WO2005035636A1 - 金属ナノ粒子コンポジット膜の製造方法 - Google Patents

金属ナノ粒子コンポジット膜の製造方法 Download PDF

Info

Publication number
WO2005035636A1
WO2005035636A1 PCT/JP2004/015458 JP2004015458W WO2005035636A1 WO 2005035636 A1 WO2005035636 A1 WO 2005035636A1 JP 2004015458 W JP2004015458 W JP 2004015458W WO 2005035636 A1 WO2005035636 A1 WO 2005035636A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
composite film
metal nanoparticle
polyimide resin
layer
Prior art date
Application number
PCT/JP2004/015458
Other languages
English (en)
French (fr)
Inventor
Satoshi Tomita
Hidemi Nawafune
Kensuke Akamatsu
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to DE602004010694T priority Critical patent/DE602004010694T2/de
Priority to EP04792624A priority patent/EP1674509B1/en
Priority to US10/595,398 priority patent/US20070212496A1/en
Publication of WO2005035636A1 publication Critical patent/WO2005035636A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for manufacturing a metal nanoparticle composite film in which metal nanoparticles are dispersed in a polyimide resin film, and an apparatus for manufacturing a metal nanoparticle composite film.
  • Nanoparticles with a diameter of several to several tens of nanometers embedded in a matrix (film) made of a material different from the material of the particles are called a nanoparticle composite film (see Fig. 4).
  • a ferromagnetic metal nanoparticle such as iron or nickel embedded in a matrix is called a ferromagnetic metal nanoparticle composite film.
  • Ferromagnetic metal nanoparticles-composite films have recently attracted attention from the viewpoint of application to ultra-high density magnetic recording media such as hard disks.
  • the properties of a composite film are determined by the (1) material, (2) particle diameter, (3) volume filling rate, etc. of the nanoparticles constituting the composite film.
  • particle size and volume filling are important parameters because they have a significant effect on the interaction between particles. Therefore, in order to realize a nanoparticle composite film with desired properties and characteristics, it is indispensable to control the particle diameter and the volume filling rate of the nanoparticles independently.
  • nanoparticle composite films can be roughly divided into a bottom-up type, in which atoms and molecules are stacked to produce nanoparticles, and a top-down type, in which balta is broken down.
  • a bottom-up type in which atoms and molecules are stacked to produce nanoparticles
  • a top-down type in which balta is broken down.
  • Examples of a method for producing a bottom-up type nanoparticle composite film include a self-assembly method using a colloid, a molecular beam epitaxy (MBE) method, and a sputtering method.
  • MBE molecular beam epitaxy
  • sputtering method a method for producing a bottom-up type nanoparticle composite film.
  • a typical method of manufacturing a top-down type nanoparticle composite film includes an optical lithography method and an electron beam lithography method. With these methods, independent control of particle size and volume filling rate is possible, but with current technology, particle size is limited to at most several tens of nanometers, and control at several nanometers is difficult. is there.
  • the present inventors have (a) treated the polyimide resin film with a strong aqueous solution such as an aqueous solution of calcium hydroxide to introduce a carboxyl group, and then (b) After doping metal ions into the resin film by contacting it with a liquid containing metal ions such as copper, and (c) performing heat reduction treatment in hydrogen gas, the metal nanoparticles are contained in the polyimide resin film.
  • a metal nanoparticle composite film in which is dispersed can be obtained, and have proposed it earlier.
  • the present invention solves the problems in the composite film manufacturing methods described in the patent documents and non-patent documents described above, and reduces the particle size of the metal nanoparticles in the metal nanoparticle composite film. It is an object of the present invention to provide a method for producing a metal nanoparticle composite film that can independently control the volume filling ratio. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that (1) the particle size of the metal nanoparticle in the metal nanoparticle composite film is determined by the first alkali treatment, and the metal nanoparticle dispersed layer is formed by heat treatment in a reducing gas. Particle size does not change after being performed, and
  • polyimide which is a matrix
  • the thickness of the metal nanoparticle dispersion layer is adjusted to obtain a composite film.
  • the present invention employs the following configurations 1 to 9 in order to solve the above problems.
  • the polyimide resin film is treated with an aqueous alkali solution to introduce carboxyl groups, and then (b) contacted with a metal ion-containing solution to dope metal ions into the resin film, and (c) reduction By performing heat reduction treatment in a reactive gas, when manufacturing a metal nanoparticle composite film in which metal nanoparticles are dispersed in a polyimide resin film,
  • the liquid containing metal ions is at least one selected from nickel, cobalt, and iron. 8. The method for producing a metal nanoparticle composite film according to any one of 1 to 7, wherein the method contains the above metal ion.
  • FIG. 2 is a view showing an example of a sample stage provided in a reduction processing chamber in the apparatus of FIG. 1, (A) is a plan view thereof, and (B) is a front view thereof.
  • FIG. 3 is a schematic diagram showing an example of a sample stage used in the conventional technology.
  • FIG. 4 is a schematic diagram illustrating a metal nanoparticle composite film.
  • FIG. 5 is a cross-sectional image of the composite film obtained in Example 1 taken by a transmission electron microscope, wherein (A) shows the front side of the composite film and (B) shows the cross section on the back side of the film.
  • FIG. 6 is a cross-sectional image of the composite film obtained in Reference Example 1 taken by a transmission electron microscope.
  • A shows a cross section of the front side of the composite film
  • B shows a cross section of the back side of the film.
  • FIG. 7 is a diagram showing the relationship between the volume filling rate of nickel nanoparticles in the composite film and the heat treatment time in Example 2.
  • FIG. 8 is a cross-sectional image of the composite film obtained in Example 3 observed by a transmission electron microscope
  • FIG. 8 (A) is an image of a cross section of the composite film near one surface
  • FIG. I is a high magnification image of the nickel nanoparticle dispersed layer of FIG. 8 (A).
  • FIG. 9 is a graph showing the relationship between nickel nanoparticles and KOH treatment time in Example 3. It is a figure showing a change of diameter
  • FIG. 10 is a cross-sectional image of the composite film obtained in Example 4 by a transmission electron microscope
  • FIG. 10 (A) is an image of a cross section of the composite film near one side surface
  • FIG. 10 (B) is a high magnification image of the nickel nanoparticle dispersed layer of FIG. 10 (A).
  • FIG. 11 is a cross-sectional image of the composite film obtained in Example 5 taken by a transmission electron microscope
  • FIG. 11 (A) is an image of a cross section of the composite film near one side surface
  • FIG. 11 (B) is a high magnification image of the nickel nanoparticle dispersed layer of FIG. 11 (A).
  • the imido ring of the polyimide resin is cleaved to introduce a carboxyl group by treating the polyimide resin film with an aqueous alkali solution such as potassium hydroxide or sodium hydroxide. .
  • the concentration of the aluminum hydroxide is preferably 1 to 10 mol liter, particularly preferably about 3 to 7 mol Z liter, and room temperature to about 80 ° C., preferably 40 to 60 °.
  • Carboxyl groups can be introduced by immersing the polyimide resin film in an aqueous solution of about C for 1 to 60 minutes, preferably for about 3 to 10 minutes.
  • modified polyimide resin film the polyimide resin film into which the carboxyl group is introduced (hereinafter sometimes referred to as “modified polyimide resin film”) is brought into contact with a solution containing a metal cation. Then, a metal cation is doped into a modified layer (a layer into which a carboxyl group is introduced) of the modified polyimide resin film by a cation exchange reaction of a carboxyl group.
  • the solution containing the metal cation it is preferable to use a solution containing one or more metal ions selected from nickel, cobalt, iron, copper, and platinum.
  • the selected metal ions are finally dispersed as metal nanoparticles in the composite film.
  • the metal ion is generally mixed with the metal ion-containing liquid as a metal salt.
  • a metal salt having appropriate solubility may be used according to the type of metal.
  • nickel ions it can be compounded in the form of nickel chloride, nickel sulfate, nickel nitrate, nickel acetate and the like.
  • concentration of the metal ions in the metal ion-containing liquid is usually about 0.001 to 1.5 mol / liter, preferably about 0.01 to 1 mol / liter, and more preferably about 0.1 to 1 mol / liter. It is more preferably about 1 to 1 mol / liter.
  • Metal ion-containing liquids are generally used as aqueous solutions. However, depending on the metal ion used, an organic medium such as methanol may be used. If necessary, the metal ion-containing solution may contain a buffer for maintaining pH, a complexing agent for preventing precipitation of metal ions, and the like.
  • the pH of the metal ion-containing liquid gradually decreases due to the reaction between the ion exchange group and the metal ion, when the metal ions are replenished in the form of hydroxide, the pH of the metal ion-containing liquid is reduced. It is desirable to adjust the pH to be weakly acidic to neutral, specifically, to a pH of about 2 to 6, preferably about 3 to 4.
  • the method of bringing a solution containing metal ions into contact with the modified polyimide resin film is particularly important.
  • the resin film may be immersed in a metal ion-containing liquid.
  • metal ions are bonded or adsorbed to the ion exchange groups contained in the resin membrane.
  • the immersion treatment may be performed at, for example, about 20 to 80 ° C., preferably about 25 to 80 ° C., for example, for about 1 to 20 minutes, and preferably for about 3 to 10 minutes.
  • the modified polyimide resin film on which the metal cations are doped is heated in a reducing gas such as hydrogen gas to reduce the metal cations and reduce the metal cations.
  • a reducing gas such as hydrogen gas
  • the cleaved imido ring of the modified polyimide resin film is restored by dehydration condensation to form a metal nanoparticle dispersed layer in which metal nanoparticles are dispersed in the polyimide resin film.
  • the volume filling rate of the metal nanoparticles in the metal nanoparticle composite film is controlled, and a metal nanoparticle composite film having a desired property is obtained.
  • the present inventors have announced that the particle size of metal nanoparticles in a composite film can be controlled by adjusting the heat treatment temperature in a reducing gas.
  • the thickness of the metal nanoparticle dispersed layer in the composite film we found that the volume filling rate of the metal nanoparticles can be controlled independently of the particle diameter.
  • This principle utilizes the property that the polyimide resin, which is a matrix, shrinks due to thermal decomposition when heat treatment is further performed after the metal nanoparticle dispersed layer is formed.
  • the volume filling rate of metal nanoparticles is controlled by adjusting the thickness of the matrix.
  • the method of adjusting the thickness of the metal nanoparticle dispersion layer is as follows: (1) When performing the heat reduction treatment in a reducing gas, the nanoparticle dispersion is controlled by controlling the heat treatment time.
  • the thickness of the metal nanoparticle dispersed layer is adjusted by further performing a heat treatment. 5 (2)
  • the thickness of the metal nanoparticle dispersion layer can be easily adjusted. It is preferable because it can be used. Subsequent heat treatment temperatures can be lower or higher than the initial heat treatment temperature.
  • the rate of thermal decomposition of polyimide resin should be kept low and the volume filling rate of metal nanoparticles should be easily controlled. Can be.
  • the heat treatment after the formation of the metal nanoparticle dispersed layer is performed at a temperature higher than the initial heat treatment temperature, the time required for the entire process can be shortened by increasing the thermal decomposition rate. Therefore, the temperature may be appropriately selected according to the intended metal nanoparticle composite film. 5 Further, the heat treatment after the formation of the metal nanoparticle dispersed layer can be performed in an inert gas such as nitrogen gas instead of in the reducing gas.
  • the volume filling rate (%) of the metal nanoparticles is calculated from the metal ion adsorption amount (mo 1 / cm 2 ) determined by chemical analysis according to the following equation.
  • Metal ion adsorption amount (mo 1 / cm 2 ) X
  • Volume filling rate (%) —— Metal density (g / cm 3 ) X 10 0 4 X
  • Composite film thickness ( ⁇ ) As the polyimide resin film forming the metal nanoparticle dispersed layer in the present invention, in addition to the polyimide resin film itself, a glass, ceramics, metal or the like base material surface coated with the polyimide resin is used. can do.
  • a metal nanoparticle dispersed layer can be formed on one or both surfaces of the film depending on the processing conditions.
  • a material such as glass, ceramics, metal, or the like, which is coated with a polyimide resin on a substrate surface
  • the metal nanoparticle dispersed layer is formed on one surface of the polyimide resin film.
  • the reducing gas used in the present invention is not particularly limited. For example, hydrogen gas, diborane gas and the like can be used, but usually hydrogen gas is used.
  • the heat treatment temperature and the heat treatment time in the reducing gas can be selected according to the type of the reducing gas to be used, the metal doped into the polyimide resin, the desired properties of the composite film, and the like.
  • the metal ions bonded or adsorbed within a range of about several ⁇ m from the surface of the polyimide resin film are controlled from being diffused to the surface of the resin film.
  • the reduction reaction proceeds while diffusing into the resin film.
  • a metal nanoparticle dispersion layer in which extremely fine metal particles with a particle size of several nanometers are uniformly dispersed in the resin matrix in the range of several tens of nm to several / m from the surface of the resin film Is formed.
  • heat treatment forms alloy fine particles.
  • the procedure of performing the heat treatment in two steps will be specifically described by taking as an example a case where a nickel nanoparticle composite film is formed using hydrogen gas as a reducing gas. Since the reduction end temperature of Ni ions in a hydrogen atmosphere is about 320 ° C., the first stage heat treatment is performed at 320 ° C. in a hydrogen atmosphere. As a result, Ni in the composite layer Particles are formed. The diameter of the Ni particles is about 5 nm for the membrane treated with KOH for 2 minutes and about 8 nm for the membrane treated for 7 minutes.
  • the heat treatment temperature here can be relatively lower than the initial heat treatment temperature of 320 ° C., for example, about 280 ° C., and conversely, relatively higher than the initial heat treatment temperature.
  • the temperature can be set to about 350 ° C.
  • the advantage of performing the second stage of heat treatment at a relatively low temperature is that the rate of thermal decomposition of the polyimide is kept low and the control of the volume filling rate becomes difficult.
  • the advantage of using a relatively high temperature is that the pyrolysis rate can be increased and the process time can be reduced.
  • the polyimide resin film itself is used as the polyimide resin film forming the metal nanoparticle dispersed layer in the present invention
  • both the front and back surfaces of the polyimide resin film are uniformly heated in a reducing gas
  • a metal nanoparticle composite film in which metal nanoparticle dispersed layers having the same thickness are formed on both front and back surfaces of the composite film.
  • a heat treatment is performed by using a composite film manufacturing apparatus having a tubular reduction treatment chamber as shown in FIG. 1 so that the reducing gas uniformly contacts both the front and back surfaces of the resin film.
  • This composite film manufacturing apparatus 1 has a tubular electric furnace 3 arranged around the outer periphery of a tubular reduction treatment chamber 2 made of a heat-resistant material such as quartz, ceramics or heat-resistant glass. Both ends of the chamber 2 are sealed with stoppers 4 and 4 made of heat-resistant rubber or the like. Pipes 5, 5 are fixed to the stoppers 4, 4, and a reducing gas such as hydrogen gas is introduced into and extracted from the reduction treatment chamber 2.
  • a sample stage 6 made of a heat-resistant material such as ceramics is provided in the reduction chamber 2, and a polyimide resin film 7 to be heated on the sample stage 6 is parallel to the longitudinal direction of the reduction chamber 2. Placed in
  • FIG. 2 is a diagram showing an example of a sample stage provided in a reduction chamber, (A) is a plan view thereof, and (B) is a front view thereof.
  • the sample table 6 is provided with six stands 12-2 on a substrate 11, sandwiching one side of the polyimide resin film 7 between the stands 12, and holding the resin film 7 upright. It was made.
  • the sample stage used in the conventional technique simply mounts the resin film 7 on the flat base 21. Heating was even, and the reducing gas could not be brought into contact evenly on both sides.
  • the sample table 6 having the above configuration is used, one side of the polyimide resin film 7 is sandwiched between the sample tables 6, and the heat treatment is performed by disposing the polyimide resin film 7 in parallel with the longitudinal direction of the reduction treatment chamber 2. By doing so, the front and back surfaces of the resin film 7 are evenly heated, and It has become possible to bring the reducing gas into uniform contact with.
  • FIG. 5 is an example of a transmission electron micrograph of a cross section of a metal nanoparticle composite film manufactured using the apparatus of FIG. 1 having the sample stage of FIG. 2, and (A) is (B) shows a cross section of the back side of the composite film.
  • FIG. 6 is a transmission electron micrograph of a cross section of a metal nanoparticle composite film manufactured using the conventional apparatus having the sample stage shown in FIG. 3, and (A) is a photograph of the composite film. (B) shows a cross section on the back side of the film.
  • the layer between the two arrows represents the metal nanoparticle dispersed layer.
  • the thickness of the nanoparticle dispersed layer formed on the front side (A) and the back side (B) is the same.
  • the thickness of the nanoparticle dispersed layer formed on the front side (A) and the back side (B) is clearly different.
  • FIG. 2 In the sample stage 6 shown in FIG. 2, six stands 12 are provided on the substrate 11, and two polyimide resin films 7 are sandwiched between the stands 12. It goes without saying that the number of the resin films 7 to be sandwiched can be appropriately selected. In addition, their dimensions and shapes can also be selected as appropriate. For example, FIG. The individual stands 12 may be integrated to hold the entire lower side of the resin film 7.
  • the metal nanoparticle composite film manufactured using such a sample stage 6 cuts the part sandwiched between the stands 12 of the sample stage 6 partially or over the entire length of the held side. By doing so, a composite film having uniform properties can be obtained.
  • the heat treatment time is controlled so that the thickness of the polyimide resin film on both front and back surfaces is increased.
  • a composite film having a metal nanoparticle dispersed layer having a desired volume filling rate of metal nanoparticles can be obtained.
  • the metal nanoparticles are dispersed in the polyimide resin by performing a heat treatment at a temperature equal to or higher than the reduction temperature of metal ions in the reducing gas. Forming a layer, and further performing a heat treatment at a temperature different from the heat treatment temperature, thereby adjusting the thickness of the metal nano-particle dispersed layer, thereby obtaining a metal nano-particle dispersed layer having a desired volume filling ratio of the metal nano particles.
  • the formed composite film can be obtained.
  • polyimide resin film (Dupont, trade name “Kapton 20 0—H ”) was immersed in a 5 mol / L aqueous solution of potassium hydroxide at 50 ° C. for 5 minutes to introduce carboxyl groups on the surface of the polyimide resin film.
  • the treated film was rinsed with ion-exchanged water for 2 minutes, and then immersed in an aqueous solution of nickel chloride (5 mol / liter) at room temperature for 5 minutes to drop nickel ions on the polyimide resin film. .
  • FIG. 5 shows a transmission electron microscope image of the obtained composite film.
  • (A) is an image of a cross section of the front side of the composite film
  • (B) is an image of a cross section of the back side of the film.
  • a composite film in which nickel nanoparticles were dispersed in a polyimide resin film was manufactured in the same manner as in Example 1 except that the sample stage shown in FIG. 3 was used instead of the sample stage shown in FIG. did.
  • FIG. 6 shows a transmission electron microscope image of the obtained composite film.
  • (A) is an image of a cross section of the front side of the composite film
  • (B) is an image of a cross section of the back side of the film.
  • the layer between the two arrows represents the metal nanoparticle dispersed layer.
  • the front side (A) and the back side The layer thickness of the nickel nanoparticle dispersed layer formed on the side (B) is the same.
  • the thickness of the nickel nanoparticle dispersed layer formed on the front side (A) and the back side (B) is clearly different.
  • Example 1 In order to investigate the relationship between the heat treatment time in hydrogen gas and the volume filling rate of metal nanoparticles in the composite film, in Example 1, the composite film was manufactured by changing the heat treatment time in hydrogen gas. did. From the image of the cross section of each obtained composite film with a transmission electron microscope, the relationship between the layer thickness of the nickel nanoparticle dispersed layer, the volume filling ratio of nickel nanoparticles estimated from this layer thickness, and the total heat treatment time is shown in FIG. Shown in the figure. In FIG. 7, the horizontal axis represents the total heat treatment time (minutes). In addition, ⁇ indicates the thickness of the nickel nanoparticle dispersed layer (shown on the left vertical axis in FIG. 7), and ⁇ indicates the volume filling ratio of the nickel nanoparticles (displayed on the right vertical axis in FIG. 7).
  • the thickness of the nanoparticle dispersed layer decreases as the heat treatment time elapses, and the volume filling ratio increases. Therefore, by controlling the heat treatment time, it is possible to adjust the layer thickness of the nanoparticle dispersed layer and control the volume filling rate of the nanoparticles.
  • the thickness of the metal nanoparticle dispersion layer is adjusted by performing the heat reduction treatment in a reducing gas in two stages, and the metal nanoparticle dispersion having a desired metal nanoparticle volume filling rate is performed.
  • An example of manufacturing a composite film having a layer formed will be described. (Example 3: First stage heat treatment)
  • Polyimide resin film with a thickness of 50 im (Dupont, trade name "Kapton 20
  • the carboxyl group was introduced into the surface of the polyimide resin film by immersing 0—H ”) in a 5 mol / L aqueous solution of potassium hydroxide at 50 ° C. for 7 minutes.
  • the treated film was washed with ion-exchanged water for 2 minutes, it was immersed in a 0.5 mol / liter aqueous solution of nickel chloride at room temperature for 5 minutes to dope nickel ions into the polyimide resin film. .
  • sample 1 After the film was washed with ion-exchanged water for 2 minutes, one side of the film was sandwiched by the sample stage shown in Fig. 2 and the film was placed in the apparatus shown in Fig. 1 in parallel with the longitudinal direction of the tubular reduction treatment chamber. It was arranged so that it might become. Next, hydrogen gas was introduced into the reduction treatment chamber, and heat treatment was performed at 320 ° C for 5 minutes to produce a composite film in which nickel nanoparticles were dispersed in a polyimide resin film (hereinafter referred to as “sample 1”). Was manufactured.
  • FIG. 8 (A) shows an image of the cross section of one side of the obtained sample 1 observed by a transmission electron microscope near one surface.
  • the layer sandwiched between the two arrows represents the nickel nanoparticle dispersed layer.
  • the thickness of the nickel nanoparticle dispersed layer of sample 1 is 1.9 // m.
  • FIG. 8 (B) is a high magnification image of the nickel nanoparticle dispersed layer of FIG. 8 (A), in which nickel nanoparticles can be confirmed.
  • the diameter of the nickel nanoparticles is about 8 nm.
  • the diameter of the nickel nanoparticles was about 8 nm by heat-treating the polyimide resin film that had been treated with an aqueous solution of potassium hydroxide for 7 minutes. Can be changed by adjusting the treatment time with an aqueous solution of potassium hydroxide.
  • the diameter of the nickel nanoparticles in the composite film obtained by treating in the same manner as in Sample 1 except for changing the treatment time with an aqueous solution of potassium hydroxide (KOH) was estimated by electron microscopy.
  • FIG. 9 shows the change in the diameter of the nickel nanoparticles with respect to the KOH treatment time. According to FIG. 9, it is understood that the diameter of the nickel nanoparticles can be changed from about 5 nm to about 8 nm by changing the KOH treatment time from 0.5 minutes to 7 minutes.
  • Example 2 Using a transmission electron microscope, a sample 1 obtained in Example 3 was heat-treated at 310 ° C. for 8 hours in a nitrogen atmosphere (hereinafter referred to as “sample 2”). An image of the neighborhood is shown in Fig. 10 (A).
  • a layer sandwiched between two arrows represents a nickel nanoparticle dispersed layer.
  • the thickness of the nickel nanoparticle dispersed layer of sample 2 ' was 1.75 / m, and it can be seen that the thickness of the nanoparticle dispersed layer was smaller than that of sample 1 by the second stage heat treatment.
  • Fig. 10 (B) is a high magnification image of the nickel particle dispersion layer of Fig. 10 (A). The diameter of the nickel nanoparticles is almost completely reduced by the second stage heat treatment. Little change was seen. '
  • Example 3 a composite film
  • Fig. 11 (A) shows a video shot of the vicinity.
  • a layer sandwiched between two arrows represents a nickel nanoparticle dispersed layer.
  • the thickness of the nickel nanoparticle dispersed layer of Sample 3 was 1.6 ⁇ m, and the second stage heat treatment was performed first. It was found that if the heat treatment was performed at a higher temperature than the step heat treatment, the thickness of the nickel particle dispersion layer, that is, the volume filling rate of the nanoparticles, could be controlled in a shorter time.
  • Fig. 11 (B) is a high-magnification image of the nickel nanoparticle dispersed layer of Fig. 11 (A), but the diameter of the nickel nanoparticles is almost unchanged by the second stage heat treatment. I could't see it.
  • the diameter and the volume filling rate of the nanoparticles in the metal nanoparticle dispersed layer are independently controlled by performing the heat reduction treatment in a reducing gas in two stages. We can see that we can do it.
  • ADVANTAGE OF THE INVENTION it is possible to independently control the particle size and volume filling rate of metal nanoparticles in a metal nanoparticle composite film, and to obtain metal nanoparticles having a desired particle size and volume filling rate Composite films can be easily and efficiently manufactured.
  • the ferromagnetic metal nanoparticle composite film obtained by the present invention has excellent properties such as exhibiting strong magnetic properties up to near room temperature. It can be applied to various industrial fields as an absorbent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、金属ナノ粒子コンポジット膜中の金属ナノ粒子の粒子径と体積充填率を独立に制御可能とする金属ナノ粒子コンポジット膜の製造方法を提供する。本発明では、(a)ポリイミド樹脂膜をアルカリ水溶液で処理してカルボキシル基を導入し、つぎに(b)金属イオン含有液と接触させて樹脂膜中に金属イオンをドープした後に、(c)還元性ガス中で加熱環元処理することによって、ポリイミド樹脂膜中に金属ナノ粒子が分散した金属ナノ粒子コンポジット膜を製造する際に、(c)環元性ガス中での加熱還元処理によりポリイミド樹脂膜中に形成されたナノ粒子分散層の厚さを調整することによって、コンポジット膜中の金属ナノ粒子の体積充填率を制御する。

Description

明 細 書 金属ナノ粒子コンポジッ ト膜の製造方法 技術分野
本発明は、 ポリイミ ド樹脂膜中に金属ナノ粒子が分散した金属ナノ粒子コンポ ジッ ト膜の製造方法、 及び金属ナノ粒子コンポジッ ト膜の製造装置に関する。 背景技術
直径数〜数十ナノメートルのナノ粒子が、 粒子の材料とは別材料のマトリ ック ス (膜) に埋め込まれたものを、 ナノ粒子コンポジッ ト膜と呼ぶ (第 4図参照) 。 例えば、 鉄やニッケルなど強磁性金属のナノ粒子がマトリ ックス中に埋め込まれ たものは、 強磁性金属ナノ粒子コンポジッ ト膜と呼ばれる。 強磁性金属ナノ粒子 一 コンポジツ ト膜は、 ハードディスクなど、 超高密度磁気記録媒体へ応用の観点か ら近年注目を集めている。
一般的にコンポジッ ト膜の性質は、 それを構成するナノ粒子の、 (1 ) 材質、 ( 2 ) 粒子径、 (3 ) 体積充填率、 等で決定される。 特に、 粒子サイズと体積充 填率は、粒子間相互作用に重大な影響を及ぼすため、重要なパラメーターである。 よって、 所望の性質 ·特性を持つナノ粒子コンポジッ ト膜を実現するためには、 ナノ粒子の粒子径と体積充填率を独立に制御することが不可欠である。
ナノ粒子コンポジッ ト膜の製造には、 大きく分けて、 原子 ·分子を積み上げて ナノ粒子を作製するボトムアップ型と、 バルタを切り崩してゆく トップダウン型 の二種類の製造方法が存在する。
ボトムアップ型のナノ粒子コンポジッ ト膜の製造方法としては、 例えば、 コロ イ ドを用いた自己組織化法、 分子線エピタキシー (M B E ) 法、 スパッタリング 法等が挙げられる。 しかしながら、 これらの方法では、 コンポジッ トを構成する ナノ粒子の、 粒子径と体積充填率を独立して制御することが困難である。
一方、 トップダウン型のナノ粒子コンポジッ ト膜の製造方法の代表としては、 光リソグラフィ法、 電子線リ ソグラフィ法等が挙げられる。 これらの方法では、 粒子径と体積充填率の独立した制御は可能であるが、 現在の技術では、 粒子径は せいぜい数十ナノメ一トルレベルが限界で、 数ナノメ一トルレベルでの制御は困 難である。
これらの方法に対して、 本発明者等は、 (a ) ポリイ ミ ド樹脂膜を水酸化カル シゥム水溶液等の強アル力リ溶液で処理してカルボキシル基を導入し、 つぎに ( b ) ニッケル、 銅等の金属イオン含有液と接触させて樹脂膜中に金属イオンを ドープした後に、 ( c ) 水素ガス中で加熱還元処理することによつ-て、 ポリイミ ド樹脂膜中に金属ナノ粒子が分散した金属ナノ粒子コンポジッ ト膜が得られるこ とを見出し、 先に提案した。 (特開 2 0 0 3— 8 2 4 7 5号公報、 Chem. Mater. 2003, Vol. 15, pp. 2488-2491、 Eur. Phys. J. D Vol.24, pp.377-380 (2003) ) この方法に.よれば、 ポリイミ ド樹脂膜中に金属ナノ粒子が均一に分散したコン ポジッ ト膜を製造することが可能となり、 熱処理温度を調整することによって金 属ナノ粒子の粒子径を制御することができる。
しかしながら、 この方法では得られるコンポジッ ト膜中の金属ナノ粒子の体積 充填率を制御することは難しく、 所望の性状を有するコンポジッ ト膜を得ること は困難であった。 また、 コンポジッ ト膜の表裏両面に同じ層厚の金属ナノ粒子分 散層を形成することも困難であった。
したがって、 本発明は、 先に示した特許文献及ぴ非特許文献に記載されたコン ポジッ ト膜の製造方法における問題点を解消して、 金属ナノ粒子コンポジッ ト膜 中の金属ナノ粒子の粒子径と体積充填率を独立に制御可能とする金属ナノ粒子コ ンポジッ ト膜の製造方法を提供することを目的とする。 発明の開示
本発明者等は鋭意検討した結果、 (1 ) 金属ナノ粒子コンポジッ ト膜の金属ナ ノ粒子の粒子径は最初のアルカリ処理によって決まり、 還元性ガス中での熱処理 によって金属ナノ粒子分散層が形成された後は粒子径が変化しないこと、 及び
( 2 ) 金属ナノ粒子分散層が形成された後に、 マ ト リ ックスであるポリイミ ドを 熱分解させて金属ナノ粒子分散層の厚さを調整することにより、 コンポジッ ト膜 - -中の金属ナノ粒子の体積充填率を制御できること、 を見出し本発明を完成したも のである。
すなわち、 本発明では上記課題を解決するために、 つぎの 1〜 9の構成を採用 する。
1 . ( a ) ポリイミ ド樹脂膜をアルカリ水溶液で処理してカルボキシル基を導入 し、 つぎに (b ) 金属イオン含有液と接触させて樹脂膜中に金属イオンをドープ した後に、 (c ) 還元性ガス中で加熱還元処理することによって、 ポリイミ ド樹 脂膜中に金属ナノ粒子が分散した金属ナノ粒子コンポジッ ト膜を製造する際に、
( c ) ·還元性ガス中での加熱還元処理によりポリイミ ド樹脂膜中に形成されたナ ノ粒子分散層の厚さを調整することによって、 コンポジッ ト膜中の金属ナノ粒子 の体積充填率を制御することを特徴とするポリィミ ド樹脂膜中に金属ナノ粒子が 分散した金属ナノ粒子コンポジッ ト膜の製造方法。
2 . ( c ) 還元性ガス中での加熱還元処理を行うにあたって、 熱処理時間を制御 することによってナノ粒子分散層の厚さを調整することを特徴とする 1に記載の 金属ナノ粒子コンポジッ ト膜の製造方法。
3 . ( c ) 還元性ガス中で金属イオンの還元温度以上で熱処理を行ってポリイ ミ ド樹脂中に金属ナノ粒子が分散した層を形成させ、 (d ) 前記熱処理温度とは異 なる温度で更に熱処理を行うことにより金属ナノ粒子分散層の厚さを調整するこ とを特徴とする 1に記載の金属ナノ粒子コンポジッ ト膜の製造方法。
4 . ( d ) 金属ナノ粒子分散層形成後の熱処理を、 金属ナノ粒子分散層を形成さ せる温度よりも低温で行うことを特徴とする 3に記載の金属ナノ粒子コンポジッ ト膜の製造方法。
5 . ( d ) 金属ナノ粒子分散層形成後の熱処理を、 金属ナノ粒子分散層を形成さ せる温度よりも高温で行うことを特徴とする 3に記載の金属ナノ粒子コンポジッ ト膜の製造方法。
6 . ( d ) 金属ナノ粒子分散層形成後の熱処理を、 不活性ガス中で行うことを特 徴とする 3〜 5のいずれかに記載の金属ナノ粒子コンポジッ ト膜の製造方法。
7 . ( a ) アルカリ性水溶液として、 水酸化カリウム又は水酸化ナトリ ウムの水 溶液を使用することを特徴とする 1〜 6のいずれかに記載の金属ナノ粒子コンポ ジッ ト膜の製造方法。 ·
8 . ( b ) 金属イオン含有液が、 ニッケル、 コバルト、 鉄から選択された 1種以 上の金属ィオンを含有するものであることを特徴とする 1〜 7のいずれかに記載 の金属ナノ粒子コンポジッ ト膜の製造方法。
9 . ( c ) 還元性ガスが水素ガスであることを特徴とする 1〜 8のいずれかに記 載の金属ナノ粒子コンポジッ ト膜の製造方法。 図面の簡単な説明
第 1図は、 本発明において、 金属ナノ粒子コンポジッ ト膜を製造する装置の 1 例を示す模式図である。
第 2図は、 第 1図の装置で還元処理室内に設けられる試料台の 1例を示す図で あり、 (A ) はその平面図、 そして (B ) はその正面図である。
第 3図は、 従来の技術で使用する試料台の 1例を示す模式図である。
第 4図は、 金属ナノ粒子コンポジッ ト膜を説明する模式図である。
第 5図は、 実施例 1で得られたコンポジッ ト膜の透過型電子顕微鏡による断面 -映像であり、 (A ) はコンポジッ ト膜の表側、 (B ) は膜の裏側の断面を示す。
第 6図は、 参考例 1で得られたコンポジッ ト膜の透過型電子顕微鏡による断面 映像であり、 (A ) はコンポジッ ト膜の表側、 (B ) は膜の裏側の断面を示す。 第 7図は、 実施例 2における、 コンポジッ ト膜のニッケルナノ粒子の体積充填 率と熱処理時間との関係を示す図である。
第 8図は、 実施例 3で得られたコンポジッ ト膜の透過型電子顕微鏡による断面 映像であり、 図 8 ( A ) はコンポジッ ト膜の断面の片側表面近傍の映像、 また図 8 ( B ) は、 図 8 ( A ) のニッケルナノ粒子分散層の高倍率の映像である。 第 9図は、 実施例 3における、 K O H処理時間に対するニッケルナノ粒子の直 径の変化を示す図である
第 1 0図は、 実施例 4で得られたコンポジッ ト膜の透過型電子顕微鏡による断 面映像であり、 図 1 0 (A) はコンポジッ ト膜の断面の片側表面近傍の映像、 ま た図 1 0 (B) は、 図 1 0 (A) のニッケルナノ粒子分散層の高倍率の映像であ る。
第 1 1図は、 実施例 5で得られたコンポジッ ト膜の透過型電子顕微鏡による断 面映像であり、 図 1 1 (A) はコンポジッ ト膜の断面の片側表面近傍の映像、 ま た図 1 1 (B) は、 図 1 1 (A) のニッケルナノ粒子分散層の高倍率の映像であ る。 発明を実施するための最良の形態
つぎに、 本発明によりポリイミ ド樹脂膜中に金属ナノ粒子コンポジッ ト膜を製 造する手順について、 具体的に説明する。
本発明では、 はじめに、 (a ) ポリイミ ド樹脂膜を水酸カリ ウム又は水酸化ナ トリ ウム等のアルカリ水溶液で処理することによって、 ポリイミ ド樹脂のイミ ド 環を開裂させてカルボキシル基を導入する。
水酸化アル力リの濃度は、 1〜 1 0モル リ ッ トル、 特に 3 ~ 7モル Zリ ッ ト ル程度とすることが好ましく、 室温〜 8 0°C程度、 好ましくは 40〜6 0°C程度 の水溶液に、 ポリイミ ド樹脂膜を 1〜 6 0分間、 好ましくは 3〜 1 0分間程度浸 漬することによって、 カルボキシル基を導入することができる。
つぎに、 (b) このカルボキシル基を導入したポリイミ ド樹脂膜 (以下、 「改 質ポリイミ ド樹脂膜」 ということがある) を金属陽イオンを含有する溶液と接触 させて、 カルボキシル基の陽イオン交換反応により改質ポリイミ ド樹脂膜の改質 層 (カルボキシル基を導入した層) 中に、 金属陽イオンをドープする。
金属陽イオンを含有する溶液と しては、 ニッケル、 コバルト、 鉄、 銅、 プラチ ナから選択された 1種以上の金属イオンを含有する溶液を使用することが好まし い。 選択された金属イオンは、 最終的にコンポジッ ト膜中に金属ナノ粒子として 分散される。
金属イオンは、 一般に金属塩と して金属イオン含有液に配合される。 使用する 金属塩の種類については特に限定はなく、 金属の種類に応じて、 適度な可溶性を 有する金属塩を用いればよい。 例えば、 ニッケルイオンの場合には、 塩化ニッケ ル、硫酸二ッケル、硝酸二ッケル、酢酸ニッケル等の形で配合することができる。 金属イオン含有液における金属イオンの濃度は、 通常、 0 . 0 0 1〜 1 . 5モ ル /リ ッ トル程度が適当であり、 0 . 0 1〜 1モル/リ ッ トル程度が好ましく、 0 . 1 ~ 1モル/リ ッ トル程度がより好ましい。
—― 金属イオン含有液は、 一般的には水溶液として使用される。 伹し、 使用する金 属イオンによっては、 メタノール等の有機媒体を用いても良い。 また、 必要に応 じて、 金属イオン含有液には、 p Hを維持するための緩衝剤や、 金属イオンの沈 澱防止のための錯化剤等を配合することができる。
なお、 イオン交換基と金属イオンとの反応により、 金属イオン含有液の p Hは 徐々に低下するので、 金属イオンを水酸化物の形態で補充する場合には、 金属ィ オン含有液の p Hは弱酸性〜中性、 具体的には p H 2〜 6程度、 好ましくは 3〜 4程度に調整することが望ましい。
金属イオンを含有する溶液を、 改質ポリイミ ド樹脂膜に接触させる方法には特 に制限はないが、 通常は、 榭脂膜を金属イオン含有液に浸漬すればよい。 この処 理によって樹脂膜に含まれるイオン交換基に金属イオンが結合乃至吸着される。 浸漬処理は、例えば、 2 0〜8 0 °C程度、好ましくは 2 5〜8 0 °C程度において、 例えば、 1〜2 0分程度、 好ましくは 3〜 1 0分程度行えばよい。
つぎに、 (c ) 金属陽イオンをド一プした改質ポリイミ ド樹脂膜を、 水素ガス のような還元性ガス中で加熱処理し、 金属陽イオンを還元して金属原子が凝集し た金属ナノ粒子を形成するとともに、 脱水縮合により改質ポリイミ ド樹脂膜の開 裂したイミ ド環を復元し、 ポリイミ ド樹脂膜中に金属ナノ粒子が分散した金属ナ ノ粒子分散層を形成する。 そして、 この金属ナノ粒子分散層の厚さを調整するこ とによって、 金属ナノ粒子コンポジッ ト膜中の金属ナノ粒子の体積充填率を制御 して、 所望の性状を有する金属ナノ粒子コンポジッ ト膜を得る。
本発明者等は先に示した非特許文献において、 還元性ガス中での熱処理温度を 調整することによってコンポジッ ト膜中の金属ナノ粒子の粒子径を制御できるこ とを発表したが、 今回、 コンポジッ ト膜中の金属ナノ粒子分散層の層厚を調整す ることによって、 金属ナノ粒子の体積充填率を粒子径とは独立に制御できること を見出した。
この原理は、 金属ナノ粒子分散層が形成された後に、 さらに熱処理を行なうこ とでマ トリ ックスであるポリイミ ド樹脂が熱分解により収縮するという性質を利 用したもので、 金属ナノ粒子の配置を制御するのではなく、 マトリ ックスの厚さ を調整することによって金属ナノ粒子の体積充填率を制御するものである。 この金属ナノ粒子分散層の厚さを調整する方法としては、 ( 1 ) 還元性ガス中 での加熱還元処理を行う際に、 熱処理時間を制御することによってナノ粒子分散 層の厚さを調整する、 或いは (2) 還元性ガス中で金属イオンの還元温度以上で 熱処理を行ってポリイミ ド樹脂中に金属ナノ粒子が分散した層を形成させ、 前記 熱処理温度と異なる温度で更に熱処理を行うことにより金属ナノ粒子分散層の厚 さを調整する、 方法が挙げられる。 5 (2) 金属ナノ粒子分散層形成後に、 還元性ガス中での最初の熱処理温度とは 異なる温度でさらに熱処理を行なう方法によれば、 金属ナノ粒子分散層の厚さの 調整を容易に行なうことができるので、 好ましい。 後の熱処理温度は、 最初の熱 処理温度よりも低温、 或いは高温のいずれにもすることができる。 金属ナノ粒子分散層形成後の熱処理を最初の熱処理温度よりも低温で行なう場 0 合には、 ポリイミ ド樹脂の熱分解速度を低く抑え、 金属ナノ粒子の体積充填率の 制御を容易に行なうことができる。 一方、 金属ナノ粒子分散層形成後の熱処理を 最初の熱処理温度よりも高温で行なう場合には、 熱分解速度を速めて全工程に必 要となる時間を短縮することができる。 したがって、 目的とする金属ナノ粒子コ ― . ンポジット膜に応じて、 適宜温度を選択すればよい。 5 また、 金属ナノ粒子分散層形成後の熱処理は、 還元性ガス中に代えて窒素ガス 等の不活性ガス中でも行なうことができる。 本発明において、 金属ナノ粒子の体積充填率 (%) は、 化学分析によって求め た金属イオン吸着量 (mo 1 /c m2) から、 次の式によって算出する。 金属イオン吸着量(m o 1 / c m2) X金属原子量 X 1 0 00 体積充填率 (%) = —— 金属密度(g / c m3) X 1 0— 4Xコンポジッ ト膜厚(μ ιη) 本発明で金属ナノ粒子分散層を形成するポリイミ ド樹脂膜としては、 ポリイミ ド樹脂フィルム自体の他に、 ガラス、 セラミ ックス、 金属等の基材表面にポリイ ミ ド樹脂を被覆したもの等を使用することができる。
ポリイミ ド樹脂フィルム自体を使用する場合には、 処理条件によって、 フィル ムの片面或いは両面に金属ナノ粒子分散層を形成することができる。 また、 ガラ ス、 セラミ ックス、 金属等の基材表面にポリイミ ド樹脂を被覆した材料を使用す る場合には、 金属ナノ粒子分散層はポリイミ ド樹脂膜の片面に形成される。 本発明で使用する還元性ガスと しては特に制限はなく、 例えば水素ガス、 ジボ ランガス等が使用できるが、 通常は水素ガスが使用される。 還元性ガス中での熱 処理温度、 熱処理時間は、 使用する還元性ガスやポリイミ ド樹脂にドープした金 属の種類、 目的とするコンポジッ ト膜の性状等に応じて選択することができる。 還元性ガス中で熱処理を行うことによって、 ポリイミ ド樹脂膜の表面から数 μ m程度の範囲内に結合乃至吸着している金属イオンは、 樹脂膜の表面に拡散する ことが制御され、 ·逆に樹脂膜内部に拡散しながら還元反応が進行する。
その結果、 粒径が数 n m程度の非常に微細な金属の微粒子が、 樹脂膜の表面か ら数十 n m〜数/ mの範囲において、 樹脂マトリ ックス中に均一に分散した金属 ナノ粒子分散層が形成される。 ポリイミ ド樹脂に 2種類以上の金属イオンがドー プされている場合には、 熱処理によって合金微粒子が形成される。
以下、 還元性ガスと して水素ガスを使用し、 ニッケルナノ粒子コンポジッ ト膜 を作製する場合を例にと り、 二段階で熱処理を行なう手順を具体的に説明する。 水素雰囲気中での N iイオンの還元終了温度は 3 2 0 °C程度であるので、 第一 段階熱処理は水素雰囲気中 3 2 0 °Cで行う。 その結果、 コンポジッ ト層中に N i 粒子が形成される。 N i粒子の直径は、 K O Hで 2分間処理した膜では約 5 n m、 7分間処理した膜では約 8 n mである。
N i粒子形成後、 第二段階の熱処理を行う。 第二段階の熱処理により、 マトリ ックスであるポリイミ ドは熱分解され質量損失を起こす。 これにより、 マトリ ツ タスの相対的な体積が減少し、 N iナノ粒子の体積充填率が増加する。 ここでの 熱処理温度は、 最初の熱処理温度である 3 2 0 °Cよりも比較的低温、 例えば 2 8 0 °C程度とすることができ、 また、 逆に最初の熱処理温度よりも比較的高温、 例 えば 3 5 0 °C程度とすることもできる。
第二段階の熱処理を比較的低温で行うことによる利点は、 ポリイミ ドの熱分解 速度を低く抑え体積充填率の制御がしゃすくなることである。 また、 比較的高温 で行うことによる利点は、 熱分解速度を上げて工程にかかる時間が短縮できるこ とにある。
また、 二段階目の熱処理雰囲気ガスは水素ガスのみに限らず、 窒素など不活性 ガスでもよい。 この第二段階熱処理の間、 N iナノ粒子の直径は一定のままであ る。 よって、 このような二段階熱処理を用いて、 第二段階での熱処理温度及び時 間を制御することにより、 N iナノ粒子の直径は一定のまま、 体積充填率のみ制 御することが可能になる。
本発明で金属ナノ粒子分散層を形成するポリイミ ド樹脂膜として、 ポリイミ ド 樹脂フィルム自体を使用する際に、 還元性ガス中でポリイミ ド樹脂膜の表裏両面 を均等に加熱処理した場合には、 コンポジッ ト膜の表裏両面に同じ層厚の金属ナ ノ粒子分散層が形成された金属ナノ粒子コンポジッ ト膜を得ることができる。 還元性ガス中でポリイミ ド樹脂膜の表裏両面を均等に加熱処理するためには、 例えば第 1図にみられるような管状の還元処理室を有するコンポジッ ト膜の製造 装置を使用し、 還元性ガスが樹脂膜の表裏両面に均等に接触するようにして加熱 処理を行なう。
このコンポジッ ト膜の製造装置 1は、 石英、 セラミックス、 耐熱性ガラス等の 耐熱性材料により構成された管状の還元処理室 2の外周部に管状の電気炉 3を配 置したもので、 還元処理室 2の両端部は耐熱性ゴム等により構成された栓 4、 4 により密封されている。 この栓 4、 4には配管 5、 5が固定されており、 水素ガ ス等の還元性ガスを還元処理室 2内に導入及ぴ導出する。 還元処理室 2内には、 セラミ ックス等の耐熱性材料により構成された試料台 6が設けられ、 この試料台 6に加熱処理されるポリイミ ド樹脂膜 7が還元処理室 2の長手方向と平行に配置 される。
第 2図は、 還元処理室内に設けられる試料台の 1例を示す図であり、 (A ) は その平面図、 そして (B ) はその正面図である。
この試料台 6は、 基板 1 1上に 6個のスタンド 1 2-を設け、 スタンド 1 2の間 にポリイミ ド樹脂膜 7の一辺を挟持して、 樹脂膜 7を垂直に立てて保持するよう にしたものである。
従来の技術で使用される試料台は、 第 3図にみられるように、 平板状の基台 2 1の上に、 樹脂膜 7を単に載置するものであり、 樹脂膜 7の表裏両面を均等に加 熱し、 また表裏両面に還元性ガスを均等に接触させることはできなかった。 本発明では、 上記のような構成を有する試料台 6を使用し、 ポリイミ ド樹脂膜 7の一辺をこの試料台 6で挟持し、 還元処理室 2の長手方向と平行に配置して加 熱処理を行うことによって、 樹脂膜 7の表裏两面を均等に加熱し、 また表裏両面 に還元性ガスを均等に接触させることが可能となった。 なお、 上記のコンポジッ ト膜の製造装置は、 ポリイミ ド樹脂膜以外の樹脂をマトリ ックスとするコンポジ ッ ト膜の製造や、 ガラス、 セラミ ックス、 金属等の基材表面に被覆したポリイミ ド樹脂等の樹脂膜にコンポジッ ト膜を製造するのにも使用することができる。 第 5図は、 第 2図の試料台を具備する第 1図の装置を使用して製造した金属ナ ノ粒子コンポジッ ト膜の断面の透過型電子顕微鏡写真の 1例であり、 (A ) はコ ンポジッ ト膜の表側、 (B ) は膜の裏側の断面を示す。
また、 第 6図は第 3図の試料台を具備する従来の装置を使用して製造した金属 ナノ粒子コンポジッ ト膜の断面の透過型電子顕微鏡写真であり、 (A ) はコンポ ジッ ト膜の表側、 (B ) は膜の裏側の断面を示す。
これらの写真において、 2つの矢印に挟まれた層が、 金属ナノ粒子分散層を表 す。 第 1図の装置により製造された第 5図のコンポジッ ト膜では、 表側 (A ) 及 ぴ裏側 (B ) に形成されたナノ粒子分散層の層厚は同一である。 一方、 従来の第 3図の装置により製造された第 6図の ンポジッ ト膜では、 表側 ( A ) 及び裏側 ( B ) に形成されたナノ粒子分散層の層厚は明らかに相違する。
したがって、 第 1図の装置によれば表裏両面が均一な性状を示すコンポジッ ト 膜を得ることができるが、 従来の装置ではこのようなコンポジッ ト膜を得ること は極めて困難である。
第 2図の試料台 6では、 基板 1 1上に 6個のスタンド 1 2を設け、 スタンド 1 2の間に 2枚のポリイミ ド樹脂膜 7を挟持するように構成したが、 スタンド 1 2 及び挟持する樹脂膜 7の数は、 適宜選択できることは勿論である。 また、 それら の寸法や形状も適宜選択することができるものであり、 例えば第 2図 (B ) の 2 個のスタンド 1 2を一体化し、 樹脂膜 7の下辺全長を保持するものとすることも できる。
このような試料台 6を使用して製造された金属ナノ粒子コンポジッ ト膜は、 試 料台 6のスタンド 1 2に挟持された部分を、 部分的に、 或いは保持された辺の全 長にわたって切除することにより、 均一な性状を有するコンポジッ ト膜を得るこ とができる。
本発明によれば、 例えば第 1図のような装置を使用し、 還元性ガス中での加熱 還元処理を行なう際に、 熱処理時間を制御することによって、 ポリイミ ド樹脂膜 の表裏両面に層厚が等しく、 所望の金属ナノ粒子の体積充填率を有する金属ナノ 粒子分散層が形成されたコンポジッ ト膜を得ることができる。
また、 本発明によれば、 還元性ガス中での加熱還元処理を行う際に、 還元性ガ ス中で金属イオンの還元温度以上で熱処理を行ってポリイミ ド樹脂中に金属ナノ 粒子が分散した層を形成させ、 前記熱処理温度と異なる温度で更に熱処理を行う- ことにより金属ナノ-粒子分散層の厚さを調整し、 所望の金属ナノ教子の体積充填 , 率を有する金属ナノ粒子分散層が形成されたコンポジッ ト膜を得ることができる。
これらのコンポジッ ト膜は、 従来の技術では得られない特性を有するものであ り、 磁気記録媒体、 電子部品等幅広い分野に利用可能なものである。 つぎに、 実施例により本発明をさらに説明するが、 以下の具体例は本発明を限 定するものではない。
(実施例 1 :熱処理時間の制御による体積充填率の制御)
厚さ 5 0 μ mのポリイミ ド樹脂フィルム (デュポン社製、 商名 「カプトン 2 0 0 — H」 ) を、 水酸化カリ ウムの 5モル Zリ ッ トル水溶液に 5 0 °Cで 5分間浸漬 することによって、ポリイミ ド樹脂フィルムの表面にカルボキシル基を導入した。 つぎに、 該処理フィルムをイオン交換水で 2分間水洗した後に、 塩化ニッケル の◦ . 5モルノリ ッ トル水溶液に室温で 5分間浸漬して、 ニッケルイオンをポリ イ ミ ド樹脂フィルムに ド一プした。
このフィルムをイオン交換水で 2分間水洗した後に、 第 2図の試料台にフィル ムの一辺を挟持させて、 第 1図の装置内にフィルムが管状の還元処理室の長手方 向と平行になるように配置した。 つぎに、 還元処理室内に水素ガスを導入し、 3 0 0 °Cで 3 0分間熱処理して、 ポリイミ ド樹脂フィルム中にニッケルナノ粒子が 分散したコンポジッ ト膜を製造した。
得られたコンポジッ ト膜の透過型電子顕微鏡による映像を第 5図に示す。 第 5 図において、 (A ) はコンポジッ ト膜の表側、 (B ) は膜の裏側の断面の映像で ある。
(参考例 1 )
実施例 1において、第 2図の試料台に代えて第 3図の試料台を使用した以外は、 実施例 1 と同様にしてポリィミ ド樹脂フィルム中にニッケルナノ粒子が分散した コンポジッ ト膜を製造した。
得られたコンポジッ ト膜の透過型電子顕微鏡による映像を第 6図に示す。 第 6 図において、 (A ) はコンポジッ ト膜の表側、 (B ) は膜の裏側の断面の映像で ある。
これらの写真において、 2つの矢印に挟まれた層が、 金属ナノ粒子分散層を表 す。 実施例 1により製造された第 5図のコンポジッ ト膜では、 表側 (A ) 及び裏 側 (B ) に形成されたニッケルナノ粒子分散層の層厚は同一である。 一方、 参考 例 1により製造された第 6図のコンポジッ ト膜では、 表側 (A ) 及ぴ裏側 (B ) に形成されたニッケルナノ粒子分散層の層厚は明らかに相違する。
(実施例 2 ) .
水素ガス中での熱処理時間とコンポジッ ト膜中の金属ナノ粒子の体積充填率と の関係を調べるために、 実施例 1において、 水素ガス中での熱処理時間を変化さ せてコンポジッ ト膜を製造した。 得られた各コンポジッ ト膜の透過型電子顕微鏡 による断面の映像から、 ニッケルナノ粒子分散層の層厚、 この層厚から見積った 二ッケルナノ粒子の体積充填率と総熱処理時間との関係を第 7図に示した。 第 7図において、 横軸は総熱処理時間 (分) を表す。 また、 ▲はニッケルナノ 粒子分散層の層厚 (第 7図の左側縦軸に表示) 、 騸はニッケルナノ粒子の体積充 填率 (第 7図の右側縦軸に表示) を表す。
この第 7図によれば、 熱処理時間の経過とともにナノ粒子分散層の層厚が減少 し、- 体積充填率が増加することが判る。 したがって、 熱処理時間を制御する-こと によって、 ナノ粒子分散層の層厚を調整し、 ナノ粒子の体積充填率を制御するこ とが可能となる。 以下の例では、 還元性ガス中での加熱還元処理を二段階で行なうことにより金 属ナノ粒子分散層の厚さを調整し、 所望の金属ナノ粒子の体積充填率を有する金 属ナノ粒子分散層が形成されたコンポジッ ト膜を製造する例について説明する。 (実施例 3 :第一段階熱処理)
厚さ 5 0 i mのポリイミ ド樹脂フィルム (デュポン社製、 商名 「カプトン 2 0 0— H」 ) を、 水酸化カリ ウムの 5モル Zリ ッ トル水溶液に 5 0 °Cで 7分間浸漬 することによって、ポリイミ ド樹脂フィルムの表面にカルボキシル基を導入した。 つぎに、 該処理フィルムをイオン交換水で 2分間水洗した後に、 塩化ニッケル の 0 . 5モル/リ ッ トル水溶液に室温で 5分間浸漬して、 ニッケルイオンをポリ ィミ ド樹脂フィルムにドープした。
このフィルムをイオン交換水で 2分間水洗した後に、 第 2図の試料台にフィル ムの一辺を挟持させて、 第 1図の装置内にフィルムが管状の還元処理室の長手方 向と平行になるように配置した。 つぎに、 還元処理室内に水素ガスを導入し、 3 2 0 °Cで 5分間熱処理して、 ポリイミ ド樹脂フィルム中にニッケルナノ粒子が分 散したコンポジッ ト膜 (以下、 「試料 1」 という) を製造した。
得られた試料 1の透過型電子顕微鏡による断面の片側表面近傍の映像を、 第 8 図 (A ) に示す。 第 8図 (A ) において、 2つの矢印に挟まれた層が、 ニッケル ナノ粒子分散層を表す。 試料 1のニッケルナノ粒子分散層の厚みは、 1 . 9 // m である。 また、 第 8図 (B ) は、 第 8図 (A ) のニッケルナノ粒子分散層の高倍 率の映像であり、 ニッケルナノ粒子が確認できる。 ニッケルナノ粒子の直径は、 約 8 n mである。
なお、 試料 1の反対側表面にも、 上記と同様のニッケル粒子層分散層が形成さ れていた。
この例では、 水酸化カリ ゥム水溶液で 7分間処理したポリイ ミ ド樹脂フィルム を熱処理することにより、 ニッケルナノ粒子の直径は約 8 n mとなったが、 第一 段階熱処理後のナノ粒子の直径は、 水酸化カリ ゥム水溶液での処理時間を調整す ることによって、 変化させることができる。 水酸化カリウム (KOH) 水溶液での処理時間を変化させた以外は、 試料 1 と 同'様に処理して得られたコンポジッ ト膜中のニッケルナノ粒子の直径を、 電子顕 微鏡観察から見積もった。 KOH処理時間に対する、 ニッケルナノ粒子の直径の 変化を第 9図に示した。 第 9図によれば、 KOH処理時間を 0. 5分から 7分ま で変化させることによって、 ニッケルナノ粒子の直径を約 5 n mから約 8 n mま で変化させることが可能であることがわかる。
(実施例 4 :第二段階熱処理その 1 )
実施例 3で得られた試料 1を、 窒素雰囲気下、 3 1 0°Cで 8時間熱処理したコ ンポジッ ト膜 (以下、 「試料 2」 という) について、 透過型電子顕微鏡により、 断面の片側表面近傍を撮影した映像を、 第 1 0図 (A) に示す。 第 1 0図 (A) において、 2つの矢印に挟まれた層が、 ニッケルナノ粒子分散層を表す。 試料 2 'のニッケルナノ粒子分散層の厚みは、 1. 7 5 / mであり、 第二段階熱処理によ つて、 ナノ粒子分散層の厚みが試料 1よりも減少していることがわかる。 第 1 0 図 (B) は、 第 1 0図 (A) のニッ.ケル^"ノ粒子分散層の高倍率の映像であるが、 第二段階熱処理によって、 ニッケルナノ粒子の直径には、 殆んど変化は見られな かった。 '
(実施例 5 :第二段階熱処理その 2 )
実施例 3で得られた試料 1を、 窒素雰囲気下、 3 5 0°Cで 1時間熱処理し コ ンポジッ ト膜 (以下、 「試料 3」 という) について、 透過型電子顕微鏡により、 断面の片側表面近傍を撮影した映像を、 第 1 1図 (A) に示す。 第 1 1図 (A) において、 2つの矢印に挟まれた層が、 ニッケルナノ粒子分散層を表す。 試料 3 のニッケルナノ粒子分散層の厚みは、 1. 6 μ mであり、 第二段階熱処理を第一 段階熱処理よりも高温で行なえば、 より短時間でニッケル粒子分散層の層厚、 す なわちナノ粒子の体積充填率を制御できることが判明した。
第 1 1図 (B ) は、 第 1 1図 (A ) のニッケルナノ粒子分散層の高倍率の映像 であるが、 第二段階熱処理によって、 ニッケルナノ粒子の直径には、 殆んど変化 は見られなかった。
上記の実施例 3〜 5によれば、 還元性ガス中での加熱還元処理を二段階で行な うことにより、 金属ナノ粒子分散層中のナノ粒子の直径と、 体積充填率を独立に 制御できることがわかる。
上記の実施例 1〜 5においては、 金属ナノ粒子分散層を形成するポリイミ ド樹 脂膜として、 ポリイミ ド樹脂フィルム自体を使用し、 フィルムの両面に金属ナノ 粒子分散層を形成した例について説明したが、 金属ナノ粒子分散層を形成するポ リイミ ド樹脂膜として、 ガラス、 セラミックス、 金属等の基材表面にポリイミ ド 樹脂を被覆したものを使用できることは、 勿論である。 ' 産業上の利用可能性
本発明によれば、 金属ナノ粒子コンポジッ ト膜中の金属ナノ粒子の粒子径と体 積充填率を独立に制御することが可能となり、 所望の粒子径と体積充填率を有す る金属ナノ粒子コンポジッ ト膜を簡単に、 効率良く製造することができる。 本発明で得られる強磁性金属ナノ粒子コンポジッ ト膜はより室温近くまで強磁 性を示す等、 優れた特性を有するものであり、 超高密度磁気記録媒体や、 磁気共 鳴を利用した磁気ノイズ吸収材等として、 様々な産業分野に応用できるものであ る。

Claims

請 求 の 範 囲
1 . ( a ) ポリイミ ド樹脂膜をアルカリ水溶液で処理してカルボキシル基を導入 し、 つぎに (b ) 金属イオン含有液と接触させて樹脂膜中に金属イオンをド ープした後に、 ( c ) 還元性ガ 中で加熱還元処理することによって、 ポリ イミ ド樹脂膜中に金属ナノ粒子が分散した金属ナノ粒子コンポジッ ト膜を製 造する際に、 ( c ) 還元性ガス中での加熱還元処理によりポリイミ ド樹脂膜 中に形成されたナノ粒子分散層の厚さを調整することによって、 コンポジッ ト膜中の金属ナノ粒子の体積充填率を制御することを特徴とするポリィミ ド 樹脂膜中に金属ナノ粒子が分散した金属ナノ粒子コンポジッ ト膜の製造方法。
2 . ( c ) 還元性ガス中での加熱還元処理を行うにあたって、 熱処理時間を制御 することによってナノ粒子分散層の厚さを調整することを特徴とする請求の 範囲第 1項に記載の金属ナノ粒子コンポジッ ト膜の製造方法。
3 . ( c ) 還元性ガス中で金属イオンの還元温度以上で熱処理を行ってポリイミ ド樹脂中に金属ナノ粒子が分散した層を形成させ、 (d ) 前記熱処理温度と は異なる温度で更に熱処理を行うことにより金属ナノ粒子分散層の厚さを調 整することを特徴とする請求の範囲第 1項に記載の金属ナノ粒子コンポジッ ト膜の製造方法。
4 . ( d ) 金属ナノ粒子分散層形成後の熱処理を、 金属ナノ粒子分散層を形成さ せる温度よりも低温で行うことを特徴とする請求の範囲第 3項に記載の金属 ナノ粒子コンポジッ ト膜の製造方法。
5 . ( d ) 金属ナノ粒子分散層形成後の熱処理を、 金属ナノ粒子分散層を形成さ せる温度よりも高温で行うことを特徴とする請求の範囲第 3項に記載の金属 ナノ粒子コンポジッ ト膜の製造方法。
( d ) 金属ナノ粒子分散層形成後の熱処理を、 不活性ガス中で行うことを特 徴とする請求の範囲第 3〜 5項のいずれかに記載の金属ナノ粒子コンポジッ ト膜の製造方法。
( a ) アルカリ性水溶液として、 水酸化カリ ウム又は水酸化ナトリ ウムの水 溶液を使用することを特徴とする請求の範囲第 1〜 6項のいずれかに記載の 金属ナノ粒子コンポジッ ト膜の製造方法。
( b ) 金属イオン含有液が、 ニッケル、 コバルト、 鉄から選択された 1種以 上の金属イオンを含有するものであることを特徴とする請求の範囲第 1〜 7 項のいずれかに記載の金属ナノ粒子コンポジッ ト膜の製造方法。
( c ) 還元性ガスが水素ガスであることを特徴とする請求の範囲第 1〜 8項 のいずれかに記載の金属ナノ粒子コンポジッ ト膜の製造方法。
PCT/JP2004/015458 2003-10-14 2004-10-13 金属ナノ粒子コンポジット膜の製造方法 WO2005035636A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004010694T DE602004010694T2 (de) 2003-10-14 2004-10-13 Verfahren zur herstellung von metallnanopartikel-verbundfolie
EP04792624A EP1674509B1 (en) 2003-10-14 2004-10-13 Process for producing metal nanoparticle composite film
US10/595,398 US20070212496A1 (en) 2003-10-14 2004-10-13 Process for Producing Metal Nonoparticle Composite Film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-353130 2003-10-14
JP2003353130 2003-10-14

Publications (1)

Publication Number Publication Date
WO2005035636A1 true WO2005035636A1 (ja) 2005-04-21

Family

ID=34431149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015458 WO2005035636A1 (ja) 2003-10-14 2004-10-13 金属ナノ粒子コンポジット膜の製造方法

Country Status (5)

Country Link
US (1) US20070212496A1 (ja)
EP (1) EP1674509B1 (ja)
CN (1) CN100513461C (ja)
DE (1) DE602004010694T2 (ja)
WO (1) WO2005035636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835868A (zh) * 2022-04-06 2022-08-02 合肥工业大学 一种可自修复、可重复利用的聚合物纳米复合膜的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782024B (zh) * 2010-03-01 2015-04-22 新日铁住金化学株式会社 金属微粒复合体及其制造方法
WO2011112608A1 (en) * 2010-03-08 2011-09-15 University Of Rochester Synthesis of nanoparticles using reducing gases
CN103052481B (zh) * 2010-08-09 2015-06-17 新日铁住金化学株式会社 金属微粒复合体的制造方法
JP5835947B2 (ja) * 2011-05-30 2015-12-24 セーレン株式会社 金属膜パターンが形成された樹脂基材
TWI645973B (zh) * 2017-12-15 2019-01-01 律勝科技股份有限公司 聚醯亞胺薄化軟性基板及其製造方法
CN113445034A (zh) * 2020-03-27 2021-09-28 丰田自动车株式会社 金属感膜的制造方法和金属感膜

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082475A (ja) * 2001-06-26 2003-03-19 Okuno Chem Ind Co Ltd 微粒子分散体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416817B1 (en) * 2000-03-03 2002-07-09 Dow Corning Sa Barrier coatings having bis-silanes
US7217407B2 (en) * 2003-09-11 2007-05-15 E. I. Du Pont De Nemours And Company Plasma synthesis of metal oxide nanoparticles
US7029773B2 (en) * 2003-10-10 2006-04-18 Seagate Technology Llc Method and system for magnetic recording using self-organized magnetic nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082475A (ja) * 2001-06-26 2003-03-19 Okuno Chem Ind Co Ltd 微粒子分散体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835868A (zh) * 2022-04-06 2022-08-02 合肥工业大学 一种可自修复、可重复利用的聚合物纳米复合膜的制备方法
CN114835868B (zh) * 2022-04-06 2024-01-09 合肥工业大学 一种可自修复、可重复利用的聚合物纳米复合膜的制备方法

Also Published As

Publication number Publication date
CN100513461C (zh) 2009-07-15
DE602004010694D1 (de) 2008-01-24
DE602004010694T2 (de) 2008-12-04
EP1674509A1 (en) 2006-06-28
EP1674509B1 (en) 2007-12-12
EP1674509A4 (en) 2006-11-15
CN1867621A (zh) 2006-11-22
US20070212496A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
Lee et al. 2D single‐crystalline copper nanoplates as a conductive filler for electronic ink applications
Zhang et al. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture
Mark et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition
Lu et al. Microlandscaping of Au nanoparticles on few‐layer MoS2 films for chemical sensing
Xia et al. Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?
Jang et al. Single‐walled carbon‐nanotube networks on large‐area glass substrate by the dip‐coating method
KR101626181B1 (ko) 그라핀 필름의 제어된 성장 방법
JP2006516944A (ja) ナノ構造の形成
Liang et al. A microfibre assembly of an iron-carbon composite with giant magnetisation
Xu et al. Dynamic In‐Situ Experimentation on Nanomaterials at the Atomic Scale
Xie et al. Controlled synthesis, characterization, and crystallization of Ni− P nanospheres
Fu et al. Simultaneous deposition of Ni nanoparticles and wires on a tubular halloysite template: A novel metallized ceramic microstructure
WO2005035636A1 (ja) 金属ナノ粒子コンポジット膜の製造方法
WO2004045793A1 (ja) 合金ナノパーティクル及びその製造方法並びに合金ナノパーティクルを用いた磁気記録媒体
JP4280221B2 (ja) 金属ナノ粒子コンポジット膜の製造方法
US20110195277A1 (en) High density magnetic recording medium and manufacturing method thereof
JP2009035769A (ja) FePtナノ粒子の製造方法、及びFePt磁性ナノ粒子配列体を有する磁気記録媒体の製造方法
CN108726510B (zh) 一种大面积超洁净石墨烯及其宏量制备方法与其洁净度的快速评估方法
JP4915778B2 (ja) カーボンナノチューブ複合材料及びその製造方法
JP5615375B2 (ja) 選択的ナノ粒子堆積
WO2014173793A1 (en) Method for coating of carbon nanomaterials
WO2009125504A1 (ja) ナノワイヤ及びその形成方法
Choi et al. Effects of the electrical conductivity and orientation of silicon substrate on the synthesis of multi-walled carbon nanotubes by thermal chemical vapor deposition
Sushko Driving forces for particle-based crystallization: From experiments to theory and simulations
JP2010258236A (ja) FePd/Feナノコンポジット磁石の製造方法およびそれにより製造されたナノコンポジット磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030173.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792624

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10595398

Country of ref document: US

Ref document number: 2007212496

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10595398

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004792624

Country of ref document: EP