WO2005052891A1 - Photomask and production method for laminated substrate using this - Google Patents

Photomask and production method for laminated substrate using this Download PDF

Info

Publication number
WO2005052891A1
WO2005052891A1 PCT/JP2004/017359 JP2004017359W WO2005052891A1 WO 2005052891 A1 WO2005052891 A1 WO 2005052891A1 JP 2004017359 W JP2004017359 W JP 2004017359W WO 2005052891 A1 WO2005052891 A1 WO 2005052891A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photomask
sealing material
liquid crystal
bonded
Prior art date
Application number
PCT/JP2004/017359
Other languages
French (fr)
Japanese (ja)
Inventor
Naru Usukura
Mitsuaki Morimoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2005052891A1 publication Critical patent/WO2005052891A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/227Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines
    • H01J9/2271Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines by photographic processes

Definitions

  • the present invention relates to a photomask.
  • the present invention relates to a photomask that is superimposed on a liquid crystal display panel when ultraviolet curing is performed on the ultraviolet curable sealant formed on the periphery of the liquid crystal display panel to be cured.
  • a step of filling a functional material such as a liquid crystal material in a panel there is a step of filling a functional material such as a liquid crystal material in a panel.
  • a method for filling the functional material dip type or dispenser type may be mentioned.
  • the bonded maza-glass substrate is divided into individual panels or strips including a plurality of panels, and the functional material is filled from the opening of the sealing material and the opening is sealed. Is taken.
  • the tact time for functional material filling is long.
  • a one-drop filling method (also called a drop bonding method) has been developed as another method for filling a functional material into a panel.
  • a functional material is dropped in a seal pattern frame formed on one substrate before stacking without providing an opening in the seal pattern, and a pair of substrates are stacked and attached under reduced pressure. It is a method.
  • the one-drop filling method it is possible to cope with the increase in screen size, and there is an advantage that the tact time of functional material filling can be dramatically shortened.
  • a sealing material that is cured by heating in view of curing time in the one-drop filling method, a sealing material that is cured by irradiation with ultraviolet light (UV)
  • UV ultraviolet light
  • a sealing material that is cured by irradiation with ultraviolet light (UV) hereinafter, a UV curable sealing material) or a sealing material cured by both UV irradiation and heating (hereinafter referred to as a heat curing combination sealing material) is used. Therefore, in the one-drop filling method, a step of curing the sealing material by UV irradiation is required.
  • a mask is usually used.
  • a zonal contact method in which the mask is not in contact with the laminated substrate and a contact method in which the mask is in contact with the laminated substrate can be mentioned.
  • Three characteristics are mainly required for the mask material used in the non-contact method and the contact method.
  • High rigidity V material to keep the distance between mask and bonded substrate constant, and
  • high dimensional stability material to form a pattern with high accuracy, 3) It is a material that has a particularly high transmittance so that it does not lose UV light.
  • quartz glass and low alkali glass are generally used as materials that satisfy these three requirements, quartz glass with a surface tension such as precision and heat absorption is widely used.
  • the size of glass for manufacturing a display device is increasing year by year, and accordingly, the size of a mask is also increasing.
  • the mask used in the non-contact method is required to be higher in rigidity than the mask used in the contact method, and therefore, it is necessary to increase the thickness of the mask in order to prevent the mask from being warped or cracked by its own weight.
  • a mask for a 620 mm ⁇ 750 mm substrate requires a thickness of about 5 mm. In the case of a mask having such a thickness, it is necessary to use expensive quartz glass having a particularly high transmittance, so that it is difficult to reduce the manufacturing cost.
  • the mask used in the contact method is in contact with the bonded substrate, the required rigidity is lower than that of the mask used in the non-contact method. Therefore, since the thickness of the mask can be reduced, it is possible to use a low alkali glass or the like, which has lower transmittance than quartz glass but is inexpensive. However, in the contact method, there is a risk that the pattern forming surface may be contaminated or damaged by the contact.
  • Patent Document 1 discloses a contact method mask in which a notched surface is protected. Specifically, in the mask disclosed in Patent Document 1, a spacer with a constant thickness is provided in an empty space on the pattern formation surface of the glass mask, and this spacer is applied to the surface of the layer to be exposed. By contacting them, the not formed surface is protected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-260633
  • An object of the present invention is to reduce the thickness of a mask while maintaining the pattern accuracy of the mask, and to reduce the manufacturing cost of the mask.
  • the present invention provides a contact type photomask in which a spacer is formed in the region of the light shielding layer. Specifically, in the photomask of the present invention, the photomask is brought into contact with a bonded substrate stack in which a pair of substrates are bonded via a sealing material containing a photocurable resin, and then stacked.
  • a photomask for defining a region of light source light irradiated to the surface of the bonded substrate, wherein at least the light source light irradiates a transparent substrate and the region of the sealing material. And a spacer formed in a region of the light shielding layer.
  • the sealing material containing a photocurable resin includes a UV-curable sealing material and a UV′-heat-curing combination-type sealing material.
  • the seal material pattern includes a frame shape (open loop shape) having an opening which is open only in a frame shape having no opening (closed loop shape).
  • the photo mask of the present invention can also be applied to a method in which the functional material is injected from the opening (injection port) which is only one drop filling method.
  • the light shielding layer is typically formed to shield the area other than the area of the sealing material, the occupancy rate in the plane of the photomask is high. Therefore, since spacers formed in the region of the light shielding layer can be formed at various places in the plane of the photomask, the photomask is brought into contact with the bonded substrate stack through the spacers. The distortion of the mask is significantly reduced, and the distance between the mask and the bonded substrate can be kept approximately constant. Thereby, the thickness of the mask can be reduced while maintaining the accuracy of the notch.
  • the spacer is made of a material having a hardness lower than that of the pair of substrates in contact with each other. Preferably, it is formed. This makes it difficult for the bonded substrate surface to be damaged.
  • the present invention also provides a method for producing a bonded substrate by a one-drop filling method.
  • a layer containing a functional material, a sealing material surrounding the functional material layer and containing a photocurable resin, and the functional material layer and the sealing material are bonded to each other.
  • a method of manufacturing a bonded substrate having a pair of substrates comprising the steps of: forming the sealing material in a frame shape on one substrate surface of the pair of substrates; The step of dropping the functional material, the step of bonding the pair of substrates, the step of overlapping the photomask of the present invention on the bonded substrate and bringing the spacer into contact with the bonded substrate, Curing the sealing material by irradiating the bonded substrate with a light source light through a photomask.
  • the functional material layer includes a layer in which the light transmittance is modulated by a potential difference between the electrodes facing each other, and a layer which emits light by a current flowing between the electrodes facing each other.
  • a liquid crystal layer an organic or organic electorite luminescence (EL) layer, a light emitting gas layer, an electrophoresis layer, an electoric hole chromic layer, and the like.
  • the present invention it is possible to thin the mask while maintaining the pattern accuracy of the mask. Therefore, the transmittance is improved, and the loss of light source light can be suppressed. In addition, since it is possible to use low-alkali glass or the like, which has lower transmittance than quartz glass but is inexpensive, manufacturing cost can be reduced. Furthermore, since the light shielding layer does not contact the bonded substrate surface, there is no risk of the light shielding layer becoming dirty or broken.
  • FIG. 1 is a plan view schematically showing a photomask of an embodiment.
  • FIG. 2 is a plan view of a bonded liquid crystal substrate on which the photomasks of the embodiments are superimposed.
  • FIG. 3 is a cross-sectional view of a bonded liquid crystal substrate on which the photomasks of the embodiments are stacked.
  • Fig. 4 schematically shows the state in which the bonded liquid crystal substrate 1 and the photomask 10 are superimposed. It is a sectional view showing.
  • a bonded liquid crystal substrate is described as an example of a bonded substrate, but the bonded substrate in the present invention is capable of displaying an image shift panel for shifting pixels optically sequentially and a three-dimensional image. It can also be applied to the lux-no rear panel.
  • the image shift panel has at least one combination of a liquid crystal panel that modulates the polarization state of light and a birefringence element that shifts the optical path according to the polarization state of light emitted from the liquid crystal panel.
  • the parallax panel can display a stereoscopic video by combining it with a video display element having a pixel for the left eye and a pixel for the right eye.
  • FIG. 1 is a plan view schematically showing a photomask of the present embodiment.
  • FIG. 2 is a plan view of a bonded liquid crystal substrate on which the photomasks of the present embodiment are superimposed, and
  • FIG. 3 is a cross-sectional view thereof.
  • the bonded liquid crystal substrates shown in FIGS. 2 and 3 are divided into four liquid crystal display panels.
  • the bonded liquid crystal substrate 1 is a peripheral seal sandwiched between a pair of substrates 2 and 3 and both substrates 2 and 3 A material 4 and a liquid crystal layer 5 surrounded by both substrates 2 and 3 and surrounded by a peripheral sealing material 4 are provided.
  • One of the substrates 2 is a color filter substrate, and a color filter layer (not shown), a transparent electrode 6 such as ITO (indium stannic acid oxide) and the like, and a liquid crystal alignment film which is treated such as polyimide and rubbed Not shown).
  • the other substrate 3 is a TFT (Thin Film Transistor) substrate, and includes a plurality of gate bus lines (not shown) extending in the row direction and a plurality of source bus lines (not shown) extending across the gate bus lines. And a TFT (not shown) provided near the intersection of the gate bus line and the source bus line, and a pixel arranged in a matrix, connected to the source bus line (not shown) via the TFT. It has a transparent electrode 7 and a liquid crystal alignment film (not shown) covering the pixel transparent electrode 7. Further, on the other substrate 3, terminals 8 for inputting signals to the gate bus line and the source bus line are formed outside the frame-shaped peripheral sealing material 4.
  • TFT Thin Film Transistor
  • Examples of the material of the substrates 2 and 3 include glass such as quartz glass, soda lime glass, borosilicate glass, low alkali glass, non-alkali glass, and plastics such as polyester and polyimide.
  • the peripheral sealing material 4 contains a UV curable resin such as atarilate resin or epoxy resin, and is cured by UV light irradiated with a UV light source.
  • the photomask of the present embodiment defines a region of UV light to be irradiated to the surface of the bonded liquid crystal substrate 1 by bringing the bonded liquid crystal substrate 1 into contact and overlapping. Specifically, by overlapping the photomask, the area of the peripheral sealing material 4 is irradiated, and the other area of the bonded liquid crystal substrate 1, for example, the display area of the bonded liquid crystal substrate 1 is shielded.
  • the configuration of the photomask of the present embodiment will be described with reference to FIG.
  • the transparent substrate 11, the light shielding layer 12 formed on one surface of the transparent substrate 11 so that UV irradiates the region of the peripheral sealing material 4, and the light shielding layer 12.
  • a spacer 13 having a predetermined thickness formed thereon is formed thereon.
  • a plate glass used for a general photomask can be used.
  • inexpensive low alkali glass made of quartz glass alone can be used. It can be used. It is also possible to use other glasses such as soda lime glass, borosilicate glass, alkali-free glass, and plastics such as polyester.
  • the light shielding layer 12 is formed so that the region of the peripheral sealing material 4 of the bonded liquid crystal substrate 1 is irradiated and the other region of the bonded liquid crystal substrate 1 is shielded from light. Specifically, as shown in FIG. 1, the light shielding layer 12 is formed in the area excluding the area 1 la corresponding to the peripheral sealing material 4 and the peripheral area 1 lb of the transparent substrate 11. Typically, the transmission area 1 la (the area of the light shielding layer 12) formed so as to be irradiated with the area of the peripheral sealing material 4 is approximately equal in width to the area of the peripheral sealing material 4, but the peripheral seal The width may be wider than the area of the material 4.
  • the photomask for curing the peripheral sealing material 4 does not require strict pattern accuracy as compared with the photomask used in the photolithography method.
  • the light shielding layer 12 is patterned using a film having a light shielding property with respect to the UV to be irradiated.
  • a light shielding layer 12 having a predetermined mask pattern is formed by a photolithography method, a printing method, or the like using a chromium single layer film, a laminated film of a chromium film and a chromium oxide film, and an emulsion film containing a silver salt gelatin emulsion. can do.
  • the spacers 13 are formed at a plurality of locations in the region of the light shielding layer 12. Since the light shielding layer 12 is formed in the area 11 a corresponding to the peripheral seal material 4 and the area excluding the peripheral area l ib of the transparent substrate 11, the occupancy rate in the plane of the transparent substrate 11 is high. Therefore, the spacers 13 can be formed at various places in the plane of the transparent substrate 11 where the options for forming the spacers 13 are wide.
  • any material can be used as the material of the spacer 13 as long as it has appropriate dimensional stability or has flexibility to follow expansion and contraction of the mask.
  • cemented PTFE (polytetrafluoroethylene) tape can be used to form the spacer 13.
  • the material having the above-mentioned characteristics is cylindrical, and the film thickness is preferably 20 to 500 ⁇ m, and more preferably 50 to 200 ⁇ m.
  • a method of bonding with a UV curing type or thermosetting type adhesive can be mentioned.
  • the shape of the spacer 13 is cylindrical, and the shape of the force spacer 13 is not particularly limited. It is not decided. For example, it may be in the shape of a bump or a band.
  • the spacers 13 may be scattered at various places in the plane of the transparent substrate 11. Can. Therefore, by bonding the photomask 10 to the liquid crystal substrate 1 by the contact method, the deflection of the photomask 10 is significantly reduced, and the distance between the photomask 10 and the liquid crystal substrate 1 can be kept approximately constant. it can. Thereby, the thickness of the transparent substrate 11 can be reduced while maintaining the pattern accuracy.
  • the thickness be such that it does not break by its own weight. For example, in the case of a low alkali glass substrate having a size of 620 mm ⁇ 750 mm, it is appropriate to set the thickness to about 0.7 mm.
  • a color filter layer, a transparent electrode 6 and a liquid crystal alignment film subjected to rubbing treatment are sequentially formed on one substrate 2 by a sputtering method, a printing method or the like.
  • a rubbed liquid crystal alignment film covering the pixel transparent electrodes 7 is formed.
  • a UV curable peripheral sealing material 4 containing epoxy resin is formed by a screen printing method or a dispenser method.
  • the pattern of the peripheral sealing material 4 has a closed loop shape without an opening serving as a liquid crystal injection port.
  • a nematic liquid crystal material is dropped in the pattern frame of the peripheral sealing material 4.
  • the liquid crystal layer 5 is enclosed in each liquid crystal display panel by overlapping the two substrates 2 and 3 in the vacuum chamber.
  • FIG. 4 is a cross-sectional view schematically showing a state in which the bonded liquid crystal substrate 1 and the photomask 10 of the present embodiment are superimposed.
  • the photomask 10 is laminated on the liquid crystal substrate 1 and the spacer 13 of the photomask 10 is laminated and brought into contact with one surface of the liquid crystal substrate 1. Since spacers 13 having a predetermined thickness are scattered at various places in the plane of the transparent substrate 11, the photomask 10 is bonded by a contact method and superimposed on the liquid crystal substrate 1 to obtain a photomask. 10 and bonded liquid crystal substrate 1 The spacing can be kept approximately constant.
  • the bonded liquid crystal substrate 1 By irradiating the bonded liquid crystal substrate 1 with UV light through the photomask 10, only the area of the peripheral sealing material 4 in the surface of the bonded liquid crystal substrate 1 is exposed, and the peripheral sealing material 4 is Cure. Furthermore, the bonded liquid crystal substrate 1 is divided into individual panels, and after passing through a chamfering process and a polarizing plate bonding process, the driver IC is connected to the terminal 8.
  • the liquid crystal display panel of the present embodiment is manufactured through the above steps.
  • the light shielding layer 12 is formed on one side of the transparent substrate 11, and the spacer 13 is formed on the light shielding layer 12.
  • the light shielding layer 12 is a transparent substrate
  • the spacer 13 may be formed on one side of the transparent substrate 11, and the spacer 13 may be formed on the other side of the transparent substrate 11.
  • TFTs are used as liquid crystal drive elements, but other active drive elements such as MIM (Metal Insulator Metal) may be used, or passive elements without drive elements may be used. Plex) may be driven.
  • the liquid crystal display panel may be any of a transmissive type, a reflective type, and a transmissive / reflective type.
  • a liquid crystal panel is illustrated as a target to be irradiated with UV through the photomask 10, but the bonded substrate to be a target is not limited to the liquid crystal panel.
  • a PDP Plasma Display Panel
  • an organic or inorganic EL Electro Luminescence
  • an aperture-chromic display panel and the like can also be targets.
  • the photo mask of the present invention can be used as a photo mask for a contact system for curing a photosensitive sealing material sandwiched between a pair of substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

A photomask(10) comprising a transparent substrate (11), a light shielding layer (12) formed on one surface of the substrate (11) so that a seal-material area is irradiated with at least a light source light, and spacers (13) formed within the light shielding layer (12) area. The photomask (10) is overlapped on and kept in contact with a laminated substrate in which a pair of substrates is laminated via a seal material containing a photocuring resin to thereby define the area of a light source light applied to the surface of the laminated substrate.

Description

明 細 書  Specification
フォトマスクおよびこれを用いた貼り合わせ基板の製造方法  Photomask and method of manufacturing bonded substrate using the same
技術分野  Technical field
[0001] 本発明はフォトマスクに関する。例えば、液晶表示パネルの周辺に形成された紫外 線硬化型シール材に紫外線を照射して硬化させる際に、液晶表示パネルに重ね合 わせられるフォトマスクに関する。  The present invention relates to a photomask. For example, the present invention relates to a photomask that is superimposed on a liquid crystal display panel when ultraviolet curing is performed on the ultraviolet curable sealant formed on the periphery of the liquid crystal display panel to be cured.
背景技術  Background art
[0002] 液晶表示装置などの表示装置を製造する工程の中には、パネル内に液晶材料な どの機能材料を充填する工程がある。機能材料の充填方法としては、ディップ式や デイスペンサ式が挙げられる。これらの方法では、貼り合わされたマザ一ガラス基板を 個別パネル毎に、もしくは複数のパネルを含む短冊毎に分断し、シール材の開口部 から機能材料を充填し、さらに開口部を封止する手法が採られている。しかし画面サ ィズの大型化に伴って、機能材料充填のタクトタイムが長いことが問題となっている。  Among the steps of manufacturing a display device such as a liquid crystal display device, there is a step of filling a functional material such as a liquid crystal material in a panel. As a method for filling the functional material, dip type or dispenser type may be mentioned. In these methods, the bonded maza-glass substrate is divided into individual panels or strips including a plurality of panels, and the functional material is filled from the opening of the sealing material and the opening is sealed. Is taken. However, with the increase in screen size, it has become a problem that the tact time for functional material filling is long.
[0003] 近年、パネル内に機能材料を充填する他の方法として、一滴充填方式 (滴下貼り合 わせ方式とも呼ばれている。)が開発されている。一滴充填方式とは、シールパター ンに開口を設けずに、重ね合わせる前の一方の基板に形成されたシールパターン枠 内に機能材料を滴下し、減圧下で一対の基板を重ね合わせて貼り付ける方式である 。一滴充填方式によれば、画面サイズの大型化に対応でき、機能材料充填のタクトタ ィムが飛躍的に短縮できるという利点がある。  In recent years, a one-drop filling method (also called a drop bonding method) has been developed as another method for filling a functional material into a panel. In the one-drop filling method, a functional material is dropped in a seal pattern frame formed on one substrate before stacking without providing an opening in the seal pattern, and a pair of substrates are stacked and attached under reduced pressure. It is a method. According to the one-drop filling method, it is possible to cope with the increase in screen size, and there is an advantage that the tact time of functional material filling can be dramatically shortened.
[0004] 一滴充填方式にお!、ては、硬化時間の面から、加熱することで硬化させるシール 材を用いることができな 、ので、紫外線 (UV)を照射することで硬化させるシール材 ( 以下、 UV硬化型シール材と呼ぶ)もしくは UV照射と加熱との両方で硬化させるシ ール材(以下、 υν·熱併用硬化型シール材と呼ぶ)が用いられている。したがって、 一滴充填方式にぉ 、ては、 UV照射によりシール材を硬化させる工程が必要である。  [0004] Since it is not possible to use a sealing material that is cured by heating in view of curing time in the one-drop filling method, a sealing material that is cured by irradiation with ultraviolet light (UV) Hereinafter, a UV curable sealing material) or a sealing material cured by both UV irradiation and heating (hereinafter referred to as a heat curing combination sealing material) is used. Therefore, in the one-drop filling method, a step of curing the sealing material by UV irradiation is required.
[0005] UV照射工程では、通常、マスクが使用される。マスクのァライメント方法としては、 マスクを貼り合わせ基板に接触させな ゾンコンタクト方式と、マスクを貼り合わせ基 板に接触させるコンタクト方式が挙げられる。 [0006] ノンコンタクト方式やコンタクト方式で用いられるマスクの材料には、主に三つの特 性が求められる。(1)マスクと貼り合わせ基板との間隔を一定に保っために剛性の高 V、材料であること、(2)精度よくパターンを形成するために寸法安定性が高 、材料で あること、(3) UV光をロスしな 、ために特に高 、透過率をもつ材料であることである。 この三つの要件を満たす材料として、石英ガラスや低アルカリガラスが一般的に使用 されているが、精度や吸熱等の面力 石英ガラスが広く使用されている。 In the UV irradiation step, a mask is usually used. As a mask alignment method, a zonal contact method in which the mask is not in contact with the laminated substrate and a contact method in which the mask is in contact with the laminated substrate can be mentioned. Three characteristics are mainly required for the mask material used in the non-contact method and the contact method. (1) High rigidity V, material to keep the distance between mask and bonded substrate constant, and (2) high dimensional stability, material to form a pattern with high accuracy, 3) It is a material that has a particularly high transmittance so that it does not lose UV light. Although quartz glass and low alkali glass are generally used as materials that satisfy these three requirements, quartz glass with a surface tension such as precision and heat absorption is widely used.
[0007] 一方、表示装置を作るためのガラスのサイズは年々大きくなつており、それに伴って マスクのサイズも大型化している。ノンコンタクト方式で用いられるマスクは、コンタクト 方式で用いられるマスクに比して高 、剛性が要求されるので、マスクのたわみや自重 による割れを防ぐために、マスクの厚みを増大させる必要がある。例えば、 620mm X 750mm基板用のマスクでは、 5mm程度の厚さが必要となる。この程度の厚さを有 するマスクでは、特に高い透過率をもつ高価な石英ガラスを用いる必要があるので、 製造コストを抑えることが困難である。  On the other hand, the size of glass for manufacturing a display device is increasing year by year, and accordingly, the size of a mask is also increasing. The mask used in the non-contact method is required to be higher in rigidity than the mask used in the contact method, and therefore, it is necessary to increase the thickness of the mask in order to prevent the mask from being warped or cracked by its own weight. For example, a mask for a 620 mm × 750 mm substrate requires a thickness of about 5 mm. In the case of a mask having such a thickness, it is necessary to use expensive quartz glass having a particularly high transmittance, so that it is difficult to reduce the manufacturing cost.
[0008] これに対してコンタクト方式で用いられるマスクは、貼り合わせ基板に接触させるの で、ノンコンタクト方式で用いられるマスクに比して要求される剛性が低い。したがつ て、マスクの厚みを薄くすることができるので、石英ガラスよりも透過率は低いが安価 な低アルカリガラスなどをマスクに用いることができる。しかしコンタクト方式では、接 触によりパターン形成面が汚れたり破損したりするおそれがある。  On the other hand, since the mask used in the contact method is in contact with the bonded substrate, the required rigidity is lower than that of the mask used in the non-contact method. Therefore, since the thickness of the mask can be reduced, it is possible to use a low alkali glass or the like, which has lower transmittance than quartz glass but is inexpensive. However, in the contact method, there is a risk that the pattern forming surface may be contaminated or damaged by the contact.
[0009] ノターン形成面が保護されたコンタクト方式用マスクが特許文献 1に開示されてい る。具体的に述べると、特許文献 1に開示されたマスクには、ガラスマスクのパターン 形成面の空きスペースに一定の厚みでスぺーサが設けられ、このスぺーサを被露光 層の表面に当接させることにより、ノターン形成面が保護される。  [0009] Patent Document 1 discloses a contact method mask in which a notched surface is protected. Specifically, in the mask disclosed in Patent Document 1, a spacer with a constant thickness is provided in an empty space on the pattern formation surface of the glass mask, and this spacer is applied to the surface of the layer to be exposed. By contacting them, the not formed surface is protected.
特許文献 1:特開昭 61— 260633号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 61-260633
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0010] 効率良くパターンを形成するためには空きスペースを減らすことが望ましい。しかし ながら、実際には、マスク基板の外周部を除いて、ノターン形成面の空きスペースは ほとんど存在しないので、マスク基板の中央部にスぺーサを設けることは困難である 。したがって、マスクのたわみが増大して、マスクと被露光層との間隔が面内で不均 一となるので、パターン精度が低下するおそれがある。また、マスクのたわみを防ぐた めにマスクの厚みを増大させると、コンタクト方式の利点が失われ、安価な低アルカリ ガラスを用いることができなくなる。したがって、特許文献 1に開示されているように、 パターンが形成されて!ヽな 、空きスペースにスぺーサを設けることは、あまり現実的 ではない。 [0010] In order to form a pattern efficiently, it is desirable to reduce free space. However, it is difficult to provide a spacer at the central portion of the mask substrate, since practically there is almost no vacant space on the notched surface except for the outer peripheral portion of the mask substrate. . Therefore, the deflection of the mask is increased, and the distance between the mask and the layer to be exposed becomes uneven in the plane, which may lower the pattern accuracy. In addition, if the mask thickness is increased to prevent mask deflection, the advantages of the contact method are lost and it becomes impossible to use inexpensive low alkali glass. Therefore, as disclosed in Patent Document 1, it is not realistic to form a pattern! Providing a spacer in an empty space is not very practical.
[0011] 本発明は、マスクのパターン精度を保ちつつ薄型化を行 、、マスクの製造コストの 低減ィ匕を図ることを目的とする。  An object of the present invention is to reduce the thickness of a mask while maintaining the pattern accuracy of the mask, and to reduce the manufacturing cost of the mask.
課題を解決するための手段  Means to solve the problem
[0012] 本発明は、スぺーサが遮光層の領域内に形成されたコンタクト方式用フォトマスクを 提供する。詳細には、本発明のフォトマスクは、光硬化性榭脂を含むシール材を介し て一対の基板が貼り合わされた貼り合わせ基板に接触させて重ね合わせることにより The present invention provides a contact type photomask in which a spacer is formed in the region of the light shielding layer. Specifically, in the photomask of the present invention, the photomask is brought into contact with a bonded substrate stack in which a pair of substrates are bonded via a sealing material containing a photocurable resin, and then stacked.
、前記貼り合わせ基板の面に照射される光源光の領域を規定するフォトマスクであつ て、透明基板と、前記シール材の領域を少なくとも前記光源光が照射するように、前 記透明基板の一方面に形成された遮光層と、前記遮光層の領域内に形成されたス ぺーサとを有する。 And a photomask for defining a region of light source light irradiated to the surface of the bonded substrate, wherein at least the light source light irradiates a transparent substrate and the region of the sealing material. And a spacer formed in a region of the light shielding layer.
[0013] 光硬化性榭脂を含むシール材は、 UV硬化型シール材ゃ UV'熱併用硬化型シー ル材を含む。シール材のパターンは、開口を持たない枠状(閉じたループ状)だけで なぐ開口を有する枠状(開いたループ状)を含む。言い換えれば、本発明のフォトマ スクは、一滴充填方式だけでなぐ開口(注入口)から機能材料を注入する方式にも 適用することができる。  The sealing material containing a photocurable resin includes a UV-curable sealing material and a UV′-heat-curing combination-type sealing material. The seal material pattern includes a frame shape (open loop shape) having an opening which is open only in a frame shape having no opening (closed loop shape). In other words, the photo mask of the present invention can also be applied to a method in which the functional material is injected from the opening (injection port) which is only one drop filling method.
[0014] 遮光層は、典型的には、シール材の領域以外の領域を遮光するように形成される ので、フォトマスクの面内における占有率が高い。したがって、遮光層の領域内に形 成されるスぺーサをフォトマスクの面内の様々な箇所に形成することができるので、ス ぺーサを介してフォトマスクを貼り合わせ基板に接触させることにより、マスクのたわ みが大幅に低減し、マスクと貼り合わせ基板との間隔を略一定に保つことができる。こ れにより、ノターン精度を保ちつつマスクの厚みを低減させることができる。  Since the light shielding layer is typically formed to shield the area other than the area of the sealing material, the occupancy rate in the plane of the photomask is high. Therefore, since spacers formed in the region of the light shielding layer can be formed at various places in the plane of the photomask, the photomask is brought into contact with the bonded substrate stack through the spacers. The distortion of the mask is significantly reduced, and the distance between the mask and the bonded substrate can be kept approximately constant. Thereby, the thickness of the mask can be reduced while maintaining the accuracy of the notch.
[0015] 前記スぺーサは、前記一対の基板のうち接触する基板よりも硬度が低い材料から 形成されていることが好ましい。これにより、貼り合わせ基板面カ^ペーサで傷つき難 くなる。 [0015] The spacer is made of a material having a hardness lower than that of the pair of substrates in contact with each other. Preferably, it is formed. This makes it difficult for the bonded substrate surface to be damaged.
[0016] また本発明は、一滴充填方式による貼り合わせ基板の製造方法を提供する。詳細 には、本発明の方法は、機能材料を含む層と、前記機能材料層を囲み、かつ光硬化 性榭脂を含むシール材と、前記機能材料層および前記シール材を介して貼り合わさ れた一対の基板とを有する貼り合わせ基板を製造する方法であって、前記一対の基 板のうち一方の基板面に、前記シール材を枠状に形成する工程と、前記シール材の 枠内に前記機能材料を滴下する工程と、前記一対の基板を貼り合わせる工程と、本 発明のフォトマスクを前記貼り合わせ基板に重ね合わせて、前記スぺーサを前記貼り 合わせ基板に接触させる工程と、前記フォトマスクを介して前記貼り合わせ基板に光 源光を照射することにより、前記シール材を硬化させる工程とを含む。  The present invention also provides a method for producing a bonded substrate by a one-drop filling method. In detail, in the method of the present invention, a layer containing a functional material, a sealing material surrounding the functional material layer and containing a photocurable resin, and the functional material layer and the sealing material are bonded to each other. A method of manufacturing a bonded substrate having a pair of substrates, comprising the steps of: forming the sealing material in a frame shape on one substrate surface of the pair of substrates; The step of dropping the functional material, the step of bonding the pair of substrates, the step of overlapping the photomask of the present invention on the bonded substrate and bringing the spacer into contact with the bonded substrate, Curing the sealing material by irradiating the bonded substrate with a light source light through a photomask.
[0017] 機能材料層は、互いに対向する電極間の電位差により光透過率が変調される層、 互いに対向する電極間を流れる電流により自発光する層を含む。例えば液晶層、無 機または有機エレクト口ルミネッセンス (EL)層、発光ガス層、電気泳動層、エレクト口 クロミック層などである。 発明の効果  The functional material layer includes a layer in which the light transmittance is modulated by a potential difference between the electrodes facing each other, and a layer which emits light by a current flowing between the electrodes facing each other. For example, a liquid crystal layer, an organic or organic electorite luminescence (EL) layer, a light emitting gas layer, an electrophoresis layer, an electoric hole chromic layer, and the like. Effect of the invention
[0018] 本発明によれば、マスクのパターン精度を保ちつつマスクの薄型化を行うことができ る。したがって、透過率が向上し、光源光のロスを抑えることができる。また、石英ガラ スよりも透過率は低いが安価な低アルカリガラスなどを用いることができるので、製造 コストが低減化される。さらに、遮光層が貼り合わせ基板面に接触しないので、遮光 層の汚れや破損のおそれがな 、。  According to the present invention, it is possible to thin the mask while maintaining the pattern accuracy of the mask. Therefore, the transmittance is improved, and the loss of light source light can be suppressed. In addition, since it is possible to use low-alkali glass or the like, which has lower transmittance than quartz glass but is inexpensive, manufacturing cost can be reduced. Furthermore, since the light shielding layer does not contact the bonded substrate surface, there is no risk of the light shielding layer becoming dirty or broken.
図面の簡単な説明  Brief description of the drawings
[0019] [図 1]図 1は実施形態のフォトマスクを模式的に示す平面図である。 FIG. 1 is a plan view schematically showing a photomask of an embodiment.
[図 2]図 2は実施形態のフォトマスクを重ね合わせる貼り合わせ液晶基板の平面図で ある。  [FIG. 2] FIG. 2 is a plan view of a bonded liquid crystal substrate on which the photomasks of the embodiments are superimposed.
[図 3]図 3は実施形態のフォトマスクを重ね合わせる貼り合わせ液晶基板の断面図で ある。  [FIG. 3] FIG. 3 is a cross-sectional view of a bonded liquid crystal substrate on which the photomasks of the embodiments are stacked.
[図 4]図 4は貼り合わせ液晶基板 1とフォトマスク 10とを重ね合わせた状態を模式的に 示す断面図である。 [Fig. 4] Fig. 4 schematically shows the state in which the bonded liquid crystal substrate 1 and the photomask 10 are superimposed. It is a sectional view showing.
符号の説明  Explanation of sign
[0020] 1 貼り合わせ液晶基板  1 Bonded liquid crystal substrate
2, 3 基板  2, 3 board
4 周辺シール材  4 Sealant around
5 液晶層  5 Liquid crystal layer
6 透明電極  6 Transparent electrode
7 画素透明電極  7 pixel transparent electrode
8 端子  8 terminals
10 フォトマスク  10 Photo mask
11 透明基板  11 Transparent substrate
12 遮光層  12 Light shielding layer
13 スぺーサ  13 Spacer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、図面を参照しながら本発明の実施形態を説明する。以下の実施形態では、 貼り合わせ基板として貼り合わせ液晶基板を例示して説明するが、本発明における 貼り合わせ基板は画素を光学的に順次シフトさせる画像シフトパネルや三次元映像 を表示可能とするパララックスノリアパネルに適用することもできる。なお、画像シフト パネルは、光の偏光状態を変調する液晶パネルと、この液晶パネルから出射された 光の偏光状態に応じて光路をシフトさせる複屈折素子との組合せを少なくとも一組有 する。またパララックスノリアパネルは、左目用画素および右目用画素を有する映像 表示素子と組み合わせることにより、立体映像を表示することができる。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a bonded liquid crystal substrate is described as an example of a bonded substrate, but the bonded substrate in the present invention is capable of displaying an image shift panel for shifting pixels optically sequentially and a three-dimensional image. It can also be applied to the lux-no rear panel. The image shift panel has at least one combination of a liquid crystal panel that modulates the polarization state of light and a birefringence element that shifts the optical path according to the polarization state of light emitted from the liquid crystal panel. In addition, the parallax panel can display a stereoscopic video by combining it with a video display element having a pixel for the left eye and a pixel for the right eye.
[0022] 図 1は本実施形態のフォトマスクを模式的に示す平面図である。図 2は本実施形態 のフォトマスクを重ね合わせる貼り合わせ液晶基板の平面図であり、図 3はその断面 図である。なお、図 2および図 3に示す貼り合わせ液晶基板は、 4つの液晶表示パネ ルに分断される。  FIG. 1 is a plan view schematically showing a photomask of the present embodiment. FIG. 2 is a plan view of a bonded liquid crystal substrate on which the photomasks of the present embodiment are superimposed, and FIG. 3 is a cross-sectional view thereof. The bonded liquid crystal substrates shown in FIGS. 2 and 3 are divided into four liquid crystal display panels.
[0023] まず、図 2および図 3を参照しながら貼り合わせ液晶基板の構成について説明する 。貼り合わせ液晶基板 1は、一対の基板 2, 3と、両基板 2, 3に挟まれた周辺シール 材 4と、両基板 2, 3に挟まれ、周辺シール材 4に囲まれた液晶層 5とを有する。一方 の基板 2はカラーフィルタ基板であり、カラーフィルタ層(不図示)と、 ITO (インジウム 錫酸ィ匕物)など力 なる透明電極 6と、ポリイミドなど力 なり、ラビング処理された液晶 配向膜 (不図示)とを有する。 First, the configuration of the bonded liquid crystal substrate will be described with reference to FIGS. 2 and 3. The bonded liquid crystal substrate 1 is a peripheral seal sandwiched between a pair of substrates 2 and 3 and both substrates 2 and 3 A material 4 and a liquid crystal layer 5 surrounded by both substrates 2 and 3 and surrounded by a peripheral sealing material 4 are provided. One of the substrates 2 is a color filter substrate, and a color filter layer (not shown), a transparent electrode 6 such as ITO (indium stannic acid oxide) and the like, and a liquid crystal alignment film which is treated such as polyimide and rubbed Not shown).
[0024] 他方の基板 3は TFT (Thin Film Transistor)基板であり、それぞれが行方向に延び る複数のゲートバスライン (不図示)と、ゲートバスラインと交差して延びる複数のソー スバスライン (不図示)と、ゲートバスラインおよびソースバスラインの交差部近傍に設 けられた TFT (不図示)と、 TFTを介してソースバスライン (不図示)に接続され、マト リクス状に配置された画素透明電極 7と、画素透明電極 7を覆う液晶配向膜 (不図示) とを有する。さら〖こ、他方の基板 3上には、枠状の周辺シール材 4の外側に、ゲートバ スラインおよびソースバスラインにそれぞれ信号を入力するための端子 8が形成され ている。 The other substrate 3 is a TFT (Thin Film Transistor) substrate, and includes a plurality of gate bus lines (not shown) extending in the row direction and a plurality of source bus lines (not shown) extending across the gate bus lines. And a TFT (not shown) provided near the intersection of the gate bus line and the source bus line, and a pixel arranged in a matrix, connected to the source bus line (not shown) via the TFT. It has a transparent electrode 7 and a liquid crystal alignment film (not shown) covering the pixel transparent electrode 7. Further, on the other substrate 3, terminals 8 for inputting signals to the gate bus line and the source bus line are formed outside the frame-shaped peripheral sealing material 4.
[0025] 基板 2, 3の材料としては、石英ガラスやソーダライムガラス、ホウケィ酸ガラス、低ァ ルカリガラス、無アルカリガラスなどのガラス、ポリエステルやポリイミドなとのプラスチッ クが挙げられる。  Examples of the material of the substrates 2 and 3 include glass such as quartz glass, soda lime glass, borosilicate glass, low alkali glass, non-alkali glass, and plastics such as polyester and polyimide.
[0026] 周辺シール材 4は、アタリレート榭脂ゃエポキシ榭脂などの UV硬化性榭脂を含有 し、 UV光源カゝら照射された UV光により硬化する。本実施形態のフォトマスクは、貼り 合わせ液晶基板 1に接触させて重ね合わせることにより、貼り合わせ液晶基板 1の面 に照射される UV光の領域を規定する。具体的には、フォトマスクを重ね合わせること によって、周辺シール材 4の領域が照射され、貼り合わせ液晶基板 1の他の領域、例 えば貼り合わせ液晶基板 1の表示領域が遮光される。  The peripheral sealing material 4 contains a UV curable resin such as atarilate resin or epoxy resin, and is cured by UV light irradiated with a UV light source. The photomask of the present embodiment defines a region of UV light to be irradiated to the surface of the bonded liquid crystal substrate 1 by bringing the bonded liquid crystal substrate 1 into contact and overlapping. Specifically, by overlapping the photomask, the area of the peripheral sealing material 4 is irradiated, and the other area of the bonded liquid crystal substrate 1, for example, the display area of the bonded liquid crystal substrate 1 is shielded.
[0027] 図 1を参照しながら本実施形態のフォトマスクの構成について説明する。本実施形 態のフォトマスク 10は、透明基板 11と、周辺シール材 4の領域を UVが照射するよう に、透明基板 11の一方面に形成された遮光層 12と、遮光層 12の領域内に形成され た所定の厚みを持つスぺーサ 13とを有する。  The configuration of the photomask of the present embodiment will be described with reference to FIG. In the photomask 10 of the present embodiment, the transparent substrate 11, the light shielding layer 12 formed on one surface of the transparent substrate 11 so that UV irradiates the region of the peripheral sealing material 4, and the light shielding layer 12. And a spacer 13 having a predetermined thickness formed thereon.
[0028] 透明基板 11としては、一般的なフォトマスクに用いられている板ガラスを使用するこ とができる。後述するように、本実施形態のフォトマスクによれば透明基板 11の厚み を薄くすることが可能であるので、石英ガラスだけでなぐ安価な低アルカリガラスを 用いることができる。なおソーダライムガラスやホウケィ酸ガラス、無アルカリガラスなど の他のガラス、ポリエステルなどのプラスチックを使用することも可能である。 As the transparent substrate 11, a plate glass used for a general photomask can be used. As described later, according to the photomask of the present embodiment, since the thickness of the transparent substrate 11 can be reduced, inexpensive low alkali glass made of quartz glass alone can be used. It can be used. It is also possible to use other glasses such as soda lime glass, borosilicate glass, alkali-free glass, and plastics such as polyester.
[0029] 遮光層 12は、貼り合わせ液晶基板 1の周辺シール材 4の領域が照射され、貼り合 わせ液晶基板 1の他の領域が遮光されるように形成されている。具体的には、図 1に 示すように、周辺シール材 4に対応する領域 1 laと透明基板 11の周辺領域 1 lbを除 く領域に、遮光層 12が形成されている。典型的には、周辺シール材 4の領域が照射 されるように形成された透過領域 1 la (遮光層 12のな 、領域)は周辺シール材 4の領 域と幅が略等しいが、周辺シール材 4の領域よりも幅が広くても良い。周辺シール材 4を硬化させるためのフォトマスクは、フォトリソ法で用いられるフォトマスクと比べて、 厳密なパターン精度が要求されな 、からである。  The light shielding layer 12 is formed so that the region of the peripheral sealing material 4 of the bonded liquid crystal substrate 1 is irradiated and the other region of the bonded liquid crystal substrate 1 is shielded from light. Specifically, as shown in FIG. 1, the light shielding layer 12 is formed in the area excluding the area 1 la corresponding to the peripheral sealing material 4 and the peripheral area 1 lb of the transparent substrate 11. Typically, the transmission area 1 la (the area of the light shielding layer 12) formed so as to be irradiated with the area of the peripheral sealing material 4 is approximately equal in width to the area of the peripheral sealing material 4, but the peripheral seal The width may be wider than the area of the material 4. The photomask for curing the peripheral sealing material 4 does not require strict pattern accuracy as compared with the photomask used in the photolithography method.
[0030] 遮光層 12は、照射する UVに対して遮光性をもつ膜を用いてパターン形成される。  The light shielding layer 12 is patterned using a film having a light shielding property with respect to the UV to be irradiated.
例えば、クロム単層膜、クロム膜と酸化クロム膜との積層膜、銀塩ゼラチン乳剤を含む ェマルジヨン膜などを用いて、フォトリソ法や印刷法などにより、所定のマスクパターン を有する遮光層 12を形成することができる。  For example, a light shielding layer 12 having a predetermined mask pattern is formed by a photolithography method, a printing method, or the like using a chromium single layer film, a laminated film of a chromium film and a chromium oxide film, and an emulsion film containing a silver salt gelatin emulsion. can do.
[0031] スぺーサ 13は遮光層 12の領域内の複数箇所に形成される。遮光層 12は周辺シ ール材 4に対応する領域 11aと透明基板 11の周辺領域 l ibを除く領域に形成されて いるので、透明基板 11の面内における占有率が高い。したがって、スぺーサ 13を形 成する箇所の選択肢が広ぐ透明基板 11の面内の様々な箇所にスぺーサ 13を形成 することができる。  The spacers 13 are formed at a plurality of locations in the region of the light shielding layer 12. Since the light shielding layer 12 is formed in the area 11 a corresponding to the peripheral seal material 4 and the area excluding the peripheral area l ib of the transparent substrate 11, the occupancy rate in the plane of the transparent substrate 11 is high. Therefore, the spacers 13 can be formed at various places in the plane of the transparent substrate 11 where the options for forming the spacers 13 are wide.
[0032] スぺーサ 13の材料としては、適度な寸法安定性があるもの、あるいはマスクの膨張 収縮に追従する柔軟性があるものであればどのようなものをも用いることができる。伹 し、貼り合わせ液晶基板 1の表層である基板 2を傷付けないためにも、基板 2よりも硬 度が低い材料を用いることが好ましい。例えば、セメンタブル処理された PTFE (ポリ テトラフルォロエチレン)テープを用 、て、スぺーサ 13を形成することができる。  Any material can be used as the material of the spacer 13 as long as it has appropriate dimensional stability or has flexibility to follow expansion and contraction of the mask. However, also in order not to damage the substrate 2 which is the surface layer of the bonded liquid crystal substrate 1, it is preferable to use a material whose hardness is lower than that of the substrate 2. For example, cemented PTFE (polytetrafluoroethylene) tape can be used to form the spacer 13.
[0033] スぺーサ 13を形成する手法としては、上記の特性をもつ材料を円柱状とし、膜厚を 好ましくは 20 μ m以上 500 μ m以下、より好ましくは 50 μ m以上 200 μ m以下程度と して、 UV硬化型や熱硬化型の接着剤で貼り合わせる方法などが挙げられる。なお、 本実施形態ではスぺーサ 13の形状は円柱状である力 スぺーサ 13の形状は特に限 定されない。例えば、バンプ状や帯状であっても良い。 [0033] As a method of forming the spacer 13, the material having the above-mentioned characteristics is cylindrical, and the film thickness is preferably 20 to 500 μm, and more preferably 50 to 200 μm. As a degree, a method of bonding with a UV curing type or thermosetting type adhesive can be mentioned. In the present embodiment, the shape of the spacer 13 is cylindrical, and the shape of the force spacer 13 is not particularly limited. It is not decided. For example, it may be in the shape of a bump or a band.
[0034] 本実施形態のフォトマスク 10は、スぺーサ 13が遮光層 12の領域内に形成されてい るので、透明基板 11の面内の様々な箇所にスぺーサ 13を点在させることができる。 したがって、コンタクト方式によりフォトマスク 10を貼り合わせ液晶基板 1に重ね合わ せることにより、フォトマスク 10のたわみが大幅に低減し、フォトマスク 10と貼り合わせ 液晶基板 1との間隔を略一定に保つことができる。これにより、パターン精度を保ちつ つ透明基板 11の厚みを低減させることができる。但し、フォトマスク 10が貼り合わせ 液晶基板 1と接触していないときに、自重により割れない程度の厚みとすることが望ま しい。例えば 620mm X 750mmのサイズの低アルカリガラス基板では、厚みを 0. 7 mm程度とすることが適当である。  In the photomask 10 of the present embodiment, since the spacers 13 are formed in the area of the light shielding layer 12, the spacers 13 may be scattered at various places in the plane of the transparent substrate 11. Can. Therefore, by bonding the photomask 10 to the liquid crystal substrate 1 by the contact method, the deflection of the photomask 10 is significantly reduced, and the distance between the photomask 10 and the liquid crystal substrate 1 can be kept approximately constant. it can. Thereby, the thickness of the transparent substrate 11 can be reduced while maintaining the pattern accuracy. However, when the photomask 10 is bonded and is not in contact with the liquid crystal substrate 1, it is preferable that the thickness be such that it does not break by its own weight. For example, in the case of a low alkali glass substrate having a size of 620 mm × 750 mm, it is appropriate to set the thickness to about 0.7 mm.
[0035] 次に、本実施形態のフォトマスク 10を用いて液晶表示パネルを製造する工程につ いて説明する。まず、一方の基板 2上に、スパッタ法ゃ印刷法などにより、カラーフィ ルタ層、透明電極 6およびラビング処理された液晶配向膜を順次形成する。また他方 の基板 3上に、フォトリソ法や印刷法などにより、各種のノ スラインや絶縁膜、 TFT、 画素透明電極 7を形成した後、画素透明電極 7を覆う、ラビング処理された液晶配向 膜を形成する。  Next, steps of manufacturing a liquid crystal display panel using the photomask 10 of the present embodiment will be described. First, a color filter layer, a transparent electrode 6 and a liquid crystal alignment film subjected to rubbing treatment are sequentially formed on one substrate 2 by a sputtering method, a printing method or the like. In addition, after forming various lines, insulating films, TFTs, and pixel transparent electrodes 7 on the other substrate 3 by photolithography or printing, etc., a rubbed liquid crystal alignment film covering the pixel transparent electrodes 7 is formed. Form.
[0036] 両基板 2, 3のうちいずれか一方の基板の面に、スクリーン印刷方式ゃデイスペンサ 方式によって、エポキシ榭脂を含有する UV硬化型の周辺シール材 4を形成する。周 辺シール材 4のパターンは、液晶注入口となる開口を持たず、閉じたループ状である 。周辺シール材 4のパターン枠内に、例えばネマティック液晶材料を滴下する。真空 チャンバ内で両基板 2, 3を重ね合わせることにより、各液晶表示パネル内に液晶層 5がそれぞれ封入される。  On the surface of either one of the two substrates 2 and 3, a UV curable peripheral sealing material 4 containing epoxy resin is formed by a screen printing method or a dispenser method. The pattern of the peripheral sealing material 4 has a closed loop shape without an opening serving as a liquid crystal injection port. For example, a nematic liquid crystal material is dropped in the pattern frame of the peripheral sealing material 4. The liquid crystal layer 5 is enclosed in each liquid crystal display panel by overlapping the two substrates 2 and 3 in the vacuum chamber.
[0037] 図 4は、貼り合わせ液晶基板 1と本実施形態のフォトマスク 10とを重ね合わせた状 態を模式的に示す断面図である。図 4に示すように、フォトマスク 10を貼り合わせ液 晶基板 1に重ね合わせて、フォトマスク 10のスぺーサ 13を貼り合わせ液晶基板 1の 一方の基板 2面に接触させる。所定の厚みを有するスぺーサ 13が透明基板 11の面 内の様々な箇所に点在して 、るので、コンタクト方式によりフォトマスク 10を貼り合わ せ液晶基板 1に重ね合わせることにより、フォトマスク 10と貼り合わせ液晶基板 1との 間隔を略一定に保つことができる。 FIG. 4 is a cross-sectional view schematically showing a state in which the bonded liquid crystal substrate 1 and the photomask 10 of the present embodiment are superimposed. As shown in FIG. 4, the photomask 10 is laminated on the liquid crystal substrate 1 and the spacer 13 of the photomask 10 is laminated and brought into contact with one surface of the liquid crystal substrate 1. Since spacers 13 having a predetermined thickness are scattered at various places in the plane of the transparent substrate 11, the photomask 10 is bonded by a contact method and superimposed on the liquid crystal substrate 1 to obtain a photomask. 10 and bonded liquid crystal substrate 1 The spacing can be kept approximately constant.
[0038] フォトマスク 10を介して貼り合わせ液晶基板 1に UV光を照射することにより、貼り合 わせ液晶基板 1の面のうち周辺シール材 4の領域だけが露光されて、周辺シール材 4が硬化する。さらに、貼り合わせ液晶基板 1を個別のパネルに分断し、面取り工程 や偏光板の貼り付け工程を経た後、ドライバ ICを端子 8に接続する。以上の工程を経 て、本実施形態の液晶表示パネルが製造される。  By irradiating the bonded liquid crystal substrate 1 with UV light through the photomask 10, only the area of the peripheral sealing material 4 in the surface of the bonded liquid crystal substrate 1 is exposed, and the peripheral sealing material 4 is Cure. Furthermore, the bonded liquid crystal substrate 1 is divided into individual panels, and after passing through a chamfering process and a polarizing plate bonding process, the driver IC is connected to the terminal 8. The liquid crystal display panel of the present embodiment is manufactured through the above steps.
[0039] 本実施形態のフォトマスク 10では、遮光層 12が透明基板 11の一方面側に形成さ れ、さらにスぺーサ 13が遮光層 12上に形成されている力 遮光層 12が透明基板 11 の一方面側に形成され、スぺーサ 13が透明基板 11の他方面側に形成されていても 良い。また本実施形態の液晶表示パネルでは、液晶駆動素子として TFTが用いられ ているが、 MIM(Metal Insulator Metal)などの他のアクティブ駆動素子を用いても良 ぐあるいは駆動素子を用いないパッシブ (マルチプレックス)駆動でも良い。なお、液 晶表示パネルは、透過型、反射型、透過反射両用型のいずれでも良い。  In the photomask 10 of the present embodiment, the light shielding layer 12 is formed on one side of the transparent substrate 11, and the spacer 13 is formed on the light shielding layer 12. The light shielding layer 12 is a transparent substrate The spacer 13 may be formed on one side of the transparent substrate 11, and the spacer 13 may be formed on the other side of the transparent substrate 11. In the liquid crystal display panel of the present embodiment, TFTs are used as liquid crystal drive elements, but other active drive elements such as MIM (Metal Insulator Metal) may be used, or passive elements without drive elements may be used. Plex) may be driven. The liquid crystal display panel may be any of a transmissive type, a reflective type, and a transmissive / reflective type.
[0040] 本実施形態では、フォトマスク 10を介して UVを照射する対象として液晶パネルを 例示したが、対象とする貼り合わせ基板は液晶パネルに限定されない。例えば PDP (Plasma Display Panel),有機または無機 EL(Electro Luminescence)表示パネル、ェ レクト口クロミック表示パネルなども対象とすることができる。  In the present embodiment, a liquid crystal panel is illustrated as a target to be irradiated with UV through the photomask 10, but the bonded substrate to be a target is not limited to the liquid crystal panel. For example, a PDP (Plasma Display Panel), an organic or inorganic EL (Electro Luminescence) display panel, an aperture-chromic display panel, and the like can also be targets.
[0041] 以上、本発明の実施形態について説明したが、本発明の技術的範囲は上記実施 形態に記載の範囲に限定されない。上記実施形態は例示であり、それらの各構成要 素を種々変更した変更例が可能なこと、またそうした変更例も本発明の技術的範囲 に属することは当業者に理解されるところである。  The embodiments of the present invention have been described above, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It is understood by those skilled in the art that the above-described embodiment is an exemplification, and various modifications can be made by variously changing the respective constituent elements, and such modifications are also within the technical scope of the present invention.
[0042] 2003年 11月 26日出願の特願 2003-395952の明細書、図面および特許請求の範囲 に開示された内容は、参照によりそのすべてが本願明細書に組み込まれる。  The contents disclosed in the specification, drawings and claims of Japanese Patent Application No. 2003-395952 filed on Nov. 26, 2003 are incorporated in their entirety into the present specification by reference.
産業上の利用可能性  Industrial applicability
[0043] 本発明のフォトマスクは、一対の基板に挟まれた感光性シール材を硬化させるため のコンタクト方式用フォトマスクなどに利用することができる。 The photo mask of the present invention can be used as a photo mask for a contact system for curing a photosensitive sealing material sandwiched between a pair of substrates.

Claims

請求の範囲 The scope of the claims
[1] 光硬化性榭脂を含むシール材を介して一対の基板が貼り合わされた貼り合わせ基 板に接触させて重ね合わせることにより、前記貼り合わせ基板の面に照射される光源 光の領域を規定するフォトマスクであって、  [1] A region of light source irradiated to the surface of the bonded substrate is brought into contact by superposing on a bonded substrate with a pair of substrates bonded together via a sealing material containing a photocurable resin. Is a specified photomask,
透明基板と、前記シール材の領域を少なくとも前記光源光が照射するように、前記 透明基板の一方面に形成された遮光層と、前記遮光層の領域内に形成されたスぺ 一サとを有するフォトマスク。  A transparent substrate, a light shielding layer formed on one surface of the transparent substrate so that at least the light source light irradiates the area of the sealing material, and a spacer formed in the area of the light shielding layer Have a photo mask.
[2] 前記スぺーサは、前記一対の基板のうち接触する基板よりも硬度が低い材料から 形成されている、請求項 1に記載のフォトマスク。  [2] The photomask according to claim 1, wherein the spacer is formed of a material having a hardness lower than that of the pair of substrates in contact with each other.
[3] 機能材料を含む層と、前記機能材料層を囲み、かつ光硬化性榭脂を含むシール 材と、前記機能材料層および前記シール材を介して貼り合わされた一対の基板とを 有する貼り合わせ基板を製造する方法であって、 [3] Affixing having a layer containing a functional material, a sealing material surrounding the functional material layer and containing a photocurable resin, and a pair of substrates bonded via the functional material layer and the sealing material A method of manufacturing a laminated substrate,
前記一対の基板のうち一方の基板面に、前記シール材を枠状に形成する工程と、 前記シール材の枠内に前記機能材料を滴下する工程と、  Forming the sealing material in a frame shape on one of the pair of substrates, and dropping the functional material into the sealing material frame.
前記一対の基板を貼り合わせる工程と、  Bonding the pair of substrates together;
請求項 1に記載のフォトマスクを前記貼り合わせ基板に重ね合わせて、前記スぺー サを前記貼り合わせ基板に接触させる工程と、  Placing the photomask according to claim 1 on the laminated substrate and bringing the spacer into contact with the laminated substrate;
前記フォトマスクを介して前記貼り合わせ基板に光源光を照射することにより、前記 シール材を硬化させる工程とを含む方法。  Curing the sealing material by irradiating the laminated substrate with light source light through the photomask.
PCT/JP2004/017359 2003-11-26 2004-11-22 Photomask and production method for laminated substrate using this WO2005052891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003395952 2003-11-26
JP2003-395952 2003-11-26

Publications (1)

Publication Number Publication Date
WO2005052891A1 true WO2005052891A1 (en) 2005-06-09

Family

ID=34631498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017359 WO2005052891A1 (en) 2003-11-26 2004-11-22 Photomask and production method for laminated substrate using this

Country Status (2)

Country Link
TW (1) TW200521551A (en)
WO (1) WO2005052891A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926590B2 (en) * 2012-03-23 2016-05-25 デクセリアルズ株式会社 Manufacturing method of connecting body and connecting method of electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260633A (en) * 1985-05-15 1986-11-18 Oki Electric Ind Co Ltd Mask alignment method in photolithography process
JPH0961829A (en) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JP2002341356A (en) * 2001-05-18 2002-11-27 Matsushita Electric Ind Co Ltd Gap forming method for liquid crystal display panel and apparatus for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260633A (en) * 1985-05-15 1986-11-18 Oki Electric Ind Co Ltd Mask alignment method in photolithography process
JPH0961829A (en) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JP2002341356A (en) * 2001-05-18 2002-11-27 Matsushita Electric Ind Co Ltd Gap forming method for liquid crystal display panel and apparatus for the same

Also Published As

Publication number Publication date
TW200521551A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
JP4944014B2 (en) Panel and manufacturing method thereof
US7724341B2 (en) Liquid crystal panel seal barrier and method of manufacturing the same
JP4413191B2 (en) Substrate with spacer, panel, liquid crystal display panel, panel manufacturing method, and liquid crystal display panel manufacturing method
US10090490B2 (en) Method of producing curved display panel
US20110222013A1 (en) Liquid crystal display device and manufacturing method thereof
JP2004093760A (en) Method of manufacturing liquid crystal display
JP4987422B2 (en) Display device and manufacturing method thereof
JP2004295016A (en) Liquid crystal panel and method for manufacturing same
US10642094B2 (en) Display panel
KR20150014894A (en) Liquid crystal display elememt and method for manufacturing the same
CN110673382A (en) Liquid crystal display panel and manufacturing method thereof
JP2008139555A (en) Liquid crystal display device and its manufacturing method
JP5042467B2 (en) Liquid crystal display device and liquid crystal panel
TW202032229A (en) Display apparatus
WO2011080968A1 (en) Method for manufacturing liquid crystal panel
JP3200298U (en) Display panel
JP5017832B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
WO2005052891A1 (en) Photomask and production method for laminated substrate using this
JP2007264102A (en) Liquid crystal display panel and method of manufacturing same
US20190219867A1 (en) Liquid crystal display device
JP2013222019A (en) Liquid crystal panel and liquid crystal display device having the same
US10768488B2 (en) Method for manufacturing liquid crystal display device
JP4839102B2 (en) LCD panel
JP2007206532A (en) Color filter substrate, liquid crystal display, and their manufacturing method
JP2010164730A (en) Method for producing electro-optical panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP