WO2005042402A1 - Inorganic porous material containing dispersed particles - Google Patents

Inorganic porous material containing dispersed particles Download PDF

Info

Publication number
WO2005042402A1
WO2005042402A1 PCT/JP2003/014023 JP0314023W WO2005042402A1 WO 2005042402 A1 WO2005042402 A1 WO 2005042402A1 JP 0314023 W JP0314023 W JP 0314023W WO 2005042402 A1 WO2005042402 A1 WO 2005042402A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersed particles
inorganic porous
open pores
particles
inorganic
Prior art date
Application number
PCT/JP2003/014023
Other languages
French (fr)
Japanese (ja)
Inventor
Naohiro Soga
Kazuki Nakanishi
Shigeru Hanzawa
Yousuke Sato
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to PCT/JP2003/014023 priority Critical patent/WO2005042402A1/en
Priority to AU2003280697A priority patent/AU2003280697A1/en
Publication of WO2005042402A1 publication Critical patent/WO2005042402A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/124Preparation of adsorbing porous silica not in gel form and not finely divided, i.e. silicon skeletons, by acidic treatment of siliceous materials

Definitions

  • the present invention relates to an inorganic porous body containing dispersed particles.
  • an inorganic porous material represented by ceramics is produced by sintering a compact formed of raw material particles bound by a resin component called a binder or a pore forming agent with burning of a binder. ing. The pores are formed by burning out the binder and leaving the occupied space between the sintered particles.
  • the particles are aggregated and mixed into the sintered body, and it is difficult for the particles to adhere to the wall surfaces of the pores. It is also conceivable to inject a liquid containing dispersed particles into the pores of the sintered body after the sintered body is manufactured, and to cure the liquid.
  • the sintered body has a non-uniform pore shape, many necks, and a wide pore size distribution. Further, it is difficult to increase the pore diameter to a certain degree or more. For this reason, it is difficult to uniformly adhere and support another type of particles inside the pores of the sintered body. Also, it is difficult to disperse dispersed particles larger than a certain size in the pores of the sintered body.
  • a porous silica material is produced with good reproducibility by a sol-gel method utilizing phase separation (Japanese Patent No. 2123708, Japanese Patent Application Laid-Open No. 3-285833, etc.).
  • Japanese Patent No. 2123708, Japanese Patent Application Laid-Open No. 3-285833, etc. Japanese Patent Application Laid-Open No. 3-285833, etc.
  • the pore shape and its size distribution are extremely uniform. It also forms relatively large diameter pores. Is possible.
  • this porous body is entirely homogeneous, for example, of silica. For this reason, it is difficult for the porous body to retain various functions, and the use of the porous body is limited.
  • An object of the present invention is to provide a new inorganic porous material mainly composed of an inorganic porous skeleton, which can uniformly support various particles on the porous skeleton without roughening the walls of the open pores.
  • An object of the present invention is to provide an inorganic porous composite (the present invention includes an inorganic porous skeleton provided with open pores, and dispersed particles exposed on a wall surface facing the open pores of the porous skeleton. Further, the present invention relates to an inorganic porous material, wherein the porous skeleton is generated by a sol-gel transition accompanied by a phase transition.
  • the dispersed particles are exposed on the wall surface facing the open pores of the porous skeleton generated by the sol-gel transition accompanied by the phase transition.
  • a porous skeleton can control or enlarge the pore diameter of the open pores, has almost no neck portion, and has high uniformity of the pore diameter of the open pores.
  • each dispersed particle is exposed from the open pore wall surface of the porous body. At this time, preferably, at least 1 vol.%, More preferably at least 5 vol.% Of the volume of each dispersed particle is raised from the wall surface of the open pores of the porous skeleton.
  • FIG. 1 is a scanning electron micrograph (magnification: 500 ⁇ ) showing a cross section of the inorganic porous composite having an addition amount of dispersed particles of 0.0 g in the examples.
  • W is a scanning electron micrograph (magnification: 500 ⁇ ) showing a cross section of the inorganic porous composite having an addition amount of dispersed particles of 0.0 g in the examples.
  • FIG. 2 is a scanning electron micrograph (magnification: 20000) showing a cross section of the inorganic porous composite in which the amount of dispersed particles added was 0.5 g in Examples.
  • FIG. 3 is a scanning electron microscope photograph (magnification: 500,000) showing a cross section of the inorganic porous composite having an added amount of dispersed particles of 1.0 g in the examples.
  • FIG. 4 is a scanning electron micrograph (magnification: 20000) showing a cross section of the inorganic porous composite having an added amount of dispersed particles of 1.0 g in the example.
  • FIG. 5 is a scanning electron micrograph (magnification: 500 ⁇ ) showing a cross section of the inorganic porous composite having an added amount of dispersed particles of 2.0 g in the example.
  • FIG. 6 is a scanning electron micrograph (magnification: 20000 times) showing a cross section of an inorganic porous composite 0 body having an added amount of dispersed particles of 2.0 g in the example.
  • the porous skeleton is formed by a V-Rugel transition accompanied by a phase transition.
  • a solution containing a precursor of the network-forming component is prepared, and the precursor is reacted in the solution, for example, a hydrolysis reaction is performed to form a sol, and the sol is gelled. (Solidification).
  • This is called a sol-gel transition.
  • a phase is separated into a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase).
  • this gel forms a network structure, a porous body having open pores can be obtained by drying the solvent phase and removing the solvent.
  • the present invention after obtaining the porous body, it is also possible to expose the dispersed particles to the open pores of the porous body by filling the slurry containing the dispersed particles through the open pores of the porous body and then heat-treating the porous body.
  • the sol-gel reaction solution The dispersed particles are allowed to coexist in advance. After the sol-gel reaction proceeds, a large number of these dispersed particles are exposed on the wall surface of the open pores of the network structure. In this case, the dispersed particles can be more uniformly dispersed on the walls of the open pores of the porous body.
  • dispersed particles are allowed to coexist in the sol-gel reaction solution to cause a sol-gel transition accompanied by a phase transition, thereby forming a porous skeleton including open pores and dispersing on the wall surfaces of the open pores. Exposure of particles.
  • phase separation into a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase) is performed.
  • the diffusion of each component against the concentration gradient occurs using the difference in chemical potential as a driving force until each phase region reaches the equilibrium composition under the given temperature and pressure.
  • Mass transfer continues. At this time, conditions are selected so that the dispersed particles coexist in the starting composition and that the dispersed particles do not significantly affect the phase separation-sol-gel reaction.
  • the steps (1) and (2) wash the wet gel or remove the solvent. After the treatment, the solvent is removed to obtain an inorganic porous composite. If necessary, the inorganic porous composite can be heat-treated at an appropriate temperature.
  • the pore diameter of the open pores of the porous skeleton is preferably 100 nm or more, more preferably 200 nm or more, from the viewpoint of improving the air permeability of the open pores.
  • Such macropores are formed as regions occupied by the solvent phase generated during phase separation. When the solvent phase and the gel phase are entangled with each other to form a continuous so-called interconnected structure, an extremely sharp size distribution can be obtained.
  • the pore diameter (diameter) of the open pores There is no particular upper limit on the pore diameter (diameter) of the open pores. However, from the viewpoint of easiness of manufacture, it is preferably at most 1000 nm.
  • the inorganic substance constituting the porous skeleton is not particularly limited.
  • metal oxides are particularly preferred.
  • the metal oxide include silicon oxide, titanium oxide, zirconium oxide, and alumina. Two or more kinds of metal oxidized products may be used.
  • the dispersed particles metal oxides, metals, organic high molecules, and composites thereof can be used.
  • transition metal oxides silicon oxide, titanium oxide, zirconium oxide, aluminum oxide, calcium oxide, magnesium oxide, iron oxide, transition metal oxides, yttrium oxide, lanthanum oxide, rare earth oxides, and the like are preferable.
  • Carbonates, nitrates, sulfates, phosphates, halides, inorganic salts, and the like that are stable in the liquid can also be used.
  • Organic salts, complexes, protected metal colloids, polymer latexes, and even finely divided organic polymers can be used to produce the inorganic porous composite of the present invention by controlling the dispersibility in the reaction solution. Can be.
  • the average diameter of the dispersed particles is not particularly limited. Since the dispersed particles must be sized to fit within the open pores of the porous skeleton, the average diameter of the dispersed particles must be smaller than the pore diameter (diameter) of the open pores of the porous skeleton. In particular, from the viewpoint of exerting some function in the open pores, it is preferable that the average diameter of the dispersed particles is somewhat smaller than the diameter of the open pores. From this viewpoint, the diameter of the dispersed particles is preferably 500 nm or less.
  • the average diameter of the dispersed particles is preferably 5 nm or more from the viewpoint of suppressing aggregation during dispersion. Also, if the average diameter of the dispersed particles is too small compared to the diameter of the open pores, the fluid passing through the open pores will be less likely to come into contact with the dispersed particles, and the function may not be exerted. . Therefore, if the material that forms the basis of the present application is specified, the diameter d of the porous open pores without the addition of dispersed particles DZ The diameter d of the dispersed particles is preferably 600 or less, and 100 or less. More preferably, it is.
  • the average aspect ratio (major axis / minor axis) of the dispersed particles is preferably set to 1.5 or less.
  • the weight ratio of the dispersed particles is preferably not more than 90% by weight, more preferably not more than 80% by weight, based on the whole inorganic porous composite material. Further, from the viewpoint of exerting the function of the dispersed particles, the weight ratio of the dispersed particles is preferably 0.01% by weight or more based on the whole inorganic porous composite, and more preferably 0.1% by weight. More preferably, it is at least 1% by weight.
  • the effect of supporting the dispersed particles in the open pores is not particularly limited. ⁇ For example, a surface roughness forming function that increases the surface roughness of the open pores and increases the contact area between the fluid and the inner wall surface of the porous skeleton. Good. Further, it may have a catalytic function of a chemical reaction.
  • Examples of the precursor of the network-forming component that causes gel formation used in the sol-gel reaction include the following.
  • Metal alkoxides metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, alkyl-substituted organometallic alkoxides
  • Multimers that are partial polymerization products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides or alkyl-substituted organic metal alkoxides
  • a water-soluble polymer is dissolved in an acidic aqueous solution, dispersed particles are added thereto, and the mixture is dispersed by stirring and sonication.
  • the precursor particularly preferably a hydrolyzable functional group
  • the hydrolysis reaction is performed by adding a metal compound having the following formula.
  • the precursor of the network-forming component gradually increases its degree of polymerization, and the compatibility with the solvent phase mainly composed of water or the solvent phase mainly composed of the water-soluble polymer decreases. At this time, spinodal decomposition occurs in the solution, and at the same time gelation occurs due to hydrolysis and polymerization of the network-forming components. Occur.
  • the product is then dried and heated.
  • the water-soluble polymer is a water-soluble organic polymer that can be converted into an aqueous solution having an appropriate concentration, and is uniformly dissolved in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group. Anything can be obtained.
  • sodium or potassium salts of polystyrene snorenoic acid which is a polymer metal salt
  • polyacrylic acid which is a polymer acid and dissociates into a polyanion
  • a polymer base which is a polycation in an aqueous solution.
  • Suitable are polyallylamine and polyethyleneimine, which produce the above, polyethylene oxide which is a neutral polymer and has an ether bond in the main chain, or polyvinylpyrrolidone.
  • Formamides, polyhydric alcohols and surfactants may be used in place of the organic polymer, in which case glycerin is the most suitable polyhydric alcohol, and polyoxyethylene alkyl ethers are the best surfactants. It is.
  • the metal compound having a hydrolyzable functional group As the metal compound having a hydrolyzable functional group, ;; a metal alkoxide or an oligomer thereof can be used. For example, those having a small number of carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group are preferable.
  • a metal of an oxide to be finally formed for example, Si, Ti, Zr, or A1 is used.
  • the metal may be one kind or two or more kinds.
  • it is only necessary that the polysaccharide is uniformly dissolved and dispersed in alcohol, and specifically, up to about 10-mers can be used.
  • Alkoxyalkoxysilanes in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, and oligomers up to about 10-mers thereof are preferably used.
  • Alkyl-substituted metal alkoxides in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.
  • a mineral acid such as hydrochloric acid, nitric acid, etc.
  • organic acids such as formic acid, acetic acid and the like having a value of 0.01N or more are preferred.
  • the hydrolysis and polymerization can be achieved by storing the solution at room temperature of 40 to 80 ° 0 for 0.5 to 5 hours. During this process, gelation and phase separation proceed.
  • the weight of the silica particles was changed to 0.1 g, 0.5 g, 1.0 g, and 2.0 g.
  • the weight ratios of the dispersed particles to the entire inorganic porous composite are 4.13, 17.7, 30.1, and 46.3% by weight, respectively.
  • a porous body having communication holes was obtained.
  • Scanning electron micrographs of the polished surface of the inorganic-porous composite of each example were taken (magnification: 500,000, 200,000). The following drawings are presented among these. ( Figure 1) Dispersed particles 0.0 g Magnification 500 000 times
  • the diameter D of the open pores of the porous body without added dispersed particles / the average diameter d of the dispersed particles is 2.5, and the average aspect ratio of the dispersed particles is 1.1.
  • the average aspect ratio of the dispersed particles was calculated by selecting 50 pieces from the SEM photograph.
  • Example 1 An inorganic porous composite was produced in the same manner as in Example 1. However, in Example 1, silica particles “SO_C1” (average particle size: 0.2 to 0.3 jum) manufactured by Admatech Co., Ltd. were used as dispersed particles. The added amount of the dispersed particles was changed to 0.0 g, 0.5 g, 1.0 g, and 2.0 g. A cross section of each of the obtained inorganic porous composites was observed with a scanning electron microscope (magnifications: 500,000 and 20,000). As a result, almost the same observation results as in Example 1 were obtained.
  • the diameter of the porous open pores without the addition of the dispersed particles DZ, the average diameter d of the dispersed particles is 3, and the average aspect ratio of the dispersed particles is 1.1.
  • the average aspect ratio of the dispersed particles was calculated by selecting 50% from the SEM photograph.
  • a novel inorganic porous material mainly comprising an inorganic porous skeleton, in which various particles are uniformly carried on the wall surfaces of the open pores, is provided.
  • a complex can be provided.

Abstract

An inorganic porous composite material which comprises an inorganic porous skeleton having open pores and dispersed particles being exposed on the wall of open pores of the porous skeleton, wherein the porous skeleton is formed by the sol-gel transformation accompanied by phase transition. The inorganic porous composite material has allowed an inorganic porous material having an inorganic porous skeleton as a main component to carry various types of particles on the wall of open pores of the material in a uniformly dispersed state.

Description

明細書  Specification
分散粒子を含む無機系多孔質体 発明の属する技術分野  TECHNICAL FIELD The technical field to which the present invention pertains
本発明は、 分散粒子を含む無機系多孔質体に関する。  The present invention relates to an inorganic porous body containing dispersed particles.
背景技術  Background art
一般にセラミックスに代表される無機系多孔質体は、 バインダーある いは造孔剤と呼ばれる樹脂成分によって結着された原料微粒子の圧縮成 形体を、 バインダーの燃焼を伴って焼結させることにより作製されてい る。 気孔の形成はバインダ一焼失により、 その占めていた空間が焼結粒 子間に残ることによっている。  In general, an inorganic porous material represented by ceramics is produced by sintering a compact formed of raw material particles bound by a resin component called a binder or a pore forming agent with burning of a binder. ing. The pores are formed by burning out the binder and leaving the occupied space between the sintered particles.
発明の開示  Disclosure of the invention
しかし、 焼結体の細孔の壁面に各種の粒子を分散させ、 付着させるこ とは難しい。 例えば焼結用の原料粒子中に分散粒子を混合させると、 粒 子は凝集して焼結体の中に混合され、 細孔の壁面には付着した形とはな りにくい。 また、 焼結体を製造した後に、 焼結体の細孔の中に、 分散粒 子を含む液体を注入し、 硬化させることも考えられる。 しかし、 焼結体 の細孔形状は不均一であり、 ネック部が多く、 細孔のサイズ分布も広い ものとなる。また、細孔径をある程度以上大きくすることは困難である。 このため、 焼結体の細孔の内部に別種の粒子を均一に付着させ、 担持さ せることは難しい。 また、 ある程度以上大きい分散粒子を焼結体の細孔 中に分散することは困難である。  However, it is difficult to disperse and adhere various types of particles to the walls of the pores of the sintered body. For example, when the dispersed particles are mixed with the raw material particles for sintering, the particles are aggregated and mixed into the sintered body, and it is difficult for the particles to adhere to the wall surfaces of the pores. It is also conceivable to inject a liquid containing dispersed particles into the pores of the sintered body after the sintered body is manufactured, and to cure the liquid. However, the sintered body has a non-uniform pore shape, many necks, and a wide pore size distribution. Further, it is difficult to increase the pore diameter to a certain degree or more. For this reason, it is difficult to uniformly adhere and support another type of particles inside the pores of the sintered body. Also, it is difficult to disperse dispersed particles larger than a certain size in the pores of the sintered body.
一方、 相分離を利用したゾル—ゲル法によって、 例えばシリカの多孔 質体が再現性よく製造されることが知られている(特許第 2123708号号 公報、 特開平 3-285833号公報など)。 この方法では、 細孔形状やそのサ ィズ分布はきわめて均一性が高い。 また、 比較的大きな直径の細孔を形 成することが可能である。 しかし、 この多孔体は、 全体が均質であり、 例えばシリカからなっている。 このため多孔体に各種の機能を保持させ ることが難しく、 多孔体の用途が限られる。 On the other hand, it is known that, for example, a porous silica material is produced with good reproducibility by a sol-gel method utilizing phase separation (Japanese Patent No. 2123708, Japanese Patent Application Laid-Open No. 3-285833, etc.). In this method, the pore shape and its size distribution are extremely uniform. It also forms relatively large diameter pores. Is possible. However, this porous body is entirely homogeneous, for example, of silica. For this reason, it is difficult for the porous body to retain various functions, and the use of the porous body is limited.
本発明の課題は、 無機物の多孔質骨格を主体とする無機系多孔質体に おいて、 その開気孔の壁面を荒らすことなく前記多孔質骨格に各種の粒 子を均一に担持可能な新たな無機系多孔質複合体を提供することである ( 本発明は、 開気孔が設けられた無機物の多孔質骨格と、 多孔質骨格の 開気孔に面する壁面に露出する分散粒子とを含んでおり、多孔質骨格が、 相転移を伴うゾル—ゲル転移によって生成していることを特徴とする、 無機系多孔質体に係るものである。 An object of the present invention is to provide a new inorganic porous material mainly composed of an inorganic porous skeleton, which can uniformly support various particles on the porous skeleton without roughening the walls of the open pores. An object of the present invention is to provide an inorganic porous composite (the present invention includes an inorganic porous skeleton provided with open pores, and dispersed particles exposed on a wall surface facing the open pores of the porous skeleton. Further, the present invention relates to an inorganic porous material, wherein the porous skeleton is generated by a sol-gel transition accompanied by a phase transition.
本発明によれば、 相転移を伴うゾルーゲル転移によって生成させた多 孔質骨格の開気孔に面する壁面に分散粒子を露出させている。 このよう な多孔質骨格は、 開気孔の気孔径を制御し、 あるいは大きくすることが 可能であり、 またネック部がほとんどなく、 開気孔の気孔径の均一性が 高い。 その上、 分散粒子を開気孔の壁面に均一に散布することが可能で あり、 また分散粒子の散布量を制御するこ とが比較的容易である。 これ によって、 多孔質体中の分散粒子の各種機能を、 従来の多孔質焼結体に よっては得られないような高い効率で発揮させることが可能である。 なお、 本発明の多孔体においては、 各分散粒子が多孔質体の開気孔壁 面から露出する。 この際、 好ましくは、 各分散粒子の体積の 1 vol.%以上、 更に好ましくは 5 vol.%以上が多孔質骨格の開気孔の壁面から浮き出し ている。 図面の簡単な説明  According to the present invention, the dispersed particles are exposed on the wall surface facing the open pores of the porous skeleton generated by the sol-gel transition accompanied by the phase transition. Such a porous skeleton can control or enlarge the pore diameter of the open pores, has almost no neck portion, and has high uniformity of the pore diameter of the open pores. In addition, it is possible to uniformly disperse the dispersed particles on the wall surfaces of the open pores, and it is relatively easy to control the amount of the dispersed particles to be dispersed. This makes it possible to exhibit various functions of the dispersed particles in the porous body with high efficiency that cannot be obtained by the conventional porous sintered body. In the porous body of the present invention, each dispersed particle is exposed from the open pore wall surface of the porous body. At this time, preferably, at least 1 vol.%, More preferably at least 5 vol.% Of the volume of each dispersed particle is raised from the wall surface of the open pores of the porous skeleton. Brief Description of Drawings
図 1は、 実施例において分散粒子添加量 0 . 0 gの無機系多孔質複合 体の断面を示す走査型電子顕微鏡写真である (倍率 5 0 0 0倍)。 W FIG. 1 is a scanning electron micrograph (magnification: 500 ×) showing a cross section of the inorganic porous composite having an addition amount of dispersed particles of 0.0 g in the examples. W
3 Three
図 2は、 実施例において分散粒子添加量 0 . 5 gの無機系多孔質複合 体の断面を示す走査型電子顕微鏡写真である (倍率 2 0 0 0 0倍)。 図 3は、 実施例において分散粒子添加量 1 . 0 gの無機系多孔質複合 体の断面を示す走査型電子顕微鏡写真である (倍率 5 0 0 0倍)。  FIG. 2 is a scanning electron micrograph (magnification: 20000) showing a cross section of the inorganic porous composite in which the amount of dispersed particles added was 0.5 g in Examples. FIG. 3 is a scanning electron microscope photograph (magnification: 500,000) showing a cross section of the inorganic porous composite having an added amount of dispersed particles of 1.0 g in the examples.
5 図 4は、 実施例において分散粒子添加量 1 . 0 gの無機系多孔質複合 体の断面を示す走査型電子顕微鏡写真である (倍率 2 0 0 0 0倍)。 図 5は、 実施例において分散粒子添加量 2 . 0 gの無機系多孔質複合 体の断面を示す走査型電子顕微鏡写真である (倍率 5 0 0 0倍)。  5 FIG. 4 is a scanning electron micrograph (magnification: 20000) showing a cross section of the inorganic porous composite having an added amount of dispersed particles of 1.0 g in the example. FIG. 5 is a scanning electron micrograph (magnification: 500 ×) showing a cross section of the inorganic porous composite having an added amount of dispersed particles of 2.0 g in the example.
図 6は、 実施例において分散粒子添加量 2 . 0 gの無機系多孔質複合 0 体の断面を示す走査型電子顕微鏡写真である (倍率 2 0 0 0 0倍)。  FIG. 6 is a scanning electron micrograph (magnification: 20000 times) showing a cross section of an inorganic porous composite 0 body having an added amount of dispersed particles of 2.0 g in the example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明においては、 多孔質骨格が、 相転移を伴う Vルーゲル転移によ 5 つて生成している。 この反応を生じさせるためには、 網目形成成分の前 駆体を含む溶液を製造し、 この溶液中において前駆体を反応、 例えば加 水分解反応させることによってゾルを生成し、 このゾルをゲル化(固化) させる。 これをゾル—ゲル転移と呼ぶ。 このゾルーゲル転移の際に、 ゲ ル形成を起こす網目形成成分に富む相 (ゲル相) と、 ゲル形成を起こさ0 ない溶媒成分に富む相 (溶媒相) に相分離を起こさせる。 その結果、 こ のゲルは網目構造を形成しているので、 その溶媒相を乾燥して溶媒を除 去することにより、 開気孔を有する多孔質体が得られる。  In the present invention, the porous skeleton is formed by a V-Rugel transition accompanied by a phase transition. In order to cause this reaction, a solution containing a precursor of the network-forming component is prepared, and the precursor is reacted in the solution, for example, a hydrolysis reaction is performed to form a sol, and the sol is gelled. (Solidification). This is called a sol-gel transition. During the sol-gel transition, a phase is separated into a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase). As a result, since this gel forms a network structure, a porous body having open pores can be obtained by drying the solvent phase and removing the solvent.
本発明においては、 この多孔質体を得た後に、 多?し質体の開気孔から 分散粒子を含むスラリーを充填し、 次いで多孔質体を熱処理することに5 よって分散粒子を多孔質体の開気孔中に露出させることも可能である。  In the present invention, after obtaining the porous body, It is also possible to expose the dispersed particles to the open pores of the porous body by filling the slurry containing the dispersed particles through the open pores of the porous body and then heat-treating the porous body.
しかし、 好適な実施形態においては、 前記のゾルーゲル反応溶液中に 予め分散粒子を共存させておく。 この分散粒子は、 ゾルーゲル反応が進 行した後には、 網目構造の開気孔の壁面上に多数露出するようにする。 この場合には、 分散粒子を多孔質体の開気孔の壁面に一層均一に分散す ることができる。 However, in a preferred embodiment, the sol-gel reaction solution The dispersed particles are allowed to coexist in advance. After the sol-gel reaction proceeds, a large number of these dispersed particles are exposed on the wall surface of the open pores of the network structure. In this case, the dispersed particles can be more uniformly dispersed on the walls of the open pores of the porous body.
以下、 更に具体的な説明を行う。  Hereinafter, a more specific description will be given.
好適な実施形態においては、 ゾルーゲル反応溶液に分散粒子を共存さ せておき、 相転移を伴うゾルーゲル転移を起こさせることによって、 開 気孔を含む多孔質骨格を形成すると共に、 開気孔の壁面に分散粒子を露 出させる。  In a preferred embodiment, dispersed particles are allowed to coexist in the sol-gel reaction solution to cause a sol-gel transition accompanied by a phase transition, thereby forming a porous skeleton including open pores and dispersing on the wall surfaces of the open pores. Exposure of particles.
このゾル—ゲル反応系においては、 時間経過につれて、 ゲル形成を起 こす網目形成成分に富む相 (ゲル相) と、 ゲル形成を起こさない溶媒成 分に富む相 (溶媒相) とに、 相分離が起こる。 各相領域の形成にあたつ ては、 化学ポテンシャルの差を駆動力として濃度勾配に逆らった各成分 の拡散が起こり、 各相領域が、 与えられた温度 ·圧力下での平衡組成に 達するまで、 物質移動が継続する。 この際に、 出発組成に分散粒子を共 存させ、 なおかつ分散粒子が相分離ゃゾルーゲル反応に著しい影響を与 えないような条件を選ぶ。  In this sol-gel reaction system, as time elapses, phase separation into a phase rich in a network-forming component causing gel formation (gel phase) and a phase rich in a solvent component not causing gel formation (solvent phase) is performed. Happens. In the formation of each phase region, the diffusion of each component against the concentration gradient occurs using the difference in chemical potential as a driving force until each phase region reaches the equilibrium composition under the given temperature and pressure. , Mass transfer continues. At this time, conditions are selected so that the dispersed particles coexist in the starting composition and that the dispersed particles do not significantly affect the phase separation-sol-gel reaction.
具体的な製法を例示する。  A specific production method will be exemplified.
( 1 ) 溶媒中に分散粒子を加え、 撹拌、 超音波処理することにより分散 させる。 次いで、 溶媒に、 網目形成成分の前駆体を溶解させ、 網目形成 成分の生成反応を生じさせ、 ゾル—ゲル転移および相分離反応を進行さ せる。  (1) Add dispersed particles to a solvent, disperse by stirring and sonication. Next, the precursor of the network-forming component is dissolved in the solvent to cause a reaction for generating the network-forming component, and the sol-gel transition and the phase separation reaction to proceed.
( 2 ) 溶媒中に網目形成成分を溶解させる。 この溶液に分散粒子の分散 液を加え、 撹拌、 超音波処理を行う。 そして網目形成成分の生成反応を 生じさせ、 ゾル—ゲル転移および相分離反応を進行させる。  (2) Dissolve the network-forming component in the solvent. A dispersion of the dispersed particles is added to this solution, followed by stirring and ultrasonic treatment. Then, a formation reaction of a network-forming component is caused, and a sol-gel transition and a phase separation reaction proceed.
( 1 ) ( 2 ) の工程の後には、 湿潤ゲルを洗浄し、 あるいは溶媒置換処 理を行った後で、 溶媒を除去し、 無機系多孔質複合体を得る。 必要に応 じて適切な温度で無機系多孔質複合体を熱処理することもできる。 After the steps (1) and (2), wash the wet gel or remove the solvent. After the treatment, the solvent is removed to obtain an inorganic porous composite. If necessary, the inorganic porous composite can be heat-treated at an appropriate temperature.
多孔質骨格の開気孔の気孔径は、 開気孔の通気性を向上させるという 観点からは、 直径 1 0 0 n m以上であることが好ましく、 2 0 0 n m以 上であることが更に好ましい。 このようなマクロ孔ぽ、 相分離の際に生 じる溶媒相の占めていた領域として形成される。 溶媒相とゲル相が各々 絡み合って連続したいわゆる共連構造を形成する場合には、 きわめて鋭 いサイズ分布を得ることができる。  The pore diameter of the open pores of the porous skeleton is preferably 100 nm or more, more preferably 200 nm or more, from the viewpoint of improving the air permeability of the open pores. Such macropores are formed as regions occupied by the solvent phase generated during phase separation. When the solvent phase and the gel phase are entangled with each other to form a continuous so-called interconnected structure, an extremely sharp size distribution can be obtained.
開気孔の気孔径 (直径) の上限は特にない。 しかし、 製造し易さの点 からは 1 0 0 0 0 n m以下が好ましい。  There is no particular upper limit on the pore diameter (diameter) of the open pores. However, from the viewpoint of easiness of manufacture, it is preferably at most 1000 nm.
多孔質骨格を構成する無機物は特に限定されない。 しかし、 金属の酸 化物が特に好ましい。 金属酸化物としては、 酸化珪素、 酸化チタン、 酸 化ジルコニウム、 アルミナ、 を例示できる。 金属酸ィ匕物を二種以上使用 してもよい。  The inorganic substance constituting the porous skeleton is not particularly limited. However, metal oxides are particularly preferred. Examples of the metal oxide include silicon oxide, titanium oxide, zirconium oxide, and alumina. Two or more kinds of metal oxidized products may be used.
現在工業的に生産、 市販されている分散粒子は、 有機高分子、 金属酸 化物あるいは金属を主成分とし、 その粒径 (平均直径) は 5 n m程度か ら 1 0 0 m程度まで非常に広い範囲にわたっている。 これらの微粒子 と、ゲル形成を起こす網目形成成分との化学的な親禾ロ性は、多くの場合、 粒子表面の化学修飾などによって自由に制御できることが知られている ( 従って、 ゾルーゲル反応時に凝集や沈降を起こさない条件を満たす粒子 であれば、 化学組成に関係なく、 本製造方法に適用することができる。 Currently, industrially produced and commercially available dispersed particles are mainly composed of organic polymers, metal oxides or metals, and their particle diameters (average diameter) are extremely wide from about 5 nm to about 100 m. Range. It is known that the chemical affinity between these fine particles and the network-forming component that causes gel formation can be freely controlled in many cases by chemical modification of the particle surface ( accordingly, aggregation during the sol-gel reaction). Particles satisfying conditions that do not cause sedimentation or sedimentation can be applied to the present production method regardless of the chemical composition.
したがって、 本発明において分散粒子は、 金属酸ィ匕物、 金属、 有機高 分子、 およびそれらの複合体を用いることができる。 具体的には、 酸化 珪素、 酸化チタン、 酸化ジルコニウム、 酸化アルミニウム、 酸化カルシ ゥム、 酸化マグネシウム, 酸化鉄ほか遷移金属酸化物、 酸化ィッ トリウ ムおよび酸化ランタンほか希土類酸化物などが好適である。 更に反応溶 液中で安定な炭酸塩、 硝酸塩、 硫酸塩、 リン酸塩、 ハロゲン化物、 無機 塩類なども同様に用いることができる。 有機塩、 錯体、 保護された金属 コロイ ド、 高分子ラテックスほか微粒子状有機高分子も、 反応溶液への 分散性を制御することによって、 本発明による無機系多孔質複合体の作 製に用いることができる。 Therefore, in the present invention, as the dispersed particles, metal oxides, metals, organic high molecules, and composites thereof can be used. Specifically, transition metal oxides, silicon oxide, titanium oxide, zirconium oxide, aluminum oxide, calcium oxide, magnesium oxide, iron oxide, transition metal oxides, yttrium oxide, lanthanum oxide, rare earth oxides, and the like are preferable. . Further reaction Carbonates, nitrates, sulfates, phosphates, halides, inorganic salts, and the like that are stable in the liquid can also be used. Organic salts, complexes, protected metal colloids, polymer latexes, and even finely divided organic polymers can be used to produce the inorganic porous composite of the present invention by controlling the dispersibility in the reaction solution. Can be.
分散粒子の平均直径は特に限定されない。 分散粒子は、 多孔質骨格の 開気孔内に入る大きさでなければならないので、分散粒子の平均直径は、 多孔質骨格の開気孔の気孔径 (直径) よりも小さくなければならない。 特に開気孔内で何らかの機能を発揮するという観点からは、 分散粒子の 平均直径は、 開気孔の直径よりもある程度小さいことが好ましい。 こう した観点からは、 分散粒子の直径は、 5 0 0 n m以下であることが好ま しい。  The average diameter of the dispersed particles is not particularly limited. Since the dispersed particles must be sized to fit within the open pores of the porous skeleton, the average diameter of the dispersed particles must be smaller than the pore diameter (diameter) of the open pores of the porous skeleton. In particular, from the viewpoint of exerting some function in the open pores, it is preferable that the average diameter of the dispersed particles is somewhat smaller than the diameter of the open pores. From this viewpoint, the diameter of the dispersed particles is preferably 500 nm or less.
分散粒子の平均直径は、 分散時の凝集を抑制するという観点からは、 5 n m以上であることが好ましい。 また、 分散粒子の平均直径が開気孔 の直径に比べて小さくなりすぎると、 開気孔内を通過する流体が分散粒 子と接触しにく くなり、 機能が発揮されにく くなるおそれがある。 従つ て、 本願のベースになった材料について明記すれば、 分散粒子無添加の 多孔体開気孔の直径 D Z分散粒子の直径 dは、 6 0 0以下であることが 好ましく、 1 0 0以下であることが更に好ましい。  The average diameter of the dispersed particles is preferably 5 nm or more from the viewpoint of suppressing aggregation during dispersion. Also, if the average diameter of the dispersed particles is too small compared to the diameter of the open pores, the fluid passing through the open pores will be less likely to come into contact with the dispersed particles, and the function may not be exerted. . Therefore, if the material that forms the basis of the present application is specified, the diameter d of the porous open pores without the addition of dispersed particles DZ The diameter d of the dispersed particles is preferably 600 or less, and 100 or less. More preferably, it is.
また、 分散粒子が細長いと、 相転移の過程において、 分散粒子の周囲 の状態が変化し、 開気孔の内壁面に不規則な凹凸が生じやすい。 これを 防止するという観点からは、分散粒子の平均ァスべク ト比(長軸 z短軸) は、 1 . 5以下とすることが好ましい。  In addition, when the dispersed particles are elongated, irregularities are likely to occur on the inner wall surface of the open pores due to a change in the state around the dispersed particles during the phase transition. From the viewpoint of preventing this, the average aspect ratio (major axis / minor axis) of the dispersed particles is preferably set to 1.5 or less.
分散粒子の重量比率は、 無機系多孔質複合材の全体に対して、 9 0重 量%以下であることが好ましく、 8 0重量%以下であることが更に好ま しい。 また、 分散粒子の機能を発揮させるという観点からは、 分散粒子の重 量比率は、 無機系多孔質複合体の全体に対して、 0 . 0 1重量%以上で あるつことが好ましく、 0 . 1重量%以上であることが更に好ましい。 分散粒子を開気孔内に担持させることによる作用は特に限定されない < 例えば開気孔の表面粗さを大きく し、 流体と多孔質骨格内壁面との接触 面積を大きくする表面粗さ形成機能であってよい。 また、 化学反応の触 媒機能を担持させてもよい。 The weight ratio of the dispersed particles is preferably not more than 90% by weight, more preferably not more than 80% by weight, based on the whole inorganic porous composite material. Further, from the viewpoint of exerting the function of the dispersed particles, the weight ratio of the dispersed particles is preferably 0.01% by weight or more based on the whole inorganic porous composite, and more preferably 0.1% by weight. More preferably, it is at least 1% by weight. The effect of supporting the dispersed particles in the open pores is not particularly limited. <For example, a surface roughness forming function that increases the surface roughness of the open pores and increases the contact area between the fluid and the inner wall surface of the porous skeleton. Good. Further, it may have a catalytic function of a chemical reaction.
ゾルーゲル反応に用いられるゲル形成を起こす網目形成成分の前駆体 としては、 以下を例示できる。  Examples of the precursor of the network-forming component that causes gel formation used in the sol-gel reaction include the following.
( 1 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシド, アルキル基置換有機金属アルコキシド (1) Metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, alkyl-substituted organometallic alkoxides
( 2 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシドまたはアルキル基置換有機金属アルコキ シドの部分加水分解生成物 (2) Partial hydrolysis products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic crosslinked metal alkoxides, or alkyl group-substituted organometallic alkoxides
( 3 ) 金属アルコキシド、 金属錯体、 金属塩、 有機修飾金属アルコキシ ド、 有機架橋金属アルコキシドまたはアルキル基置換有機金属アルコキ シドの部分重合生成物である多量体  (3) Multimers that are partial polymerization products of metal alkoxides, metal complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides or alkyl-substituted organic metal alkoxides
( 4 ) 水ガラスほかケィ酸塩水溶液の p Hを変化させることによるゾル 一ゲル転移  (4) Sol-gel transition by changing pH of water glass and silicate aqueous solution
さらに具体的な製造方法では、 水溶性高分子を酸性水溶液に溶かし、 それに分散粒子を加え、撹拌、超音波処理することにより分散させた後、 前記前駆体、 特に好ましくは加水分解性の官能基を有する金属化合物を 添加して加水分解反応を行う。 網目形成成分の前駆体は次第にその重合 度を増していき、 水を主成分とする溶媒相または水溶性高分子を主成分 とする溶媒相との相溶性が低下する。 このときに溶液にスピノーダル分 解が生じると同時に網目形成成分の加水分解 · 重合反応によりゲル化が 起こる。 次いで生成物を乾燥し、 加熱する。 In a more specific production method, a water-soluble polymer is dissolved in an acidic aqueous solution, dispersed particles are added thereto, and the mixture is dispersed by stirring and sonication. The precursor, particularly preferably a hydrolyzable functional group The hydrolysis reaction is performed by adding a metal compound having the following formula. The precursor of the network-forming component gradually increases its degree of polymerization, and the compatibility with the solvent phase mainly composed of water or the solvent phase mainly composed of the water-soluble polymer decreases. At this time, spinodal decomposition occurs in the solution, and at the same time gelation occurs due to hydrolysis and polymerization of the network-forming components. Occur. The product is then dried and heated.
ここで、 水溶性高分子は、 適当な濃度の水溶液となしえる水溶性有機 高分子であって、 加水分解性の官能基を有する金属化合物によって生成 するアルコールを含む反応系中に均一に溶解し得るものであればよい。 具体的には、 高分子金属塩であるポリスチレンスノレホン酸のナトリウム 塩またはカリウム塩、 高分子酸であって解離してポリァニオンとなるポ リアクリル酸、 高分子塩基であって, 水溶液中でポリカチオンを生ずる ポリアリルアミンおよびポリエチレンイミン, あるいは中性高分子であ つて主鎖にエーテル結合を持つポリエチレンォキシド、 あるいはポリビ ニルピロリ ドン等が好適である。 また、 有機高分子に代えてホルムアミ ド、 多価アルコール、 界面活性剤を用いてもよく、 その場合多価アルコ —ルとしてはグリセリンが、 界面活性剤としてポリオキシエチレンアル キルェ一テル類が最適である。  Here, the water-soluble polymer is a water-soluble organic polymer that can be converted into an aqueous solution having an appropriate concentration, and is uniformly dissolved in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group. Anything can be obtained. Specifically, sodium or potassium salts of polystyrene snorenoic acid, which is a polymer metal salt, polyacrylic acid, which is a polymer acid and dissociates into a polyanion, and a polymer base, which is a polycation in an aqueous solution. Suitable are polyallylamine and polyethyleneimine, which produce the above, polyethylene oxide which is a neutral polymer and has an ether bond in the main chain, or polyvinylpyrrolidone. Formamides, polyhydric alcohols and surfactants may be used in place of the organic polymer, in which case glycerin is the most suitable polyhydric alcohol, and polyoxyethylene alkyl ethers are the best surfactants. It is.
加水分解性の官能基を有する金属化合物として «;、 金属アルコキシド またはそのオリゴマーを用いることができ、 これらのものは例えば、 メ トキシ基、 エトキシ基、 プロポキシ基等の炭素数の少ないものが好まし い。 また、 その金属としては、 最終的に形成される酸化物の金属、 例え ば S i、 T i、 Z r、 A 1が使用される。 この金属としては一種または 二種以上であってもよい。 一方ォリゴマ一として ίまアルコールに均一に 溶解分散してあるものであればよく、 具体的には 1 0量体程度まで使用 できる。 また、 これらの珪素アルコキシドのアルコキシ基のいくつかが アルキル基に置換された、 アルキルアルコキシシラン類、 そられの 1 0 量体程度までのオリゴマ一が好適に用いられる。 また珪素に変えて中心 金属元素を、 チタン、 ジルコニウム、 アルミニウム等に置換したアルキ ル置換金属アルコキシドも同様に用いることができる。  As the metal compound having a hydrolyzable functional group, ;; a metal alkoxide or an oligomer thereof can be used. For example, those having a small number of carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group are preferable. No. As the metal, a metal of an oxide to be finally formed, for example, Si, Ti, Zr, or A1 is used. The metal may be one kind or two or more kinds. On the other hand, it is only necessary that the polysaccharide is uniformly dissolved and dispersed in alcohol, and specifically, up to about 10-mers can be used. Alkoxyalkoxysilanes, in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, and oligomers up to about 10-mers thereof are preferably used. Alkyl-substituted metal alkoxides in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.
また、 酸性水溶液としては、 通常塩酸、 硝酸等の鉱酸 0 . 0 0 1規定 以上のもの、 あるいは蟻酸、 酢酸等の有機酸 0. 0 1規定以上のものが 好ましい。 As the acidic aqueous solution, a mineral acid such as hydrochloric acid, nitric acid, etc. The above or organic acids such as formic acid, acetic acid and the like having a value of 0.01N or more are preferred.
加水分解 ·重合反応にあたっては、 溶液を室温 4 0〜 8 0°0で 0. 5 〜 5時間保存することによって達成できる。 この過程においてゲル化お よび相分離が進行する。 実施例  The hydrolysis and polymerization can be achieved by storing the solution at room temperature of 40 to 80 ° 0 for 0.5 to 5 hours. During this process, gelation and phase separation proceed. Example
(実施例 1 )  (Example 1)
水溶性高分子であるポリエチレンオキサイ ド (アルドリッチ製) 0. 9 gを 0.01mol/L の酢酸水溶液 11.3mlに溶解し、 均一に溶かして溶液 を得た。 この溶液にシリ力粒子(分散粒子:アドマテヅク製「SO-C2 」: 平均粒径 0.4 〜0.6 βπι) を加え、 5 分間撹拌した後、 更に 10分間超 音波をかけ分散させた。 その後、 氷冷下で 10 分撹拌した後、 テトラメ トキシシラン (網目形成成分の前駆体:信越シリコーン製) 5.7mlを撹拌 下で加えて、 加水分解反応を行った。 得られた透明溶液を密閉し、 40°C の恒温槽中に保持したところ、 固化した。 得られたゲルをそのままの温 度で約 24時間熟成させ、 その後 60°Cで乾燥させることによりバルク状 の多孔質複合体を得た。  0.9 g of polyethylene oxide (manufactured by Aldrich), which is a water-soluble polymer, was dissolved in 11.3 ml of 0.01 mol / L acetic acid aqueous solution and uniformly dissolved to obtain a solution. To this solution was added silicide particles (dispersed particles: "SO-C2" manufactured by Admatik: average particle diameter 0.4 to 0.6 βπι), and the mixture was stirred for 5 minutes and then dispersed by applying ultrasonic waves for another 10 minutes. Thereafter, the mixture was stirred for 10 minutes under ice-cooling, and 5.7 ml of tetramethoxysilane (a precursor of a network-forming component: manufactured by Shin-Etsu Silicone) was added under stirring to carry out a hydrolysis reaction. The resulting clear solution was sealed and kept in a 40 ° C constant temperature bath where it solidified. The obtained gel was aged at the same temperature for about 24 hours, and then dried at 60 ° C to obtain a bulk porous composite.
ここで、 シリカ粒子 (分散粒子) の重量を 0.1g、 0.5g、 1.0g、 2.0gに 変化させた。 無機系多孔質複合体全体に対する分散粒子の重量比率は、 それぞれ、 4. 1 3、 1 7. 7、 3 0. 1、 4 6. 3重量%となる。 い ずれの例においても、 連通孔をもつ多孔体が得られた。 各例の無機系多 孔質複合体について、 研磨面の走査型電子顕微鏡写真を撮影した (倍率 5 00 0倍、 2 0 000倍)。 これらのうち以下の図面を提示する。 (図 1 ) 分散粒子 0. 0 g 倍率 5 0 0 0倍  Here, the weight of the silica particles (dispersed particles) was changed to 0.1 g, 0.5 g, 1.0 g, and 2.0 g. The weight ratios of the dispersed particles to the entire inorganic porous composite are 4.13, 17.7, 30.1, and 46.3% by weight, respectively. In each case, a porous body having communication holes was obtained. Scanning electron micrographs of the polished surface of the inorganic-porous composite of each example were taken (magnification: 500,000, 200,000). The following drawings are presented among these. (Figure 1) Dispersed particles 0.0 g Magnification 500 000 times
(図 2 ) 分散粒子 0. 5 g 倍率 2 0 0 0 0倍 (図 3 ) 分散粒子 1. 0 g 倍率 5 0 0 0倍 (Figure 2) Dispersed particles 0.5 g Magnification 200 000 (Figure 3) Dispersed particles 1.0 g Magnification 500 000 times
(図 4) 分散粒子 1. 0 g 倍率 2 0 0 0 0倍  (Figure 4) Dispersed particles 1.0 g Magnification 200 000
(図 5 ) 分散粒子 2. 0 g 倍率 5 0 0 0倍  (Figure 5) Dispersed particles 2.0 g Magnification 500 000 times
(図 6 ) 分散粒子 2. 0 g 倍率 2 0 0 0 0倍  (Figure 6) Dispersed particles 2.0 g Magnification 200 000 times
図 1に示すように、 分散粒子が添加されていない場合には、 多孔質骨 格の開気孔が連通しており、 開気孔に面する壁面はなめらかである。 図 2に示すように、 分散粒子 0. 5 gを添加すると、 開気孔に面する壁面 に丸い分散粒子が露出している。 図 3、 図 4に示すように、 分散粒子 1. 0 gを添加すると、 開気孔に面する壁面に一層多量の分散粒子が露出し ていることがわかる。 更に、 図 5、 図 6 に示すように、 分散粒子 2. 0 gを添加すると、開気孔に面する壁面に分散粒子が露出するだけでなく、 その露出量、 露出個数が著しく増加し、 開気孔の気孔径 (直径) も低下 するに至っている。  As shown in FIG. 1, when the dispersed particles were not added, the open pores of the porous skeleton were connected, and the wall facing the open pores was smooth. As shown in FIG. 2, when 0.5 g of the dispersed particles is added, round dispersed particles are exposed on the wall surface facing the open pores. As shown in FIGS. 3 and 4, it can be seen that when 1.0 g of the dispersed particles is added, a larger amount of the dispersed particles is exposed on the wall surface facing the open pores. Furthermore, as shown in Figs. 5 and 6, when 2.0 g of the dispersed particles is added, not only the dispersed particles are exposed on the wall surface facing the open pores, but also the amount of the dispersed particles and the number of the exposed particles are significantly increased. The pore diameter of the pores (diameter) has also been reduced.
なお、本例では、(分散粒子無添加の多孔体開気孔の直径 D/分散粒子 の平均直径 d) が 2. 5であり、 分散粒子の平均アスペクト比が 1. 1 である。なお SEM写真より 50個選択して分散粒子の平均ァスぺク ト比' を算出した。  In this example, (the diameter D of the open pores of the porous body without added dispersed particles / the average diameter d of the dispersed particles) is 2.5, and the average aspect ratio of the dispersed particles is 1.1. The average aspect ratio of the dispersed particles was calculated by selecting 50 pieces from the SEM photograph.
(実施例 2 )  (Example 2)
実施例 1と同様にして無機系多孔質複合体を製造した。 ただし、 実施 例 1において、 分散粒子として、 アドマテック社製のシリカ粒子 「SO_ C1 」 (平均粒径 0.2 〜0.3 jum) を使用した。 分散粒子の添加量は、 0. 0 g、 0. 5 g、 1. 0 g、 2. 0 gに変更した。 得られた各無機 系多孔質複合体の断面を走査型電子顕微鏡で観察した (倍率 5 0 0 0倍 と 2 0000倍)。 この結果、 実施例 1 とほぼ同様の観測結果を得た。 なお、本例では、(分散粒子無添加の多孔体開気孔の直径 DZ分散粒子 の平均直径 d) が 3であり、 分散粒子の平均アスペクト比が 1. 1であ る。なお SEM写真より 50ィ固選択して分散粒子の平均ァスぺク ト比を算 出した。 An inorganic porous composite was produced in the same manner as in Example 1. However, in Example 1, silica particles “SO_C1” (average particle size: 0.2 to 0.3 jum) manufactured by Admatech Co., Ltd. were used as dispersed particles. The added amount of the dispersed particles was changed to 0.0 g, 0.5 g, 1.0 g, and 2.0 g. A cross section of each of the obtained inorganic porous composites was observed with a scanning electron microscope (magnifications: 500,000 and 20,000). As a result, almost the same observation results as in Example 1 were obtained. In this example, (the diameter of the porous open pores without the addition of the dispersed particles DZ, the average diameter d of the dispersed particles) is 3, and the average aspect ratio of the dispersed particles is 1.1. The The average aspect ratio of the dispersed particles was calculated by selecting 50% from the SEM photograph.
以上述べたように、 本発明によれば、 無機物の多孔質骨格を主体とす る無機系多孔質体において、 その開気孔の壁面に各種の粒子を均一に担 持した新規な無機系多孔質複合体を提供できる。  INDUSTRIAL APPLICABILITY As described above, according to the present invention, a novel inorganic porous material mainly comprising an inorganic porous skeleton, in which various particles are uniformly carried on the wall surfaces of the open pores, is provided. A complex can be provided.

Claims

請求の範囲 The scope of the claims
1 . 開気孔が設けられた無機物の多孔質骨格と、 前記多孔質骨格の 前記開気孔に面する壁面に露出する分散粒子とを含んでおり、 前記多孔 質骨格が、 相転移を伴うゾ'ルーゲル転移によって生成していることを特 徴とする、 無機系多孔質体。  1. An inorganic porous skeleton provided with open pores, and dispersed particles exposed on a wall surface of the porous skeleton facing the open pores, wherein the porous skeleton has a phase transition accompanied by a phase transition. An inorganic porous material characterized by being produced by Rugel transition.
. 前記開気孔の直径が 1 0 0 n m以上であることを特徴とする、 請求項 1記載の無機系多孔質体。  The inorganic porous body according to claim 1, wherein the diameter of the open pores is 100 nm or more.
3 . 前記分散粒子が、 金属酸化物、 金属、 有機高分子およびこれら の複合体からなる群より選ばれた一種以上の材質からなることを特徴と する、 請求項 1または 2記載の無機系多孔質体。  3. The inorganic porous material according to claim 1, wherein the dispersed particles are made of at least one material selected from the group consisting of metal oxides, metals, organic polymers, and composites thereof. Body.
4 . 前記分散粒子の平均直径が 5 n m以上、 1 0 0〃m以下である ことを特徴とする、 請求項 1〜 3のいずれか一つの請求項に記載の無機 系多孔質体。  4. The inorganic porous body according to any one of claims 1 to 3, wherein an average diameter of the dispersed particles is 5 nm or more and 100 mm or less.
5 . 前記無機物が金属酸化物であることを特徴とする、 請求項 1〜 4のいずれか一つの請求項に記載の無機系多孔質体。  5. The inorganic porous body according to any one of claims 1 to 4, wherein the inorganic substance is a metal oxide.
6 . 前記分散粒子の平均アスペクト比が 1 . 5以下であることを特 徴とする、 請求項 1〜 5のいずれか一つの請求項に記載の無機系多孔質 体。  6. The inorganic porous material according to any one of claims 1 to 5, wherein an average aspect ratio of the dispersed particles is 1.5 or less.
PCT/JP2003/014023 2003-10-31 2003-10-31 Inorganic porous material containing dispersed particles WO2005042402A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/014023 WO2005042402A1 (en) 2003-10-31 2003-10-31 Inorganic porous material containing dispersed particles
AU2003280697A AU2003280697A1 (en) 2003-10-31 2003-10-31 Inorganic porous material containing dispersed particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014023 WO2005042402A1 (en) 2003-10-31 2003-10-31 Inorganic porous material containing dispersed particles

Publications (1)

Publication Number Publication Date
WO2005042402A1 true WO2005042402A1 (en) 2005-05-12

Family

ID=34532063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014023 WO2005042402A1 (en) 2003-10-31 2003-10-31 Inorganic porous material containing dispersed particles

Country Status (2)

Country Link
AU (1) AU2003280697A1 (en)
WO (1) WO2005042402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688402A1 (en) * 2003-11-28 2006-08-09 Ngk Insulators, Ltd. Porous formed article, porous sintered article, method for producing the same and composite member comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230626A (en) * 1986-03-31 1987-10-09 Seiko Epson Corp Production of porous glass
JPS62230628A (en) * 1986-03-31 1987-10-09 Seiko Epson Corp Production of porous glass
JPS6465031A (en) * 1987-09-04 1989-03-10 Seiko Epson Corp Production of glass
JPH01257120A (en) * 1988-04-06 1989-10-13 Komatsu Ltd Production of porous drying gel
JPH04139006A (en) * 1990-09-27 1992-05-13 Ricoh Co Ltd Formation of monolith
JPH11292528A (en) * 1998-01-23 1999-10-26 Naohiro Soga Production of inorganic porous material
JP2000012314A (en) * 1998-06-25 2000-01-14 Tosoh Corp Large bore magnetic silica particle and manufacture thereof
JP2003267719A (en) * 2002-03-15 2003-09-25 Nippon Steel Corp Porous body, base body having porous body film, and their manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230626A (en) * 1986-03-31 1987-10-09 Seiko Epson Corp Production of porous glass
JPS62230628A (en) * 1986-03-31 1987-10-09 Seiko Epson Corp Production of porous glass
JPS6465031A (en) * 1987-09-04 1989-03-10 Seiko Epson Corp Production of glass
JPH01257120A (en) * 1988-04-06 1989-10-13 Komatsu Ltd Production of porous drying gel
JPH04139006A (en) * 1990-09-27 1992-05-13 Ricoh Co Ltd Formation of monolith
JPH11292528A (en) * 1998-01-23 1999-10-26 Naohiro Soga Production of inorganic porous material
JP2000012314A (en) * 1998-06-25 2000-01-14 Tosoh Corp Large bore magnetic silica particle and manufacture thereof
JP2003267719A (en) * 2002-03-15 2003-09-25 Nippon Steel Corp Porous body, base body having porous body film, and their manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688402A1 (en) * 2003-11-28 2006-08-09 Ngk Insulators, Ltd. Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
JPWO2005051864A1 (en) * 2003-11-28 2007-06-21 日本碍子株式会社 Porous molded body, porous sintered body, manufacturing method thereof, and composite member thereof
EP1688402A4 (en) * 2003-11-28 2010-07-07 Ngk Insulators Ltd Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
JP4683554B2 (en) * 2003-11-28 2011-05-18 日本碍子株式会社 Method for producing porous titania molded body

Also Published As

Publication number Publication date
AU2003280697A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
Nistico et al. Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings
Sun et al. Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review
Guo et al. Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review
EP2365948B1 (en) Process for the preparation of self standing nanoparticle networks/scaffolds with controllable void dimensions
TW200835648A (en) Porous material and method for preparing the same
KR20070101312A (en) Composite materials containing carbon nanoparticles
JP2010180100A (en) Silica structure, method for manufacturing the same, and heat insulator
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
TW201922961A (en) Coating liquid, method for manufacturing coating film, and coating film
JP4221498B2 (en) Porous alumina crystalline particles and method for producing the same
JP2017226567A (en) Silica-based hollow particle, core-shell particle, and polystyrene particle, as well as production method thereof
AU764586B2 (en) Sol-gel process using porous mold
CN107746060B (en) Hierarchical porous silicon dioxide microcapsule material and application thereof
WO2020012554A1 (en) Method for producing coating liquid, coating liquid, and coating film
KR101466095B1 (en) hollow sillica spheres synthetic method using of surfactant
JP4784719B2 (en) Method for producing inorganic porous composite containing dispersed particles
WO2005042402A1 (en) Inorganic porous material containing dispersed particles
JP2005290033A (en) Method for producing organic-inorganic hybrid-based porous body
Bae et al. Preparation and thermal stability of doped TiO2 composite membranes by the sol–gel process
JP2004115347A (en) Inorganic porous body containing dispersed particles
JP2021075431A (en) Method for continuously producing hydrophilic and hydrophobic bipolar composite core shell aerogel powder
JP4524425B2 (en) Ceramic nanoparticle-coated organic resin sphere particles, molded body thereof, porous ceramics, and production method thereof
JP4724858B2 (en) Porous composite and method for producing the same
JP4426524B2 (en) INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
CN112156730B (en) Preparation method of high-purity monodisperse porous silicon oxide spheres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase