WO2005045856A1 - Electronic component manufacturing method - Google Patents

Electronic component manufacturing method Download PDF

Info

Publication number
WO2005045856A1
WO2005045856A1 PCT/JP2004/015708 JP2004015708W WO2005045856A1 WO 2005045856 A1 WO2005045856 A1 WO 2005045856A1 JP 2004015708 W JP2004015708 W JP 2004015708W WO 2005045856 A1 WO2005045856 A1 WO 2005045856A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
dividing
manufacturing
substrate
ceramic substrate
Prior art date
Application number
PCT/JP2004/015708
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuusuke Suzuki
Original Assignee
Minowa Koa Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minowa Koa Inc. filed Critical Minowa Koa Inc.
Priority to JP2005515255A priority Critical patent/JPWO2005045856A1/en
Publication of WO2005045856A1 publication Critical patent/WO2005045856A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals

Definitions

  • the present invention relates to a method for manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface, and particularly to a method for manufacturing an electronic component using conductive balls as electronic component terminals.
  • Patent Document 1 JP-A-2002-353012
  • Patent Document 2 U.S. Patent No. 6,326,677
  • Patent Document 3 International Publication WO97Z30461
  • a first method for manufacturing an electronic component in which a circuit element 3 is formed on a surface of a ceramic substrate 1 according to the present invention is a method for manufacturing an electronic component provided on at least one direction on a surface.
  • a circuit element 3 is formed on a surface of a large ceramic substrate 1 having a groove 4 (for example, FIG. 1 (a)) (for example, FIG. 1 (b)).
  • a dicing process is performed on the surface of the substrate 1 in a direction substantially orthogonal to the dividing groove 4 (e.g., FIG. 1 (c)) to form
  • the substrate 1 is divided into unit electronic component pieces 10 (for example, FIG. 1 (d)).
  • the thirteen steps are performed in this order.
  • the method of forming the circuit element 3 in the eleventh step is particularly preferably screen printing from the viewpoint of mass productivity.
  • the circuit element 3 includes a resistor element, a capacitor element, an inductor element, a multiple element having one kind of these in a large number of electronic components, and a network element. And composite elements, such as CR components, which are combined in one electronic component by combining two or more of these elements.
  • the circuit element 3 can be formed on any of the divisional groove 4 existing surface and the non-existing surface of the ceramic substrate 1.
  • the dividing groove 4 provided in at least one direction for example, the ceramic substrate 1 in which the dividing groove 4 is provided vertically and horizontally may be used.
  • the dicing process described later can be performed along the dividing groove 4, and if the vertical and horizontal dimensions of the electronic component are previously defined by the dividing groove 4, the dicing process at the time of die cutting is performed. There is an advantage that positioning can be facilitated.
  • the daisin kakae in the twelfth step is, for example, a daisin kakae using a dicing saw having diamond powder adhered to the surface.
  • Commercially available tools and equipment can be used for the powerful die shredder.
  • the strip 12 is, for example, one in which the individual unit electronic component pieces 10 are partitioned by the dividing grooves 4 and are arranged in a line as shown in FIG. 1 (c).
  • a commercially available division apparatus can be used as a means for applying a stress to the substrate 1 so as to open the division groove 4.
  • the “dividing groove 4 provided on the surface in at least one direction” is formed, for example, when molding the ceramic substrate 1. Also, before forming the circuit element 3, the dividing groove 4 is formed in advance on the ceramic substrate 1 having both surfaces smooth without forming the dividing groove 4 during the molding.
  • stress application is realized in a form suitable for mass production by passing the strip 12 between rollers 8 while being placed on a belt 9, as shown in Fig. 2, for example.
  • the former has the advantage that the processing speed is high enough to be suitable for mass production and the processing cost can be kept low, but the divisional dimensional accuracy is usually low.
  • the latter has the advantage of high accuracy of the dimensional dimension, but usually has a low processing speed and high cost.
  • the divisional dimensional accuracy is particularly low and the strip 12 is required to be formed. It is possible to increase the dimensional accuracy in the dividing step.
  • the reason why the dimensional accuracy in the dividing step required for forming the strip 12 is particularly low is that, in the dividing method in which the force is applied so as to open the dividing groove 4, which is conventionally employed, the length of the dividing groove 4 to be subjected to the stress
  • the length of the strip 12 is as long as the length of the strip 12, it is difficult to uniformly apply stress to the entire dividing groove 4.
  • Another reason is that it is difficult to make the depth of the dividing groove 4 uniform over a long distance corresponding to the length of the strip 12.
  • the dividing step required for forming the strip 12 is realized by dicing, so that the dividing dimensional accuracy is high.
  • the die cutting speed is usually slow, so in the 13th step, the splitting process by applying stress that turns the ceramic substrate 1 in the direction to open the splitting groove 4 which is advantageous in terms of processing speed is adopted. are doing.
  • the division dimensional accuracy is usually low.
  • the length of the division groove 4 to be subjected to the stress is as short as the width of the strip 12, and such a division groove 4 is short. Since the depth rarely varies greatly within one dividing groove 4, it is easy to apply a uniform stress to the entire dividing groove 4, so that the dividing dimensional accuracy is maintained at a high level.
  • a great advantage is that the processing speed is high while the processing speed is high.
  • the first manufacturing method in a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface, even if the electronic component is small, it has good dimensional accuracy and is suitable for mass production.
  • a method for manufacturing an electronic component can be provided, which solves the first problem of the present invention.
  • a method of manufacturing an electronic component of the present invention which solves the first problem of the present invention, is a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface.
  • the method includes a first dividing step of forming strips in which small pieces are connected, and a second dividing step of forming the strips into unit electronic component pieces.
  • One of the first dividing step and the second dividing step is performed by dicing and the other is performed.
  • the present invention is characterized in that a stress is applied to the substrate so as to open a dividing groove formed beforehand or after the formation of the circuit element on the substrate surface.
  • the present manufacturing method conceptually includes the above-described first manufacturing method and a second manufacturing method described later, and therefore, the following description will be made on the premise thereof.
  • the dimensional accuracy is higher than in the case where a division method for applying stress to the substrate 1 is employed.
  • a division method for applying stress to the substrate 1 is employed.
  • “small” refers to so-called 1005, 0603, or 0402-sized electronic components or components having outer dimensions smaller than those.
  • the width of a strip 12 is about 1. Omm or about 0.5 mm.
  • the width of the strip 12 is about 0.6 mm or about 0.3 mm.
  • the width of the strip 12 is about 0.4 mm or about 0.2 mm.
  • a second method for manufacturing an electronic component in which the circuit element 3 is formed on the surface of the ceramic substrate 1 according to the present invention is a method for manufacturing the electronic component 3 on the surface of a large ceramic substrate 1.
  • the twenty-first step substantially corresponds to the eleventh step in the first manufacturing method.
  • the twenty-second step corresponds to the twelfth step in the first manufacturing method.
  • the twenty-fourth step corresponds to the thirteenth step in the first manufacturing method.
  • the 23rd step was calorie, the vigorous step was substantially included in the 11th step. Therefore, the second manufacturing method solves the first problem of the present invention, while the first manufacturing method solves the first problem.
  • the second manufacturing method has more advantageous effects than the first manufacturing method described below, and it is considered that the product defect rate can be reduced.Therefore, it is necessary to consider producing a certain amount of non-defective electronic components. In such a case, it is considered that the production rate is increased as a whole due to the effect of reducing the product defect rate, and the mass productivity is further improved.
  • the difference between the eleventh step and the twenty-first step is whether or not the dividing groove 4 is formed in advance on the surface of the ceramic substrate 1.
  • the dividing groove 4 is not formed in advance on the surface of the ceramic substrate 1, but the dividing groove 4 is formed in the following twenty-third step.
  • a powerful forming method is based on, for example, Daishindaka Kae. Unlike the cutting and dividing process by dicing the ceramic substrate 1 described above, the digging process does not reach the point where the ceramic substrate 1 is cut, but is a process for forming a slightly shallow dividing groove 4 on the surface of the ceramic substrate 1. is there.
  • a further advantage of forming the dividing groove 4 after the formation of the circuit element 3 is that division into a suitable position is performed irrespective of the position where the circuit element 3 is formed, depending on the formation result. Groove 4 can be formed. If the dividing grooves 4 were formed in the ceramic substrate 1 before the circuit elements 3 were formed, the burden of the circuit element 3 forming process would be extremely large. This is because the formation of the circuit element 3 with the position shifted is not allowed. This is because the smaller the size of electronic components, the higher the accuracy of the circuit element formation position is required. The advantages become more significant as miniaturization progresses.
  • the electronic component thus obtained is an electronic component in which the circuit element 3 is formed on the surface of the ceramic substrate 1 and the conductive ball 2 is used as an electronic component terminal.
  • the advantage that the divisional dimensional accuracy can be increased is obtained because excessive vibration such as large vibrations in the entire ceramic substrate 1 during the division step. This is substantially synonymous with the absence of a stress application shock. The reason is that if an excessive stress is applied to the entire ceramic substrate 1, an impact is applied to the substrate 1 area other than the dividing groove 4 when applying the stress for opening the dividing groove 4. This is because it is considered that there is a possibility that division occurs in areas other than the linear region along the dividing groove 4, and that the divisional dimensional accuracy may decrease.
  • the circuit element 3 is formed on the surface of the ceramic substrate 1 by the first and second manufacturing methods, and the electronic component having the conductive ball 2 as an electronic component terminal is not suitable for the entire ceramic substrate 1 due to excessive vibration and the like. Stress application 'Can be manufactured without impact. Therefore, even if there is a step of attaching the conductive balls 2 to the circuit element 3 terminals of the unit electronic component small pieces 10 before the dividing step, excessive stress is applied to the portion where the ceramic substrate 1 and the conductive balls 2 are attached. And the second problem of the present invention can be solved.
  • a step of fixing the conductive ball 2 to the terminal of the circuit element 3 of the unit electronic component piece 10 is provided.
  • the stress is applied so as to open the dividing groove 4, the fixed conductive ball 2 becomes the point of emphasis.
  • the dividing step (13th step and 24th step) is applied by applying the lever to the substrate 1 so that the dividing groove 4 is opened, the dividing groove 4 becomes the point of action. There can be. Even in this case, excessive stress is not usually concentrated on the portion where the ceramic substrate 1 and the conductive ball 2 are fixed. The reason is that the dividing groove 4 whose distance is equivalent to the width of the strip 12 is very short, and the stress required for the division is usually small enough. It is because it does not reach. Further, the concentration of the stress can be further avoided by using a buffer member 5 for protecting the conductive ball 2 from sticking, which will be described later.
  • the cushioning member 5 also has, for example, styrofoam, sponge, cloth, rubber, resin, foam resin, and the like.
  • the buffer member 5 is placed on the conductive ball 2 and stress is applied to a large number of the conductive balls 2 via the buffer member 5 as shown in FIG. Due to the presence of the buffer member 5, part or all of the applied stress is dispersed to a large number of conductive balls 2 without concentrating on one or a small number of conductive balls 2, and as a result, the ceramic substrate There is a first effect of not causing separation between 1 and the specific conductive ball 2.
  • the flexibility of the buffer member 5 is lower than the rigidity of the ceramic substrate 1 and can follow the radius up to the division of the substrate 1,
  • the cushioning member 5 should have a certain degree of flexibility without breaking. Therefore, there is a case where even a material that is recognized as a “rigid body” by social wisdom can be a “buffer member”.
  • the buffer member 5 for obtaining the second effect has a portion that comes into contact with the end face of the substrate 1 or the strip 12, for example, as shown in the cross-sectional view of FIG. Further, the conductive ball 2 is located in the concave portion 6, and there is no direct contact between the buffer member 5 and the conductive ball 2. Since the cushioning member 5 has a portion that comes into contact with the end face, the role of preventing the displacement between the conductive ball 2 and the recess 6 in the work of fitting the substrate 1 or the strip 12 and the cushioning member 5. To This is advantageous in that the second effect is more easily obtained.
  • the presence of the contact portion between the end face and the buffer member 5 absorbs the stress applied to the conductive ball 2 in the lateral direction (the direction parallel to the surface of the substrate 1), and further increases the stress of the buffer member 5 . It is also advantageous in that the effect of dispersion can be exhibited. The strong advantageous effect can be obtained even when the cushioning member 5 having no recess 6 as shown in FIG. 3 and having a portion in contact with the end surface of the substrate 1 or the strip 12 is used. it can. Also, in order to obtain the same effect as the force effect, the substrate 1 or the strip 12 has a portion that extends in a direction substantially perpendicular to the substrate end surface force substrate 1 surface like a container, and the buffer member 5 is attached to the portion. It can be mounted on one surface of the board while fitting so that it contacts. That is, the fitting side of the fitting between the base plate 1 or the strip 12 and the cushioning member 5 and the fitting side can be reversed.
  • the cushioning member 5 has a larger contact area with the surface of the ceramic substrate 1 in a portion that is relatively convex due to the presence of the concave portion 6 as compared with the concave portion 6. preferable. This is because it is considered that the second effect in which the convex portion substantially contributes to the stress dispersion is easily obtained.
  • the cushioning member 5 can be made of, for example, a rosin-based material such as flats filled between the conductive balls 2 on the surface of the substrate 1.
  • the rosin-based material may exist beyond the top of the conductive ball 2 or may exist without exceeding the top. Since the rosin-based material has both an adhesive effect and a buffering effect, it reinforces the adhesion between the conductive ball 2 and the substrate 1 and propagates the stress directly applied to the specific conductive ball 2 to the surroundings. And apply stress substantially evenly to the large number of conductive balls 2. Therefore, the rosin-based material has the same function as the buffer member 5. The buffer effect is remarkable when the rosin-based material exists beyond the top of the conductive ball 2.
  • the material is not limited to the rosin-based material but can be used as the buffer member 5 as well as the rosin-based material as long as the material has both an adhesive effect and a buffering effect.
  • the rosin-based material can be washed and removed using an alcohol, a ketone such as acetone, or ethyl acetate or the like, that is, an organic solvent. If the material can be removed after the dividing step as described above, the conductive boss on the substrate 1 surface may be used instead of the rosin-based material. By filling the space between the rosin-based materials, the same function as that of the rosin-based material can be performed.
  • the material is filled between the conductive balls 2 on the surface of the substrate 1, solidified, and then cut along the dividing grooves 4 by a dicing method or the like.
  • the buffer member 5 is cut along the dividing groove 4 at the same time. As described above, cutting the cushioning member 5 made of a rosin-based material or the like along the dividing groove 4 has an advantage that the applied stress at the time of division can be reduced.
  • the present invention is premised on going through a dicing step, there is an advantage that even if the number of the cutting steps is increased, a large process load is not required.
  • the advantage of performing the step of fixing the conductive ball 2 to the circuit element 3 terminal portion of the unit electronic component piece 10 before the dividing step is that the state of the large ceramic substrate 1 or the strip 12 is as follows. Since the plurality of unit electronic component pieces 10 are integrated, for example, in series, the fixing step can be performed in a state in which the handling is better than when the individual unit electronic component pieces 10 are handled. Specifically, for example, when a commercially available ball mounting device is used, the conductive balls 2 are fixed to the circuit element 3 terminals 7 without stopping the operation of the ball mounting device for all the unit electronic component pieces 10. Can be.
  • the step of fixing the conductive ball 2 to the terminal of the circuit element 3 of the unit electronic component piece 10 is performed after the thirteenth step or the twenty-fourth step. You can also. That is, the step of fixing the conductive balls 2 to the terminal portions 7 of the circuit element 3 can be performed after the division step. In this case, it is clear that the vibration caused by the dividing process has no effect on the fixed portion between the ceramic substrate 1 and the conductive ball 2. Excessive stress on the fixed part Needless to say, it is possible to solve the second problem of the present invention, in which no problem is caused.
  • the step of fixing the conductive balls 2 to the terminal portions 7 of the circuit element 3 is performed after the dividing step, the conductive balls 2 are connected to the terminal elements 7 of the circuit element 3 without stopping the operation of the ball mounting device.
  • the step of arranging the plurality of unit electronic component pieces 10 is performed after the thirteenth step, or the second manufacturing method In the method, the step of arranging the plurality of unit electronic component pieces 10 is performed after the completion of the 24th step.
  • the positional relationship between the unit electronic component pieces 10 is fixed as shown in FIG.
  • a bottomed container 11 having a plurality of recesses 17 into which unit electronic component pieces 10 can be inserted is used.
  • all of the arranged surfaces of the circuit elements 3 and the terminal portions 7 are on the upper side. This is because the gravitational force of the conductive ball 2 is easily fixed to a position where the conductive ball 2 should be fixed.
  • the means for aligning the front and back of the unit electronic component piece 10 is, for example, to make the light reflectivity of one surface and the other surface of the unit electronic component piece 10 different in advance, and to irradiate light and detect the reflected light.
  • one side faces upwards, and only the unit electronic component pieces 10 are sorted and collected, and then the one side faces upwards, and the state is maintained. It is a means to arrange while doing.
  • the packing step can be performed as it is in a state where the unit electronic component small pieces 10 are inserted into the container 11 in that the packaging process of the electronic components can be simplified.
  • the container 11 plays a role as a part of an electronic component packaging material such as a taping material.
  • soldering is the method of soldering to the electronic component terminals. Due to the presence of such soldering, there is an IJ point at which the solder wettability of the terminal portion is improved, and the bonding strength is increased when the bonding of the conductive ball 2 to the terminal portion is realized by soldering.
  • the surface on which the circuit element 3 is formed on the ceramic substrate 1 and the surface on which the dividing groove 4 is present are the same surface.
  • the first manufacturing method has an advantage that, in the circuit element 3 forming step (eleventh step), the positional relationship with the dividing groove 4 can be confirmed visually or the like, and the positional accuracy can be improved. That's why.
  • the second manufacturing method in the dividing groove 4 forming step (the 23rd step), the positional relationship with the circuit element 3 can be confirmed visually or the like, and there is an advantage that the positional accuracy can be increased. It is.
  • circuit elements 3 are formed on the surface of the ceramic substrate 1, and excessive stress is concentrated on the part where the ceramic substrate 1 and the conductive balls 2 are fixed in the electronic component manufacturing method using the conductive balls 2 as electronic component terminals. I could't let it.
  • FIG. 1 is a diagram sequentially showing states of an electronic component at the end of each step, regarding an outline of a method for manufacturing an electronic component of the present invention.
  • FIG. 2 is a view showing a state in which a large substrate is placed on a belt and passed between rollers to apply stress so as to bend the large substrate.
  • FIG. 3 is a perspective view showing an example of an outline of a state in which a buffer member is placed on a large-sized ceramic substrate surface on which circuit elements and conductive balls are formed and arranged according to the present invention.
  • FIG. 4 is a partially omitted cross-sectional view showing an example of an outline of a state in which a large-sized substrate on which circuit elements and conductive balls are formed and arranged according to the present invention and a buffer member are fitted.
  • FIGS. 5 (a) and 5 (b) are perspective views each showing an example of an outline of a state in which unit electronic component pieces according to the present invention are housed and arranged in a container.
  • FIG. 6 A circuit configuration of a unit electronic component is formed as an example of an embodiment of the present invention. It is a figure which shows a situation sequentially.
  • FIG. 7 is a view sequentially showing a state in which a conductive ball is fixed on a land of a substrate, as an example of an embodiment of the present invention.
  • FIG. 1 shows the best mode for carrying out the present invention based on the first manufacturing method.
  • a large number of dividing grooves 4 are formed in one direction in advance on one surface.
  • the divided substrate 1 along the strong dividing groove 4 becomes one side of a single electronic component.
  • FIG. 6 shows the substrate 1 (unit electronic component small piece 10) of the minimum unit.
  • an Ag—Pd-based conductive paste containing a glass frit is screen-printed on the surface of the ceramic substrate 1 on which the dividing grooves 4 are formed, and then baked to form an electrode / land for an element. 7 and the common electrode 20 and land 7 are obtained (FIG. 6 (a)).
  • a metal glaze-based resistor paste mainly composed of ruthenium oxide and glass frit is screen-printed so as to be in contact with both the common electrode 20 and the electrode 7, and then fired to obtain the resistor 13 (FIG. 6 (b )).
  • a glass paste is screen-printed so as to cover the resistor 13 and then fired to obtain a glass film 14 (FIG. 6 (c)).
  • a step of forming a trimming groove in the resistor 13 by irradiating a laser to adjust the resistance in order to set a resistance value of the resistor composed of the electrode 7, the common electrode 20 and the resistor 13 to a desired value is performed.
  • Fig. 6 (d) the glass film 14 damages the entire resistor 13. Acts as much as possible.
  • an overcoat 16 as a protective film is screen-printed, and then the epoxy resin paste is cured by heating (FIG. 6 (e)).
  • the overcoat 16 When disposing the overcoat 16, the necessary lands 7 of the electrode 7 and the common electrode 20 are exposed (FIG. 6 (e)).
  • the eleventh step is completed.
  • the overcoat 16 black
  • the light reflectance of one surface of the unit electronic component piece 10 and that of the other surface are made different. be able to.
  • a high-viscosity flux 19 is arranged on the land 7 obtained by forming the overcoat 16 (FIG. 7 (a)).
  • the flux 19 used was Senju Metal Industry Co., Ltd. (trade name: Deltalux 529D-1).
  • the arrangement method was a pin transfer method. At the time of this arrangement, care was taken to make flux 19 exist in the land 7 area and narrower area.
  • the flux 19 (trade name: Deltalux 529D-1) can be replaced with a flux having the same viscosity and viscosity as the flux 19.
  • the strong conductive ball 2 has a surface layer of tin (so-called lead-free solder) and a core of copper ball.
  • the strong fixing process is based on the known reflow process.
  • a plurality of strips 12 are obtained by cutting the substrate 1 in a direction orthogonal to the dividing grooves 4 so that the processed substrate 1 becomes one side of a single electronic component (for example, FIG. c)
  • oDarking is performed by dicing using a dicing saw with diamond powder attached to the surface.
  • the strip 12 is divided along the dividing groove 4 to be subjected to a dividing step of obtaining a unit electronic component piece 10. Therefore, stress was applied in the direction in which the dividing groove 4 was opened. As shown in FIG. 2, the application of the stress is realized by passing the large-sized substrate 1 between the rollers 8 in a state of being placed on a belt 9. At this time, the stress was applied while the strip 12 was wrapped with the cushioning member 5 made of cloth. As a result, a unit electronic component piece 10 was obtained. Thus, the above thirteenth step is completed.
  • the best mode for carrying out the present invention based on the above-mentioned second manufacturing method is described below.
  • the embodiment of the above-mentioned first manufacturing method is performed except that a substrate 1 on which a dividing groove is not formed in advance is used. Through the process under the same conditions as the first process. Thus, the twenty-first step in the second manufacturing method is completed.
  • a step of mounting the conductive balls 2 on the lands 7 of the unit electronic component pieces 10 is performed as in the embodiment of the first manufacturing method.
  • the dividing groove 4 is formed on the surface of the substrate 1 on which the circuit element 3 is formed. This formation is performed by the same method as in the twelfth step of the first manufacturing method.
  • the dividing grooves 4 are formed by dicing so that a large number of dividing grooves 4 are formed in one direction on the surface of the substrate 1 and the dividing grooves 4 are one side of one electronic component. The positional relationship between groove 4 and circuit element 3 was adjusted. Thus, the twenty-second step in the second manufacturing method is completed.
  • a strip 12 is obtained by performing a dividing step by dicing calorie in the same manner as the twelfth step in the embodiment of the first manufacturing method.
  • the twenty-third step of the second manufacturing method is completed.
  • the conductive balls 2 are fixed to the lands 7 on the circuit element 3 forming surface of the large-sized substrate 1.
  • the surface opposite to the surface on which the circuit elements 3 are formed on the large substrate 1 Alternatively, the conductive ball 2 may be fixed thereto. In this case, first, it is necessary to provide a via hole or the like for the substrate 1 to conduct electricity from the front to the back.
  • the dividing groove 4 exists on the surface of the large substrate 1 on which the circuit element 3 is formed.
  • the dividing groove 4 may be present on the surface of the large substrate 1 opposite to the surface on which the circuit elements 3 are formed.
  • the part of the circuit element 3 is separated from the substrate 1.
  • a mode in which the dividing grooves 4 are present on the surface of the large substrate 1 on which the circuit elements 3 are formed is more preferable and is considered to be a mode.
  • the land 7 and the conductive ball 2 when the land 7 and the conductive ball 2 are fixed, only the high-viscosity flux 19 is interposed between the land 7 and the conductive ball 2.
  • a cream solder may be interposed instead of or together with the high-viscosity flux 19 and subjected to a reflow process. Is preferred.
  • the material of the surface of the conductive ball 2 and the material of the land 7 conditions suitable for fixing can be selected. If necessary, the surface of the land 7 can be soldered to improve the solder wettability on the surface of the land 7.
  • a conductive adhesive can be used as a fixing member between the land 7 and the conductive ball 2 without using solder.
  • lead: tin 95: 5 weight
  • Sn-Bi alloy, Sn-In-Ag alloy, Sn-Bi-Zn Alloy, Sn-Zn alloy, Sn-Ag-Bi alloy, Sn-Bi-Ag-Cu alloy, Sn-Ag-Cu alloy, Sn-Ag-In alloy, Sn-Ag-Cu-Sb alloy Alloy, Sn-Ag based alloy, Sn-Cu based alloy, Sn-Sb based alloy can be used.
  • the distance between the outermost end dividing groove 4 on the surface of the large ceramic substrate 1 and one end of the substrate 1 is A large-sized ceramic substrate 1 having a separation groove 4 on one surface and a distance of 4 or more was used.
  • the outermost surface of one large ceramic substrate It goes without saying that a large-sized ceramic substrate 1 in which the distance between the dividing groove 4 at the end and the end of the substrate 1 is smaller than the distance between the dividing grooves 4 on the surface of the substrate 1 can be used.
  • the dividing groove 4 located at the outermost end of the particularly large substrate 1 is divided by applying stress (the thirteenth process and the twenty-fourth process).
  • stress the thirteenth process and the twenty-fourth process.
  • a better division size system can be obtained.
  • the fulcrum in the leverage principle the substrate 1 area corresponding to the dividing groove 4 on the back side of the substrate 1 where the dividing groove 4 exists
  • the force point the division on the substrate 1 surface where the dividing groove 4 exists
  • a part other than the area where the groove 4 is located can be maintained at a certain distance or more, and it is difficult for chips or the like to be generated due to excessive stress (compared to other force points) to the force point. It is.
  • the strip in the dividing step of dividing the strip 12 along the dividing groove 4 to obtain the unit electronic component piece 10, the strip is divided into pieces before and after the division using an adhesive tape. It is preferable to fix the substrate 1 over it. This is because individual unit electronic component pieces 10 are prevented from falling apart after division, and the handling of the unit electronic component pieces 10 is improved.
  • the present invention can be used in an electronic component in which a circuit element is formed on a ceramic substrate surface, particularly in an electronic component-related industry in which a circuit element is formed on a ceramic substrate surface and a conductive ball is used as an electronic component terminal. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

A method for manufacturing an electronic component in which circuit elements are fabricated on a ceramic substrate (1). The method is suitable for massproduction of an electronic component with high accuracy even if the electronic component is of a small size. The method comprises eleventh to thirteenth steps executed in this order. In the eleventh step, circuit elements (3) are fabricated on a large ceramic substrate (1) having dividing grooves (4) formed at least in one direction in the surface of the ceramic substrate (1). In the twelfth step, the ceramic substrate (1) is diced in a direction generally perpendicular to the dividing grooves (4) so as to produce rectangular strips (12) where unit electronic component pieces (10) are strung. In the thirteenth step, the substrate (1) is divided into the unit electronic component pieces (10) by imparting stress to the substrate (1) so as to cut the rectangular strips (12) along the dividing grooves (4).

Description

明 細 書  Specification
電子部品の製造法  Manufacturing method of electronic components
技術分野  Technical field
[0001] 本発明は、セラミック基板面に回路素子が形成される電子部品の製造法に関し、特 に導電性ボールを電子部品端子とする電子部品の製造法に関するものである。 背景技術  The present invention relates to a method for manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface, and particularly to a method for manufacturing an electronic component using conductive balls as electronic component terminals. Background art
[0002] 電子部品を量産するに至らせることは、同様に量産される電子機器へその電子部 品を供給することを考慮すると、十分な供給量を確保するためには必要なことである 。従って、セラミック基板面に回路素子が形成される電子部品(例えばチップ抵抗器 等)の場合は、通常予め分割用溝が設けられた大型のセラミック基板面に、厚膜技術 や薄膜技術により回路素子の各要素を多数個の電子部品に要する分だけ形成し、 その後当該分割用溝に沿ってセラミック基板を個々の電子部品単位に分割して、量 産を実現している(例えば特開 2002— 353012号公報)。  [0002] Mass production of electronic components is necessary in order to secure a sufficient supply amount in consideration of supplying the electronic components to mass-produced electronic devices. Therefore, in the case of an electronic component (for example, a chip resistor or the like) in which a circuit element is formed on the surface of a ceramic substrate, the circuit element is usually formed on a large ceramic substrate surface provided with a dividing groove in advance by a thick film technique or a thin film technique. Are formed as many as necessary for a large number of electronic components, and then the ceramic substrate is divided into individual electronic component units along the dividing grooves to realize mass production (for example, Japanese Patent Application Laid-Open No. No. 353012).
[0003] またセラミック基板面に回路素子が形成され、導電性ボールを電子部品端子とする 電子部品については、米国特許第 6, 326, 677号公報及び国際公開 WO97Z30 461号公報にその開示がある。  [0003] Further, with respect to an electronic component in which a circuit element is formed on the surface of a ceramic substrate and a conductive ball is used as an electronic component terminal, US Pat. No. 6,326,677 and International Publication WO97Z30461 disclose such an electronic component. .
特許文献 1:特開 2002-353012号公報  Patent Document 1: JP-A-2002-353012
特許文献 2 :米国特許第 6, 326, 677号公報  Patent Document 2: U.S. Patent No. 6,326,677
特許文献 3 :国際公開 WO97Z30461号公報  Patent Document 3: International Publication WO97Z30461
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら電子部品の小型化が進むに従い、上記量産の実現が困難となる。そ の理由は、上記分割の寸法精度が直接的に電子部品寸法に反映されるため、非常 に高 、分割位置精度が要求され、それにより製造工程が複雑ィ匕するからである。  [0004] As the size of electronic components is reduced with increasing effort, it becomes more difficult to realize the mass production. The reason for this is that the dimensional accuracy of the division is directly reflected on the dimensions of the electronic component, so that a very high division position accuracy is required, which complicates the manufacturing process.
[0005] またセラミック基板面に回路素子が形成され、導電性ボールを電子部品端子とする 電子部品については、上記量産の実現が困難である。その理由は、製造工程がセラ ミック基板と導電性ボールとの固着を伴うためである。 [0006] 即ち、仮に分割工程前にセラミック基板と導電性ボールとの固着をし、その状態で 分割工程を実施しょうとすると、分割工程の際にセラミック基板と導電性ボールとの固 着部分に過大な応力が集中するおそれがある。その結果セラミック基板と導電性ボ ールとの剥離が生じ、電子部品として機能しなくなるおそれがある。従ってこれらのェ 程の採用は、セラミック基板面に回路素子が形成され、導電性ボールを電子部品端 子とする電子部品の製造には不向きである。力かる応力付与の代表的なものは、現 在の技術では 2種類ある。一つは分割用溝を開く方向にセラミック基板を橈ませる応 力付与である。他の一つは、セラミック基板のダイシングによる切断分割工程で発生 する振動による応力付与である。 [0005] Further, it is difficult to realize the above-mentioned mass production of an electronic component in which a circuit element is formed on a ceramic substrate surface and a conductive ball is used as an electronic component terminal. The reason is that the manufacturing process involves sticking of the ceramic substrate and the conductive ball. [0006] That is, if the ceramic substrate and the conductive balls are fixed before the dividing step, and if the dividing step is to be performed in that state, the fixing part between the ceramic substrate and the conductive balls during the dividing step. Excessive stress may be concentrated. As a result, the ceramic substrate is separated from the conductive ball, and may not function as an electronic component. Therefore, adoption of these steps is unsuitable for the production of electronic components in which circuit elements are formed on the surface of the ceramic substrate and conductive balls are used as electronic component terminals. There are two main types of strong stress application in current technology. One is to apply a stress to bend the ceramic substrate in the direction to open the dividing groove. The other is to apply stress by vibration generated in the cutting and dividing process by dicing the ceramic substrate.
[0007] そこで本発明が解決しょうとする第 1の課題は、セラミック基板面に回路素子が形成 される電子部品の製造法において、当該電子部品が小型のものであっても、寸法精 度良ぐ且つ量産に適した電子部品の製造法を提供することである。また本発明が解 決しようとする第 2の課題は、セラミック基板面に回路素子が形成され、導電性ボール を電子部品端子とする電子部品の製造法にぉ 、て、セラミック基板と導電性ボールと の固着部分に過大な応力を集中させな 、ことである。  [0007] A first problem to be solved by the present invention is to provide a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface, even if the electronic component is small in size, with good dimensional accuracy. It is an object of the present invention to provide a method of manufacturing an electronic component suitable for mass production. A second object of the present invention is to provide a method for manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface and the conductive ball is used as an electronic component terminal. That is, excessive stress should not be concentrated on the fixing portion between and.
課題を解決するための手段  Means for solving the problem
[0008] 上記第 1の課題を解決するため、本発明の、セラミック基板 1面に回路素子 3が形成 された電子部品の第 1の製造法は、表面に少なくとも一方向に設けられた分割用溝 4 を有する大型のセラミック基板 1 (例えば図 1 (a) )面に回路素子 3を形成する(例えば 図 1 (b) )第 11の工程と、複数の単位電子部品小片 10が連なる短冊 12を形成するよ う、当該分割用溝 4に対して実質的に直交する方向の該基板 1面にダイシング加ェ する (例えば図 1 (c) )第 12の工程と、当該短冊 12が有する前記分割用溝 4を開くよう に上記基板 1に応力付与することで上記基板 1を単位電子部品小片 10に分割する( 例えば図 1 (d) )第 13の工程を有し、上記第 11乃至第 13の工程をこの順に実施する ことを特徴とする。 [0008] In order to solve the above first problem, a first method for manufacturing an electronic component in which a circuit element 3 is formed on a surface of a ceramic substrate 1 according to the present invention is a method for manufacturing an electronic component provided on at least one direction on a surface. A circuit element 3 is formed on a surface of a large ceramic substrate 1 having a groove 4 (for example, FIG. 1 (a)) (for example, FIG. 1 (b)). A dicing process is performed on the surface of the substrate 1 in a direction substantially orthogonal to the dividing groove 4 (e.g., FIG. 1 (c)) to form By applying a stress to the substrate 1 so as to open the dividing groove 4, the substrate 1 is divided into unit electronic component pieces 10 (for example, FIG. 1 (d)). The thirteen steps are performed in this order.
[0009] 第 11の工程における回路素子 3形成法は、スクリーン印刷によることが、量産性の 観点から特に好適である。またその回路素子 3は、抵抗素子、コンデンサ素子、イン ダクタ素子、これらの 1種を多数一つの電子部品の中に有する多連素子やネットヮー ク素子、またこれらの 2種以上を組み合わせて一つの電子部品の中に有する、 CR部 品等に代表される複合素子等である。 [0009] The method of forming the circuit element 3 in the eleventh step is particularly preferably screen printing from the viewpoint of mass productivity. The circuit element 3 includes a resistor element, a capacitor element, an inductor element, a multiple element having one kind of these in a large number of electronic components, and a network element. And composite elements, such as CR components, which are combined in one electronic component by combining two or more of these elements.
[0010] ここで上記回路素子 3は、セラミック基板 1の分割用溝 4存在面'非存在面のいずれ にも形成することができることは言うまでもない。また「少なくとも一方向に設けられた 分割用溝 4」であるから、例えば縦横に分割用溝 4が設けられたセラミック基板 1であ つてもよい。その場合、後述のダイシング加工は、分割用溝 4に沿って実施することが でき、電子部品の縦横の寸法が予め分割用溝 4にて区画されている場合には、ダイ シンダカ卩ェ時の位置決めが容易となり得る利点がある。 Here, it is needless to say that the circuit element 3 can be formed on any of the divisional groove 4 existing surface and the non-existing surface of the ceramic substrate 1. Further, since it is “the dividing groove 4 provided in at least one direction”, for example, the ceramic substrate 1 in which the dividing groove 4 is provided vertically and horizontally may be used. In this case, the dicing process described later can be performed along the dividing groove 4, and if the vertical and horizontal dimensions of the electronic component are previously defined by the dividing groove 4, the dicing process at the time of die cutting is performed. There is an advantage that positioning can be facilitated.
[0011] 第 12の工程におけるダイシンダカ卩ェは、例えばダイヤモンド粉末が表面に付着さ れたダイシングソーを用いたダイシンダカ卩ェ等である。力かるダイシンダカ卩ェに要す る工具及び設備は、市販のものを用いることができる。 [0011] The daisin kakae in the twelfth step is, for example, a daisin kakae using a dicing saw having diamond powder adhered to the surface. Commercially available tools and equipment can be used for the powerful die shredder.
[0012] ここで上記短冊 12は、例えば図 1 (c)に示すような、個々の単位電子部品小片 10 が分割用溝 4により区画され、一列に連なって 、るものを ヽぅ。 Here, the strip 12 is, for example, one in which the individual unit electronic component pieces 10 are partitioned by the dividing grooves 4 and are arranged in a line as shown in FIG. 1 (c).
[0013] 第 13の工程における分割工程は、上記分割用溝 4を開くように上記基板 1に応力 付与する手段として、例えば市販されている分割装置を用いることができる。 In the thirteenth division step, for example, a commercially available division apparatus can be used as a means for applying a stress to the substrate 1 so as to open the division groove 4.
[0014] 上記「表面に少なくとも一方向に設けられた分割用溝 4」は、例えばセラミック基板 1 成型時に形成される。また該成型時に分割用溝 4を形成せずに両面とも平滑なセラミ ック基板 1に対して、回路素子 3形成前に予め上記ダイシング加工等で分割用溝 4を 形成することちでさる。 The “dividing groove 4 provided on the surface in at least one direction” is formed, for example, when molding the ceramic substrate 1. Also, before forming the circuit element 3, the dividing groove 4 is formed in advance on the ceramic substrate 1 having both surfaces smooth without forming the dividing groove 4 during the molding.
[0015] 上記「応力付与」は、例えば図 2に示すように、ローラ 8間に前記短冊 12を、ベルト 9 の上に載せた状態で通すことにより、量産に適した形態で実現される。  [0015] The above-mentioned "stress application" is realized in a form suitable for mass production by passing the strip 12 between rollers 8 while being placed on a belt 9, as shown in Fig. 2, for example.
[0016] 現在、セラミック基板 1を分割加工する実用レベルの技術は 2種類ある。一つは分 割用溝 4を開く方向にセラミック基板 1を橈ませる応力付与による分割加工である。他 の一つは、ダイシングによる切断加工である。  At present, there are two types of practical-level technologies for dividing and processing the ceramic substrate 1. One is a dividing process by applying a stress that causes the ceramic substrate 1 to bend in a direction in which the dividing groove 4 is opened. The other is cutting by dicing.
[0017] 前者は量産に適する程度に加工速度が速ぐ加工コストも低く抑えることのできる利 点がある一方、分割寸法精度は通常低い。それに対し後者は分割寸法精度が高い 利点がある一方、加工速度が通常遅ぐまたカ卩ェコストが高い。  [0017] The former has the advantage that the processing speed is high enough to be suitable for mass production and the processing cost can be kept low, but the divisional dimensional accuracy is usually low. On the other hand, the latter has the advantage of high accuracy of the dimensional dimension, but usually has a low processing speed and high cost.
[0018] 本発明の第 1の製造法により、特に分割寸法精度が低い、短冊 12形成に要する分 割工程における分割寸法精度を高めることができる。短冊 12形成に要する分割工程 における分割寸法精度が特に低い理由は、従来力も採用されている、分割用溝 4を 開くように応力付与する分割方法では、当該応力付与対象の分割用溝 4長さが短冊 12の長さ分と長いため、当該分割用溝 4全体に対して均一に応力付与することが困 難だ力もである。また分割用溝 4深さを、そのような短冊 12の長さ分の長距離に亘っ て均一にし難いためでもある。 [0018] According to the first manufacturing method of the present invention, the divisional dimensional accuracy is particularly low and the strip 12 is required to be formed. It is possible to increase the dimensional accuracy in the dividing step. The reason why the dimensional accuracy in the dividing step required for forming the strip 12 is particularly low is that, in the dividing method in which the force is applied so as to open the dividing groove 4, which is conventionally employed, the length of the dividing groove 4 to be subjected to the stress However, since the length of the strip 12 is as long as the length of the strip 12, it is difficult to uniformly apply stress to the entire dividing groove 4. Another reason is that it is difficult to make the depth of the dividing groove 4 uniform over a long distance corresponding to the length of the strip 12.
[0019] ここで第 1の製造法では、短冊 12形成に要する分割工程をダイシング加工で実現 して 、るため分割寸法精度が高 、。し力し上記のようにダイシンダカ卩ェ速度が通常遅 いため、第 13の工程では、加工速度の点で有利な分割用溝 4を開く方向にセラミック 基板 1を橈ませる応力付与による分割加工を採用している。カゝかる分割加工は、上記 のように分割寸法精度が通常低いものであるが、応力付与対象の分割用溝 4長さが 、短冊 12の幅分と短ぐまたそのような分割用溝 4深さが、一本の分割用溝 4内で大 きく異なることが稀有であるため、当該分割用溝 4全体に対して均一に応力付与する ことが容易なため、分割寸法精度を高く維持しつつ加工速度が速いという大きな利 点、を得ることができる。 Here, in the first manufacturing method, the dividing step required for forming the strip 12 is realized by dicing, so that the dividing dimensional accuracy is high. As described above, the die cutting speed is usually slow, so in the 13th step, the splitting process by applying stress that turns the ceramic substrate 1 in the direction to open the splitting groove 4 which is advantageous in terms of processing speed is adopted. are doing. As described above, in the case of the large division process, the division dimensional accuracy is usually low. However, the length of the division groove 4 to be subjected to the stress is as short as the width of the strip 12, and such a division groove 4 is short. Since the depth rarely varies greatly within one dividing groove 4, it is easy to apply a uniform stress to the entire dividing groove 4, so that the dividing dimensional accuracy is maintained at a high level. A great advantage is that the processing speed is high while the processing speed is high.
[0020] 従って第 1の製造法では、セラミック基板面に回路素子が形成される電子部品の製 造法において、当該電子部品が小型のものであっても、寸法精度良ぐ且つ量産に 適した電子部品の製造法を提供することができ、本発明の第 1の課題を解決する。  Therefore, in the first manufacturing method, in a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface, even if the electronic component is small, it has good dimensional accuracy and is suitable for mass production. A method for manufacturing an electronic component can be provided, which solves the first problem of the present invention.
[0021] 同様に本発明の第 1の課題を解決する、本発明の電子部品の製造法は、セラミック 基板面に回路素子が形成される電子部品の製造法であって、複数の単位電子部品 小片が連なる短冊を形成する第 1分割工程と、当該短冊を単位電子部品小片を形 成する第 2分割工程を有し、第 1分割工程及び第 2分割工程の一方がダイシングカロ ェにより、他方が、基板面上に予め若しくは回路素子形成後に形成された分割用溝 を開くよう上記基板に応力付与することによることを特徴とするものである。本製造法 は、上記第 1の製造法及び後述の第 2の製造法を概念的に含むため、以下、そのこ とを前提として説明する。  [0021] Similarly, a method of manufacturing an electronic component of the present invention, which solves the first problem of the present invention, is a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface. The method includes a first dividing step of forming strips in which small pieces are connected, and a second dividing step of forming the strips into unit electronic component pieces. One of the first dividing step and the second dividing step is performed by dicing and the other is performed. However, the present invention is characterized in that a stress is applied to the substrate so as to open a dividing groove formed beforehand or after the formation of the circuit element on the substrate surface. The present manufacturing method conceptually includes the above-described first manufacturing method and a second manufacturing method described later, and therefore, the following description will be made on the premise thereof.
[0022] この製造法におけるダイシング加工では、上記第 1の製造法と同様にダイシンダブ レード等の刃を使用する力 当該刃の磨耗が激しい。セラミック基板 1は非常に硬い 材料だカゝらである。しかしながら、第 1分割工程及び第 2分割工程の一方にダイシン グ加工を採用し、他方に分割用溝を開くよう基板 1に応力付与する分割法を採用して いる結果、前記刃の磨耗を 1Z3— 2Z3程度にまで低減することができる。また少な くとも電子部品の外形 (長方形又は正方形)の 4辺の内、 2辺をダイシング加工により 形成することとなるため、小型の電子部品を構成する 4辺全てにつき、分割用溝を開 くよう基板 1に応力付与する分割法を採用した場合に比べ、寸法精度は高くなる。よ つて上記第 1の製造法及び後述する第 2の製造法と同様に、電子部品が小型のもの であっても、寸法精度良ぐ且つ量産に適した電子部品の製造法を提供することがで き、本発明の第 1の課題を解決する。 [0022] In the dicing process in this manufacturing method, as in the first manufacturing method described above, the force of using a blade such as a die sine blade is severely worn. Ceramic substrate 1 is very hard It is a material. However, as a result of employing a dicing process in one of the first and second dividing steps and a dividing method in which stress is applied to the substrate 1 so as to open a dividing groove in the other, abrasion of the blade is reduced by 1Z3. — Can be reduced to about 2Z3. Also, since at least two of the four sides of the outer shape (rectangular or square) of the electronic component will be formed by dicing, split grooves are opened for all four sides that make up the small electronic component. The dimensional accuracy is higher than in the case where a division method for applying stress to the substrate 1 is employed. Thus, as in the first manufacturing method and the second manufacturing method described later, it is possible to provide a method for manufacturing electronic components having good dimensional accuracy and suitable for mass production even if the electronic components are small. Thus, the first problem of the present invention is solved.
[0023] ここで「小型」とは、いわゆる 1005、 0603、又は 0402サイズの電子部品又はそれ らよりも外寸の小さいものが考えられる。例えば 1005サイズの電子部品の場合は、短 冊 12幅が約 1. Omm、又は約 0. 5mmとなる。また例えば 0603サイズの電子部品の 場合は、短冊 12幅が約 0. 6mm、又は約 0. 3mmとなる。また例えば 0402サイズの 電子部品の場合は、前記短冊 12幅が約 0. 4mm,又は約 0. 2mmとなる。これらの「 小型」電子部品については従来、寸法精度良ぐ且つ量産に適した技術の確立が困 難であつたが、本発明によりそれを解決することができている。ここでは規格に沿った 、又は準じた電子部品外寸について述べたが、規格外の外寸の電子部品であっても 、前記短冊 12幅が 1. Omm以下のものは従来、寸法精度良ぐ且つ量産に適した技 術の確立が困難であったことには変わりなぐ本発明によりそれを解決することができ ている。 Here, “small” refers to so-called 1005, 0603, or 0402-sized electronic components or components having outer dimensions smaller than those. For example, in the case of a 1005 size electronic component, the width of a strip 12 is about 1. Omm or about 0.5 mm. For example, in the case of an electronic component of 0603 size, the width of the strip 12 is about 0.6 mm or about 0.3 mm. In the case of a 0402 size electronic component, for example, the width of the strip 12 is about 0.4 mm or about 0.2 mm. For these “small” electronic components, it has conventionally been difficult to establish a technique with good dimensional accuracy and suitable for mass production, but the present invention has solved it. Here, the external dimensions of the electronic parts conforming to or conforming to the standard have been described. However, even if the electronic parts have external dimensions outside the standard, those having the strip 12 width of 1.Omm or less have conventionally had good dimensional accuracy. Further, it has been difficult to establish a technique suitable for mass production, and the present invention can solve the problem.
[0024] 上記第 1の課題を解決するため、本発明の、セラミック基板 1面に回路素子 3が形成 される電子部品の第 2の製造法は、大型のセラミック基板 1面に回路素子 3を形成す る第 21の工程と、表面の少なくとも一方向に、単位電子部品小片 10を区画する分割 用溝 4を形成する第 22の工程と、複数の単位電子部品小片 10が連なる短冊 12を形 成するよう、当該分割用溝 4に対して実質的に直交する方向の該基板 1面にダイシン グ加工する第 23の工程と、当該短冊 12が有する前記分割用溝 4を開くように上記基 板 1に応力付与することで上記基板 1を単位電子部品小片 10に分割する第 24のェ 程を有し、上記第 21乃至第 24の工程をこの順に実施することを特徴とする。 [0025] 上記第 21の工程は、上記第 1の製造法における第 11の工程に略相当する。上記 第 22の工程は、上記第 1の製造法における第 12の工程に相当する。上記第 24のェ 程は、上記第 1の製造法における第 13の工程に相当する。上記第 23の工程が付カロ されているが、力かる工程は第 11の工程に実質的に含まれていた。従って第 1の製 造法が第 1の課題を解決する以上、第 2の製造法は本発明の第 1の課題を解決する 。また第 2の製造法は、以下に記載する第 1の製造法よりも有利な効果を有し、製品 不良率を低減できることが考えられるため、一定量の良品の電子部品を生産すること を考慮した場合、該製品不良率を低減効果により製造速度が全体として高まり、より 量産性を良好にすると考えられる。 [0024] In order to solve the above first problem, a second method for manufacturing an electronic component in which the circuit element 3 is formed on the surface of the ceramic substrate 1 according to the present invention is a method for manufacturing the electronic component 3 on the surface of a large ceramic substrate 1. A twenty-first step of forming, a twenty-second step of forming a dividing groove 4 for partitioning the unit electronic component piece 10 in at least one direction of the surface, and a strip 12 in which a plurality of the unit electronic component pieces 10 are formed. A dicing process on the surface of the substrate 1 in a direction substantially orthogonal to the dividing groove 4, and the above-described base so as to open the dividing groove 4 of the strip 12. There is a twenty-fourth step of dividing the substrate 1 into unit electronic component pieces 10 by applying stress to the plate 1, and the twenty-first to twenty-fourth steps are performed in this order. [0025] The twenty-first step substantially corresponds to the eleventh step in the first manufacturing method. The twenty-second step corresponds to the twelfth step in the first manufacturing method. The twenty-fourth step corresponds to the thirteenth step in the first manufacturing method. Although the 23rd step was calorie, the vigorous step was substantially included in the 11th step. Therefore, the second manufacturing method solves the first problem of the present invention, while the first manufacturing method solves the first problem. In addition, the second manufacturing method has more advantageous effects than the first manufacturing method described below, and it is considered that the product defect rate can be reduced.Therefore, it is necessary to consider producing a certain amount of non-defective electronic components. In such a case, it is considered that the production rate is increased as a whole due to the effect of reducing the product defect rate, and the mass productivity is further improved.
[0026] 上記第 11の工程と上記第 21の工程との差異は、セラミック基板 1面に予め分割用 溝 4が形成されているか否かである。第 21の工程ではセラミック基板 1面に予め分割 用溝 4が形成されていないが、後の第 23の工程において分割用溝 4が形成される。 力かる形成法は、例えばダイシンダカ卩ェによる。上述したセラミック基板 1のダイシン グによる切断分割工程と異なり、カゝかる加工はセラミック基板 1を切断するまでには至 らず、セラミック基板 1面に僅かな浅い分割用溝 4を形成する加工である。ここで、セラ ミック基板 1を切断するまでに至る加工では、ダイシングブレード等の刃を使用するが 、当該刃の磨耗が激しい。セラミック基板 1は非常に硬い材料だ力もである。しかしな がら、セラミック基板 1面に僅かな浅い分割用溝 4を形成する程度の加工では、その ような磨耗はそれ程激しくない。従って本発明のように電子部品の量産を考慮した場 合、適切な分割用溝 4形成法と言える。また上述した分割用溝 4深さが付近一になる 問題も、力かるダイシング加工により解消し得る。力かる加工では掘削量 (掘削深さを 含む)の調整が容易なためである。  [0026] The difference between the eleventh step and the twenty-first step is whether or not the dividing groove 4 is formed in advance on the surface of the ceramic substrate 1. In the twenty-first step, the dividing groove 4 is not formed in advance on the surface of the ceramic substrate 1, but the dividing groove 4 is formed in the following twenty-third step. A powerful forming method is based on, for example, Daishindaka Kae. Unlike the cutting and dividing process by dicing the ceramic substrate 1 described above, the digging process does not reach the point where the ceramic substrate 1 is cut, but is a process for forming a slightly shallow dividing groove 4 on the surface of the ceramic substrate 1. is there. Here, in the processing up to cutting the ceramic substrate 1, a blade such as a dicing blade is used, but the blade is severely worn. Ceramic substrate 1 is also a very hard material. However, such abrasion is not so intense when processing is performed to form a slight shallow dividing groove 4 on one surface of the ceramic substrate. Therefore, when mass production of electronic components is considered as in the present invention, it can be said that this is an appropriate method of forming the dividing groove 4. In addition, the above-mentioned problem that the depth of the dividing groove 4 becomes nearly the same can be solved by vigorous dicing. This is because the amount of excavation (including excavation depth) can be easily adjusted with heavy machining.
[0027] 上記第 23の工程において、回路素子 3形成後に分割用溝 4形成を実施する更なる 利点は、回路素子 3形成位置如何によらず、その形成結果に応じて好適な位置への 分割用溝 4形成ができる点である。仮に回路素子 3形成前にセラミック基板 1へ分割 用溝 4形成がなされていれば、回路素子 3形成工程負担が極めて大きくなる。位置ず れを起こしたままの回路素子 3形成が許容されな 、ためである。これは電子部品の小 型化が進むに従い、回路素子形成位置精度が高く要求されるため、第 23の工程の 利点は、小型化が進むに従い顕著となる。 [0027] In the above-described twenty-third step, a further advantage of forming the dividing groove 4 after the formation of the circuit element 3 is that division into a suitable position is performed irrespective of the position where the circuit element 3 is formed, depending on the formation result. Groove 4 can be formed. If the dividing grooves 4 were formed in the ceramic substrate 1 before the circuit elements 3 were formed, the burden of the circuit element 3 forming process would be extremely large. This is because the formation of the circuit element 3 with the position shifted is not allowed. This is because the smaller the size of electronic components, the higher the accuracy of the circuit element formation position is required. The advantages become more significant as miniaturization progresses.
[0028] 上記第 1及び第 2の製造法において、単位電子部品小片 10の回路素子 3端子部 に導電性ボール 2を固着させる工程を有することができる。即ちこのようにして得られ た電子部品は、セラミック基板 1面に回路素子 3が形成され、導電性ボール 2を電子 部品端子とする電子部品である。  In the first and second manufacturing methods, a step of fixing the conductive ball 2 to the terminal portion of the circuit element 3 of the unit electronic component piece 10 can be included. That is, the electronic component thus obtained is an electronic component in which the circuit element 3 is formed on the surface of the ceramic substrate 1 and the conductive ball 2 is used as an electronic component terminal.
[0029] ここで、回路素子 3の端子部 7に導電性ボール 2を固着させるには、固着すべき位 置にタリーム半田をスクリーン印刷する等した上で、巿販のボール ·グリッド ·アレイ(B GA)型電子部品用ボール搭載装置等を用いることができる。また「固着」には、半田 や導電性接着剤等を用いた固着が好適である。  Here, in order to fix the conductive ball 2 to the terminal portion 7 of the circuit element 3, screen printing or the like of a talium solder is applied to the position where the conductive ball 2 is to be fixed, and then the ball, grid, array ( A BGA) type electronic component ball mounting device or the like can be used. For the “fixation”, fixation using solder, a conductive adhesive, or the like is preferable.
[0030] 上記第 1及び第 2の製造法により得られる効果のうち、分割寸法精度を高くすること ができる利点が得られるということは、分割工程時にセラミック基板 1全体に大きな振 動等過度な応力付与'衝撃がないことと実質的に同義である。その理由は、仮にセラ ミック基板 1全体に過度な応力付与'衝撃があれば、分割用溝 4を開く応力付与の際 には当該分割用溝 4以外の基板 1領域にも応力付与'衝撃があると考えられ、分割用 溝 4に沿った線状領域以外における分割が生じ、分割寸法精度の低下が起こり得る と考えられるためである。また仮にセラミック基板 1全体にダイシンダカ卩ェ等に起因し た過度な応力付与 '衝撃があれば、ダイシング加工による分割の際に意図しない基 板 1領域の切断や、ダイシング加工領域付近の基板 1のカケ等が発生し、分割寸法 精度の低下が起こり得ると考えられるためである。  [0030] Among the effects obtained by the first and second manufacturing methods, the advantage that the divisional dimensional accuracy can be increased is obtained because excessive vibration such as large vibrations in the entire ceramic substrate 1 during the division step. This is substantially synonymous with the absence of a stress application shock. The reason is that if an excessive stress is applied to the entire ceramic substrate 1, an impact is applied to the substrate 1 area other than the dividing groove 4 when applying the stress for opening the dividing groove 4. This is because it is considered that there is a possibility that division occurs in areas other than the linear region along the dividing groove 4, and that the divisional dimensional accuracy may decrease. Also, if there is an excessive stress applied to the entire ceramic substrate 1 due to die shrinkage or the like, unintended cutting of the substrate 1 region during division by dicing, This is because it is considered that chips and the like may occur, and the accuracy of the divided dimension may be reduced.
[0031] 従って上記第 1及び第 2の製造法によるセラミック基板 1面に回路素子 3が形成され 、導電性ボール 2を電子部品端子とする電子部品は、セラミック基板 1全体に大きな 振動等過度な応力付与 '衝撃がなく製造できる。そのため、仮に分割工程前に単位 電子部品小片 10の回路素子 3端子部に導電性ボール 2を固着させる工程を有して いても、セラミック基板 1と導電性ボール 2との固着部分に過大な応力を集中させな ヽ ことができ、本発明の第 2の課題解決が可能となる。  Therefore, the circuit element 3 is formed on the surface of the ceramic substrate 1 by the first and second manufacturing methods, and the electronic component having the conductive ball 2 as an electronic component terminal is not suitable for the entire ceramic substrate 1 due to excessive vibration and the like. Stress application 'Can be manufactured without impact. Therefore, even if there is a step of attaching the conductive balls 2 to the circuit element 3 terminals of the unit electronic component small pieces 10 before the dividing step, excessive stress is applied to the portion where the ceramic substrate 1 and the conductive balls 2 are attached. And the second problem of the present invention can be solved.
[0032] またここで、第 13の工程又は第 24の工程の前に、単位電子部品小片 10の回路素 子 3端子部に導電性ボール 2を固着させる工程を有し、その後に短冊 12が有する分 割用溝 4を開くように応力付与した場合、当該固着された導電性ボール 2が力点とな り、分割用溝 4が作用点となる、てこの原理にて、分割用溝 4を開くように基板 1に応 力付与する分割工程 (第 13の工程、第 24の工程)を実施する場合があり得る。この 場合でも、セラミック基板 1と導電性ボール 2との固着部分に過大な応力を集中させる ことは通常ない。その理由は、短冊 12の幅に相当する分だけの距離の分割用溝 4は 非常に短ぐその分割に要する応力は通常小さくて足り、上記固着部分に過大な応 力を集中させるまでには至らないためである。また後述する、導電性ボール 2の固着 を保護する緩衝部材 5の利用により、該応力の集中は更に避けることができる。 [0032] Here, before the thirteenth step or the twenty-fourth step, a step of fixing the conductive ball 2 to the terminal of the circuit element 3 of the unit electronic component piece 10 is provided. When the stress is applied so as to open the dividing groove 4, the fixed conductive ball 2 becomes the point of emphasis. When the dividing step (13th step and 24th step) is applied by applying the lever to the substrate 1 so that the dividing groove 4 is opened, the dividing groove 4 becomes the point of action. There can be. Even in this case, excessive stress is not usually concentrated on the portion where the ceramic substrate 1 and the conductive ball 2 are fixed. The reason is that the dividing groove 4 whose distance is equivalent to the width of the strip 12 is very short, and the stress required for the division is usually small enough. It is because it does not reach. Further, the concentration of the stress can be further avoided by using a buffer member 5 for protecting the conductive ball 2 from sticking, which will be described later.
[0033] 上記緩衝部材 5は、例えば発泡スチロール、スポンジ、布、ゴム、榭脂、発泡榭脂等 力もなる。その使用法は、例えば図 3に示すように緩衝部材 5を導電性ボール 2上に 載せ、当該緩衝部材 5を介して多数の導電性ボール 2へ応力を付与するものである。 当該緩衝部材 5の存在により、付与された応力の一部又は全部が 1つ又は少数の導 電性ボール 2へ集中することが無ぐ多数の導電性ボール 2へ分散される結果、セラ ミック基板 1と特定の導電性ボール 2との剥離を生じさせない第 1の効果がある。又は 当該応力の一部又は全部が上記基板 1及び Z又は上記回路素子 3に応力付与され る結果、導電性ボール 2には応力が付与されず、セラミック基板 1と特定の導電性ボ ール 2との剥離を生じさせない第 2の効果がある。例えば図 4に示す導電性ボール 2 存在位置が凹部 6となり、直接的には緩衝部材 5と導電性ボール 2との接触がな 、も のは、特に顕著に第 2の効果が得られる。これら第 1及び第 2の効果は、その一方が 単独で奏される場合、両者が共に奏される場合がある。  [0033] The cushioning member 5 also has, for example, styrofoam, sponge, cloth, rubber, resin, foam resin, and the like. For example, as shown in FIG. 3, the buffer member 5 is placed on the conductive ball 2 and stress is applied to a large number of the conductive balls 2 via the buffer member 5 as shown in FIG. Due to the presence of the buffer member 5, part or all of the applied stress is dispersed to a large number of conductive balls 2 without concentrating on one or a small number of conductive balls 2, and as a result, the ceramic substrate There is a first effect of not causing separation between 1 and the specific conductive ball 2. Or a part or all of the stress is applied to the substrates 1 and Z or the circuit element 3, so that no stress is applied to the conductive balls 2 and the ceramic substrate 1 and the specific conductive balls 2 There is a second effect that does not cause peeling off. For example, the position where the conductive ball 2 is present as shown in FIG. 4 becomes the concave portion 6, and the buffer member 5 and the conductive ball 2 do not directly come into contact with each other. These first and second effects may be performed together when one of them is performed alone.
[0034] 上記第 2の効果を得る場合において、緩衝部材 5の可とう性は、セラミック基板 1の 剛性よりも低いものであって、該基板 1の分割に至るまでの橈みに追従でき、且つ該 緩衝部材 5が破壊しな 、程度の柔軟性を有して 、ればよ 、。従って社会通念上「剛 体」と認識されるものであっても「緩衝部材」となり得る場合がある。  [0034] In the case of obtaining the second effect, the flexibility of the buffer member 5 is lower than the rigidity of the ceramic substrate 1 and can follow the radius up to the division of the substrate 1, In addition, the cushioning member 5 should have a certain degree of flexibility without breaking. Therefore, there is a case where even a material that is recognized as a “rigid body” by social wisdom can be a “buffer member”.
[0035] 上記第 2の効果を得る場合の緩衝部材 5は、例えば図 4の断面図に示すように基板 1又は短冊 12の端面に接触する部分を有する。また導電性ボール 2存在位置が凹 部 6内となり、直接的には緩衝部材 5と導電性ボール 2との接触がないものである。か カゝる緩衝部材 5は、端面に接触する部分を有するため、基板 1又は短冊 12と緩衝部 材 5とのはめ合わせ作業上、導電性ボール 2と凹部 6との位置ずれを防止する役割を 有し、上記第 2の効果が、より得られ易い点で有利である。また、当該端面と緩衝部 材 5との接触部の存在により、導電性ボール 2への横方向(基板 1面と平行の方向) への付与される応力を吸収し、より緩衝部材 5の応力分散効果が発揮できる点でも有 利である。力かる有利な効果は、凹部 6を有さない図 3に示すような緩衝部材 5であつ て、基板 1又は短冊 12の端面に接触する部分を有する緩衝部材 5を用いた場合でも 得ることができる。また、力かる効果と同様の効果を得るためには、基板 1又は短冊 1 2が器のように基板端面力 基板 1面と略垂直方向に伸びる部分を有し、緩衝部材 5 を当該部分に接触するようはめ込みながら基板 1面に装着することもできる。即ち基 板 1又は短冊 12と緩衝部材 5とのはめ合わせの、はめる側とはめられる側とを逆転さ せることができる。 The buffer member 5 for obtaining the second effect has a portion that comes into contact with the end face of the substrate 1 or the strip 12, for example, as shown in the cross-sectional view of FIG. Further, the conductive ball 2 is located in the concave portion 6, and there is no direct contact between the buffer member 5 and the conductive ball 2. Since the cushioning member 5 has a portion that comes into contact with the end face, the role of preventing the displacement between the conductive ball 2 and the recess 6 in the work of fitting the substrate 1 or the strip 12 and the cushioning member 5. To This is advantageous in that the second effect is more easily obtained. Further, the presence of the contact portion between the end face and the buffer member 5 absorbs the stress applied to the conductive ball 2 in the lateral direction (the direction parallel to the surface of the substrate 1), and further increases the stress of the buffer member 5 . It is also advantageous in that the effect of dispersion can be exhibited. The strong advantageous effect can be obtained even when the cushioning member 5 having no recess 6 as shown in FIG. 3 and having a portion in contact with the end surface of the substrate 1 or the strip 12 is used. it can. Also, in order to obtain the same effect as the force effect, the substrate 1 or the strip 12 has a portion that extends in a direction substantially perpendicular to the substrate end surface force substrate 1 surface like a container, and the buffer member 5 is attached to the portion. It can be mounted on one surface of the board while fitting so that it contacts. That is, the fitting side of the fitting between the base plate 1 or the strip 12 and the cushioning member 5 and the fitting side can be reversed.
[0036] また上記緩衝部材 5は、図 4に示すように凹部 6よりも、当該凹部 6の存在により相 対的に凸部となった部分のセラミック基板 1面との接触面積が大きいことが好ましい。 当該凸部が実質的に応力分散に寄与する度合いが大きぐ上記第 2の効果が得られ 易 、と考えられるためである。  In addition, as shown in FIG. 4, the cushioning member 5 has a larger contact area with the surface of the ceramic substrate 1 in a portion that is relatively convex due to the presence of the concave portion 6 as compared with the concave portion 6. preferable. This is because it is considered that the second effect in which the convex portion substantially contributes to the stress dispersion is easily obtained.
[0037] また上記緩衝部材 5は、例えば基板 1面上の導電性ボール 2間に充填されるフラッ タスのようなロジン系材料とすることができる。前記ロジン系材料は、導電性ボール 2 の頂部を超えて存在してもよいし、当該頂部を超えずに存在してもよい。前記ロジン 系材料は、接着効果及び緩衝効果を兼備するため、導電性ボール 2と基板 1との固 着を補強し、且つ特定の導電性ボール 2に直接付与された応力をその周囲に伝播さ せ、多数の導電性ボール 2に対し実質的に均等に応力付与する。従って前記ロジン 系材料は上記緩衝部材 5と同様の作用を奏する。前記緩衝効果は、ロジン系材料が 導電性ボール 2の頂部を超えて存在場合に顕著となる。その理由は、応力が特定の 導電性ボール 2に直接付与され難いためである。また、前記ロジン系材料に限らず、 接着効果及び緩衝効果を兼備する材料であれば、ロジン系材料と同様に緩衝部材 5 として使用することができることは言うまでもない。  The cushioning member 5 can be made of, for example, a rosin-based material such as flats filled between the conductive balls 2 on the surface of the substrate 1. The rosin-based material may exist beyond the top of the conductive ball 2 or may exist without exceeding the top. Since the rosin-based material has both an adhesive effect and a buffering effect, it reinforces the adhesion between the conductive ball 2 and the substrate 1 and propagates the stress directly applied to the specific conductive ball 2 to the surroundings. And apply stress substantially evenly to the large number of conductive balls 2. Therefore, the rosin-based material has the same function as the buffer member 5. The buffer effect is remarkable when the rosin-based material exists beyond the top of the conductive ball 2. The reason is that it is difficult to directly apply stress to the specific conductive ball 2. Further, it is needless to say that the material is not limited to the rosin-based material but can be used as the buffer member 5 as well as the rosin-based material as long as the material has both an adhesive effect and a buffering effect.
[0038] 当該ロジン系材料は、分割工程終了後、アルコール、アセトン等のケトン類、又は 酢酸ェチル等、即ち有機溶剤を用いて洗浄除去することができる。このように分割ェ 程後に除去できる材料であれば、上記ロジン系材料に代えて基板 1面上の導電性ボ ール 2間に充填することで、上記ロジン系材料と同様のはたらきをすることができる。 [0038] After the division step, the rosin-based material can be washed and removed using an alcohol, a ketone such as acetone, or ethyl acetate or the like, that is, an organic solvent. If the material can be removed after the dividing step as described above, the conductive boss on the substrate 1 surface may be used instead of the rosin-based material. By filling the space between the rosin-based materials, the same function as that of the rosin-based material can be performed.
[0039] 上記ロジン系材料等を緩衝部材 5として用いる場合には、当該材料を基板 1面の導 電性ボール 2間に充填 ·固化した後に分割用溝 4に沿ってダイシング法等で切断す るか、若しくは本発明の第 2の製造法では、その充填'固化した後に分割用溝 4をダ イシング法等で形成することが好ましい。力かる分割用溝 4形成の際には、同時に緩 衝部材 5を分割用溝 4に沿って切断することとなる。これらのように、ロジン系材料等 カゝらなる緩衝部材 5を分割用溝 4に沿って切断することにより、分割時の付与応力が 小さくて済む利点がある。その理由は、前記ロジン系材料等の存在は分割阻害要因 ともなり得ることから、その要因を前記切断により除去できるためである。また本発明 は、ダイシング工程を経ることが前提であるため、前記切断の工程を増加させたとし ても大きな工程負担とならな 、利点がある。  When the rosin-based material or the like is used as the cushioning member 5, the material is filled between the conductive balls 2 on the surface of the substrate 1, solidified, and then cut along the dividing grooves 4 by a dicing method or the like. Alternatively, in the second manufacturing method of the present invention, it is preferable to form the dividing grooves 4 by dicing or the like after the filling and solidification. When forming the strong dividing groove 4, the buffer member 5 is cut along the dividing groove 4 at the same time. As described above, cutting the cushioning member 5 made of a rosin-based material or the like along the dividing groove 4 has an advantage that the applied stress at the time of division can be reduced. The reason is that the presence of the rosin-based material or the like can also be a factor inhibiting division, and the factor can be removed by the cutting. Further, since the present invention is premised on going through a dicing step, there is an advantage that even if the number of the cutting steps is increased, a large process load is not required.
[0040] 分割用溝 4と導電性ボール 2とが同じセラミック基板 1面に形成 ·配置されて ヽな ヽ 場合には、短冊 12が有する分割用溝 4を開くように応力付与する際の力点は上記固 着された導電性ボール 2ではなぐ基板 1面等となるため、セラミック基板 1と導電性ボ ール 2との固着部分に過大な応力 ^^中させることがないことは言うまでもない。  When the dividing groove 4 and the conductive ball 2 are not formed and arranged on the same surface of the ceramic substrate 1, when the stress is applied so as to open the dividing groove 4 of the strip 12, It is needless to say that excessive stress is not applied to the portion where the ceramic substrate 1 and the conductive ball 2 are fixed, because the surface of the substrate 1 is different from the surface of the fixed conductive ball 2.
[0041] このように分割工程前に単位電子部品小片 10の回路素子 3端子部に導電性ボー ル 2を固着させる工程を実施する利点は、上記大型のセラミック基板 1又は短冊 12の 状態は、複数個の単位電子部品小片 10が連なる等で一体となっていることから、個 々の単位電子部品小片 10を取り扱うよりも取扱い性が良好な状態で該固着工程を 実施できる点である。具体的には、例えば市販のボール搭載装置を用いた場合、単 位電子部品小片 10全てに対し、ボール搭載装置の稼動を止めずに回路素子 3端子 部 7へ導電性ボール 2を固着させることができる。  As described above, the advantage of performing the step of fixing the conductive ball 2 to the circuit element 3 terminal portion of the unit electronic component piece 10 before the dividing step is that the state of the large ceramic substrate 1 or the strip 12 is as follows. Since the plurality of unit electronic component pieces 10 are integrated, for example, in series, the fixing step can be performed in a state in which the handling is better than when the individual unit electronic component pieces 10 are handled. Specifically, for example, when a commercially available ball mounting device is used, the conductive balls 2 are fixed to the circuit element 3 terminals 7 without stopping the operation of the ball mounting device for all the unit electronic component pieces 10. Can be.
[0042] また上記第 1及び第 2の製造法において、単位電子部品小片 10の回路素子 3端子 部に導電性ボール 2を固着させる工程を、第 13の工程又は第 24の工程終了後に実 施することもできる。即ち、回路素子 3の端子部 7に導電性ボール 2を固着させる工程 を分割工程後に実施することができる。この場合は、分割工程に起因する振動'衝撃 力 セラミック基板 1と導電性ボール 2との固着部分に何ら影響を与えないことは明ら かであるため、セラミック基板 1と導電性ボール 2との固着部分に過大な応力魏中さ せることがなぐ本発明の第 2の課題を解決できることは言うまでもない。 In the first and second manufacturing methods, the step of fixing the conductive ball 2 to the terminal of the circuit element 3 of the unit electronic component piece 10 is performed after the thirteenth step or the twenty-fourth step. You can also. That is, the step of fixing the conductive balls 2 to the terminal portions 7 of the circuit element 3 can be performed after the division step. In this case, it is clear that the vibration caused by the dividing process has no effect on the fixed portion between the ceramic substrate 1 and the conductive ball 2. Excessive stress on the fixed part Needless to say, it is possible to solve the second problem of the present invention, in which no problem is caused.
[0043] このように回路素子 3の端子部 7に導電性ボール 2を固着させる工程を、分割工程 後に実施した場合に、上記ボール搭載装置の稼動を止めずに回路素子 3端子部 7 へ導電性ボール 2を固着させる利点を得るためには、例えば上記第 1の製造法にお いて、複数の単位電子部品小片 10を並べる工程を第 13の工程終了後に実施する、 若しくは上記第 2の製造法において、複数の単位電子部品小片 10を並べる工程を 第 24の工程終了後に実施する。  When the step of fixing the conductive balls 2 to the terminal portions 7 of the circuit element 3 is performed after the dividing step, the conductive balls 2 are connected to the terminal elements 7 of the circuit element 3 without stopping the operation of the ball mounting device. In order to obtain the advantage of fixing the conductive ball 2, for example, in the first manufacturing method, the step of arranging the plurality of unit electronic component pieces 10 is performed after the thirteenth step, or the second manufacturing method In the method, the step of arranging the plurality of unit electronic component pieces 10 is performed after the completion of the 24th step.
[0044] ここで上記「並べる」結果、図 5に示すように各々の単位電子部品小片 10の位置関 係が固定される。そのためには、例えば単位電子部品小片 10を挿入できる複数の凹 部 17を有する有底の容器 11を用いる。ここで、並べた回路素子 3端子部 7存在面を 全て上にすることが好ましい。導電性ボール 2の重力力 固着させるべき位置への固 定を容易にするためである。また上記ボール搭載装置により回路素子 3端子部 7へ 導電性ボール 2を固着させるには、並べた単位電子部品小片 10の表裏を揃え、各 単位電子部品小片 10を等間隔にすることが特に好ましい。ボール搭載装置の動作 をスムーズにし、該動作設定のためのプログラムを単純にできるためである。  Here, as a result of the “arrangement”, the positional relationship between the unit electronic component pieces 10 is fixed as shown in FIG. For this purpose, for example, a bottomed container 11 having a plurality of recesses 17 into which unit electronic component pieces 10 can be inserted is used. Here, it is preferable that all of the arranged surfaces of the circuit elements 3 and the terminal portions 7 are on the upper side. This is because the gravitational force of the conductive ball 2 is easily fixed to a position where the conductive ball 2 should be fixed. In order to fix the conductive ball 2 to the circuit element 3 terminal portion 7 by the above-mentioned ball mounting device, it is particularly preferable to align the front and back of the arranged unit electronic component pieces 10 and make the unit electronic component pieces 10 at equal intervals. . This is because the operation of the ball mounting device can be made smooth and a program for setting the operation can be simplified.
[0045] ここで単位電子部品小片 10の表裏を揃える手段は、例えば予め単位電子部品小 片 10の一方の面と他方の面との光反射率を異ならせ、光照射 ·その反射光検知のよ うな簡便な方法で、一方の面が上を向!、て 、る単位電子部品小片 10のみを選別 ·収 集した上で、前記一方の面が上を向!、て 、る状態を維持しつつ並べる手段である。  Here, the means for aligning the front and back of the unit electronic component piece 10 is, for example, to make the light reflectivity of one surface and the other surface of the unit electronic component piece 10 different in advance, and to irradiate light and detect the reflected light. With such a simple method, one side faces upwards, and only the unit electronic component pieces 10 are sorted and collected, and then the one side faces upwards, and the state is maintained. It is a means to arrange while doing.
[0046] ここで上記容器 11に単位電子部品小片 10が挿入された状態で、そのまま梱包ェ 程を実施することができれば、電子部品の梱包工程を簡略ィ匕できる点で好適である 。この場合容器 11は、テーピング材等の電子部品梱包材の一部としての役割を担う こととなる。  Here, it is preferable that the packing step can be performed as it is in a state where the unit electronic component small pieces 10 are inserted into the container 11 in that the packaging process of the electronic components can be simplified. In this case, the container 11 plays a role as a part of an electronic component packaging material such as a taping material.
[0047] 図 5 (a)に示すような、単位電子部品小片 10を個々に凹部 17に挿入する容器 11に 代えて、図 5 (b)に示すような、複数の単位電子部品小片 10を収容可能な凹部 17を 有する容器 11を用いることができることは言うまでもな 、。  [0047] Instead of the container 11 in which the unit electronic component pieces 10 are individually inserted into the recesses 17 as shown in Fig. 5 (a), a plurality of unit electronic component pieces 10 as shown in Fig. 5 (b) are used. It goes without saying that a container 11 having a recess 17 that can be accommodated can be used.
[0048] ここで、導電性ボール 2を回路素子 3端子部に固着する工程を分割工程後に実施 することにより、該端子部への半田メツキを施すことが容易となる利点がある。従来か らの電子部品端子部への半田めつき法である、バレルめつきに供することができるた めである。かかる半田めつきの存在により、該端子部の半田濡れ性が良好となり、該 端子部と導電性ボール 2の固着をはんだ付けで実現する際にその固着強度が高まる 禾 IJ点がある。 Here, by performing the step of fixing the conductive ball 2 to the terminal portion of the circuit element 3 after the division step, there is an advantage that it is easy to apply soldering to the terminal portion. Conventional or This is because they can be used for barrel plating, which is the method of soldering to the electronic component terminals. Due to the presence of such soldering, there is an IJ point at which the solder wettability of the terminal portion is improved, and the bonding strength is increased when the bonding of the conductive ball 2 to the terminal portion is realized by soldering.
[0049] また上記第 1及び第 2の製造法において、セラミック基板 1への回路素子 3形成面と 、分割用溝 4存在面が同一面であることが好ましい。上記第 1の製造法では、回路素 子 3形成工程 (第 11の工程)において、分割用溝 4との位置関係を目視等しながら確 認し、その位置精度を高めることのできる利点があるためである。上記第 2の製造法 では、分割用溝 4形成工程 (第 23の工程)において、回路素子 3との位置関係を目 視等しながら確認でき、その位置精度を高めることのできる利点があるためである。 発明の効果  [0049] In the first and second manufacturing methods, it is preferable that the surface on which the circuit element 3 is formed on the ceramic substrate 1 and the surface on which the dividing groove 4 is present are the same surface. The first manufacturing method has an advantage that, in the circuit element 3 forming step (eleventh step), the positional relationship with the dividing groove 4 can be confirmed visually or the like, and the positional accuracy can be improved. That's why. In the second manufacturing method, in the dividing groove 4 forming step (the 23rd step), the positional relationship with the circuit element 3 can be confirmed visually or the like, and there is an advantage that the positional accuracy can be increased. It is. The invention's effect
[0050] 本発明により、セラミック基板 1面に回路素子 3が形成される電子部品の製造法に おいて、当該電子部品が小型のものであっても、寸法精度良ぐ且つ量産に適した 電子部品の製造法を提供することができた。またセラミック基板 1面に回路素子 3が形 成され、導電性ボール 2を電子部品端子とする電子部品の製造法において、セラミツ ク基板 1と導電性ボール 2との固着部分に過大な応力を集中させないことができた。 図面の簡単な説明  According to the present invention, in a method for manufacturing an electronic component in which the circuit element 3 is formed on the surface of the ceramic substrate 1, even if the electronic component is small, it has good dimensional accuracy and is suitable for mass production. A method for manufacturing parts can be provided. Circuit elements 3 are formed on the surface of the ceramic substrate 1, and excessive stress is concentrated on the part where the ceramic substrate 1 and the conductive balls 2 are fixed in the electronic component manufacturing method using the conductive balls 2 as electronic component terminals. I couldn't let it. Brief Description of Drawings
[0051] [図 1]本発明の電子部品の製造法の概要について、各工程終了時の電子部品の状 態を順を追って示した図である。  FIG. 1 is a diagram sequentially showing states of an electronic component at the end of each step, regarding an outline of a method for manufacturing an electronic component of the present invention.
[図 2]大型の基板をベルトの上に載せ、ローラの間を通すことによって、当該大型の 基板を橈ませるよう応力付与する様子を示す図である。  FIG. 2 is a view showing a state in which a large substrate is placed on a belt and passed between rollers to apply stress so as to bend the large substrate.
[図 3]本発明に係る、回路素子及び導電性ボールが形成 '配置された大型のセラミツ ク基板面に、緩衝部材を載せる様子の概要の一例を示す斜視図である。  FIG. 3 is a perspective view showing an example of an outline of a state in which a buffer member is placed on a large-sized ceramic substrate surface on which circuit elements and conductive balls are formed and arranged according to the present invention.
[図 4]本発明に係る、回路素子及び導電性ボールが形成 '配置された大型の基板と、 緩衝部材とをはめ合わせた状態の概要の一例を示す一部省略断面図である。  FIG. 4 is a partially omitted cross-sectional view showing an example of an outline of a state in which a large-sized substrate on which circuit elements and conductive balls are formed and arranged according to the present invention and a buffer member are fitted.
[図 5] (a)、(b)共に、本発明に係る単位電子部品小片を、容器内に収容して並べた 状態の概要の一例を示す斜視図である。  FIGS. 5 (a) and 5 (b) are perspective views each showing an example of an outline of a state in which unit electronic component pieces according to the present invention are housed and arranged in a container.
[図 6]本発明の実施形態の一例としての、単位電子部品の回路構成を形成していく 様子を順を追って示す図である。 [FIG. 6] A circuit configuration of a unit electronic component is formed as an example of an embodiment of the present invention. It is a figure which shows a situation sequentially.
圆 7]本発明の実施形態の一例としての、導電性ボールを基板のランド上に固着する 様子を順を追って示す図である。  [7] FIG. 7 is a view sequentially showing a state in which a conductive ball is fixed on a land of a substrate, as an example of an embodiment of the present invention.
符号の説明  Explanation of symbols
[0052] 1.基板、 2.導電性ボール、 3.回路素子、 4.分割用溝、 5.緩衝部材、 6. 凹部、 7.ランド,電極,端子部、 8.ローラ、 9.ベルト、 10.単位電子部品小片 、 11.容器、 12.短冊、 13.抵抗体、 14.ガラス膜、 16.オーバーコート、 1 7.凹部、 19.フラックス、 20.共通電極  [0052] 1. substrate, 2. conductive ball, 3. circuit element, 4. dividing groove, 5. cushioning member, 6. recess, 7. land, electrode, terminal, 8. roller, 9. belt, 10.Unit electronic parts small piece, 11.container, 12.strip, 13.resistor, 14.glass film, 16.overcoat, 1 7.recess, 19.flux, 20.common electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0053] 以下、本発明の実施例を、添付図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(第 1の製造法の実施形態)  (Embodiment of the first manufacturing method)
上記第 1の製造法に基づいた、本発明を実施するための最良の形態を以下に示す 図 1に示すように、一方の面に予め分割用溝 4がー方の方向に多数形成されるよう に成型され、焼結工程に供された、厚み 0. 5mmの大型のアルミナセラミック基板 1を 用意する。力かる分割用溝 4に沿った分割後の基板 1が単一の電子部品の一辺とな る。その溝を有する大型の基板 1面に回路素子 3等を形成していく過程を、図面を参 照しながら以下に説明する。ここで図 6では、前記最小単位の基板 1 (単位電子部品 小片 10)について示している。  The best mode for carrying out the present invention based on the first manufacturing method will be described below.As shown in FIG. 1, a large number of dividing grooves 4 are formed in one direction in advance on one surface. A large-sized alumina ceramic substrate 1 having a thickness of 0.5 mm, which has been molded and subjected to the sintering process, is prepared. The divided substrate 1 along the strong dividing groove 4 becomes one side of a single electronic component. The process of forming the circuit elements 3 and the like on the surface of the large substrate 1 having the groove will be described below with reference to the drawings. Here, FIG. 6 shows the substrate 1 (unit electronic component small piece 10) of the minimum unit.
[0054] まず、セラミック基板 1の分割用溝 4が形成されている面に対し、ガラスフリットを含 む Ag— Pd系導電ペーストをスクリーン印刷し、その後焼成して、素子用の電極兼ラン ド 7及び共通電極 20兼ランド 7を得る(図 6 (a) )。次に共通電極 20と電極 7の双方に 接触するよう、酸化ルテニウムとガラスフリットを主成分とするメタルグレーズ系抵抗体 ペーストをスクリーン印刷し、その後焼成して抵抗体 13を得る(図 6 (b) )。次に抵抗 体 13を覆うようにガラスペーストをスクリーン印刷し、その後焼成してガラス膜 14を得 る(図 6 (c) )。次に電極 7と共通電極 20と抵抗体 13で構成される抵抗素子の抵抗値 を所望の値にするため、レーザ照射により抵抗体 13にトリミング溝を形成して抵抗値 を調整する工程を経る(図 6 (d) )。このとき前記ガラス膜 14は、抵抗体 13全体の損傷 を極力抑えるよう作用する。次にエポキシ榭脂系ペーストにて、抵抗素子全体を保護 するため、保護膜としてのオーバーコート 16をスクリーン印刷し、その後当該ェポキ シ榭脂ペーストを加熱硬化させる(図 6 (e) )。オーバーコート 16を配する際には、電 極 7及び共通電極 20における必要なランド 7部分を露出させる(図 6 (e) )。以上で上 記第 1の工程が終了する。尚、図 6に示した単一の電子部品の回路素子 3 (単位電子 部品小片 10)構成は、図 1、図 3及び図 5に示す回路素子 3構成とは異なり、電子部 品全体で 、わゆるネットワーク抵抗を構成するようになって!/、る。以上で上記第 11の 工程が終了する。 First, an Ag—Pd-based conductive paste containing a glass frit is screen-printed on the surface of the ceramic substrate 1 on which the dividing grooves 4 are formed, and then baked to form an electrode / land for an element. 7 and the common electrode 20 and land 7 are obtained (FIG. 6 (a)). Next, a metal glaze-based resistor paste mainly composed of ruthenium oxide and glass frit is screen-printed so as to be in contact with both the common electrode 20 and the electrode 7, and then fired to obtain the resistor 13 (FIG. 6 (b )). Next, a glass paste is screen-printed so as to cover the resistor 13 and then fired to obtain a glass film 14 (FIG. 6 (c)). Next, a step of forming a trimming groove in the resistor 13 by irradiating a laser to adjust the resistance in order to set a resistance value of the resistor composed of the electrode 7, the common electrode 20 and the resistor 13 to a desired value is performed. (Fig. 6 (d)). At this time, the glass film 14 damages the entire resistor 13. Acts as much as possible. Next, in order to protect the entire resistive element with an epoxy resin-based paste, an overcoat 16 as a protective film is screen-printed, and then the epoxy resin paste is cured by heating (FIG. 6 (e)). When disposing the overcoat 16, the necessary lands 7 of the electrode 7 and the common electrode 20 are exposed (FIG. 6 (e)). Thus, the first step is completed. Note that the configuration of the circuit element 3 (unit electronic component piece 10) of a single electronic component shown in FIG. 6 is different from the configuration of the circuit element 3 shown in FIGS. Come to configure so-called network resistance! Thus, the eleventh step is completed.
[0055] 上記オーバーコート 16 (黒色)を絶縁基板 1 (白色)の一方の面への形成することに より、単位電子部品小片 10の一方の面と他方の面との光反射率を異ならせることが できる。  By forming the overcoat 16 (black) on one surface of the insulating substrate 1 (white), the light reflectance of one surface of the unit electronic component piece 10 and that of the other surface are made different. be able to.
[0056] 次いで上記オーバーコート 16の形成により得られるランド 7上に高粘度のフラックス 19を配置する(図 7 (a) )。当該フラックス 19には、千住金属工業株式会社製 (商品名 :デルタラックス 529D— 1)を用いた。また、前記配置方法は、ピン転写法とした。当該 配置の際には、フラックス 19をランド 7領域内であって、それよりも狭い領域に存在さ せるよう留意した。  Next, a high-viscosity flux 19 is arranged on the land 7 obtained by forming the overcoat 16 (FIG. 7 (a)). The flux 19 used was Senju Metal Industry Co., Ltd. (trade name: Deltalux 529D-1). The arrangement method was a pin transfer method. At the time of this arrangement, care was taken to make flux 19 exist in the land 7 area and narrower area.
[0057] 上記ピン転写法に代えてスクリーン印刷法や、当該ピンに代えて導電性ボール 2を 用いるボール転写法、デイスペンサ法等を採用することができる。また上記フラックス 19 (商品名:デルタラックス 529D— 1)に代えて、当該フラックス 19と同程度の粘度、 粘着性を有するものを用いることができることは言うまでもな 、。  [0057] Instead of the pin transfer method, a screen printing method, a ball transfer method using conductive balls 2 instead of the pins, a dispenser method, or the like can be adopted. Needless to say, the flux 19 (trade name: Deltalux 529D-1) can be replaced with a flux having the same viscosity and viscosity as the flux 19.
[0058] 次いで、市販のボール搭載装置により導電性ボール 2を搭載し(図 7 (b) )、ランド 7 と導電性ボール 2とを固着する(図 7 (c) )。力かる導電性ボール 2は、表層が錫 (いわ ゆる鉛フリー半田)であり、コアが銅力もなるものである。また力かる固着の過程は、公 知のリフロー工程による。  Next, the conductive balls 2 are mounted by a commercially available ball mounting device (FIG. 7 (b)), and the lands 7 and the conductive balls 2 are fixed (FIG. 7 (c)). The strong conductive ball 2 has a surface layer of tin (so-called lead-free solder) and a core of copper ball. The strong fixing process is based on the known reflow process.
[0059] 次いでダイシング加工により、分割用溝 4と直交する方向で、且つ加工後の基板 1 が単一の電子部品の一辺となるよう切断して複数本の短冊 12を得る(例えば図 1 (c)Next, by dicing, a plurality of strips 12 are obtained by cutting the substrate 1 in a direction orthogonal to the dividing grooves 4 so that the processed substrate 1 becomes one side of a single electronic component (for example, FIG. c)
) oカゝかるダイシンダカ卩ェは、ダイヤモンド粉末が表面に付着されたダイシングソーを 用いたダイシングによる。カゝかるダイシングに要する工具及び設備は、市販のものを 用いた。以上で上記第 12の工程が終了する。 ) oDarking is performed by dicing using a dicing saw with diamond powder attached to the surface. Commercially available tools and equipment required for kago dicing Using. This is the end of the twelfth step.
[0060] 次 ヽで短冊 12の分割用溝 4に沿って分割し、単位電子部品小片 10を得る分割ェ 程に供する。そのため分割用溝 4を開く方向への応力付与をした。かかる応力付与 は、図 2に示すように、ローラ 8間に前記大型の基板 1を、ベルト 9の上に載せた状態 で通すことにより実現される。このとき、布製の緩衝部材 5で短冊 12を包み込んだ状 態で該応力付与を実施した。これにより単位電子部品小片 10が得られた。以上で上 記第 13の工程が終了する。  In the next step, the strip 12 is divided along the dividing groove 4 to be subjected to a dividing step of obtaining a unit electronic component piece 10. Therefore, stress was applied in the direction in which the dividing groove 4 was opened. As shown in FIG. 2, the application of the stress is realized by passing the large-sized substrate 1 between the rollers 8 in a state of being placed on a belt 9. At this time, the stress was applied while the strip 12 was wrapped with the cushioning member 5 made of cloth. As a result, a unit electronic component piece 10 was obtained. Thus, the above thirteenth step is completed.
[0061] (第 2の製造法の実施形態)  (Embodiment of Second Manufacturing Method)
上記第 2の製造法に基づいた、本発明を実施するための最良の形態を以下に示す 分割溝が予め形成されていない基板 1を用いること以外は、上記第 1の製造法の実 施形態における、第 1の工程と同条件の工程を経る。以上で第 2の製造法における 第 21の工程が終了する。  The best mode for carrying out the present invention based on the above-mentioned second manufacturing method is described below. The embodiment of the above-mentioned first manufacturing method is performed except that a substrate 1 on which a dividing groove is not formed in advance is used. Through the process under the same conditions as the first process. Thus, the twenty-first step in the second manufacturing method is completed.
[0062] 次いで上記第 1の製造法の実施形態と同様に導電性ボール 2を単位電子部品小 片 10のランド 7に搭載する工程を実施する。  Next, a step of mounting the conductive balls 2 on the lands 7 of the unit electronic component pieces 10 is performed as in the embodiment of the first manufacturing method.
[0063] その後、基板 1の回路素子 3形成面に分割用溝 4を形成する。かかる形成は、第 1 の製造法における第 12の工程と同様のダイシンダカ卩ェによる。ダイシングによる分割 用溝 4形成は、基板 1面の一方の方向に多数本の分割用溝 4を形成するよう、且つ 当該分割用溝 4がーつの電子部品の 1辺となるように、分割用溝 4と回路素子 3との 位置関係を調整した。以上で第 2の製造法における第 22の工程が終了する。  After that, the dividing groove 4 is formed on the surface of the substrate 1 on which the circuit element 3 is formed. This formation is performed by the same method as in the twelfth step of the first manufacturing method. The dividing grooves 4 are formed by dicing so that a large number of dividing grooves 4 are formed in one direction on the surface of the substrate 1 and the dividing grooves 4 are one side of one electronic component. The positional relationship between groove 4 and circuit element 3 was adjusted. Thus, the twenty-second step in the second manufacturing method is completed.
[0064] そして上記第 1の製造法の実施形態における、第 12の工程と同様にダイシングカロ ェによる分割工程を実施して、短冊 12を得る。以上で第 2の製造法における第 23の 工程が終了する。  Then, a strip 12 is obtained by performing a dividing step by dicing calorie in the same manner as the twelfth step in the embodiment of the first manufacturing method. Thus, the twenty-third step of the second manufacturing method is completed.
[0065] 次いで上記第 1の製造法の実施形態における第 13の工程と同様に、緩衝部材 5を 用いた分割工程を実施する。以上で第 2の製造法における第 24の工程が終了する。  Next, similarly to the thirteenth step in the embodiment of the first manufacturing method, a dividing step using the buffer member 5 is performed. Thus, the twenty-fourth step in the second manufacturing method is completed.
[0066] (他の実施形態)  (Other Embodiments)
上記第 1及び第 2の実施形態では、大型の基板 1の回路素子 3形成面のランド 7に 導電性ボール 2を固着した。しかし、大型の基板 1の回路素子 3形成面とは逆側の面 に当該導電性ボール 2を固着してもよい。この場合、まず基板 1は、表裏に亘り導通さ せるためのヴアイァホール等を設ける必要がある。 In the first and second embodiments, the conductive balls 2 are fixed to the lands 7 on the circuit element 3 forming surface of the large-sized substrate 1. However, the surface opposite to the surface on which the circuit elements 3 are formed on the large substrate 1 Alternatively, the conductive ball 2 may be fixed thereto. In this case, first, it is necessary to provide a via hole or the like for the substrate 1 to conduct electricity from the front to the back.
[0067] 上記第 1及び第 2の実施形態では、大型の基板 1の回路素子 3形成面に分割用溝 4が存在するものである。しかし、大型の基板 1の回路素子 3形成面とは逆側の面に 当該分割用溝 4を存在させてもよい。但し、通常分割用溝 4を開く方向に分割がなさ れることを考慮すると、隣り合う単位電子部品に跨って回路素子 3の一部が形成され ている場合、当該一部の基板 1からの剥離が第 13の工程又は第 24の工程で生じる おそれが懸念される。従って大型の基板 1の回路素子 3形成面に分割用溝 4が存在 する形態がより好まし 、形態であると考えられる。  In the first and second embodiments, the dividing groove 4 exists on the surface of the large substrate 1 on which the circuit element 3 is formed. However, the dividing groove 4 may be present on the surface of the large substrate 1 opposite to the surface on which the circuit elements 3 are formed. However, considering that the division is usually performed in the direction in which the dividing groove 4 is opened, when a part of the circuit element 3 is formed over the adjacent unit electronic component, the part of the circuit element 3 is separated from the substrate 1. There is a concern that the risk may occur in the 13th step or the 24th step. Therefore, a mode in which the dividing grooves 4 are present on the surface of the large substrate 1 on which the circuit elements 3 are formed is more preferable and is considered to be a mode.
[0068] 上記第 1及び第 2の実施形態では、ランド 7と導電性ボール 2との固着の際に、両者 間に高粘度フラックス 19のみを介在させている。しかし、例えば導電性ボール 2が、 その表面に半田が存在しない銅力もなるものである場合等には、高粘度フラックス 19 に代えて又はそれと共にクリーム半田を介在させ、リフロー工程に供する等するのが 好ましい。導電性ボール 2表面の材質及びランド 7の材質を考慮し、固着に適した条 件を選択することができる。必要に応じてランド 7表面に半田メツキを施し、ランド 7表 面の半田濡れ性を向上させることもできる。また半田を用いないで、導電性接着剤を ランド 7と導電性ボール 2との固着用部材とすることもできる。  In the first and second embodiments, when the land 7 and the conductive ball 2 are fixed, only the high-viscosity flux 19 is interposed between the land 7 and the conductive ball 2. However, for example, in the case where the conductive ball 2 has a copper force in which no solder is present on the surface thereof, a cream solder may be interposed instead of or together with the high-viscosity flux 19 and subjected to a reflow process. Is preferred. Considering the material of the surface of the conductive ball 2 and the material of the land 7, conditions suitable for fixing can be selected. If necessary, the surface of the land 7 can be soldered to improve the solder wettability on the surface of the land 7. Also, a conductive adhesive can be used as a fixing member between the land 7 and the conductive ball 2 without using solder.
[0069] 上記第 1及び第 2の実施形態では、導電性ボール 2の表層が錫で、内部が銅であ る、いわゆる鉛フリー部材を用いている力 例えば鉛:錫 = 95 : 5の重量比の鉛含有 半田を用いることにより、鉛の有する粘性を活用してヒートサイクル特性の良好ィ匕を図 ることもできる。また、環境調和性を考慮して鉛フリー半田を用いる場合には、上記実 施形態のように Sn単体以外に、 Sn— Bi系合金、 Sn— In— Ag系合金、 Sn— Bi— Zn系 合金、 Sn - Zn系合金、 Sn - Ag—Bi系合金、 Sn - Bi - Ag - Cu系合金、 Sn - Ag - Cu 系合金、 Sn - Ag - In系合金、 Sn - Ag - Cu - Sb系合金、 Sn - Ag系合金、 Sn - Cu系 合金、 Sn-Sb系合金を用いることができる。  In the first and second embodiments, the force using a so-called lead-free member in which the surface layer of the conductive ball 2 is tin and the inside is copper, for example, lead: tin = 95: 5 weight By using a lead-containing solder having a specific ratio, the viscosity of lead can be utilized to improve the heat cycle characteristics. When using lead-free solder in consideration of environmental harmony, in addition to Sn alone, Sn-Bi alloy, Sn-In-Ag alloy, Sn-Bi-Zn Alloy, Sn-Zn alloy, Sn-Ag-Bi alloy, Sn-Bi-Ag-Cu alloy, Sn-Ag-Cu alloy, Sn-Ag-In alloy, Sn-Ag-Cu-Sb alloy Alloy, Sn-Ag based alloy, Sn-Cu based alloy, Sn-Sb based alloy can be used.
[0070] 上記第 1及び第 2の実施形態では、図 1に示すような、大型のセラミック基板 1面の 最外端の分割用溝 4と該基板 1端との間の距離が、該基板 1面の分割用溝 4間距離 以上である大型のセラミック基板 1を用いた。し力し大型のセラミック基板 1面の最外 端の分割用溝 4と該基板 1端との間の距離が、該基板 1面の分割用溝 4間距離未満 である大型のセラミック基板 1を用いることができることは言うまでもない。 In the first and second embodiments, as shown in FIG. 1, the distance between the outermost end dividing groove 4 on the surface of the large ceramic substrate 1 and one end of the substrate 1 is A large-sized ceramic substrate 1 having a separation groove 4 on one surface and a distance of 4 or more was used. The outermost surface of one large ceramic substrate It goes without saying that a large-sized ceramic substrate 1 in which the distance between the dividing groove 4 at the end and the end of the substrate 1 is smaller than the distance between the dividing grooves 4 on the surface of the substrate 1 can be used.
[0071] 但し前者の基板 1 (図 1)を用いることにより、特に大型の基板 1の最外端に位置する 分割用溝 4を応力付与により分割 (第 13の工程、第 24の工程)する際、より良好な分 割寸法制度を得ることができる。その理由は、てこの原理における支点 (分割用溝 4 の存在する基板 1面の裏側の分割用溝 4に対応する基板 1領域)と、力点 (分割用溝 4の存在する基板 1面における分割用溝 4存在領域以外の部分)との距離を一定以 上に保つことができ、当該力点への過度な (他の力点に比して)応力付与に起因する カケ等が発生し難 、ためである。  However, by using the former substrate 1 (FIG. 1), the dividing groove 4 located at the outermost end of the particularly large substrate 1 is divided by applying stress (the thirteenth process and the twenty-fourth process). In this case, a better division size system can be obtained. The reason is that the fulcrum in the leverage principle (the substrate 1 area corresponding to the dividing groove 4 on the back side of the substrate 1 where the dividing groove 4 exists) and the force point (the division on the substrate 1 surface where the dividing groove 4 exists) (A part other than the area where the groove 4 is located) can be maintained at a certain distance or more, and it is difficult for chips or the like to be generated due to excessive stress (compared to other force points) to the force point. It is.
[0072] 上記第 1及び第 2の実施形態において、短冊 12の分割用溝 4に沿って分割し、単 位電子部品小片 10を得る分割工程で、短冊を粘着テープのような、分割前後に亘り 基板 1を固定することが好ましい。分割後に個々の単位電子部品小片 10がばらばら になるのを防止し、単位電子部品小片 10の取り扱い性が良好になるためである。 産業上の利用可能性  In the first and second embodiments, in the dividing step of dividing the strip 12 along the dividing groove 4 to obtain the unit electronic component piece 10, the strip is divided into pieces before and after the division using an adhesive tape. It is preferable to fix the substrate 1 over it. This is because individual unit electronic component pieces 10 are prevented from falling apart after division, and the handling of the unit electronic component pieces 10 is improved. Industrial applicability
[0073] 本発明は、セラミック基板面に回路素子が形成される電子部品、特にセラミック基板 面に回路素子が形成され、導電性ボールを電子部品端子とする電子部品関連産業 における利用可能性がある。 The present invention can be used in an electronic component in which a circuit element is formed on a ceramic substrate surface, particularly in an electronic component-related industry in which a circuit element is formed on a ceramic substrate surface and a conductive ball is used as an electronic component terminal. .

Claims

請求の範囲 The scope of the claims
[1] セラミック基板面に回路素子が形成される電子部品の製造法において、  [1] In a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface,
複数の単位電子部品小片が連なる短冊を形成する第 1分割工程と、  A first dividing step of forming a strip in which a plurality of unit electronic component pieces are connected,
当該短冊を単位電子部品小片を形成する第 2分割工程を有し、  A second dividing step of forming the strip into unit electronic component pieces;
第 1分割工程及び第 2分割工程の一方がダイシング加工により、他方が、基板面上 に予め若しくは回路素子形成後に形成された分割用溝を開くよう上記基板に応力付 与することによることを特徴とする電子部品の製造法。  One of the first dividing step and the second dividing step is performed by dicing, and the other is performed by applying stress to the substrate so as to open a dividing groove formed beforehand or after forming circuit elements on the substrate surface. Manufacturing method of electronic parts.
[2] セラミック基板面に回路素子が形成される電子部品の製造法において、 [2] In a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface,
表面に少なくとも一方向に設けられた分割用溝を有する大型のセラミック基板面に 回路素子を形成する第 11の工程と、  An eleventh step of forming a circuit element on the surface of a large ceramic substrate having a dividing groove provided in at least one direction on the surface,
複数の単位電子部品小片が連なる短冊を形成するよう、当該分割用溝に対して実 質的に直交する方向の該基板面にダイシング加ェする第 12の工程と、  A twelfth step of dicing the substrate surface in a direction substantially orthogonal to the dividing groove so as to form a strip in which the plurality of unit electronic component pieces are continuous;
当該短冊が有する前記分割用溝を開くように上記基板に応力付与することで上記 基板を単位電子部品小片に分割する第 13の工程を有し、  A thirteenth step of dividing the substrate into unit electronic component pieces by applying stress to the substrate so as to open the dividing groove of the strip,
上記第 11乃至第 13の工程をこの順に実施することを特徴とする電子部品の製造 法。  A method for manufacturing an electronic component, comprising performing the eleventh to thirteenth steps in this order.
[3] セラミック基板面に回路素子が形成される電子部品の製造法において、  [3] In a method of manufacturing an electronic component in which a circuit element is formed on a ceramic substrate surface,
大型のセラミック基板面に回路素子を形成する第 21の工程と、  A twenty-first step of forming circuit elements on a large ceramic substrate surface,
表面の少なくとも一方向に、単位電子部品小片を区画する分割用溝を形成する第 22の工程と、  A twenty-second step of forming a dividing groove for dividing the unit electronic component small piece in at least one direction of the surface;
複数の単位電子部品小片が連なる短冊を形成するよう、当該分割用溝に対して実 質的に直交する方向の該基板面にダイシング加工する第 23の工程と、  A twenty-third process of dicing the substrate surface in a direction substantially orthogonal to the dividing grooves so as to form strips in which the plurality of unit electronic component pieces are continuous;
当該短冊が有する前記分割用溝を開くように上記基板に応力付与することで上記 基板を単位電子部品小片に分割する第 24の工程を有し、  A twenty-fourth step of dividing the substrate into unit electronic component pieces by applying stress to the substrate so as to open the dividing groove of the strip,
上記第 21乃至第 24の工程をこの順に実施することを特徴とする電子部品の製造 法。  A method for manufacturing an electronic component, comprising performing the twenty-first to twenty-fourth steps in this order.
[4] 単位電子部品小片の回路素子端子部に導電性ボールを固着させる工程を有する ことを特徴とする請求項 1乃至 3のいずれかに記載の電子部品の製造法。 4. The method for manufacturing an electronic component according to claim 1, further comprising a step of fixing a conductive ball to a circuit element terminal portion of the unit electronic component piece.
[5] 単位電子部品小片の回路素子端子部に導電性ボールを固着させる工程を、第 13 の工程又は第 24の工程終了後に実施することを特徴とする請求項 2乃至 4のいずれ かに記載の電子部品の製造法。 [5] The method according to any one of claims 2 to 4, wherein the step of fixing the conductive ball to the circuit element terminal portion of the unit electronic component piece is performed after the completion of the thirteenth step or the twenty-fourth step. Manufacturing method of electronic components.
[6] 分割用溝が、基板の回路素子形成面に存在することを特徴とする請求項 1乃至 5 の!、ずれかに記載の電子部品の製造法。 [6] The method for manufacturing an electronic component according to any one of claims 1 to 5, wherein the dividing groove is present on the circuit element forming surface of the substrate.
[7] 短冊幅が 1. Omm以下であることを特徴とする請求項 1乃至 6のいずれかに記載の 電子部品の製造法。 [7] The method for producing an electronic component according to any one of claims 1 to 6, wherein the width of the strip is 1.Omm or less.
[8] 第 13の工程又は第 24の工程より前に回路素子端子部に導電性ボールを固着させ る工程を有し、短冊を分割するに際し、当該導電性ボールの固着を保護する緩衝部 材を用いることを特徴とする請求項 2、 3、 4、 6、 7のいずれかに記載の電子部品の製 造方法。  [8] A buffer member for protecting a conductive ball from sticking when a strip is divided, including a step of sticking a conductive ball to a circuit element terminal portion before the thirteenth step or the twenty-fourth step. 8. The method for producing an electronic component according to claim 2, wherein:
[9] 緩衝部材が導電性ボール間に充填される接着効果及び緩衝効果を兼備する材料 であることを特徴とする請求項 8記載の電子部品の製造方法。  9. The method for manufacturing an electronic component according to claim 8, wherein the buffer member is a material having both an adhesive effect and a buffer effect filled between the conductive balls.
[10] 接着効果及び緩衝効果を兼備する材料がロジン系材料であり、第 13の工程又は 第 24の工程における分割用溝に沿って切断されていることを特徴とする請求項 9記 載の電子部品の製造方法。 [10] The material according to claim 9, wherein the material having both the adhesive effect and the buffer effect is a rosin-based material, and is cut along the dividing groove in the thirteenth step or the twenty-fourth step. Manufacturing method of electronic components.
PCT/JP2004/015708 2003-11-11 2004-10-22 Electronic component manufacturing method WO2005045856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515255A JPWO2005045856A1 (en) 2003-11-11 2004-10-22 Manufacturing method of electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-381099 2003-11-11
JP2003381099 2003-11-11

Publications (1)

Publication Number Publication Date
WO2005045856A1 true WO2005045856A1 (en) 2005-05-19

Family

ID=34567267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015708 WO2005045856A1 (en) 2003-11-11 2004-10-22 Electronic component manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2005045856A1 (en)
WO (1) WO2005045856A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019163A (en) * 2012-07-12 2014-02-03 Skc Co Ltd Ceramic laminated sheet having flexibility and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529102A (en) * 1991-07-19 1993-02-05 Sony Corp Electronic part
JPH0722213A (en) * 1993-07-06 1995-01-24 Matsushita Electric Ind Co Ltd Method for forming solder bump on surface mounting component
JPH10177904A (en) * 1996-12-18 1998-06-30 Rohm Co Ltd Chip breaking device for electronic part
JP2002353012A (en) * 2001-05-29 2002-12-06 K-Tech Devices Corp Method of manufacturing electronic component
JP2003142304A (en) * 2001-11-06 2003-05-16 Rohm Co Ltd Structure for chip resistor and manufacturing method therefor
JP2003309004A (en) * 2002-04-18 2003-10-31 Koa Corp Insulating substrate and manufacturing method of electronic component using the insulating substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529102A (en) * 1991-07-19 1993-02-05 Sony Corp Electronic part
JPH0722213A (en) * 1993-07-06 1995-01-24 Matsushita Electric Ind Co Ltd Method for forming solder bump on surface mounting component
JPH10177904A (en) * 1996-12-18 1998-06-30 Rohm Co Ltd Chip breaking device for electronic part
JP2002353012A (en) * 2001-05-29 2002-12-06 K-Tech Devices Corp Method of manufacturing electronic component
JP2003142304A (en) * 2001-11-06 2003-05-16 Rohm Co Ltd Structure for chip resistor and manufacturing method therefor
JP2003309004A (en) * 2002-04-18 2003-10-31 Koa Corp Insulating substrate and manufacturing method of electronic component using the insulating substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019163A (en) * 2012-07-12 2014-02-03 Skc Co Ltd Ceramic laminated sheet having flexibility and method for producing the same

Also Published As

Publication number Publication date
JPWO2005045856A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
KR101803183B1 (en) Semiconductor device and method for producing the same
CN102789994B (en) The wettable semiconductor device in side
JP5022652B2 (en) Circuit module manufacturing method and circuit module
KR101064534B1 (en) Low resistance chip resistor of resistance metal plate and its manufacturing method
US20030160339A1 (en) Electronic component and fabrication method thereof
US10256116B2 (en) Process for packaging circuit component having copper circuits with solid electrical and thermal conductivities and circuit component thereof
JP5706186B2 (en) Chip resistor and manufacturing method thereof
EP3448133B1 (en) Multipiece wiring board, wiring board, and method for manufacturing multipiece wiring board
WO2005045856A1 (en) Electronic component manufacturing method
JP6525643B2 (en) Manufacturing apparatus and manufacturing method
JP3404375B2 (en) Multi-cavity wiring board
JP3118509B2 (en) Chip resistor
US6618269B2 (en) Discrete circuit component and process of fabrication
CN210156369U (en) Side wall copper exposure packaging structure
CN208848897U (en) Electronic component package
WO2005022967A1 (en) Electronic part manufacturing method
US6907656B1 (en) Method of manufacturing thermal head
CN211150217U (en) Packaging structure of PTC device
JP3643368B2 (en) Electronic component and its manufacturing method
WO2005041220A1 (en) Method of manufacturing electronic component
US20220359352A1 (en) Electronic package with concave lead end faces
JPH07142861A (en) Manufacture of metal-base wiring board
JP4322203B2 (en) Electronic component and its manufacturing method
JPH0529102A (en) Electronic part
JP3323140B2 (en) Chip resistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515255

Country of ref document: JP

122 Ep: pct application non-entry in european phase