WO2005051024A1 - 私設網を利用した移動通信システム、中継ノード及び無線基地制御局 - Google Patents

私設網を利用した移動通信システム、中継ノード及び無線基地制御局 Download PDF

Info

Publication number
WO2005051024A1
WO2005051024A1 PCT/JP2004/017257 JP2004017257W WO2005051024A1 WO 2005051024 A1 WO2005051024 A1 WO 2005051024A1 JP 2004017257 W JP2004017257 W JP 2004017257W WO 2005051024 A1 WO2005051024 A1 WO 2005051024A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
mobile communication
relay node
private network
Prior art date
Application number
PCT/JP2004/017257
Other languages
English (en)
French (fr)
Inventor
Yukinori Suda
Morihisa Momona
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/580,013 priority Critical patent/US20070105549A1/en
Priority to EP04818979A priority patent/EP1689201A1/en
Priority to JP2005515659A priority patent/JPWO2005051024A1/ja
Publication of WO2005051024A1 publication Critical patent/WO2005051024A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to a mobile station that includes a radio base station and a radio base station connected to the radio base station, and provides mobile communication services to mobile terminals that can be connected to the radio base station.
  • the present invention relates to a communication system, and more particularly, to a mobile communication system that can provide a mobile communication service to a user in an indoor area using a private network.
  • the present invention relates to a relay node and a radio base station used in the mobile communication system, a program for realizing functions of the mobile communication system, the relay node and the radio base station, and a mobile communication method.
  • a mobile communication system using such a private network requires the following new functions.
  • a centralized bandwidth control method by a policy server is generally used as a bandwidth control method in a private network.
  • the policy server distributes traffic information necessary for packet identification and bandwidth control information including bandwidth control rules to routers and LAN devices such as Ethernet (R) switches in advance.
  • the LAN device located at the edge of the private network is an end host based on the traffic information.
  • Identifies the packet using the IP header and L4 header of the packet received from the Internet, and responds to the corresponding bandwidth control information. After adding the mark to the bucket, the packet is forwarded to the next hop LAN device.
  • Non-edge LAN devices perform bandwidth control on a packet basis based on the mark added by the edge LAN device and the bandwidth control information distributed from Policy Sano.
  • IPsec-based VPN Virtual Private
  • a VPN gateway is set up outside the control of the private network, the radio base station and the radio base station always communicate via the VPN gateway, and the radio base station and the VPN gateway are controlled by the radio base station. It can be realized by applying the encryption technology based on IPsec between the station and the wireless base station.
  • Patent Document 1 a technique for performing communication between a wireless terminal device and a wired terminal device while maintaining security is disclosed in Patent Document 1. ing.
  • Patent Document 2 A technique related to a method of configuring a virtual private network in conventional mobile data communication is disclosed in Patent Document 2, for example.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-333110
  • Patent Document 2 JP-A-10-032610
  • the third party authentication is used by using the route control information between the radio base station and the radio base stations as the VPN gateway.
  • IPsec SA Security Association
  • An object of the present invention is to provide a mobile communication service using a private network, to prevent congestion of lines in the private network due to an increase in mobile communication traffic, and to hinder other traffic.
  • An object of the present invention is to provide a messy mobile communication system.
  • Another object of the present invention is to provide a mobile communication system capable of simplifying the work of introducing an indoor system even when the number of radio base stations to be installed increases. .
  • a first mobile communication system includes a radio base station, and a radio base station connected to the radio base station.
  • a radio base station In a mobile communication system that provides mobile communication services,
  • the wireless base station is arranged in a private network, and a relay node installed in the private network Relays mobile communication traffic transmitted between the radio base station and the radio base station transmitted on the private network, and when the mobile terminal originates or receives a call, the relay node establishes a connection in the private network. And performing a reception determination process in cooperation with the band management function of (a) and providing a communication line to the mobile terminal when the reception is permitted.
  • a second mobile communication system includes a radio base station, and a radio base station connected to the radio base station.
  • a radio base station In a mobile communication system that provides mobile communication services,
  • the wireless base station is arranged in a private network, and relays mobile communication traffic between the wireless base station and the wireless base station transmitted on the private network by a relay node installed in the private network.
  • a pre-shared key required for generating the second encryption key is generated by a key exchange mechanism between the radio base station and the radio base station, and the radio base station sends the pre-shared key to the relay node. It is characterized by notification.
  • a third mobile communication system includes a radio base station, and a radio base station connected to the radio base station.
  • the radio base station is arranged in a private network, and a relay node connected between the radio base station and the private network and the radio base station is provided.
  • the mobile communication traffic is transmitted in the private network, and relays mobile communication traffic between the radio base station and the radio base station transmitted on the private network by the relay node;
  • the second encryption key is dynamically generated by a key exchange mechanism between the radio network controller and the radio base station, and the radio network controller notifies the relay node of the second encryption key. It is characterized.
  • the relay node and the radio network controller according to the present invention are used in a mobile communication system. is there.
  • the program according to the present invention implements the functions of the relay node and the radio network controller according to the present invention. Further, the mobile communication method of the present invention is used for a mobile communication system.
  • a first effect of the present invention is that when a mobile communication service is provided using a private network as a line between a radio base station and a radio base station, a line in the private network is generated due to mobile communication traffic.
  • the purpose is to prevent congestion and not to hinder other traffic.
  • the relay node receives mobile communication traffic transmitted between the radio base station and the radio base station transmitted on the private network by the relay node, and the relay node cooperates with the bandwidth management function in the private network. This is for performing a determination process and providing a communication line to the mobile terminal when the reception is permitted.
  • a second effect of the present invention is that work at the time of introducing an indoor system can be simplified.
  • the pre-shared key required to generate the encryption key is generated by a key exchange mechanism between the radio network controller and the radio base station, the radio network controller notifies the relay node of the pre-shared key, and the relay node This is for generating an encryption key with the wireless base station using the notified pre-shared key, and performing the encryption communication.
  • the encryption key is dynamically generated by a key exchange mechanism between the radio network controller and the radio base station, the radio network controller notifies the relay node of the encryption key, and the relay node uses the notified encryption key. This is for performing encrypted communication.
  • LAN20 which is a private network to which personal computers (PCs) 110 and the like are connected, is constructed by Ethernet (R) (Ethernet (R)), and has a firewall 90 and a VPN (relay node). It is connected to the Internet 10 via a Virtual Private Network (GateWay) 100.
  • the mobile communication core network 30 is connected to the Internet 10 via a radio base station (radio network controller) 70 and a mobile network gateway 120.
  • the radio base stations 60-63 are connected to the LAN 20 as a private network (a private network, for example, a network constructed privately by a company), and the radio base station 70 and the radio base station 60 are connected.
  • a private network for example, a network constructed privately by a company
  • the Internet network 10 and the LAN 20 are used as lines, and communication is performed through the VPN gateway 100 and beyond the firewall 90.
  • the mobile communication operator provides the mobile terminal 80 with a data communication service such as Internet access.
  • the inside of the LAN 20 is operated with a private address
  • the Internet network 10 is operated with a global address.
  • the IPsec ESP Encapsulation Security Payload
  • the Internet network 10 uses the global IP address in the external IP header, and the LAN 20 uses the IP address.
  • a private IP address is used, and an IP address uniquely assigned to the radio base station control station 70 and the radio base stations 60 to 63 by the operator (hereinafter, referred to as an operator-specific address) is used for the internal IP header.
  • the LAN 20 is configured as shown in FIG. 2, for example.
  • the LAN 20 includes a router 210 and a plurality of Ethernet (R) switches 220-223, and the wireless base station 60 and the PC 110 are connected to Ethernet (R) switches 221 and 223, respectively.
  • the router 210 and the Ethernet (R) switches 220-223 are hereinafter collectively referred to as LAN devices.
  • the LAN 20 performs bandwidth control, and the present embodiment shows a case where a centralized bandwidth control is performed by the policy server 200 that realizes the bandwidth management function.
  • the policy server 200 is set in advance with traffic information describing the characteristics of the traffic and the bandwidth control information necessary for performing bandwidth control on the traffic, and the policy server 200 activates the LAN device. Is detected, the traffic information and bandwidth control information are distributed to LAN devices using the Common Open Policy Service (COPS) protocol, and each LAN device responds to packets received based on the notified bandwidth control information.
  • COPS Common Open Policy Service
  • Each LAN device reports a band control state to the policy server 200 using SNMP (Simple Network Management Protocol), and the policy server 200 centrally manages the band control state of the entire LAN 20. Similar band control is performed for mobile communication traffic flowing through the LAN 20.
  • mobile communication traffic There are two types of mobile communication traffic: signaling data and user data. For signaling data traffic, the method described below is used. Perform bandwidth control.
  • the traffic information and the band control information of the signaling data are set in the policy server 200 in advance, and the policy server 200 distributes the traffic data to each LAN device, so that each LAN device performs band control on the signaling data traffic.
  • Band control is performed on user data by the method described below.
  • the VPN gateway 100 receives the QoS signaling transmitted by the radio network controller 70 when the mobile terminal 80 originates or receives a call, and the VPN gateway 100 extracts the traffic information of the user data included in the QoS signaling. Then, the traffic information is notified to the policy server 200.
  • the policy server 200 determines whether or not the bandwidth described in the traffic information can be permitted. When the policy server 200 permits the reception, the bandwidth control information and the traffic information for which the reception is permitted are distributed to the LAN device or all the LAN devices on the route of the mobile communication traffic, and the route of the mobile communication traffic is distributed. The above LAN device performs bandwidth control based on the information notified to the user data traffic.
  • the radio base station 70 the radio base stations 60, 61, 62, 63, and the VPN that constitute the mobile communication system according to the first embodiment of the present invention
  • the configuration of the gateway 100 and the policy server 200 will be described.
  • the radio base station 70 has, for example, a configuration as shown in FIG. More specifically, the radio network controller 70 has two interfaces, an IF (interface) 300 on the mobile communication core network side and an IF (interface) 310 on the Internet side, and has L2 processing units 320 and 410 and an IP transport processing unit. 430, a mobile radio communication protocol processing unit 330, a mobile radio communication control unit 360, and a band control processing unit 440.
  • the mobile radio communication protocol processing unit 330 includes a signaling processing unit 340 and a user data processing unit 350.
  • Inside the IP transport processing unit 440 there are an IP processing unit 380, an L4 processing unit 370, and an IPsec processing unit 410.
  • the IPsec processing unit 410 holds ESP (Encryption Security Payload) SA (Security Association) information 420.
  • ESP Encryption Security Payload
  • SA Secure Association
  • the signaling data and user data received from the mobile communication core network side IF 300 are subjected to link processing in the L2 processing unit 320, and then the signaling data and user data received from the Internet side IF 310 are subjected to the L2 processing.
  • Part 400, IP processing part 380, L4 processing After the specified processing is performed by the unit 370, the specified processing is performed in the mobile radio communication protocol processing unit 330 based on the control of the mobile radio communication control unit 360.
  • mobile radio communication protocol processing section 330 transmits a packet from Internet-side IF 310, the processing is performed in the following procedure.
  • UDP User Datagram Protocol
  • IP processing unit 380 an internal IP header having the destination of the operator's unique IP address of the destination wireless base station 60 and the source of the operator's own IP address of the wireless base station 70 itself is added. Furthermore, it is encapsulated with an external IP header that has its own global IP address as the source and the global IP address of the VPN gateway 100 as the destination.
  • SA information of the destination radio base station 60 is included in the ESP SA information 420
  • the packet is encrypted in the IPsec processing unit 410, and an ESP header and an ESP trailer are added.
  • the L4 header in the packet is copied and added to the front of the ESP header.
  • the reason for this is to allow the LAN device of LAN 20 to view the L4 header required for packet identification.
  • the packet is transmitted from the Internet-side IF 310.
  • the reverse process is performed.
  • the IPsec processing section 410 performs decryption of the packet. If the packet cannot be decoded correctly, the packet is discarded.
  • the format of the packet transmitted and received by the IP transport processing unit 430 is configured, for example, as shown in (b) of FIG. As shown, the packet consists of an outer IP header 801, an L4 header 833, an ESP header 811, an inner IP header 821, an L4 header 831, a payload 841, and an ESP trailer 851.
  • the wireless base station 60 shown in FIG. 1 has, for example, a configuration as shown in FIG.
  • the radio base stations 61 to 63 described using the radio base station 60 as an example have the same configuration.
  • the radio base station 60 has two interfaces, a LAN-side IF 500 and a radio-side IF 510, and includes an L2 processing unit 520, a mobile radio communication protocol processing unit 530, and a mobile radio communication control unit. 560, an IP transport processing unit 630, and an Ethernet (R) (R) processing unit 600.
  • the mobile radio communication protocol processing unit 530 includes a signaling processing unit 540 and a user data processing unit 550.
  • the IP transport processing section 630 includes an L4 processing section 570, an IP processing section 580, and an IPsec processing section 610.
  • IPsec processing section 610 holds ESP SA information 620. The basic processing in each of these processing units is shown below.
  • the signaling data and user data received from the wireless side IF 510 are subjected to link processing in the L2 processing unit 520, and then the signaling data and user data received from the LAN side IF 500 are transmitted through the Ethernet (R)
  • the specified processing is performed in the processing section 600, the IP processing section 580, and the L4 processing section 570, the specified processing is performed in the mobile radio communication protocol processing section 530 based on the control of the mobile radio communication control section 560. Is done
  • the L4 processing unit 570 performs SCTP processing on signaling data and UDP processing on user data.
  • the IP processing unit 580 adds an internal IP header to the destination of the operator's unique IP address of the destination base transceiver station 70 and the source of the operator's unique IP address of the base transceiver station 60 itself.
  • encapsulation is performed using an external IP header that has its own private IP address as the source and the private IP address of the VPN gateway 100 as the destination.
  • the IPsec processing unit 610 encrypts the packet and adds an ESP header and an ESP trailer. Is done. Power! ] Then, when encrypting, copy the L4 header and add it to the front of the ESP header.
  • the packet is subjected to link processing in Ethernet (R) (R) processing unit 600, and then transmitted from LAN-side IF 500.
  • R Ethernet
  • R link processing
  • the reverse process is performed. If the received packet includes an ESP header and an ESP trailer, the packet is decoded in the IPsec processing unit 610. If the packet cannot be decoded correctly, the packet is discarded.
  • the format of the packet transmitted and received by the IP transport processing unit 630 is configured, for example, as shown in (a) of Fig. 7. As shown, the packet is composed of an outer IP header 800, an L4 header 832, an ESP header 810, an inner IP header 820, an L4 header 830, a payload 840, and an ESP trailer 850.
  • the VPN gateway 100 shown in FIG. 1 has a configuration as shown in FIG. 5, for example.
  • the VPN gateway 100 transmits the Global IP IF 750 and the Private IP IF 700, the Ethernet (R) processing units 710 and 740, the tunnel transfer processing unit 720, the IPsec processing unit 760, and the bandwidth control processing unit 780. Be composed.
  • the tunnel transfer processing unit 720 holds the routing control information 730, and the IPsec processing unit 760 holds the ESP SA information 770.
  • the path control information 730 includes a transfer table 900 as shown in FIG.
  • a transfer table 900 as shown in FIG.
  • FIG. 8 an example is shown in which a global address and a unique operator address for one radio base station, and a private address and a unique operator address for four radio base stations are registered in the transfer table 900! /
  • FIG. 9 shows an overall processing flow of the VPN gateway 100.
  • the VPN gateway 100 determines whether the source IP address in the external IP header of the received packet is a global address or a private address (step A-1). In the case of a private address, the type of the received packet is identified (step A-2).
  • step A-6 QoS signaling processing is performed (step A-6), and if it is an address notification, address notification packet processing is performed (step A-5). The details of these processes will be described later.
  • step A-4 it is determined whether or not the corresponding entry exists (step A-7). If there is, an IKE packet transfer process described later is performed (step A-8), and the corresponding entry is determined. If no entry exists, discard the received packet (step A-9).
  • step A-1 if the source IP address in the external IP header is a global address, the type of the received packet is identified (step B-l). If the received packet is an IKE packet, the global address of the forwarding table 900 is searched by the source IP address (step B-3), and it is determined whether the corresponding entry exists (step B-4).
  • IPsec packet processing described later is performed (step B-2).
  • step B-4 If the corresponding entry exists in step B-4, the IKE packet transfer process described later is performed (step B-5). If the corresponding entry does not exist, the received packet is discarded (step B- 6).
  • FIG. 10 shows a flow of the address notification packet processing in step A-5 in FIG.
  • the private address of the forwarding table 900 is searched by the source IP address (Step C-1), and it is determined whether the corresponding entry exists (Step C2).
  • Step C-3 sends an address notification response indicating that the processing has been completed normally (Step C4). If the corresponding entry exists, it returns an address notification response including an error (step C-5).
  • FIG. 11 shows a flow of a process of adding Z information and deleting Z information by the VPN gateway 100. In this case, first, it is determined whether the request is addition or deletion (step D-1).
  • step D-2 If the request is an addition request, check whether there is an entry having the same IP address, IPsec protocol type, and SPI (Security Parameter Index) included in the message (step D-2). . If the corresponding entry does not exist, a new SA information entry is added (step D-3), and an SA information addition response is returned (step D-4). If there is a corresponding entry in step D-2, an SA information addition response (error) is returned (step D-5).
  • SPI Security Parameter Index
  • Step D-6 the same entry as the information in the message exists, as in the addition processing. Check if it is present (Step D-6). If the corresponding entry exists, delete the SA information entry (step D-7) and return a SA information deletion response (step D-8). If the corresponding entry does not exist in Step D-6, an SA information deletion response (error) is returned (Step D-9).
  • FIG. 12 shows a flow of IPsec packet processing by the VPN gateway 100 in steps A-3 and B-2 in FIG.
  • step E-1 the IF that has received the packet is determined (step E-1).
  • the SA in the ESP header is searched for SA information to determine whether a matching entry exists (steps E-2 and E-3).
  • step E-4 If the corresponding entry does not exist, the packet is discarded (step E-4). If the corresponding entry exists, the packet is decrypted using the encryption key corresponding to the corresponding SA information (step E-5), and the corresponding entry of the SA information is determined by the information of the internal IP header and the L4 header. Search to determine if a matching entry exists (steps E-6, E-7). If the corresponding entry does not exist, discard the packet (step E-8).
  • step E-9 encryption is performed using the encryption key corresponding to the corresponding SA information (step E-9), and the tunnel destination IP address of the SA information is set to the destination IP. And perform encapsulation transfer (step E-10).
  • the SA in the ESP header is searched for SA information and it is determined whether a matching entry exists (steps E-11 and E-12).
  • step E-13 If the corresponding entry does not exist, the packet is discarded (step E-13). If the corresponding entry exists, the packet is decrypted using the encryption key corresponding to the corresponding SA information (step E-14), and the packet type is checked (step E-15).
  • step E-16 a QoS signaling process described later is performed (step E-16), and in the case of a SA information addition Z deletion request, the SA information addition Z deletion process shown in FIG. 11 is performed (step E). — 17).
  • step E-15 if the packet type is other than the above, the corresponding entry of the SA information is searched using the information of the internal IP header and the L4 header, and it is determined whether a matching entry exists. Make a decision (steps E-18, E-19). If the corresponding entry does not exist, the packet is discarded (step E-20). If the corresponding entry exists, the packet is encrypted using the encryption key corresponding to the corresponding SA information (step E-21), and the external IP addressing the tunnel end IP address of the SA information as the destination Replace with the header and perform encapsulation transfer (step E-22).
  • FIG. 13 shows a flow of the IKE packet transfer process by the VPN gateway 100 in steps A-8 and B-5 in FIG.
  • the interface (IF) that has received the packet is determined (step F-1).
  • reception IF is a private IP IF
  • the private address in the transfer table 900 is searched for the source IP address, and it is determined whether a matching entry exists (steps F-2 and F-3).
  • step F-4 If the corresponding entry does not exist, the packet is discarded (step F-4).
