JP2000012314A - Large bore magnetic silica particle and manufacture thereof - Google Patents

Large bore magnetic silica particle and manufacture thereof

Info

Publication number
JP2000012314A
JP2000012314A JP10178627A JP17862798A JP2000012314A JP 2000012314 A JP2000012314 A JP 2000012314A JP 10178627 A JP10178627 A JP 10178627A JP 17862798 A JP17862798 A JP 17862798A JP 2000012314 A JP2000012314 A JP 2000012314A
Authority
JP
Japan
Prior art keywords
magnetic
silica particles
magnetic silica
pore diameter
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10178627A
Other languages
Japanese (ja)
Inventor
Shoichi Yamauchi
正一 山内
Kiyoshi Kasai
清 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP10178627A priority Critical patent/JP2000012314A/en
Publication of JP2000012314A publication Critical patent/JP2000012314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic silica particle of large bore, together with a method for easily manufacturing it, which is useful as an adsorbent, adsorbing carrier, extractor-agent, extracting carrier, and catalyser carrier, etc., with small specific surface area, sufficient small bore volume, and large small bore. SOLUTION: Si alkoxide and magnetic silica particle of large bore wherein, the content of magnetic material is 5-50 wt.% of the entire amount, average particle size of the silica particle is 1-200 μm, BET specific surface area is less than 100 m2/g, small bore is 10 nm or less, and small bore volume is 0.3-2.5 ml/g, are allowed to generate Si alkoxide polymer, which is allowed to carry magnetic material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸着剤や吸着用担
体、抽出剤や抽出用担体、触媒担体等に使用できる磁性
及び強度を有する大孔径の磁性シリカ粒子及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to magnetic silica particles having a large pore diameter and having magnetic properties and strength which can be used as an adsorbent, a carrier for adsorption, an extractant, a carrier for extraction, a catalyst carrier and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より吸着剤や吸着用の固相担体とし
てはシリカゲル等が良く知られているが、これらを用い
る場合、その回収のためには遠心分離法や、あるいはフ
ィルターによる濾過等を行わなければならず、簡便な方
法ではなかった。また、吸着、抽出操作においては、目
的とする吸着物や抽出物とそれ以外の他の物質とを分離
する必要があるが、従来の遠心分離法、カラム分離法、
電気泳動法等の手法では分離のみでも長時間を要し、簡
便な方法ではないという課題を有していた。
2. Description of the Related Art Conventionally, silica gel and the like are well known as an adsorbent and a solid phase carrier for adsorption. In the case of using these, a centrifugal separation method or filtration with a filter is used for their recovery. It had to be done and was not a convenient method. In addition, in the adsorption and extraction operations, it is necessary to separate the target adsorbate or extract from other substances, but conventional centrifugation, column separation,
In a technique such as an electrophoresis method, there is a problem that it takes a long time only for separation, and it is not a simple method.

【0003】そのため、目的の物質を分離する手段とし
て、特開昭61−181967に記載のように、粒子に
強磁性体を付加し、磁場を与えることにより、目的の粒
子を回収するという方法はあった。しかし、この方法で
は、吸着、抽出、反応操作等において、粒子が均一に分
散した状態にてその操作を実施したい場合においても強
磁性体自身が自己会合してしまい、粒子の存在状態を自
由に制御できないという欠点を有していた。
[0003] Therefore, as a means for separating a target substance, a method of collecting a target particle by adding a ferromagnetic substance to the particle and applying a magnetic field as described in JP-A-61-181967 is known. there were. However, in this method, even when it is desired to carry out the operation in a state where the particles are uniformly dispersed in the adsorption, extraction, reaction operation, etc., the ferromagnetic material itself self-associates, and the state of the particles can be freely determined. It had the disadvantage that it could not be controlled.

【0004】近年、強磁性体自身の自己会合をなくす方
法として、前記の特開昭61−181967に記載のよ
うに、磁性体として超常磁性体を用いた方法が開示され
ている。また、特表平4−501957に記載のよう
に、検体を固定する固相として超常磁性体を含んだ磁気
粒子を用い、蛋白質、細胞、DNAの分離、分析等に利
用できることが開示されている。さらに、特許番号25
54250号には、ゲルマトリックスに超常磁性磁気反
応性物質を捕捉させ運動性の高い試薬担体について開示
している。これらに記載の超常磁性磁気粒子は、酸化鉄
等の強磁性体を永久磁性を維持するのに必要な磁区の大
きさより小さい微粒子にして粒子中に含ませたもので、
外部磁場により強磁性を示す性質を有する。その性質を
利用し、分散させる時には外部磁場をかけず、凝集させ
る時に外部磁場をかけて溶液中の粒子を凝集させる方法
である。しかしながら、これらの方法においても、磁性
粒子の物性を充分に制御した方法により得たものとはい
えず、磁性粒子を種々の用途に応じてその物性を充分に
制御し、最適な磁性粒子を製造する方法が望まれてい
た。
In recent years, as a method for eliminating self-association of a ferromagnetic material itself, a method using a superparamagnetic material as a magnetic material has been disclosed as described in the above-mentioned Japanese Patent Application Laid-Open No. 61-181967. Further, as described in Japanese Patent Application Laid-Open No. 4-501957, it is disclosed that magnetic particles containing a superparamagnetic substance can be used as a solid phase for immobilizing a sample, and can be used for separation, analysis, and the like of proteins, cells, and DNA. . Further, Patent No. 25
No. 54250 discloses a reagent carrier having high mobility in which a superparamagnetic magnetically reactive substance is captured in a gel matrix. The superparamagnetic magnetic particles described in these are ferromagnetic substances such as iron oxide, which are included in the particles as fine particles smaller than the size of a magnetic domain necessary for maintaining permanent magnetism,
It has the property of showing ferromagnetism by an external magnetic field. Utilizing this property, it is a method in which an external magnetic field is not applied when dispersing, and an external magnetic field is applied when aggregating, so that particles in a solution are aggregated. However, even in these methods, it cannot be said that the magnetic particles are obtained by a method in which the physical properties of the magnetic particles are sufficiently controlled, and the physical properties of the magnetic particles are sufficiently controlled in accordance with various uses to produce optimal magnetic particles. A way to do that was desired.

【0005】また、特開平9−19292に記載のよう
に、比表面積が100〜800m2/gである超常磁性
金属酸化物を含むシリカ粒子が核酸結合用として利用で
きることが示されている。しかしながら、比表面積が大
きなシリカ粒子は低分子量の分子の吸着や結合に対して
は、その比表面積の効果が期待されるが、核酸のような
高分子量の分子の場合は、シリカ粒子と核酸との結合が
ほとんど粒子表面で起こるため、比表面積や、細孔構造
の効果は低分子量の物質ほど顕著ではない。また、比表
面積、細孔径、細孔容積の増加は、特に低分子量の不純
物の吸着や、洗浄用物質の残存等の問題が生じ、洗浄効
率の低下等の問題を発生する。
Further, as described in JP-A-9-19292, it has been shown that silica particles containing a superparamagnetic metal oxide having a specific surface area of 100 to 800 m 2 / g can be used for nucleic acid binding. However, silica particles with a large specific surface area are expected to have the effect of the specific surface area on the adsorption and binding of low molecular weight molecules, but in the case of high molecular weight molecules such as nucleic acids, silica particles and nucleic acids The effect of specific surface area and pore structure is not as pronounced as low molecular weight materials, since most of the bonds occur on the particle surface. In addition, an increase in specific surface area, pore diameter, and pore volume causes problems such as adsorption of low-molecular-weight impurities and residual cleaning substances, and also causes problems such as a reduction in cleaning efficiency.

【0006】特に核酸等の高分子を対象とする場合にお
いては、比表面積を小さくし、細孔を少なくすること
で、シリカゲルの表面を選択的に利用することになり、
吸着や抽出の精度を高める結果となると考えられるが、
シリカゲルの表面のみを利用する場合は、反応部位が減
少し、反応の効率は高くない。そのため、小さな細孔は
なくし、大きな細孔を残すことにより、シリカゲルの表
面だけでなく、細孔内でも反応が起こるようにすること
で、反応部位を増加させて反応効率を高めることが望ま
れる。また、小さな細孔をなくすことにより、低分子量
の不純物の吸着や洗浄効率の低下を抑制することができ
ると期待される。
[0006] In particular, in the case of targeting a polymer such as a nucleic acid, the surface of silica gel is selectively used by reducing the specific surface area and the number of pores.
It is thought that the result will increase the accuracy of adsorption and extraction,
When only the surface of silica gel is used, the number of reaction sites decreases, and the efficiency of the reaction is not high. Therefore, it is desired to eliminate the small pores and leave the large pores so that the reaction occurs not only on the surface of the silica gel but also in the pores, thereby increasing the reaction sites and increasing the reaction efficiency. . In addition, it is expected that elimination of small pores can suppress the adsorption of low molecular weight impurities and a decrease in cleaning efficiency.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
に記載した背景、課題等に鑑み、吸着剤や吸着用担体、
抽出剤や抽出用担体、触媒担体等として有用な、比表面
積が小さく、十分な細孔容積を有し、かつ細孔径が大き
な大孔径の磁性を有したシリカ粒子及び、このような大
孔径の磁性シリカ粒子を容易に製造できる方法を提供す
るものである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an adsorbent, a carrier for adsorption,
Useful as an extractant or an extraction carrier, a catalyst carrier, etc., the specific surface area is small, having a sufficient pore volume, and the silica particles having a large pore diameter magnetism and a large pore diameter, such a large pore diameter An object of the present invention is to provide a method for easily producing magnetic silica particles.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた結果、シリカ粒子を形
成するための原料に一定量の磁性体を含ませゲルを形成
させて磁性を付与された磁性シリカ粒子を製造する際
に、ゲルの平均粒径、BET比表面積、細孔径、細孔容
積といった形状、粒径、細孔特性等の物性に着目して製
造することで、種々の吸着用担体、抽出用担体、触媒担
体として有用な磁性シリカ粒子が得られる、すなわち、
Siアルコキシドポリマーと磁性体を接触させて球状化
し、その後ゲル化させ、洗浄、水熱処理、乾燥、焼成処
理を施すことで、種々の担体に好適な物性を有した磁性
シリカ粒子を容易に製造でき、特に水熱処理により磁性
シリカ粒子中の大きな径の細孔を残しあるいはさらに大
きくするとともに、小さな径の細孔を縮小あるいは消滅
させることができることを見出だし、本発明を完成させ
るに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a raw material for forming silica particles contains a certain amount of a magnetic substance to form a gel. When manufacturing magnetic silica particles provided with magnetism, by focusing on physical properties such as gel average particle size, BET specific surface area, pore diameter, pore volume, shape such as pore volume, pore characteristics, etc. The magnetic silica particles useful as various adsorption carriers, extraction carriers, and catalyst carriers are obtained, that is,
Magnetic silica particles having physical properties suitable for various carriers can be easily produced by contacting the Si alkoxide polymer with a magnetic material to form a sphere, then gelling, washing, hydrothermal treatment, drying and baking treatment. In particular, it has been found that large diameter pores in magnetic silica particles can be left or further increased by hydrothermal treatment, and small diameter pores can be reduced or eliminated, and the present invention has been completed.

【0009】すなわち、本発明は、磁性体を含むシリカ
粒子において、前記磁性体の含有量が全量の5〜50重
量%であり、前記シリカ粒子の平均粒径が1〜200μ
mであり、BET比表面積が100m2/g未満であ
り、細孔径が10nm以上であり、かつ細孔容積が0.
3〜2.5ml/gであることを特徴とする大孔径の磁
性シリカ粒子及びその製造方法に関するものである。
That is, the present invention relates to a silica particle containing a magnetic substance, wherein the content of the magnetic substance is 5 to 50% by weight of the total amount, and the silica particle has an average particle diameter of 1 to 200 μm.
m, the BET specific surface area is less than 100 m 2 / g, the pore diameter is 10 nm or more, and the pore volume is 0.1 μm.
The present invention relates to a magnetic silica particle having a large pore diameter, which is 3 to 2.5 ml / g, and a method for producing the same.

【0010】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0011】まず、本発明の磁性シリカ粒子について説
明する。
First, the magnetic silica particles of the present invention will be described.

【0012】本発明の磁性シリカ粒子において用いられ
る磁性体としては、磁気的性質を示す物質であれば特に
制限されるものではないが、磁力を与えられることで強
い磁性を発生し、磁力がなくなるとその磁性もなくな
る、いわゆる超常磁性を示すものが好ましい。このよう
な性質を示すものとしては、例えば、スピネル型やプラ
ンバイト型のフェライトや、鉄,ニッケル,コバルト等
を主成分とした合金が挙げられる。これらの中でも、マ
グネタイトやフェライトの超微粒子を水や有機溶媒に懸
濁させて得られる磁性流体が好ましく用いられ、この磁
性流体とはその直径が約10nm以下のマグネタイトや
フェライトなどの磁性微粒子を水や有機溶媒中に懸濁さ
せたコロイド状の流体である。
The magnetic substance used in the magnetic silica particles of the present invention is not particularly limited as long as it is a substance exhibiting magnetic properties. However, when a magnetic force is applied, strong magnetism is generated and the magnetic force disappears. And what shows what is called superparamagnetism and its magnetism also disappears is preferable. Examples of those exhibiting such properties include spinel-type and plumbite-type ferrites and alloys containing iron, nickel, cobalt, or the like as a main component. Among these, a magnetic fluid obtained by suspending ultrafine particles of magnetite or ferrite in water or an organic solvent is preferably used, and the magnetic fluid is a magnetic fluid having a diameter of about 10 nm or less such as magnetite or ferrite. And a colloidal fluid suspended in an organic solvent.

【0013】磁性シリカ粒子中の磁性体の含有量として
は、磁性シリカ粒子全量の5〜50重量%、さらに5〜
25重量%の範囲であることが好ましい。この範囲であ
れば、得られる磁性シリカ粒子の磁性は十分となり、用
途面において反応効率、分離操作が問題となることはな
く、また、得られる磁性シリカ粒子の表面を化学的に修
飾させることが容易である。さらに、製造面において
も、磁性シリカ粒子の形状を球状化でき、磁性体同士の
凝集が強くなってシリカ粒子の内部に磁性体が均一に分
散しなくなることを避けることができる。
The content of the magnetic substance in the magnetic silica particles is preferably 5 to 50% by weight of the total amount of the magnetic silica particles, and more preferably 5 to 50% by weight.
Preferably, it is in the range of 25% by weight. Within this range, the magnetic properties of the obtained magnetic silica particles will be sufficient, and there will be no problem with the reaction efficiency and separation operation in application, and the surface of the obtained magnetic silica particles will be chemically modified. Easy. Further, also on the manufacturing side, the shape of the magnetic silica particles can be made spherical, and it is possible to avoid that the magnetic substances are not uniformly dispersed inside the silica particles due to strong aggregation of the magnetic substances.

【0014】本発明の磁性シリカ粒子の平均粒径の範囲
としては、1〜200μmであることが好ましい。平均
粒径が1μm未満の場合には、粒子が小さすぎて分離の
際に時間がかかり過ぎたり、触媒用担体として固定床に
て利用する際に望ましい流速が得られなくなったりする
ことがあり、200μmを超える場合には、実際の使用
面においてゲルが破壊されたりしてその形状を維持でき
なくなることがある。
The average particle size of the magnetic silica particles of the present invention is preferably from 1 to 200 μm. If the average particle size is less than 1 μm, the particles are too small, it takes too much time for separation, or it may not be possible to obtain a desired flow rate when used in a fixed bed as a catalyst carrier, If it exceeds 200 μm, the gel may be destroyed on the actual use surface, and the shape may not be maintained.

【0015】本発明の磁性シリカ粒子のBET比表面積
の範囲としては、粒子細孔内の面積の粒子表面の面積に
対する割合が低くなり、また、用途面において溶媒や低
分子量の不純物等が粒子中に残存しにくくなって、吸
着、抽出といった操作の精度、処理時間を向上させるた
めに、100m2/g未満が好ましい。
The range of the BET specific surface area of the magnetic silica particles of the present invention is such that the ratio of the area in the pores of the particles to the area of the particle surface is low, and a solvent or low molecular weight impurities are contained in the particles in the application. It is preferably less than 100 m 2 / g in order to improve the accuracy of the operations such as adsorption and extraction and the processing time.

【0016】本発明の磁性シリカ粒子の細孔構造は、実
施例で示されるように、ポアサイザ等を用い、水銀圧入
法により細孔径分布として測定できる。ここで、細孔構
造としては、細孔径、細孔容積が求められるが、本発明
の磁性シリカ粒子の細孔径としては、用いられる測定装
置の測定限界と測定対象の粒子の大きさを考慮して決定
される。
As shown in Examples, the pore structure of the magnetic silica particles of the present invention can be measured as a pore size distribution by a mercury intrusion method using a pore sizer or the like. Here, as the pore structure, a pore diameter and a pore volume are required, but as the pore diameter of the magnetic silica particles of the present invention, the measurement limit of the measuring device used and the size of the particles to be measured are taken into consideration. Is determined.

【0017】本明細書においては、細孔径としては測定
される一定範囲の細孔径分布における細孔径を意味して
おり、用途面において核酸等の高分子量の物質も磁性シ
リカ粒子の表面だけでなく細孔内部も吸着や反応の部位
として利用するため、さらに低分子量の不純物等が細孔
内に捕集され粒子中に残存してしまうのを避けるために
10nm以上であることが好ましい。また、細孔径の上
限としては、粒子の強度が低下して本発明の目的を達成
できなくなることがない程度であることが必要である
が、細孔径の測定の際に粒子間の隙間、例えば、5μm
の球状粒子が最密充填した場合の隙間は750nm程度
となる。この隙間と粒子の細孔径との区別がつけにくく
なるため明確に定めることは困難であるが、通常150
0nm程度以下の細孔径を有した粒子であればよい。
In the present specification, the pore diameter means a pore diameter within a certain range of pore diameter distribution to be measured. In terms of application, high molecular weight substances such as nucleic acids are not only present on the surface of magnetic silica particles but also on the surface of magnetic silica particles. Since the inside of the pores is also used as a site for adsorption or reaction, the thickness is preferably 10 nm or more in order to prevent low molecular weight impurities and the like from being trapped in the pores and remaining in the particles. In addition, the upper limit of the pore size is required to be such that the strength of the particles is not reduced and the object of the present invention cannot be achieved.However, when measuring the pore size, the gap between the particles, for example, , 5μm
When the spherical particles are closest packed, the gap is about 750 nm. Since it is difficult to distinguish between the gap and the pore diameter of the particles, it is difficult to clearly define the gap.
Any particles having a pore diameter of about 0 nm or less may be used.

【0018】また、細孔径分布において最も頻度が高く
なる細孔モード径も大きいことが好ましく、用途面にお
いて核酸等の高分子量の物質も磁性シリカ粒子の表面だ
けでなく細孔内部も吸着や反応の部位として利用するた
め、さらに低分子量の不純物等が細孔内に捕集され粒子
中に残存してしまうのを避けるために10nm以上、さ
らに高分子量の物質をよりいっそう細孔内部に入り込み
やすくして利用できるようにするために、25nm以上
あることが好ましい。
In addition, it is preferable that the pore mode diameter, which is the most frequent in the pore diameter distribution, is large. In terms of application, high molecular weight substances such as nucleic acids are adsorbed or reacted not only on the surface of the magnetic silica particles but also inside the pores. In order to prevent impurities such as low molecular weight from being trapped in the pores and remaining in the particles, a substance having a molecular weight of 10 nm or more and a high molecular weight substance is more likely to enter the pores. It is preferable that the thickness be 25 nm or more in order to make it usable.

【0019】さらに本発明の磁性シリカ粒子の細孔容積
の範囲としては、0.3〜2.5ml/gであることが
好ましい。細孔容積が0.3ml/g未満であると、反
応部位が少なくなり、反応効率が低下することがあり、
細孔容積が2.5ml/gより大きいと、ゲルの強度が
低下して使用中に破壊してしまうことがある。さらに、
この範囲が0.5〜2.0ml/gであれば、反応効率
及びゲルの強度の面でよりいっそう好ましい。
Further, the range of the pore volume of the magnetic silica particles of the present invention is preferably from 0.3 to 2.5 ml / g. When the pore volume is less than 0.3 ml / g, the number of reaction sites decreases, and the reaction efficiency may decrease,
If the pore volume is larger than 2.5 ml / g, the gel strength may be reduced and the gel may be broken during use. further,
When this range is 0.5 to 2.0 ml / g, it is even more preferable in terms of reaction efficiency and gel strength.

【0020】次に、本発明の磁性シリカ粒子の製造方法
について説明する。
Next, the method for producing the magnetic silica particles of the present invention will be described.

【0021】本発明の磁性シリカ粒子中の磁性体の出発
原料としては、磁性流体であることが望ましく、その製
造方法は公知の方法により実施できるが、以下の工程か
らなる製造方法により、さらに容易に製造できる。
The starting material of the magnetic substance in the magnetic silica particles of the present invention is desirably a magnetic fluid, and its production method can be carried out by a known method. Can be manufactured.

【0022】a)Siアルコキシドを酸で加水分解し、
Siアルコキシドポリマーを生成させ、少なくともSi
アルコキシドポリマーを含む溶液を得る工程、 b)a)の工程で得られる少なくともSiアルコキシド
ポリマーを含む溶液に磁性体を加えて、Siアルコキシ
ドポリマー及び磁性体を含む混合物を得る工程、 c)b)の工程で得られる混合物を水と接触させて球状
化し、その後に塩基性物質を添加してゲル化する工程、 d)c)の工程で得られるゲルを洗浄後、加熱下で加圧
しながら水熱処理する工程、 e)d)の工程で得られるゲルを溶媒置換し、その後乾
燥させて磁性シリカ粒子を得る工程。
A) hydrolyzing the Si alkoxide with an acid,
Forming a Si alkoxide polymer, at least Si
B) a step of obtaining a solution containing an alkoxide polymer; b) a step of adding a magnetic substance to the solution containing at least the Si alkoxide polymer obtained in step a) to obtain a mixture containing the Si alkoxide polymer and the magnetic substance; Contacting the mixture obtained in the step with water to form a spheroid, and then adding a basic substance to form a gel; d) washing the gel obtained in the step c), followed by hydrothermal treatment under pressure while heating; E) replacing the gel obtained in step d) with a solvent, and then drying the gel to obtain magnetic silica particles.

【0023】工程a) 本発明の製造方法において使用されるSiアルコキシド
としては、以下に示す製造方法において、加水分解によ
りポリマーを生成するものであれば特に制限なく用いる
ことができ、例えば、Si(OCH34、Si(OC2
54、Si(O−n−C374、Si(O−i−C3
74、Si(O−n−C494、Si(O−i−C4
94等を挙げることができる。また、本発明の製造方
法においては、Siアルコキシド以外に、Ti、Zr、
Al等の他の金属アルコキシドを添加してもよい。
Step a) The Si alkoxide used in the production method of the present invention can be used without particular limitation as long as it produces a polymer by hydrolysis in the production method described below. OCH 3 ) 4 , Si (OC 2
H 5) 4, Si (O -n-C 3 H 7) 4, Si (O-i-C 3
H 7 ) 4 , Si (On-C 4 H 9 ) 4 , Si (O-i-C 4)
H 9 ) 4 and the like. In the production method of the present invention, in addition to the Si alkoxide, Ti, Zr,
Other metal alkoxides such as Al may be added.

【0024】まずSiのアルコキシドを酸性溶液中でゲ
ル化しない程度に部分的に加水分解する。酸性溶液とし
ては酸、水および有機溶媒の混合溶液が好ましい。この
とき使用される酸としては、塩酸,硫酸,硝酸等の無機
酸、酢酸,ギ酸等の有機酸が挙げられる。有機溶媒とし
ては酸、水及びSiアルコキシドと均一に混合するもの
が好ましく、特にメタノール,エタノール等のアルコー
ルが好ましい。添加する水の量はSiアルコキシドを部
分的に加水分解する量、すなわちSiアルコキシド1モ
ルに対して4モル以内であることが好ましい。加水分解
反応の条件としては、Siアルコキシドの加水分解を均
一に行わせるため、混合溶液を10〜80℃の温度の範
囲で、30分〜5時間撹拌させることでよい。
First, the alkoxide of Si is partially hydrolyzed in an acidic solution so as not to gel. As the acidic solution, a mixed solution of an acid, water and an organic solvent is preferable. Examples of the acid used at this time include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid and formic acid. As the organic solvent, those which are uniformly mixed with an acid, water and a Si alkoxide are preferable, and alcohols such as methanol and ethanol are particularly preferable. The amount of water to be added is preferably an amount that partially hydrolyzes the Si alkoxide, that is, within 4 moles per mole of the Si alkoxide. The conditions of the hydrolysis reaction may be such that the mixed solution is stirred at a temperature of 10 to 80 ° C. for 30 minutes to 5 hours in order to uniformly hydrolyze the Si alkoxide.

【0025】Siアルコキシドを加水分解した後、次に
上記Siアルコキシド溶液を重合する。重合条件として
は、10〜200℃の温度の範囲で1〜48時間行なう
ことでよく、反応後、溶媒あるいは反応で生成したアル
コール等を除去してSiアルコキシドポリマーを得る。
Siアルコキシドポリマーの重合度、すなわち、分子量
は水の量、重合温度、重合時間等により制御することが
できる。
After hydrolyzing the Si alkoxide, the Si alkoxide solution is polymerized. The polymerization may be carried out at a temperature in the range of 10 to 200 ° C. for 1 to 48 hours. After the reaction, a solvent or an alcohol generated by the reaction is removed to obtain a Si alkoxide polymer.
The degree of polymerization, ie, the molecular weight, of the Si alkoxide polymer can be controlled by the amount of water, the polymerization temperature, the polymerization time, and the like.

【0026】Siアルコキシドポリマーの重合度と粘度
の間には相関があり、Siアルコキシドポリマーの重合
度が高くなるほど粘度は高くなる。Siアルコキシドポ
リマーの重合度としてはゲル化が起こらない程度であっ
て、室温における粘度で10〜1000mPa・sの範
囲、さらに20〜500mPa・sの範囲であることが
好ましい。この理由は、粘度が1000mPa・sを超
える場合には後の工程b)において磁性体がSiアルコ
キシドポリマーに均一に分散させにくくなることがあ
り、粘度が10mPa・s未満の場合には後の工程c)
においてゲル化させる際にゲル化が起こりにくくなるこ
とがあるためである。また、ここでいう粘度は、例え
ば、JIS−K−7117−1987に準拠し、25℃
における粘度を測定することで確認できる。
There is a correlation between the degree of polymerization of the Si alkoxide polymer and the viscosity. The higher the degree of polymerization of the Si alkoxide polymer, the higher the viscosity. The degree of polymerization of the Si alkoxide polymer is such that gelation does not occur, and the viscosity at room temperature is preferably in the range of 10 to 1000 mPa · s, more preferably 20 to 500 mPa · s. The reason is that if the viscosity exceeds 1000 mPa · s, it may be difficult to uniformly disperse the magnetic substance in the Si alkoxide polymer in the subsequent step b), and if the viscosity is less than 10 mPa · s, c)
This is because gelation may be difficult to occur when gelling is performed. The viscosity referred to herein is, for example, 25 ° C. in accordance with JIS-K-7117-1987.
Can be confirmed by measuring the viscosity at.

【0027】得られたSiアルコキシドポリマーはその
まま、あるいは有機溶媒で希釈して混合した溶液を調製
して、少なくともSiアルコキシドポリマーを含む溶液
とする。Siアルコキシドポリマーを有機溶媒で希釈す
る場合には、用いられる有機溶媒としては、ヘキサン,
シクロヘキサン,ベンゼン等の炭化水素、1−ブタノー
ル,2−ブタノ−ル,1−ペンタノール,2−ペンタノ
ール,1−ヘキサノール,2−ヘキサノール等のアルコ
ール等の、水に溶解しにくいものが好ましい。この理由
は磁性シリカ粒子を製造する際にSiアルコキシドポリ
マーを含む相を水に分散して球状化を行うためである。
また、有機溶媒で希釈する場合のSiアルコキシドポリ
マーの濃度としては、球状のゲルを得るために希釈され
た溶液全量に対して20重量%以上であることが好まし
い。
The obtained Si alkoxide polymer is used as it is, or is diluted with an organic solvent to prepare a mixed solution to prepare a solution containing at least the Si alkoxide polymer. When diluting the Si alkoxide polymer with an organic solvent, hexane,
Those which are hardly soluble in water, such as hydrocarbons such as cyclohexane and benzene, and alcohols such as 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 1-hexanol and 2-hexanol are preferred. The reason for this is that when producing magnetic silica particles, the phase containing the Si alkoxide polymer is dispersed in water to perform spheroidization.
Further, the concentration of the Si alkoxide polymer when diluted with an organic solvent is preferably 20% by weight or more based on the total amount of the solution diluted to obtain a spherical gel.

【0028】工程b) 次に工程a)で得られる少なくともSiアルコキシドポ
リマーを含む溶液に磁性体を加えて、Siアルコキシド
ポリマーと磁性体を含む混合物を得る。用いられる磁性
体としては、Siアルコキシドポリマーへの分散性の面
から、水又は有機溶媒に分散させて懸濁液状又は溶液状
としたものが好ましく、さらに分散剤として有機溶媒を
含んだものが好ましく用いられ、特に10nm程度の小
さな粒子径を有し、この磁性粒子のSiアルコキシドポ
リマーへの分散性やその安定性がよい磁性流体が好まし
く用いられる。この磁性流体としては、市販品等をその
ままあるいは溶媒置換等を実施して用いることもでき
る。
Step b) Next, a magnetic substance is added to the solution containing at least the Si alkoxide polymer obtained in step a) to obtain a mixture containing the Si alkoxide polymer and the magnetic substance. As the magnetic substance to be used, from the aspect of dispersibility in the Si alkoxide polymer, those obtained by dispersing in water or an organic solvent to form a suspension or solution are preferable, and those further containing an organic solvent as a dispersant are preferable. In particular, a magnetic fluid having a small particle diameter of about 10 nm and having good dispersibility of the magnetic particles in a Si alkoxide polymer and good stability thereof is preferably used. As the magnetic fluid, a commercially available product or the like can be used as it is or after performing solvent substitution or the like.

【0029】ここで、磁性体をポリマーへ分散させるに
あたっては、Siアルコキシドポリマーやその希釈溶媒
との混合溶液に磁性体を均一に分散させることが好まし
い。
Here, in dispersing the magnetic substance into the polymer, it is preferable to uniformly disperse the magnetic substance in a mixed solution of the Si alkoxide polymer and its diluent solvent.

【0030】磁性体のSiアルコキシドポリマーへの添
加に際しては、所定量の磁性体を直接添加することもで
きるし、あらかじめ磁性体を溶媒に分散させた溶液をS
iアルコキシドポリマーに添加することもできる。
When the magnetic substance is added to the Si alkoxide polymer, a predetermined amount of the magnetic substance can be directly added, or a solution in which the magnetic substance is dispersed in a solvent in advance is added to the S alkoxide polymer.
It can also be added to i-alkoxide polymers.

【0031】また、磁性体を溶媒に分散させた溶液を調
製する際は、溶媒としては、Siアルコキシドポリマー
への磁性体の分散性を確保するために、極性の低い有機
溶媒を用いることが好ましい。このような有機溶媒の具
体例としては、ヘキサン,シクロヘキサン,ベンゼン等
の炭化水素、1−ブタノール,2−ブタノ−ル,1−ペ
ンタノール,2−ペンタノール,1−ヘキサノール,2
−ヘキサノール等のアルコールなどが挙げられる。さら
に、これらの内でも、炭素数が4〜6のアルコールが好
ましく用いられる。この理由は、次の工程c)でSiア
ルコキシドポリマー及び磁性体を含む混合物を水と接触
させ、懸濁状態として球状化を行うが、その際に、水へ
の溶解度がこのような懸濁状態を維持し、かつその後の
ゲル化の反応も速やかに行わせるのに適しているからで
ある。
In preparing a solution in which the magnetic substance is dispersed in a solvent, it is preferable to use a low-polarity organic solvent as the solvent in order to ensure the dispersibility of the magnetic substance in the Si alkoxide polymer. . Specific examples of such organic solvents include hydrocarbons such as hexane, cyclohexane, and benzene, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 1-hexanol,
-Alcohols such as hexanol. Further, among these, alcohols having 4 to 6 carbon atoms are preferably used. The reason for this is that the mixture containing the Si alkoxide polymer and the magnetic substance is brought into contact with water in the following step c) to form a suspension, and spheroidization is performed. This is because it is suitable to maintain the following and to promptly perform the subsequent gelation reaction.

【0032】さらに、溶媒と混合された磁性体や磁性流
体中の磁性体を分散させ、磁性体同士の凝集をなくして
分散状態を安定化させるために、磁性体の表面や表面付
近を界面活性剤等で処理したり、界面活性剤を添加する
することが好ましい。また、磁性体をSiアルコキシド
ポリマーと混合する際に、磁性体を均一に分散させるた
めに、Siアルコキシドポリマーの重合度としては、前
記した粘度の範囲であればよい。この範囲であれば、S
iアルコキシドポリマーの分子量が磁性体の分散性、そ
の安定性にも寄与し、また、粘稠にもならないため操作
が容易となるからである。
Further, in order to disperse the magnetic material mixed with the solvent or the magnetic material in the magnetic fluid and to stabilize the dispersion state by eliminating the aggregation of the magnetic materials, the surface of the magnetic material or the vicinity of the surface is surface-active. It is preferable to treat with an agent or the like or to add a surfactant. In addition, when the magnetic material is mixed with the Si alkoxide polymer, the degree of polymerization of the Si alkoxide polymer may be within the above-described viscosity range in order to uniformly disperse the magnetic material. Within this range, S
This is because the molecular weight of the i-alkoxide polymer contributes to the dispersibility and stability of the magnetic material, and the operation becomes easy because the i-alkoxide polymer does not become viscous.

【0033】このように、磁性体の種類、Siアルコキ
シドポリマーの重合度、Siアルコキシドポリマーの希
釈溶媒を組み合わせることにより、磁性体をSiアルコ
キシドポリマーへ均一に分散させてSiアルコキシドポ
リマー及び磁性体を含む混合物を得ることができる。
As described above, by combining the type of the magnetic substance, the degree of polymerization of the Si alkoxide polymer, and the solvent for diluting the Si alkoxide polymer, the magnetic substance is uniformly dispersed in the Si alkoxide polymer to contain the Si alkoxide polymer and the magnetic substance. A mixture can be obtained.

【0034】工程c) 次に、工程b)で得られたSiアルコキシドポリマー及
び磁性体を含む混合物を、撹拌下に水中に分散させ、懸
濁して、球状化する。ここで、磁性体の分散性をさらに
よくするため、用いられる水へ界面活性剤、ポリビニル
アルコール等の分散剤を添加してもよい。
Step c) Next, the mixture containing the Si alkoxide polymer and the magnetic substance obtained in step b) is dispersed in water with stirring, suspended, and spheroidized. Here, in order to further improve the dispersibility of the magnetic substance, a dispersant such as a surfactant and polyvinyl alcohol may be added to water used.

【0035】球状化後、上記記載の混合液又は混合物へ
塩基性物質を添加してゲル化する。ゲル化の詳しい機構
は明確ではないが、塩基性物質の作用によりSiアルコ
キシドポリマー中のアルコキシド基が加水分解してシラ
ノール基が生成し、このシラノール基が縮合反応により
三次元的に結合しシリカの重合体が生成することでゲル
化するものと考えられる。用いられる塩基性物質として
は、アンモニア,水酸化ナトリウム,水酸化カリウム等
の無機塩基性化合物、アミン,尿素等の有機塩基性化合
物が挙げられる。ゲル化の際にSiアルコキシドポリマ
ー中のアルコキシ基をほぼ完全に加水分解するために
は、pH8〜11のpH範囲、30〜100℃の温度範
囲で、1〜10時間撹拌することでよい。
After the spheroidization, a basic substance is added to the above-mentioned mixture or mixture to gel. Although the detailed mechanism of the gelation is not clear, the alkoxide group in the Si alkoxide polymer is hydrolyzed by the action of a basic substance to form a silanol group, and the silanol group is bonded three-dimensionally by a condensation reaction to form silica. It is considered that the formation of a polymer causes gelation. Examples of the basic substance to be used include inorganic basic compounds such as ammonia, sodium hydroxide and potassium hydroxide, and organic basic compounds such as amine and urea. In order to almost completely hydrolyze the alkoxy group in the Si alkoxide polymer during gelation, stirring may be performed for 1 to 10 hours in a pH range of pH 8 to 11 and a temperature range of 30 to 100 ° C.

【0036】工程d) 工程c)で得られた生成したゲルを濾過、遠心分離等に
より分離し、洗浄する。濾過、分離の方法としては公知
の方法を用いることができ、また、洗浄には、水、温水
等の通常使用される水を用いることができる。
Step d) The gel obtained in step c) is separated by filtration, centrifugation, etc., and washed. A known method can be used as a method for filtration and separation, and water that is generally used such as water or warm water can be used for washing.

【0037】次いで、洗浄された磁性シリカゲルを加熱
下で加圧しながら水熱処理する。
Next, the washed magnetic silica gel is subjected to hydrothermal treatment while applying pressure under heating.

【0038】この水熱処理に用いられる装置としては、
オートクレーブのような溶液を仕込みながら加圧、加熱
の条件を付与できる装置であればよい。そして、磁性シ
リカゲルをオートクレーブに仕込み、水またはアンモニ
ア水のようなアルカリ水溶液を加え、所定の温度及び圧
力の条件を設定して水熱処理が実施される。
The apparatus used for this hydrothermal treatment includes:
Any device such as an autoclave that can apply conditions of pressure and heating while charging a solution may be used. Then, the magnetic silica gel is charged into an autoclave, an aqueous alkali solution such as water or aqueous ammonia is added, and the conditions of predetermined temperature and pressure are set to perform the hydrothermal treatment.

【0039】水熱処理の条件としては、110〜380
℃の温度、1.4〜220気圧の圧力で行うことが好ま
しく、さらに、150〜250℃の温度、4〜40気圧
の圧力で行うことが好ましい。この範囲にあれば、水熱
処理の効果として、得られる磁性シリカゲルの比表面積
は小さくなるにもかかわらず、その平均細孔径としては
大きくなり、反応効率面において極めて有用となるので
ある。一方、110℃未満の場合には水熱条件が不十分
となって細孔径が大きくならないことがあり、、380
℃を超えるような温度では装置が大がかりとなって温度
制御がうまくできなかったり、経済的でないことがあ
る。また、水熱処理の時間としては、温度、圧力の条件
により一定しないが、通常1〜24時間程度で十分であ
る。
The conditions of the hydrothermal treatment are 110 to 380
The reaction is preferably performed at a temperature of 150C and a pressure of 1.4 to 220 atmospheres, and more preferably at a temperature of 150 to 250C and a pressure of 4 to 40 atmospheres. Within this range, as a result of the hydrothermal treatment, although the specific surface area of the obtained magnetic silica gel is reduced, the average pore diameter is increased, which is extremely useful in terms of reaction efficiency. On the other hand, when the temperature is lower than 110 ° C., the hydrothermal conditions may be insufficient, and the pore diameter may not be increased.
If the temperature is higher than ° C., the apparatus may be so large that temperature control may not be performed well or it may not be economical. The time for the hydrothermal treatment is not constant depending on the temperature and pressure conditions, but usually 1 to 24 hours is sufficient.

【0040】工程e) さらに、工程d)で得られたゲルを溶媒置換し、乾燥す
る。
Step e) Further, the gel obtained in step d) is solvent-substituted and dried.

【0041】乾燥条件としては、ゲル内部及びゲル表面
の水分を直接蒸発させると、ゲルが収縮し、凝集するた
め、以下の方法で乾燥するとよい。
As for the drying conditions, if the water inside the gel and the surface of the gel is directly evaporated, the gel shrinks and agglomerates.

【0042】すなわち、洗浄されたゲル中の水分を有機
溶媒で置換した後、有機溶媒を加熱等して除去すること
でゲルが乾燥される。この有機溶媒による置換処理は、
ゲルの内部に存在する水が蒸発する際に生じる毛管力に
よりゲル同士が強く凝集することを防ぐために、表面張
力の低い有機溶媒にあらかじめ置換しておき、毛管力を
弱め、ゲルの乾燥を容易とするためである。この置換処
理に用いられる有機溶媒としては、水より低表面張力の
溶媒が好ましく、水と任意の割合で溶け合うものがさら
に好ましい。ここで、水より低表面張力の溶媒とは、水
のWilhelm法による25℃における空気に対する
表面張力が72dyn/cm(=10Nm)であること
から、これより小さい表面張力を有する溶媒が選択でき
る。例えば、溶媒としてメタノール、エタノール、1−
プロパノール、2−プロパノール、1−ブタノールとい
ったアルコールや、ホルムアミド、N,N−ジメチルホ
ルムアミド、エチレングリコール、プロピレングリコー
ル等が挙げられる。
That is, after the water in the washed gel is replaced with an organic solvent, the gel is dried by removing the organic solvent by heating or the like. This substitution treatment with an organic solvent
In order to prevent the gels from aggregating strongly due to the capillary force generated when water present inside the gel evaporates, the gel is replaced with an organic solvent with a low surface tension in advance to weaken the capillary force and facilitate drying of the gel. This is because As the organic solvent used in the substitution treatment, a solvent having a lower surface tension than water is preferable, and a solvent that dissolves in water at an arbitrary ratio is more preferable. Here, a solvent having a lower surface tension than water can be selected as a solvent having a surface tension smaller than that of water having a surface tension of 72 dyn / cm (= 10 Nm) at 25 ° C. by the Wilhelm method with respect to air. For example, methanol, ethanol, 1-
Examples include alcohols such as propanol, 2-propanol and 1-butanol, formamide, N, N-dimethylformamide, ethylene glycol, propylene glycol and the like.

【0043】有機溶媒で置換した後のゲル中に残存する
水、溶媒の除去は通常、常圧にて加熱して行われるが、
減圧のみあるいは加熱下で減圧して行うこともできる。
また、ゲルの凝集が強い場合は、再度水、有機溶媒に分
散させた後、有機溶媒に置換し、その後加熱除去してゲ
ルが凝集しないようにしてもよい。
The water and solvent remaining in the gel after the replacement with the organic solvent are usually removed by heating at normal pressure.
It can also be carried out under reduced pressure only under reduced pressure or under heating.
If the gel is strongly aggregated, the gel may be dispersed again in water or an organic solvent, replaced with an organic solvent, and then heated and removed to prevent the gel from aggregating.

【0044】また、有機溶媒を加えて加熱し、用いた溶
媒とともにゲル中の水を除去することにより、磁性シリ
カ粒子を乾燥することもできる。ここで用いられる有機
溶媒としては、水より高沸点、低表面張力の溶媒が好ま
しく、1−ブタノール,イソブチルアルコール、1−ペ
ンタノール,2−ペンタノール,3−ペンタノール,イ
ソアミルアルコール等のアルコール、酪酸メチル,酪酸
エチル等のエステル、シクロペンタノン,3−ヘプタノ
ン,4−ヘプタノン等のケトン等が挙げられる。水、溶
媒の除去は通常、常圧で行なわれるが減圧下で行なって
もよい。
The magnetic silica particles can also be dried by adding an organic solvent and heating to remove water in the gel together with the solvent used. As the organic solvent used here, a solvent having a higher boiling point and a lower surface tension than water is preferable, and alcohols such as 1-butanol, isobutyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, and isoamyl alcohol; Esters such as methyl butyrate and ethyl butyrate; ketones such as cyclopentanone, 3-heptanone and 4-heptanone; The removal of water and the solvent is usually performed at normal pressure, but may be performed under reduced pressure.

【0045】さらに、工程e)で得られた乾燥シリカゲ
ルの強度を向上させるため焼成してもよい。焼成条件と
しては、大気雰囲気中、窒素ガスのような不活性雰囲気
中、あるいは、水素ガスのような還元雰囲気中で焼成す
ることにより磁性シリカ粒子を得ることができる。焼成
の際の温度条件としては、得られる磁性シリカ粒子の細
孔構造が保持するために、1000℃以下が好ましい。
焼成温度が1000℃を超えると磁性シリカ粒子の収縮
が生じて細孔径が小さくなり、大孔径の粒子が得られな
くなることがある。
Further, the dried silica gel obtained in step e) may be calcined to improve the strength. As the firing conditions, magnetic silica particles can be obtained by firing in an air atmosphere, an inert atmosphere such as nitrogen gas, or a reducing atmosphere such as hydrogen gas. The temperature condition at the time of firing is preferably 1000 ° C. or lower in order to maintain the pore structure of the obtained magnetic silica particles.
If the sintering temperature exceeds 1000 ° C., the magnetic silica particles shrink and the pore diameter becomes small, so that particles having a large pore diameter may not be obtained.

【0046】また、得られた磁性シリカ粒子の表面を化
学修飾する場合、磁性シリカ粒子の比表面積が小さく、
表面にシラノール基の存在量が少ない時は、あらかじ
め、フッ化水素酸等にシリカ粒子を接触させ、表面のシ
ラノール基量の調整し使用することができる。
When the surface of the obtained magnetic silica particles is chemically modified, the specific surface area of the magnetic silica particles is small,
When the amount of silanol groups present on the surface is small, silica particles can be brought into contact with hydrofluoric acid or the like in advance to adjust the amount of silanol groups on the surface before use.

【0047】以上の手法により、本発明の磁性シリカ粒
子が得られる。
According to the above method, the magnetic silica particles of the present invention can be obtained.

【0048】また、本発明の磁性シリカ粒子は、その表
面にシラノール基が存在しており、主に親水性相互作用
を利用して、吸着、抽出、反応用として、そのまま使用
することができるし、磁性シリカ粒子の表面を、例え
ば、疎水性基を導入して化学修飾することもでき、疎水
性相互作用を利用した用途にも使用できる。
Further, the magnetic silica particles of the present invention have silanol groups on the surface, and can be used as they are for adsorption, extraction and reaction mainly by utilizing hydrophilic interaction. The surface of the magnetic silica particles can be chemically modified, for example, by introducing a hydrophobic group, and can be used for applications utilizing hydrophobic interaction.

【0049】さらに、生物由来材料である、抗体、酵素
等の蛋白質、ペプチドや核酸などと結合させ、免疫測
定、核酸の測定等の各種の測定法やアフィニティークロ
マトグラフィー等の分離手段などに用いられる固定化担
体として使用することもできる。また、磁性材料やスペ
ーサーとして、使用することもできる。
Further, it is combined with proteins such as antibodies and enzymes, peptides and nucleic acids, which are biological materials, and used for various measuring methods such as immunoassay and nucleic acid measurement, and separation means such as affinity chromatography. It can also be used as an immobilization carrier. Further, it can be used as a magnetic material or a spacer.

【0050】本発明の磁性シリカ粒子は細孔径が大きい
にもかかわらず、その比表面積が小さいが、これは得ら
れた磁性シリカ粒子に水熱処理を施すことでゲル内のシ
リカが溶解、再析出して、細孔中の径の小さなものはほ
とんどなくなり、しかしながら、細孔中の径の大きなも
のはその径を維持あるいはむしろ大きくなるものと考え
られ、その結果として、シリカのマトリックスが強くな
り、圧縮強度、耐摩耗性、耐衝撃性が向上することが期
待できるとともに大きな径の細孔の比率が大きくなるの
である。
Although the magnetic silica particles of the present invention have a small specific surface area despite having a large pore diameter, the silica in the gel is dissolved and reprecipitated by subjecting the obtained magnetic silica particles to a hydrothermal treatment. Thus, the pores with small diameters in the pores hardly disappear, however, those with large diameters in the pores are considered to maintain or rather increase in diameter, and as a result, the silica matrix becomes strong, It is expected that the compressive strength, abrasion resistance, and impact resistance are improved, and the ratio of the large-diameter pores increases.

【0051】しかしながら、このような推測は本発明を
なんら拘束するものではない。
However, such presumption does not restrict the present invention at all.

【0052】[0052]

【実施例】以下、実施例により本発明を具体的に説明す
るが、これらに実施例により本発明はなんら限定される
ものでない。なお、各評価は以下に示した方法によって
実施した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. In addition, each evaluation was implemented by the method shown below.

【0053】実施例で使用した磁性流体について、その
磁気ヒステリシスを振動試料型磁力計(VSM)(理研
電子製、型式:BHV−50)を用いて、その磁気ヒス
テリシスを測定したところ、超常磁性を示すものであっ
た。
The magnetic fluid used in the examples was measured for magnetic hysteresis using a vibrating sample magnetometer (VSM) (manufactured by RIKEN ELECTRONICS, model: BHV-50). It was shown.

【0054】(1)磁性体の含有量 Siについては、磁性シリカ粒子を王水により分解後、
過塩素酸処理し、重量法により測定した。Fe(鉄)に
ついては、硝酸・フッ化水素酸により分解後、過塩素酸
処理し、ICP発光法により測定した。
(1) Content of magnetic substance Regarding Si, magnetic silica particles were decomposed by aqua regia,
It was treated with perchloric acid and measured by a gravimetric method. Fe (iron) was decomposed with nitric acid / hydrofluoric acid, treated with perchloric acid, and measured by ICP emission method.

【0055】(2)平均粒径 磁性シリカ粒子の一部を、走査型電子顕微鏡ISI−1
30(COULTER社製)で観察し、インタセプト法
により求めた。
(2) Average Particle Size A part of the magnetic silica particles was subjected to scanning electron microscope ISI-1.
30 (manufactured by COULTER) and determined by an intercept method.

【0056】(3)細孔構造 ポアサイザ9320(MICROMERITICS社
製)を用い、水銀圧入法により0〜207MPaの圧力
範囲で測定した。尚、得られる結果としては、測定限界
である6nmを測定下限とし、粒子間の隙間が測定に反
映するのを避けるために500nmを測定上限とした。
そして、細孔径の範囲、細孔径の分布の内最も頻度の高
い細孔径を示す細孔モード径、細孔容積を測定した。
(3) Pore Structure The pore structure was measured in a pressure range of 0 to 207 MPa by a mercury intrusion method using a pore sizer 9320 (manufactured by MICROMERITICS). In addition, as a result obtained, 6 nm which is a measurement limit was set as the lower limit of measurement, and 500 nm was set as the upper limit of measurement in order to prevent the gap between particles from being reflected in the measurement.
Then, the pore diameter range, the pore mode diameter indicating the most frequent pore diameter in the pore diameter distribution, and the pore volume were measured.

【0057】(4)BET比表面積 MONOSORB(米国QUANTACHROME社
製)を用い、BET式1点法により測定した。
(4) BET specific surface area The BET specific surface area was measured by MONOSORB (manufactured by QUANTACHROME, USA) according to the BET one-point method.

【0058】(5)粘度 JIS−K−7118−1987に準拠し、B型粘度計
(東京計器社製、型式:BH)により、25℃における
粘度を測定した。
(5) Viscosity In accordance with JIS-K-7118-1987, the viscosity at 25 ° C. was measured with a B-type viscometer (manufactured by Tokyo Keiki, Model: BH).

【0059】(6)ゲルの内部分析 磁性体が磁性シリカ粒子の内部に分布していることを以
下の方法により測定した。すなわち、磁性シリカ粒子を
エポキシ樹脂で包埋し、ミクロトームにて切断した。こ
こ後、表面をC(カーボン)蒸着し、これをJCMA−
733(日本電子社製)を用いて、先ず走査型電子顕微
鏡(SEM)観察して磁性シリカ粒子の形状を確認し、
さらにEPMA(Electron Probe Mi
croanalysis)により、磁性シリカ粒子中の
SiとFeの分布を分析した。
(6) Internal Analysis of Gel The distribution of the magnetic substance inside the magnetic silica particles was measured by the following method. That is, the magnetic silica particles were embedded in an epoxy resin and cut with a microtome. After this, C (carbon) is deposited on the surface, and this is JCMA-
Using 733 (manufactured by JEOL Ltd.), a scanning electron microscope (SEM) was first used to confirm the shape of the magnetic silica particles.
EPMA (Electron Probe Mi)
(Croanalysis), the distribution of Si and Fe in the magnetic silica particles was analyzed.

【0060】実施例1 Si(OC254 75.0gとエタノール 30.
0gの混合溶液を40℃で30分撹拌した。この混合溶
液を40℃で撹拌しながら1/100N−塩酸水溶液
7.5gを滴下した。この溶液を1時間撹拌した後、9
0℃で4時間、さらに165℃で12時間撹拌して留出
物を除去し、Siアルコキシドポリマーを得た。この操
作は窒素雰囲気中で行なった。得られたSiアルコキシ
ドポリマーの粘度を前記した方法により測定したとこ
ろ、粘度は室温で75センチポイズであった。得られた
Siアルコキシドポリマーのうち35.0gを1−ペン
タノール 35.0gに溶解した。この溶液に市販の磁
性流体((株)フェローテック製、:全量に対して、磁
性体量35重量%、界面活性剤量10重量%、1−ブタ
ノール溶液含有) 10mlを添加し、均一溶液を得
た。この溶液を撹拌しながら80℃の5%ポリビニルア
ルコール水溶液 280.0gに投入した。30分撹拌
後、5重量%のアンモニア水溶液 12.5mlを加
え、80℃で3時間撹拌した。得られた懸濁液を70℃
の温水 500mlに投入し、固体を濾取後、温水で洗
浄した。洗浄後、磁性シリカ粒子をオートクレーブ中
で、180℃の温度で10気圧の圧力のもとに4時間水
熱処理をした。次に、2−プロパノールで3回置換し、
真空乾燥して磁性シリカ粒子を得た。得られた磁性シリ
カ粒子のFe含有量、Si/Fe組成(モル比)、平均
粒径、BET比表面積を前記した方法により測定し、そ
の結果を表1に示した。また、得られた磁性シリカ粒子
を前記したSEMにより観察すると、球状であった。さ
らにEPMAにより、磁性シリカ粒子中のSiとFeの
分布を分析したところ、Fe、すなわち、磁性体が磁性
シリカ粒子中に均一に分散していることを確認した。
Example 1 75.0 g of Si (OC 2 H 5 ) 4 and ethanol.
0 g of the mixed solution was stirred at 40 ° C. for 30 minutes. While stirring this mixed solution at 40 ° C., a 1/100 N aqueous hydrochloric acid solution is used.
7.5 g were added dropwise. After stirring this solution for 1 hour, 9
The mixture was stirred at 0 ° C. for 4 hours and further at 165 ° C. for 12 hours to remove distillate to obtain a Si alkoxide polymer. This operation was performed in a nitrogen atmosphere. When the viscosity of the obtained Si alkoxide polymer was measured by the method described above, the viscosity was 75 centipoise at room temperature. 35.0 g of the obtained Si alkoxide polymer was dissolved in 35.0 g of 1-pentanol. To this solution, 10 ml of a commercially available magnetic fluid (manufactured by Ferrotec Co., Ltd .: 35% by weight of magnetic substance, 10% by weight of surfactant, containing 1-butanol solution, based on the total amount) was added, and the homogeneous solution was added. Obtained. This solution was added to 280.0 g of a 5% aqueous solution of polyvinyl alcohol at 80 ° C. while stirring. After stirring for 30 minutes, 12.5 ml of a 5% by weight aqueous ammonia solution was added, and the mixture was stirred at 80 ° C. for 3 hours. 70 ° C.
Was poured into 500 ml of warm water, and the solid was collected by filtration and washed with warm water. After washing, the magnetic silica particles were subjected to hydrothermal treatment in an autoclave at a temperature of 180 ° C. under a pressure of 10 atm for 4 hours. Next, substitution with 2-propanol three times,
Drying under vacuum yielded magnetic silica particles. The Fe content, the Si / Fe composition (molar ratio), the average particle size, and the BET specific surface area of the obtained magnetic silica particles were measured by the methods described above, and the results are shown in Table 1. When the obtained magnetic silica particles were observed by the above-mentioned SEM, they were spherical. Furthermore, when the distribution of Si and Fe in the magnetic silica particles was analyzed by EPMA, it was confirmed that Fe, that is, the magnetic substance was uniformly dispersed in the magnetic silica particles.

【0061】[0061]

【表1】 [Table 1]

【0062】また、得られた磁性シリカ粒子を前記した
ポアサイザ9320を用い、水銀圧入法にて細孔径分
布、細孔容積等を測定したところ、表1に示されるよう
に、細孔径範囲は10〜500nm(測定上限)とな
り、そのピークを示す細孔モード径は25nmであり、
細孔容積は1.56ml/gであった。
When the obtained magnetic silica particles were measured for pore size distribution, pore volume and the like by the mercury intrusion method using the above-mentioned pore sizer 9320, the pore size range was 10 as shown in Table 1. 500500 nm (measurement upper limit), and the pore mode diameter showing the peak is 25 nm.
The pore volume was 1.56 ml / g.

【0063】実施例2 実施例1と同様の方法により、水洗処理まで行なったゲ
ルを1.5重量%のアンモニア水溶液に入れ、オートク
レーブ中で、220℃の温度で23気圧の圧力のもとに
4時間水熱処理をした。なお、Siアルコキシドポリマ
ーの粘度は室温で68センチポイズであった。続いて、
次に、2−プロパノールで3回置換し、真空乾燥して磁
性シリカ粒子を得た。得られた磁性シリカ粒子を実施例
1と同様の方法により測定し、その結果を表1に示し
た。また、得られた磁性シリカ粒子を前記したSEMに
より観察すると、球状であった。さらにEPMAによ
り、磁性シリカ粒子中のSiとFeの分布を分析したと
ころ、Fe、すなわち、磁性体が磁性シリカ粒子中に均
一に分散していることを確認した。
Example 2 In the same manner as in Example 1, the gel, which had been subjected to the water washing treatment, was placed in a 1.5% by weight aqueous ammonia solution and placed in an autoclave at a temperature of 220 ° C. and a pressure of 23 atm. Hydrothermal treatment was performed for 4 hours. The viscosity of the Si alkoxide polymer was 68 centipoise at room temperature. continue,
Next, the mixture was replaced with 2-propanol three times and dried under vacuum to obtain magnetic silica particles. The obtained magnetic silica particles were measured in the same manner as in Example 1, and the results are shown in Table 1. When the obtained magnetic silica particles were observed by the above-mentioned SEM, they were spherical. Furthermore, when the distribution of Si and Fe in the magnetic silica particles was analyzed by EPMA, it was confirmed that Fe, that is, the magnetic substance was uniformly dispersed in the magnetic silica particles.

【0064】また、得られた磁性シリカ粒子を実施例1
と同様に細孔径分布、細孔容積等を測定したところ、表
1に示されるように、細孔径は10〜500nm(測定
上限)となり、そのピークを示す細孔モード径は40n
mであり、細孔容積は1.58ml/gであった。
Further, the obtained magnetic silica particles were prepared in Example 1.
The pore size distribution, pore volume, and the like were measured in the same manner as in Example 1. As shown in Table 1, the pore size was 10 to 500 nm (measurement upper limit), and the pore mode size showing the peak was 40 n.
m and the pore volume was 1.58 ml / g.

【0065】比較例1 実施例1と同様の方法により、水洗処理まで行ったゲル
を水熱処理せずにそのまま用いて、2−プロパノールで
3回置換し、真空乾燥し、球状の磁性シリカ粒子を得
た。なお、Siアルコキシドポリマーの粘度は室温で8
2センチポイズであった。得られた磁性シリカ粒子を実
施例1と同様の方法により測定し、その結果を表1に示
した。
Comparative Example 1 In the same manner as in Example 1, the gel which had been subjected to the water washing treatment was used as it was without hydrothermal treatment, replaced with 2-propanol three times, and dried under vacuum to obtain spherical magnetic silica particles. Obtained. The viscosity of the Si alkoxide polymer is 8 at room temperature.
It was 2 centipoise. The obtained magnetic silica particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0066】また、得られた磁性シリカ粒子を実施例1
と同様に細孔径分布、細孔容積等を測定したところ、表
1に示されるように、細孔径は300nm以下となり、
そのピークを示す細孔モード径は30nmであったが、
ピークの高さも低く、また、本測定の下限界値である6
nmの付近でも細孔が存在し、さらに、この粒子のBE
T比表面積が356m2/gと大きいことからも、測定
限界値以下の6nm以下にも細孔が存在するものと推定
できる。さらに細孔容積は0.87ml/gと小さいも
のであった。
Further, the obtained magnetic silica particles were prepared in Example 1.
When the pore diameter distribution, the pore volume, and the like were measured in the same manner as described above, the pore diameter was 300 nm or less, as shown in Table 1,
The pore mode diameter showing the peak was 30 nm,
The peak height is also low, and the lower limit of this measurement is 6
There are pores near nm, and the BE
From the fact that the T specific surface area is as large as 356 m 2 / g, it can be estimated that pores are present at 6 nm or less, which is below the measurement limit. Further, the pore volume was as small as 0.87 ml / g.

【0067】比較例2 実施例1と同様の方法により、水洗処理まで行なったゲ
ルを1.5重量%のアンモニア水溶液に入れ、オートク
レーブ中で、105℃の温度で1.2気圧の圧力のもと
に4時間水熱処理をした。なお、Siアルコキシドポリ
マーの粘度は室温で70センチポイズであった。続い
て、次に、2−プロパノールで3回置換し、真空乾燥し
て磁性シリカ粒子を得た。得られた磁性シリカ粒子を実
施例1と同様の方法により測定し、その結果を表1に示
した。
Comparative Example 2 In the same manner as in Example 1, the gel which had been subjected to the water-washing treatment was placed in a 1.5% by weight aqueous ammonia solution and placed in an autoclave at a temperature of 105 ° C. and a pressure of 1.2 atm. And a hydrothermal treatment for 4 hours. The viscosity of the Si alkoxide polymer was 70 centipoise at room temperature. Subsequently, the resultant was replaced with 2-propanol three times and dried under vacuum to obtain magnetic silica particles. The obtained magnetic silica particles were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0068】また、得られた磁性シリカ粒子を実施例1
と同様に細孔径分布を測定したところ、表1に示される
ように、細孔径は300nm以下となり、そのピークを
示す細孔モード径は10nmであったが、本測定の下限
界値である6nmの付近でも細孔が存在し、さらに、こ
の粒子のBET比表面積が132m2/gと大きいこと
からも、測定限界値以下の6nm以下にも細孔が存在す
るものと推定できる。さらに細孔容積は1.44ml/
gであった。
Further, the obtained magnetic silica particles were prepared in Example 1.
The pore size distribution was measured in the same manner as in Example 1. As shown in Table 1, the pore size was 300 nm or less, and the pore mode size showing the peak was 10 nm, but the lower limit value of this measurement was 6 nm. Since the particles have a large BET specific surface area of 132 m 2 / g, it can be estimated that pores exist at 6 nm or less, which is below the measurement limit. Further, the pore volume is 1.44 ml /
g.

【0069】実施例1及び2の結果と比較例1及び2の
結果とを比べると、磁性シリカ粒子に適度な水熱処理を
施すことで粒子の形状、粒径はほとんど変化がないにも
かかわらず、その細孔径が大きくなり、さらに比表面積
が小さくなることが分かる。このことは、水熱処理を行
わなかった比較例1、そして水熱温度、水熱圧力の条件
を比較例2、実施例1、実施例2と段々と高くしていく
ことで得られた磁性シリカ粒子の細孔モード径が大きく
なっていることから裏付けられる。さらに、細孔容積に
ついては、水熱処理を施すことで大きくなっていること
が分かる。
Comparing the results of Examples 1 and 2 with the results of Comparative Examples 1 and 2, it was found that by subjecting the magnetic silica particles to an appropriate hydrothermal treatment, the shape and particle size of the particles were almost unchanged. It can be seen that the pore diameter increases and the specific surface area further decreases. This is because the magnetic silica obtained by increasing the conditions of hydrothermal temperature and hydrothermal pressure in Comparative Example 1 without hydrothermal treatment and Comparative Example 2, Example 1, and Example 2 was gradually increased. This is supported by the large pore mode diameter of the particles. Further, it can be seen that the pore volume is increased by performing the hydrothermal treatment.

【0070】[0070]

【発明の効果】本発明の磁性シリカ粒子は球状であり、
その内部に十分な量の磁性体を含有し、細孔容積も十分
に大きい。そして、その細孔径が大きいにもかからわ
ず、比表面積は比較的小さい。さらに、水熱処理により
シリカの結合の再構築が起きることからシリカのマトリ
ックスが強くなり、圧縮強度、耐摩耗性、耐衝撃性が向
上することが期待できる。このため、吸着剤や吸着用担
体、抽出剤や抽出用担体、触媒担体として好適に使用で
きる。
The magnetic silica particles of the present invention are spherical,
It contains a sufficient amount of magnetic material inside and has a sufficiently large pore volume. And, despite its large pore size, the specific surface area is relatively small. Furthermore, since the silica bond is reconstructed by the hydrothermal treatment, the silica matrix is strengthened, and it can be expected that the compressive strength, abrasion resistance and impact resistance are improved. Therefore, it can be suitably used as an adsorbent, an adsorption carrier, an extractant, an extraction carrier, and a catalyst carrier.

【0071】また、本発明の製造方法によれば、比表面
積が小さく、細孔径が大きく、細孔容積も十分大きい磁
性シリカ粒子を容易に製造することができる。
Further, according to the production method of the present invention, magnetic silica particles having a small specific surface area, a large pore diameter, and a sufficiently large pore volume can be easily produced.

フロントページの続き Fターム(参考) 4G069 AA01 AA08 BA02A BA02B BA08B BA21C BA38 BC66B BE06C BE32C EA04X EB18X EB18Y EC02X EC02Y EC03Y EC06X EC07X EC07Y EC08X EC08Y EC11X EC12X EC13X EC14X EC15Y EC16Y EC17Y FA03 FB02 FB08 FB10 FB29 FB80 FC07 FC08 4G072 AA28 AA35 BB05 BB07 BB15 CC13 GG01 GG03 HH30 JJ09 JJ11 JJ13 KK01 KK03 LL06 LL11 LL15 MM01 PP17 RR05 RR12 RR20 TT01 TT06 TT08 TT09 UU11 UU17 5E040 AA11 AB02 AB04 CA12 CA20 HB03 HB07 HB17 NN02 NN06 NN17 NN18 Continued on front page F-term (reference) 4G069 AA01 AA08 BA02A BA02B BA08B BA21C BA38 BC66B BE06C BE32C EA04X EB18X EB18Y EC02X EC02Y EC03Y EC06X EC07X EC07Y EC08X EC08Y EC11X EC12X EC13X EC14 EC02 EB08 EB14 BB07 BB15 CC13 GG01 GG03 HH30 JJ09 JJ11 JJ13 KK01 KK03 LL06 LL11 LL15 MM01 PP17 RR05 RR12 RR20 TT01 TT06 TT08 TT09 UU11 UU17 5E040 AA11 AB02 AB04 CA12 CA20 HB03 HB07 NN17NN

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】磁性体を含むシリカ粒子において、前記磁
性体の含有量が全量の5〜50重量%であり、前記シリ
カ粒子の平均粒径が1〜200μmであり、BET比表
面積が100m2/g未満であり、細孔径が10nm以
上であり、かつ細孔容積が0.3〜2.5ml/gであ
ることを特徴とする大孔径の磁性シリカ粒子。
1. A silica particle containing a magnetic substance, wherein the content of the magnetic substance is 5 to 50% by weight of the total amount, the average particle diameter of the silica particle is 1 to 200 μm, and the BET specific surface area is 100 m 2. / G, a pore diameter of 10 nm or more, and a pore volume of 0.3 to 2.5 ml / g.
【請求項2】磁性シリカ粒子が球状であることを特徴と
する請求項1に記載の大孔径の磁性シリカ粒子。
2. The large-diameter magnetic silica particles according to claim 1, wherein the magnetic silica particles are spherical.
【請求項3】磁性体が超常磁性構造を有することを特徴
とする請求項1又は請求項2に記載の大孔径の磁性シリ
カ粒子。
3. The magnetic silica particles having a large pore diameter according to claim 1, wherein the magnetic material has a superparamagnetic structure.
【請求項4】大孔径の磁性シリカ粒子を製造するにあた
り、 a)Siアルコキシドを酸で加水分解し、Siアルコキ
シドポリマーを生成させ、少なくともSiアルコキシド
ポリマーを含む溶液を得る工程、 b)a)の工程で得られる少なくともSiアルコキシド
ポリマーを含む溶液に磁性体を加えて、Siアルコキシ
ドポリマー及び磁性体を含む混合物を得る工程、 c)b)の工程で得られる混合物を水と接触させて球状
化し、その後に塩基性物質を添加してゲル化する工程、 d)c)の工程で得られるゲルを洗浄後、加熱下で加圧
しながら水熱処理する工程、 e)d)の工程で得られるゲルを溶媒置換し、その後乾
燥させて磁性シリカ粒子を得る工程、 の5工程を少なくとも経ることを特徴とする請求項1〜
3のいずれかに記載の大孔径の磁性シリカ粒子の製造方
法。
4. A process for producing magnetic silica particles having a large pore size, comprising the steps of: a) hydrolyzing a Si alkoxide with an acid to form a Si alkoxide polymer and obtaining a solution containing at least the Si alkoxide polymer; Adding a magnetic substance to the solution containing at least the Si alkoxide polymer obtained in the step to obtain a mixture containing the Si alkoxide polymer and the magnetic substance; c) bringing the mixture obtained in the step b) into contact with water to form a spheroid; Then, a step of gelling by adding a basic substance, d) a step of subjecting the gel obtained in the step c) to washing, and then performing a hydrothermal treatment while applying pressure under heating, and e) removing the gel obtained in the step d) Solvent-substituting, and then drying to obtain magnetic silica particles, wherein at least five steps are performed.
4. The method for producing magnetic silica particles having a large pore diameter according to any one of 3.
【請求項5】請求項4に記載の磁性シリカ粒子の製造方
法の工程e)において、ゲルを乾燥させた後に、さらに
焼成することを特徴とする磁性シリカ粒子の製造方法。
5. The method for producing magnetic silica particles according to claim 4, wherein the gel is dried and then calcined in step e) of the method for producing magnetic silica particles according to claim 4.
【請求項6】請求項4又は請求項5に記載の大孔径の磁
性シリカ粒子の製造方法の工程a)において、Siアル
コキシドポリマーの粘度が25℃において10〜100
0mPa・sであることを特徴とする大孔径の磁性シリ
カ粒子の製造方法。
6. The process for producing magnetic silica particles having a large pore diameter according to claim 4 or 5, wherein the Si alkoxide polymer has a viscosity of 10 to 100 at 25 ° C.
A method for producing magnetic silica particles having a large pore diameter, which is 0 mPa · s.
【請求項7】請求項4〜6のいずれかに記載の大孔径の
磁性シリカ粒子の製造方法の工程b)において、磁性体
の原料として磁性流体を使用することを特徴とする大孔
径の磁性シリカ粒子の製造方法。
7. A large-pore magnetic material according to claim 4, wherein a magnetic fluid is used as a raw material of the magnetic material in step b) of the method for producing large-pore magnetic silica particles according to claim 4. A method for producing silica particles.
【請求項8】請求項4〜7のいずれかに記載の大孔径の
磁性シリカ粒子の製造方法の工程d)において、オート
クレーブ中で110〜380℃、1.4〜220気圧で
水熱処理をすることを特徴とする大孔径の磁性シリカ粒
子の製造方法。
8. In the step d) of the method for producing magnetic silica particles having a large pore diameter according to any one of claims 4 to 7, hydrothermal treatment is performed in an autoclave at 110 to 380 ° C. and 1.4 to 220 atm. A method for producing magnetic silica particles having a large pore diameter, characterized by comprising:
【請求項9】請求項4〜8のいずれかに記載の大孔径の
磁性シリカ粒子の製造方法の工程e )において、その処
理がゲル中の水分を、水より低表面張力の有機溶媒で置
換した後、除去することを特徴とする大孔径の磁性シリ
カ粒子の製造方法。
9. The method according to claim 4, wherein in the step e) of the process for producing magnetic silica particles having a large pore diameter, the treatment comprises replacing water in the gel with an organic solvent having a lower surface tension than water. And then removing the silica particles.
JP10178627A 1998-06-25 1998-06-25 Large bore magnetic silica particle and manufacture thereof Pending JP2000012314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10178627A JP2000012314A (en) 1998-06-25 1998-06-25 Large bore magnetic silica particle and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10178627A JP2000012314A (en) 1998-06-25 1998-06-25 Large bore magnetic silica particle and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000012314A true JP2000012314A (en) 2000-01-14

Family

ID=16051771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10178627A Pending JP2000012314A (en) 1998-06-25 1998-06-25 Large bore magnetic silica particle and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000012314A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042402A1 (en) * 2003-10-31 2005-05-12 Ngk Insulators, Ltd. Inorganic porous material containing dispersed particles
JP2007223858A (en) * 2006-02-24 2007-09-06 Ngk Insulators Ltd Porous structure
JP2009001447A (en) * 2007-06-21 2009-01-08 National Institute Of Advanced Industrial & Technology Silica porous material, method for manufacturing the same, and utilization of the same
JP2013518801A (en) * 2010-02-08 2013-05-23 モーメンティブ・パフォーマンス・マテリアルズ・インク High-purity metal oxide particles and method for producing materials produced thereby
JP2015062028A (en) * 2007-07-10 2015-04-02 イー・エム・デイー・ミリポア・コーポレイシヨン Media for affinity chromatography
JP2015064339A (en) * 2013-08-30 2015-04-09 国立大学法人愛媛大学 Cesium adsorbent, cesium adsorbent producing method, and environmental treatment method using cesium adsorbent
JP2017508694A (en) * 2013-12-19 2017-03-30 ザ ユニバーシティー オブ クイーンズランド Method for synthesizing silica vesicle and use thereof
JPWO2018097292A1 (en) * 2016-11-28 2019-10-17 ソマール株式会社 Resin composition, resin composition production method, resin composition molded article, and resin composition molded article production method
CN111527047A (en) * 2017-12-27 2020-08-11 日挥触媒化成株式会社 Porous silica particles and method for producing same
US12134563B2 (en) 2017-12-27 2024-11-05 Jgc Catalysts And Chemicals Ltd. Porous silica particles and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042402A1 (en) * 2003-10-31 2005-05-12 Ngk Insulators, Ltd. Inorganic porous material containing dispersed particles
JP2007223858A (en) * 2006-02-24 2007-09-06 Ngk Insulators Ltd Porous structure
JP2009001447A (en) * 2007-06-21 2009-01-08 National Institute Of Advanced Industrial & Technology Silica porous material, method for manufacturing the same, and utilization of the same
JP2015062028A (en) * 2007-07-10 2015-04-02 イー・エム・デイー・ミリポア・コーポレイシヨン Media for affinity chromatography
JP2013518801A (en) * 2010-02-08 2013-05-23 モーメンティブ・パフォーマンス・マテリアルズ・インク High-purity metal oxide particles and method for producing materials produced thereby
JP2015064339A (en) * 2013-08-30 2015-04-09 国立大学法人愛媛大学 Cesium adsorbent, cesium adsorbent producing method, and environmental treatment method using cesium adsorbent
JP2017508694A (en) * 2013-12-19 2017-03-30 ザ ユニバーシティー オブ クイーンズランド Method for synthesizing silica vesicle and use thereof
EP3083765A4 (en) * 2013-12-19 2017-07-05 The University Of Queensland Method of synthesis of silica vesicles and use thereof
US11033507B2 (en) 2013-12-19 2021-06-15 The University Of Queensland Method of synthesis of silica vesicles and use thereof
JPWO2018097292A1 (en) * 2016-11-28 2019-10-17 ソマール株式会社 Resin composition, resin composition production method, resin composition molded article, and resin composition molded article production method
US11578183B2 (en) 2016-11-28 2023-02-14 Somar Corporation Resin composition, method for producing resin composition, resin composition molded body, and method for producing resin composition molded body
CN111527047A (en) * 2017-12-27 2020-08-11 日挥触媒化成株式会社 Porous silica particles and method for producing same
US12134563B2 (en) 2017-12-27 2024-11-05 Jgc Catalysts And Chemicals Ltd. Porous silica particles and method for producing same

Similar Documents

Publication Publication Date Title
JP2757964B2 (en) Magnetic attractive particles and method for producing the same
JP3735990B2 (en) Method for producing magnetic silica gel
CN101559951B (en) Method for preparing nanoscale silica hollow microspheres
Rossi et al. Recent advances in the development of magnetically recoverable metal nanoparticle catalysts
EP2424901A1 (en) Monodisperse submicron polymer particles
JP5229526B2 (en) Magnetic ultrafine particles and method for producing the same
CN108250495A (en) Monodisperse agarose superparamagnetism method for preparing microsphere
JP2000012314A (en) Large bore magnetic silica particle and manufacture thereof
WO2022163833A1 (en) Method using adsorbent
CN106046256A (en) Method for preparing geniposide molecularly imprinted polymer magnetic microspheres
JP2000040608A (en) Magnetic silica grain and manufacture thereof
CN105435753B (en) A kind of mesoporous magnetic high-molecular composite balls and the preparation method and application thereof
Yang et al. Mesoporous yolk–shell structure molecularly imprinted magnetic polymers for the extraction and detection of 17β-estradiol
JP4196459B2 (en) Magnetic carrier, method for producing the same, and method for extracting nucleic acid using the same
CN1761003A (en) Method for fabricating magnetic hollow ball
CN1232553C (en) Ferromagnetic microsphere medium made from urea-formaldehyde resin and its preparation method
WO2008058996A2 (en) Method for the production of magnetic silicic acid particles
JP2000256388A (en) Magnetic silica particle for nucleic acid binding and isolation of nucleic acid
JP2000012313A (en) Magnetic silica particle and manufacture thereof
CN104004226A (en) Modified aluminum hydroxide and preparation method thereof
CN114870759B (en) Preparation method of raspberry-shaped silicon hydroxyl magnetic microsphere
JPS62138310A (en) Monodisperse metallic-oxide preparation
CN1747078A (en) Modified water-base magnetic liquid of polymer and production thereof
KR102182656B1 (en) Magnetic agarose beads containing carboxymethyl dextran-coated superparamagnetic iron oxide nanoparticles and the preparation method thereof
CN111087032A (en) Silicon oxide and magnesium oxide composite material and synthesis method thereof