WO2005052660A1 - 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法 - Google Patents

多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法 Download PDF

Info

Publication number
WO2005052660A1
WO2005052660A1 PCT/JP2004/017625 JP2004017625W WO2005052660A1 WO 2005052660 A1 WO2005052660 A1 WO 2005052660A1 JP 2004017625 W JP2004017625 W JP 2004017625W WO 2005052660 A1 WO2005052660 A1 WO 2005052660A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
output
center
core
slab waveguide
Prior art date
Application number
PCT/JP2004/017625
Other languages
English (en)
French (fr)
Inventor
Ryouichi Tazawa
Yutaka Natsume
Original Assignee
Nhk Spring Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003400839A external-priority patent/JP2005164758A/ja
Application filed by Nhk Spring Co., Ltd. filed Critical Nhk Spring Co., Ltd.
Priority to EP04819463A priority Critical patent/EP1688767A4/en
Priority claimed from JP2004342787A external-priority patent/JP2006154123A/ja
Publication of WO2005052660A1 publication Critical patent/WO2005052660A1/ja
Priority to US11/374,776 priority patent/US7231118B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Definitions

  • the present invention relates to an optical multiplexer / demultiplexer used in the field of optical communication, and more particularly, to a multi-channel array waveguide diffraction grating type multiplexer / demultiplexer and an array waveguide used in a wavelength division multiplexing system.
  • the present invention relates to a method for connecting an output waveguide.
  • an optical multiplexer / demultiplexer that multiplexes or demultiplexes signals of different wavelengths plays an important role.
  • an arrayed waveguide grating optical multiplexer / demultiplexer using an arrayed waveguide grating is useful for increasing the number of channels. Also, any number of channels can be created by the same process and the same number of steps regardless of the number of channels, and in principle there is little loss or characteristic deterioration.
  • Japanese Patent Application Laid-Open No. 11-271557 discloses that each of a pair of ends is connected to an arc-shaped planar waveguide having a center at the center of the other end.
  • the N-channel second waveguide array is positioned near the center of the end of the first waveguide array.
  • An example has been proposed in which the circles are arranged radially from the center point of the arc of the circle to be placed.
  • a plurality of (N-channel) waveguides are arranged on the circumference of a Roland circle, which is a circle drawn so as to be in contact with the surface of a curved diffraction grating at the center point, while applying force.
  • a Roland circle which is a circle drawn so as to be in contact with the surface of a curved diffraction grating at the center point, while applying force.
  • the transmission characteristics of the waveguide (waveguide) located near the center of the N-channel waveguide (waveguide) and the waveguide (waveguide) located at the end (both ends) (Waveguide) transmission characteristics Are known to have different asymmetries.
  • Patent Document 1 does not suggest any method for solving these problems.
  • An object of the present invention is to reduce connection loss due to mode mismatch between a second slab waveguide and an output waveguide in an arrayed waveguide grating (AWG) type multiplexer / demultiplexer, and to achieve low-loss multiplexing / demultiplexing. To get the properties.
  • AMG arrayed waveguide grating
  • the present invention provides an arrayed waveguide composed of a core laminated on a substrate and a clad covering the core, each of which has a predetermined curvature, and an arrayed waveguide laminated on the substrate and input through an input waveguide.
  • An input-side slab waveguide for inputting the output optical signal to the array waveguide
  • an output-side slab waveguide for stacking the optical signal on the substrate and outputting the output optical signal to the output waveguide
  • the output waveguide has a predetermined shape changed according to a shape of a field distribution at a focal point of the output side slab waveguide.
  • the present invention provides a multi-channel array waveguide diffraction grating type multiplexer / demultiplexer, which is provided and connected to the output side slab waveguide.
  • the output waveguide is changed in accordance with the shape of the field distribution at the converging point of the output side slab waveguide. Is provided and connected to the output side slab waveguide, connection loss is reduced and asymmetry of transmission characteristics is reduced.
  • the present invention provides an array waveguide provided at a predetermined position on a substrate, a slab waveguide provided at an output side of the array waveguide, and an output waveguide connected to the slab waveguide.
  • the connection surface forms a Rowland circle, and the angle between the normal of the Rowland circle and the center line of the core located on both sides of the core located at the center and the normal of the Rowland circle When the angle between the center core and the center core is ⁇ ,
  • An output waveguide including a core defined by ⁇ , ⁇ , ⁇ ,..., ( ⁇ -1) ⁇ , ⁇ toward the end core.
  • An object of the present invention is to provide a waveguide grating type multiplexer / demultiplexer.
  • the core provided for an arbitrary number of channels is provided at the center of the angular force formed by the normal to the Rowland circle.
  • the angle between the output port of the slab waveguide and the normal of the Roland circle is equal to the center line of the core located on both sides of the core located at the center and the Roland circle. ⁇ , 2 ⁇ , 3 ⁇ ,... From the central core to the cores at both ends according to the position from the central core on the circumference of the Roland circle. , ( ⁇ -1) a, Na An arbitrary number of cores are connected at an angle specified by Na, and a slab waveguide provided at an output side of an arrayed waveguide provided at a predetermined position on a substrate is provided.
  • An object of the present invention is to provide a method of connecting an output waveguide connected to a waveguide to a slab waveguide.
  • an arbitrary number of output waveguides provided for a plurality of channels are arranged in a central core according to a position from the central core on the circumference of the Rowland circle. toward both ends of the core from, ⁇ , 2 ⁇ , 3 ⁇ , ⁇ , ( ⁇ - 1) ⁇ , an angle defined by Nyuarufa, were varied to suit the field distribution in the focal point of the slab waveguide Connecting the cores reduces splice loss and increases the loss uniformity of individual channels.
  • FIG. 1 is a schematic diagram illustrating an example of an arrayed waveguide grating optical multiplexer / demultiplexer to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram illustrating an example of a configuration of a main part of the arrayed waveguide illustrated in FIG. 1.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a main part of the arrayed waveguide illustrated in FIG. 1.
  • FIG. 4 is a schematic diagram illustrating an example of a configuration of a main part of the arrayed waveguide shown in FIG. 1.
  • FIG. 5 is a schematic diagram showing transmission characteristics of the present invention to which the connection between the slab waveguide and the output waveguide described with reference to FIGS. 2 to 4 is applied.
  • FIG. 6 is a schematic diagram showing transmission characteristics when the connection between the slab waveguide and the output waveguide described with reference to FIGS. 2 to 4 is applied to a flat-top array waveguide having a flat transmission characteristic. .
  • FIG. 7 shows the transmission characteristics of the present invention in which the connection between the slab waveguide and the output waveguide described with reference to FIG. 2 to FIG. 4 is applied, with one arbitrary wavelength (one channel) extracted.
  • FIG. 7 shows the transmission characteristics of the present invention in which the connection between the slab waveguide and the output waveguide described with reference to FIG. 2 to FIG. 4 is applied, with one arbitrary wavelength (one channel) extracted.
  • FIG. 8 shows the transmission characteristics of the present invention in which the connection between the slab waveguide and the output waveguide described with reference to FIG. 2 to FIG. 4 is applied, with one arbitrary wavelength (one channel) extracted.
  • FIG. 8 shows the transmission characteristics of the present invention in which the connection between the slab waveguide and the output waveguide described with reference to FIG. 2 to FIG. 4 is applied, with one arbitrary wavelength (one channel) extracted.
  • the arrayed waveguide type optical multiplexer / demultiplexer 10 includes an input waveguide 12, an arrayed waveguide 13, an output waveguide 14, and an output waveguide 14, which are provided at predetermined positions on a substrate 11, respectively. And first and second slab waveguides 15 and 16 for optically connecting the input waveguide 12 and the array waveguide 13 and the array waveguide 13 and the output waveguide 14.
  • the array waveguide 13 has a predetermined curvature between the first slab waveguide 15 and the second slab waveguide 16.
  • the core 14 n—the core 14 ⁇ of the output waveguide 14 has the exception of the central core 14 ⁇ .
  • the center axis is inclined by a predetermined angle with respect to the normal of the Rowland circle.
  • the central core 14 ⁇ is connected to the output port 16 ⁇ perpendicular to the normal of the circumference of the Roland circle. Accordingly, the center line of the output port 16 ⁇ and the center line of the central core 14 ⁇ are located on the same straight line.
  • cores 14n-14 ⁇ (excluding 14 ⁇ ) connected to output ports 16—n—16n other than the output port 16 ⁇ located on the center line have respective center line forces at the center.
  • Each of the second slab waveguides 16 is connected to a predetermined position so that the angle with respect to the normal of the Rowland circle increases as the distance from the core 14 ⁇ is increased.
  • the cores 14 ⁇ and 14 ⁇ connected to both ends of the second slab waveguide 16 are formed so that the angle ⁇ ⁇ ⁇ (— ⁇ ) with respect to the center line normal is maximized.
  • the cores 141 (simplified in the drawing) and the cores 141 (simplified in the drawing) located on both sides of the core 14 ⁇ located at the center are formed by angles ⁇ ⁇ ⁇ (— ⁇ ) with respect to the normal line of each center line. Is connected to the second slab waveguide 16 so that the minimum value is obtained.
  • the angle ⁇ between the center line of each core and the normal of the Roland circle is defined on the central core 14 ⁇ side. Accordingly, in each of the core 14 ⁇ at one end and the core 14 ⁇ at the other end, the polarity (direction) of the angle Na formed by the center line and the normal of the Roland circle is opposite.
  • the angle a X n (-n) between the center line of each core 14 n—14 ⁇ except the core 14 ⁇ located at the center and the normal of the Roland circle is shown in FIG.
  • the two lights condensed from the both ends on the input side of the slab waveguide 16 to the center on the output side advance.
  • the sum of the power distance (the optical path length of the optical path marked with ⁇ ) and the force at one end of the input side of the slab waveguide 16 are also collected at both ends of the output side.
  • the angle between the center line of each core 14 n—14 ⁇ and the normal of the Roland circle is the center line of the core located on both sides of the core 14 ⁇ located at the center and the normal of the Roland circle.
  • the output end of the (output) slab waveguide connected to the output side of the arrayed waveguide is duplicated.
  • a core 14 ⁇ -14 ⁇ (excluding 14 ⁇ ) connected to an output port 16— ⁇ —16 ⁇ other than the output port 16 ⁇ located on the center line is
  • Each center line is connected to a predetermined position of the second slab waveguide 16 such that the farther away from the central core 14 ⁇ , the larger the angle between the center line and the normal of the Rowland circle becomes. It can be considered that the transmission characteristics could be matched to the field distribution shape at the focal point of the second (output side) slab waveguide.
  • a multiplexed optical signal is input to the input waveguide 12 from, for example, a single mode fiber (SMF).
  • the output waveguide 14 outputs a demultiplexed optical signal to a plurality of single mode fibers (SMF) connected to the output side of the arrayed waveguide type optical multiplexer / demultiplexer 10. Is done.
  • the optical signal input to the output waveguide 14 is input via the input waveguide 12 by the first slab waveguide 15, the array waveguide 13, and the second slab waveguide 16.
  • the input multiplex signal is an individual output at a predetermined wavelength interval that has been split.
  • the connection loss (coupling loss) between each core of the output waveguide 14 and the second slab waveguide 16 is minimized for the reason described with reference to FIG.
  • FIG. 3 illustrates another embodiment for connecting the output-side slab waveguide and the output waveguide described above with reference to FIG.
  • the same components as those described above with reference to FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • an arbitrary number of cores other than the central core 114 ⁇ of the output waveguide 114 define the output end of the second slab waveguide 16, respectively.
  • the output ports 16- ⁇ and 16 ⁇ are connected to each other (similar to the example shown in FIG. 2).
  • a taper having a large cross-sectional diameter on the slab waveguide side is formed at a connection portion of each core 114 ⁇ -114 ⁇ with the slab waveguide 16.
  • the taper is formed asymmetrically with respect to the normal to the circumference of the Rowland circle except for the center core 114 ⁇ .
  • the taper provided for each core except the central core 114 ⁇ is designed so that the part on the opposite side to the central core 114 ⁇ with respect to the normal of the Stipulated.
  • the cores 114 ⁇ and 114 ⁇ connected to both ends of the second slab waveguide 16 have portions on the side opposite to the core located at the center with respect to the center line normal. Is given the specified taper so that is largest.
  • the taper given to each of the core 114-1 (simplified in the drawing) and the core 1141 (simplified in the drawing) located on both sides of the core 114 ⁇ located at the center is based on the center line normal.
  • the size (size of the asymmetric part) is smaller than the size of the tapered asymmetric part of the other cores. And the smallest.
  • FIG. 4 illustrates another embodiment for connecting the output side slab waveguide and the output waveguide described above with reference to FIG.
  • the same components as those described above with reference to FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description will be omitted.
  • an arbitrary number of cores other than the central core 214 ⁇ of the output waveguide 214 define the output end of the second slab waveguide 16 respectively.
  • the output ports 16- ⁇ and 16 ⁇ are connected to each other (similar to the example shown in FIG. 2).
  • connection between each core 214- ⁇ -214 ⁇ and the slab waveguide 16 is formed in a parabolic shape whose cross-sectional diameter on the side of the slab waveguide is large.
  • the parabolic connection portion is formed asymmetrically with respect to the normal to the circumference of the Rowland circle except for the central core 214 ⁇ .
  • the parabolic connecting portion provided on each core except the central core 214 ⁇ has a portion on the opposite side to the central core 214 ⁇ with respect to the normal of the Roland circle as the distance from the central core 214 ⁇ increases. It is specified to be larger.
  • the core connected to each of the plurality of output ports at the output end of the (output) slab waveguide connected to the output side of the arrayed waveguide is connected to the center from the center of the slab waveguide.
  • An asymmetrical taper in which the angle between the normal of the Roland circle and the normal to the Roland circle is changed according to the distance, and the size of the part on the side opposite to the core located in the center opposite to the normal is increased.
  • FIG. 5 shows transmission characteristics of the present invention to which the connection between the slab waveguide and the output waveguide described with reference to FIGS. 2 to 4 is applied. Note that in Fig. 5, the transmission characteristics are Gaussian distribution examples. Is shown.
  • the degree of loss of an optical signal from wavelengths ⁇ 1 to ⁇ ⁇ used as channels n to n is determined by the ⁇ channels and ⁇ channels located at both ends as compared with the central 0 channel. It can be seen that in the channel, the loss level has been improved and the difference between the center and both ends has been reduced compared to the example using the well-known connection method shown by the dotted line for comparison. That is, when the present application is indicated by ⁇ and the comparative example is indicated by ⁇ , the uniformity, which is the difference between the center and both ends, is ⁇ ⁇ , and it is recognized that the uniformity is improved by the present application.
  • FIG. 6 shows transmission characteristics when the connection between the slab waveguide and the output waveguide described with reference to FIGS. 2 to 4 is applied to a flat-top array waveguide having a flat transmission characteristic.
  • the degree of loss of an optical signal from wavelengths ⁇ 1 to ⁇ ⁇ used as channels from ⁇ to ⁇ depends on the ⁇ channels and ⁇ located at both ends compared to the central 0 channel. It can be seen that in the channel, the loss level has been improved and the difference between the center and both ends has been reduced compared to the example using the well-known connection method shown by the dotted line for comparison. That is, when the present application is indicated by a and the comparative example is indicated by b, the uniformity, which is the difference between the center and both ends, is a ⁇ b, and it is recognized that the uniformity is improved by the present application.
  • FIG. 7 shows transmission characteristics of the present invention to which the connection between the slab waveguide and the output waveguide described with reference to FIGS. 2 to 4 is applied, in a state where one arbitrary wavelength (one channel) is extracted. ing .
  • FIG. 7 corresponds to FIG. 5, and shows an example of a Gaussian distribution in transmission characteristics.
  • the suffix “A” is attached to the present application, and the suffix “B” is attached to the comparative example.
  • the maximum insertion loss can be improved by approximately 0.7 dB and the crosstalk level can be improved by approximately 5 dB in a 40-channel Gaussian-type arrayed waveguide grating optical multiplexer / demultiplexer. Moreover, each channel has improved asymmetry It's been done! / That's confirmed!
  • FIG. 8 shows a case where the connection between the slab waveguide and the output waveguide described with reference to FIGS. 2 to 4 is applied to a flat-top array waveguide diffraction grating type optical multiplexer / demultiplexer having a flat transmission characteristic.
  • the transmission characteristics are shown in a state where one arbitrary wavelength (one channel) is extracted.
  • FIG. 8 corresponds to FIG. 6 and shows an example in which the transmission characteristics are flat top. Also, as in FIG. 6, the suffix “a” is added to the present application, and the same “b” is added to the comparative example.
  • the ripple characteristic of the flat-top array waveguide diffraction grating type optical multiplexer / demultiplexer is also “ripple a ⁇ ripple b”, which indicates that the magnitude of the ripple has been suppressed.
  • I ab I improved the maximum insertion loss by approximately 0.7 dB and the crosstalk level by approximately 5 dB in a 40-channel flat-top array waveguide diffraction grating optical multiplexer / demultiplexer. That has been confirmed. It was confirmed that the asymmetry was improved in each channel! RU
  • the size of the tapered or parabolic portion may be asymmetric, and the size of the portion outside the center may be increased.
  • an arrayed waveguide diffraction grating (AWG) type multiplexer / demultiplexer is provided.
  • the connection loss due to the mode mismatch between the second slab waveguide and the output waveguide is reduced, and the asymmetry of the passband with respect to the center of the transmission characteristic is suppressed.
  • the signal waveform is made uniform, and the bandwidth in which a predetermined level of PDL can be secured is improved.
  • the present invention is not limited to the above-described embodiments, and various modifications or changes can be made without departing from the gist of the invention at the stage of its implementation.
  • the embodiments may be combined as appropriate as much as possible. In such a case, the effect of the combination is obtained.
  • an increase in the asymmetry of the transmission characteristics within the passband width is suppressed, the connection loss between the output waveguide and the slab waveguide is reduced, and the arrayed waveguide grating light is reduced.
  • a multiplexer / demultiplexer is obtained.
  • an arrayed waveguide grating optical multiplexer / demultiplexer having less crosstalk can be obtained.
  • the signal waveform is made uniform, and the bandwidth in which a predetermined level of PDL can be secured is improved.

Description

明 細 書
多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出 力導波路の接続方法
技術分野
[0001] この発明は、光通信の分野において使用される光合分波器に関し、特に、波長分 割多重方式に利用される多チャンネルアレイ導波路回折格子型合分波器およびァ レイ導波路と出力導波路の接続方法に関する。
背景技術
[0002] 光通信の分野で、大容量の信号を、より周波数の高!、搬送波を用いて伝達するこ とで、伝送容量を増大する方法 (波長分割多重方式)が既に実用化されている。
[0003] この方式において、異なる波長の信号を合波または分波する光合分波器が重要な 役割を占めている。
[0004] なかでもアレイ導波路回折格子 (AWG)を用いたアレイ導波路回折格子光合分波 器は、多チャンネル化に有益である。また、チャンネル数によらず任意数のチャンネ ルを、同一プロセス ·同一工程数で作成可能であり、原理的にも損失や特性劣化が 少ない特徴がある。
[0005] なお、アレイ導波路回折格子 (AWG)と出力導波路である光ファイバとを接続する 際に、結合損失が少ないことが要求されている。
[0006] 例えば、特開平 11-271557号公報には、一対の端部を有し、一方の端部が他方 の端部の中央に中心を持った円弧の形状のプレーナ導波管にそれぞれ接続される Mチャンネルの第 1および Nチャンネルの第 2の導波管アレイからなるカップラにおい て、 Nチャンネルの第 2の導波管アレイが、第 1の導波管アレイ端部の中心付近に位 置する円の弧の中心点から放射状に配置される例が提案されて ヽる。
[0007] し力しながら、一般に、曲面回折格子の表面に、その中点で接するように描かれた 円であるローランド円の円周上に複数 (Nチャンネル)の導波路 (導波管)が配列され る場合には、 Nチャンネルの導波路 (導波管)のうちの中央付近に位置される導波路 (導波管)の透過特性と終端 (両端)部に位置される導波路 (導波管)の透過特性とで は、非対称性が異なることが知られている。
[0008] パスバンド幅内で透過特性の非対称性が異なると、 PDLが局部的に劣化する(PD
Lの最悪値が増大する)問題がある。また、フラットトップ型の透過特性を有するアレイ 導波路においては、パスバンド幅内でのリップルが増加する問題がある。
[0009] なお、特許文献 1にお 、ても、これらの問題を解決する方法にっ ヽては何ら示唆さ れていない。
発明の開示
[0010] この発明の目的は、アレイ導波路回折格子 (AWG)型合分波器内の第 2スラブ導 波路と出力導波路間におけるモードミスマッチによる接続損失を低減し、低損失な合 分波特性を得ることである。
[0011] この発明は、基板上に積層されたコアと前記コアを覆うクラッドからなり、それぞれに 所定の曲率が与えられたアレイ導波路と、基板上に積層され、入力導波路を介して 入力された光信号を前記アレイ導波路に入力させる入力側スラブ導波路と、基板上 に積層され、前記アレイ導波路力 出力された光信号を出力導波路に出力させる出 力側スラブ導波路と、力 なる多チャンネルアレイ導波路回折格子型合分波器にお いて、前記出力導波路は、前記出力側スラブ導波路の集光点における界分布の形 状に合わせて変化された所定の形状が与えられて前記出力側スラブ導波路と接続さ れることを特徴とする多チャンネルアレイ導波路回折格子型合分波器を提供するもの である。
[0012] すなわち、上述した多チャンネルアレイ導波路回折格子型合分波器によれば、出 力導波路は、出力側スラブ導波路の集光点における界分布の形状に合わせて変化 された所定の形状が与えられて出力側スラブ導波路と接続されることから、接続損失 が低減されるとともに、透過特性の非対称性が軽減される。
[0013] また、この発明は、基板の所定の位置に設けられたアレイ導波路と、前記アレイ導 波路の出力側に設けられたスラブ導波路と、前記スラブ導波路と接続される出力導 波路であって、その接続面はローランド円を形成し、そのローランド円の法線とのな す角が、中央部に位置されるコアの両隣に位置されるコアの中心線とローランド円の 法線とのなす角を αとするとき、中央のコアからの位置に従って、中央のコアから両 端のコアに向かって、 α, Ζα, Βα, ···, (Ν— 1) α , Ν αにより規定されたコアを含 む出力導波路と、を有することを特徴とする多チャンネルアレイ導波路回折格子型合 分波器を提供するものである。
[0014] すなわち、上述した多チャンネルアレイ導波路回折格子型合分波器によれば、任 意数のチャンネルに対して設けられたコアは、ローランド円の法線とのなす角力 中 央部に位置されるコアの両隣に位置されるコアの中心線とローランド円の法線とのな す角を αとするとき、中央のコアからの位置に従って、中央のコアから両端のコアに 向かって、 α, Ζα, Βα, ···, (N~l) a , Ν αにより規定される角度で出力側スラブ 導波路と接続されることから、スラブ導波路の集光点における界分布が出力導波路 の界分布に一致するように接続されるため、接続損失が低減され、多チャンネルの光 を分波する際の個々のチャンネルの出力の均一性が高められる。
[0015] また、この発明は、スラブ導波路の出力ポートのそれぞれに、ローランド円の法線と のなす角が、中央部に位置されるコアの両隣に位置されるコアの中心線とローランド 円の法線とのなす角を αとするとき、ローランド円の円周上での中央のコアからの位 置に従って、中央のコアから両端のコアに向かって、 α, 2α, 3α, ···, (Ν— 1) a, N aにより規定された角度で、任意数のコアを接続することを特徴とする基板の所定 の位置に設けられたアレイ導波路の出力側に設けられたスラブ導波路と接続される 出力導波路をスラブ導波路に接続する方法を提供するものである。
[0016] すなわち、上述した接続方法によれば、複数のチャンネルに対して設けられた任意 数の出力導波路は、ローランド円の円周上での中央のコアからの位置に従って、中 央のコアから両端のコアに向かって、 α, 2α, 3α, ···, (Ν— 1) α, Ναにより規定 された角度で、スラブ導波路の集光点における界分布に合うように変化させたコアを 接続することにより、接続損失が低減され、個々のチャンネルの損失の均一性が高め られる。
図面の簡単な説明
[0017] [図 1]図 1は、この発明の実施の形態が適用されるアレイ導波路回折格子型光合分 波器の一例を説明する概略図。
[図 2]図 2は、図 1に示したアレイ導波路の要部の構成の一例を説明する概略図。 [図 3]図 3は、図 1に示したアレイ導波路の要部の構成の一例を説明する概略図。
[図 4]図 4は、図 1に示したアレイ導波路の要部の構成の一例を説明する概略図。
[図 5]図 5は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を適 用した本発明の透過特性を示す概略図。
[図 6]図 6は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を透 過特性がフラットなフラットトップのアレイ導波路に適用した場合の透過特性を示す概 略図。
[図 7]図 7は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を適 用した本発明の透過特性を、任意の 1波長(1チャンネル)を抜き出した状態で示す 概略図。
[図 8]図 8は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を適 用した本発明の透過特性を、任意の 1波長(1チャンネル)を抜き出した状態で示す 概略図。
発明を実施するための最良の形態
[0018] 以下、図面を参照して、この発明の実施の形態について詳細に説明する。
[0019] 図 1に示されるように、アレイ導波路型光合分波器 10は、それぞれ基板 11上の所 定の位置に設けられた入力導波路 12、アレイ導波路 13、出力導波路 14、および入 力導波路 12とアレイ導波路 13ならびにアレイ導波路 13と出力導波路 14を光学的に 接続する第 1および第 2のスラブ導波路 15, 16を有している。
[0020] アレイ導波路 13は、第 1のスラブ導波路 15と第 2のスラブ導波路 16との間で所定 の曲率に形成されている。
[0021] 図 2に示すように、出力導波路 14のコア 14 n—コア 14ηは、中央のコア 14οを除き
、それぞれ第 2のスラブ導波路 16の出力端を定義するローランド円の円周上の任意 の位置で、ローランド円の法線に対して所定の角度だけ中心軸が傾けられた状態で
、第 2のスラブ導波路 16の個々の出力ポート 16— ηと 16ηと接続されている。
[0022] 詳細には、中央のコア 14οは、ローランド円の円周の法線に対して垂直に、出力ポ ート 16οと接続される。従って、出力ポート 16οの中心線と中央のコア 14οの中心線 は、互いに同一直線上に位置される。 [0023] これに対して、中心線上に位置される出力ポート 16ο以外の出力ポート 16— n— 16 nと接続されるコア 14 n— 14η (14οを除く)は、それぞれの中心線力 中央部に位 置されるコア 14οから離れるにつれて、ローランド円の法線に対する角度が大きくなる ように、それぞれ第 2のスラブ導波路 16の所定の位置に接続されて 、る。
[0024] すなわち、第 2のスラブ導波路 16の両端部に接続されるコア 14 ηと 14ηは、中心 線の法線に対する角度 α Χ η (— η)が最大になるよう、第 2のスラブ導波路 16と接続 される。また、中央部に位置するコア 14οの両隣に位置されるコア 14 1 (図示簡略 ィ匕)とコア 141 (図示簡略化)は、それぞれの中心線の法線に対する角度 α Χ η (— η) が最小になるよう、第 2のスラブ導波路 16と接続される。なお、それぞれのコアの中心 線とローランド円の法線とのなす角 αは、中央のコア 14ο側に規定される。従って、 一端のコア 14 ηと他の一端のコア 14ηのそれぞれにおいては、中心線とローランド 円の法線とのなす角 N aの大きさが等しぐその極性(向き)が逆である。
[0025] より詳細には、中央部に位置されるコア 14οを除く個々のコア 14 n— 14η中心線と ローランド円の法線とのなす角 a X n (-n)は、図 2に示される通り、それぞれ第 2のス ラブ導波路 16からアレイ導波路 13に入力される際に、「スラブ導波路 16の入力側の 両端部から出力側の中央に集光される 2つの光が進むべき距離(「〇を付した光路」 の光路長)の和」と「スラブ導波路 16の入力側の一端部力も出力側の両端部に集光 される 2つの光が進むべき距離 (「△と IIを付した光路」の光路長)の和すなわち光路 長が最長になる光が透過する光路長と光路長が最短になる光が透過する光路長の 和」との『距離の差』の影響を低減することができるように、設定される。この場合、個 々のコア 14 n— 14ηの中心線とローランド円の法線とのなす角は、中央部に位置さ れるコア 14οの両隣に位置されるコアの中心線とローランド円の法線とのなす角を α とするとき、中央のコア 14οからの位置に従って、中央のコアから両端のコアに向かつ a , 2 a , 3 a , · · · , (N— 1) α , Ν αにより容易に規定される。なお、上述したと おり、一端側の任意の位置のコアと他の一端側で同じ位置に位置されるコアのそれ ぞれにおいては、中心線とローランド円の法線とのなす角 αの大きさが等しぐその 極性(向き)が逆であることは 、うまでもな!/、。
[0026] このように、アレイ導波路の出力側に接続された(出力)スラブ導波路の出力端の複 数の出力ポートのそれぞれと接続されるコアを、スラブ導波路の中心からの距離に応 じて、ローランド円の法線とのなす角を変化させて接続することで、パスバンド幅内で 透過特性の非対称性が増大されることを抑止できる。すなわち、図 7により後段に説 明する PDLが局部的に劣化する(PDLの最悪値が増大する)ことが低減される。また 、図 8により後段に説明するような透過特性が概ねフラットなフラットトップのアレイ導 波路において生じることが確認されているパスバンド幅内でのリップルの大きさを低 減できる。
[0027] なお、上述した本願発明にお ヽて、パスバンド幅内で透過特性の非対称性が増大 されることを抑止できる原理としては、
ァ)第 2 (出力側)スラブ導波路の集光点における界分布を考えた場合に、「光路長 が最長になる光が透過する光路長と光路長が最短になる光が透過する光路長の差」 を完全になくすことは困難であり、その結果生じる『界分布の対称性の劣化』の低減、 ィ)第 2スラブ導波路に接続される個々のコア(出力導波路のエレメント)の中央から の距離に起因する『接続の不整合の影響』の低減、
が推測できる。
[0028] 換言すると、上述した本願発明のように、「中心線上に位置される出力ポート 16ο以 外の出力ポート 16— η— 16ηと接続されるコア 14 η— 14η ( 14οを除く)を、それぞれ の中心線が、中央部に位置されるコア 14οから離れるにつれて、ローランド円の法線 とのなす角が大きくなるように、第 2のスラブ導波路 16の所定の位置に接続する」こと で、透過特性を、第 2 (出力側)のスラブ導波路の集光点における界分布形状に合わ せることができた、と考察できる。
[0029] 図 1を用いて上述したアレイ導波路型光合分波器 10においては、入力導波路 12 に、詳述しないが、例えばシングルモードファイバ(SMF)から多重光信号が入力さ れる。一方、出力導波路 14からは、詳述しないがアレイ導波路型光合分波器 10の出 力側に接続された複数のシングルモードファイバ(SMF)に向けて、分波された光信 号が出力される。なお、出力導波路 14に入力される光信号は、第 1のスラブ導波路 1 5、アレイ導波路 13および第 2のスラブ導波路 16により、入力導波路 12を介して入 力された多重信号が分波された所定波長間隔の個々の出力であることはいうまでも ない。この場合、図 2により説明した理由により、出力導波路 14の個々のコアと第 2の スラブ導波路 16との間の接続損失 (結合損失)が最小に抑えられる。
[0030] また、第 2のスラブ導波路 16に接続された個々の出力導波路 14のうちの中心に位 置されるコアと両端に位置されるコアとの透過特性の違いに起因して、周知の PDL が低下 (PDLの最悪値が増大)し、あるいは透過特性がフラットなフラットトップ出力 導波路において、リップルが増大することが低減される。
[0031] 図 3は、図 2を用いて前に説明した出力側スラブ導波路と出力導波路とを接続する 別の実施の形態を説明している。なお、図 1および図 2により前に説明した構成と同じ 構成には、同一の符号を付して詳細な説明を省略する。
[0032] 図 3に示すアレイ導波路回折格子型光合分波器においては、出力導波路 114の 中央のコア 114οを除く任意数のコアは、それぞれ第 2のスラブ導波路 16の出力端を 定義するローランド円の円周上の任意の位置で、ローランド円の法線に対して所定 の角度 α Χ η (— η)だけ中心軸が傾けられた状態で、第 2のスラブ導波路 16の個々 の出力ポート 16-ηと 16ηと接続されて 、る(図 2に示した例と同様)。
[0033] それぞれのコア 114 η— 114ηのスラブ導波路 16との接続部には、スラブ導波路 側の断面径が大きく規定されたテーパが形成されている。なお、テーパは、中央のコ ァ 114οを除いてローランド円の円周の法線に対して、非対称に形成されている。ま た、中央のコア 114οを除くそれぞれのコアに設けられるテーパは、中央のコア 114ο 力も離れるにつれて、ローランド円の法線に対して、中央のコア 114οと反対側になる 部分が大きくなるように規定されて 、る。
[0034] すなわち、第 2のスラブ導波路 16の両端部に接続されるコア 114 ηと 114ηには、 中心線の法線を基準として、中央部に位置されるコアと反対の側になる部分が最も 大きくなるように規定されたテーパが与えられている。また、中央に位置するコア 114 οの両隣に位置されるコア 114-1 (図示簡略化)とコア 1141 (図示簡略化)のそれぞ れに与えられるテーパは、中心線の法線を基準として、中央部に位置されるコアと反 対の側になる部分が大きく形成されるものの、その大きさの程度 (非対称部分の大き さ)は、他のコアのテーパの非対称部分の大きさに比較して最も小さい。 [0035] 図 4は、図 2を用いて前に説明した出力側スラブ導波路と出力導波路とを接続する 別の実施の形態を説明している。なお、図 1ないし図 3により前に説明した構成と同じ 構成には、同一の符号を付して詳細な説明を省略する。
[0036] 図 4に示すアレイ導波路回折格子型光合分波器においては、出力導波路 214の 中央のコア 214οを除く任意数のコアは、それぞれ第 2のスラブ導波路 16の出力端を 定義するローランド円の円周上の任意の位置で、ローランド円の法線に対して所定 の角度 α Χ η (— η)だけ中心軸が傾けられた状態で、第 2のスラブ導波路 16の個々 の出力ポート 16-ηと 16ηと接続されて 、る(図 2に示した例と同様)。
[0037] それぞれのコア 214— η— 214ηのスラブ導波路 16との接続部には、スラブ導波路 側の断面径が大きく規定されたパラボリック状に形成されている。なお、パラボリック 状の接続部は、中央のコア 214οを除いてローランド円の円周の法線に対して、非対 称に形成されている。また、中央のコア 214οを除くそれぞれのコアに設けられるパラ ボリック状の接続部は、中央のコア 214οから離れるにつれて、ローランド円の法線に 対して、中央のコア 214οと反対側になる部分が大きくなるように規定されている。
[0038] すなわち、図 4により説明したパラボリック状の接続部は、図 3に示したテーパと置き 換え可能である。
[0039] 以上説明したように、アレイ導波路の出力側に接続された(出力)スラブ導波路の出 力端の複数の出力ポートのそれぞれと接続されるコアを、スラブ導波路の中心からの 距離に応じてローランド円の法線とのなす角を変化させて接続するとともに、法線に 対して中央に位置するコアと反対となる側の部分の大きさを増大させた非対称のテ ーパ状またはパラボリック状の接続部分を設けることによつても、パスバンド幅内で透 過特性の非対称性が増大されることを抑止できる。すなわち、図 7により後段に説明 する PDLが局部的に劣化する(PDLの最悪値が増大する)ことが低減される。また、 図 8により後段に説明するような透過特性が概ねフラットなフラットトップのアレイ導波 路において生じることが確認されているパスバンド幅内でのリップルの大きさを低減で きる。
[0040] 図 5は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を適用し た本発明の透過特性を示している。なお、図 5では、透過特性がガウシアン分布の例 を示している。
[0041] 図 5において、 nから nチャンネルまでとして利用される波長 λ 1から λ ηまでの光 信号の損失の程度は、中心である 0チャンネルに比較して両端に位置する ηチャン ネルと ηチャンネルにおいて、損失レベルが改善され、比較のため点線で示す周知 の接続方法を用いる例よりも、中心と両端との間の差が低減されていることが認めら れる。すなわち、本願を Α、比較例を Βで示すとき、中心と両端との差である均一性は 、 Α< Βとなり、本願により、均一性が向上されていることが認められる。
[0042] 図 6は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を透過特 性がフラットなフラットトップのアレイ導波路に適用した場合の透過特性を示している。
[0043] 図 6において、 ηから ηチャンネルまでとして利用される波長 λ 1から λ ηまでの光 信号の損失の程度は、中心である 0チャンネルに比較して両端に位置する ηチャン ネルと ηチャンネルにおいて、損失レベルが改善され、比較のため点線で示す周知 の接続方法を用いる例よりも、中心と両端との間の差が低減されていることが認めら れる。すなわち、本願を a、比較例を bで示すとき、中心と両端との差である均一性は 、 a< bとなり、本願により、均一性が向上されていることが認められる。
[0044] 図 7は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を適用し た本発明の透過特性を、任意の 1波長(1チャンネル)を抜き出した状態で示している 。なお、図 7は、図 5に対応するもので、透過特性がガウシアン分布の例を示している 。また、図 5と同様に、本願については添え字「A」を、比較例については同「B」をそ れぞれ付している。
[0045] 図 7から明らかなように、中心波長のずれが概ね等しぐ「PD A = ΡΌ λ Β] あっても『PDLA く PDLB』となる。なお、『PDLA く PDLB』は、パスバンドの 帯域を PDLの最悪値で管理 (規定)する場合に、同帯域が広くなることを示して!/、る 。また、この結果は、モードに依存しないため、 TMモードも TEモードも、同様である
[0046] より詳細には、 I A— B Iは、 40チャンネルのガウシアン型アレイ導波路回折格子 型光合分波器において、最大挿入損失が概ね 0. 7dB、クロストークレベルにおいて 概ね 5dB改善できている。しかも、それぞれのチャンネルにおいて、非対称性が改善 されて!/、ることが確認されて!、る。
[0047] 図 8は、図 2ないし図 4により説明したスラブ導波路と出力導波路との接続を透過特 性がフラットなフラットトップ型アレイ導波路回折格子型光合分波器に適用した場合 の透過特性を、任意の 1波長(1チャンネル)を抜き出した状態で示している。なお、 図 8は、図 6に対応するもので、透過特性がフラットトップの例を示している。また、図 6と同様に、本願については添え字「a」を、比較例については同「b」をそれぞれ付し ている。
[0048] 図 8から明らかなように、中心波長のずれが概ね等しぐ「PD a = PD b」であ つても『PDLa < PDLb』となる。なお、『PDLA < PDLB』は、図 7と同様であり 、ノ スバンドの帯域を管理するために利用される。また、この結果は、モードに依存し ないため、 TMモードも TEモードも、同様である。
[0049] 一方、フラットトップ型アレイ導波路回折格子型光合分波器に特有のリップルに関し ても『リップル a < リップル b』であり、リップルの大きさが抑圧されたことが認められ る。
[0050] より詳細には、 I a-b Iにより、 40チャンネルのフラットトップ型アレイ導波路回折格 子型光合分波器において、最大挿入損失が概ね 0. 7dB、クロストークレベルが概ね 5dB改善できたことが確認されている。し力も、それぞれのチャンネルにおいて、非対 称性が改善されて 、ることが確認されて!、る。
[0051] このように、アレイ導波路回折格子型光合分波器において、出力側スラブ導波路と 任意数のチャンネルの出力導波路とを接続する場合に、それぞれのチャンネルに対 応して設けられる出力導波路を、スラブ導波路の中心からの距離に応じて、ローラン ド円の法線とのなす角を変化させて接続することで、パスバンド幅内で透過特性の非 対称性が増大されることを抑止できる。
[0052] なお、スラブ導波路接続される部分にぉ 、て、出力導波路の端部をテーパ状もしく はパラボリック状とする場合に、中心に位置する出力導波路力 の距離に応じて、テ ーパまたはパラボリック状の部分の大きさを非対称とし、かつ中心よりも外側の部分の 大きさを大きくしてもよい。
[0053] 以上説明したように本発明によれば、アレイ導波路回折格子 (AWG)型合分波器 内の第 2スラブ導波路と出力導波路間におけるモードミスマッチによる接続損失が低 減されるとともに、パスバンド幅における透過特性の中心に対する非対称性が抑圧さ れる。
[0054] 従って、信号波形が均一化されるとともに、所定レベルの PDLが確保可能な帯域 幅が向上される。
[0055] なお、この発明は、前記各実施の形態に限定されるものではなぐその実施の段階 ではその要旨を逸脱しない範囲で種々な変形もしくは変更が可能である。また、各実 施の形態は、可能な限り適宜組み合わせて実施されてもよぐその場合、組み合わせ による効果が得られる。
産業上の利用可能性
[0056] 本発明によれば、パスバンド幅内で透過特性の非対称性が増大されることが抑止さ れ、出力導波路とスラブ導波路間の接続損失が少な 、アレイ導波路回折格子型光 合分波器が得られる。
[0057] また、本発明によれば、クロストークの少な 、アレイ導波路回折格子型光合分波器 が得られる。
[0058] また、信号波形が均一化されるとともに、所定レベルの PDLが確保可能な帯域幅 が向上される。

Claims

請求の範囲
[1] 基板上に積層されたコアと前記コアを覆うクラッドからなり、それぞれに所定の曲率 が与えられたアレイ導波路と、基板上に積層され、入力導波路を介して入力された光 信号を前記アレイ導波路に入力させる入力側スラブ導波路と、基板上に積層され、 前記アレイ導波路力 出力された光信号を出力導波路に出力させる出力側スラブ導 波路と、力 なる多チャンネルアレイ導波路回折格子型合分波器にぉ 、て、 前記出力導波路は、前記出力側スラブ導波路の集光点における界分布の形状に 合わせて変化された所定の形状が与えられて前記出力側スラブ導波路と接続される ことを特徴とする多チャンネルアレイ導波路回折格子型合分波器。
[2] 前記出力導波路は、前記出力側スラブ導波路に固有の円弧上に複数配列され、 前記出力側スラブ導波路と接続される際に前記出力導波路のうちの前記円弧上の 中央に位置される前記出力導波路を基準として前記円弧上で前記中央に位置され る前記出力導波路との距離が増えるに従って、前記出力導波路の中心と前記円弧 の法線とのなす角が所定方向に増大されることを特徴とする請求項 1記載の多チャン ネルアレイ導波路回折格子型合分波器。
[3] 前記出力導波路の中心と前記円弧の法線とのなす角が増大される方向は、前記中 心に位置される前記出力導波路側であることを特徴とする請求項 2記載の多チャン ネルアレイ導波路回折格子型合分波器。
[4] 前記出力導波路の中心と前記円弧の法線とのなす角は、前記中心に位置される前 記出力導波路側とその両隣に位置される前記出力導波路と前記円弧の法線とのな す角の大きさが前記中心から任意の前記出力導波路までの距離に比例して増大さ れることを特徴とする請求項 2または 3記載の多チャンネルアレイ導波路回折格子型 合分波器。
[5] 前記出力導波路は、前記出力側スラブ導波路に固有の円弧上に複数配列され、 前記出力側スラブ導波路の側がテーパ状あるいはパラボリック状に形成された接続 部を介して前記出力側スラブ導波路と接続される際に、前記出力導波路のうちの前 記円弧上の中央に位置される前記出力導波路を基準として前記円弧上で前記中央 に位置される前記出力導波路との距離が増えるに従って、前記テーパ状あるいはパ ラボリック状に形成された前記接続部の非対称部分の大きさが増大されることを特徴 とする請求項 1記載の多チャンネルアレイ導波路回折格子型合分波器。
[6] 前記テーパ状あるいはパラボリック状に形成された前記接続部の非対称部分の大 きさが増大される方向は、前記中心に位置される前記出力導波路と逆の側であること を特徴とする請求項 5記載の多チャンネルアレイ導波路回折格子型合分波器。
[7] 基板の所定の位置に設けられたアレイ導波路と、
前記アレイ導波路の出力側に設けられたスラブ導波路と、
前記スラブ導波路と接続される出力導波路であって、その接続面はローランド円を 形成し、そのローランド円の法線とのなす角が、中央部に位置されるコアの両隣に位 置されるコアの中心線とローランド円の法線とのなす角を αとするとき、中央のコアか らの位置に従って、中央のコアから両端のコアに向かって、 α, 2α, 3α, ···, (Ν— 1) α, Ναにより規定されたコアを含む出力導波路と、
を有することを特徴とする多チャンネルアレイ導波路回折格子型合分波器。
[8] 前記出力導波路の前記中央部に位置される前記コア以外のコアの中心と前記ロー ランド円の法線とのなす角は、それぞれ前記中央部に位置される前記コア側に向か つて増大されることを特徴とする請求項 7記載の多チャンネルアレイ導波路回折格子 型合分波器。
[9] 前記出力導波路の前記それぞれのコアは、前記スラブ導波路と接続される側にテ ーパ状またはパラボリック状に形成された接続領域を有し、それぞれの前記接続領 域は、前記中央部に位置される前記コアとの距離が増大されるにつれて、前記中央 部に位置される前記コアの中心と逆の側に増大される非対称領域を含むことを特徴 とする請求項 8記載の多チャンネルアレイ導波路回折格子型合分波器。
[10] スラブ導波路の出力ポートのそれぞれに、ローランド円の法線とのなす角が、中央 部に位置されるコアの両隣に位置されるコアの中心線とローランド円の法線とのなす 角を αとするとき、ローランド円の円周上での中央のコアからの位置に従って、中央 のコアから両端のコアに向かって、 α, 2α, 3α, ···, (Ν— 1) α, Ναにより規定さ れた角度で、任意数のコアを接続することを特徴とする基板の所定の位置に設けら れたアレイ導波路の出力側に設けられたスラブ導波路と接続される出力導波路をス ラブ導波路に接続する方法。
それぞれのコアは、スラブ導波路と接続される側にテーパ状またはパラボリック状に 形成された接続領域を有し、それぞれの接続領域は、中央部に位置されるコアとの 距離が増大されるにつれて、中央部に位置されるコアの中心と逆の側に増大される 非対称領域を含むことを特徴とする請求項 10記載の基板の所定の位置に設けられ たアレイ導波路の出力側に設けられたスラブ導波路と接続される出力導波路をスラ ブ導波路に接続する方法。
PCT/JP2004/017625 2003-11-28 2004-11-26 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法 WO2005052660A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04819463A EP1688767A4 (en) 2003-11-28 2004-11-26 MULTIPLEXER / DEMULTIPLEXER OF MULTI-CHANNEL ARRAY SHAFT BENDING GRID TYPE AND METHOD OF CONNECTING AN ARRAY SHAFT WITH OUTPUT SHAFT
US11/374,776 US7231118B2 (en) 2003-11-28 2006-03-14 Multichannel array waveguide diffraction grating multiplexer/demultiplexer and method of connecting array waveguide and output waveguide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003400839A JP2005164758A (ja) 2003-11-28 2003-11-28 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法
JP2003-400839 2003-11-28
JP2004-342787 2004-11-26
JP2004342787A JP2006154123A (ja) 2004-11-26 2004-11-26 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/374,776 Continuation US7231118B2 (en) 2003-11-28 2006-03-14 Multichannel array waveguide diffraction grating multiplexer/demultiplexer and method of connecting array waveguide and output waveguide

Publications (1)

Publication Number Publication Date
WO2005052660A1 true WO2005052660A1 (ja) 2005-06-09

Family

ID=34635640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017625 WO2005052660A1 (ja) 2003-11-28 2004-11-26 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法

Country Status (4)

Country Link
US (1) US7231118B2 (ja)
EP (1) EP1688767A4 (ja)
KR (1) KR100807440B1 (ja)
WO (1) WO2005052660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127755A2 (en) 2006-04-28 2007-11-08 Gemfire Corporation Arrayed waveguide grating with reduced channel passband asymmetry

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US20140204455A1 (en) 2011-08-24 2014-07-24 Milan Momcilo Popovich Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
CN111323867A (zh) 2015-01-12 2020-06-23 迪吉伦斯公司 环境隔离的波导显示器
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
JP6598269B2 (ja) 2015-10-05 2019-10-30 ディジレンズ インコーポレイテッド 導波管ディスプレイ
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
EP3433658B1 (en) 2016-04-11 2023-08-09 DigiLens, Inc. Holographic waveguide apparatus for structured light projection
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
WO2019079350A2 (en) 2017-10-16 2019-04-25 Digilens, Inc. SYSTEMS AND METHODS FOR MULTIPLYING THE IMAGE RESOLUTION OF A PIXÉLISÉ DISPLAY
KR20200108030A (ko) 2018-01-08 2020-09-16 디지렌즈 인코포레이티드. 도파관 셀 내의 홀로그래픽 격자의 높은 처리능력의 레코딩을 위한 시스템 및 방법
WO2019136476A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide architectures and related methods of manufacturing
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
CN109239940B (zh) * 2018-11-02 2021-05-07 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪
WO2020168348A1 (en) 2019-02-15 2020-08-20 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
KR20210134763A (ko) 2019-03-12 2021-11-10 디지렌즈 인코포레이티드. 홀로그래픽 도파관 백라이트 및 관련된 제조 방법
US20200386947A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing
KR20220038452A (ko) 2019-07-29 2022-03-28 디지렌즈 인코포레이티드. 픽셀화된 디스플레이의 이미지 해상도와 시야를 증배하는 방법 및 장치
JP2022546413A (ja) 2019-08-29 2022-11-04 ディジレンズ インコーポレイテッド 真空回折格子および製造方法
KR102522885B1 (ko) 2021-02-26 2023-04-18 주식회사 피피아이 실리콘 포토닉스 인터로게이터를 구비한 반사 광파장 스캐닝 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344626A (ja) * 1998-05-29 1999-12-14 Hitachi Cable Ltd 光波長合分波器
EP1033593A1 (en) * 1999-03-02 2000-09-06 Lucent Technologies Inc. Waveguide grating router having a predetermined composite amplitude spectrum
JP2001013336A (ja) * 1999-06-25 2001-01-19 Hitachi Cable Ltd 光波長合分波器
JP2002014243A (ja) * 2000-06-29 2002-01-18 Nec Corp アレイ導波路格子およびアレイ導波路格子を使用した光通信システム
JP2002116330A (ja) * 2000-10-05 2002-04-19 Sumitomo Electric Ind Ltd 光adm装置
JP2002116331A (ja) * 2000-10-05 2002-04-19 Sumitomo Electric Ind Ltd 光合分波器
JP2002148458A (ja) * 2000-11-16 2002-05-22 Nec Corp アレイ導波路格子、導波路素子、分波装置、合波装置および光通信システム
EP1291689A1 (en) * 2001-09-11 2003-03-12 Alcatel Optronics UK Limited Improved arrayed waveguide grating
JP2003195068A (ja) * 2001-12-21 2003-07-09 Nec Corp アレイ導波路格子、アレイ導波路格子モジュールおよび光通信システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786131A (en) 1987-07-28 1988-11-22 Polaroid Corporation Star coupler
EP0639782B1 (en) * 1993-08-02 1999-11-10 Nippon Telegraph And Telephone Corporation Integrated optical waveguide circuit and optical branch line test system using the same
US6665466B2 (en) * 2000-09-05 2003-12-16 Sumitomo Electric Industries, Ltd. Optical multiplexer/demultiplexer
GB2367635A (en) * 2000-09-27 2002-04-10 Bookham Technology Ltd Dispersive optical waveguide array
GB2400280B (en) 2003-04-02 2005-06-01 Matsushita Electric Ind Co Ltd Dynamic resource allocation in packet data transfer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344626A (ja) * 1998-05-29 1999-12-14 Hitachi Cable Ltd 光波長合分波器
EP1033593A1 (en) * 1999-03-02 2000-09-06 Lucent Technologies Inc. Waveguide grating router having a predetermined composite amplitude spectrum
JP2001013336A (ja) * 1999-06-25 2001-01-19 Hitachi Cable Ltd 光波長合分波器
JP2002014243A (ja) * 2000-06-29 2002-01-18 Nec Corp アレイ導波路格子およびアレイ導波路格子を使用した光通信システム
JP2002116330A (ja) * 2000-10-05 2002-04-19 Sumitomo Electric Ind Ltd 光adm装置
JP2002116331A (ja) * 2000-10-05 2002-04-19 Sumitomo Electric Ind Ltd 光合分波器
JP2002148458A (ja) * 2000-11-16 2002-05-22 Nec Corp アレイ導波路格子、導波路素子、分波装置、合波装置および光通信システム
EP1291689A1 (en) * 2001-09-11 2003-03-12 Alcatel Optronics UK Limited Improved arrayed waveguide grating
JP2003195068A (ja) * 2001-12-21 2003-07-09 Nec Corp アレイ導波路格子、アレイ導波路格子モジュールおよび光通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1688767A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127755A2 (en) 2006-04-28 2007-11-08 Gemfire Corporation Arrayed waveguide grating with reduced channel passband asymmetry
EP2013650A2 (en) * 2006-04-28 2009-01-14 Gemfire Corporation Arrayed waveguide grating with reduced channel passband asymmetry
EP2013650A4 (en) * 2006-04-28 2009-11-18 Gemfire Corp ARRAY SHAFT GRILLE WITH REDUCED CHANNEL PASSBAND ASYMMETRY

Also Published As

Publication number Publication date
EP1688767A1 (en) 2006-08-09
US7231118B2 (en) 2007-06-12
EP1688767A4 (en) 2007-11-28
KR100807440B1 (ko) 2008-02-25
KR20060097046A (ko) 2006-09-13
US20060177180A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
WO2005052660A1 (ja) 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法
JP2858655B2 (ja) 光波長合分波器
JP3524336B2 (ja) 光学装置
JPH10274719A (ja) 光デバイス
JP2858656B2 (ja) 光波長合分波器
JP3784701B2 (ja) 光回路部材および光トランシーバ
CN102565932A (zh) 色散校正的阵列波导光栅
CN117043650A (zh) 低损耗、低串扰光模式多路复用器和光学交叉互连件
JP3878012B2 (ja) 光導波回路
JP5664686B2 (ja) 光素子
US6236781B1 (en) Duplicated-port waveguide grating router having substantially flat passbands
US6370296B1 (en) Dense wavelength division multiplexer/demultiplexer with parallel separation of wavelengths utilizing glass block interruption of the optic signal
JP4150374B2 (ja) アレイ導波路型波長合分波器
US20030002786A1 (en) Optical multiplexer/demultiplexer
JP3857925B2 (ja) 光合分波器
JP2005164758A (ja) 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法
JP2001051140A (ja) 3つの導波路を備える光マルチプレクサ/デマルチプレクサ
JP3832742B2 (ja) 光合分波装置
WO2003005086A1 (fr) Dispositif a reseau a guides d&#39;ondes en faisceau (awg) asymetrique
JP3682000B2 (ja) 導波路型光合分波回路
JP4238069B2 (ja) 光波長合分波装置
JP2006154123A (ja) 多チャンネルアレイ導波路回折格子型合分波器およびアレイ導波路と出力導波路の接続方法
JP3931834B2 (ja) 光波長合分波器
JP5798096B2 (ja) アレイ導波路回折格子型ルータ
KR100342533B1 (ko) 파장 가변형 광파장 분할기 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030218.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11374776

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004819463

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067010234

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004819463

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11374776

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067010234

Country of ref document: KR