  • step F-5 If the corresponding entry exists, the external IP header is deleted (step F-5), and an IP header destined to the global address described in the corresponding entry is added, and the encapsulation transfer is performed. Perform (Step F-6).
  • step F-1 the global address in the forwarding table 900 is searched for the source IP address, and it is determined whether a matching entry exists (step F-1). -7, F-8).
  • step F-9 If the corresponding entry does not exist, the packet is discarded (step F-9). If the corresponding entry exists, search the forwarding table 900 for the operator's unique address of the wireless base station with the destination IP address in the internal IP header, and determine whether a matching entry exists (step F-10, Fl 1).
  • step F-12 If the corresponding entry does not exist, the packet is discarded (step F-12). If the corresponding entry exists, the external IP header is deleted (step F-13), an IP header destined for the private address described in the corresponding entry is added, and encapsulated transfer is performed (step F-13). Step F—14).
  • FIG. 14 shows an operation flow of the QoS signaling processing by the VPN gateway 100 in step A-6 of FIG. Also in this case, first, the reception IF of the packet is determined (step G-1).
  • the reception judgment result in the received bandwidth control response (COPS Decision) message is checked (step G-2).
  • step G-4 the traffic information and the bandwidth control information notified by the bandwidth control response message are extracted (step G-4), and the extracted various information is included in the QoS signaling, and Transmit to control station 70 (step G-5).
  • step G-6 traffic information in the QoS signaling is extracted (step G-6), and a bandwidth control request (COPS Request) message including the extracted traffic information is sent. Create and send to policy server 200 (Step G-7).
  • COPS Request bandwidth control request
  • the policy server 200 has a configuration as shown in FIG. 6, for example. More specifically, the policy server 200 includes a LAN IF 1300, an Ethernet (R) (R) processing unit 1310, an IP processing unit 1320, an L4 processing unit 1330, a control protocol processing unit 1340, and a bandwidth control processing unit 1350. It is composed.
  • the control protocol processing unit 1340 includes a COPS processing unit 1360 and an SNMP processing unit 1370. The basic processing contents of each of these processing units are shown below.
  • the SNMP processing unit 1370 receives the SNMP message from the LAN device of the LAN 20 received via the LAN IF 1300, the Ethernet (R) processing unit 1310, the IP processing unit l320, and the L4 processing unit 1330, and The bandwidth control status information is extracted and notified to the bandwidth control processing unit 1350.
  • the bandwidth control processing unit 1350 collects and manages such information, and centrally manages the bandwidth control state in the LAN 20.
  • the COPS processing unit 1360 Upon receiving the instruction from the band control processing unit 1350, the COPS processing unit 1360 notifies the LAN device of the band control information and the traffic information using a COP Decision message.
  • the bandwidth control request message sent from the VPN gateway 100 is 00, is sent to the COPS processing unit 1360 via the Ethernet (R) processing unit 1310, IP processing unit 1320, and L4 processing unit 1330, and the COPS processing unit 1360 controls the traffic information and the band control in the band control request message.
  • the information is extracted and notified to the bandwidth control processing unit 1350.
  • bandwidth control processing section 1350 makes a reception determination based on the collected bandwidth control information, and notifies COPS processing section 1360 of the determination result together with the permitted bandwidth control information. If the determination result is “OK”, the COPS processing unit 1360 generates a bandwidth control response message including the determination result and the permitted bandwidth control information, and transmits the message to the VPN gateway 100. It also distributes traffic information and bandwidth control information to LAN devices or all LAN devices on the mobile communication traffic route of LAN 20.
  • FIG. 15 shows a transmission / reception packet sequence 1000 of the radio base station 60, a transmission / reception packet sequence 1010 of the VPN gateway 100, and a transmission / reception packet sequence 1020 of the radio base station 70.
  • an SA is established in advance between the VPN gateway 100 and the radio network controller 70 (encryption communication can be performed using the first encryption key).
  • the pre-shared key required when establishing an SA between the base station 60 and the VPN gateway 100 (when enabling encrypted communication using the second encryption key) is transmitted to the wireless base station 70 and the wireless base control station 70. It is assumed that it is set in the base station 60 in advance.
  • the wireless base station 60 When the wireless base station 60 is activated, it acquires its own private IP address by using Dynamic Host Configuration Protocol (HCP), and then acquires the private IP address of the VPN gateway 100 using DNS (Domain Name Server). I do.
  • HCP Dynamic Host Configuration Protocol
  • DNS Domain Name Server
  • the VPN gateway 100 is notified of the global address of the radio base station 70 and the operator's unique address, and the private address of the radio base station 60 and the operator's unique address by using an address notification message.
  • the VPN gateway 100 sets the address group notified to the forwarding table 900, sets a timer for deleting the set entry, and notifies the address notification. Reply the response message (step (1)).
  • the wireless base station 60 that has received the reply message establishes an ISAKMP (Internet Security Association key management protocol) SA with the VPN gateway 100 and two IPsec SAs, upstream and downstream (step (2) — ( Four) ).
  • ISAKMP Internet Security Association key management protocol
  • the VPN gateway 100 performs only the address conversion of the IKE packet received from the wireless base station 60, and transfers it to the wireless base control station 70.
  • the IKE packet received from the radio network controller 70 also performs only address conversion, and is transferred to the radio base station 60.
  • the radio network controller 70 transmits all the SA information to the VPN gateway 10 by using an SA information addition message.
  • the VPN gateway 100 adds the received SA information to the database, cancels the timer set in step (1), and notifies the completion of the setting by the SA information addition response message (step ( Five) ).
  • IPsec encrypted communication by the second encryption key
  • the control station 70 can start the encryption communication by the IPsec SA (step (6)).
  • FIG. 16 shows an operation sequence when a terminal receives a call.
  • the packet transmission / reception sequence 1100 of the radio base station 70, the packet transmission / reception sequence 1110 of the VPN gateway 100, the packet transmission / reception sequence 1120 of the policy server 200, the packet transmission / reception sequence 1130 of the radio base station 60, and the mobile terminal 80 A packet transmission / reception sequence 1140 is shown.
  • the radio network controller 70 Upon receiving the paging request message from the mobile communication core network 30 (step (1)), the radio network controller 70 paging the mobile terminal 80 (step (2)) The terminal 80 transmits an RRC connection request to the radio network controller 70 (step (3)), and upon receiving this, the radio network controller 70 transmits a radio link setting request to the radio base station 60 (step (4) )).
  • the radio base station 60 When the setting of the radio link is completed, the radio base station 60 returns a radio link setting response to the radio base station 70 (step (5)), and the radio base station 70 moves the RRC connection setting. Send to terminal 80 (step (6)).
  • the mobile terminal 80 sets various parameters, and then transmits a completion of RRC connection setting to the radio network controller 70 (step (7)). Thereafter, the mobile terminal 80 performs location registration by a cell update data message (step (8)).
  • the radio base station 70 Upon receiving this, the radio base station 70 returns a cell update confirmation message (step (9)) and returns a paging response to the mobile communication core network 30 (step (10)).
  • the radio base station 70 receives the radio access bearer allocation request message sent from the mobile communication core network 30 (step (11)), and performs radio communication based on the QoS information included in the radio bearer establishment request message. Set the link.
  • the radio base station 70 transmits a radio link setting request to the radio base station 60 (step (12)).
  • the radio base station 60 returns a radio link setting response. (Step (13)).
  • the radio base station 70 receives this, the radio base station 70 generates QoS signaling including the requested QoS information and transmits it to the radio base station 60 (step (14)).
  • the VPN gateway intercepts this QoS signaling and transmits a bandwidth control request message including traffic information extracted from the QoS signaling power to the policy server 200 (step (15)).
  • the QoS signaling here is, for example, IP-ALCAP (Access Link Control Application Part) signaling.
  • the policy server 200 makes an admission judgment based on the collected band control state information and the traffic information notified in the band control request message, and converts the admission judgment result and the permitted band control information into a band control response message. To send to the VPN gateway 100 Know (Step (16)).
  • the VPN gateway 100 includes the reception determination result and the band control information included in the band control response message in the QoS signaling and transmits the result to the radio base station 70 (step (17)).
  • the policy server 200 determines that the reception is permitted.
  • the policy server 200 When the acceptance is permitted, the policy server 200 also distributes traffic information and bandwidth control information to the LAN devices of the LAN 20 (not shown). When the securing of the band in the LAN is completed, the radio base station 70 transmits a radio bearer setting to the mobile terminal 80 (step (18)).
  • the mobile terminal 80 that has received this sets the radio bearer, and when completed, returns a radio bearer setting completion (step (19)). Thereafter, the mobile terminal 80 performs data communication via the radio base station 70 and the mobile communication core network 30.
  • the LAN device on the path of the mobile communication traffic of the LAN 20 performs the bandwidth control of the user data traffic based on the notified traffic information and the bandwidth control information.
  • FIG. 17 shows an operation sequence when mobile terminal 80 originates a call.
  • the packet transmission / reception sequence 1200 of the radio base station 70 the packet transmission / reception sequence 1210 of the VPN gateway 100, the packet transmission / reception sequence 1220 of the policy server 200, the packet transmission / reception sequence 1230 of the radio base station 60, and the mobile terminal 80
  • the packet transmission / reception sequence 1240 is shown!
  • the mobile terminal 80 transmits an RRC connection request to the radio network controller 70, triggered by a data transmission request (step (1)). Upon receiving this, the radio base station 70 transmits a radio link setting request to the radio base station 60 (step (2)). The radio base station 60 validates the setting of the radio link and returns a radio link setting response to the radio base station 70 (step (3)).
  • the radio base station 70 Upon receiving the radio link setting response from the radio base station 60, the radio base station 70 transmits the RRC connection setting to the mobile terminal 80 (step (4)), and the mobile terminal 80 confirms that the radio link setting has been established. Upon completion, the RRC connection setting completion is transmitted to the radio network controller 70 (step (5)). Further, the mobile terminal 80 transmits an active bait PDP context request including the QoS information of the service to be used to the mobile communication core network 30 (step (6)).
  • mobile communication core network 30 issues a radio access bearer allocation request to the radio base station. Transmit to your station 70 (step (7)).
  • the radio base station 70 sets a radio link based on the QoS information included in the radio access bearer assignment request. Specifically, the radio base station 70 transmits a radio link setting request to the radio base station 60 (step (8)), and when the radio base station 60 completes the setting of the radio link, a radio link setting response is sent. Return it (step (9)).
  • the radio base station 70 generates QoS signaling including the QoS information and transmits it to the radio base station 60 (step (10)).
  • the VPN gateway 100 intercepts the QoS signaling, and transmits a bandwidth control request message including the received QoS signaling power and the extracted QoS information to the policy server 200 (step (11)).
  • the policy server 200 makes an admission judgment based on the collected band control status information and the QoS information notified in the band control request message, and includes the admission judgment result and the permitted band control information in the band control response message. Notification to be sent to the VPN gateway 100 (step (12)).
  • the VPN gateway 100 includes the reception determination result and the band control information included in the band control response message in the QoS signaling and transmits the result to the radio base station 70 (step (13)). Also in the present embodiment, an example is shown in which the policy server 200 determines that reception is permitted.
  • the policy server 200 distributes the traffic information and the bandwidth control information to the LAN devices of the LAN 20 (not shown). Thereafter, the radio base station 70 notifies the mobile terminal 80 of the radio bearer setting (step (14)).
  • the mobile terminal 80 sets the radio link, and when completed, notifies the radio base station 70 of the radio bearer setting completion (step (15)). In response to this, the radio network controller 70 returns a radio access bearer allocation response to the mobile communication core network 30 (step (16)).
  • the mobile terminal 80 Upon receiving the activate PDP context acceptance from the mobile communication core network 30 (step (17)), the mobile terminal 80 performs data communication via the radio base station control station 70 and the mobile communication core network 30. Do.
  • the LAN device on the path of the mobile communication traffic of LAN 20 controls the bandwidth of user data traffic based on the notified traffic information and bandwidth control information.
  • the radio base station 70 has, for example, the configuration shown in FIG.
  • the second embodiment In comparison with the configuration of the radio network controller 70 in the first embodiment, the second embodiment
  • the IP transport processing unit 430 has an authentication processing unit 450 in addition to the IP processing unit 380, the L4 processing unit 370, and the IPsec processing unit 410.
  • Authentication processing section 450 performs authentication with wireless base stations 60-63, and when authentication is successful, also generates a pre-shared key using a key exchange mechanism.
  • the 70 notifies the VPN gateway 100 of the generated pre-shared key.
  • the VPN gateway 100 establishes an IPsec SA with the wireless base stations 60-63 using the pre-shared key.
  • the wireless base station 60 has, for example, the configuration shown in FIG. In the present embodiment, the power of the radio base stations 61 to 63 described for the radio base station 60 has the same configuration. Compared with the configuration of the wireless base station 60 in the first embodiment, in the present embodiment, the IP transport processing unit 630 is added to the IP processing unit 580, the L4 processing unit 570, and the IPsec processing unit 610 to perform the authentication processing. A section 640 is provided. The authentication processing unit 640 has the same function as the above-described authentication processing unit 450 for performing authentication with the radio network controller 70.
  • FIG. 20 shows an overall processing flow.
  • processing is started by receiving a packet, and the type of the received packet is determined (step H-1). If the received packet is an IPsec packet, IPsec packet processing described later is performed (step H-2). If the packet is an IKE packet, it performs IKE packet processing specified in RFC (Request For Comments) 2409 (step H-3). If the packet is an authentication packet, an authentication packet transfer process described later is performed (step H-4). If the message is a bandwidth control response message, QoS signaling processing is performed (step H-5). The QoS signaling process here is the same as the QoS signaling process shown in the first embodiment. If the received packet is other than the above, discard the packet (step H-6).
  • FIG. 21 shows a flow of the IPsec packet processing of the VPN gateway 100 in the above step H-2.
  • the global I F also receives the packet and searches for the SA information by SPI in the ESP header. If the corresponding entry exists and the packet type is SA information addition Z deletion request, the SA is retrieved in step E-17.
  • the information addition Z deletion processing was performed, in the present embodiment, when the packet type is an authentication packet that is not an SA information addition Z deletion request, the authentication information transfer processing is performed instead of the SA information addition Z deletion processing. (Step I17) is different from the first embodiment.
  • FIG. 22 shows the flow of the authentication packet transfer process in step I17 of FIG. In this case, first, the IF that has received the packet is determined (step J-l).
  • the received IF is a private IP IF
  • step J4 If the corresponding entry does not exist, the packet is discarded (step J4).
  • step J5 decryption is performed based on the corresponding SA information (step J5), and the SA information is encapsulated with the IP address of the tunnel termination destination and transferred (step J5).
  • step J-7 it is determined whether the received IF is a pre-shared key notification message.
  • the pre-shared key in the message is extracted and notified to the IPsec processing unit 760 (step J-8).
  • the transfer table 900 is searched with the destination IP address of the internal IP header, and it is determined whether there is an entry to be matched (step j- 9 , step 10 ).
  • step J11 If the corresponding entry does not exist, the packet is discarded (step J11). If the corresponding entry exists, it is encapsulated with the private address of the corresponding entry and transferred (step J-12).
  • FIG. 23 shows a packet transmission / reception sequence 1400 of the radio base station 60, a packet transmission / reception sequence 1410 of the VPN gateway 100, and a packet transmission / reception sequence 1420 of the radio base station 70.
  • the radio base station 60 When the radio base station 60 is activated, it performs mutual authentication with the radio base station 70 using an authentication key set in advance (step (1)).
  • an authentication key set in advance
  • a challenge Z response type password method using an authentication key can be used.
  • the pre-shared key is generated from the authentication key in the radio base station 60 and the radio base station 70 by the key exchange mechanism (step (2)).
  • the key exchange mechanism here, for example, a Diffie-Hellman key exchange method can be used.
  • the radio network controller 70 notifies the VPN gateway 100 of the pre-shared key (step (3)).
  • the radio base station 60 establishes an IS AKMP SA using the pre-shared key generated by the above-described key exchange mechanism (step (4)).
  • the IPsec SA (up) and the IPsec SA (down) are also established (steps (5) and (6)).
  • the wireless base station 60 and the wireless base control station 70 can perform encrypted communication by IPsec ESP via the VPN gateway 100 (step (7)). .
  • the functions of the VPN gateway 100 and the radio base station 70 are implemented not only by hardware but also by a program that implements the functions of the VPN gateway 100 by software.
  • (Relay node program) and a control program (wireless base control station program) that realizes the functions of the above-mentioned radio base station 70 as software by using the computers that constitute the VPN gateway 100 and the radio base station 70, respectively. It can be realized by executing the above.
  • These programs are magnetic
  • the functions described above are realized by being stored in a disk, a semiconductor memory, or other recording medium, and loaded from the recording medium into a computer as the VPN gateway 100 and the radio base station 70 to control the operation of the computer. .
  • FIG. 24 is a block diagram illustrating a configuration example of a computer.
  • the VPN gateway 100 and the radio network controller 70 are implemented as programs on a computer. As shown in FIG. 24, the program is stored in a disk device 2004 such as a node disk, and is stored in a memory 2003 such as a DRAM. The traffic information included in the mobile communication control signaling between the station and the radio base station, the established SA information, and information such as a pre-shared key required for establishing the SA are stored, and the program is executed by the CPU 3206 and the VPN gateway 100 Thus, the function of the radio base station 70 is realized.
  • the keyboard 3001 is an input means.
  • the CRT or LCD display (shown as LCD in the figure) 2002 displays information processing status and the like. 3005 indicates a bus such as a data bus.
  • the present invention has been described with reference to the embodiments.
  • the present invention is not necessarily limited to the above-described embodiments, and can be variously modified and implemented within the scope of the technical idea.
  • the present invention is used for a mobile communication system that enables a mobile communication service to be provided to a user in an indoor area using a private network.
  • FIG. 1 is a block diagram showing an overall configuration of a network according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a LAN according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a radio network controller in the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a wireless base station according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a VPN gateway according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a policy server according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration example of a transfer table according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a packet format in the first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating overall processing in the VPN gateway according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a VPN gateway address notification process according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating SA information addition Z deletion processing of the VPN gateway according to the first embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating IPsec packet processing of a VPN gateway according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating IKE packet processing of the VPN gateway according to the first embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating QoS signaling processing in the VPN gateway according to the first embodiment of the present invention.
  • FIG. 15 is a sequence diagram for starting communication between the radio base station and the radio base station in the first embodiment of the present invention.
  • FIG. 16 is a sequence diagram of a band control operation at the time of an incoming call in the first embodiment of the present invention.
  • FIG. 17 is a sequence diagram of a band control operation at the time of calling in the first embodiment of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a radio base station in the second embodiment of the present invention. .
  • FIG. 19 is a block diagram showing a configuration of a radio base station according to a second embodiment of the present invention.
  • FIG. 20 is a flowchart illustrating overall processing of a VPN gateway according to a second embodiment of the present invention.
  • FIG. 21 is a flowchart of an IPsec packet processing in a VPN gateway for explaining a second embodiment of the present invention.
  • FIG. 22 is a flowchart showing an authentication packet transfer process of the VPN gateway according to the second embodiment of the present invention. It is a flowchart explaining.
  • FIG. 23 is a sequence diagram of a communication start sequence between the radio base station and the radio base station in the second embodiment of the present invention.
  • FIG. 24 is a block diagram illustrating a configuration example of a computer.
  • IP processing unit 380, 580 IP processing unit
  • 1120, 1220 Packet transmission / reception sequence of policy server
  • 1140, 1240 Packet transmission / reception sequence of mobile terminal
  • Control protocol processing unit 1350 Band control processing unit 1360: COPS processing unit 1370: SNMP processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 移動端末80の発呼あるいは着呼時に、移動通信制御シグナリングを受信した中継ノードであるVPNゲートウェイ100が私設網であるLAN20内の帯域制御機構たるポリシーサーバ200と連携して受け付け判定を行い、受付が許可された場合に、移動端末80に通信回線を提供し、あるいは、無線基地局と無線基地制御局70間で鍵交換メカニズムにより動的に事前共有鍵を生成し、無線基地制御局70がVANゲートウェイ100に事前共有鍵を通知する。             

Description

明 細 書
私設網を利用した移動通信システム、中継ノード及び無線基地制御局 技術分野
[0001] 本発明は、無線基地制御局と、無線基地制御局に接続される無線基地局とから構 成され、無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムに関し、特に、私設網を利用して屋内エリア内のユーザに対して移動 通信サービスを提供することを可能にする移動通信システムに関する。また、当該移 動通信システムに用いられる中継ノード、無線基地制御局、及び移動通信システム, 中継ノード,無線基地制御局の機能を実現するプログラム、移動通信方法に関する
背景技術
[0002] 移動通信システムでは、ビル等の屋内の内部まで電波が届きにくいため、屋内で 移動端末を使用するユーザは安定した移動通信サービスを受けることができない。 屋内のユーザに対して安定した移動通信サービスを提供するためには、屋内をカバ 一するための移動通信専用の屋内システムの導入が必要となる。特に、 2GHz帯を 使用する 3G (Third Generation)サービスは 2G (Second Generation)サービスと比べ て、電波伝搬特性が良くないため、不感地帯となる屋内エリアが多くなる。
[0003] このような状況において、 3Gサービスの屋内エリアを 2Gサービスと同等にするため には、屋内システムを多数導入することが必要となる力 それに応じて移動通信オペ レータを多数配置することはコスト的な点で実現が難しい。そのため、より低コストな 屋内システムが要求されて 、る。
[0004] UMTS (Universal Mobile Telecommunications System)の標準化を行っている 3G PP (Third Generation Partnership Project)では、無線基地制御局(RNC)と無線基 地局間を IP網で接続可能とする IPトランスポートオプションを提供するリリース 5が定 義された。そこで、 IPトランスポートを利用した屋内システムの 1つのアプローチとして 、屋外回線に公衆インターネット網ゃ閉域 IP網、屋内回線に LAN等の私設網(例え ば、企業等が自身で私的に構築したネットワーク等)を利用する形態が考えられる。こ れにより、回線敷設コストを大幅に削減でき、屋内システムの導入コストを大幅に低減 可能となる。
[0005] このような私設網 (ネットワーク)を用いた移動通信システムでは、以下に示す新た な機能が要求される。
(1)私設網における移動通信トラヒックの帯域制御
(2)私設網内のファイアウォール ZNAPT(Network Address Port Translation)を越え た無線基地制御局 -無線基地局間通信の実現
(3)移動通信トラヒックのセキュリティ確保
(4)移動通信オペレータが移動通信ノードに対して独自に割り当てた IPアドレス体系 の維持
[0006] 上記(1)の機能に関して、私設網での帯域制御方法として、ポリシーサーバによる 集中型帯域制御方式が一般的である。本方式は、ポリシーサーバがルータやイーサ ネット (登録商標) (R)スィッチ等の LANデバイスに対してパケット識別に必要となるト ラヒック情報と帯域制御ルールを含む帯域制御情報を事前に配布し、私設網のエツ ジに位置する LANデバイスがトラヒック情報に基づきエンドホストある ヽはインターネ ットから受信したパケットの IPヘッダと L4ヘッダを用いてパケット識別を行 ヽ、該当す る帯域制御情報に応じたマークをバケツトに付加した後、次ホップの LANデバイスに 転送する。エッジでない LANデバイスは、エッジの LANデバイスが付カ卩したマークと ポリシーサーノ から配布された帯域制御情報に基づきパケット単位で帯域制御を行 うものである。
[0007] 上記(2)—(4)の機能に関しては、例えば IPsecベースの VPN(Virtual Private
Network:仮想私設ネットワーク)技術を利用することで実現可能である。具体的には、 VPNゲートウェイを私設網の管轄外に設置し、無線基地制御局と無線基地局は常 に VPNゲートウェイを介して通信を行い、無線基地制御局と VPNゲートウェイ間、無 線基地制御局と無線基地局間において IPsecによる暗号ィ匕通信技術を適用すること で実現できる。
[0008] なお、従来の移動通信システムの例としては、例えば、セキュリティを維持しつつ、 無線端末装置と有線端末装置間で通信を行うための技術が、特許文献 1に開示され ている。
[0009] 従来の移動データ通信における仮想私設網の構成方法に関する技術が、例えば 特許文献 2に開示されて ヽる。
特許文献 1:特開 2001- 333110号公報
特許文献 2 :特開平 10-032610号公報
発明の開示
発明が解決しょうとする課題
[0010] 上記の帯域制御方式において、移動通信トラヒックが私設網の帯域の大半を占有 した場合、私設網の回線が輻輳し、無線基地制御局 -無線基地局間の移動通信トラ ヒックの通信品質が劣化する、あるいは他の私設網内のトラヒックに支障をきたす可 能性がある。
[0011] また、上記の VPN方式では、無線基地制御局及び無線基地局が複数存在する場 合、無線基地制御局と無線基地局間の経路制御情報を VPNゲートウェイに、第三 者認証を利用せずに無線基地制御局 VPNゲートウェイ間と VPNゲートウェイー無 線基地局間での IPsec SA(Security Association)を確立する上で必要となる事前共 有鍵を VPNゲートウェイに予め設定しておく必要があり、設置する無線基地局の台 数が多くなつた場合に、屋内システムの導入時の作業が煩雑になる。
[0012] 本発明の目的は、私設網を用いて移動通信サービスを提供するに当たり、移動通 信トラヒックの増大に起因して私設網内回線が輻輳するのを防ぎ、他のトラヒックにも 支障をきたさない移動通信システムを提供することにある。
[0013] 本発明の他の目的は、設置する無線基地局の台数が多くなつた場合にも、屋内シ ステムの導入時の作業を簡易化することができる移動通信システムを提供することに ある。
課題を解決するための手段
[0014] 本発明による第 1の移動通信システムは、無線基地制御局と、前記無線基地制御 局に接続される無線基地局とから構成され、前記無線基地局と接続可能な移動端末 に対して移動通信サービスを提供する移動通信システムにおいて、
前記無線基地局を私設網内に配置し、前記私設網に設置された中継ノードにより 前記私設網上を伝送される前記無線基地制御局と前記無線基地局間の移動通信ト ラヒックの中継を行い、前記移動端末が発呼あるいは着呼した際に、前記中継ノード が前記私設網内の帯域管理機能と連携した受け付け判定処理を行い、受付が許可 された場合に前記移動端末に通信回線を提供することを特徴とする。
[0015] 本発明による第 2の移動通信システムは、無線基地制御局と、前記無線基地制御 局に接続される無線基地局とから構成され、前記無線基地局と接続可能な移動端末 に対して移動通信サービスを提供する移動通信システムにおいて、
前記無線基地局を私設網内に配置し、前記私設網に設置された中継ノードにより 前記私設網上を伝送される前記無線基地制御局と前記無線基地局間の移動通信ト ラヒックの中継を行い、
前記無線基地制御局と前記中継ノード間では第 1の暗号鍵を、前記無線基地局と 前記中継ノード間では第 2の暗号鍵を用いて暗号ィ匕通信を行 、、
前記第 2の暗号鍵の生成に必要な事前共有鍵を前記無線基地制御局と前記無線 基地局間の鍵交換メカニズムにより生成し、前記無線基地制御局が前記中継ノード に前記事前共有鍵を通知することを特徴とする。
[0016] 本発明による第 3の移動通信システムは、無線基地制御局と、前記無線基地制御 局に接続される無線基地局とから構成され、前記無線基地局と接続可能な移動端末 に対して移動通信サービスを提供する移動通信システムにお 、て、 前記無線基地 局を私設網内に配置し、前記無線基地局と前記私設網を介して接続される中継ノー ドと前記無線基地局間の前記移動通信トラヒックは前記私設網内を伝送され、前記 中継ノードにより前記私設網上を伝送される前記無線基地制御局と前記無線基地局 間の移動通信トラヒックの中継を行い、
前記無線基地制御局と前記中継ノード間では第 1の暗号鍵を、前記無線基地局と 中継ノード間では第 2の暗号鍵を用いて暗号ィ匕通信を行 、、
前記第 2の暗号鍵を前記無線基地制御局と前記無線基地局間の鍵交換メカニズ ムにより動的に生成し、前記無線基地制御局が前記中継ノードに前記第 2の暗号鍵 を通知することを特徴とする。
[0017] 本発明による中継ノード、無線基地制御局は移動通信システムに用いられるもので ある。また本発明によるプログラムは本発明による中継ノード、無線基地制御局の機 能を実現するものである。さらに、本発明の移動通信方法は移動通信システムに用 いられるちのである。
発明の効果
[0018] 本発明の第 1の効果は、無線基地局と無線基地制御局間の回線として私設網を用 いて移動通信サービスを提供するに当たり、移動通信トラヒックに起因して私設網内 の回線が輻輳するのを防ぎ、他のトラヒックに支障をきたさないことである。これは、中 継ノードにより前記私設網上を伝送される前記無線基地制御局と前記無線基地局間 の移動通信トラヒックを受信し、中継ノードが前記私設網内の帯域管理機能と連携し た受け付け判定処理を行 、、受付が許可された場合に前記移動端末に通信回線を 提供するためである。
[0019] 本発明の第 2の効果は、屋内システムの導入時の作業を簡易化できることである。
これは、の暗号鍵の生成に必要な事前共有鍵を無線基地制御局と無線基地局間の 鍵交換メカニズムにより生成し、無線基地制御局が中継ノードに事前共有鍵を通知 し、中継ノードは通知された事前共有鍵を用いて無線基地局との間で暗号鍵を生成 し、暗号ィ匕通信を行うためである。あるいは、暗号鍵を無線基地制御局と無線基地局 間の鍵交換メカニズムにより動的に生成し、無線基地制御局が中継ノードに暗号鍵 を通知し、中継ノードは通知された暗号鍵を用いて暗号ィ匕通信を行うためである。 発明を実施するための最良の形態
[0020] 図 1及び図 2に示すネットワーク構成図を用いて本発明の第 1の実施形態に係わる 移動通信システムを説明する。パーソナルコンピュータ(PC) 110等が接続された私 設の網である LAN20は、イーサネット (登録商標) (R) (Ethernet(R))で構築されてお り、ファイアウォール 90、中継ノードとなる VPN(Virtual Private Network)ゲートウェイ (GateWay)100を介してインターネット網 10と接続されている。一方、移動通信コア網 30は無線基地制御局(無線基地制御局: Radio Network Controllerと称する) 70と移 動網ゲートウェイ 120を介してインターネット網 10と接続されている。
[0021] また、無線基地局 60— 63は私設網(私設ネットワーク、例えば企業が私的に構築 したネットワーク)としての LAN20に接続され、無線基地制御局 70と無線基地局 60 一 63間の通信では、インターネット網 10及び LAN20を回線として利用し、 VPNゲ 一トウエイ 100を介することでファイアウォール 90を越えた通信を行う。このような形態 で、移動通信オペレータは移動端末 80に対してインターネットアクセス等のデータ通 信サービスを提供する。
[0022] さらに、 LAN20内はプライベートアドレスで運用されており、インターネット網 10は グローバルアドレスで運用されている。無線基地制御局 70と無線基地局 60— 63間 の通信では、セキュリティを確保するため IPsec ESP(Encapsulation Security Payload)トンネルモードを利用し、インターネット網 10では外部 IPヘッダにグローバル IPアドレスを、 LAN20ではプライベート IPアドレスを使用し、内部 IPヘッダにはオペ レータが無線基地制御局 70及び無線基地局 60— 63に独自に割り当てた IPアドレス (以降、オペレータ独自アドレスと称する)を使用する。
[0023] LAN20は例えば図 2のように構成される。図示するように、 LAN20はルータ 210と 複数の Ethernet (登録商標) (R)スィッチ 220— 223で構成されており、無線基地局 60と PC110はそれぞれ Ethernet(R)スィッチ 221、 223に接続されている(記述を簡 略化するため、以降ではルータ 210と Ethernet(R)スィッチ 220— 223を総称して L ANデバイスと呼ぶ。;)。また、 LAN20では帯域制御が行われており、本実施形態で は帯域管理機能を実現するポリシーサーバ 200による集中型の帯域制御を行ってい る場合を示している。その場合、ポリシーサーバ 200にはトラヒックの特性が記述され たトラヒック情報とそのトラヒックに対して帯域制御を行う上で必要となる帯域制御情報 が予め設定されており、ポリシーサーバ 200は LANデバイスの起動を検出すると、 C OPS(Common Open Policy Service)プロトコルを用いてトラヒック情報と帯域制御情 報を LANデバイスに配信し、各 LANデバイスは通知された帯域制御情報に基づ 、 て受信したパケットに対して帯域制御を行う。
[0024] また、各 LANデバイスは帯域の制御状態を SNMP(Simple Network Management Protocol)によりポリシーサーバ 200にレポートし、ポリシーサーバ 200は LAN20全体 の帯域制御状態を集中的に管理する。 LAN20を流れる移動通信トラヒックに対して も同様の帯域制御が行われる。移動通信トラヒックにはシグナリングデータとユーザデ ータの 2種類がある。シグナリングデータトラヒックに関しては以下に述べる手法により 帯域制御を行う。予めポリシーサーバ 200にシグナリングデータのトラヒック情報と帯 域制御情報を設定しておき、ポリシーサーバ 200が各 LANデバイスに配信すること で、各 LANデバイスはシグナリングデータトラヒックに対して帯域制御を行う。また、ュ 一ザデータに関しては以下に述べる手法により帯域制御を行う。
[0025] 移動端末 80が発呼あるいは着呼した際に無線基地制御局 70が送信する QoSシグ ナリングを VPNゲートウェイ 100が受信し、 VPNゲートウェイ 100が QoSシグナリング に含まれるユーザデータのトラヒック情報を抽出し、トラヒック情報をポリシーサーバ 20 0に通知する。ポリシーサーバ 200がトラヒック情報に記載の帯域を許容できるか否か の受付判定を行う。ポリシーサーバ 200が受付を許可した場合は、受付を許可した 帯域制御情報及びトラヒック情報を移動通信トラヒックの経路上の LANデバイス、ある いはすベての LANデバイスに配信し、移動通信トラヒックの経路上の LANデバイス はユーザデータトラヒックに対して通知された情報に基づき帯域制御を行う。
[0026] 次に、図 3—図 6を参照して、本発明の第 1の実施形態に係る移動通信システムを 構成する無線基地制御局 70、無線基地局 60、 61、 62、 63、 VPNゲートウェイ 100 及びポリシーサーバ 200の構成を説明する。
[0027] 無線基地制御局 70は、例えば図 3に示すような構成を備えている。具体的に説明 すると、無線基地制御局 70は、移動通信コア網側 IF (interface) 300とインターネット 側 IF (interface) 310の 2つのインタフェースを備え、 L2処理部 320, 410、 IPトランス ポート処理部 430、移動無線通信プロトコル処理部 330、移動無線通信制御部 360 、帯域制御処理部 440を備えて構成される。このうち、移動無線通信プロトコル処理 部 330の内部には、シグナリング処理部 340とユーザデータ処理部 350がある。 IPト ランスポート処理部 440の内部には、 IP処理部 380、 L4処理部 370、 IPsec処理部 4 10がある。 IPsec処理部 410は ESP(Encryption Security Payload) SA(Security Association)情報 420を保持する。これらの各処理部における基本的な処理を以下 で説明する。
[0028] 移動通信コア網側 IF300から受信したシグナリングデータ及びユーザデータは、 L 2処理部 320でリンク処理が行われた後、インターネット側 IF310から受信したシグナ リングデータ及びユーザデータについては、 L2処理部 400、 IP処理部 380、 L4処理 部 370でそれぞれ規定の処理が行われた後、移動無線通信プロトコル処理部 330 において移動無線通信制御部 360の制御に基づき規定の処理が行われる。
[0029] また、移動無線通信プロトコル処理部 330がインターネット側 IF310からパケットを 送信する場合、以下の手順で処理が行われる。
[0030] まず L4処理部 370において、シグナリングデータに対しては SCTP (Stream
Control Transmission Protocol)処理が、ユーザデータに対しては UDP (User Datagram Protocol)処理が行われる。次に、 IP処理部 380において、送信先の無線 基地局 60のオペレータ独自 IPアドレスを宛先、無線基地制御局 70自身のオペレー タ独自 IPアドレスを送信元とする内部 IPヘッダが付加される。さらに、自身のグロ一 バル IPアドレスを送信元、 VPNゲートウェイ 100のグローバル IPアドレスを宛先とす る外部 IPヘッダでカプセルィ匕される。その際、送信先の無線基地局 60の SA情報が ESP SA情報 420に含まれている場合には、 IPsec処理部 410においてパケットが 暗号化され、 ESPヘッダと ESPトレーラが付加される。
[0031] 加えて、暗号化する際には、パケット内の L4ヘッダをコピーして ESPヘッダの前部 に付加する。この理由は、 LAN20の LANデバイスがパケット識別する際に必要とな る L4ヘッダを閲覧できるようにするためである。
[0032] 当該パケットは L2処理部 400にお 、てリンク処理が行われた後、インターネット側 I F310から送信される。パケット受信時にはこれらの逆の処理が行われる。受信バケツ トに ESPヘッダと ESPトレーラが含まれる場合には、 IPsec処理部 410においてパケ ットの復号ィ匕が行われる。もし正しく復号できない場合には当該パケットは廃棄される
[0033] IPトランスポート処理部 430が送受信するパケットのフォーマットは、例えば図 7の( b)に示すように構成される。図示するように、パケットは外部 IPヘッダ 801、 L4ヘッダ 833、 ESPヘッダ 811、内部 IPヘッダ 821、: L4ヘッダ 831、ペイロード 841、 ESPトレ ーラ 851から構成される。
[0034] 図 1に示した無線基地局 60は、例えば図 4に示すような構成を備えている。ここで は、無線基地局 60を例にとって説明する力 無線基地局 61— 63も同様の構成を備 えている。 [0035] 具体的には、無線基地局 60は、 LAN側 IF500と無線側 IF510の 2つのインタフエ ースを有し、 L2処理部 520、移動無線通信プロトコル処理部 530、移動無線通信制 御部 560、 IPトランスポート処理部 630、 Ethernet (登録商標) (R)処理部 600を備え て構成される。このうち、移動無線通信プロトコル処理部 530の内部には、シグナリン グ処理部 540と、ユーザデータ処理部 550が備えられる。 IPトランスポート処理部 63 0には、 L4処理部 570、 IP処理部 580と、 IPsec処理部 610が備えられる。
[0036] IPsec処理部 610は ESP SA情報 620を保持する。これらの各処理部における基 本的な処理を以下に示す。
[0037] 無線側 IF510から受信したシグナリングデータ及びユーザデータは、 L2処理部 52 0にお 、てリンク処理が行われた後、 LAN側 IF500から受信したシグナリングデータ 及びユーザデータについては、 Ethernet(R)処理部 600、 IP処理部 580、 L4処理 部 570にお 、てそれぞれ規定の処理が行われた後、移動無線通信プロトコル処理 部 530において移動無線通信制御部 560の制御に基づき、規定の処理が行われる
[0038] また、移動無線通信プロトコル処理部 530が、 LAN側 IF500からパケットを送信す る場合、以下の手順で処理が行われる。
[0039] まず、 L4処理部 570においてシグナリングデータには SCTP処理を、ユーザデー タには UDP処理を行う。 IP処理部 580において送信先の無線基地制御局 70のォ ペレータ独自 IPアドレスを宛先、無線基地局 60自身のオペレータ独自 IPアドレスを 送信元とする内部 IPヘッダが付加される。また、送信元としては自身のプライベート I Pアドレス、宛先としては VPNゲートウェイ 100のプライベート IPアドレスとする外部 IP ヘッダによるカプセル化も行われる。
[0040] その場合、送信先の無線基地局 60の SA情報力 ¾SP SA情報 620に含まれてい る場合には、 IPsec処理部 610がパケットの暗号化を行い、 ESPヘッダと ESPトレー ラが付加される。力!]えて、暗号化する際に、 L4ヘッダをコピーして ESPヘッダの前部 に付加する。
[0041] 当該パケットは Ethernet (登録商標) (R)処理部 600にお 、てリンク処理された後、 LAN側 IF500から送信される。パケットを受信した場合はこの逆の処理が行われる。 もし受信したパケットが ESPヘッダと ESPトレーラを含む場合は、 IPsec処理部 610に おいてパケットの復号ィ匕が行われる。正しく復号ィ匕できない場合には当該パケットは 廃棄される。
[0042] IPトランスポート処理部 630が送受信するパケットのフォーマットは、例えば図 7の( a)に示すように構成される。図示するように、パケットは外部 IPヘッダ 800、 L4ヘッダ 832、 ESPヘッダ 810、内部 IPヘッダ 820、 L4ヘッダ 830、ペイロード 840、 ESPトレ ーラ 850から構成される。
[0043] 図 1に示した VPNゲートウェイ 100は例えば図 5に示すような構成を備えている。
[0044] 具体的には、 VPNゲートウェイ 100は、 Global IP IF 750及び Private IP IF7 00、 Ethernet(R)処理部 710, 740、トンネル転送処理部 720、 IPsec処理部 760、 帯域制御処理部 780から構成される。このうち、トンネル転送処理部 720は経路制御 情報 730を保持し、 IPsec処理部 760は ESP SA情報 770を保持する。
[0045] 図 8—図 14を参照して、本発明の第 1の実施形態に係る移動通信システムを構成 する VPNゲートウェイ 100の動作内容について詳細に説明する。例えば、経路制御 情報 730は図 8に示すような転送テーブル 900から構成される。ここでは、転送テー ブル 900には、 1つの無線基地制御局に関するグローバルアドレスとオペレータ独自 アドレス、 4つの無線基地局に関するプライベートアドレスとオペレータ独自アドレス が登録されて 、る例を示して!/、る。
[0046] 図 9は VPNゲートウェイ 100の全体の処理フローを示している。
[0047] VPNゲートウェイ 100は、受信したパケットの外部 IPヘッダ内の送信元 IPアドレス がグローバルアドレスかプライベートアドレスかの判定を行う(ステップ A— 1)。プライ ベートァドレスの場合、受信パケットの種別の識別を行う(ステップ A— 2)。
[0048] 受信パケットが帯域制御応答である場合は QoSシグナリング処理を (ステップ A— 6) 、アドレス通知である場合はアドレス通知パケット処理を (ステップ A— 5)行う。これら の処理の詳細については後述する。
[0049] 受信したパケットが IKEパケットである場合は送信元 IPアドレスで転送テーブル 90 0のプライベートアドレスを検索する (ステップ A-4)。上記以外の場合は後述する IPs ecパケット処理を行う(ステップ A— 3)。 [0050] ステップ A— 4にお 、て該当するエントリが存在するかどうかを判別し (ステップ A— 7 )、存在する場合、後述する IKEパケット転送処理を行い (ステップ A— 8)、該当する エントリが存在しなければ、受信パケットを廃棄する (ステップ A— 9)。
[0051] 一方、ステップ A— 1にお!/、て外部 IPヘッダ内の送信元 IPアドレスがグローバルアド レスの場合、受信パケットの種別の識別を行う (ステップ B-l)。受信パケットが IKEパ ケットである場合は送信元 IPアドレスで転送テーブル 900のグローバルアドレスを検 索し (ステップ B-3)、該当するエントリが存在するかを判定する (ステップ B-4)。
[0052] 受信パケットが IKEパケット以外の場合は後述する IPsecパケット処理を行う(ステツ プ B— 2)。
[0053] ステップ B— 4において該当するエントリが存在する場合、後述する IKEパケット転送 処理を行い (ステップ B— 5)、該当するエントリが存在しない場合は、受信パケットを廃 棄する (ステップ B-6)。
[0054] 図 10に、図 9のステップ A— 5におけるアドレス通知パケット処理のフローを示す。こ の場合、送信元 IPアドレスで転送テーブル 900のプライベートアドレスを検索し (ステ ップ C— 1)、該当するエントリが存在するかどうかを判別する (ステップ C 2)。
[0055] 該当するエントリが存在しない場合は、転送テーブル 900に新たなエントリを追加し
(ステップ C-3)、処理を正常に完了したことを示すアドレス通知応答を送信する (ス テツプ C 4)。該当するエントリが存在する場合はエラーを含むアドレス通知応答を 返送する (ステップ C-5)。
[0056] 図 11に VPNゲートウェイ 100による SA情報の追加 Z削除処理のフローを示す。こ の場合、まず要求が追加か削除かの判定を行う (ステップ D— 1)。
[0057] 追加要求である場合、メッセージ内に含まれる IPアドレス、 IPsecプロトコル種別及 び SPI(Security Parameter Index)のすべてが同一であるエントリが存在するかをチェ ックする (ステップ D— 2)。該当するエントリが存在しない場合、 SA情報のエントリを新 たに追加し (ステップ D-3)、 S A情報追加応答を返信する (ステップ D-4)。ステップ D-2にお ヽて該当するエントリが存在する場合は、 S A情報追加応答 (エラー)を返 信する (ステップ D-5)。
[0058] 削除要求である場合、追加処理と同様にメッセージ内の情報と同一のエントリが存 在するかをチェックする (ステップ D— 6)。該当するエントリが存在する場合、 SA情報 のエントリを削除し (ステップ D-7)、 SA情報削除応答を返信する (ステップ D-8)。ス テツプ D— 6において該当するエントリが存在しな 、場合、 S A情報削除応答 (エラー) を返信する (ステップ D-9)。
[0059] 図 12に、図 9のステップ A— 3、 B— 2における VPNゲートウェイ 100による IPsecパケ ット処理のフローを示す。
[0060] この場合、まずパケットを受信した IFの判定を行う(ステップ E-1)。
[0061] プライベート IP IFでパケットを受信した場合、 ESPヘッダ内の SPIで SA情報を検 索してマッチするエントリが存在するかを判定する (ステップ E— 2、 E— 3)。
[0062] 該当するエントリが存在しな 、場合はパケットを廃棄する (ステップ E— 4)。該当する エントリが存在する場合、該当の S A情報に対応する暗号鍵を用いてパケットの復号 化を行 ヽ(ステップ E— 5)、内部 IPヘッダ及び L4ヘッダの情報で S A情報の該当する エントリを検索してマッチするエントリが存在するかを判定する (ステップ E— 6、 E-7) 。該当するエントリが存在しない場合はパケットを廃棄する (ステップ E-8)。
[0063] 該当するエントリが存在する場合、該当する SA情報に対応する暗号鍵を用いて暗 号ィ匕を行い (ステップ E-9)、 SA情報のトンネル終端先 IPアドレスを宛先とする IPへ ッダに置き換えて、カプセル化転送を行う(ステップ E-10)。
[0064] 一方、グローバル IP IFでパケットを受信した場合、 ESPヘッダ内の SPIで SA情報 を検索しマッチするエントリが存在するかを判定する (ステップ E— 11、 E— 12)。
[0065] 該当するエントリが存在しない場合はパケットを廃棄する (ステップ E— 13)。該当す るエントリが存在する場合は、該当する SA情報に対応する暗号鍵を用いてパケット の復号化を行 ヽ (ステップ E— 14)、パケット種別をチェックする (ステップ E— 15)。
[0066] QoSシグナリングの場合、後述する QoSシグナリング処理を行 ヽ (ステップ E— 16) 、 SA情報追加 Z削除要求である場合、図 11に示した SA情報追加 Z削除処理を行 う(ステップ E— 17)。
[0067] ステップ E— 15にお!/、てパケット種別が上記以外の場合、内部 IPヘッダ及び L4へッ ダの情報で S A情報の該当するエントリを検索し、マッチするエントリが存在するかを 判定する(ステップ E— 18、 E-19)。 [0068] 該当するエントリが存在しない場合はパケットを廃棄する (ステップ E— 20)。該当す るエントリが存在する場合、該当する SA情報に対応する暗号鍵を用いてパケットの 暗号ィ匕を行い (ステップ E-21)、 SA情報のトンネル終端先 IPアドレスを宛先とする外 部 IPヘッダに置き換えて、カプセル化転送を行う(ステップ E-22)。
[0069] 図 13に図 9のステップ A— 8、 B— 5における VPNゲートウェイ 100による IKEパケット 転送処理のフローを示す。
[0070] この場合、まずパケットを受信したインタフェース (IF)の判定を行う(ステップ F— 1)
[0071] 受信 IFがプライベート IP IFである場合、送信元 IPアドレスで転送テーブル 900の プライベートアドレスを検索し、マッチするエントリが存在するかを判定する (ステップ F—2、 F— 3)。
[0072] 該当するエントリが存在しな ヽ場合は、パケットを廃棄する (ステップ F— 4)。
[0073] 該当するエントリが存在する場合、外部 IPヘッダを削除し (ステップ F— 5)、該当す るエントリに記載のグローバルアドレスを宛先とする IPヘッダを付カ卩して、カプセルィ匕 転送を行う(ステップ F— 6)。
[0074] 一方、ステップ F— 1において受信 IFがグローバル IP IFである場合、送信元 IPアド レスで転送テーブル 900のグローバルアドレスを検索し、マッチするエントリが存在す るかを判定する(ステップ F-7、 F-8)。
[0075] 該当するエントリが存在しない場合はパケットを廃棄する (ステップ F— 9)。該当する エントリが存在する場合、内部 IPヘッダ内の宛先 IPアドレスで転送テーブル 900の無 線基地局のオペレータ独自アドレスを検索し、マッチするエントリが存在するかを判 定する(ステップ F— 10、 F-l 1)。
[0076] 該当するエントリが存在しない場合はパケットを廃棄する (ステップ F— 12)。該当す るエントリが存在する場合、外部 IPヘッダを削除し (ステップ F— 13)、該当するェント リに記載のプライベートアドレスを宛先とする IPヘッダを付カ卩して、カプセル化転送を 行う(ステップ F— 14)。
[0077] 図 14に、図 9のステップ A— 6における VPNゲートウェイ 100による QoSシグナリン グ処理の動作フローを示す。 [0078] この場合も、まずパケットの受信 IFの判定を行う(ステップ G-1)。
[0079] 受信 IFがプライベート IP IFの場合、受信した帯域制御応答 (COPS Decision)メ ッセージ内部の受付判定結果をチェックする (ステップ G— 2)。
[0080] 判定結果が「NG」の場合は判定結果とトラヒック情報を含む QoSシグナリングを作 成し、無線基地制御局 70に送信する (ステップ G - 3)。
[0081] 判定結果が「OK」の場合、帯域制御応答メッセージで通知されたトラヒック情報及 び帯域制御情報を抽出し (ステップ G-4)、抽出した各種情報を QoSシグナリングに 含めて、無線基地制御局 70に送信する (ステップ G - 5)。
[0082] 一方、ステップ G—1において受信 IFがグローバル IP IFの場合、 QoSシグナリング 内のトラヒック情報を抽出し (ステップ G-6)、抽出したトラヒック情報を含む帯域制御 要求(COPS Request)メッセージを作成し、ポリシーサーバ 200に送信する(ステ ップ G— 7)。
[0083] ポリシーサーバ 200は、例えば図 6に示すような構成を備えている。具体的に説明 すると、ポリシーサーバ 200は、 LAN IF1300、 Ethernet (登録商標)(R)処理部 13 10、 IP処理部 1320、 L4処理部 1330、制御プロトコル処理部 1340、帯域制御処理 部 1350を備えて構成される。制御プロトコル処理部 1340は、 COPS処理部 1360と SNMP処理部 1370を有する。これらの各処理部の基本的な処理内容を以下に示 す。
[0084] SNMP処理部 1370は、 LAN IF1300、Ethernet(R)処理部1310、IP処理部l 320、 L4処理部 1330を経て受信した、 LAN20の LANデバイスからの SNMPメッ セージを受信し、メッセージ内の帯域制御状態情報を抽出し、帯域制御処理部 135 0に通知する。
[0085] 帯域制御処理部 1350は、これらの情報を収集 Z管理し、 LAN20内の帯域制御 状態を集中管理する。
[0086] COPS処理部 1360は、帯域制御処理部 1350からの指示を受けることにより、 LA Nデバイスに対して帯域制御情報及びトラヒック情報を COP Decisionメッセージで 通知する。
[0087] また、 VPNゲートウェイ 100から送られた帯域制御要求メッセージは、 LAN IF13 00、 Ethernet (登録商標) (R)処理部 1310、 IP処理部 1320、 L4処理部 1330を経 て COPS処理部 1360に送られ、 COPS処理部 1360が帯域制御要求メッセージ内 のトラヒック情報と帯域制御情報を抽出し、帯域制御処理部 1350に通知する。
[0088] これを受けた帯域制御処理部 1350は、収集した帯域制御情報に基づき受付判定 を行い、許可した帯域制御情報と共に判定結果を COPS処理部 1360に通知する。 判定結果が「OK」であった場合には、 COPS処理部 1360は判定結果と許可された 帯域制御情報を含む帯域制御応答メッセージを生成し、 VPNゲートウェイ 100に送 信する。また、 LAN20の移動通信トラヒックの経路上の LANデバイスあるいはすべ ての LANデバイスにトラヒック情報と帯域制御情報を配信する。
[0089] 図 15を参照して、本発明の第 1の実施形態に係る移動通信システムにおける無線 基地制御局 70と無線基地局 60間で通信経路を確立するための動作シーケンスに ついて詳細に説明する。図 15においては、無線基地局 60の送受信パケットシーケン ス 1000、 VPNゲートウェイ 100の送受信パケットシーケンス 1010、及び無線基地制 御局 70の送受信パケットシーケンス 1020を示している。
[0090] 本実施形態では、 VPNゲートウェイ 100と無線基地制御局 70間には予め SAが確 立されており(第 1の暗号鍵を用いて暗号ィ匕通信が可能となっている)、無線基地局 6 0と VPNゲートウェイ 100間で SAを確立する際 (第 2の暗号鍵を用いて暗号ィ匕通信 を可能とする際)に必要となる事前共有鍵は、無線基地制御局 70と無線基地局 60 に予め設定されて ヽるものとする。
[0091] 以下では、より詳細な動作シーケンスを説明する。無線基地局 60は起動すると、 D HCP(Dynamic Host Configuration Protocol)により自身のプライベート IPアドレスを取 得した後、 DNS(Domain Name Server)を利用して VPNゲートウェイ 100のプライべ一 ト IPアドレスを取得する。
[0092] その後、 VPNゲートウェイ 100に対して、無線基地制御局 70のグローバルアドレス とオペレータ独自アドレス、無線基地局 60のプライベートアドレスとオペレータ独自ァ ドレスをアドレス通知メッセージで通知する。
[0093] VPNゲートウェイ 100はこれを受けて、転送テーブル 900に通知されたアドレス群 を設定し、設定したエントリを削除するためのタイマをセットすると共に、アドレス通知 応答メッセージを返信する (ステップ( 1) )。
[0094] 返信メッセージを受けた無線基地局 60は、 VPNゲートウェイ 100との ISAKMP ( Internet Security Association ana Key Management Protocol) S A及び上りと fりの 2つの IPsec SAを確立する(ステップ(2)—(4) )。その場合、 VPNゲートウェイ 100 は無線基地局 60から受信した IKEパケットのアドレス変換のみを行 、、無線基地制 御局 70に転送する。
[0095] 逆に、無線基地制御局 70から受信した IKEパケットもアドレス変換のみを行 、、無 線基地局 60に転送する。
[0096] このようにして無線基地制御局 70と無線基地局 60間で SAが確立されると、無線基 地制御局 70はすべての SA情報を SA情報追加メッセージにて VPNゲートウェイ 10
0に通知する。
[0097] VPNゲートウェイ 100は、受信した SA情報をデータベースに追加し、ステップ(1) でセットしたタイマを解除すると共に、 SA情報追加応答メッセージにて設定が完了し たことを通知する (ステップ(5) )。
[0098] これにより、 VPNゲートウェイ 100と無線基地局 60間では IPsecによる暗号化通信( 第 2の暗号鍵による暗号化通信)が可能となり、 VPNゲートウェイ 100を介することで 無線基地局 60と無線基地制御局 70は IPsec SAによる暗号ィ匕通信を開始できる( ステップ (6) )。
[0099] もし、 VPNゲートウェイ 100が SA情報追力!]メッセージを受信せずに、タイマがタイム アウトした際には、速やかに追加した転送テーブル 900のエントリを削除する。
[0100] 図 16及び図 17を参照して、本発明の第 1の実施形態に係る移動通信システムに おける無線基地制御局 70と無線基地局 60間のユーザトラヒックに対する帯域制御 動作シーケンスを詳細に説明する。
[0101] 図 16に端末が着呼した場合の動作シーケンスを示す。図 16においては、無線基 地制御局 70のパケット送受信シーケンス 1100、 VPNゲートウェイ 100のパケット送 受信シーケンス 1110、ポリシーサーバ 200のパケット送受信シーケンス 1120、無線 基地局 60のパケット送受信シーケンス 1130、移動端末 80のパケット送受信シーケ ンス 1140を示している。 [0102] 無線基地制御局 70は、移動通信コア網 30からのページング要求メッセージを受信 すると (ステップ(1) )、移動端末 80のページングを行 、 (ステップ(2) )、これに対して 移動端末 80は RRCコネクション要求を無線基地制御局 70に送信し (ステップ(3) )、 これを受信した無線基地制御局 70は無線基地局 60に対して無線リンク設定要求を 送信する (ステップ (4) )。
[0103] 無線リンクの設定を完了すると、無線基地局 60は、無線基地制御局 70に無線リン ク設定応答を返送し (ステップ(5) )、無線基地制御局 70は、 RRCコネクション設定を 移動端末 80に送信する (ステップ (6) )。
[0104] これを受けた移動端末 80は、各種パラメータを設定した後、 RRCコネクション設定 完了を無線基地制御局 70に送信する (ステップ(7) )。その後、移動端末 80は、セル アップデータメッセージにより位置登録を行う(ステップ(8) )。
[0105] これを受けた無線基地制御局 70は、セルアップデート確認メッセージで返信すると 共に (ステップ(9) )、ページング応答を移動通信コア網 30に返送する (ステップ(10) ) oこの後、無線基地制御局 70は、移動通信コア網 30から送られた無線アクセスべ ァラ割当要求メッセージを受信し (ステップ(11) )、無線べァラ確立要求メッセージに 含まれる QoS情報に基づき、無線リンクの設定を行う。
[0106] 具体的には、無線基地制御局 70は、無線基地局 60に無線リンク設定要求を送信 し (ステップ(12) )、無線基地局 60は無線リンクの設定が完了すると無線リンク設定 応答を返信する (ステップ(13) )。
[0107] これを受けた無線基地制御局 70は、要求された QoSの情報を含む QoSシグナリン グを生成し、無線基地局 60に送信する (ステップ( 14) )。
[0108] VPNゲートウェイは、この QoSシグナリングをインターセプトし、 QoSシグナリング力 ら抽出したトラヒック情報を含む帯域制御要求メッセージをポリシーサーバ 200に送 信する(ステップ(15) )。ここでの QoSシグナリングとは、例えば IP— ALCAP(Access Link Control Application Part)シグナリングである。
[0109] ポリシーサーバ 200は、収集した帯域制御状態情報と帯域制御要求メッセージで 通知されたトラヒック情報に基づき受付判定を行!ヽ、受付判定結果及び許可した帯 域制御情報を帯域制御応答メッセージに含めて VPNゲートウェイ 100に送信する通 知する (ステップ(16) )。
[0110] VPNゲートウェイ 100は、帯域制御応答メッセージに含まれる受付判定結果と帯域 制御情報を QoSシグナリングに含めて無線基地制御局 70に送信する (ステップ(17 ) )。本実施形態ではポリシーサーバ 200が受付許可と判定した例を示して 、る。
[0111] 受付を許可した場合、ポリシーサーバ 200は、 LAN20の LANデバイスにトラヒック 情報と帯域制御情報の配布も行う(図示せず)。 LAN内の帯域確保が完了すると、 無線基地制御局 70は、移動端末 80に無線べァラ設定を送信する (ステップ(18) )。
[0112] これを受信した移動端末 80は、無線べァラの設定を行い、完了すると無線べァラ 設定完了を返信する (ステップ(19) )。この後、移動端末 80は、無線基地制御局 70 及び移動通信コア網 30を経由してデータ通信を行う。 LAN20の移動通信トラヒック の経路上にある LANデバイスは、通知されたトラヒック情報と帯域制御情報に基づ!/ヽ てユーザデータトラヒックの帯域制御を行う。
[0113] 図 17に移動端末 80が発呼した場合の動作シーケンスを示す。図 17においては、 無線基地制御局 70のパケット送受信シーケンス 1200、 VPNゲートウェイ 100のパケ ット送受信シーケンス 1210、ポリシーサーバ 200のパケット送受信シーケンス 1220、 無線基地局 60のパケット送受信シーケンス 1230、移動端末 80のパケット送受信シ 一ケンス 1240を示して!/、る。
[0114] 移動端末 80は、データの送信要求をトリガとして RRCコネクション要求を無線基地 制御局 70に送信する (ステップ(1) )。これを受信した無線基地制御局 70は、無線基 地局 60へ無線リンク設定要求を送信する (ステップ(2) )。無線基地局 60は、無線リ ンクの設定を有効化し、無線基地制御局 70に無線リンク設定応答を返す (ステップ( 3) )。
[0115] 無線基地局 60からの無線リンク設定応答を受信した無線基地制御局 70は、 RRC コネクション設定を移動端末 80に送信し (ステップ (4) )、移動端末 80は、無線リンク の設定が完了すると、 RRCコネクション設定完了を無線基地制御局 70に送信する( ステップ(5) )。また、移動端末 80は、利用するサービスの QoS情報を含むァクティ ベイト PDPコンテキスト要求を移動通信コア網 30に送信する (ステップ (6) )。
[0116] これを受けて、移動通信コア網 30は、無線アクセスベアラ割当要求を無線基地制 御局 70に送信する (ステップ(7) )。無線基地制御局 70は、無線アクセスベアラ割当 要求に含まれる QoS情報に基づき、無線リンクの設定を行う。具体的には、無線基地 制御局 70は、無線基地局 60に無線リンク設定要求を送信し (ステップ (8) )、無線基 地局 60が無線リンクの設定を完了すると、無線リンク設定応答を返送する (ステップ( 9) )。
[0117] これを受けて、無線基地制御局 70は、 QoS情報を含む QoSシグナリングを生成し 、無線基地局 60宛に送信する(ステップ(10) )。 VPNゲートウェイ 100は、この QoS シグナリングをインターセプトし、受信した QoSシグナリング力も抽出した QoS情報を 含む帯域制御要求メッセージをポリシーサーバ 200に送信する (ステップ(11) )。
[0118] ポリシーサーバ 200は、収集した帯域制御状態情報と帯域制御要求メッセージで 通知された QoS情報に基づき受付判定を行 ヽ、受付判定結果及び許可した帯域制 御情報を帯域制御応答メッセージに含めて VPNゲートウェイ 100に送信する通知す る (ステップ(12) )。
[0119] VPNゲートウェイ 100は、帯域制御応答メッセージに含まれる受付判定結果と帯域 制御情報を QoSシグナリングに含めて無線基地制御局 70に送信する (ステップ(13 ) )。本実施形態でもポリシーサーバ 200が受付許可と判定した例を示して 、る。
[0120] 受付を許可した場合、ポリシーサーバ 200は、 LAN20の LANデバイスにトラヒック 情報と帯域制御情報を配布する(図示せず)。その後、無線基地制御局 70は移動端 末 80に対して無線べァラ設定を通知する (ステップ( 14) )。
[0121] 移動端末 80は、無線リンクの設定を行い、完了すると無線べァラ設定完了を無線 基地制御局 70に通知する (ステップ(15) )。これを受けて、無線基地制御局 70は、 無線アクセスベアラ割当応答を移動通信コァ網 30に返送する (ステップ(16) )。
[0122] 移動端末 80は、移動通信コア網 30からァクティべイト PDPコンテキスト受付を受信 する (ステップ(17) )と、無線基地制御局 70及び移動通信コア網 30を経由してデー タ通信を行う。 LAN20の移動通信トラヒックの経路上にある LANデバイスは通知さ れたトラヒック情報と帯域制御情報に基づいてユーザデータトラヒックの帯域制御を行
[0123] 図 1及び図 2に示すネットワーク構成図を用いて本発明の第 2の実施形態に係わる 移動通信システムを説明する。この第 2の実施形態では、無線基地制御局 70は、例 えば図 18に示す構成を備えている。
[0124] 第 1の実施形態での無線基地制御局 70の構成と比較して、本第 2の実施形態では
、 IPトランスポート処理部 430が IP処理部 380、 L4処理部 370、 IPsec処理部 410に カロえて、認証処理部 450を備えている。
[0125] 認証処理部 450は、無線基地局 60— 63との間で認証を行うと共に、認証が成功し た場合には、鍵交換メカニズムを用いて事前共有鍵の生成も行う。無線基地制御局
70は、 SAが確立すると、生成した事前共有鍵を VPNゲートウェイ 100に通知する。
VPNゲートウェイ 100は、この事前共有鍵を用いて無線基地局 60— 63と間で IPsec SAの確立を行う。
[0126] 無線基地局 60は、例えば図 19に示す構成を備える。ここでの実施形態では無線 基地局 60について説明する力 無線基地局 61— 63についても同様の構成を備え ている。第 1の実施形態での無線基地局 60の構成と比較して、本実施形態では、 IP トランスポート処理部 630が IP処理部 580、 L4処理部 570、 IPsec処理部 610に加 えて、認証処理部 640を備えている。認証処理部 640は、無線基地制御局 70との間 で認証を行うために、上述した認証処理部 450と同様の機能を有する。
[0127] 図 20—図 22を用いて VPNゲートウェイ 100の動作フローを説明する。
[0128] 図 20に全体の処理フローを示す。まず、パケットを受信することで処理を開始し、受 信したパケットの種別を判定する (ステップ H— 1)。受信したパケットが IPsecパケット であった場合、後述する IPsecパケット処理を行う(ステップ H— 2)。 IKEパケットであ つた場合、 RFC (Request For Comments) 2409で規定されている IKEパケット処理 を行う(ステップ H— 3)。認証パケットであった場合、後述する認証パケット転送処理を 行う(ステップ H— 4)。帯域制御応答メッセージであった場合、 QoSシグナリング処理 を行う(ステップ H— 5)。ここでの QoSシグナリング処理は第 1の実施形態で示した Qo Sシグナリング処理と同様である。受信したパケットが上記以外の場合はパケットを廃 棄する (ステップ H-6)。
[0129] 図 21に、上記ステップ H— 2における VPNゲートウェイ 100の IPsecパケット処理の フローを示す。第 1の実施形態で示した図 12の IPsecパケット処理では、グローバル I F力もパケットを受信し、 ESPヘッダ内の SPIで SA情報を検索した際に、該当するェ ントリが存在し、且つパケット種別が SA情報追加 Z削除要求である場合に、ステップ E-17で SA情報追加 Z削除処理を行うようにしていたが、本実施形態では、パケット 種別が SA情報追加 Z削除要求ではなぐ認証パケットである場合に、 SA情報追カロ Z削除処理の代わりに認証パケット転送処理を行う(ステップ I 17)点で第 1の実施 形態と異なる。
[0130] その他のステップについては、図 12と同様であるので、同じステップ番号を付して 説明を省略する。
[0131] 図 22に図 21のステップ I 17における認証パケット転送処理のフローを示す。この 場合、まずパケットを受信した IFの判定を行う (ステップ J-l)。
[0132] 受信 IFがプライベート IP IFの場合、内部 IPヘッダの SPIで SA情報を検索し、マツ チするエントリが存在するかを判定する (ステップ j一 2、 j一 3)。
[0133] 該当するエントリが存在しな ヽ場合はパケットを廃棄する (ステップ J 4)。
[0134] 該当するエントリが存在する場合、該当する SA情報に基づき復号化を行い (ステツ プ J 5)、 SA情報のトンネル終端先の IPアドレスでカプセルィ匕して転送する(ステップ
J— 6)。
[0135] 一方、ステップ J 1において受信 IFがグローバル IP IFの場合、事前共有鍵通知メ ッセージであるかの判定を行う(ステップ J-7)。
[0136] 事前共有鍵通知メッセージである場合、メッセージ内の事前共有鍵を抽出し、 IPse c処理部 760に通知する (ステップ J-8)。
[0137] それ以外の場合、内部 IPヘッダの宛先 IPアドレスで転送テーブル 900を検索し、マ ツチするエントリが存在するかを判定する (ステップ j-9、卜 10)。
[0138] 該当するエントリが存在しない場合はパケットを廃棄する (ステップ J 11)。該当する エントリが存在する場合は、該当するエントリのプライベートアドレスでカプセルィ匕して 転送する (ステップ J-12)。
[0139] また、図 23を参照して、本発明の第 2の実施形態に係る移動通信システムにおける 無線基地制御局 70と無線基地局 60間で通信経路を確立するための動作シーケン スを詳糸田に説明する。 [0140] 第 2の実施形態では、無線基地局 60と無線基地制御局 70間の相互認証で使用す る認証鍵が予め設定されており、無線基地制御局 70と VPNゲートウェイ 100の間の SAは事前に確立されているものとする(第 1の暗号鍵を用いて暗号ィ匕通信が可能と なっている)。また、 VPNゲートウェイ 100が有する転送テーブル 900も予め設定され ているものとする。図 23においては、無線基地局 60のパケット送受信シーケンス 140 0、 VPNゲートウェイ 100のパケット送受信シーケンス 1410、及び無線基地制御局 7 0のパケット送受信シーケンス 1420が示されている。
[0141] 無線基地局 60は起動すると、事前に設定されている認証鍵を用いて、無線基地制 御局 70との間で相互認証を行う(ステップ(1) )。ここでの認証方式は、例えば認証鍵 を利用したチャレンジ Zレスポンス型のパスワード方式が利用可能である。
[0142] 相互認証が成功した場合、無線基地局 60と無線基地制御局 70において鍵交換メ 力-ズムにより認証鍵から事前共有鍵の生成を行う(ステップ(2) )。ここでの鍵交換メ 力-ズムとしては、例えば Diffie— Hellman鍵交換方式が利用可能である。
[0143] 鍵の生成が完了すると、無線基地制御局 70は VPNゲートウェイ 100に対して事前 共有鍵を通知する (ステップ(3) )。
[0144] 無線基地局 60は上述した鍵交換メカニズムにより生成した事前共有鍵を用 ヽて IS AKMP SAの確立を行う(ステップ(4) )。
[0145] ISAKMP SAを確立すると、次に IPsec SA (上り)と IPsec SA (下り)の確立も 行う (ステップ (5)、 (6) )。
[0146] 上り Z下りの 2つの IPsec SAが確立すると、無線基地局 60と無線基地制御局 70 は VPNゲートウェイ 100を介することで、 IPsec ESPによる暗号化通信が可能となる (ステップ (7) )。
[0147] なお、上記の構成において、 VPNゲートゥヱイ 100、無線基地制御局 70の機能に ついては、ハードウェア的に実現することは勿論として、上述した VPNゲートウェイ 1 00の機能をソフトウェア的に実現するプログラム(中継ノード用プログラム)、上述した 無線基地制御局 70の機能をソフトウェア的に実現する制御プログラム (無線基地制 御局用プログラム)を、それぞれ VPNゲートウェイ 100、無線基地制御局 70を構成す るコンピュータ上で実行することで実現することができる。これらのプログラムは、磁気 ディスク、半導体メモリその他の記録媒体に格納され、その記録媒体から VPNゲート ウェイ 100、無線基地制御局 70としてのコンピュータにロードされ、コンピュータの動 作を制御することにより、上述した各機能を実現する。図 24はコンピュータの一構成 例を示すブロック図である。 VPNゲートウェイ 100、無線基地制御局 70はコンビユー タ上のプログラムとして実装され、図 24に示すように、当該プログラムをノヽードデイス ク等のディスク装置 2004に記憶させ、 DRAM等のメモリ 2003に無線基地制御局と 無線基地局間の移動通信制御シグナリングに含まれるトラヒック情報、確立した SA情 報、 SAの確立に必要となる事前共有鍵等の情報を記憶させ、 CPU3206によりプロ グラムが実行され VPNゲートウェイ 100、無線基地制御局 70の機能が実現される。 キーボード 3001は入力手段となる。 CRTや LCD力もなるディスプレイ(図では LCD として示されている) 2002は情報処理状況等を表示するものである。 3005はデータ バス等のバスを示す。
[0148] 以上好ま 、実施形態をあげて本発明を説明した力 本発明は必ずしも上記実施 形態に限定されるものではなぐその技術的思想の範囲内において様々に変形して 実施することができる。
産業上の利用可能性
[0149] 本発明は、私設網を利用して屋内エリア内のユーザに対して移動通信サービスを 提供することを可能にする移動通信システムに用いられる。
図面の簡単な説明
[0150] [図 1]本発明の第 1の実施例によるネットワークの全体構成を示すブロック図である。
[図 2]本発明の第 1の実施例における LANの構成を示すブロック図である。
[図 3]本発明の第 1の実施例における無線基地制御局の構成を示すブロック図であ る。
[図 4]本発明の第 1の実施例における無線基地局の構成を示すブロック図である。
[図 5]本発明の第 1の実施例における VPNゲートウェイの構成を示すブロック図であ る。
[図 6]本発明の第 1の実施例におけるポリシーサーバの構成を示すブロック図である [図 7]本発明の第 1の実施例における転送テーブルの構成例を示す図である。
[図 8]本発明の第 1の実施例におけるパケットフォーマットの構成を示す図である。
[図 9]本発明の第 1の実施例における VPNゲートウェイにおける全体処理を説明する フローチャートである。
[図 10]本発明の第 1の実施例における VPNゲートウェイのアドレス通知処理を説明 するフローチャートである。
[図 11]本発明の第 1の実施例における VPNゲートウェイの SA情報追加 Z削除処理 を説明するフローチャートである。
[図 12]本発明の第 1の実施例における VPNゲートウェイの IPsecパケット処理を説明 するフローチャートである。
[図 13]本発明の第 1の実施例における VPNゲートウェイの IKEパケット処理を説明す るフローチャートである。
[図 14]本発明の第 1の実施例における VPNゲートウェイにおける QoSシグナリング処 理を説明するフローチャートである。
圆 15]本発明の第 1の実施例における無線基地制御局と無線基地局間の通信開始 シーケンス図である。
圆 16]本発明の第 1の実施例における着呼時の帯域制御動作のシーケンス図である
[図 17]本発明の第 1の実施例における発呼時の帯域制御動作のシーケンス図である 圆 18]本発明の第 2の実施例における無線基地制御局の構成を示すブロック図であ る。
[図 19]本発明の第 2の実施例における無線基地局の構成を示すブロック図である。
[図 20]本発明の第 2の実施例における VPNゲートウェイの全体処理を説明するフロ 一チャートである。
[図 21]本発明の第 2の実施例を説明するための VPNゲートウェイにおける IPsecパケ ット処理フロー図である。
[図 22]本発明の第 2の実施例における VPNゲートウェイの認証パケット転送処理を 説明するフローチャートである。
圆 23]本発明の第 2の実施例における無線基地制御局と無線基地局間の通信開始 シーケンス図である。
[図 24]コンピュータの一構成例を示すブロック図である。
符号の説明
10:インターネット網
20: LAN
30:移動通信コア網
60、 61、 62、 63:無線基地局
70:無線基地制御局
80:移動端末
90:ファイアウォール
100: VPNゲートウェイ
110:PC
120:移動網ゲートゥ イ
200:ポリシーサーバ
210:ルータ
220-223: Ethernet (登録商標)(R)スィッチ
300:移動通信コア網側 IF
310:インターネット側 IF
320、 400、 520:L2処理部
330、 530:移動無線通信プロトコル処理部
340、 540:シグナリング処理部
350、 550:ユーザデータ処理部
360、 560:移動無線通信制御部
370、 570:L4処理部
380、 580: IP処理部
410、 610、 760:IPsec処理部 420、 620、 770: ESP SA情報
430、 630: IPトランスポート処理咅
440、 780:帯域制御処理部
450、 640:認証処理部
500: LAN側 IF
510:無線側 IF
600、 710、 740:Ethernet(R)処理部
700:プライベート IP IF
720:トンネル転送処理部
730:経路制御情報
750:グローバル IP IF
800、 801:外部 IPヘッダ
810、 811: ESPヘッダ
820、 821:内部 IPヘッダ
830、 831:L4ヘッダ
840、 841:ペイロード
850、 851 :ESPトレーラ
900:転送テーブル
1000、 1130、 1230、 1400:無線基地局のパケット送受信シーケンス
1010、 1110、 1210、 1410: VPNゲートウェイのパケット送受信シーケンス
1020、 1100、 1200、 1420:無線基地制御局のパケット送受信シーケンス
1120、 1220:ポリシーサーバのパケット送受信シーケンス
1140、 1240:移動端末のパケット送受信シーケンス
1300: LAN IF
1310: Ethernet(R)処理部
1320: IP処理部
1330:L4処理部
1340:制御プロトコル処理部 1350:帯域制御処理部 1360: COPS処理部 1370:SNMP処理部

Claims

請求の範囲
[1] 無線基地制御局と、前記無線基地制御局に接続される無線基地局とから構成され
、前記無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムにおいて、
前記無線基地局を私設網内に配置し、前記私設網に設置された中継ノードにより 前記私設網上を伝送される前記無線基地制御局と前記無線基地局間の移動通信ト ラヒックの中継を行い、前記移動端末が発呼あるいは着呼した際に、前記中継ノード が前記私設網内の帯域管理機能と連携した受け付け判定処理を行い、受付が許可 された場合に前記移動端末に通信回線を提供することを特徴とする移動通信システ ム。
[2] 前記移動端末が発呼あるいは着呼した際に、前記無線基地制御局が前記無線基 地局宛に送信した帯域制御シグナリングを前記中継ノードが受信することで、前記受 付判定処理を起動することを特徴とする請求項 1に記載の移動通信システム。
[3] 前記中継ノードが、 VPNゲートウェイであることを特徴とする請求項 1に記載の移動 通信システム。
[4] 無線基地制御局と、前記無線基地制御局に接続される無線基地局とから構成され 、前記無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムにおいて、
前記無線基地局を私設網内に配置し、前記私設網に設置された中継ノードにより 前記私設網上を伝送される前記無線基地制御局と前記無線基地局間の移動通信ト ラヒックの中継を行い、
前記無線基地制御局と前記中継ノード間では第 1の暗号鍵を、前記無線基地局と 前記中継ノード間では第 2の暗号鍵を用いて暗号ィ匕通信を行 、、
前記第 2の暗号鍵の生成に必要な事前共有鍵を前記無線基地制御局と前記無線 基地局間の鍵交換メカニズムにより動的に生成し、前記無線基地制御局が前記中継 ノードに前記事前共有鍵を通知することを特徴とする移動通信システム。
[5] 無線基地制御局と、前記無線基地制御局に接続される無線基地局とから構成され 、前記無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムにおいて、 前記無線基地局を私設網内に配置し、前記無線基地局 と前記私設網を介して接続される中継ノードと前記無線基地局間の前記移動通信ト ラヒックは前記私設網内を伝送され、前記中継ノードにより前記私設網上を伝送され る前記無線基地制御局と前記無線基地局間の移動通信トラヒックの中継を行 、、 前記無線基地制御局と前記中継ノード間では第 1の暗号鍵を、前記無線基地局と 中継ノード間では第 2の暗号鍵を用いて暗号ィ匕通信を行 、、
前記第 2の暗号鍵を前記無線基地制御局と前記無線基地局間の鍵交換メカニズ ムにより動的に生成し、前記無線基地制御局が前記中継ノードに前記第 2の暗号鍵 を通知することを特徴とする移動通信システム。
[6] 前記無線基地制御局が、
前記事前共有鍵を前記無線基地局との間で鍵交換メカニズムを用いて動的に生 成する手段と、前記事前共有鍵を前記中継ノードに通知する手段とを備えることを特 徴とする請求項 4に記載の移動通信システム。
[7] 前記無線基地制御局が、
前記無線基地局との間で鍵交換メカニズムを用いて前記第 2の暗号鍵を動的に生 成する手段と、前記第 2の暗号鍵を前記中継ノードに通知する手段とを備えることを 特徴とする請求項 5に記載の移動通信システム。
[8] 無線基地局と無線基地制御局間の移動通信トラヒックの中継を行う中継ノードにお いて、
前記無線基地局が設置される私設網に設置され、前記私設網上を伝送される前記 無線基地制御局と前記無線基地局間の移動通信トラヒックの中継を行い、
前記無線基地制御局が前記無線基地局宛に送信した帯域制御シグナリングを受 信する手段と、
該帯域制御シグナリングに含まれるトラヒック情報を抽出する手段と、
私設網内の帯域管理機構と連携して受け付け判定を行う手段と、
前記受付判定結果と前記受付許可された帯域制御情報を含む帯域制御シグナリ ングを送信する手段を備えることを特徴とする中継ノード。
[9] 無線基地局と無線基地制御局間の移動通信トラヒックの中継を行う中継ノードにお いて、
前記無線基地局が設置される私設網に設置され、前記私設網上を伝送される前記 無線基地制御局と前記無線基地局間の移動通信トラヒックの中継を行い、
無線基地局と無線基地制御局に接続され、前記無線基地制御局とは第 1の暗号鍵 を、前記無線基地局とは第 2の暗号鍵を用いて暗号ィ匕通信を行い、
前記無線基地制御局から前記第 2の暗号鍵を生成するための事前共有鍵を受け 取る手段と、前記事前共有鍵を用いて前記無線基地局との間で前記第 2の暗号鍵を 動的に生成する手段と、前記第 2の暗号鍵を用いて前記移動通信トラヒックの暗号化 を行う手段とを備えることを特徴とする中継ノード。
[10] 無線基地局と無線基地制御局間の移動通信トラヒックの中継を行う中継ノードにお いて、
前記無線基地局が設置される私設網に設置され、前記私設網上を伝送される前記 無線基地制御局と前記無線基地局間の移動通信トラヒックの中継を行い、
無線基地局と無線基地制御局に接続され、前記無線基地制御局とは第 1の暗号鍵 を、前記無線基地局とは第 2の暗号鍵を用いて暗号ィ匕通信を行い、
前記第 2の暗号鍵を前記無線基地制御局から受け取る手段と、前記第 2の暗号鍵 を用いて前記移動通信トラヒックの暗号ィ匕を行う手段とを備えることを特徴とする中継 ノード。
[11] 複数の無線基地局と異なる暗号鍵を用いて暗号ィ匕通信を行う中継ノードを介して、 前記無線基地局と接続される無線基地制御局において、
前記暗号鍵の生成に必要となる事前共有鍵を前記無線基地局との間で鍵交換メカ 二ズムを用いて動的に生成する手段と、前記事前共有鍵を前記中継ノードに通知す る手段とを備えることを特徴とする無線基地制御局。
[12] 複数の無線基地局と異なる暗号鍵を用いて暗号ィ匕通信を行う中継ノードを介して、 前記無線基地局と接続される無線基地制御局において、
前記無線基地局との間で鍵交換メカニズムを用いて動的に前記暗号鍵を生成する 手段と、前記暗号鍵を前記中継ノードに通知する手段とを備えることを特徴とする無 線基地制御局。
[13] 無線基地局と無線基地制御局間の移動通信トラヒックの中継を行う中継ノードとし て機能するコンピュータに、
無線基地局が設置される私設網に設置され、前記私設網上を伝送される無線基地 制御局と前記無線基地局間の移動通信トラヒックの中継を行う機能と共に、
前記無線基地制御局が前記無線基地局宛に送信した帯域制御シグナリングを受 信する機能と、前記帯域制御シグナリングに含まれるトラヒック情報を抽出する機能と 、私設網内の帯域管理機構と連携して受け付け判定を行う機能と、前記受付判定結 果と前記受付許可された帯域制御情報を含む帯域制御シグナリングを送信する機能 とを実行させるための中継ノード用プログラム。
[14] 無線基地局と無線基地制御局間の移動通信トラヒックの中継を行う中継ノードとし て機能するコンピュータに、
無線基地局が設置される私設網に設置され、前記私設網上を伝送される無線基地 制御局と前記無線基地局間の移動通信トラヒックの中継を行い、前記無線基地制御 局とは第 1の暗号鍵を、前記無線基地局とは第 2の暗号鍵を用いて暗号ィ匕通信を行 う機能と共に、
前記無線基地制御局から前記第 2の暗号鍵を生成するための事前共有鍵を受け 取る機能と、前記事前共有鍵を用いて前記無線基地局との間で前記第 2の暗号鍵を 動的に生成する機能と、前記第 2の暗号鍵を用いて前記移動通信トラヒックの暗号化 を行う機能とを実行させるための中継ノード用プログラム。
[15] 無線基地局と無線基地制御局間の移動通信トラヒックの中継を行う中継ノードとし て機能するコンピュータに、
無線基地局が設置される私設網に設置され、前記私設網上を伝送される無線基地 制御局と前記無線基地局間の移動通信トラヒックの中継を行い、前記無線基地制御 局とは第 1の暗号鍵を、前記無線基地局とは第 2の暗号鍵を、用いて暗号化通信を 行う機能と共に、
前記第 2の暗号鍵を前記無線基地制御局から受け取る機能と、前記第 2の暗号鍵 を用いて前記移動通信トラヒックを暗号ィ匕する機能とを実行させるための中継ノード 用プログラム。
[16] 複数の無線基地局と異なる暗号鍵を用いて暗号ィ匕通信を行う中継ノードを介して、 前記複数の無線基地局と接続される無線基地制御局として機能するコンピュータに 前記暗号鍵の生成するために必要な事前共有鍵を前記無線基地局との間で鍵交 換メカニズムを用いて動的に生成する機能と、前記事前共有鍵を前記中継ノードに 通知する機能とを実行させるための無線基地制御局用プログラム。
[17] 複数の無線基地局と異なる暗号鍵を用いて暗号ィ匕通信を行う中継ノードを介して、 前記複数の無線基地局と接続される無線基地制御局として機能するコンピュータに 前記無線基地局との間で鍵交換メカニズムを用いて動的に前記暗号鍵を生成する 機能と、前記暗号鍵を前記中継ノードに通知する機能とを実行させるための無線基 地制御局用プログラム。
[18] 無線基地制御局と、前記無線基地制御局に接続される無線基地局とから構成され 、前記無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムの移動通信方法にぉ 、て、
前記移動通信システムは、前記無線基地局を私設網内に配置するとともに、中継ノ ードを前記私設網に設置しており、
前記中継ノードにより前記私設網上を伝送される前記無線基地制御局と前記無線基 地局間の移動通信トラヒックの中継を行い、
前記移動端末が発呼あるいは着呼した際に、前記中継ノードが前記私設網内の帯 域管理機能と連携した受け付け判定処理を行!ヽ、受付が許可された場合に前記移 動端末に通信回線を提供することを特徴とする移動通信方法。
[19] 無線基地制御局と、前記無線基地制御局に接続される無線基地局とから構成され 、前記無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムの移動通信方法にぉ 、て、
前記移動通信システムは、前記無線基地局を私設網内に配置し、中継ノードを前 記私設網に設置しており、
前記中継ノードにより前記私設網上を伝送される前記無線基地制御局と前記無線基 地局間の移動通信トラヒックの中継を行い、
前記無線基地制御局と前記中継ノード間では第 1の暗号鍵を、前記無線基地局と 前記中継ノード間では第 2の暗号鍵を用いて暗号ィ匕通信を行 、、
前記第 2の暗号鍵の生成に必要な事前共有鍵を前記無線基地制御局と前記無線 基地局間の鍵交換メカニズムにより生成し、前記無線基地制御局が前記中継ノード に前記事前共有鍵を通知することを特徴とする移動通信方法。
無線基地制御局と、前記無線基地制御局に接続される無線基地局とから構成され 、前記無線基地局と接続可能な移動端末に対して移動通信サービスを提供する移 動通信システムの移動通信方法において、 前記移動通信システムは、前記無線基 地局を私設網内に配置し、中継ノードで前記無線基地局と前記私設網を介して接続 しており、
前記中継ノードと前記無線基地局間の前記移動通信トラヒックは前記私設網内を伝 送され、前記中継ノードにより前記私設網上を伝送される前記無線基地制御局と前 記無線基地局間の移動通信トラヒックの中継を行い、
前記無線基地制御局と前記中継ノード間では第 1の暗号鍵を、前記無線基地局と 中継ノード間では第 2の暗号鍵を用いて暗号ィ匕通信を行 、、
前記第 2の暗号鍵を前記無線基地制御局と前記無線基地局間の鍵交換メカニズ ムにより動的に生成し、前記無線基地制御局が前記中継ノードに前記第 2の暗号鍵 を通知することを特徴とする移動通信方法。
PCT/JP2004/017257 2003-11-20 2004-11-19 私設網を利用した移動通信システム、中継ノード及び無線基地制御局 WO2005051024A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/580,013 US20070105549A1 (en) 2003-11-20 2004-11-19 Mobile communication system using private network, relay node, and radio network controller
EP04818979A EP1689201A1 (en) 2003-11-20 2004-11-19 Mobile communication system using private network, relay node, and radio base control station
JP2005515659A JPWO2005051024A1 (ja) 2003-11-20 2004-11-19 私設網を利用した移動通信システム、中継ノード及び無線基地制御局

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-390216 2003-11-20
JP2003390216 2003-11-20

Publications (1)

Publication Number Publication Date
WO2005051024A1 true WO2005051024A1 (ja) 2005-06-02

Family

ID=34616330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017257 WO2005051024A1 (ja) 2003-11-20 2004-11-19 私設網を利用した移動通信システム、中継ノード及び無線基地制御局

Country Status (6)

Country Link
US (1) US20070105549A1 (ja)
EP (1) EP1689201A1 (ja)
JP (1) JPWO2005051024A1 (ja)
KR (1) KR100786432B1 (ja)
CN (1) CN1883220A (ja)
WO (1) WO2005051024A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325003A (ja) * 2006-06-01 2007-12-13 Eiritsu Denshi Sangyo Kk データ送受信システム
JP2009159608A (ja) * 2007-12-27 2009-07-16 Thomson Licensing サービス受付制御を実行する方法及びシステム
JP2010515368A (ja) * 2006-12-27 2010-05-06 インターデイジタル テクノロジー コーポレーション 基地局を自己構成する方法および装置
WO2011037076A1 (ja) * 2009-09-28 2011-03-31 京セラ株式会社 無線基地局、基準信号供給装置、および無線基地局システム
US8340675B2 (en) * 2005-10-28 2012-12-25 Motorola Mobility, Inc. Radio bearer management in a cellular communication system
JP2013516138A (ja) * 2009-12-29 2013-05-09 インテルラ インコーポレイテッド インターネット網を用いて圧縮アルゴリズムを適用した統合型中継機
US8977839B2 (en) 2006-10-20 2015-03-10 Interdigital Technology Corporation Method and apparatus for self configuration of LTE E-Node Bs

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978842B2 (en) * 2005-03-30 2011-07-12 Cisco Technology, Inc. Method and system for managing bandwidth in communication networks
US7706371B1 (en) * 2005-07-07 2010-04-27 Cisco Technology, Inc. Domain based routing for managing devices operating behind a network address translator
JP4648148B2 (ja) * 2005-09-30 2011-03-09 富士通株式会社 接続支援装置
CN101155183B (zh) * 2006-09-29 2012-02-08 松下电器产业株式会社 处理巢状网际网络安全协议信道的方法及网络装置
JP4983208B2 (ja) * 2006-11-07 2012-07-25 富士通株式会社 中継局、無線通信方法
CN101257704B (zh) * 2007-02-27 2010-07-07 华为技术有限公司 中继网络中的联合方法、系统、中继站及移动台
US8670408B2 (en) 2007-02-27 2014-03-11 Huawei Technologies Co., Ltd. Method and system for association in relay network
US20080220716A1 (en) * 2007-03-06 2008-09-11 Institute For Information Industry Communication system and handshake method thereof
CN101282170B (zh) * 2007-04-05 2013-01-16 中兴通讯股份有限公司 一种共享中继系统中主从基站间负载均衡的方法
CN101282155B (zh) * 2007-04-05 2012-09-26 中兴通讯股份有限公司 一种实现主、从基站共享中继的传输方法
US8792487B2 (en) 2007-08-21 2014-07-29 Cisco Technology, Inc. Communication path selection
JP5088091B2 (ja) * 2007-10-29 2012-12-05 富士通株式会社 基地局装置、通信方法及び移動通信システム
CN101471720B (zh) * 2007-12-25 2013-01-02 财团法人资讯工业策进会 通讯系统及其相关方法
US8391875B1 (en) * 2008-02-22 2013-03-05 Sprint Spectrum L.P. Method and system for extending MIMO wireless service
US20100008293A1 (en) * 2008-07-09 2010-01-14 Qualcomm Incorporated X2 interfaces for access point base stations in self-organizing networks (son)
JP4875119B2 (ja) * 2009-04-27 2012-02-15 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
CN101908954B (zh) * 2009-06-03 2015-06-03 中兴通讯股份有限公司 一种解决中继节点上行传输冲突的方法及装置
CN101873259B (zh) * 2010-06-01 2013-01-09 华为技术有限公司 Sctp报文识别方法和装置
JP2012108643A (ja) * 2010-11-16 2012-06-07 Nec Computertechno Ltd コンピュータ制御システム、コンピュータ、制御方法、及び制御プログラム
US8724467B2 (en) 2011-02-04 2014-05-13 Cisco Technology, Inc. System and method for managing congestion in a network environment
US8891373B2 (en) * 2011-02-15 2014-11-18 Cisco Technology, Inc. System and method for synchronizing quality of service in a wireless network environment
US8630247B2 (en) 2011-02-15 2014-01-14 Cisco Technology, Inc. System and method for managing tracking area identity lists in a mobile network environment
US8902815B2 (en) 2011-07-10 2014-12-02 Cisco Technology, Inc. System and method for subscriber mobility in a cable network environment
US9198209B2 (en) 2012-08-21 2015-11-24 Cisco Technology, Inc. Providing integrated end-to-end architecture that includes quality of service transport for tunneled traffic
JP6055105B2 (ja) 2013-09-11 2016-12-27 フリービット株式会社 アプリケーション状態変化通知プログラム及びその方法
US10187357B2 (en) * 2015-07-05 2019-01-22 M2MD Technologies, Inc. Method and system for internetwork communication with machine devices
CN105471686B (zh) * 2015-12-26 2022-01-07 腾讯科技(深圳)有限公司 终端控制方法、装置及系统
EP3852417A4 (en) * 2018-10-10 2021-12-08 Sony Group Corporation COMMUNICATION DEVICE, COMMUNICATION METHOD, PROGRAM AND COMMUNICATION SYSTEM
CN110784840A (zh) * 2019-10-30 2020-02-11 陕西天基通信科技有限责任公司 一种电梯多媒体终端4g/5g专网专用的通信方法及终端
CN114079630B (zh) * 2020-08-10 2023-10-27 中国移动通信集团浙江有限公司 基于spn网络的业务保护方法、装置、设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130405A (ja) * 1995-09-29 1997-05-16 Nokia Mobile Phones Ltd 統合無線通信システムと通信方法
JP2002359881A (ja) * 2001-03-16 2002-12-13 Nippon Telegr & Teleph Corp <Ntt> ワイヤレス通信システム、制御局装置、基地局装置、およびワイヤレス通信システムの運用方法
JP2004135248A (ja) * 2002-08-09 2004-04-30 Fujitsu Ltd 仮想閉域網システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518604C2 (sv) * 2000-06-29 2002-10-29 Wireless Login Ab Metod och anordning för säker anslutning till ett kommunikationsnätverk
US6954790B2 (en) * 2000-12-05 2005-10-11 Interactive People Unplugged Ab Network-based mobile workgroup system
GB0109299D0 (en) * 2001-04-12 2001-05-30 British Telecomm Hybrid network
US7072657B2 (en) * 2002-04-11 2006-07-04 Ntt Docomo, Inc. Method and associated apparatus for pre-authentication, preestablished virtual private network in heterogeneous access networks
US7388844B1 (en) * 2002-08-28 2008-06-17 Sprint Spectrum L.P. Method and system for initiating a virtual private network over a shared network on behalf of a wireless terminal
US8161158B2 (en) * 2002-09-25 2012-04-17 Nokia Corporation Method in a communication system, a communication system and a communication device
DE60311006D1 (de) * 2003-02-13 2007-02-15 Research In Motion Ltd Manuelle netzwerkauswahl für mobile stationen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130405A (ja) * 1995-09-29 1997-05-16 Nokia Mobile Phones Ltd 統合無線通信システムと通信方法
JP2002359881A (ja) * 2001-03-16 2002-12-13 Nippon Telegr & Teleph Corp <Ntt> ワイヤレス通信システム、制御局装置、基地局装置、およびワイヤレス通信システムの運用方法
JP2004135248A (ja) * 2002-08-09 2004-04-30 Fujitsu Ltd 仮想閉域網システム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340675B2 (en) * 2005-10-28 2012-12-25 Motorola Mobility, Inc. Radio bearer management in a cellular communication system
JP2007325003A (ja) * 2006-06-01 2007-12-13 Eiritsu Denshi Sangyo Kk データ送受信システム
US8977839B2 (en) 2006-10-20 2015-03-10 Interdigital Technology Corporation Method and apparatus for self configuration of LTE E-Node Bs
US9854497B2 (en) 2006-10-20 2017-12-26 Interdigital Technology Corporation Method and apparatus for self configuration of LTE e-Node Bs
US9609689B2 (en) 2006-10-20 2017-03-28 Interdigital Technology Corporation Method and apparatus for self configuration of LTE e-Node Bs
US9320066B2 (en) 2006-10-20 2016-04-19 Interdigital Technology Corporation Method and apparatus for self configuration of LTE E-node Bs
US9100849B2 (en) 2006-12-27 2015-08-04 Signal Trust For Wireless Innovation Methods and apparatus for base station self-configuration
JP2018046588A (ja) * 2006-12-27 2018-03-22 シグナル トラスト フォー ワイヤレス イノベーション 基地局を自己構成する方法および装置
US8478343B2 (en) 2006-12-27 2013-07-02 Interdigital Technology Corporation Method and apparatus for base station self-configuration
JP2013070433A (ja) * 2006-12-27 2013-04-18 Interdigital Technology Corp 基地局を自己構成する方法および装置
US11595832B2 (en) 2006-12-27 2023-02-28 Interdigital Patent Holdings, Inc. Method and apparatus for base station self-configuration
US10652766B2 (en) 2006-12-27 2020-05-12 Signal Trust For Wireless Innovation Method and apparatus for base station self-configuration
US10225749B2 (en) 2006-12-27 2019-03-05 Signal Trust For Wireless Innovation Method and apparatus for base station self-configuration
JP2016129408A (ja) * 2006-12-27 2016-07-14 シグナル トラスト フォー ワイヤレス イノベーション 基地局を自己構成する方法および装置
JP2010515368A (ja) * 2006-12-27 2010-05-06 インターデイジタル テクノロジー コーポレーション 基地局を自己構成する方法および装置
US9807623B2 (en) 2006-12-27 2017-10-31 Signal Trust For Wireless Innovation Method and apparatus for base station self-configuration
JP2009159608A (ja) * 2007-12-27 2009-07-16 Thomson Licensing サービス受付制御を実行する方法及びシステム
WO2011037076A1 (ja) * 2009-09-28 2011-03-31 京セラ株式会社 無線基地局、基準信号供給装置、および無線基地局システム
US9131437B2 (en) 2009-09-28 2015-09-08 Kyocera Corporation Wireless base station, reference signal supply device, and wireless base station system
JP2011071901A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 無線基地局、基準信号供給装置、無線基地局システム、および無線基地局システムの運用方法
JP2013516138A (ja) * 2009-12-29 2013-05-09 インテルラ インコーポレイテッド インターネット網を用いて圧縮アルゴリズムを適用した統合型中継機

Also Published As

Publication number Publication date
US20070105549A1 (en) 2007-05-10
KR20060090281A (ko) 2006-08-10
KR100786432B1 (ko) 2007-12-17
EP1689201A1 (en) 2006-08-09
JPWO2005051024A1 (ja) 2008-03-06
CN1883220A (zh) 2006-12-20

Similar Documents

Publication Publication Date Title
KR100786432B1 (ko) 사설망을 이용한 이동통신 시스템, 중계 노드 및 무선기지제어국
EP1378093B1 (en) Authentication and encryption method and apparatus for a wireless local access network
JP4768818B2 (ja) 無線アクセスの方法、装置及びシステム
EP1495621B1 (en) Security transmission protocol for a mobility ip network
JP3778129B2 (ja) 無線ネットワークおよび無線ネットワークにおける認証方法
EP1461925B1 (en) Method and network for ensuring secure forwarding of messages
US8451752B2 (en) Seamless handoff scheme for multi-radio wireless mesh network
US7441043B1 (en) System and method to support networking functions for mobile hosts that access multiple networks
CA2466912C (en) Enabling secure communication in a clustered or distributed architecture
EP2272270B1 (en) A method for network access, related network and computer program product therefor
JP2007532043A (ja) ワイドエリアネットワークを横切る安全なスタンダードベースの通信
WO2006123974A1 (en) Means and method for ciphering and transmitting data in integrated networks
WO2008148357A1 (fr) Système et procédé de communication, passerelle de station de base domestique et serveur de station de base domestique
WO2011140927A1 (zh) 一种增强移动性的分流方法及装置
US10694558B2 (en) System, method and apparatus for small cell gateway selective data path offload
JP2004312257A (ja) 基地局、中継装置及び通信システム
Xenakis et al. Secure VPN deployment in GPRS mobile network
Xenakis et al. Dynamic network-based secure VPN deployment in GPRS
JP2015104048A (ja) 無線通信方法、そのシステムおよび無線基地局
JP3816850B2 (ja) Macブリッジ装置及び端末装置
JP2007028084A (ja) ネットワークおよびその管理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034215.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515659

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007105549

Country of ref document: US

Ref document number: 10580013

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067009912

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004818979

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004818979

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009912

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10580013

Country of ref document: US