WO2005043778A1 - 指向性アンテナ装置 - Google Patents

指向性アンテナ装置 Download PDF

Info

Publication number
WO2005043778A1
WO2005043778A1 PCT/JP2004/015848 JP2004015848W WO2005043778A1 WO 2005043778 A1 WO2005043778 A1 WO 2005043778A1 JP 2004015848 W JP2004015848 W JP 2004015848W WO 2005043778 A1 WO2005043778 A1 WO 2005043778A1
Authority
WO
WIPO (PCT)
Prior art keywords
directional
antenna
antennas
radio wave
antenna device
Prior art date
Application number
PCT/JP2004/015848
Other languages
English (en)
French (fr)
Inventor
Toshio Miura
Original Assignee
Shinnihonhelicopter Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinnihonhelicopter Co., Ltd. filed Critical Shinnihonhelicopter Co., Ltd.
Priority to US10/576,109 priority Critical patent/US20070057845A1/en
Publication of WO2005043778A1 publication Critical patent/WO2005043778A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a directional antenna device used for mobile communication, and more particularly to a technique for reducing the effects of noise and strong electric fields at nearby frequencies when transmitting / receiving microwave band radio waves.
  • This mobile communication is a low-power (microwave radio wave) communication system that satisfies the conditions recognized as a radio station without having to obtain a license stipulated in Article 4 of the Radio Law.
  • a radio wave in the microwave band to which the power of a communication device (communication unit) provided in a movable body (mobile station) is transmitted also receives a low-power radio wave, and thus usually has directivity.
  • the signal is received or transmitted by the antenna unit (for example, a planar antenna).
  • the antenna unit having directivity is provided on a fixed body (base station) fixed at a predetermined position.
  • the antenna unit having directivity has a direction in which transmission and reception of radio waves are good and a direction in which transmission and reception of radio waves are defective. Therefore, from the viewpoint of the receiving fixed body, in mobile communication, transmission / reception of radio waves does not always have a favorable direction. Therefore, only weak radio waves can be transmitted and received, and if there is an interfering wave (noise) at a nearby frequency, stable transmission and reception in a strong electric field region is difficult. There was a problem.
  • An object of the present invention is to provide a directional antenna apparatus capable of performing stable transmission and reception without being affected by the relative positional relationship between a mobile body and a fixed body in transmission and reception in mobile communication. Is what you do.
  • the present invention is directed to a directional antenna device. Configuration.
  • the directional antenna device of the present invention has a directivity provided in a fixed body that fixes a microwave band radio wave transmitted from a communication unit provided in a movable mobile body at a predetermined position.
  • a directional antenna device receiving by an antenna unit receiving by an antenna unit,
  • the antenna unit includes a plurality of directional antennas arranged in directions having different directivities
  • a reception selecting unit that selects one of the directional antennas arranged in a transmission direction in which the radio wave reaches the fixed body from among the plurality of directional antennas and receives the radio wave;
  • a plurality of directional antennas are provided in directions having different directivities, and one of the directional antennas arranged in a transmission direction in which radio waves reach a fixed body is selected. Since the radio wave is received, stable transmission / reception is possible regardless of the relative positional relationship between the moving body and the fixed body.
  • each of the directional antennas has a directional characteristic including a predetermined region
  • the reception selecting unit selects one of the directional antennas that most strongly receives the radio wave in the directional characteristic region.
  • the switching of the directional antenna performed by the reception selection unit is performed by using the antenna receiving the strongest radio wave in the directional characteristic region. It is always selected as one antenna that receives the strongest radio wave even at the border.
  • the antenna unit may include a plurality of directional antennas arranged radially with their antenna tips facing outward, and the respective axes of the plurality of directional antennas may be aligned.
  • the directional antennas are arranged at predetermined angles in three-dimensionally different directions when viewed from the base points.
  • the directional antennas are arranged at predetermined angles in three-dimensionally different directions, the same space is arranged at predetermined angles so that the same space is provided. Communication becomes possible without mutual radio interference. Also, the best antenna can be selected at the time of transmission and reception between the mutual antennas.
  • a configuration in which the predetermined angle is 45 ° on a horizontal plane with respect to the ground can also be exemplified. Further, a configuration in which the predetermined angle is 45 ° on a plane perpendicular to the ground can also be exemplified. Further, a configuration in which the predetermined angle is 45 ° on a horizontal plane to the ground and a vertical plane to the ground can also be exemplified.
  • the directional antenna device of the present invention capable of performing stable transmission and reception without being affected by the relative positional relationship between the mobile object and the fixed object in transmission and reception in mobile communication. Can be provided.
  • FIG. 1 is a schematic diagram of a directional antenna device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a directional antenna device according to an embodiment of the present invention.
  • FIG. 3 is an external perspective view of the directional antenna device according to the first embodiment.
  • FIG. 4 is a plan view of the directional antenna device according to the first embodiment.
  • FIG. 5 is an external perspective view of a directional antenna device according to a second embodiment.
  • FIG. 6 is a plan view of a directional antenna device according to a second embodiment.
  • FIG. 7 is an external perspective view of a directional antenna device according to a third embodiment.
  • FIG. 8 is a plan view of a directional antenna device according to a third embodiment.
  • FIG. 9 is a side view of a directional antenna device according to a fourth embodiment.
  • FIG. 10 is an external perspective view of a directional antenna device according to a fifth embodiment.
  • the directional antenna device is provided on a fixed body 3 fixed at a predetermined position, as shown in FIG.
  • the directional antenna device includes a polyhedral case 40 formed of a top surface 41, a ground slope 42, a ground plane 43, an underground slope 44, and a bottom surface 45, and an antenna unit 4 housed in the case 40.
  • the antenna unit 4 includes a plurality of directional antennas (planar antennas) 6 arranged in directions having different directivities.
  • the planar antenna 6 has The polyhedrons forming the case 40 are arranged in different directions on the respective faces. For example, one at the top surface 41 side, six at equal intervals on the ground slope 42 side, eight at equal intervals on the ground surface 43 side, and six at equal intervals on the underground slope 44 side.
  • Each of the 21 tubes is arranged in a different direction.
  • one of the 21 planar antennas 6 transmits and receives radio waves in mobile communication with the communication unit 2 provided in the movable mobile unit 1.
  • the radio wave in the mobile communication is a low-power microwave band radio wave.
  • the antenna section 4 includes one directional antenna 6 of the 21 planar antennas 6 arranged in the transmission direction in which the radio wave transmitted from the communication section 2 reaches the fixed body 3.
  • a reception selection unit for selecting and receiving the radio wave is provided.
  • the reception selecting section includes a plurality of access points 5a-5u and a network hub 7 connected to the access points 5a-5u.
  • the network hub 7 selects one planar antenna (for example, 6b) that has received the strongest radio wave and its access point (for example, 5b) from the 21 planar antennas 6a to 6u, and Only the antenna 6b and its access point 5b are connected, and the other planar antennas 6a-6u and their access points 5a-5u are controlled to be disconnected.
  • the directional antenna device is provided with a plurality of directional antennas 6a to 6u in directions having different directivities, and the directional antenna is arranged in a transmission direction in which radio waves reach a fixed body. Since one (for example, 6b) is selected to receive radio waves, stable transmission and reception can be performed regardless of the relative positional relationship between the mobile unit 1 and the fixed unit 3.
  • the directional antenna device receives the strongest radio wave that switches the directional antennas 6a to 6u performed by the reception selection unit within the directional characteristic region.
  • the antenna is selected as one antenna that receives the radio wave, which is always the strongest near the boundary of the radio wave and at the boundary.
  • planar antenna 61 is selected from three directional antennas (planar antennas) 61 will be described with reference to FIGS. I will tell.
  • the antenna section 4A has three planar antennas 61 arranged radially as shown in the plan view of FIG. Assuming that an intersection point of the respective axes intersects as a base point P, the respective planar antennas 61 are arranged at different angles (for example, 45 °) in different directions on a horizontal plane with respect to the ground as viewed from the base point P.
  • the antenna section 4A includes a polyhedral case 40A formed of a fan-shaped top surface 41A, a ground plane 43A, and a bottom surface 45A. It has an antenna part 4A housed inside.
  • the three planar antennas 61 are arranged such that their antenna tips are on the ground plane 43A of the polyhedron forming the case 40A.
  • the planar antenna 61 has a designated characteristic of a predetermined area (for example, a three-dimensional 45 ° width) E.
  • This specified characteristic is an area where radio waves transmitted from the communication unit 2 (see FIG. 1) can be received.
  • the reception selecting unit selects one of the three planar antennas 61 having the specified characteristic that has received the strongest radio wave.
  • the antenna unit 4A detects a radio wave in the designated area E, and the reception selecting unit (network hub 7) receives one of the three planar antennas 61 that has received the strongest radio wave.
  • the planar antenna 61 is selected, only this planar antenna 61 is connected, and the other planar antennas 61 are disconnected from each other.
  • reference numeral 62 denotes a transmitting / receiving amplifier and an access point for amplifying radio waves.
  • the directional antennas are arranged at predetermined angles in three different directions, they can communicate with each other without radio interference to share the same space. Becomes possible. Also, the best antenna can be selected at the time of transmission and reception between the mutual antennas.
  • planar antenna 61 is selected from five directional antennas (planar antennas) 61 in the directional antenna device of the present invention.
  • the antenna unit 4B has five planar antennas 61 arranged radially. Assuming that an intersection point of the respective axes intersects as a base point P, the respective planar antennas 61 are arranged at different angles (for example, 45 °) in different directions on a horizontal plane with respect to the ground as viewed from the base point P.
  • the antenna unit 4B includes a polyhedron case 40B formed of a semicircular top surface 41B, a ground plane 43B, and a bottom surface 45B. And an antenna section 4B housed in the case 40B.
  • the five planar antennas 61 are arranged such that the tip ends of the antennas are on the ground plane 43B of the polyhedron forming the case 4OB.
  • the planar antenna 61 has a designated characteristic consisting of a predetermined area (for example, a three-dimensional 45 ° width) E.
  • This specified characteristic is an area where radio waves transmitted from the communication unit 2 (see FIG. 1) can be received.
  • the reception selecting unit selects one of the five flat antennas 61 having the specified characteristic of receiving the strongest radio wave among the specified characteristics of the five flat antennas 61.
  • the antenna unit 4B detects a radio wave in the designated area E, and a reception selection unit (for example, a network hub) receives one of the five planar antennas 61 that has received the strongest radio wave. Is selected, only this planar antenna 61 is connected, and the other planar antennas 61 are controlled to be disconnected.
  • a reception selection unit for example, a network hub
  • reference numeral 62 denotes a transmitting / receiving amplifier for amplifying radio waves and an access point.
  • the directional antennas are arranged at predetermined angles in five different directions, they can communicate with each other without radio interference to share the same space. Becomes possible. Also, the best antenna can be selected at the time of transmission and reception between the mutual antennas.
  • planar antenna 61 is selected from eight directional antennas (planar antennas) 61 in the directional antenna device of the present invention will be described with reference to FIGS. I will tell.
  • the antenna unit 4C includes eight planar antennas 61 arranged radially. Assuming that an intersection point of the respective axes intersects as a base point P, the respective planar antennas 61 are arranged at different angles (for example, 45 °) in different directions on a horizontal plane with respect to the ground as viewed from the base point P.
  • the antenna unit 4C includes a circular top surface 41C, a ground plane 43C, and a bottom surface 45C. And an antenna unit 4C housed inside.
  • the eight planar antennas 61 are disposed with their antenna tips on the ground plane 43C of the polyhedron forming the case 40C.
  • the planar antenna 61 has a designated characteristic consisting of a predetermined area (for example, a three-dimensional 45 ° width) E.
  • This specified characteristic is an area where radio waves transmitted from the communication unit 2 (see FIG. 1) can be received.
  • the reception selection unit selects one of the eight planar antennas 61 having the specified characteristic of receiving the strongest radio wave among the specified characteristics of the eight planar antennas 61.
  • the antenna unit 4C detects a radio wave in the designated area E, and a reception selection unit (for example, a network hub) receives one of the eight planar antennas 61 that has received the strongest radio wave. Is selected, only this planar antenna 61 is connected, and the other planar antennas 61 are controlled to be disconnected.
  • a reception selection unit for example, a network hub
  • reference numeral 62 denotes a transmitting / receiving amplifier for amplifying a radio wave and an access point.
  • the directional antennas are arranged at predetermined angles in eight different directions, they can communicate with each other without radio wave interference to share the same space. Becomes possible. Also, the best antenna can be selected at the time of transmission and reception between the mutual antennas.
  • the antenna unit 4D has nine planar antennas 61 arranged radially. Assuming that the intersection point of the respective axes intersects as the base point P, one flat antenna 61 is located on the vertical side to the ground, three are located at equal intervals on the slope side and the ground side is viewed from the base point P. There are three at equal intervals and two at equal intervals on the underground slope side, a total of nine, each of which is oriented in different directions.
  • the planar antenna 61 has a designated characteristic consisting of a predetermined area (for example, a three-dimensional 45 ° width) E.
  • This specified characteristic is an area where radio waves transmitted from the communication unit 2 (see FIG. 1) can be received.
  • the reception selecting unit selects one of the nine planar antennas 61 having the designated characteristic of receiving the strongest radio wave, out of the designated characteristics of the nine plane antennas 61.
  • the antenna unit 4D detects a radio wave in the designated area E, and a reception selecting unit (for example, a network hub) receives one of the nine planar antennas 61 that has received the strongest radio wave. Is selected, only this planar antenna 61 is connected, and the other planar antennas 61 are controlled to be disconnected.
  • a reception selecting unit for example, a network hub
  • reference numeral 62 denotes a transmitting / receiving amplifier for amplifying radio waves and an access point.
  • the respective directional antennas are arranged at nine different three-dimensional directions at predetermined angles, they communicate without radio wave interference to share the same space. It becomes possible.
  • the best antenna can be selected at the time of transmission and reception between mutual antennas.
  • planar antenna 61 is selected from 21 directional antennas (planar antennas) 61 in the directional antenna device of the present invention.
  • the antenna unit 4E has 21 planar antennas 61 arranged radially.
  • one flat antenna 61 is provided on the vertical side to the ground and six at equal intervals on the slope side above the ground, as viewed from the base point.
  • the antenna section 4E includes a substantially spherical polyhedral case 40E formed from a top surface 41E, a ground slope 42E, a ground surface 43E, a ground slope 44E, and a bottom surface 45E. And an antenna section 4E housed in the case 40E.
  • the planar antenna 61 has a designated characteristic of a predetermined region (for example, a three-dimensional 45 ° width).
  • This specified characteristic is an area where the radio wave transmitted from the communication unit 2 (see FIG. 1) can be received.
  • the reception selection unit selects one planar antenna 61 having the specified characteristic that received the strongest radio wave among the specified characteristics of the 21 plane antennas 61.
  • the antenna unit 4E detects a radio wave in the designated area, and the reception selection unit (for example, a network hub) receives one of the 21 planar antennas 61 that received the strongest radio wave. Is selected, only this planar antenna 61 is connected, and the other planar antennas 61 are controlled to be disconnected.
  • the reception selection unit for example, a network hub
  • the respective directional antennas are arranged at predetermined angles in 21 different three-dimensional directions, they communicate without radio wave interference to share the same space. It becomes possible.
  • the best antenna can be selected at the time of transmission and reception between mutual antennas.
  • the present invention can be used for an antenna device having directivity used for mobile communication such as an automobile, an airplane, and a helicopter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 移動可能な移動体に設けられた通信部から送信されたマイクロ波帯の電波を、所定位置に固定した固定体に設けられた指向性を有するアンテナ部で受信する指向性アンテナ装置である。アンテナ部は、それぞれ指向性が異なる方向に向けて配設された複数の指向性アンテナと、複数の指向性アンテナのうち、電波が固定体に到達する送信方向に向いて配設された指向性アンテナを1つ選択して電波を受信する受信選択部とを備えている。これにより、移動体通信における送受信が、移動体と固定体との相対的な位置関係に影響を受けることなく、安定した送受信が可能な指向性アンテナ装置を提供することができる。

Description

明 細 書
指向性アンテナ装置
技術分野
[0001] 本発明は、移動体通信に用いる指向性を有するアンテナ装置に関し、特にマイクロ 波帯の電波の送受信に際して近傍周波数におけるノイズや強電界の影響を低減す るための技術に関する。
背景技術
[0002] 送信'受信のいずれか、あるいは双方が移動しながら通信する移動体通信が近来 、急速に発達してきている。この移動体通信は、電波法第 4条に規定された免許を受 ける必要のな 、無線局として認められる条件を満たした小電力(マイクロ波帯の電波 )の通信システムである。例えば、移動可能な移動体 (移動局)に設けられた通信装 置 (通信部)力も送信されたマイクロ波帯の電波は、小電力の電波を受信することから 、通常は、指向性を有するアンテナ部(例えば、平面アンテナ)で受信し、あるいは転 送している。なお、指向性を有するアンテナ部は、所定位置に固定した固定体 (基地 局)に設けられている。
[0003] ところで、指向性を有するアンテナ部は、電波の送受信が良好な向きと、電波の送 受信が不良となる向きとが存在する。従って、受信する固定体側から見れば、移動体 通信では、常に電波の送受信が良好な向き力も来るとは限らない。そこで、送受信が 不良となる向き力 送信される電波は、弱い電波しか送受信できず、近傍周波数の 妨害波 (雑音)が存在する場合は、強電界域では安定した送受信が難し 、と!、う問題 があった。
発明の開示
発明が解決しょうとする課題
[0004] 本発明の課題は、移動体通信における送受信が、移動体と固定体との相対的な位 置関係に影響を受けることなぐ安定した送受信が可能な指向性アンテナ装置を提 供しょうとするものである。
[0005] 本発明は指向性アンテナ装置であり、前述の技術的課題を解決すべく以下のよう な構成とされている。
[0006] 本発明の指向性アンテナ装置は、移動可能な移動体に設けられた通信部から送 信されたマイクロ波帯の電波を、所定位置に固定した固定体に設けられた指向性を 有するアンテナ部で受信する指向性アンテナ装置において、
前記アンテナ部は、それぞれ指向性が異なる方向に向けて配設された複数の指向 性アンテナと、
複数の指向性アンテナのうち、前記電波が前記固定体に到達する送信方向に向 いて配設された前記指向性アンテナを 1つ選択して前記電波を受信する受信選択部 と、
を備えたことを特徴とする。
[0007] 本発明によれば、指向性が異なる方向に向けて指向性アンテナが複数設けられ、 電波が固定体に到達する送信方向に向いて配設された前記指向性アンテナを 1つ 選択して電波を受信するので、移動体と固定体との相対的な位置関係とは関係なく 、安定した送受信が可能となる。
[0008] また、本発明の指向性アンテナ装置において、前記指向性アンテナは、それぞれ 所定の領域からなる指向特性を有し、
前記受信選択部は、最も強 、前記電波を前記指向特性の領域内で受信した前記 指向性アンテナを 1つ選択することを特徴とする。
[0009] 本発明によれば、上述の作用効果に加えて、受信選択部が行う指向性アンテナの 切り替えを最も強い電波を指向特性の領域内で受信したアンテナとするため、電波 の強度の近い境目でも必ず最も強い電波を受信する 1本のアンテナに選択される。
[0010] 更に、本発明の指向性アンテナ装置において、前記アンテナ部は、複数の指向性 アンテナがそのアンテナ先端を外部に向けて放射状に配置されており、複数の指向 性アンテナのそれぞれの軸線が交差する交点を基点としたとき、前記基点から見て それぞれの指向性アンテナが三次元の異なる方向で所定角度毎に配設されている ことを特徴とする。
[0011] 本発明によれば、それぞれの指向性アンテナが三次元の異なる方向で所定角度 毎に配設されて ヽる構成により、同じ空間を所定角度毎に配設されて ヽるために相 互で電波干渉することなく通信することが可能となる。また、相互のアンテナ間におけ る送受信時に最良アンテナを選定することができる。
[0012] 更にまた、本発明の指向性アンテナ装置において、前記所定角度が対地水平面 上において 45° である構成のものも例示できる。また、前記所定角度が対地垂直平 面上において 45° である構成のものも例示できる。更には、前記所定角度が対地水 平面上及び対地垂直平面上にお!、て 45° である構成のものも例示できる。
[0013] 本発明の指向性アンテナ装置によれば、移動体通信における送受信が、移動体と 固定体との相対的な位置関係に影響を受けることなぐ安定した送受信が可能な指 向性アンテナ装置を提供できる。
図面の簡単な説明
[0014] [図 1]本発明の実施形態に係る指向性アンテナ装置の概略図である。
[図 2]本発明の実施形態に係る指向性アンテナ装置のブロック図である。
[図 3]実施例 1に係る指向性アンテナ装置の外形斜視図である。
[図 4]実施例 1に係る指向性アンテナ装置の平面図である。
[図 5]実施例 2に係る指向性アンテナ装置の外形斜視図である。
[図 6]実施例 2に係る指向性アンテナ装置の平面図である。
[図 7]実施例 3に係る指向性アンテナ装置の外形斜視図である。
[図 8]実施例 3に係る指向性アンテナ装置の平面図である。
[図 9]実施例 4に係る指向性アンテナ装置の側面図である。
[図 10]実施例 5に係る指向性アンテナ装置の外形斜視図である。
発明を実施するための最良の形態
[0015] 以下、本発明の最良な実施の形態について、図面を参照して説明する。
この実施の形態に係る指向アンテナ装置は、図 1に示すように、所定位置に固定し た固定体 3に設けられている。また、指向アンテナ装置は、頂面 41、対地上斜面 42、 対地平面 43、対地下斜面 44,底面 45から形成される多面体のケース 40と、このケ ース 40内に収納されるアンテナ部 4とを備えている。
[0016] アンテナ部 4は、それぞれ指向性が異なる方向に向けて配設された複数の指向性 アンテナ(平面アンテナ) 6を備えている。平面アンテナ 6は、そのアンテナ先端部が ケース 40を形成する多面体のそれぞれの面に異なる方向に向けて配置されている。 例えば、頂面 41側には 1本、対地上斜面 42側には等間隔に 6本、対地平面 43側に は等間隔に 8本、対地下斜面 44側には等間隔に 6本、計 21本それぞれ指向性が異 なる方向に向けて配設されて 、る。
[0017] そして、アンテナ部 4では、 21本のうち何れ力 1本の平面アンテナ 6が、移動可能な 移動体 1に設けられた通信部 2との間で、移動体通信における電波の送受信を行う。 なお、移動体通信における電波は、小電力のマイクロ波帯の電波である。
[0018] また、アンテナ部 4は、 21本の平面アンテナ 6のうち、通信部 2から送信された電波 が固定体 3に到達する送信方向に向いて配設された指向性アンテナ 6を 1つ選択し て前記電波を受信する受信選択部を備えている。この受信選択部は、図 2に示すよう に、複数のアクセスポイント 5a— 5uと、このアクセスポイント 5a— 5uに接続するネット ワークハブ 7とを備えている。そして、ネットワークハブ 7は、 21本の平面アンテナ 6a 一 6uのうち、最も強い電波を受信した 1本の平面アンテナ(例えば、 6b)及びそのァ クセスポイント(例えば、 5b)を選択し、この平面アンテナ 6b及びそのアクセスポイント 5bとのみ接続し、他の平面アンテナ 6a— 6u及びそれらのアクセスポイント 5a— 5uと は、断線状態とする制御を行う。
[0019] 次に、この実施の形態に係る指向アンテナ装置の作用効果を説明する。
この実施の形態に係る指向アンテナ装置は、指向性が異なる方向に向けて指向性 アンテナ 6a— 6uが複数設けられ、電波が固定体に到達する送信方向に向いて配設 された前記指向性アンテナ(例えば、 6b)を 1つ選択して電波を受信するので、移動 体 1と固定体 3との相対的な位置関係とは関係なぐ安定した送受信が可能となる。
[0020] また、この実施の形態に係る指向アンテナ装置は、上述の作用効果に加えて、受 信選択部が行う指向性アンテナ 6a— 6uの切り替えを最も強い電波を指向特性の領 域内で受信したアンテナとするため、電波の強度の近 、境目でも必ず最も強 、電波 を受信する 1本のアンテナに選択される。
[0021] [実施例 1]
次に、本発明の指向アンテナ装置において、 3本の指向性アンテナ(平面アンテナ ) 61から 1本の平面アンテナ 61を選択する場合の実施例 1を図 3及び図 4に基づき説 明する。
[0022] この実施例 1の指向アンテナ装置において、アンテナ部 4Aは、図 4の平面図に示 すように、 3本の平面アンテナ 61が放射状に配置されており、 3本の平面アンテナ 61 のそれぞれの軸線が交差する交点を基点 Pとしたとき、基点 Pから見てそれぞれの平 面アンテナ 61が対地水平面上において異なる方向で所定角度 (例えば、 45° )毎 に配設されている。
[0023] この実施例 1の指向アンテナ装置において、アンテナ部 4Aは、図 3に示すように、 扇形の頂面 41A、対地平面 43A、底面 45Aから形成される多面体のケース 40Aと、 このケース 40A内に収納されるアンテナ部 4Aとを備えて 、る。
[0024] アンテナ部 4Aにおいて、 3本の平面アンテナ 61は、そのアンテナ先端部がケース 40Aを形成する多面体の対地平面 43Aに配置されている。
[0025] ところで、平面アンテナ 61は、所定領域 (例えば、三次元 45° 幅) Eからなる指定 特性を有している。この指定特性は、通信部 2 (図 1参照)から送信された電波を受信 可能とする領域である。なお、受信選択部は、 3本の平面アンテナ 61の指定特性うち 、最も強い電波を受信した指定特性を有する平面アンテナ 61を 1本選択する。
[0026] そして、アンテナ部 4Aでは、前記指定領域 E内で電波を検出し、受信選択部 (ネッ トワークハブ 7)により、 3本の平面アンテナ 61のうち、最も強い電波を受信した 1本の 平面アンテナ 61を選択し、この平面アンテナ 61のみ接続し、他の平面アンテナ 61と は、断線状態とする制御を行う。
[0027] なお、図 4において、 62は電波を増幅する送受アンプおよびアクセスポイントを示 す。
[0028] この実施例 1によれば、それぞれの指向性アンテナが異なる 3方向で所定角度毎に 配設されているので、同じ空間を共有するために相互で電波干渉することなく通信す ることが可能となる。また、相互のアンテナ間における送受信時に最良アンテナを選 定することができる。
[0029] [実施例 2]
次に、本発明の指向アンテナ装置において、 5本の指向性アンテナ(平面アンテナ ) 61から 1本の平面アンテナ 61を選択する場合の実施例 2を図 5及び図 6に基づき説 明する。
[0030] この実施例 2の指向アンテナ装置において、アンテナ部 4Bは、図 6の平面図に示 すように、 5本の平面アンテナ 61が放射状に配置されており、 5本の平面アンテナ 61 のそれぞれの軸線が交差する交点を基点 Pとしたとき、基点 Pから見てそれぞれの平 面アンテナ 61が対地水平面上において異なる方向で所定角度 (例えば、 45° )毎 に配設されている。
[0031] この実施例 2の指向アンテナ装置において、アンテナ部 4Bは、図 5に示すように、 半円径の頂面 41B、対地平面 43B、底面 45Bから形成される多面体のケース 40Bと 、このケース 40B内に収納されるアンテナ部 4Bとを備えている。
[0032] アンテナ部 4Bにおいて、 5本の平面アンテナ 61は、そのアンテナ先端部がケース 4 OBを形成する多面体の対地平面 43Bに配置されている。
ところで、平面アンテナ 61は、所定領域 (例えば、三次元 45° 幅) Eからなる指定 特性を有している。この指定特性は、通信部 2 (図 1参照)から送信された電波を受信 可能とする領域である。なお、受信選択部は、 5本の平面アンテナ 61の指定特性うち 、最も強い電波を受信した指定特性を有する平面アンテナ 61を 1本選択する。
[0033] そして、アンテナ部 4Bでは、前記指定領域 E内で電波を検出し、受信選択部(例え ば、ネットワークハブ)により、 5本の平面アンテナ 61のうち、最も強い電波を受信した 1本の平面アンテナ 61を選択し、この平面アンテナ 61のみ接続し、他の平面アンテ ナ 61とは、断線状態とする制御を行う。
なお、図 5及び図 6において、 62は電波を増幅する送受アンプおよびアクセスポィ ントを示す。
[0034] この実施例 2によれば、それぞれの指向性アンテナが異なる 5方向で所定角度毎に 配設されているので、同じ空間を共有するために相互で電波干渉することなく通信す ることが可能となる。また、相互のアンテナ間における送受信時に最良アンテナを選 定することができる。
[0035] [実施例 3]
次に、本発明の指向アンテナ装置において、 8本の指向性アンテナ(平面アンテナ ) 61から 1本の平面アンテナ 61を選択する場合の実施例 3を図 7及び図 8に基づき説 明する。
[0036] この実施例 3の指向アンテナ装置において、アンテナ部 4Cは、図 8の平面図に示 すように、 8本の平面アンテナ 61が放射状に配置されており、 8本の平面アンテナ 61 のそれぞれの軸線が交差する交点を基点 Pとしたとき、基点 Pから見てそれぞれの平 面アンテナ 61が対地水平面上において異なる方向で所定角度 (例えば、 45° )毎 に配設されている。
[0037] この実施例 3の指向アンテナ装置において、アンテナ部 4Cは、図 7に示すように、 円形の頂面 41C、対地平面 43C、底面 45C力 形成される多面体のケース 40Cと、 このケース 40C内に収納されるアンテナ部 4Cとを備えている。
[0038] アンテナ部 4Cにおいて、 8本の平面アンテナ 61は、そのアンテナ先端部がケース 40Cを形成する多面体の対地平面 43Cに配置されている。
[0039] ところで、平面アンテナ 61は、所定領域 (例えば、三次元 45° 幅) Eからなる指定 特性を有している。この指定特性は、通信部 2 (図 1参照)から送信された電波を受信 可能とする領域である。なお、受信選択部は、 8本の平面アンテナ 61の指定特性うち 、最も強い電波を受信した指定特性を有する平面アンテナ 61を 1本選択する。
[0040] そして、アンテナ部 4Cでは、前記指定領域 E内で電波を検出し、受信選択部(例え ば、ネットワークハブ)により、 8本の平面アンテナ 61のうち、最も強い電波を受信した 1本の平面アンテナ 61を選択し、この平面アンテナ 61のみ接続し、他の平面アンテ ナ 61とは、断線状態とする制御を行う。
[0041] なお、図 7及び図 8において、 62は電波を増幅する送受アンプおよびアクセスポィ ントを示す。
[0042] この実施例 3によれば、それぞれの指向性アンテナが異なる 8方向で所定角度毎に 配設されているので、同じ空間を共有するために相互で電波干渉することなく通信す ることが可能となる。また、相互のアンテナ間における送受信時に最良アンテナを選 定することができる。
[0043] [実施例 4]
次に、本発明の指向アンテナ装置において、 9本の指向性アンテナ(平面アンテナ ) 61から 1本の平面アンテナ 61を選択する場合の実施例 4を図 9に基づき説明する。 [0044] この実施例 4の指向アンテナ装置において、アンテナ部 4Dは、図 8の側面図に示 すように、 9本の平面アンテナ 61が放射状に配置されており、 9本の平面アンテナ 61 のそれぞれの軸線が交差する交点を基点 Pとしたとき、基点 Pから見てそれぞれの平 面アンテナ 61が対地垂直側には 1本、対地上斜面側には等間隔に 3本、対地平面 側には等間隔に 3本、対地下斜面側には等間隔に 2本、計 9本それぞれ指向性が異 なる方向に向けて配設されて 、る。
[0045] ところで、平面アンテナ 61は、所定領域 (例えば、三次元 45° 幅) Eからなる指定 特性を有している。この指定特性は、通信部 2 (図 1参照)から送信された電波を受信 可能とする領域である。なお、受信選択部は、 9本の平面アンテナ 61の指定特性うち 、最も強い電波を受信した指定特性を有する平面アンテナ 61を 1本選択する。
[0046] そして、アンテナ部 4Dでは、前記指定領域 E内で電波を検出し、受信選択部(例え ば、ネットワークハブ)により、 9本の平面アンテナ 61のうち、最も強い電波を受信した 1本の平面アンテナ 61を選択し、この平面アンテナ 61のみ接続し、他の平面アンテ ナ 61とは、断線状態とする制御を行う。
[0047] なお、図 9において、 62は電波を増幅する送受アンプおよびアクセスポイントを示 す。
[0048] この実施例 4によれば、それぞれの指向性アンテナが異なる三次元 9方向で所定 角度毎に配設されているので、同じ空間を共有するために相互で電波干渉すること なく通信することが可能となる。また、相互のアンテナ間における送受信時に最良ァ ンテナを選定することができる。
[0049] [実施例 5]
次に、本発明の指向アンテナ装置において、 21本の指向性アンテナ(平面アンテ ナ) 61から 1本の平面アンテナ 61を選択する場合の実施例 5を図 10に基づき説明す る。
[0050] この実施例 5の指向アンテナ装置において、アンテナ部 4Eは、図 10の斜視図に示 すように、 21本の平面アンテナ 61が放射状に配置されており、 21本の平面アンテナ 61のそれぞれの軸線が交差する交点を基点としたとき、基点から見てそれぞれの平 面アンテナ 61が対地垂直側には 1本、対地上斜面側には等間隔に 6本、対地平面 側には等間隔に 8本、対地下斜面側には等間隔に 6本、計 21本それぞれ指向性が 異なる方向に向けて配設されて 、る。
[0051] この実施例 5の指向アンテナ装置において、アンテナ部 4Eは、頂面 41E、対地上 斜面 42E、対地平面 43E、対地下斜面 44E、底面 45Eから形成される略球形の多 面体のケース 40Eと、このケース 40E内に収納されるアンテナ部 4Eとを備えている。
[0052] ところで、平面アンテナ 61は、所定領域 (例えば、三次元 45° 幅)からなる指定特 性を有している。この指定特性は、通信部 2 (図 1参照)から送信された電波を受信可 能とする領域である。なお、受信選択部は、 21本の平面アンテナ 61の指定特性うち 、最も強い電波を受信した指定特性を有する平面アンテナ 61を 1本選択する。
[0053] そして、アンテナ部 4Eでは、前記指定領域内で電波を検出し、受信選択部(例え ば、ネットワークハブ)により、 21本の平面アンテナ 61のうち、最も強い電波を受信し た 1本の平面アンテナ 61を選択し、この平面アンテナ 61のみ接続し、他の平面アン テナ 61とは、断線状態とする制御を行う。
[0054] この実施例 5によれば、それぞれの指向性アンテナが異なる三次元 21方向で所定 角度毎に配設されているので、同じ空間を共有するために相互で電波干渉すること なく通信することが可能となる。また、相互のアンテナ間における送受信時に最良ァ ンテナを選定することができる。
[0055] なお、本発明は、上述の実施形態にのみ限定されるものではなぐ本発明の要旨を 逸脱しな 、範囲内にお 、て種々変更をカ卩ぇ得ることは勿論である。
産業上の利用可能性
[0056] 本発明は、自動車、飛行機、ヘリコプターなどの移動体通信に用いる指向性を有 するアンテナ装置に利用できる。

Claims

請求の範囲
[1] 移動可能な移動体に設けられた通信部力 送信されたマイクロ波帯の電波を、所 定位置に固定した固定体に設けられた指向性を有するアンテナ部で受信する指向 性アンテナ装置において、
前記アンテナ部は、それぞれ指向性が異なる方向に向けて配設された複数の指向 性アンテナと、
複数の指向性アンテナのうち、前記電波が前記固定体に到達する送信方向に向 いて配設された前記指向性アンテナを 1つ選択して前記電波を受信する受信選択部 と、
を備えたことを特徴とする指向性アンテナ装置。
[2] 前記指向性アンテナは、それぞれ所定の領域からなる指向特性を有し、
前記受信選択部は、最も強 、前記電波を前記指向特性の領域内で受信した前記 指向性アンテナを 1つ選択することを特徴とする請求項 1に記載の指向性アンテナ装 置。
[3] 前記アンテナ部は、複数の指向性アンテナがそのアンテナ先端を外部に向けて放 射状に配置されており、複数の指向性アンテナのそれぞれの軸線が交差する交点を 基点としたとき、前記基点力も見てそれぞれの指向性アンテナが三次元の異なる方 向で所定角度毎に配設されていることを特徴とする請求項 1又は 2に記載の指向性 アンテナ装置。
[4] 前記所定角度は、対地水平面上及び又は対地垂直平面上において 45° であるこ とを特徴とする請求項 3に記載の指向性アンテナ装置。
PCT/JP2004/015848 2003-10-31 2004-10-26 指向性アンテナ装置 WO2005043778A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/576,109 US20070057845A1 (en) 2003-10-31 2004-10-26 Directional antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003373073A JP2005136880A (ja) 2003-10-31 2003-10-31 指向性アンテナ装置
JP2003-373073 2003-10-31

Publications (1)

Publication Number Publication Date
WO2005043778A1 true WO2005043778A1 (ja) 2005-05-12

Family

ID=34544069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015848 WO2005043778A1 (ja) 2003-10-31 2004-10-26 指向性アンテナ装置

Country Status (5)

Country Link
US (1) US20070057845A1 (ja)
JP (1) JP2005136880A (ja)
KR (1) KR20060120051A (ja)
CN (1) CN1883135A (ja)
WO (1) WO2005043778A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147455A (zh) * 2010-01-18 2011-08-10 张登科 多天线单元信号分析处理、测向方法及系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1843485B1 (en) * 2006-03-30 2016-06-08 Sony Deutschland Gmbh Multiple-input multiple-output (MIMO) spatial multiplexing system with dynamic antenna beam combination selection capability
GB2440192B (en) 2006-07-17 2011-05-04 Ubidyne Inc Antenna array system
KR100842087B1 (ko) 2006-12-28 2008-06-30 삼성전자주식회사 어레이 안테나 시스템
KR100940218B1 (ko) * 2007-10-16 2010-02-04 삼성네트웍스 주식회사 위치 측정 시스템에서의 위치식별 장치 및 그를 이용한위치측정 방법
WO2009124417A1 (zh) * 2008-04-10 2009-10-15 西门子公司 天线组件
US7764229B2 (en) 2008-06-03 2010-07-27 Honeywell International Inc. Steerable directional antenna system for autonomous air vehicle communication
US8743015B1 (en) * 2010-09-29 2014-06-03 Rockwell Collins, Inc. Omni-directional ultra wide band miniature doubly curved antenna array
US20120128040A1 (en) 2010-11-23 2012-05-24 Peter Kenington Module for an Active Antenna System
CN102142888B (zh) * 2011-01-31 2014-04-02 华为技术有限公司 一种微波设备和微波传输方法
KR101749327B1 (ko) * 2012-09-07 2017-06-21 한국전자통신연구원 해상 광대역 무선통신 시스템에서 지향성 안테나를 사용하는 무선 통신 방법 및 그 장치
CN103022725B (zh) * 2012-11-30 2014-10-22 广州新软计算机技术有限公司 使用天线阵列对有源待测物进行一维定位的装置
KR102254601B1 (ko) * 2014-10-24 2021-05-21 한국전자통신연구원 멀티홉 릴레이 선박 통신 장치
CN112468192B (zh) * 2015-01-30 2021-07-30 北京桂花网科技有限公司 蓝牙透明中继器
US9407000B1 (en) 2015-05-15 2016-08-02 Harris Corporation Antenna deployment method and system
JP6731367B2 (ja) * 2017-03-14 2020-07-29 株式会社日立製作所 通信システムおよび通信方法
JP7219699B2 (ja) * 2019-12-17 2023-02-08 本田技研工業株式会社 車両及び車両システム
CN112260708A (zh) * 2020-10-23 2021-01-22 新疆大学 一种车载定向对讲装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114053A (en) * 1975-04-01 1976-10-07 Toshiba Corp Spherical array antenna
JPH09232857A (ja) * 1996-02-21 1997-09-05 Toyo Commun Equip Co Ltd マイクロストリップアンテナ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2630530A (en) * 1949-11-15 1953-03-03 Adcock Mack Donald Helical antenna array
US3192529A (en) * 1961-03-20 1965-06-29 Ryan Aeronautical Co Multi-helix antenna on inflatable satellite
US3152330A (en) * 1961-03-27 1964-10-06 Ryan Aeronautical Co Multi-spiral satellite antenna
US20010045914A1 (en) * 2000-02-25 2001-11-29 Bunker Philip Alan Device and system for providing a wireless high-speed communications network
CA2488911A1 (en) * 2002-06-12 2003-12-24 Thiss Technologies Pte Ltd Helix antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114053A (en) * 1975-04-01 1976-10-07 Toshiba Corp Spherical array antenna
JPH09232857A (ja) * 1996-02-21 1997-09-05 Toyo Commun Equip Co Ltd マイクロストリップアンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147455A (zh) * 2010-01-18 2011-08-10 张登科 多天线单元信号分析处理、测向方法及系统

Also Published As

Publication number Publication date
CN1883135A (zh) 2006-12-20
KR20060120051A (ko) 2006-11-24
JP2005136880A (ja) 2005-05-26
US20070057845A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
WO2005043778A1 (ja) 指向性アンテナ装置
US11239572B2 (en) Beam-steering reconfigurable antenna arrays
CN110870136B (zh) 先进通信系统的零转向天线技术
CN103548200B (zh) 对角驱动的天线系统和方法
AU2001225930A1 (en) Planar antenna with switched beam diversity for interference reduction in a mobile environment
KR20070055636A (ko) 공간적 제 2 고조파들을 사용하는 듀얼 대역 위상 배열
CN101366199B (zh) 具有改进的天线适应性的无线通信设备
KR20070057277A (ko) 적응형 안테나 어레이를 구비한 이동 통신 핸드세트
US8223077B2 (en) Multisector parallel plate antenna for electronic devices
TW200507513A (en) Antenna apparatus
CN110911814A (zh) 一种天线单元及电子设备
GB2563505A (en) Antenna apparatus and method
US20190131705A1 (en) User insensitive phased antenna array devices, systems, and methods
JP2022010101A5 (ja)
WO2005034283A2 (en) Access point antenna for a wireless local area network
CN110828987A (zh) 一种天线单元及电子设备
SE0102520L (sv) Antennanordning för användning av tredimensionell elektromagnetisk fältinformation inherent i en radiovåg
WO2004093416A1 (en) Multi-sector antenna apparatus
JP4272154B2 (ja) 指向性デュアル周波数アンテナ装置
CA2532823A1 (en) Mobile wireless communications device providing pattern/frequency control features and related methods
US5537683A (en) Radio paging system with antenna pattern exhibiting high diversity gain
Ma et al. Smart Antenna with Capability of Beam Switching for 5G Applications
JP4265418B2 (ja) アレーアンテナの配置方法、多周波共用アンテナ装置、及び到来方向推定装置
CN210668680U (zh) 一种天线组件
RU2463691C1 (ru) Антенная система

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032384.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007057845

Country of ref document: US

Ref document number: 10576109

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067008156

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067008156

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10576109

Country of ref document: US