WO2005043130A1 - Vorrichtung und verfahren zur bestimmung des gasgehaltes einer flüssigkeit - Google Patents

Vorrichtung und verfahren zur bestimmung des gasgehaltes einer flüssigkeit Download PDF

Info

Publication number
WO2005043130A1
WO2005043130A1 PCT/EP2004/012048 EP2004012048W WO2005043130A1 WO 2005043130 A1 WO2005043130 A1 WO 2005043130A1 EP 2004012048 W EP2004012048 W EP 2004012048W WO 2005043130 A1 WO2005043130 A1 WO 2005043130A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring chamber
liquid
housing
ceiling
floor
Prior art date
Application number
PCT/EP2004/012048
Other languages
English (en)
French (fr)
Inventor
Christian Beck
Bolko Raffel
Hubert Ehbing
Peter Jähn
Franz Schmitt
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Publication of WO2005043130A1 publication Critical patent/WO2005043130A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather

Definitions

  • the invention relates to a device and a method for determining the gas content of a liquid.
  • the gas content of liquids In plastics processing technology, it is often necessary to determine the gas content of liquids, e.g. to determine the gas content of liquid plastic components for foam production, in order to be able to work with a constant and known gas content in ongoing work or production operations.
  • the state of the art e.g. DE-A 37 20 904, WO 99/02963
  • numerous measuring devices are known.
  • the known measuring devices generally use measuring cylinders provided with measuring pistons, into which a certain sample quantity from the system carrying the gas-laden liquid is introduced at intervals.
  • the sample quantity loaded with the dissolved and possibly also free gas is exposed to a negative pressure in the closed measuring cylinder space by increasing the volume of the measuring cylinder space by appropriate piston adjustment. This releases the gas in the sample amount.
  • the gas loading of the liquid can be calculated according to the known physical relationships (gas law). The same is possible if the measurement sample in the measuring cylinder is measured by compression using the measuring piston and / or by a combination of decompression and subsequent compression with pressure measurement under the various test conditions and simultaneous volume determination of the measuring space at the different piston positions.
  • the object of the present invention is to provide a device and a method with which the gas content of liquids can be determined online and relatively quickly.
  • the device should be constructed as simply as possible, ie the construction effort should be as low as possible.
  • the invention relates to a device for determining the gas content of a liquid, at least consisting of a housing, a measuring chamber floor with a cavity and a measuring chamber ceiling inside the housing, the measuring chamber floor and the measuring chamber ceiling each being movably supported independently of one another along the longitudinal axis of the housing by means of a piston are, the measuring chamber floor and the measuring chamber ceiling form a measuring chamber in the housing, the measuring chamber floor or the measuring chamber ceiling is connected to a pressure sensor and the housing has a liquid supply and a liquid discharge.
  • the device according to the invention consists of a, preferably cylindrical, double-piston system. Both pistons are movably mounted along the longitudinal axis of the, preferably cylindrical, housing. Both pistons are independent of each other, e.g. pneumatically via a throttle system, movable. In operation, the device is arranged vertically. Accordingly, the pistons are also referred to below as lower and upper pistons.
  • a measuring chamber base is arranged at the upper end of the piston rod of the lower piston.
  • a measuring chamber ceiling is arranged at the lower end of the piston rod of the upper piston. The space between the measuring chamber floor and the measuring chamber ceiling forms the measuring room.
  • the measuring chamber floor has a cavity on its surface facing the measuring chamber ceiling.
  • the measuring chamber ceiling or the measuring chamber floor is connected to a pressure sensor.
  • the measuring chamber ceiling is preferably connected to a pressure sensor.
  • the measuring chamber floor and / or the measuring chamber ceiling and / or the housing is connected to a heating source, e.g. a heating coil or a heating jacket.
  • the measuring chamber floor is preferably connected to a heating source.
  • Liquid flows into the housing through a liquid supply and out of the housing through a liquid discharge.
  • the liquid supply and the liquid discharge are arranged in alignment, for example. They can also be arranged at any angle to one another and / or in different planes transverse to the longitudinal direction of the housing.
  • the cavity in the bottom of the measuring chamber serves to receive the liquid to be sampled, which is supplied through the liquid supply.
  • the cavity in the bottom of the measuring chamber is designed so that the liquid to be tested forms a thin film.
  • the dimension of the cavity is characterized by a ratio of volume to thickness of 10 6 : 1 to 1: 1, preferably 10: 1 to 1: 1.
  • the geometric shape of the cavity can be chosen arbitrarily. A cylindrical cavity is preferred.
  • the cross-sectional area of the cavity in the measuring chamber floor can be arbitrary.
  • the cavity preferably occupies the largest possible area of the measuring chamber floor, so that the Liquid to be tested forms as large a surface as possible in the cavity.
  • the cavity can occupy almost the entire surface of the measuring chamber floor, with only a narrow edge around the cavity, for example of the order of a few millimeters, is present.
  • the cavity in a measuring chamber base with a diameter of 50 mm, the cavity can have a diameter of 48 mm.
  • the surface of the cavity i.e. the inner wall of the cavity can be flat. To increase their surface area, the. However, the cavity also has a structured surface made of knobs, grooves or the like. exhibit.
  • Another object of the invention is a method for determining the gas content of a liquid using the device according to the invention with the following steps:
  • the measuring chamber floor is positioned below the liquid supply and liquid discharge and the measuring chamber ceiling above the liquid supply and liquid discharge such that a liquid flows through the liquid supply into the measuring chamber between the measuring chamber floor and measuring chamber ceiling and through the liquid discharge from the measuring chamber,
  • the measuring chamber floor is moved towards the measuring chamber ceiling until the measuring chamber floor contacts the measuring chamber ceiling,
  • the measuring chamber ceiling is moved away from the measuring chamber floor with the aid of the piston, the measuring chamber being formed between the measuring chamber floor and the measuring chamber ceiling, and the pressure in the measuring chamber being measured with the aid of the pressure sensor,
  • the measuring chamber base and the measuring chamber ceiling are positioned with the aid of the pistons so that the liquid to be tested flows through the device.
  • the measuring chamber floor and the measuring chamber ceiling are positioned in the housing in such a way that the liquid supply and removal is located between them. In this way, the liquid to be tested can flow through the measuring chamber.
  • the measuring chamber forms the area through which the device flows. If liquid flows through the measuring chamber, the cavity in the measuring chamber floor is also filled with the liquid.
  • a sample amount is discharged by moving the lower piston with the measuring chamber bottom up, ie in the direction of the upper piston with the measuring chamber ceiling.
  • the measuring chamber floor is moved upwards until the mutually facing surfaces of the measuring chamber floor and the measuring chamber ceiling come into contact and lie on one another. Liquid that is in the measuring chamber is displaced until only the amount remaining in the cavity remains.
  • the amount of liquid to be sampled in the cavity must be isolated from the liquid flow that flows through the housing via the liquid supply and discharge. The cavity must therefore be led out of the area of the liquid supply and discharge, ie the flow area, so far that it is located above the liquid supply and discharge.
  • the gas content is measured in the amount of liquid in the cavity.
  • the measuring chamber ceiling is moved upwards by means of the upper piston, ie moved away from the measuring chamber floor.
  • a measuring chamber is again formed between the measuring chamber floor and the measuring chamber ceiling. Due to the vacuum, the gases contained in the liquid escape and evaporate low boiling 'components until an equilibrium vapor pressure established in the measurement chamber.
  • the evaporation can be supported by a heating source connected to the measuring chamber floor and / or the measuring chamber ceiling and / or the housing.
  • the pressure in the measuring chamber is measured.
  • the pressure is measured with the aid of the pressure sensor, which is connected to the measuring chamber ceiling or the measuring chamber floor, for example, continuously during the movement of the piston depending on the piston travel.
  • the pressure measurement can also take place at the end of the piston movement, ie at the end of the evaporation process.
  • the gas content of the sample or the vapor pressure of the liquid is calculated.
  • the movement of the upper piston in step c) to generate the negative pressure in the measuring chamber preferably takes place in the range from 1 ms to 1 min.
  • the duration of the piston movement is in the range of milliseconds, particularly preferably in the range of 0.1 to 4 s.
  • the sequence of steps a) to c) is carried out at least once according to the invention.
  • the sequence of steps a) to c) is carried out several times in that the sequence of steps a) to c) begins again after step c).
  • the measuring chamber bottom and the The measuring chamber ceiling is brought back to the starting position according to step a) by means of the pistons.
  • the amount of sample in the cavity is returned to the liquid flow.
  • the method according to the invention is therefore suitable as a cyclic method for the continuous online measurement of the gas content of a liquid.
  • An advantage of the device according to the invention is that it is comparatively simple, i.e. the construction effort is comparatively low. Sampling is carried out using the cavity. A valve system or gravimetric system for dosing the liquid to be sampled is not required. Since the device has no valves in contact with the product, no malfunctions can occur as a result of clogging or leakage. The pistons can be operated pneumatically so that no servomotors are required. The device also works without additional peripheral devices such as e.g. Circulation pump or vacuum pump. The device according to the invention requires neither a pump to provide an evacuated gas space, nor a pump to supply the liquid to be sampled to the measuring device. A defined vacuum in the measuring chamber is generated by a hydraulically driven piston movement.
  • the duration of a measurement is usually a maximum of 5 minutes.
  • the duration of a measurement cycle is preferably 1 to 5 minutes.
  • the duration of a measuring cycle essentially depends on how quickly the liquid to be sampled evaporates or how quickly the equilibrium pressure is established. Accordingly, a measuring cycle can take more than 5 minutes.
  • the quick measurement is made possible by the rapid degassing of the liquid to be tested in the cavity, since the cavity forms a thin film of the sample liquid.
  • the outgassing time can be further reduced by thermal and or ultrasound support.
  • the device advantageously works almost product-free and emission-free because the sample amount is fed back into the liquid flow after the measurement.
  • the device according to the invention is quasi self-cleaning, since after the measurement, the measuring chamber floor and the measuring chamber ceiling are brought back into the starting position and liquid flows through the measuring chamber again. The inflowing liquid washes the liquid sample of the previous measurement from the measuring chamber. The seals on the measuring chamber ceiling and the measuring chamber floor wipe off any liquid drops adhering to the inner wall of the housing. The liquid sample therefore does not have to be removed from the measuring chamber by a separate process step before a new measurement can be carried out. In addition, no additional cleaning step between two measurements is necessary.
  • the device according to the invention can be used, for example, for online measurement. Use as a mobile hand-held device is also possible, for example for determining the gas loading of liquid plastic components or the vapor pressures of liquids which are located, for example, in storage containers.
  • the measurement can be carried out without interrupting the flow of liquid, for example, by sensing part of the flow via a bypass to which the device according to the invention is connected is.
  • the device according to the invention is suitable e.g. to determine the proportion of dissolved gases in a Polyethe ⁇ olyol for the production of polyurethane foams.
  • the gas content of the polyether polyol is determined using the device according to the invention.
  • the gas content is calculated from the equilibrium pressure, which is recorded by the pressure sensor, for example by means of the ideal gas law.
  • the device according to the invention is suitable for determining vapor pressures of liquids in order to check the chemical purity, for example during production.
  • the device according to the invention in combination with an appropriate analysis device (TR spectrometer, Raman spectrometer or the like) to qualitatively and quantitatively examine the gas space for its chemical composition.
  • an appropriate analysis device TR spectrometer, Raman spectrometer or the like
  • Figure 1 shows an embodiment of the device according to the invention in longitudinal section, wherein the measuring chamber bottom and the measuring chamber ceiling according to step a) of the method according to the invention are arranged so that the liquid flows through the device
  • FIG. 2 shows a section of the device according to the invention according to FIG. 1, the measuring chamber floor and the measuring chamber ceiling according to step b) of the method according to the invention being arranged in such a way that the liquid to be tested is isolated from the liquid flow
  • FIG. 1 shows the device 1 according to the invention for determining the gas content of a liquid. It consists of a cylindrical housing 10 with a liquid supply 16 and a liquid discharge 17, so that the liquid 50 to be measured can flow across the housing 10, ie transversely to the longitudinal axis 18 (shown as a dash-dotted line) of the housing 10. In the illustrated embodiment, the liquid supply 16 and the liquid discharge 17 are arranged in alignment.
  • the measuring chamber floor 23 has a cavity 24 on its upper surface, ie facing the measuring chamber ceiling 25.
  • the cavity 24 has a depth of 1 mm and a diameter of 35 mm.
  • the liquid flow 50 across the housing 10 is therefore limited at the top by the measuring chamber ceiling 25 and at the bottom by the measuring chamber floor 23.
  • the space between the measuring chamber ceiling 25 and the measuring chamber floor 23 forms the measuring chamber 26.
  • the measuring chamber ceiling 25 and the measuring chamber floor 23 are sealed off from the housing 10 with elastic seals 13, 14, so that the liquid 50 flowing through is located in the measuring chamber with a short residence time and a small residence time spectrum 26 constantly renewed during operation.
  • a groove for receiving an elastic seal 15 is also provided around the cavity 24.
  • the measuring chamber ceiling 25 serves to receive a pressure sensor 30.
  • the measuring chamber base 23 serves to receive a heating element 40.
  • an outer heating element 19 e.g. in the form of a heating jacket.
  • An additional external heating element which is arranged around the housing 10, can accelerate the evaporation and thus the establishment of equilibrium.
  • the measuring chamber base 23 is fastened, for example detachably, to the piston rod 27 of the pneumatic piston 21.
  • the measuring chamber ceiling 25 is connected, for example detachably, to the piston rod 28 of the pneumatic piston 22 via a spacer 29. Longitudinal grooves or openings 11 or 12 are provided in the spacer 29 and in the housing 10 in order to lead the cables 31 of the pressure sensor to the outside for a measurement value acquisition (not shown).
  • the position of the measuring chamber ceiling 25 and the measuring chamber bottom 23 shown in FIG. 1 corresponds to the starting position, ie step a), of the method according to the invention.
  • the measuring chamber ceiling 25 is arranged above the liquid supply 16 and the liquid discharge 17, the measuring chamber bottom 23 is arranged below the liquid supply 16 and the liquid discharge 17.
  • the liquid 50 to be sampled flows through the measuring chamber 26 across the housing 10.
  • the cavity 24 is continuously supplied with fresh liquid 50 close to the process while it is flowing through.
  • the position of the measuring chamber bottom 23 and the measuring chamber ceiling 25 according to step b) is shown in FIG.
  • the piston 21 (FIG. 1) moves the measuring chamber floor 23 against the measuring chamber ceiling 25, so that the two surfaces facing each other come into contact. The excess liquid 50 is displaced between these two surfaces, so that only the cavity 24 is filled with the liquid 50 to be tested.
  • the filled cavity 24 is enclosed by means of the seal 15.
  • the piston 21 moves the measuring chamber floor 23 and the measuring chamber ceiling 25 with the piston 22 (FIG. 1) out of the area of the liquid supply 16 and liquid discharge 17, so that in the end position of the piston 21 according to step b) the seal 14 of the measuring chamber floor 23 above the liquid supply 16 and the seal 14 'is below the liquid supply 16.
  • the amount of sample in the cavity 24 is now completely separated from the liquid flow 50.
  • FIG. 3 shows the position of the measuring chamber floor 23 and the measuring chamber ceiling 25 according to step c).
  • the piston 22 moves upward and removes the surface contact between the measuring chamber floor 23 and the measuring chamber ceiling 25, so that the measuring chamber 26 ', which is evacuated, is formed between the two separate surfaces. Almost volatile components can now evaporate from the sample liquid 50 in the cavity 24 into the evacuated measuring chamber 26 '.
  • the movement of the measuring chamber ceiling 25 by means of pistons 22 takes place in milliseconds. This leads to a sudden evacuation of the measuring chamber 26 '.
  • the pressure in the measuring chamber 26 ' changes during the evaporation of the volatile components or gases.
  • the pressure sensor 30 registers the pressure change that approaches a limit value asymptotically.
  • the cycle of the method according to the invention now begins anew by moving the measuring chamber bottom 23 and the measuring chamber ceiling 25 back into the starting position according to step a) with the aid of the pistons 21 and 22 (FIG. 1).
  • the measured amount of sample from the cavity 24 is displaced from the cavity 24 by the liquid 50 flowing through it and fed to the process.
  • a new measurement of the vapor pressure can thus be carried out with a fresh liquid sample.

Abstract

Die Erfindung beschreibt eine Vorrichtung zur Bestimmung des Gasgehaltes einer Flüssigkeit, wenigstens bestehend aus einem Gehäuse (10), einem Messkammerboden (23) mit einer Kavität (24) und einer Messkammerdecke (25) innerhalb des Gehäuses (10), wobei der Messkammerboden (23) und die Messkammerdecke (25) jeweils mittels eines Kolbens (21, 22) unabhängig voneinander entlang der Längsachse des Gehäuses (10) bewegbar gelagert sind, der Messkammerboden (23) und die Messkammerdecke (25) in dem Gehäuse (10) eine Messkammer (26, 26') ausbilden, der Messkammerboden (23) oder die Messkammerdecke (25) mit einem Drucksensor (30) verbunden ist und das Gehäuse (10) eine Flüssigkeitszuführung (16) und eine Flüssigkeitsabführung (17) aufweist.

Description

Vorrichtung und Verfahren zur Bestimmung des Gasgehaltes einer Flüssigkeit
Die Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Bestimmung des Gasgehaltes einer Flüssigkeit.
In der Kunststoffverarbeitungstechnik ist es häufig erforderlich, den Gasgehalt von Flüssigkeiten, z.B. den Gasgehalt flüssiger Kunststoffkomponenten für die Schaumstofferzeugung, zu ermitteln, um im laufenden Arbeits- oder Produktionsbetrieb mit einem konstanten und bekannten Gasgehalt arbeiten zu können. Für die Bestimmung des Gasgehaltes von Flüssigkeiten, insbesondere von flüssigen Kunststoffkomponenten, sind aus dem ■ Stand der Technik, z.B. DE-A 37 20 904, WO 99/02963, zahlreiche Messeinrichtungen bekannt. Die bekannten Messeinrichtungen verwen- den im Allgemeinen mit Messkolben versehene Messzylinder, in die in Intervallen eine bestimmte Probemenge aus dem die gasbeladene Flüssigkeit führenden System eingeführt wird. Dies erfolgt im allgemeinen in der Weise, dass die mit dem gelösten und ggf. auch freien Gas beladene Probemenge in dem geschlossenen Messzylinderraum einem Unterdruck ausgesetzt wird, indem das Volumen des Messzylinderraumes durch entsprechende Kolbenverstellung erhöht wird. Dadurch wird das Gas in der Probemenge freigesetzt. Aus den ermittelten Volumen- und Druckänderungen der Messprobe lässt sich die Gasbeladung der Flüssigkeit nach den bekannten physikalischen Beziehungen (Gasgesetz) berechnen. Gleiches ist möglich, wenn die Messprobe im Messzylinder durch Kompression mittels des Messkolbens und/oder durch eine Kombination von Dekompres- sion und anschließender Kompression mit Druckmessung unter den verschiedenen Prüfbedingun- gen und gleichzeitiger Volumenbestimmung des Messraumes bei den verschiedenen Kolbenstellungen vermessen wird.
Im allgemeinen sind diese Verfahren jedoch nicht ohne weiteres in einer schnellen online Messvorrichtung einsetzbar, da sie entweder nicht in einer Bypass- Anordnung im Durchfluss betrieben werden können und/oder mit erheblichen bautechnischen Aufwand verbunden sind. Des Weiteren ist bei den bekannten Messvorrichtungen eine verhältnismäßig große Probenmenge notwendig, wodurch eine verhältnismäßig lange Messdauer bedingt ist. Häufig fehlt auch die Möglichkeit der Temperierung der Probe, was ebenfalls zu einer verhältnismäßig langen Messdauer führt. Schließlich sind bei den bekannten Vorrichtungen zwischen einzelnen Messungen Reinigungsschritte notwendig. Dies erschwert eine zügige und zyklische Messung oder macht sie gar unmöglich.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung sowie ein Verfahren bereit zu stellen, mit dem der Gasgehalt von Flüssigkeiten online und verhältnismäßig schnell bestimmt werden kann. Die Vorrichtung soll möglichst einfach aufgebaut sein, d.h. der bautechnische Aufwand soll möglichst niedrig sein. Gegenstand der Erfindung ist eine Vorrichtung zur Bestimmung des Gasgehaltes einer Flüssigkeit, wenigstens bestehend aus einem Gehäuse, einem Messkammerboden mit einer Kavität und einer Messkammerdecke innerhalb des Gehäuses, wobei der Messkammerboden und die Messkammerdecke jeweils mittels eines Kolbens unabhängig voneinander entlang der Längsachse des Gehäuses bewegbar gelagert sind, der Messkammerboden und die Messkammerdecke in dem Gehäuse eine Messkammer ausbilden, der Messkammerboden oder die Messkammerdecke mit einem Drucksensor verbunden ist und das Gehäuse eine Flüssigkeitszuführung und eine Flüssigkeitsabführung aufweist.
Die erfindungsgemäße Vorrichtung besteht aus einem, vorzugsweise zylindrisch ummantelten, Doppelkolben-System. Beide Kolben sind entlang der Längsachse des, vorzugsweise zylindrischen, Gehäuses bewegbar gelagert. Beide Kolben sind unabhängig voneinander, z.B. pneumatisch über ein Drosselsystem, bewegbar. Im Betrieb ist die Vorrichtung vertikal angeordnet. Dementsprechend werden die Kolben nachfolgend auch als unterer und oberer Kolben bezeichnet. Am oberen Ende der Kolbenstange des unteren Kolbens ist ein Messkammerboden angeordnet. Am unteren Ende der Kol- benstange des oberen Kolbens ist eine Messkammerdecke angeordnet. Der Raum zwischen dem Messkammerboden und der Messkammerdecke bildet den Messraum. Der Messkämmerboden weist an seiner der Messkammerdecke zugewandten Oberfläche eine Kavität auf. Die Messkammerdecke oder der Messkammerboden ist mit einem Drucksensor verbunden. Vorzugsweise ist die Messkammerdecke mit einem Drucksensor verbunden. Der Messkammerboden und/oder die Messkammerdecke und/oder das Gehäuse ist mit einer Heizquelle, z.B. einer Heizspule oder einem Heizmantel, verbunden. Bevorzugt ist der Messkammerboden mit einer Heizquelle verbunden.
Durch eine Flüssigkeitszuführung strömt Flüssigkeit in das Gehäuse hinein und durch eine Flüssigkeitsabführung aus dem Gehäuse heraus. Die Flüssigkeitszuführung und die Flüssigkeitsabführung sind beispielsweise fluchtend angeordnet. Sie können auch in einem beliebigen Winkel zueinander und/oder in verschiedenen Ebenen quer zur Längsrichtung des Gehäuses angeordnet sein.
Die Kavität in dem Messkammerboden dient dazu, die zu probende Flüssigkeit, welche durch die Flüssigkeitszuführung zugeführt wird, aufzunehmen. Die Kavität im Messkammerboden ist so gestaltet, dass die zu probende Flüssigkeit einen dünnen Film bildet. Die Dimension der Kavität zeichnet sich durch ein Verhältnis von Volumen zu Dicke von 106:1 bis 1:1 aus, vorzugsweise 10 :1 bis 1:1. Die geometrische Form der Kavität kann beliebig gewählt werden. Bevorzugt ist eine zylindrische Kavität.
Die Querschnittsfläche der Kavität in dem Messkammerboden kann beliebig sein. Vorzugsweise nimmt die Kavität eine möglichst große Fläche des Messkammerbodens ein, sodass im Betrieb die zu probende Flüssigkeit in der Kavität eine möglichst große Oberfläche bildet. Die Kavität kann z.B. nahezu die gesamte Fläche des Messkammerbodens einnehmen, wobei um die Kavität herum lediglich ein schmaler Rand, beispielsweise in der Größenordnung von wenigen Millimetern, vorhanden ist. So kann beispielsweise in einem Messkammerboden mit einem Durchmesser von 50 mm die Kavität einen Durchmesser von 48 mm besitzen.
Die Oberfläche der Kavität, d.h. die Innenwand der Kavität, kann eben sein. Zur Vergrößerung ihrer Oberfläche kann die. Kavität jedoch auch eine strukturierte Oberfläche aus Noppen, Rillen o.dgl. aufweisen.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Bestimmung des Gasgehaltes einer Flüssigkeit unter Verwendung der erfindungsgemäßen Vorrichtung mit den folgenden Schritten:
a) mit Hilfe der Kolben werden der Messkammerboden unterhalb der Flüssigkeitszuführung und der Flüssigkeitsabführung und die Messkammerdecke oberhalb der Flüssigkeitszuführung und Flüssigkeitsabführung so positioniert, dass eine Flüssigkeit durch die Flüssigkeitszuführung in die Messkammer zwischen Messkammerboden und Messkammerdecke und durch die Flüssigkeitsabführung aus der Messkammer strömt,
b) mit Hilfe des Kolbens wird der Messkammerboden auf die Messkammerdecke zu bewegt, bis der Messkammerboden die Messkammerdecke kontaktiert,
c) mit Hilfe des Kolbens wird die Messkammerdecke von dem Messkammerboden weg bewegt, wobei sich die Messkammer zwischen Messkammerboden und Messkammerdecke ausbildet, und mit Hilfe des Drucksensors der Druck in der Messkammer gemessen wird,
wobei die Schrittfolge a) bis c) mindestens einfach durchgeführt wird.
Im ersten Schritt a) des erfindungsgemäßen Verfahrens werden der Messkammerboden und die Messkammerdecke mit Hilfe der Kolben so positioniert, dass die zu probende Flüssigkeit durch die Vorrichtung strömt. Dies bedeutet zum einen, dass der Messkammerboden und die Messkammerdecke auf Abstand gehalten werden, so dass diese in dem Gehäuse eine Messkammer ausbilden. Zum anderen sind der Messkammerboden und die Messkammerdecke in dem Gehäuse so positioniert, dass sich die Flüssigkeitszuführung und -abfuhrung zwischen diesen befindet. Auf diese Weise kann die zu probende Flüssigkeit durch die Messkammer strömen. Die Messkammer bildet den durchströmten Bereich der Vorrichtung. Strömt Flüssigkeit durch die Messkammer, wird auch die Kavität in dem Messkammerboden mit der Flüssigkeit gefüllt. Im zweiten Schritt b) des Verfahrens wird eine Probenmenge ausgeschleust, indem der untere Kolben mit dem Messkammerboden nach oben, d.h. in Richtung des oberen Kolbens mit der Messkammerdecke, bewegt wird. Der Messkammerboden wird so weit nach oben gefahren, bis sich die einander zugewandten Oberflächen des Messkammerbodens und der Messkammerdecke kontaktieren und aufeinander liegen. Dabei wird Flüssigkeit, die sich in der Messkammer befindet, soweit verdrängt, bis nur noch die in der Kavität befindliche Menge zurückbleibt. In diesem zweiten Schritt muss die zu probende Flüssigkeitsmenge in der Kavität von dem Flüssigkeitsstrom, der über die Flüssigkeitszuführung und -abführung durch das Gehäuse strömt, isoliert werden. Daher muss die Kavität so weit aus dem Bereich der Flüssigkeitszuführung und -abführung, d.h. dem Durchströmbereich, herausgeführt werden, dass sie sich oberhalb der Flüssigkeitszuführüng und Flüssigkeitsabführung befindet. Dies kann beispielsweise dadurch geschehen, dass der untere Kolben den oberen Kolben so weit aus dem Durchströmbereich schiebt, dass die Probe mittels Dichtungen an den Kolben vom Durchflussbereich des Sensors getrennt wird und zur Messung bereit steht. Im dritten Verfahrensschritt c) erfolgt die Messung des Gasgehaltes in der in der Kavität befindlichen Flüssigkeitsmenge. Um einen Unterdruck zu erzeugen, wird die Messkammerdecke mittels des oberen Kolbens nach oben geführt, d.h. von dem Messkammerboden weg bewegt. Dabei wird emeut eine Messkammer zwischen Messkammerboden und Messkammerdecke ausgebildet. Aufgrund des Unterdrucks entweichen die in der Flüssigkeit enthaltenen Gase und verdampfen niedrig siedende ' Komponenten, bis sich ein Gleichgewichtsdampfdruck in der Messkammer einstellt. Die Verdampfung kann durch eine mit dem Messkammerboden und/oder der Messkammerdecke und/oder dem Gehäuse verbundene Heizquelle unterstützt werden. Im Verfahrensschritt c) wird der Druck in der Messkammer gemessen. Die Messung des Druckes mit Hilfe des Drucksensors, welcher mit der Messkammerdecke oder dem Messkammerboden verbunden ist, erfolgt beispielsweise kontinuierlich während der Bewegung des Kolbens in Abhängigkeit des Kolbenweges. Alternativ kann die Druckmessung auch am Ende der Kolbenbewegung, d.h. am Ende des Verdampfungsvorgangs, erfolgen. Mit Hilfe des gemessenen Druckes in der Messkammer wird der Gasgehalt der Probe bzw. der Dampfdruck der Flüssigkeit berechnet.
Die Bewegung des oberen Kolbens im Schritt c) zur Erzeugung des Unterdrucks in der Messkammer erfolgt vorzugsweise im, Bereich von 1 ms bis 1 min. Insbesondere liegt die Dauer der Kolbenbewegung im Bereich von Millisekunden, besonders bevorzugt im Bereich von 0,1 bis 4 s.
Die Schrittfolge a) bis c) wird erfindungsgemäß mindestens einfach durchgeführt. Die Schrittfolge a) bis c) wird mehrfach ausgeführt, indem nach Schritt c) die Schrittfolge a) bis c) von neuem beginnt. Nach der Messung des Druckes gemäß Schritt c) können der Messkammerboden und die Messkammerdecke mittels der Kolben wieder in die Ausgangsposition gemäß Schritt a) gebracht werden. Dabei wird die in der Kavität befindliche Probenmenge wieder dem Flüssigkeitsstrom zugeführt. Das erfindungsgemäße Verfahren eignet sich somit als zyklisches Verfahren zur kontinuierlichen online-Messung des Gasgehaltes einer Flüssigkeit.
Ein Vorteil der erfindungsgemäßen Vorrichtung besteht darin, dass sie vergleichsweise einfach, d.h. der bautechnische Aufwand vergleichsweise gering ist. Die Probenahme erfolgt mittels der Kavität. Ein Ventilsystem oder gravimetrisches System zur Dosierung der zu probenden Flüssigkeit ist nicht erforderlich. Da die Vorrichtung keine produktberührten Ventile besitzt, können keine Störungen in Folge von Verstopfung oder Leckage auftreten. Die Kolben können pneumatisch betrieben werden, so dass keine Stellmotoren benötigt werden. Die Vorrichtung arbeitet außerdem ohne zusätzliche Peripheriegeräte wie z.B. Umlaufpumpe oder Vakuumpumpe. Die erfindungsgemäße Vorrichtung benötigt weder eine Pumpe, um einen evakuierten Gasraum zur Verfügung zu stellen, noch eine Pumpe, um die zu probende Flüssigkeit der Messvorrichtung zuzuführen. Ein definiertes Vakuum in der Messkammer wird durch eine hydraulisch getriebene Kolbenbewegung erzeugt.
Ein weiterer Vorteil ist die vergleichsweise schnelle Messung. Die Dauer einer Messung beträgt in der Regel maximal 5 Minuten. Vorzugsweise beträgt die Dauer eines Messzyklus 1 bis 5 Minuten. Die Dauer eines Messzyklus hängt im Wesentlichen davon ab, wie schnell die zu probende Flüssigkeit verdampft bzw. wie schnell sich der Gleichgewichtsdruck einstellt. Ein Messzyklus kann dem- entsprechend auch mehr als 5 Minuten dauern. Die schnelle Messung wird u.a. durch das schnelle Entgasen der zu probenden Flüssigkeit in der Kavität ermöglicht, da die Kavität einen dünnen Film der Probenflüssigkeit bildet. Die Ausgaszeit kann zusätzlich durch thermische und oder Ultraschall-Unterstützung weiter verringert werden.
Schließlich arbeitet die Vorrichtung vorteilhafterweise nahezu produktverlustfrei und emissionsfrei, weil die Probemenge nach der Messung wieder dem Flüssigkeitsstrom zugeführt wird. Die erfindungsgemäße Vorrichtung ist quasi selbstreinigend, da nach der Messung der Messkammerboden und die Messkammerdecke wieder in die Ausgangsstellung gebracht werden und die Messkammer erneut von Flüssigkeit durchströmt wird. Die nachströmende Flüssigkeit wäscht die Flüssigkeitsprobe der jeweils vorangehenden Messung aus der Messkammer. Die Dichtungen an der Mess- kammerdecke und dem Messkammerboden streifen eventuell an der Gehäuseinnenwand anhaftende Flüssigkeitstropfen ab. Die Flüssigkeitsprobe muss demnach nicht durch einen separaten Verfahrensschritt aus der Messkammer entfernt werden, bevor eine neue Messung erfolgen kann. Außerdem ist kein zusätzlicher Reinigungsschritt zwischen zwei Messungen notwendig. Die erfindungsgemäße Vorrichtung kann beispielsweise zur online-Messung eingesetzt werden. Auch die Verwendung als mobiles Handgerät ist möglich, z.B. zur Bestimmung der Gasbeladung flüssiger Kunststoffkomponenten oder der Dampfdrücke von Flüssigkeiten, welche sich z.B. in Vorratsbehältern befinden.
Soll die erfindungsgemäße Vorrichtung bzw. das erfindungsgemäße Verfahren zur Bestimmung des Gasgehaltes in einer strömenden Flüssigkeit eingesetzt werden, kann die Messung ohne Unterbrechung des Flussigkeitsstrom.es beispielsweise dadurch erfolgen, dass ein Teil des Stromes über einen Bypass gefühlt werden, an den die erfindungsgemäße Vorrichtung angeschlossen ist.
Die erfindungsgemäße Vorrichtung eignet sich z.B. zur Bestimmung des Anteils gelöster Gase in einem Polyetheφolyol zur Herstellung von Polyurethan-Schäumen. Nach der Polymerisationsreaktion der Edukte wird der Gasgehalt des Polyefherpolyols mit Hilfe der erfindungsgemäßen Vorrichtung bestimmt. Dabei wird aus dem Gleichgewichtsdruck, welcher durch den Drucksensor aufgenommen wird, beispielsweise mittels des idealen Gasgesetzes der Gasgehalt errechnet.
Des Weiteren eignet sich die erfindungsgemäße Vorrichtung zur Bestimmung von Dampfdrücken von Flüssigkeiten, um die chemische Reinheit, beispielsweise während der Produktion, zu überprüfen.
Ebenso ist es möglich, mit der erfindungsgemäßen Vorrichtung unter Kombination eines entsprechenden Analysegerätes (TR-Spektrometer, Raman-Spektrometer o.dgl.) den Gasraum auf dessen chemische Zusammensetzung hin qualitativ und quantitativ zu untersuchen.
Die Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine Ausführungsform der erfindungsgemäßen Vorrichtung im Längsschnitt, wobei der Messkammerboden und die Messkammerdecke gemäß Schritt a) des erfindungsgemäßen Verfahrens so angeordnet sind, dass die Flüssigkeit die Vorrichtung durchströmt
Figur 2 einen Ausschnitt aus der erfindungsgemäßen Vorrichtung gemäß Figur 1, wobei der Mess- kammerboden und die Messkammerdecke gemäß Schritt b) des erfindungsgemäßen Verfahrens so angeordnet sind, dass die zu probende Flüssigkeit von dem Flüssigkeitsstrom isoliert ist
Figur 3 einen Ausschnitt aus der erfindungsgemäßen Vorrichtung gemäß Figur 1, wobei der Messkammerboden und die Messkammerdecke gemäß Schritt c) des erfindungsgemäßen Ver- fahrens so angeordnet sind, dass der Gasgehalt der zu probenden Flüssigkeit bestimmt wird In Figur 1 ist die erfindungsgemäße Vorrichtung 1 zur Bestimmung des Gasgehaltes einer Flüssigkeit dargestellt. Sie besteht aus einem zylindrischen Gehäuse 10 mit einer Flüssigkeitszuführung 16 und einer Flüssigkeitsabführung 17, so dass die zu vermessende Flüssigkeit 50 quer durch das Gehäuse 10, d.h. quer zur Längsachse 18 (dargestellt als strichpunl tierte Linie) des Gehäuses 10, strömen kann. In der dargestellten Ausführungsform sind die Flüssigkeitszuführung 16 und die Flüssigkeitsabführung 17 fluchtend angeordnet. Oberhalb der Flüssigkeitszuführung 16 und der Flüssigkeitsabführung 17 befindet sich eine Messkammerdecke 25, unterhalb der Flüssigkeitszuführung 16 und der Flüssigkeitsabführung 17 ein Messkammerboden 23. Der Messkammerboden 23 weist an seiner oberen, d.h. der Messkammerdecke 25 zugewandten, Oberfläche eine Kavität 24 auf. In der dargestellten Ausführungsform hat die Kavität 24 eine Tiefe von 1 mm und einen Durchmesser von 35 mm. Die Flüssigkeitsströmung 50 quer durch das Gehäuse 10 ist demnach nach oben durch die Messkammerdecke 25 und nach unten durch den Messkammerboden 23 begrenzt. Der Raum zwischen der Messkammerdecke 25 und dem Messkammerboden 23 bildet die Messkammer 26. Die Messkammerdecke 25 und der Messkammerboden 23 sind zum Gehäuse 10 mit elastischen Dichtungen 13, 14 abgedichtet, so dass sich die durchströmende Flüssigkeit 50 mit geringer Verweilzeit und kleinem Verweilzeitspektrum in der Messkammer 26 während des Betriebs ständig erneuert. Um die Kavität 24 ist ebenfalls eine Nut zur Aufnahme einer elastischen Dichtung 15 vorgesehen.
In der dargestellten Ausführungsform dient die Messkammerdecke 25 zur Aufnahme eines Druck- sensors 30. Der Drucksensor 30 und die untere, d.h. , dem Messkammerboden 23 zugewandte, Oberfläche der Messkammerdecke 25 bilden eine Ebene, so dass Produktablagerungen und Toträume vennieden werden. Der Messkammerboden 23 dient zur Aufnahme eines Heizelements 40. Im unteren Abschnitt des Gehäuses 10 ist eine Öffnung 43 vorgesehen, durch die beispielsweise die Anschlußkabel 41 des elektrisch temperierten Heizelements 40 mit einer Stromversor- gung (nicht dargestellt) verbunden werden kann. Zusätzlich kann ein äußeres Heizelement 19, z.B. in Form eines Heizmantels, vorgesehen sein. Ein zusätzliches äußeres Heizelement, welches um das Gehäuse 10 herum angeordnet ist, kann die Verdampfung und somit die Gleichgewichtseinstellung beschleunigen.
Der Messkammerboden 23 ist an der Kolbenstange 27 des Pneumatikkolbens 21, z.B. lösbar, be- festigt. Die Messkammerdecke 25 ist über ein Distanzstück 29 mit der Kolbenstange 28 des pneumatischen Kolbens 22, z.B. lösbar, verbunden. Im Distanzstück 29 und im Gehäuse 10 sind Längsnuten bzw. Durchbrüche 11 bzw. 12 vorgesehen, um die Kabel 31 des Drucksensors nach außen zu einer nicht dargestellten Messwerterfassung zu führen. Die in der Fig. 1 dargestellte Position der Messkammerdecke 25 und des Messkammerbodens 23 entspricht der Ausgangsstellung, d.h. Schritt a), des erfindungsgemäßen Verfahrens. Die Messkammerdecke 25 ist oberhalb der Flüssigkeitszuführung 16 und der Flüssigkeitsabführung 17, der Messkammerboden 23 ist unterhalb der Flüssigkeitszuführung 16 und der Flüssigkeitsabführung 17 angeordnet. Die zu probende Flüssigkeit 50 strömt durch die Messkammer 26 quer durch das Gehäuse 10. Die Kavität 24 wird während des Durchströmens ständig mit prozessnaher und frischer Flüssigkeit 50 versorgt.
In Figur 2 ist die Position des Messkammerbodens 23 und der Messkammerdecke 25 gemäß Schritt b) gezeigt. Der Kolben 21 (Fig. 1) bewegt den Messkammerboden 23 gegen die Mess- kammerdecke 25, so dass sich die beiden einander zugewandten Oberflächen kontaktieren. Dabei wird die überschüssige Flüssigkeit 50 zwischen diesen beiden Flächen verdrängt, so dass nur die Kavität 24 mit der zu probenden Flüssigkeit 50 gefüllt ist. Die gefüllte Kavität 24 ist mittels der Dichtung 15 eingeschlossen. Der Kolben 21 bewegt den Messkammerboden 23 und die Messkammerdecke 25 mit dem Kolben 22 (Fig. 1) aus dem Bereich der Flüssigkeitszuführung 16 und Flüssigkeitsabführung 17 heraus, so dass in der Endposition des Kolbens 21 gemäß Schritt b) die Dichtung 14 des Messkammerbodens 23 oberhalb der Flüssigkeitszuführung 16 und die Dichtung 14' unterhalb der Flüssigkeitszuführung 16 steht. Die Probenmenge in der Kavität 24 ist nun von dem Flüssigkeitsstrom 50 vollständig getrennt.
Figur 3 zeigt die Position des Messkammerboden 23 sowie der Messkammerdecke 25 gemäß Schritt c). Der Kolben 22 (Fig. 1) bewegt sich nach oben und hebt den Flächenkontakt zwischen Messkammerboden 23 und Messkammerdecke 25 auf, so dass zwischen den beiden getrennten Flächen die Messkammer 26' gebildet wird, welche evakuiert ist. In die evakuierte Messkammer 26' können nun leicht flüchtige Komponenten aus der in der Kavität 24 befindlichen Probenflüssigkeit 50 verdampfen. Die Bewegung der Messkammerdecke 25 nach oben mittels Kolben 22 erfolgt in Millisekunden. Dadurch findet eine sprunghafte Evakuierung der Messkammer 26' statt. Während des Verdampfens der leicht flüchtigen Komponenten bzw. Gase verändert sich der Druck in der Messkammer 26'. Der Drucksensor 30 registriert die Druckveränderung, die sich asymptotisch einem Grenzwert nähert. Sobald der Grenzwert erreicht ist, gilt die Messung als abgeschlossen und wird abgebrochen. Der Zyklus des erfindungsgemäßen Verfahrens beginnt nun von neuem, indem der Messkammerboden 23 und die Messkammerdecke 25 mit Hilfe der Kolben 21 bzw. 22 (Fig. 1) wieder in die Ausgangsstellung gemäß Schritt a) bewegt werden. Die gemessene Probenmenge aus der Kavität 24 wird von der durchströmenden Flüssigkeit 50 aus der Kavität 24 verdrängt und dem Prozess zugeführt. Somit kann eine neue Messung des Dampfdruckes mit frischer Flüssigkeitsprobe erfolgen.

Claims

Patentansprüche
1. Vorrichtung zur Bestimmung des Gasgehaltes einer Flüssigkeit, wenigstens bestehend aus einem Gehäuse (10), einem Messkammerboden (23) mit einer Kavität (24) und einer Messkammerdecke (25) innerhalb des Gehäuses (10), wobei der Messkammerboden (23) und die Messkammerdecke (25) jeweils mittels eines Kolbens (21, 22) unabhängig voneinander entlang der Längsachse des Gehäuses (10) bewegbar gelagert sind, der Messkammerboden (23) und die Messkammerdecke (25) in dem Gehäuse (10) eine Messkammer (26, 26') ausbilden, der Messkammerboden (23) oder die Messkammerdecke (25) mit einem Drucksensor (30) verbunden ist und das Gehäuse (10) eine Flüssigkeitszu- führung (16) und eine Flüssigkeitsabführung (17) aufweist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Messkammerboden (23) und/oder die Messkammerdecke (25) und/oder das Gehäuse (10) mit einer Heizquelle (40) verbunden ist.
3. Vorrichtung nach einem der Ansprüche 1 öder 2, dadurch gekennzeichnet, dass die Kavität ein Verhältnis von Volumen zu Dicke von 106:1 bis 1:1, vorzugsweise von 105:1 bis 1:1, aufweist.
4. Verfahren zur Bestimmung des Gasgehaltes einer Flüssigkeit unter Verwendung einer Vorrichtung nach einem der Ansprüche 1-3 mit den folgenden Schritten: a) mit Hilfe der Kolben (21, 22) werden der Messkammerboden (23) unterhalb der Flüssigkeitszuführung (16) und der Flüssigkeitsabführung (17) und die Messkammerdecke (25) oberhalb der Flüssigkeitszuführung (16) und Flüssigkeitsabführung (17) so positioniert, dass eine Flüssigkeit (50) durch die Flüssigkeitszuführung (16) in die Messkammer (26) zwischen Messkammerboden (23) und Messkammerdecke (25) und durch die Flüssigkeitsabführung (17) aus der Mess- kammer (26) strömt b) mit Hilfe des Kolbens (21) wird der Messkammerboden (23) auf die Messkammerdecke (25) zu bewegt, bis der Messkammerboden (23) die Messkammerdecke (25) kontaktiert c) mit Hilfe des Kolbens (22) wird die Messkammerdecke (25) von dem Mess- kammerboden (23) weg bewegt, wobei sich die Messkammer (26') zwischen Messkammerboden (23) und Messkammerdecke (25) ausbildet, und mit Hilfe des Drucksensors (30) der Druck in der Messkammer (26') gemessen wird, wobei die Schrittfolge a) bis c) mindestens einfach durchgeführt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Bewegung des Kolbens (22) gemäß Schritt c) innerhalb von 1 ms bis 1 min erfolgt.
PCT/EP2004/012048 2003-10-30 2004-10-26 Vorrichtung und verfahren zur bestimmung des gasgehaltes einer flüssigkeit WO2005043130A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350757A DE10350757A1 (de) 2003-10-30 2003-10-30 Vorrichtung und Verfahren zur Bestimmung des Gasgehaltes einer Flüssigkeit
DE10350757.4 2003-10-30

Publications (1)

Publication Number Publication Date
WO2005043130A1 true WO2005043130A1 (de) 2005-05-12

Family

ID=34529938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/012048 WO2005043130A1 (de) 2003-10-30 2004-10-26 Vorrichtung und verfahren zur bestimmung des gasgehaltes einer flüssigkeit

Country Status (3)

Country Link
US (1) US20050092062A1 (de)
DE (1) DE10350757A1 (de)
WO (1) WO2005043130A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBS20090099A1 (it) * 2009-06-05 2010-12-06 Turboden Srl Metodo e dispositivo di detezione delle frazioni leggere in olio diatermico con funzionamento discontinuo
DE102009054284A1 (de) * 2009-11-23 2011-05-26 Falk Steuerungssysteme Gmbh Vorrichtung und Verfahren zur Prozesskontrolle bei der Schaumstoffproduktion mittels Gasphasen-Analyse
EP2574921A1 (de) * 2011-09-28 2013-04-03 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Bestimmung der Menge von flüchtigen Unreinheiten in einem flüssigen Material
EP2574922A1 (de) * 2011-09-28 2013-04-03 Siemens Aktiengesellschaft Vorrichtung zur Bestimmung der Menge von flüchtigen Unreinheiten in einem flüssigen Material und Verfahren zur Verwendung davon
CN110608975A (zh) * 2019-09-23 2019-12-24 中国地质大学(武汉) 一种气体含量测试装置及其测试方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118964A1 (de) * 1983-03-10 1984-09-19 Haffmans B.V. Vorrichtung zur Messung der Gaskonzentration einer gasenthaltenden Flüssigkeit
WO1992008121A1 (en) * 1990-10-26 1992-05-14 Atlantic Richfield Company System for determining liquid vapor pressure
EP0581207A2 (de) * 1992-07-25 1994-02-02 Spühl Ag Messeinrichtung zur Erfassung der Gasbeladung oder Dampfdruckes einer Flüssigkeit, insbesondere einer fliessfähigen Kunststoffkomponente
US5285674A (en) * 1991-06-18 1994-02-15 Spuhl Ag Measurement device for detecting gas charge of a plastic component
WO1999002963A1 (de) * 1997-07-11 1999-01-21 Edf Polymer-Applikation Maschinenfabrik Gmbh Messeinrichtung und verfahren zur messung der gasbeladung von flüssigkeiten, insbesondere flüssigen kunststoffkomponenten

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621036A (en) * 1979-07-27 1981-02-27 Polyurethan Eng:Kk Measuring method for bubble content of liquid containing bubble and apparatus thereof
US4700561A (en) * 1986-02-24 1987-10-20 Dougherty Steven J Apparatus for measuring entrained gas-phase content in a liquid
JPS6382342A (ja) * 1986-09-26 1988-04-13 Polyurethan Eng:Kk 液体のガス体混入量の測定方法
FR2633719B1 (fr) * 1988-06-30 1991-04-19 Inst Francais Du Petrole Procede et dispositif de mesure pour determiner une caracteristique de pompage ou un parametre d'un fluide
US4924695A (en) * 1988-12-08 1990-05-15 Atlantic Richfield Company Apparatus for compressing a fluid sample to determine gas content and the fraction of one liquid composition in another
US5121627A (en) * 1990-05-21 1992-06-16 Aoust Brian G D Integrated miniaturized sensor for measuring total dissolved gas and liquid vapor
US6082174A (en) * 1998-08-11 2000-07-04 Benchtop Machine And Instrument, Inc. Apparatus and method for determining the amount of entrapped gas in a material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118964A1 (de) * 1983-03-10 1984-09-19 Haffmans B.V. Vorrichtung zur Messung der Gaskonzentration einer gasenthaltenden Flüssigkeit
WO1992008121A1 (en) * 1990-10-26 1992-05-14 Atlantic Richfield Company System for determining liquid vapor pressure
US5285674A (en) * 1991-06-18 1994-02-15 Spuhl Ag Measurement device for detecting gas charge of a plastic component
EP0581207A2 (de) * 1992-07-25 1994-02-02 Spühl Ag Messeinrichtung zur Erfassung der Gasbeladung oder Dampfdruckes einer Flüssigkeit, insbesondere einer fliessfähigen Kunststoffkomponente
WO1999002963A1 (de) * 1997-07-11 1999-01-21 Edf Polymer-Applikation Maschinenfabrik Gmbh Messeinrichtung und verfahren zur messung der gasbeladung von flüssigkeiten, insbesondere flüssigen kunststoffkomponenten

Also Published As

Publication number Publication date
US20050092062A1 (en) 2005-05-05
DE10350757A1 (de) 2005-06-02

Similar Documents

Publication Publication Date Title
DE2123375C3 (de)
DE1498960C3 (de)
DE3042052C2 (de) Vorrichtung zum Spritzgießen von Präzisionsteilen
EP0995099B1 (de) Messeinrichtung und verfahren zur messung der gasbeladung von flüssigen kunststoffkomponenten
DE69729828T2 (de) Zusammenschiebbare vorrichtung zur kompression von packungsmaterial in flüssigkeitschromatographiekolonnen und verfahren zu ihrer benutzung
DD241189A5 (de) Verfahren zum injizieren viskoser fluessigkeit in brot oder konditoreiwaren
DE3420222C2 (de)
DE3000475A1 (de) Verfahren und einrichtung fuer die chromatographie
DE2424972A1 (de) Verfahren bzw. einrichtung zum absondern von feststoffpartikeln aus einer suspension, insbesondere zur entnahme von proben eines polymers aus dem in form einer suspension abgegebenen ausgangsstrom eines polymerisationsreaktors
EP0412480A1 (de) Vorrichtung zum Füllen von Behältern
DE4309188A1 (de) Vorrichtung zum Vergießen von Bauteilen mit einer imprägnierenden Masse
DE602004011795T2 (de) Verfahren zur einführung von standardgas in ein probengefäss
DE2123653B2 (de) Vorrichtung zur Herstellung eines Elutionsmittels
DE1917905A1 (de) Verfahren und Vorrichtung zur Flaechenmessung
WO2005043130A1 (de) Vorrichtung und verfahren zur bestimmung des gasgehaltes einer flüssigkeit
DE112017003211T5 (de) Blasen eliminierende Struktur, Blasen eliminierendes Verfahren und Umwälzverfahren, das selbige nutzt
EP2083235A1 (de) Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien
AT402837B (de) Verfahren und vorrichtung zum dosieren von gas
DE3028818A1 (de) Vorrichtung zur einspeisung von proben in eine analysiereinrichtung
EP3588080A1 (de) Verfahren und vorrichtung zur automatischen chromatographie von dünnschichtplatten
WO2004057296A1 (de) Verfahren und vorrichtung zur dichtheitsprüfung
EP2006020B1 (de) Probenbehandlungsanordnung für eine Flüssigkeitsdosiervorrichtung
DE1966542B2 (de) Anlage zur verarbeitung von giessharz
DE2017242B2 (de) Dosierventil und verfahren zur einfuehrung eines unter druck stehenden mediums in eine analysierapparatur
EP0311593B1 (de) Vorratszylinder zum Auspressen einer pastösen Masse

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase