  Further, another anneal wafer manufactured as described above was polished by mechanical and chemical polishing with a surface force of 5 m, and then subjected to the same TZDB evaluation as described above. As a result, the yield rate of the oxide film withstand voltage characteristics was 97%.
[0113] (比較例) [0113] (Comparative example)
次に、図 5に示した単結晶引き上げ装置 20から冷却筒 11を取り外し、この冷却筒 1 1を具備してな ヽ単結晶弓 Iき上げ装置を使用して、 24インチ石英ルツボにシリコン多 結晶を 150kgをチャージし、中心磁場強度 4000ガウスの水平磁場を印加しながら 直径 200mm、方位く 100>、酸素濃度が約 15ppma (jEIDA)のシリコン単結晶を 上記実施例と同様に結晶成長速度を徐々に低下させるようにして育成した。ここで、 上記実施例と比較例で用いた単結晶引き上げ装置の温度分布を解析した結果を図 6に示す。図 6に示したように、比較例の単結晶引き上げ装置は、冷却筒を具備する 実施例に比較して急冷の度合 ヽが低 ヽことが確認できる。  Next, the cooling cylinder 11 is removed from the single crystal pulling apparatus 20 shown in FIG. 5, and the cooling cylinder 11 is not provided. Charge 150 kg of the crystal and apply a horizontal magnetic field of central magnetic field strength of 4000 Gauss to a silicon single crystal with a diameter of 200 mm, an orientation of 100> and an oxygen concentration of about 15 ppma (jEIDA). It was raised so as to be gradually lowered. Here, FIG. 6 shows the result of analyzing the temperature distribution of the single crystal pulling apparatus used in the above example and comparative example. As shown in FIG. 6, it can be confirmed that the single crystal pulling apparatus of the comparative example has a lower degree of rapid cooling as compared with the example having the cooling cylinder.
[0114] 続いて、上記実施例と同様に、育成したシリコン単結晶から縦割りサンプルを作製 し、シリコン単結晶の結晶欠陥領域を同定した。その結果を図 8に示す。図 8に示し たように、上記実施例に比較して無欠陥領域 (N領域)が非常に狭ぐ全面が Nv領域 となる単結晶を育成することが殆どできないことがわかる。  [0114] Subsequently, similarly to the above example, a vertically divided sample was prepared from the grown silicon single crystal, and a crystal defect region of the silicon single crystal was identified. Fig. 8 shows the results. As shown in FIG. 8, it can be seen that it is almost impossible to grow a single crystal in which the defect-free region (N region) is very narrow and the entire surface is an Nv region as compared with the above example.
[0115] 次に、上記の結果を踏まえて、 Nv領域と Ni領域の両方が存在する無欠陥領域を 有する単結晶が得られるような成長速度でシリコン単結晶の引き上げを行った。この とき、初期酸素濃度は 15ppmaとなるように製造条件を調整した。こうして得られたシ リコン単結晶を成長軸方向に 20cm間隔でサンプルゥエーハを切り出し、上記実施 例と同様の方法で酸素析出量を求めた。  Next, based on the above results, the silicon single crystal was pulled at a growth rate such that a single crystal having a defect-free region having both the Nv region and the Ni region was obtained. At this time, the production conditions were adjusted so that the initial oxygen concentration was 15 ppma. Sample silicon was cut out from the silicon single crystal thus obtained at intervals of 20 cm in the growth axis direction, and the amount of precipitated oxygen was determined in the same manner as in the above example.
[0116] その結果、切り出されたいずれのサンプルゥエーハも酸素析出量が lppmaを面内 全ての測定点で上回ることはなぐ酸素析出量が lppma以上の部分とほとんど析出 していない部分が存在していた。このことから、今回育成したシリコン単結晶は結晶 全域に亘り、 Nv領域と Ni領域が共存していると考えられる。 [0116] As a result, in all of the sampled wafers, the amount of oxygen precipitation did not exceed lppma at all measurement points in the plane. I was From this, the silicon single crystal grown this time It is considered that the Nv region and the Ni region coexist over the entire region.
[0117] そして、この Nv領域と Ni領域とを有するシリコン単結晶から実施例と同様に鏡面研 磨シリコンゥエーハを作製し、実施例と同様の条件で熱処理を施した。そして、熱処 理を行ったァニールゥエーハについて、ゥエーハ内部の酸素析出物(BMD)の密度 を赤外散乱トモグラフ法によりゥエーハ中心より 10mmの位置から 10mm間隔で測定 し、面内分布を調査した。その結果を図 9に重ねて示す。  [0117] A mirror-polished silicon wafer was produced from the silicon single crystal having the Nv region and the Ni region in the same manner as in the example, and was subjected to a heat treatment under the same conditions as in the example. For the annealed wafers subjected to the heat treatment, the density of oxygen precipitates (BMD) inside the wafers was measured by infrared scattering tomography at 10 mm intervals from the center of the wafers at 10 mm intervals, and the in-plane distribution was investigated. The results are shown in FIG.
[0118] 図 9に示したように、比較例で製造したァニールゥエーハは、面内全ての測定点で 酸素析出物密度は 1 X 109Zcm3以上とはならずに、低い酸素析出物密度を示す部 分があった。また、このときのゥエーハ面内における酸素析出物の密度の最大値と最 小値との比(最大値 Z最小値)の値は 25となり、酸素析出物密度の面内分布は不均 一であった。 [0118] As shown in FIG. 9, Aniruueha prepared in Comparative Example, the oxygen precipitates in at all measuring points the surface density in not become 1 X 10 9 Zcm 3 or more, the low density of oxygen precipitate There were parts shown. At this time, the ratio of the maximum value to the minimum value of the oxygen precipitate density in the wafer surface (maximum value Z minimum value) was 25, and the in-plane distribution of oxygen precipitate density was uneven. there were.
[0119] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単な る例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一 な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技 術的範囲に包含される。 [0119] The present invention is not limited to the above embodiment. The above embodiment is a mere example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect will be described. Are also included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] チヨクラルスキー法により育成されたシリコン単結晶から作製したシリコンゥエーハに 熱処理を施したァニールゥエーハであって、ゥエーハ全面がグローンイン欠陥も OS Fも存在しない N領域であり、ゥエーハ表面力 少なくとも深さ 5 mまでの領域にお ける酸ィ匕膜耐圧特性の良品率が 95%以上であり、且つ、ゥエーハ内部における酸 素析出物の密度が 1 X 109Zcm3以上で、ゥエーハ面内における酸素析出物の密度 の最大値と最小値との比(最大値 Z最小値)の値が 1一 10であることを特徴とするァ ^ ~~ノレゥェ1 ~~ノヽ。 [1] An annealed wafer prepared by heat-treating a silicon wafer formed from a silicon single crystal grown by the Czochralski method, and the entire surface of the wafer is an N region where neither a grown-in defect nor OSF exists, and Keru us in the region to a depth of 5 m Sani匕膜breakdown voltage characteristic yield rate is 95% or more, and a density of oxygen precipitates inside Ueha is 1 X 10 9 Zcm 3 or more, Ueha plane § ^ ~~ Norewe 1 ~~ Nono the value of the ratio between the maximum value and the minimum value of the density of oxygen precipitate (the maximum value Z minimum value) characterized in that it is a 1 one 10 in.
[2] チヨクラルスキー法により育成されたシリコン単結晶から作製したシリコンゥエーハに 熱処理を施したァニールゥエーハであって、前記シリコンゥエーハの全面がグローン イン欠陥も OSFも存在しない、原子空孔の多い Nv領域のものであり、該シリコンゥェ ーハに熱処理を施したものであることを特徴とするァニールゥエーハ。 [2] An annealed wafer obtained by heat-treating a silicon wafer produced from a silicon single crystal grown by the Czochralski method, wherein the entire surface of the silicon wafer has neither a grown-in defect nor an OSF. An annealed wafer having a large Nv region, wherein the silicon wafer has been subjected to a heat treatment.
[3] 前記ァニールゥエーハの直径が 200mm以上であることを特徴とする請求項 1また は請求項 2に記載のァニールゥエーハ。 3. The annealed wafer according to claim 1, wherein the diameter of the annealed wafer is 200 mm or more.
[4] チヨクラルスキー法により育成したシリコン単結晶からシリコンゥエーハを作製し、該 作製したシリコンゥエーハに熱処理を施してァニールゥエーハを製造する方法にお いて、前記シリコンゥエーハとして、ゥエーハの全面がグローンイン欠陥も OSFも存在 しない、原子空孔の多い Nv領域となるシリコンゥエーハを作製した後、該作製したシ リコンゥエーハに、少なくとも、 500°C以上 700°C以下の温度 T °Cで所定時間 t 保 [4] In a method of manufacturing a silicon wafer from a silicon single crystal grown by the Czochralski method and subjecting the manufactured silicon wafer to a heat treatment to produce an annealing wafer, the silicon wafer is used as the silicon wafer. After producing a silicon wafer with Nv region with many vacancies, which has neither a grown-in defect nor OSF, the fabricated silicon wafer is specified at a temperature of at least 500 ° C and not more than 700 ° C T ° C. Time t hold
11 11 持し、次に 5°CZ分以下の昇温速度で 1000°C以上 1230°C以下の温度 T でまで  11 11 and then at a temperature T of 1000 ° C or more and 1230 ° C or less at a heating rate of 5 ° CZ or less.
12 昇温し、その後、該温度 T °Cで所定時間 t 保持する熱処理を行うことを特徴とする  12 Raise the temperature, and then perform a heat treatment to maintain the temperature T at this temperature T ° C for a predetermined time t.
12 12  12 12
ァニールゥエーハの製造方法。  Manufacturing method of Anil @ eha.
[5] 前記シリコンゥエーハを 500°C以上 700°C以下の温度 T °Cで保持する時間 t を 1 [5] The time t for keeping the silicon wafer at a temperature T ° C of 500 ° C or more and 700 ° C or less is set to 1
11 11 11 11
5分以上とすることを特徴とする請求項 4に記載のァニールゥエーハの製造方法。 5. The method according to claim 4, wherein the time is 5 minutes or more.
[6] 前記シリコンゥエーハを 1000°C以上 1230°C以下の温度 T °Cで保持する時間 t [6] Time t for holding the silicon wafer at a temperature T ° C of 1000 ° C or more and 1230 ° C or less
12 12 を 30分以上とすることを特徴とする請求項 4または請求項 5に記載のァニールゥエー ハの製造方法。  The method for producing an annealed wafer according to claim 4 or claim 5, wherein the time is 12 minutes or more.
[7] チヨクラルスキー法により育成したシリコン単結晶からシリコンゥエーハを作製し、該 作製したシリコンゥエーハに熱処理を施してァニールゥエーハを製造する方法にお いて、前記シリコンゥエーハとして、ゥエーハの全面がグローンイン欠陥も OSFも存在 しない、原子空孔の多い Nv領域となるシリコンゥエーハを作製した後、該作製したシ リコンゥエーハに、少なくとも、温度 T °Cから温度 T °Cまで R °CZ分の昇温速度で [7] In a method of producing a silicon wafer from a silicon single crystal grown by the Czochralski method and subjecting the produced silicon wafer to a heat treatment to produce an annealing wafer, the silicon wafer is treated as an entire surface of the wafer. However, after producing a silicon wafer with Nv region with many vacancies, which has neither a grown-in defect nor OSF, the fabricated silicon wafer has at least R ° CZ from temperature T ° C to temperature T ° C. At a heating rate
21 22 1  21 22 1
昇温する昇温工程 Aと、前記温度 T °Cから温度 T °Cまで前記昇温工程 Aの昇温  A temperature raising step A for raising the temperature, and a temperature raising in the temperature raising step A from the temperature T ° C to the temperature T ° C.
1 22 23 1 速度とは異なる R °CZ分の昇温速度で昇温する昇温工程 Bと、前記温度 T でで  1 22 23 1 In the heating step B in which the heating rate is
2 1 23 所定時間 t 保持する保持工程 Cとを有する熱処理を行うことを特徴とするァニール  An annealing characterized by performing a heat treatment having a holding step C for holding for a predetermined time t.
21 1  21 1
ゥエーハの製造方法。  ゥ Manufacturing method of eha.
[8] 前記昇温工程 A、昇温工程 B、及び保持工程 Cを連続して行うことを特徴とする 請求項 7に記載のァニールゥエーハの製造方法。 [8] The method of claim 7, wherein the heating step A, the heating step B, and the holding step C are sequentially performed.
[9] 前記昇温工程 Aにおいて、前記温度 T を 700°C以下、前記温度 T を 800°C以 [9] In the temperature raising step A, the temperature T is set to 700 ° C or less, and the temperature T is set to 800 ° C or less.
1 21 22  1 21 22
上 1000°C以下、前記昇温速度 Rを 3°CZ分以下とすることを特徴とする請求項 7ま たは請求項 8に記載のァニールゥエーハの製造方法。  9. The method for producing an anneal wafer according to claim 7, wherein the temperature is not more than 1000 ° C., and the heating rate R is not more than 3 ° CZ.
[10] 前記昇温工程 Aを行う前に、前記温度 T で 30分以上保持することを特徴とする [10] Before performing the temperature raising step A, the temperature T is maintained at the temperature T for 30 minutes or more.
1 21  1 21
請求項 7な 、し請求項 9の 、ずれか一項に記載のァニールゥエーハの製造方法。  The method for producing an annealed wafer according to any one of claims 7 to 9.
[11] 前記昇温工程 Bにおいて、前記温度 T を 800°C以上 1000°C以下、前記温度 T [11] In the heating step B, the temperature T is set to 800 ° C or more and 1000 ° C or less,
1 22 23 を 1050°C以上 1230°C以下、前記昇温速度 R 2を 5°CZ分以上とすることを特徴とす る請求項 7な 、し請求項 10の 、ずれか一項に記載のァニールゥエーハの製造方法 The temperature of 1 22 23 is 1050 ° C. or more and 1230 ° C. or less, and the heating rate R 2 is 5 ° C.Z or more. Method of producing annealed wafers
[12] 前記保持工程 Cにおいて、前記温度 T を 1050°C以上 1230°C以下、前記保持 [12] In the holding step C, the temperature T is maintained at 1050 ° C or higher and 1230 ° C or lower.
1 23  one two Three
時間 t を 30分以上とすることを特徴とする請求項 7な ヽし請求項 11の ヽずれか一項 The time t is set to 30 minutes or more, any one of claims 7 to 11
21 twenty one
に記載のァニールゥエーハの製造方法。  4. The method for producing an anneal wafer described in 1. above.
[13] 前記熱処理を施すシリコンゥエーハとして、窒素を添加せずに育成したシリコン単 結晶から作製したものを用いることを特徴とする請求項 4な 、し請求項 12の 、ずれか 一項に記載のァニールゥエーハの製造方法。 13. The method according to claim 4, wherein the silicon wafer to be subjected to the heat treatment is made of a silicon single crystal grown without adding nitrogen. The method for producing an anneal wafer described in the above.
[14] 前記熱処理を施すシリコンゥエーハの酸素濃度を 14ppma以上とすることを特徴と する請求項 4ないし請求項 13のいずれか一項に記載のァニールゥエーハの製造方 法。 前記製造するァニールゥエーハの直径を 200mm以上とすることを特徴とする請求 項 4な!、し請求項 14の!、ずれか一項に記載のァニールゥエーハの製造方法。 14. The method according to claim 4, wherein the oxygen concentration of the silicon wafer subjected to the heat treatment is 14 ppma or more. 15. The method for producing annealed wafers according to claim 4, wherein the diameter of the manufactured annealed wafers is 200 mm or more.
PCT/JP2004/016394 2003-11-26 2004-11-05 Annealed wafer and annealed wafer manufacturing method WO2005053010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-395986 2003-11-26
JP2003395986A JP4857517B2 (en) 2003-11-26 2003-11-26 Annealed wafer and method for manufacturing annealed wafer

Publications (1)

Publication Number Publication Date
WO2005053010A1 true WO2005053010A1 (en) 2005-06-09

Family

ID=34631499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016394 WO2005053010A1 (en) 2003-11-26 2004-11-05 Annealed wafer and annealed wafer manufacturing method

Country Status (2)

Country Link
JP (1) JP4857517B2 (en)
WO (1) WO2005053010A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083476A1 (en) * 2006-01-17 2007-07-26 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal wafer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380689B2 (en) 2006-11-21 2009-12-09 信越半導体株式会社 Vertical heat treatment boat and semiconductor wafer heat treatment method using the same
JP5119677B2 (en) * 2007-02-16 2013-01-16 株式会社Sumco Silicon wafer and manufacturing method thereof
JP5061663B2 (en) 2007-03-12 2012-10-31 信越半導体株式会社 Vertical heat treatment boat and semiconductor wafer heat treatment method
JP5227586B2 (en) * 2007-12-28 2013-07-03 ジルトロニック アクチエンゲゼルシャフト Manufacturing method of annealed silicon wafer
JP5163459B2 (en) * 2008-12-05 2013-03-13 株式会社Sumco Silicon single crystal growth method and silicon wafer inspection method
JP5537802B2 (en) * 2008-12-26 2014-07-02 ジルトロニック アクチエンゲゼルシャフト Silicon wafer manufacturing method
JP5597378B2 (en) * 2009-03-27 2014-10-01 グローバルウェーハズ・ジャパン株式会社 Heat treatment method for silicon wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330316A (en) * 1995-05-31 1996-12-13 Sumitomo Sitix Corp Silicon single crystal wafer and its production
JP2000053497A (en) * 1998-06-04 2000-02-22 Shin Etsu Handotai Co Ltd Low defect density silicon single crystal wafer doped with nitrogen and its production
WO2001057293A1 (en) * 2000-01-31 2001-08-09 Shin-Etsu Handotai Co., Ltd. Single crystal growing device and production method of single crystal using the device and single crystal
JP2001278692A (en) * 2000-03-29 2001-10-10 Shin Etsu Handotai Co Ltd Manufacturing method of silicon wafer and single crystal silicon
WO2002002852A1 (en) * 2000-06-30 2002-01-10 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer and method for manufacturing the same
JP2002226296A (en) * 2001-01-31 2002-08-14 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330316A (en) * 1995-05-31 1996-12-13 Sumitomo Sitix Corp Silicon single crystal wafer and its production
JP2000053497A (en) * 1998-06-04 2000-02-22 Shin Etsu Handotai Co Ltd Low defect density silicon single crystal wafer doped with nitrogen and its production
WO2001057293A1 (en) * 2000-01-31 2001-08-09 Shin-Etsu Handotai Co., Ltd. Single crystal growing device and production method of single crystal using the device and single crystal
JP2001278692A (en) * 2000-03-29 2001-10-10 Shin Etsu Handotai Co Ltd Manufacturing method of silicon wafer and single crystal silicon
WO2002002852A1 (en) * 2000-06-30 2002-01-10 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer and method for manufacturing the same
JP2002226296A (en) * 2001-01-31 2002-08-14 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083476A1 (en) * 2006-01-17 2007-07-26 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal wafer
JP2007191320A (en) * 2006-01-17 2007-08-02 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal wafer
CN101360852B (en) * 2006-01-17 2012-12-05 信越半导体股份有限公司 Process for producing silicon single crystal wafer

Also Published As

Publication number Publication date
JP2005159028A (en) 2005-06-16
JP4857517B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5578172B2 (en) Annealed wafer manufacturing method and device manufacturing method
US8476149B2 (en) Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
EP1170405A1 (en) Silicon single crystal wafer and production method thereof and soi wafer
JP4699675B2 (en) Annealed wafer manufacturing method
KR101684873B1 (en) Method of manufacturing silicon substrate, and silicon substrate
JP3692812B2 (en) Nitrogen-doped low-defect silicon single crystal wafer and manufacturing method thereof
CN107210223B (en) Method for manufacturing silicon wafer
JP4853027B2 (en) Method for producing silicon single crystal wafer
KR20090116748A (en) Method for manufacturing silicon single crystal wafer
KR100582241B1 (en) Method for producing low defect silicon single crystal doped with nitrogen
KR101703696B1 (en) Method of manufacturing silicon substrate and silicon substrate
KR20170013199A (en) Silicon wafer and method for producing same
KR20180080271A (en) Semiconductor wafer made of single crystal silicon and manufacturing method thereof
KR101532154B1 (en) Method of manufacturing annealed wafer
JP4857517B2 (en) Annealed wafer and method for manufacturing annealed wafer
JP2011222842A (en) Manufacturing method for epitaxial wafer, epitaxial wafer, and manufacturing method for imaging device
JP2003243404A (en) Method of manufacturing annealed wafer and annealed wafer
JP2013175742A (en) Epitaxial wafer manufacturing method, epitaxial wafer and imaging device manufacturing method
JPH11349394A (en) Nitrogen-doped silicon single crystal wafer having low defect density and it production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase