WO2005045821A1 - 誘電体メモリー素子 - Google Patents

誘電体メモリー素子 Download PDF

Info

Publication number
WO2005045821A1
WO2005045821A1 PCT/JP2004/010624 JP2004010624W WO2005045821A1 WO 2005045821 A1 WO2005045821 A1 WO 2005045821A1 JP 2004010624 W JP2004010624 W JP 2004010624W WO 2005045821 A1 WO2005045821 A1 WO 2005045821A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory element
buffer layer
dielectric
film
dielectric memory
Prior art date
Application number
PCT/JP2004/010624
Other languages
English (en)
French (fr)
Inventor
Michio Kadota
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005515232A priority Critical patent/JP4802711B2/ja
Publication of WO2005045821A1 publication Critical patent/WO2005045821A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/08Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by electric charge or by variation of electric resistance or capacitance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/08Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using electrostatic charge injection; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/149Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the memorising material or structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/02Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using ferroelectric record carriers; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/06Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using record carriers having variable electrical capacitance; Record carriers therefor
    • G11B9/061Record carriers characterised by their structure or form or by the selection of the material; Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B9/062Record carriers characterised by their structure or form or by the selection of the material; Apparatus or processes specially adapted for the manufacture of record carriers characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/06Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using record carriers having variable electrical capacitance; Record carriers therefor
    • G11B9/061Record carriers characterised by their structure or form or by the selection of the material; Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B9/063Record carriers characterised by their structure or form or by the selection of the material; Apparatus or processes specially adapted for the manufacture of record carriers characterised by the selection of the material

Definitions

  • the present invention relates to a dielectric memory element from which recorded information is read in the direction of change in capacitance when an AC voltage is applied, and more specifically, to which information is recorded and the recorded information is read.
  • the present invention relates to a dielectric memory device having an improved memory region structure.
  • a technique of recording information in a minute region of a dielectric and reproducing the recorded information For example, in Patent Document 1 below, using a scanning non-linear dielectric microscopy (SNDM), the information recorded in a certain memory area using the micro / J region of the attractant;
  • Fig. 8 is a schematic block diagram of a system described in Patent Document 1
  • Fig. 9 is a diagram illustrating a relationship between a dielectric memory element used in the system and information to be recorded and read.
  • 10 is a partially cutaway front cross-sectional view for explaining the structure of the dielectric memory element 101.
  • the dielectric memory element 101 has a large number of minute regions 101a shown in Fig. 9.
  • the minute regions 101a are indicated by arrows in Fig. 9. This polarization direction is read out as information by the system shown in Fig. 8.
  • a second electrode 102 is formed on the back surface of the dielectric memory element 101. Pole 102 and the dielectric
  • a low-frequency alternating electric field is applied between the first electrode 103 and the first electrode 103, which is a probe for a probe, arranged so as to be in contact with the minute area 101a of the Lie element 101.
  • “Positive” or “negative” is read based on a change in capacitance in the minute area 101a of the dielectric when a low-frequency alternating electric field is applied.
  • Materials for the dielectric memory element 101 having the above-mentioned region include BaTiO and dititanate.
  • Piezoelectric ceramics such as lead ruconate ceramics are shown.
  • Patent Document 1 JP 2003-85969 A
  • Patent Document 1 a conventional dielectric memory element in which a dielectric made of piezoelectric ceramics is formed on a substrate as described in Patent Document 1,
  • the area, that is, the area of the minute area 101a was widened, and high-density recording was difficult.
  • the polarized memory area expands with time, recording and reading cannot be performed with high accuracy.
  • the present invention solves the above-mentioned disadvantages of the prior art, and is a dielectric memory element having a minute memory area in which “positive” or “negative” information is recorded by being polarized in a thickness direction,
  • An object of the present invention is to provide a dielectric memory element which can perform high-density recording in which a memory area does not easily change over time and which can be used for a long period of time in which accuracy does not easily decrease over time.
  • the present invention provides a substrate, a buffer layer provided on the substrate, having conductivity, at least uniaxially oriented, and formed on the buffer layer, wherein (001) ), A (100), (010), (110) or (111) oriented piezoelectric single crystal thin film, wherein a memory region polarized in the thickness direction is formed in the piezoelectric single crystal thin film.
  • This is a dielectric memory element in which the polarization direction is read out based on a change in capacitance at the time of voltage application depending on the polarization direction of the memory region.
  • Single crystal material strength
  • the piezoelectric single crystal thin film is made of LiTaO, LiNbO, or KNbO.
  • the buffer layer is
  • the ZnO film is doped with an impurity that becomes conductive.
  • impurities Is, for example, Al, Ga, V or the like.
  • the buffer layer in still another specific aspect of the dielectric memory element according to the present invention, the buffer layer
  • An A1N film or a GaN film is an A1N film or a GaN film.
  • A1N film or GaN film is an A1N film or a GaN film.
  • Monovalent or divalent impurities are doped.
  • the buffer layer in still another specific aspect of the dielectric memory element according to the present invention, the buffer layer
  • the metal film is preferably made of Pt, Au, Al, Ag
  • a plurality of memory regions are preferably formed in the piezoelectric single crystal thin film.
  • one of the substrates described in Table 17 below is used as the substrate.
  • a conductive buffer layer that is at least uniaxially oriented is provided on the substrate.
  • a piezoelectric single crystal thin film is formed on the buffer layer, and the piezoelectric single crystal thin film is formed as an epitaxial film, that is, a (001) oriented piezoelectric single crystal thin film according to the orientation direction of the buffer layer.
  • a memory region is formed on the piezoelectric single crystal thin film, which is polarized in the thickness direction, and based on a change in capacitance when a voltage is applied depending on the polarization direction of the memory region, the polarization is determined. The direction, that is, the information is configured to be read.
  • the dielectric memory element according to the present invention since the (001) -oriented piezoelectric single crystal thin film is used, a conventional piezoelectric ceramic such as lead zirconate titanate is used.
  • the range of the memory area over time is wider than in the case of Since the force and the film thickness can be reduced, polarization can be performed at a low voltage, and the polarization region can be reduced. Therefore, high-density recording is possible.
  • the polarized memory region hardly spreads over time, recording and reading can be performed with high accuracy.
  • the memory region is made of a material
  • the memory region can be easily polarized by applying a voltage.
  • the lattice constant in the a-axis direction of the substrate is As and the lattice constant in the a-axis direction of the buffer layer is Ab
  • the deviation amount of the lattice constant represented by the above equation is within ⁇ 16%.
  • the buffer layer is made epitaxy as is apparent from the examples described later. Therefore, an epitaxy piezoelectric single crystal thin film such as LiTaO or LiNbO
  • Zn ⁇ ⁇ ⁇ is used as the buffer layer.
  • the lattice displacement is in the range of -5.5 + 8.3% as shown in Table 1. Therefore, an epitaxial (001) oriented Zn ⁇ film can be obtained.
  • the conductive material such as Al, Ga, V or the like may be doped.
  • the buffer layer can be used as an electrode. Furthermore, by forming a LiTaO or LiNbO piezoelectric film on the buffer layer,
  • Non-facial layer force In the case of using an A1N film, lattice displacement can be reduced to ⁇ 9.4 ⁇ 1 + 4.3%.
  • the buffer layer can be used as a conductive material layer, and the buffer layer can be used as an electrode. Let's do it.
  • the non-ferromagnetic layer may be composed of a metal film having a (001) or (111) orientation or an equivalent orientation, and in such a case, may be an epitaxy metal film.
  • the metal film is, p t, Au, Al, Ag, is composed of one selected from the group consisting of Cr and Ti les, if undersized, it is generally used as the electrode material Les, Ru these metals
  • the buffer layer can be easily formed by using. Epitaxial LiTaO and LiNbO films with (001) orientation are also formed on these buffer layers.
  • a dielectric memory element capable of recording and reading a large amount of information can be provided according to the present invention.
  • FIGS. 1 (a) and 1 (b) are a partially cutaway front sectional view and a schematic plan view of a dielectric memory element according to one embodiment of the present invention.
  • FIG. 2 shows the lattice coupling between any of the hexagonal, orthorhombic, and trigonal buffer layer constituent materials formed on a hexagonal substrate material.
  • FIG. 4 is a plan view schematically showing the state of FIG.
  • FIGS. 3 (a) and 3 (b) are a schematic perspective view showing a trigonal or orthorhombic structure and a view schematically showing a crystal structure viewed from the Z direction in (a). .
  • FIG. 4 is a schematic plan view showing a Ba-type structure as an example of a matching structure between a substrate and a material constituting a buffer layer.
  • FIG. 5 is a schematic plan view showing a B-type structure as an example of a lattice matching structure between a substrate and a material constituting a buffer layer.
  • FIG. 6 is a schematic perspective view for explaining a cubic, tetragonal, equiaxed, and isotropic crystal structure and a (111) plane.
  • FIG. 7 is a schematic plan view showing a C-type structure which is an example of a lattice matching structure between a cubic crystal, a tetragonal crystal, an equiaxed crystal, and an isotropic body and a cubic crystal.
  • FIG. 7 is a schematic plan view showing a C-type structure which is an example of a lattice matching structure between a cubic crystal, a tetragonal crystal, an equiaxed crystal, and an isotropic body and a cubic crystal.
  • FIG. 8 is a block diagram showing an example of a recording / reading device using a conventional dielectric memory element.
  • FIG. 9 is a schematic diagram for explaining a step of reading information recorded in a dielectric memory element using the device shown in FIG.
  • FIGS. 1 (a) and 1 (b) are a partially cutaway front sectional view and a schematic plan view for explaining a dielectric memory element according to the present invention.
  • the dielectric memory element 1 has a substrate 2 and a buffer layer 3 formed on the substrate 2.
  • a piezoelectric single crystal thin film 4 is formed on the buffer layer 3.
  • the substrate 2 is preferably made of a material capable of forming a film so that the buffer layer 3 formed on the substrate 2 is at least uniaxially oriented.
  • Such preferred substrate materials differ depending on the material of the buffer layer 3 formed on the substrate 2, but, for example, c-plane sapphire, m-plane sapphire, a-plane sapphire, LiNbO, LiTaO crystal, A1PO
  • Trigonal crystalline materials such as LaGaSiO; orthorhombic, such as LiGaO and NaGaO
  • Hexagonal crystalline materials such as LilO, ZnO, GaN, A1N, 6H—SiC
  • cubic crystalline materials such as 3C_SiC, GaAs, GaN, and Si (111).
  • the buffer layer 3 is formed on the crystalline substrate 2 as described above. Buffer layer
  • the film forming method of No. 3 is not particularly limited, and may be formed by vapor deposition, plating, sputtering, or the like.
  • the buffer layer 3 has conductivity and is at least uniaxially oriented. Since it is uniaxially oriented and the lattice displacement is small, the piezoelectric single crystal thin film 4 can be formed on the buffer layer 3 as a (001) oriented epitaxial film. Further, the buffer layer 3 has conductivity, and is therefore used as an electrode for polarizing a memory region 4 a, which will be described later, formed in the piezoelectric single crystal thin film 4 and for reading the polarization state.
  • the thickness of the non-ferromagnetic layer 3 is not particularly limited, but is not particularly limited as long as the piezoelectric single crystal thin film 4 can be formed as an epitaxy film. Thickness.
  • Examples of a material constituting the buffer layer include oxides or nitrides such as ZnO, A1N, and GaN, and metals.
  • a material constituting the buffer layer include oxides or nitrides such as ZnO, A1N, and GaN, and metals.
  • the buffer layer 3 is made of ZnO, a material exhibiting conductivity is doped, so that the buffer layer 3 is configured to have conductivity.
  • the buffer layer 3 is made of an A1N film, preferably, the buffer layer 3 is configured to be doped with a monovalent or divalent impurity to have conductivity.
  • the buffer layer 3 may be composed of a (001) or (111) oriented metal film.
  • Such metals include Pt, Au, Al, Ag, Cr, Ti and the like.
  • the piezoelectric single crystal thin film 4 is formed on the buffer layer 3 as a (001) orientation, that is, an epitaxy film.
  • the material of the piezoelectric single crystal thin film 4 is not particularly limited as long as it is a piezoelectric single crystal that can polarize the memory region 4a, which is a minute region, in the thickness direction. Examples of a material constituting such a piezoelectric single crystal thin film 4 include piezoelectric single crystals such as LiTaO, LiNbO, and KNbO.
  • Crystals can be mentioned, and LiTaO or LiNbO is preferably used. Piezoelectric connection
  • the orientation is not limited to (001), but may be any orientation that allows polarization.
  • each memory area 4a is configured as an area having a circular planar shape.
  • Each memory area 4a is polarized so as to form an upward arrow or a downward arrow as shown in FIG. This polarization is performed in each memory region by applying a voltage between the buffer layer 3 and the upper surface of the memory region to polarize the memory region 4a.
  • the buffer layer 3 is used as a second electrode, and a DC voltage is applied between the second electrode and the first electrode 5, which is a probe for contacting the memory area 4a.
  • the memory region is polarized. Therefore, “positive” or “negative” is written in the memory area 4a as shown in FIG.
  • Reading is performed using the above-described conventionally known SNDM.
  • the buffer layer 3 is used as a second electrode, and a low-frequency alternating electric field is applied between the buffer layer 3 and the first electrode 5 which is a probe for abutting on the memory area 4a.
  • Positive or negative is read based on the change direction of the capacitance at the time. That is, when the memory area 4a is polarized with an upward arrow, when a voltage is applied, the capacitance of the memory area 4a changes in a direction to increase. Therefore, when SNDM is used, the change in the capacitance can be read out as the change in the oscillation frequency.
  • an oscillation circuit is formed by the capacitance of the memory area and the inductance on the SNDM side.
  • the capacitance changes in a direction to increase the capacitance, and when the memory region 4 is polarized downward, the capacitance decreases. Change in direction. Therefore, the "positive” or “negative” is read out according to the change in the oscillation frequency of the oscillation circuit.
  • the memory region 4a is formed of the piezoelectric single crystal thin film 4 as described above.
  • the piezoelectric single-crystal thin film 4 can perform polarization in a very small area with higher precision than a conventional dielectric memory element using piezoelectric ceramics, so that recording can be performed with high precision. it can. That is, the distance between the memory areas 4a, 4a can be reduced, and high-density recording can be performed.
  • the above-mentioned memory area spreads over time, making it difficult to perform high-density recording, and the thick substrate required a high voltage and a large polarization area.
  • the area of the polarized memory region 4a is hardly expanded over time, and the memory area is small due to polarization at a low voltage, so that a high-density memory can be realized.
  • the piezoelectric single crystal thin film 4 is less likely to be damaged by fatigue as compared with the case where the piezoelectric ceramic is used. Therefore, the characteristics over time It is possible to reliably suppress the fluctuation and deterioration of the properties. Therefore, it is possible to provide a novel dielectric memory element 1 which can be used repeatedly for a long time as compared with the conventional dielectric memory element.
  • the dielectric memory element 1 of the present embodiment is configured such that, after forming at least a uniaxially-oriented conductive buffer layer 3 on a substrate 2, a piezoelectric layer is formed on the buffer layer 3. It is formed by forming a single crystal thin film 4.
  • the inventor of the present application proposes that when a piezoelectric single crystal film is formed on a c-plane oriented sapphire or other substrate on By inheriting the orientation information of 3, it was found that a piezoelectric single crystal thin film 4 as an epitaxial film could be formed. Since the piezoelectric single crystal thin film 4 having a small thickness can be formed, a large number of memory areas can be formed as described above, and the dielectric memory element 1 can be provided.
  • the inventors of the present application have conducted various studies on the combination of the substrate 2 and the buffer layer 3 in which the piezoelectric single crystal thin film 4 is surely formed as an epitaxial film, and as a result, found that the lattice constant in the a-axis direction of the substrate was As, when the lattice constant in the a-axis direction of the buffer layer 3 is Ab, the deviation of the lattice constant represented by ⁇ l- (As / nAb) ⁇ X100 (%) may be within ⁇ 16%. I found it desirable. Note that, in this equation, n indicates an integer that is closest to the (As / nAb) force. This will be described with reference to FIGS. 2 to 7 and Tables 8 to 14 below.
  • FIG. 2 shows the lattice constant of a hexagonal Zn ⁇ film 12 formed as a buffer layer 3 on hexagonal 6H_SiC (silicon carbide) indicated by reference numeral 11. It is a schematic plan view showing a relationship.
  • the grid displacement in this case is + 5.0%.
  • the lattice matching structure when the buffer layer 3 made of the hexagonal material is formed on the hexagonal substrate is abbreviated as A-type.
  • a trigonal crystal structure such as LiTaO, LiNbO or sapphire is shown in Fig. 3 (a). It is as schematically shown.
  • the points indicated by ⁇ are all at the same height, and the grid points indicated by j3 are all at the same height. Therefore, when viewed from the direction of arrow Z in FIG. 3, the arrangement of the grid points indicated by a and ⁇ is as shown in FIG. 3 (b).
  • the trigonal crystal has a structure like a hexagonal material. Single crystal, rhombohedral and orthorhombic materials also show a structure similar to a trigonal system.
  • the combination of any of the trigonal, orthorhombic, and rhombohedral and hexagonal materials results in the combination force of the ⁇ -type in FIG. 2 and the combination of the B-type in FIG.
  • the regular hexagon 16 in FIG. 5 corresponds to the C-plane sapphire
  • As corresponds to the length of the a-axis of the C-plane sapphire.
  • the regular hexagon 15 corresponds to Zn ⁇
  • Az corresponds to the a-axis length of Zn ⁇ .
  • FIG. 6 shows a tetragonal cubic crystal structure.
  • the (1 1 1) plane in Fig. 6 shows an equilateral triangle, and a 'in the figure has a length equivalent to twice the length of the a-axis.
  • Figure 4 shows how the equilateral triangle (corresponding to 13 in Fig. 4) and any of the hexagonal, trigonal, orthorhombic, and rhombohedral (corresponding to 14 in Fig. 4) lattice match. It is a Ba type.
  • FIG. 7 shows a state where the cubic crystal lattice 22 is bonded to a cubic crystal lattice 21 or the like.
  • the lattice constants As and Ab of both are as shown in the figure.
  • a Ba-type substrate having a hexagonal, trigonal, or orthorhombic material force is used.
  • Substrates made of, cubic, tetragonal, equiaxed, and isotropic materials are lattice-matched in C-type.
  • Table 8-14 shows combinations in which the deviation of the lattice constant falls within the range of ⁇ 16%.
  • the type in Table 8-14 indicates the structure of each of the A type, Ba type, and C type codes described above.
  • the buffer layer is Pt and the thin film is LiTaO, the relationship shown in Table 8 can be seen.
  • a force LiTaO film or LiNbO film described as having good (001) orientation is a piezoelectric film.
  • the Y plane is equivalent to the (100) plane, (010) plane, and (110) plane.
  • (001) and (00-1) are equivalent, and (111) and (-1-1-1), (11-1), (-111), (1 —11), (1 1-1-1), (1-11-1), and (1-111) are equivalent surfaces.
  • This structure can be applied to surface acoustic waves, Balta waves, elastic waves, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

 高密度記録が可能であり、経時による分極されたメモリ領域の拡散が生じ難く、経時による疲労摩耗が生じ難い、信頼性に優れ、かつ長期間に渡り用いることができる誘電体メモリー素子を提供する。  基板2上に、c軸方向に配向されており、導電性を有するバッファ層3が形成されており、バッファ層3上に、(001)配向の圧電単結晶薄膜4が成膜されており、圧電単結晶薄膜4において、厚み方向に分極されるメモリ領域4aが構成されており、該メモリ領域4aの分極方向に依存した、電圧印加時の静電容量変化に基づき、該分極方向が読み出される、誘電体メモリー素子。

Description

明 細 書
誘電体メモリー素子
技術分野
[0001] 本発明は、交流電圧印加時の静電容量の変化方向により記録情報が読み出され る誘電体メモリー素子に関し、より詳細には、情報が記録され、かつ記録されている 情報が読み出されるメモリ領域の構造が改良された誘電体メモリー素子に関する。 背景技術
[0002] 従来、誘電体の微小領域に情報を記録し、記録された情報を再生する技術が知ら れている。例えば、下記の特許文献 1には、走査型非線形誘電率顕微鏡(SNDM : Scanning Nonlinear Dielectric Microscopy)を用い、誘 体の微 /Jヽ領; ig! (? あるメモリ領域に記録されていた情報を読み取るシステムが開示されている。図 8は、 特許文献 1に記載のシステムの概略ブロック図であり、図 9は、該システムに用いられ る誘電体メモリー素子と、記録 '読み出される情報との関係を説明するための部分切 欠正面断面図である。誘電体メモリー素子 101は、図 9に示されている多数の微小領 域 101aを有する。そして、微小領域 101aは、図 9において矢印で示すように分極さ れている。この分極方向が情報として、図 8に示すシステムにより読み出される。ここ では、誘電体メモリー素子 101の裏面に第 2の電極 102が形成されている。第 2の電 極 102と、該誘電体メモリー素子 101の微小領域 101aに接触するように配置される プローブ用探針である第 1の電極 103との間に、第 1の電極 103側から低周波交番 電界が印加される。そして、この低周波交番電界が印加された際の誘電体の微小領 域 101aにおける静電容量の変化に基づいて、「正」または「負」が読み取られる。
[0003] 上記領域を有する誘電体メモリー素子 101の材料としては、 BaTiOやチタン酸ジ
3
ルコン酸鉛系セラミックスのような圧電セラミックスが示されている。
特許文献 1:特開 2003 - 85969号公報
発明の開示
[0004] し力 ながら、特許文献 1に記載のように、圧電セラミックスからなる誘電体を基板上 に形成してなる従来の誘電体メモリー素子では、経時により、分極されているメモリ領 域、すなわち微小領域 101aの範囲が広がり、高密度記録が困難であった。また、経 時により、分極されているメモリ領域が広がるため、高精度に記録'読み出しを行うこ とができなかった。
[0005] さらに、第 1の電極であるプローブ用探針の接触が繰り返されると、接触疲労により 、精度が低下するという問題があった。また、基板が厚いために高電圧を必要とする こと、並びに領域 101aが非常に大きくなるという欠点があった。
[0006] 本発明は、上述した従来技術の欠点を解消し、厚み方向に分極されて「正」または 「負」の情報が記録される微小なメモリ領域を有する誘電体メモリー素子であって、経 時によるメモリ領域の変化が生じ難ぐ高密度記録が可能であり、かつ経時による精 度の低下が生じ難ぐ長期間に渡り用いることができる誘電体メモリー素子を提供す ることにある。
[0007] 本発明は、基板と、前記基板上に設けられており、導電性を有し、少なくとも 1軸配 向されているバッファ層と、前記バッファ層上に形成されており、かつ(001) , (100) , (010), (110)または(111)配向の圧電単結晶薄膜とを備え、該圧電単結晶薄膜 において、厚み方向に分極されているメモリ領域が構成されており、該メモリ領域の 分極方向に依存した、電圧印加時の静電容量変化に基づいて、該分極方向が読み 出される、誘電体メモリー素子である。
[0008] 本発明に係る誘電体メモリー素子のある特定の局面では、前記圧電単結晶薄膜が 、比誘電率( ε Τ / ε ) (i, j = l , 2, 3)が 20以上の圧電単結晶材料力 なる。
ij 0
[0009] 本発明に係る誘電体メモリー素子のさらに他の特定の局面では、前記基板の a軸 方向の格子定数を As、前記バッファ層の a軸方向の格子定数を Abとしたときに、 { 1 -(mAs/nAb) } X 100 (%)〔但し、 mと nは整数で、(mAsZnAb)が 1に最も近くな るときの整数を示す。〕で表わされる格子定数のずれ量が ± 16%以内とされている。
[0010] 本発明に係る誘電体メモリー素子のさらに別の特定の局面では、前記圧電単結晶 薄膜が、 LiTaO, LiNbOまたは KNbOからなる。
3 3 3
[0011] 本発明に係る誘電体メモリー素子のさらに別の特定の局面では、前記バッファ層が
、(001)配向の Zn〇膜を用いて構成される。
[0012] 好ましくは、 ZnO膜に、導電性となる不純物がドープされる。このような不純物として は、例えば、 Al、 Ga、 Vなどが挙げられる。
[0013] 本発明に係る誘電体メモリー素子のさらに別の特定の局面では、前記バッファ層が
、 A1N膜あるいは GaN膜を用いて構成される。好ましくは、 A1N膜あるいは GaN膜に
、 1価または 2価の不純物がドープされる。
[0014] 本発明に係る誘電体メモリー素子のさらに他の特定の局面では、前記バッファ層が
、少なくとも 1軸配向の金属膜からなる。上記金属膜は、好ましくは、 Pt、 Au、 Al、 Ag
、 Cr, Ta, Ni, Cu, Mo, Fe, Mn, W, AuCuまたは Tiなどからなる。
3
[0015] 本発明に係る誘電体メモリー素子では、好ましくは圧電単結晶薄膜ににおいて、複 数のメモリ領域が構成される。
[0016] また、本発明に係る誘電体メモリー素子では、好ましくは、上記基板として、下記の 表 1一 7中に記載の基板の内の 1種が用いられる。
[0017] [表 1]
Figure imgf000006_0001
Figure imgf000007_0001
S^U020
Figure imgf000008_0001
〔〕 u0021
Figure imgf000009_0001
〔〕0022
Figure imgf000010_0001
〔〕0023
Figure imgf000011_0001
0
Figure imgf000012_0002
Figure imgf000012_0001
[0024] 本発明に係る誘電体メモリー素子では、基板上に少なくとも 1軸配向されている、導 電性を有するバッファ層が設けられている。そして、上記バッファ層上に、圧電単結 晶薄膜が形成されており、該圧電単結晶薄膜は、バッファ層の配向方向に従って、 ェピタキシャル膜、すなわち、 (001)配向の圧電単結晶薄膜として形成されている。 この圧電単結晶薄膜にぉレ、て、厚み方向に分極されてレ、るメモリ領域が構成され、 該メモリ領域の分極方向に依存した電圧印加時の静電容量変化に基づいて、該分 極方向、すなわち情報が読み出されるように構成されている。
[0025] 本発明に係る誘電体メモリー素子では、上記のように、(001)配向の圧電単結晶 薄膜を用いているため、従来のチタン酸ジルコン酸鉛などの圧電セラミックスを用い た場合に比べて、経時によるメモリ領域の範囲が広力 ^難レ、。し力、も膜厚を薄くするこ とがきるため、低電圧で分極でき、ひいては分極領域も小さくできる。従って、高密度 記録が可能である。また、経時により分極されているメモリ領域の広がりが生じ難いた め、高精度に記録 ·読み出しを行うことができる。
[0026] また、圧電セラミックスからなる誘電体を基板上に形成してなる従来の誘電体メモリ 一素子では、プローブ用探針の接触が繰り返されると、接触疲労により、精度が低下 するという問題があった。これに対して、本発明に係る誘電体メモリー素子は、上記圧 電単結晶薄膜を用いているため、プローブ用探針の接触による接触疲労が軽減され る。従って、長期間に渡り用いることができる誘電体メモリー素子を提供することがで きる。
[0027] 上記圧電単結晶薄膜が、比誘電率 (例えば ε Τ / ε )が 20以上の圧電単結晶材 ϋ 0
料からなる場合には、電圧の印加によりメモリ領域を容易に分極することができる。
[0028] 本発明において、基板の a軸方向の格子定数を As、バッファ層の a軸方向の格子 定数を Abとしたときに、上述した式で表わされる格子定数のずれ量が ± 16%以内で ある場合には、後述の実施例から明らかなようにバッファ層がェピタキシャル化される 。従って、 LiTaOや LiNbO力 なるェピタキシャルな圧電単結晶薄膜をバッファ層
3 3
上に確実に形成することができる。
[0029] 基板が、 LiTaOまたは LiNbO力もなる場合に、上記バッファ層として Zn〇を用い
3 3
て構成されている場合には、格子のずれは表 1に示すように— 5. 5 + 8. 3%の範 囲にある。従って、ェピタキシャルの(001)配向の Zn〇膜を得ることができる。
[0030] ノ ノファ層としての Zn〇膜を導電性とするためには、 Al, Ga, V等の該導電性材料 をドープすればよレ、。それによつて、バッファ層を電極として用いることができる。さら にバッファ層上に、 LiTaOあるいは LiNbOの圧電膜を形成することにより、格子ず
3 3
れの少ない(001)配向のェピタキシャル LiTaO膜あるいは LiNbO膜が形成される
3 3
[0031] ノ ノファ層力 A1N膜を用いて構成されている場合には、格子ずれは- 9. 4一 + 4 . 3%とすること力できる。また、 A1N膜に、 1価または 2価の不純物がドープされてい る場合には、バッファ層を導電性材料層とすることができ、ノ ッファ層を電極として用 レ、ることができる。
[0032] ノ ノファ層は、(001)あるいは(111)配向またはそれと等価な配向の金属膜により 構成されていてもよぐその場合にもェピタキシャル金属膜とすることができる。上記 金属膜が、 pt、 Au、 Al、 Ag、 Cr及び Tiからなる群から選択された 1種により構成され てレ、る場合には、電極材料として汎用されてレ、るこれらの金属を用いて容易にバッフ ァ層を形成することができる。これらのバッファ層の上にも(001)配向のェピタキシャ ル LiTaOや LiNbO膜が形成される。
3 3
[0033] 圧電単結晶薄膜に、複数のメモリ領域が構成されている場合には、本発明に従つ て、多数の情報の記録 ·読み出しの可能な誘電体メモリー素子を提供することができ る。
図面の簡単な説明
[0034] [図 1]図 1 (a)及び (b)は、本発明の一実施形態に係る誘電体メモリー素子の部分切 欠正面断面図及び模式的平面図である。
[図 2]図 2は、六方晶系の基板材料上に、六方晶系、斜方晶系、三方晶系等のいず れかのバッファ層構成材料を成膜した際の両者の格子結合の状態を模式的に示す 平面図である。
[図 3]図 3 (a)及び (b)は、三方晶または斜方晶系の構造を示す模式的斜視図及び( a)中の Z方向からみた結晶構造を模式的に示す図である。
[図 4]図 4は、基板とバッファ層を構成する材料との整合構造の一例としての Ba型の 構造を示す模式的平面図である。
[図 5]図 5は、基板とバッファ層を構成する材料との格子整合構造の一例としての B型 の構造を示す模式的平面図である。
[図 6]図 6は、立方晶系、正方晶系、等軸晶系、等方体の結晶構造と(111)面を説明 するための模式的斜視図である。
[図 7]図 7は、立方晶系結晶、正方晶系、等軸晶系、等方体と、立方晶系結晶との格 子整合構造の一例である C型の構造を示す模式的平面図である。
[図 8]図 8は、従来の誘電体メモリー素子を用いた記録 ·読み出し装置の一例を示す ブロック図である。 [図 9]図 9は、図 8に示した装置を用いて誘電体メモリー素子に記録されている情報を 読み出す工程を説明するための模式図である。
符号の説明
[0035] 1…誘電体メモリー素子
2…基板
3…バッファ層
4…圧電単結晶薄膜
4a…メモリ領域
5…第 1の電極
発明を実施するための最良の形態
[0036] 図 1 (a)及び (b)は、本発明に係る誘電体メモリー素子を説明するための部分切欠 正面断面図及び模式的平面図である。
[0037] 誘電体メモリー素子 1は、基板 2と、基板 2上に形成されたバッファ層 3とを有する。
ノ ッファ層 3上には、圧電単結晶薄膜 4が形成されている。
[0038] 上記基板 2は、適宜の材料で構成される力 好ましくは、基板 2上に形成されるバッ ファ層 3を少なくとも 1軸配向するように成膜し得る材料が望ましい。このような好まし い基板材料は、基板 2上に形成されるバッファ層 3の材料によっても異なるが、例え ば、 c面サファイア、 m面サファイア、 a面サファイア、 LiNbO 、 LiTaO 水晶、 A1PO
3 3、 3
、 La GaSiO などの三方晶系の結晶性材料; LiGaOや NaGaOのような斜方晶系
3 12 3 3
の結晶性材料; LilO、 ZnO、 GaN、 A1N、 6H— SiCなどの六方晶系の結晶性材料
3
または; 3C_SiC、 GaAs、 GaN、 Si (111)などの立方晶系の結晶性材料などを挙げ ること力 Sできる。
[0039] 上記バッファ層 3は、上記のような結晶性の基板 2上に形成されている。バッファ層
3の成膜方法は、特に限定されず、蒸着、メツキまたはスパッタリングなどにより形成さ れ得る。
[0040] また、バッファ層 3は、導電性を有し、かつ少なくとも 1軸に配向されている。 1軸に 配向されており、また格子のずれが小さいため、バッファ層 3上に圧電単結晶薄膜 4 を、(001)配向のェピタキシャル膜として成膜することができる。 [0041] また、バッファ層 3は、導電性を有し、従って、圧電単結晶薄膜 4に構成される後述 のメモリ領域 4aを分極したり、該分極状態を読み出す際の電極として用いられる。
[0042] ノ ノファ層 3の厚みは、特に限定されるわけではないが、上記圧電単結晶薄膜 4を ェピタキシャル膜として成膜し得る限り、特に限定されず、例えば、 lOnm : m程 度の厚みとされる。
[0043] 上記バッファ層を構成する材料としては、 ZnO、 A1N、 GaNなどの酸化物もしくは 窒化物、または金属などを挙げることができる。好ましくは、バッファ層 3が、 ZnO力 なる場合には、導電性を示す材料がドープされ、それによつてバッファ層 3が導電性 を有するように構成される。また、バッファ層 3が A1N膜からなる場合にも、好ましくは 、 1価または 2価の不純物がドープされ、バッファ層 3が導電性を有するように構成さ れる。
[0044] バッファ層 3は、(001)あるいは(111)配向の金属膜により構成されていてもよい。
このような金属としては、 Pt、 Au、 Al、 Ag、 Cr、 Tiなどを挙げることができる。
[0045] 圧電単結晶薄膜 4は、(001)配向、すなわちェピタキシャル膜としてバッファ層 3上 に形成されている。圧電単結晶薄膜 4の材料は、微小領域であるメモリ領域 4aを厚 み方向に分極し得る圧電単結晶である限り、特に限定されない。このような圧電単結 晶薄膜 4を構成する材料としては、例えば LiTaO 、 LiNbO、 KNbOなどの圧電単
3 3 3
結晶を挙げることができ、好ましくは LiTaOまたは LiNbOが用いられる。圧電単結
3 3
晶薄膜 4が、 LiTaOまたは LiNbO力 なる場合、低電圧で高密度なメモリーを作成
3 3
することができる。また、配向は(001)に限定されるものではなく分極が可能な方位 ならばよい。
[0046] 誘電体メモリー素子 1では、圧電単結晶薄膜 4に、多数のメモリ領域 4aが構成され ている。図 1 (b)に模式的平面図で示すように、各メモリ領域 4aは、本実施形態では 、円形の平面形状を有する領域として構成されている。各メモリ領域 4aは、図 1 (a)に 示すように、上向きの矢印、または下向きの矢印となるように分極されている。この分 極は、各メモリ領域において、バッファ層 3とメモリ領域の上面との間に電圧を印加し 、メモリ領域 4aを分極することにより行われる。
[0047] 書き込みは、前述した従来より公知の SNDMを用いて行われる。 SNDMを用いる 場合、バッファ層 3が第 2の電極とされ、第 2の電極と、メモリ領域 4a上に当接されるプ ローブ用探針である第 1の電極 5との間に直流電圧を印加することにより、メモリ領域 が分極される。従って、図 1に示されているように、メモリ領域 4aに「正」または「負」が 書き込まれる。
[0048] 読み出しは、前述した従来より公知の SNDMを用いて行なわれる。 SNDMを用い る場合、バッファ層 3が第 2の電極とされ、メモリ領域 4a上に当接されるプローブ用探 針である第 1の電極 5との間に低周波交番電界が印加され、その際の静電容量の変 化方向に基づいて、正または負が読みとられる。すなわち、上向きの矢印にメモリ領 域 4aが分極されている場合には、電圧を印加した際、該メモリ領域 4aの静電容量は 高まる方向に変化する。従って、 SNDMを用いた場合、上記静電容量の変化を発振 周波数の変化として読み出すことができる。すなわち、上記メモリ領域の静電容量と、 SNDM側のインダクタンスとにより、発振回路が構成される。そして、上記のようにメ モリ領域 4が上向きの矢印方向に分極処理されている場合には静電容量が高まる方 向に変化し、下向きに分極されている場合には静電容量は低くなる方向に変化する 。従って、上記発振回路の発振周波数の変化により、上記「正」または「負」が読み出 される。
[0049] 本実施形態の誘電体メモリー素子 1では、メモリ領域 4aが、上記のように圧電単結 晶薄膜 4において構成されている。この場合、圧電単結晶薄膜 4では、従来の圧電セ ラミックスを用いた誘電体メモリー素子に比べて、微小領域での分極を高精度に行う ことができるので、記録を高精度に行うことができる。すなわち、メモリ領域 4a, 4a間 の距離を近づけることができ、従って高密度記録を行うことができる。しかも、圧電セ ラミックスを用いた誘電体メモリー素子では、前述されているメモリ領域が経時により 広がり、高密度記録が行い難かった上、基板が厚いため高電圧と大きい分極領域を 必要としたのに対し、本実施形態の誘電体メモリー素子 1では、経時により、分極され ているメモリ領域 4aの範囲が広がり難い上、低電圧で分極されたためメモリー面積が 小さく高密度メモリーが実現できる。
[0050] カロえて、圧電単結晶薄膜 4では、第 1の電極 5が複数回当接されたとしても、圧電セ ラミックスを用いた場合に比べて、疲労により損傷が生じ難い。従って、経時による特 性の変動や劣化を確実に抑制することができる。よって、従来の誘電体メモリー素子 に比べて長期間に渡り繰り返し使用することができる、新規な誘電体メモリー素子 1を 提供すること力 Sできる。
[0051] 上記のように、本実施形態の誘電体メモリー素子 1は、基板 2上に、少なくとも 1軸配 向された導電性を有するバッファ層 3を形成した後に、該バッファ層 3上に圧電単結 晶薄膜 4を形成することにより構成されている。
[0052] 上記のように、本願発明者は、 c面サファイアなどからなる基板上に、 c軸に配向した ノ^ファ層 3を形成した後に、圧電単結晶膜を成膜した場合、バッファ層 3の配向情 報を引き継いて、ェピタキシャル膜としての圧電単結晶薄膜 4を成膜し得ることを見 出した。厚みの薄い圧電単結晶薄膜 4を形成することができるので、上記のように、 多数のメモリ領域を構成し、誘電体メモリー素子 1を提供することができる。
[0053] なお、本願発明者は、上記圧電単結晶薄膜 4がェピタキシャル膜として確実に形成 される基板 2及びバッファ層 3の組み合わせにっき種々検討した結果、基板の a軸方 向の格子定数を As、バッファ層 3の a軸方向の格子定数を Abとしたときに、 { l-(As /nAb) } X 100 (%)で表わされる格子定数のずれ量が ± 16%以内であることが望 ましいことがわかった。なお、この式において、 nは、(As/nAb)力 に最も近くなると きの整数を示す。これを、図 2—図 7及び下記の表 8— 14を参照して説明する。
[0054] 図 2は、参照番号 11で示す六方晶系の 6H_SiC (シリコンカーバイト)上に、同じく 六方晶系の Zn〇膜 12がバッファ層 3として形成されている場合の両者の格子定数の 関係を示す模式的平面図である。図 2において、矢印 Aが a軸の格子定数の長さに 相当し、格子定数 As及び格子定数 Abは、それぞれ、 As = 3. 08A、 Ab = 3. 2427 Aとなる。この場合の格子のずれは + 5. 0%である。このように、六方晶系の基板上 に、六方晶系の材料からなるバッファ層 3を構成した場合の格子整合構造を A型と略 称することとする。
[0055] 下記の表 8における基板とバッファ層 3を構成する材料との組み合わせにおいて、 六方晶系の基板材料と、六方晶系の材料からなるバッファ層の組み合わせの場合、 多くは上記 A型の構造で格子整合する。
[0056] 他方、 LiTaO 、 LiNbOまたはサファイアなどの三方晶系結晶構造は、図 3 (a)に 略図的に示す通りである。ここで、 αで示す点は全て同じ高さであり、 j3で示す格子 点は全て同じ高さに存在する。従って、図 3の矢印 Z方向からみた場合、 aと βで示 す各格子点の配置は、図 3 (b)に示す通りとなる。言い換えれば、矢印 Ζ方向からみ た場合、三方晶系の結晶は、あたかも六方晶系の材料のような構造となる。単結晶、 菱面体や斜方晶の材料も三方晶系に似た構造を示す。
[0057] よって、三方晶、斜方晶、菱面体晶のいずれかと六方晶の材料の組み合わせでは 、前述の図 2の Α型の組み合わせ力、、図 5の B型の組み合わせとなる。例えば、三方 晶の C面サファイアと六方晶の Zn〇の組み合わせの場合には、図 5の正六角形 16が C面サファイアに、 Asが C面サファイアの a軸の長さに相当する。一方、正六角形 15 が Zn〇に、 Azが Zn〇の a軸の長さに相当する。 Asと Abの長さがほぼ整数倍に近い とき格子整合する。ここで Ab = 3 X Azで与えられる。
[0058] 図 6には、正方晶ゃ立方晶系の結晶構造を示す。図 6の(1 1 1 )面は正三角形を示 し、図の a 'は a軸の長さの 2倍に相当する長さをもつ。この正三角形を(図 4の 13に 相当)と六方晶、三方晶、斜方晶、菱面体晶(図 4の 14に相当)のいずれ力と格子整 合する様子を示したものが図 4の Ba型である。
[0059] 例えば、六方晶の Zn〇基板(a = 3. 2427 A)と立方晶の Ptバッファ層(a = 3. 924 A)との糸且み合わせでは、 As = 3. 2427Aに対し、 Ab = 3. 924 X ^2 = 5. 549A であるから、 Asと Abの比 3 : 2で—7. 5%の格子ずれで格子整合することになる。
[0060] 立方晶、等軸晶、正方晶、等方体などの結晶構造に対しては、図 7に模式的に示 す C型の構造で結合する。図 7は、立方晶等からなる結晶格子 21上に、上記立方晶 の格子 22が結合している状態を示す。ここで、両者の格子定数 As及び Abは、図示 の通りとなる。
[0061] すなわち、立方晶、正方晶、等軸晶、等方体系材料力もなるバッファ層の場合には 、六方晶、三方晶もしくは斜方晶系材料力もなる基板に対しては、 Ba型で、立方晶、 正方晶、等軸晶、等方体系材料からなる基板に対しては、 C型で格子整合する。
[0062] そして、上記のような A型、 B型、 Ba型及び C型などの構造でバッファ層 3を構成す る材料と、基板 2を構成する材料とが格子結合している場合の上記格子定数 As及び Abの上述したずれ量が ± 16%以内とされた際に、バッファ層 3上に LiTaO膜また は LiNbO膜を CVDゃスパッタにより成膜した場合、 LiTaO膜や LiNbO膜が確実
3 3 3 にェピタキシャル膜として成膜されることが本願発明者により確かめられた。このよう な格子定数のずれ量が ± 16%の範囲内となる組み合わせを下記の表 8— 14に示す 。なお、表 8— 14におけるタイプとは、上述した A型、 Ba型、及び C型の各符号の構 造を示す。ノ ッファ層が Ptで薄膜が LiTaOの場合、表 8の関係をみればよい。
3
[0063] また、対基板の比率は、バッファ層を構成する材料の格子定数 Abを基板の格子定 数と整合させる比率を示し、例えば、 4 : 1の場合、 m=4, n= lとなり、 3 : 2の場合に は、 m= 3, n= 2となる。
[0064] なお、圧電膜として、(001)配向がよいと記載した力 LiTaO膜や LiNbO膜は圧
3 3 電乗数として、 e 以外に e 力 Sある。これは、 Y面で Y方向へ分極しても同じ効果を示
33 22
すことを表わしている。 Y面は(100)面あるいは(010)面、(110)面と等価である。
[0065] また、(001)と(00-1)は等価であり、 (111)と (-1-1-1)、 (11-1) , (-111) , (1 —11)、 (1-1-1)、(一 11—1)、 (一 1一 11)は等価な面である。
なお、この構造は、弾性表面波、バルタ波、弾性波等への応用も可能である。
[0066] [表 8]
0067
Figure imgf000021_0001
〔〕0068
Figure imgf000022_0001
〔〕〔0069
Figure imgf000023_0001
〔〕0070
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001

Claims

請求の範囲
[1] 基板と、
前記基板上に設けられており、導電性を有し、少なくとも 1軸配向されているバッフ ァ層と、
前記バッファ層上に形成されており、かつ(001) , (100) , (010) , (110)または( 111)配向の圧電単結晶薄膜とを備え、該圧電単結晶薄膜において、厚み方向に分 極されているメモリー領域が構成されており、該メモリー領域の分極方向に依存した 、電圧印加時の静電容量変化に基づいて、該分極方向が読み出される、誘電体メモ リー素子。
[2] 前記圧電単結晶薄膜が、比誘電率( ε τ / ε ) (i, j = l, 2, 3)が 20以上の圧電 ϋ 0
単結晶材料力 なる、請求項 1に記載の誘電体メモリー素子。
[3] 前記基板の a軸方向の格子定数を As、前記バッファ層の a軸方向の格子定数を Ab としたときに、 { 1_ (mAs/nAb) } X 100 (%)〔但し、 mと nは整数で(mAs/nAb)が
1に最も近くなるときの整数を示す。〕で表わされる格子定数のずれ量が ± 16%以内 である、請求項 1または 2に記載の誘電体メモリー素子。
[4] 前記圧電単結晶薄膜が、 LiTaO
3, LiNbOまたは KNbOからなる、請求項 1
3 3 一 3 のいずれか 1項に記載の誘電体メモリー素子。
[5] 前記バッファ層が、(001)配向の Zn〇膜を用いて構成されている、請求項 1一 4の レ、ずれか 1項に記載の誘電体メモリー素子。
[6] 前記 ZnO膜に、導電性材料がドープされている、請求項 5に記載の誘電体メモリー 素子。
[7] 前記バッファ層が、 A1N膜を用いて構成されている、請求項 1一 4のいずれ力 1項に 記載の誘電体メモリー素子。
[8] 前記 A1N膜に、 1価または 2価の不純物がドープされている、請求項 7に記載の誘 電体メモリー素子。
[9] 前記バッファ層が GaN膜を用いて構成されている請求項 1一 4のいずれ力 1項に記 載の誘電体メモリー素子。
[10] 前記バッファ層が、少なくとも 1軸配向の金属膜からなる、請求項 1一 4のいずれ力 1 項に記載の誘電体メモリー素子。
前記金属膜が、 Pt Au Al Ag Cr Ta, Ni, Cu, Mo, Fe, Mn W, AuCi^及 び Tiからなる群から選択された 1種の材料からなる、請求項 10に記載の誘電体メモリ 素子。
前記圧電単結晶薄膜に、複数の前記メモリ領域が構成されている、請求項 1 11 のいずれか 1項に記載の誘電体メモリー素子。
前記基板が下記の表 1 7中に記載の基板の内の 1種の基板である、請求項 1 1 2に記載のいずれ力からなる誘電体メモリー素子。
[表 1]
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
PCT/JP2004/010624 2003-11-07 2004-07-26 誘電体メモリー素子 WO2005045821A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515232A JP4802711B2 (ja) 2003-11-07 2004-07-26 誘電体メモリー素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-378678 2003-11-07
JP2003378678 2003-11-07

Publications (1)

Publication Number Publication Date
WO2005045821A1 true WO2005045821A1 (ja) 2005-05-19

Family

ID=34567189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010624 WO2005045821A1 (ja) 2003-11-07 2004-07-26 誘電体メモリー素子

Country Status (2)

Country Link
JP (1) JP4802711B2 (ja)
WO (1) WO2005045821A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073204A1 (fr) * 2007-12-21 2009-06-24 Commissariat à l'Energie Atomique Support de stockage de données et procédé associé
WO2022264426A1 (ja) * 2021-06-18 2022-12-22 日本電信電話株式会社 ニオブ酸リチウム結晶薄膜の成膜方法およびニオブ酸リチウム結晶薄膜を含む積層体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09198729A (ja) * 1995-11-17 1997-07-31 Tdk Corp 記録媒体およびその製造方法ならびに情報処理装置
JP2002323431A (ja) * 2001-02-26 2002-11-08 Seiko Instruments Inc 高次非線形誘電率を計測する走査型非線形誘電率顕微鏡

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227648A (ja) * 2003-01-22 2004-08-12 National Institute Of Advanced Industrial & Technology 光メモリ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09198729A (ja) * 1995-11-17 1997-07-31 Tdk Corp 記録媒体およびその製造方法ならびに情報処理装置
JP2002323431A (ja) * 2001-02-26 2002-11-08 Seiko Instruments Inc 高次非線形誘電率を計測する走査型非線形誘電率顕微鏡

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073204A1 (fr) * 2007-12-21 2009-06-24 Commissariat à l'Energie Atomique Support de stockage de données et procédé associé
FR2925748A1 (fr) * 2007-12-21 2009-06-26 Commissariat Energie Atomique Support de stockage de donnees et procede associe
US8445122B2 (en) 2007-12-21 2013-05-21 Commissariat A L 'energie Atomique Data storage medium and associated method
WO2022264426A1 (ja) * 2021-06-18 2022-12-22 日本電信電話株式会社 ニオブ酸リチウム結晶薄膜の成膜方法およびニオブ酸リチウム結晶薄膜を含む積層体

Also Published As

Publication number Publication date
JP4802711B2 (ja) 2011-10-26
JPWO2005045821A1 (ja) 2007-05-24

Similar Documents

Publication Publication Date Title
Trolier-McKinstry et al. Thin film piezoelectrics for MEMS
US6972510B2 (en) Array of ultrasound transducers
EP1054460B1 (en) Thin film piezoelectric device for acoustic resonators
EP1655789A1 (en) Domain controlled piezoelectric single crystal and fabrication method therefor
CN113574690A (zh) 膜结构体、压电体膜及超导体膜
EP1479796A2 (en) Piezoelectric single crystal device and fabrication method thereof
Aramaki et al. Demonstration of high-performance piezoelectric MEMS vibration energy harvester using BiFeO3 film with improved electromechanical coupling factor
US11831295B2 (en) Multifunctional integrated acoustic devices and systems using epitaxial materials
US20080284542A1 (en) Film bulk acoustic resonator
JP4613032B2 (ja) 圧電単結晶素子およびその製造方法
US6995497B2 (en) Film bulk acoustic resonator
JP2005136115A (ja) 電子デバイス及びその製造方法
JPH10270978A (ja) 表面弾性波素子及びその製造方法
JP2005056940A (ja) 電子デバイス用基板、電子デバイスおよびそれらの製造方法
JP2005252069A (ja) 電子デバイス及びその製造方法
TW449757B (en) Piezoelectric device
WO2005045821A1 (ja) 誘電体メモリー素子
JP7463757B2 (ja) 磁気電気変換素子
JP2007242788A (ja) 圧電薄膜素子
Trolier-McKinstry et al. Thin film piezoelectrics for MEMS
WO2024157830A1 (ja) 圧電膜作製方法、該方法により作製される圧電膜および圧電デバイス
Wittstruck et al. Properties of transducers and substrates for high frequency resonators and sensors
WO2022145059A1 (ja) 膜構造体及び電子デバイス
CN113346866B (zh) 基于高结晶度掺杂压电薄膜的声波谐振器及其制备方法
TWI765612B (zh) 層疊體、使用了該層疊體的壓電器件、層疊體的製造方法以及壓電器件的製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515232

Country of ref document: JP

122 Ep: pct application non-entry in european phase