WO2005037090A1 - Procede et dispositif permettant de determiner le defaut de vision residuel d'un patient - Google Patents

Procede et dispositif permettant de determiner le defaut de vision residuel d'un patient Download PDF

Info

Publication number
WO2005037090A1
WO2005037090A1 PCT/EP2004/052815 EP2004052815W WO2005037090A1 WO 2005037090 A1 WO2005037090 A1 WO 2005037090A1 EP 2004052815 W EP2004052815 W EP 2004052815W WO 2005037090 A1 WO2005037090 A1 WO 2005037090A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
patient
light source
eye
wavefront
Prior art date
Application number
PCT/EP2004/052815
Other languages
German (de)
English (en)
Inventor
Ingo Müller-Vogt
Original Assignee
Lar Ip Ventures Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lar Ip Ventures Inc. filed Critical Lar Ip Ventures Inc.
Publication of WO2005037090A1 publication Critical patent/WO2005037090A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters

Definitions

  • the invention relates to a method for determining the residual ametropia of a patient during the subjective refraction determination by means of a phoropter and an eye chart, and a device for carrying out this method.
  • the refraction of the human eye can be measured in different ways. In principle, a distinction must be made between two different methods: (a) With the "objective” method, the refraction is determined by analyzing a light beam reflected from the retina of a patient's eye. It can also be used in patients, such as small children or the disabled, who cannot provide any information about their eyesight. (b) With the "subjective” method, the patient himself provides feedback on the quality of the eyesight. To do this, he looks through a phoropter or test glasses at an eye chart. Different optical corrections for both eyes are made separately in the patient's viewing direction. He now decides subjectively, by looking at the optotypes on the eye chart, which correction provides the best vision.
  • ametropia can usually be corrected in 0.25 D steps with regard to defocus and astigmatism.
  • the refraction is determined via the subjective method and thus the correction of a patient's ametropia is determined subjectively, a targeted, optimal ametropia correction is not possible.
  • the patient's subjective perception is always based on his own way of seeing. This is where his experience in recognizing optotypes flows in. An objective measured value for the correction of a visual defect that is really required is not possible with this.
  • the object of the invention is therefore to create a method with which the refraction of the human eye can be determined more precisely and the quality of the correction of an ametropia can be improved.
  • the invention is also based on the object of providing a device which is suitable for carrying out the method.
  • a light spot is generated on the retina of an eye of the patient.
  • the light emitted by the light spot is fed to a wavefront sensor.
  • the aberrations of the light emitted by the light spot are determined by wavefront analysis.
  • the "subjective" and the “objective” method are carried out in parallel, whereby, in contrast to the known procedures, the objective method for determining the residual ametropia is already used during the diagnosis of ametropia using the usual subjective method.
  • the light spot on the retina is generated by means of a light source arranged on the side of the eye chart of the phoropter.
  • the determination of the residual ametropia continues to be carried out according to the subjective method, since he continues to look at the eye chart only through the phoropter.
  • the light spot is preferably generated by light in the invisible wavelength range.
  • the light emitted by the light spot on the retina also passes through
  • Phoropters before they are fed to the wavefront sensor, existing phoropters that do not have an output that delivers the optical correction value that has just been set can be used unchanged. Furthermore, this measure ensures that only low residual ametropia values have to be detected and calculated by the shaft sensor, so that it can be matched to a narrow spectrum of values and can be equipped with a high sensitivity.
  • the light emitted by the light spot is - seen from the patient - preferably coupled out behind the phoropter from the patient's viewing direction. This measure makes it possible to record and determine the residual ametropia away from the eye chart. Existing eye charts can therefore be used unchanged.
  • a device for carrying out the method according to the invention comprises a point light source, a wave sensor and a coupling in of the beam emitted by the point light source and coupling out of the beam reflected by the retina of the patient's eye in or out of the patient's viewing direction. Seen from the patient, such a device only needs to be introduced into the beam path behind the phoropter in order to be able to carry out the method according to the invention. All existing diagnostic devices such as phoropters and eye charts can then continue to be used unchanged. The device according to the invention is therefore also suitable for retrofitting purposes of already existing systems.
  • the point light source preferably comprises an infrared light source in order not to influence the subjective refraction determination in the visible by additional light incidence in the patient's eye.
  • the infrared light source can comprise a laser source.
  • the device for coupling in the light emitted by the point light source and coupling out the light reflected by the retina of the patient's eye comprises, in a particularly constructively simple and therefore preferred embodiment, a beam splitter which is transparent in the range of visible light but acts as a mirror in the infrared.
  • the wavefront sensor preferably comprises a camera chip.
  • a camera chip For example, one that works according to the CCD principle can be considered. Since already existing systems are not designed to supplement a device according to the invention, it is advantageous if the latter has the smallest possible dimensions.
  • the point light source is therefore only followed by an optical device for generating a parallel light beam, but not a device for precorrection.
  • the device designated as a whole by R in the drawing, is set in the beam path S of an eye A of a patient such that the light reflected by the retina N first passes through a conventional phoropter P and a beam splitter 1 of the device R. It comprises a mirror which is transparent in the range of visible light, but which is reflective in the infrared, and which is arranged at an angle of 45 ° to the optical axis O of the system Eye A - Phoropter P - Eye Chart T.
  • optical axis Q of the device R there is an optical system consisting of two mutually displaceable converging lenses 2, 3 and an aperture 4 located between them, which serves to generate a parallel light beam L in the infrared.
  • a light source 5 and a polarizer 6 connected downstream of it are provided in front of the optical system, from which the polarized infrared light is fed to a polarization beam splitter.
  • the latter is designed in such a way that it reflects the light originating from the light source 5 in the direction of the optical axis Q to the beam splitter 1.
  • the device R further comprises a polarizer 8, the direction of polarization of which is rotated by 90 ° with respect to the polarizer 6.
  • the light passing through the polarizer 8 then strikes a lens array, from which it is fed to a camera chip 10.
  • An infrared light beam with a flat wavefront is generated by the light source 5. This is polarized by means of the polarizer 6 and brought into the beam path along the optical axis Q by means of the beam splitter 7. The polarized infrared light is expanded by means of the telescopically arranged lenses 2, 3 and the diaphragm 4 located between them and is fed to the retina N of the eye A via the mirror 1. It passes through the Phoropter P.
  • the infrared light emitted by the retina N then again passes through the phoropter and is supplied to the beam splitter 7 by means of the beam splitter 1 via the lens 2, the pinhole 4 and the lens 3. When it passed through the eye, it became
  • Infrared light polarized such that it partially passes through the beam splitter 7 and the polarizer 8.
  • the polarizer 8 filters out such light that was generated, for example, by reflections on lenses and does not originate from the fundus.
  • the light passing through the polarizer 8 penetrates a lens array 9 and is finally captured by the camera chip 10.
  • the wavefront analysis is now carried out by displaying the wavefront in a way that, in addition to the actual shape, also provides information about ametropia of the eye, which can be used directly in ophthalmology. It is based on the Zemike polynomial, which was introduced by F. Zernike in a work on the phase contrast method for wavefront analysis. These Zernike polynomials describe the wave fronts of classic aberrations of optical systems with one polynomial each, as well as the higher orders thereof.
  • the method of wavefront analysis is based on a modification of the Hartmann 's screen test.
  • the wavefront to be analyzed is divided into many sections using a pinhole array. These individual light sources each represent a main maximum on a screen, the position of which depends on the shape of the incident wavefront.
  • the local tilt of the wavefront W (xi, yi) at one point (xi, yi) is via the relationship:
  • the information about the wavefront thus lies in the positions of the maxima.
  • this front can be determined and represented in the form of Zernike polynomials.
  • This method is subject to a measuring range, which is shown below.
  • the shift of the maxima always represents an averaging over an aperture.
  • a wavefront with discontinuities that fall on the edges of the aperture cannot be recognized as such, since only local tilting is perceived.
  • the measuring range of such a wavefront sensor is not unlimited. It is determined by the distance between the screen, the diameter of the screens and the distance between the screens.
  • the neighboring slopes of the wavefront must not exceed a maximum angle difference (with a change of sign), since otherwise the focus points can no longer be resolved separately.
  • the reconstruction and representation of the wavefront from the measured displacements Dxi and Dyi takes place in three steps: First, the slope of the wavefront is reconstructed using orthogonal polynomials, since it is directly correlated with the individual focus point deviations via the following relationship.
  • the function W (x, y) represents the wavefront, a the distance between the lens array and the camera chip and the running parameter i stands for the individual measured maxima.
  • the actual wave front is then determined by means of a coefficient comparison from the slope of the wave front obtained and is represented in Taylor polynomials.
  • the first step the reconstruction of the slope, takes place via an adjustment method that works according to the method of the smallest quadratic deviation.
  • An auxiliary wave front WH is applied, which can be represented by orthogonal polynomials Ln up to order M, equation (3).
  • n JL.5 ⁇ [. (, j J. & l ⁇ ⁇ (A))
  • Equations (6) can be transformed into:
  • the data recorded by the camera chip are first read into the main memory of the computer.
  • the images captured in this way are prepared in terms of brightness, contrast and any artifacts.
  • the subsequent image analysis is about extracting all relevant parameters from the image data.
  • the center of gravity coordinates and the shape of the individual focus points are of particular interest.
  • the information from the shape and position of the focus points can be used to make detailed statements about the shape of the wavefront, which is directly related to the aberration.
  • the shape of the wavefront can be represented, for example, with the Zernik polynomials often used in optics.
  • the results of the wavefront analysis are now brought to the user using graphical display methods.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Procédé permettant de déterminer le défaut de vision résiduel d'un patient pendant la détermination subjective de la réfraction à l'aide d'un phoroptère et d'un tableau d'optotypes, selon lequel (a) une tache de lumière est produit sur la rétine de l'oeil d'un patient, (b) la lumière émise par la tache de lumière est envoyée à un détecteur de front d'onde et (c) l'aberration de la lumière émise par la tache de lumière est déterminée par analyse du front d'onde. La présente invention concerne également un dispositif adapté pour mettre en oeuvre ledit procédé.
PCT/EP2004/052815 2003-10-20 2004-10-19 Procede et dispositif permettant de determiner le defaut de vision residuel d'un patient WO2005037090A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003148854 DE10348854A1 (de) 2003-10-20 2003-10-20 Verfahren und Vorrichtung zur Ermittlung der Restfehlsichtigkeit eines Patienten
DE10348854.5 2003-10-20

Publications (1)

Publication Number Publication Date
WO2005037090A1 true WO2005037090A1 (fr) 2005-04-28

Family

ID=34442147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052815 WO2005037090A1 (fr) 2003-10-20 2004-10-19 Procede et dispositif permettant de determiner le defaut de vision residuel d'un patient

Country Status (2)

Country Link
DE (1) DE10348854A1 (fr)
WO (1) WO2005037090A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3056135A1 (fr) * 2007-06-27 2016-08-17 AMO WaveFront Sciences, LLC Système et procédé pour mesurer la topographie cornéenne
US9462939B2 (en) 2012-04-05 2016-10-11 Visionix Ltd. Objective phoropter system
CN106659376A (zh) * 2014-09-22 2017-05-10 卡尔蔡司股份公司 用于确定眼睛折射的方法和装置
US10383513B2 (en) 2015-05-05 2019-08-20 Visionix Ltd. Objective phoropter
JP2021029288A (ja) * 2019-08-16 2021-03-01 株式会社トプコン 眼科装置及び眼科システム
US11096576B2 (en) 2016-06-14 2021-08-24 Plenoptika, Inc. Tunable-lens-based refractive examination

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046141A1 (de) * 2005-09-27 2007-04-05 Iroc Ag Gerät für binokulare Visusprüfung
DE102007032564A1 (de) 2007-07-12 2009-01-15 Rodenstock Gmbh Verfahren zum Überprüfen und/oder Bestimmen von Benutzerdaten, Computerprogrammprodukt und Vorrichtung
JP6076599B2 (ja) * 2008-12-01 2017-02-08 パーフェクト・ビジョン・テクノロジー・(ホンコン)・リミテッドPerfect Vision Technology (Hk) Ltd. 眼を屈折矯正するための方法及び装置
EP2371270A1 (fr) * 2010-03-16 2011-10-05 Ignaz Alois Stuetz Procédé de compensation et de simulation de la distorsion d'image (anamorphique)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222395A1 (de) * 1992-07-08 1994-01-13 Amtech Ges Fuer Angewandte Mic Vorrichtung und Verfahren zur Messung der Augenrefraktion
US20030025874A1 (en) * 1996-12-23 2003-02-06 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US20030151721A1 (en) * 2002-02-13 2003-08-14 Lai Shui T. Apparatus and method for determining objective refraction using wavefront sensing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222395A1 (de) * 1992-07-08 1994-01-13 Amtech Ges Fuer Angewandte Mic Vorrichtung und Verfahren zur Messung der Augenrefraktion
US20030025874A1 (en) * 1996-12-23 2003-02-06 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US20030151721A1 (en) * 2002-02-13 2003-08-14 Lai Shui T. Apparatus and method for determining objective refraction using wavefront sensing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3056135A1 (fr) * 2007-06-27 2016-08-17 AMO WaveFront Sciences, LLC Système et procédé pour mesurer la topographie cornéenne
US9462939B2 (en) 2012-04-05 2016-10-11 Visionix Ltd. Objective phoropter system
CN106659376A (zh) * 2014-09-22 2017-05-10 卡尔蔡司股份公司 用于确定眼睛折射的方法和装置
CN106659376B (zh) * 2014-09-22 2018-12-14 卡尔蔡司股份公司 用于确定眼睛折射的方法和装置
US10383513B2 (en) 2015-05-05 2019-08-20 Visionix Ltd. Objective phoropter
US11096576B2 (en) 2016-06-14 2021-08-24 Plenoptika, Inc. Tunable-lens-based refractive examination
JP2021029288A (ja) * 2019-08-16 2021-03-01 株式会社トプコン 眼科装置及び眼科システム
JP7349291B2 (ja) 2019-08-16 2023-09-22 株式会社トプコン 眼科装置及び眼科システム

Also Published As

Publication number Publication date
DE10348854A1 (de) 2005-05-19

Similar Documents

Publication Publication Date Title
DE60035643T2 (de) Verfahren und Vorrichtung zur Messung von Refraktionseigenschaften des menschlichen Auges
DE102007032001B4 (de) Vorrichtung und Verfahren zur Bestimmung der erforderlichen Korrektur der Fehlsichtigkeit eines Auges
DE60121123T2 (de) Verfahren und vorrichtung zur messung von refraktiven fehlern eines auges
DE102011001083B4 (de) Projektorvorrichtung mit Selbstkorrekturfunktion sowie Medizingerät mit der Projektorvorrichtung
DE102005031496B4 (de) Vorrichtung zum Bestimmen der Wellenfront von Licht- und Operationsmikroskop mit Vorrichtung zum Bestimmen der Wellenfront von Licht
EP2790567B1 (fr) Adaptation d'un verre de lunette en fonction de la luminosité
DE10014400A1 (de) Wellenfrontsensor mit Mehrleistungsstrahlmodi und unabhängiger Abgleichkamera und Akkommodationsbereichmessung
EP2943114B1 (fr) Aberromètre (ou similaire) à cible astigmatique
EP1662981B1 (fr) Dispositif et procede pour mesurer la topographie superficielle et l'aberration d'onde d'un systeme a lentille, notamment d'un oeil
DE102013021974B3 (de) Vorrichtung zur Bestimmung einer Ametropie eines Auges
WO2002060319A1 (fr) Procede et dispositif de determination subjective d'aberrations d'ordre superieur
EP3730036A1 (fr) Détermination d'une erreur de réfection d'un il
EP2790566B1 (fr) Réfraction objective universelle
WO2005037090A1 (fr) Procede et dispositif permettant de determiner le defaut de vision residuel d'un patient
EP0492044A1 (fr) Appareil destiné à l'essai de la fonction visuelle
EP2148610A1 (fr) Procédé et système de mesure oculaire
DE3437234C2 (de) Vorrichtung zur Bestimmung der potentiellen Sehschärfe unter Verwendung eines Spaltlampenmikroskops
EP2443991B1 (fr) Microscope d'opération doté d'un dispositif pour la mesure de réfraction intra-opératoire
DE10009532A1 (de) Vorrichtung und Verfahren zur Qualitätssicherung bei Augenoperationen
DE102011009260B4 (de) Bestimmung der Rotationsparameter der Augen
WO2024056632A1 (fr) Procédé, utilisation d'optotypes adaptés et dispositif pour déterminer des caractéristiques d'acuité visuelle d'un sujet
DE102017115958A1 (de) System und Verfahren für das Erfassen von Kenngrößen eines Auges
DE2940519C2 (de) Gerät zur subjektiven Refraktionsbestimmung
EP1437085A1 (fr) Dispositif et méthode pour déterminer l'état de réfraction oculaire
DE102021133152A1 (de) Verfahren, Vorrichtung und Computerprogrammprodukt zum Bestimmen einer Sensitivität zumindest eines Auges eines Probanden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase