WO2005032280A1 - Method and apparatus for manufacturing beverage - Google Patents

Method and apparatus for manufacturing beverage Download PDF

Info

Publication number
WO2005032280A1
WO2005032280A1 PCT/JP2004/014815 JP2004014815W WO2005032280A1 WO 2005032280 A1 WO2005032280 A1 WO 2005032280A1 JP 2004014815 W JP2004014815 W JP 2004014815W WO 2005032280 A1 WO2005032280 A1 WO 2005032280A1
Authority
WO
WIPO (PCT)
Prior art keywords
beverage
inert gas
gas
dissolved oxygen
dissolved
Prior art date
Application number
PCT/JP2004/014815
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiteru Ishikawa
Hisao Tomikawa
Hidekazu Irie
Masahiro Demizu
Kentaro Oie
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Publication of WO2005032280A1 publication Critical patent/WO2005032280A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/76Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by removal of gases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention

Definitions

  • the present invention relates to a beverage manufacturing method for manufacturing a beverage department and a beverage manufacturing apparatus for performing the method.
  • tea beverages are said to have the best flavor when freshly brewed, and fruit juices and dairy beverages when freshly squeezed out.
  • oxygen mixed into the beverage during or after the production of the beverage particularly dissolved oxygen in the dissolved gas, oxidizes certain flavor components such as vitamin C in the beverage, thereby increasing the flavor of the beverage. Gradually, it becomes impaired. Therefore, methods for reducing dissolved gas, especially dissolved oxygen, in beverages have been proposed in the past, and physical oxygen removal methods such as the injection method and the tower flushing method, as well as chemical methods, have been proposed.
  • mixing of a deoxidizing agent is already known.
  • the beverage after replacement with an inert gas is stored in another puffer tank, for example, while leaving only the air bubbles above the puffer tank, removing the beverage from the lower surface of the puffer tank and supplying it to the subsequent process.
  • the gas in the bubbles is unnecessary for the beverage, the film itself that forms the bubbles is part of the beverage, so the liquid part of such a film must be supplied to the subsequent process as a beverage.
  • the components of the beverage that forms the foam film are different from those of the liquid portion of the beverage that does not form a film, the components and flavor of the final beverage will initially be Ingredients and flavors may be different from those expected.
  • the present inventors have conducted intensive studies to overcome the above problems, and as a result, degass the dissolved gas in the beverage and separate the film and the internal gas from the bubbles generated in the beverage during the degassing action. Having obtained the knowledge that this should be done, they constructed a beverage manufacturing method and a beverage manufacturing apparatus, and completed the present invention.
  • the present invention provides a beverage manufacturing method capable of eliminating bubbles formed in a beverage and reducing dissolved oxygen in the beverage without impairing the flavor of the beverage, and a beverage manufacturing apparatus implementing the method. It is intended to provide. Summary of the Invention According to a first aspect of the present invention, there is provided a method for producing a beverage, comprising a step of breaking air bubbles after the step of deaeration of the beverage. That is, according to the first embodiment, the dissolved gas in the beverage can be reduced, and the gas in the film that forms bubbles generated during degassing and the liquid that has formed the film of bubbles can be separated.
  • the bubbles formed in the beverage are eliminated and the dissolved oxygen in the beverage is reduced without impairing the flavor of the beverage. be able to. Further, in the present invention, since the bubble film is actively broken, the defoaming effect can be obtained in an extremely short time.
  • a gas discharging step is further provided after the foaming step.
  • gas generated from the beverage can be reliably discharged.
  • the dissolved oxygen in the beverage can be more reliably reduced.
  • a beverage sterilization step is further provided.
  • the bactericidal action is performed by heat treatment, it is possible to reduce the oxidation of components in the beverage by dissolved oxygen in the dissolved gas in the beverage during heating. . This further impairs the flavor of the beverage.
  • the amount of dissolved oxygen in the beverage after the degassing step is 0.5 ppm or less.
  • the beverage is a beverage having a foaming property.
  • the dissolved gas in the beverage can be satisfactorily degassed from the beverage, and the bubble film can be satisfactorily broken.
  • a beverage manufacturing apparatus including a beverage degassing unit and a bubble breaking unit.
  • the dissolved gas in the beverage can be reduced, and the gas in the film that forms bubbles generated during degassing and the liquid that has formed the film of bubbles can be separated. Then, by recovering the liquid that has formed the bubble film as a beverage, the bubbles formed in the beverage can be eliminated without impairing the flavor of the beverage. Further, in the present invention, since the bubble film is actively broken, the defoaming effect can be obtained in a very short time.
  • a gas discharging means is further provided.
  • the gas generated from the beverage can be reliably discharged.
  • the dissolved oxygen in the beverage can be more reliably reduced.
  • the beverage further comprises means for sterilizing the beverage.
  • the eighth aspect even when the bactericidal action is performed by heat treatment, it is possible to reduce the oxidation of components in the beverage by dissolved oxygen in the dissolved gas in the beverage during heating. . This further impairs the flavor of the beverage.
  • the deaeration means includes a deaerator, an inert gas' striping section, and a star. Includes at least one of the tick mixers.
  • the dissolved gas in the beverage can be satisfactorily degassed from the beverage.
  • the foam breaking means is a pump capable of breaking a bubble film. That is, according to the tenth aspect, the film of bubbles in the beverage can be satisfactorily broken.
  • each invention a common effect that air bubbles formed in a beverage can be eliminated without impairing the flavor of the beverage can be achieved.
  • the gas generated from the beverage can be reliably exhausted, an effect can be obtained.
  • the sterilization action is performed by heat treatment, it is possible to reduce oxidation of components in the beverage by dissolved oxygen in the dissolved gas in the beverage during heating.
  • the dissolved gas in the beverage can be satisfactorily degassed from the beverage power, and the bubble film can be broken well.
  • the seventh aspect it is possible to ensure that the gas generated from the beverage can be exhausted, which is effective.
  • the dissolved oxygen in the dissolved gas in the beverage oxidizes the components in the beverage during heating. It has the effect of being able to reduce
  • the dissolved gas in the beverage can be satisfactorily removed from the beverage. This has the effect of being degassed from the air.
  • FIG. 1 is a schematic diagram of a beverage production apparatus according to one embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of an example of the foam breaking means in the beverage production apparatus of the present invention.
  • FIG. 1 is a schematic diagram of a beverage production apparatus according to the present invention.
  • a brewing tank 1 for brewing a beverage therein is shown on the left side of FIG.
  • the beverage prepared in the mixing tank 1 is preferably a beverage having a foaming property, and examples thereof include coffee, tea beverages, soft drinks, and chuhai, but are not limited thereto.
  • the mixing tank 1 is connected to the deaeration means 3 via the liquid feed pump 2 by a beverage pipe 24 shown by a solid line in FIG.
  • the degassing means 3 plays a role of evacuating dissolved gas, for example, dissolved oxygen, dissolved inside the beverage from inside the beverage to outside the beverage (hereinafter, appropriately referred to as “degassing”).
  • the degassing means 3 shown in FIG. 1 is provided with an inert gas stripping section for reducing the amount of dissolved gas, particularly dissolved oxygen, in the beverage by supplying an inert gas, for example, nitrogen gas, to the inside of the beverage. I assume. Therefore, the degassing means 3 shown in Fig. It is connected to the inert gas supply unit 4 by a line 21.
  • a deaerator having a decompression chamber inside may be adopted as the deaeration means 3, and in this case, when the beverage is passed through the decompression chamber, the dissolved gas in the beverage escapes outside the beverage.
  • a static mixer can be used as the deaeration means 3. That is, any other mechanism capable of allowing the dissolved gas inside the beverage to escape to the outside of the beverage can be employed as the degassing means 3. Therefore, the inert gas supply section 4 and the inert gas line 21 can be eliminated according to the type of the deaeration means 3 used, and the vacuum pump 7 and the vacuum line 23 described later are deaerated. You may make it connect to the means 3.
  • the degassing means 3 is connected to the foam breaking means 5 by a pipe 24.
  • the bubble breaker 5 serves to break the film of the bubbles formed in the deaerator 3 as described later. Since the foam breaking means 5 shown in FIG. 1 assumes a foam breaking pump described later in detail, the foam breaking means 5 is connected to the vacuum pump 7 via the drain separator 6 by the vacuum line 23 shown by the dotted line. Connected to.
  • the discharging means includes a drain separator 6 and a vacuum pump 7. The gas generated from the beverage can be reliably discharged by the discharging means.
  • pressure gauges 13 and 14 are provided between the deaeration means 3 and the bubble breaking means 5 and between the bubble breaking means 5 and an inert gas replacement tank 8 described later. It is possible to measure the pressure in the pipe 24 before and after. Further, a pressure gauge 18 is provided in the vacuum line 23 as shown. As in the case of the degassing means 3 described above, any other mechanism capable of breaking the bubble film can be adopted as the foam breaking means 5, and depending on the type of the foam breaking means 5, the drain separator 6, One of the vacuum pump 7, the inert gas line 21 and the pressure gauges 13, 14 and 18 may be eliminated. As shown in FIG. 1, the foam breaking means 5 is connected to an inert gas replacement tank 8 by a pipe 24.
  • the inert gas replacement tank 8 is connected to the inert gas supply unit 4 by another inert gas line 22 so that an inert gas, for example, nitrogen is supplied into the inert gas replacement tank 8. Has become. Further, the lower part of the inert gas replacement tank 8 is connected to the sterilizing means 10 via the liquid sending pump 9 by a pipe 24. In the sterilizing means 10, the beverage can be kept at a predetermined temperature for a predetermined time. Next, the sterilized beverage is supplied to the filling section 11 and filled in containers, such as cans, bottles, pet bottles, and paper packs.
  • containers such as cans, bottles, pet bottles, and paper packs.
  • the flow meters 12 and 15 are provided between the liquid feed pump 2 and the deaeration means 3 and between the liquid feed pump 9 and the sterilization means 10. It can measure the flow rate of beverages. Also, as shown in the figure, flow meters 16 and 17 are provided in the inert gas lines 21 and 22, respectively.
  • the inert gas flowing through the inert gas lines 21 and 22 is, for example, nitrogen. It can measure the flow rate of water.
  • the beverage prepared in the preparation tank 1 is supplied from the preparation tank 1 to the deaeration means 3 by the liquid sending pump 2.
  • dissolved gas in the beverage for example, dissolved oxygen
  • the deaeration means 3 is in the form of a tank, and the beverage is accumulated in this tank.
  • an inert gas for example, nitrogen
  • the inert gas supply unit 4 is supplied into the beverage of the degassing means 3 through the inert gas line 21.
  • the beverage to be replaced by an inert gas.
  • the dissolved gas in the beverage for example, dissolved Oxygen is absorbed into the inert gas bubbles.
  • the inert gas bubbles rise to the surface of the beverage with the dissolved gas taken in, so that after replacing the beverage with the inert gas, the amount of dissolved gas in the beverage drops significantly.
  • the inert gas stripping part which replaces with an inert gas
  • the bubbles of the inert gas containing the dissolved gas will reach near the liquid level of the beverage. After floating, they do not disappear and remain as bubbles on or below the liquid level of the beverage. And, when the replacement with the inert gas is continuously performed, the number of the bubbles of the inert gas taking in the dissolved gas also increases continuously, so that these bubbles are relatively thick mainly on the liquid surface of the beverage. They become deposited in layers. Even if another method is used, for example, when a delator or a static mixer is used as the degassing means 3, a layer composed of bubbles is formed similarly regardless of whether an inert gas is used or not. .
  • a layer composed of air bubbles is formed on the liquid surface of the beverage, it is not only difficult to supply the beverage to a post-process, but also the air bubbles are generated in a post-process device, for example, a sterilization means. It may adhere to the inside of the device and impair the function of the device. Although the gas inside the bubbles is not necessary for the beverage, the portion of the film that forms the bubbles is necessary for the beverage, and if these bubbles are removed together with the bubble film, the final beverage will be produced. Ingredients and flavors may differ from those originally planned. For this reason, in the present invention, a bubble breaker 5 for breaking the bubble film formed in the deaerator 3 is provided downstream of the deaerator 3.
  • FIG. 2 is a longitudinal cross-sectional view of an example of a foam breaking means in the beverage production apparatus of the present invention.
  • the foam breaking means 5 shown in FIG. 2 is in the form of a foam breaking pump 5 for breaking the above-mentioned bubble film, that is, breaking the foam.
  • the substantially cylindrical casing 31 of the foam breaking pump 5 is provided with an inlet 32 and an outlet 33.
  • the inlet 32 is connected to the degassing means 3 by a pipe 24 shown in FIG. 1, and the outlet 33 is connected to the inert gas replacement tank 8 by a pipe 24. Further, a suction port 35 is formed in the casing 31, and the suction port 35 is connected to a drain separator 6 and a vacuum pump 7 which constitute a discharge means by a vacuum line 23 shown in FIG. You.
  • the foam breaking pump 5 has a rotating shaft 41 in a casing 31, and the tip 43 of the rotating shaft 41 is arranged so as to face the suction port 35. ing.
  • the interior of the casing 31 is partitioned into a first chamber 37 and a second chamber 38 by a partition member 36.
  • the base end of the rotating shaft portion 41 protrudes from the casing 31 via a bearing 34 and is connected to a motor 49.
  • a separation blade 42 is provided in a first chamber 37 located on the distal end 43 side of the rotating shaft portion 41, and a first blade 37 located on the proximal end side of the rotating shaft portion 41 is provided.
  • the second chamber 38 has a main impeller 44. Further, in the second chamber 38, a plurality of substantially L-shaped inducers 45 are provided between the separation blade 42 and the main impeller 44.
  • the rotating shaft 41 is rotated by the motor 49. Then, a beverage containing a large number of bubbles is supplied from the inlet 32 into the second chamber 38 of the foam breaking pump 5. Since the rotating shaft 41 provided with the inducer 45 is rotating, the liquid portion of the beverage containing a large amount of air bubbles is accumulated on the inner peripheral surface portion 48 of the substantially cylindrical casing 31 by centrifugal force. It will be. On the other hand, the central portion of the substantially cylindrical casing 3 1, That is, since the pressure around the rotating shaft 41 is negative, the bubble portion of the beverage concentrates around the rotating shaft 41.
  • the suction port 35 Since the suction port 35 is connected to the vacuum line 23, the air bubbles concentrated around the rotary shaft 41 pass through the gap 40 between the partition 36 and the rotary shaft 41, and then pass through the gap 40. It moves from the second room 38 to the first room 37.
  • the separation blades 42 rotate around the rotation shaft 41, and a plurality of holes 46 are formed in the separation blades 42 from the base end of the rotation shaft 41. It is formed in the direction toward 43.
  • the air bubbles moved into the first chamber 37 are sucked toward the suction port 35, the air bubbles pass through the holes 46 of the separation blade 42. At this time, the film that forms the bubble is broken by the bubble colliding with the inner wall of the hole 46.
  • the bubbles are separated into a liquid that has formed a bubble film and a gas that has been trapped in the bubble film.
  • both the liquid and the gas move through the hole 46 to the vicinity of the suction port 35 in the first chamber 37, but only a relatively small amount of gas is sucked through the suction port 35.
  • the liquid having a relatively large mass remains in the first chamber 37.
  • these liquids return to the second chamber 38 again through the gap 39 between the first chamber 37 and the second chamber 38 shown in the lower part of FIG.
  • the liquid portion of the beverage in the second chamber 38 flows out of the outlet 33 by the main impeller 44 and is supplied to the inert gas replacement tank 8 shown in FIG.
  • a vacuum pump is preferable, but any structure may be used as long as it can discharge gas generated from the beverage.
  • the beverage that has passed through the foam breaking means 5 is supplied to the inert gas replacement tank 8 with almost no air bubbles.
  • the inert gas for example, nitrogen in the inert gas supply section 4 is inert. It is supplied to the upper part of the inert gas replacement tank 8 through the active gas line 22. Supply of inert gas into the inert gas replacement tank 8 may cause the beverage to oxidize if oxygen-containing gas, for example, air, is present in the inert gas replacement tank 8. This avoids contact of the beverage with oxygen, thereby avoiding oxidation of the beverage. In cases where re-dissolution of oxygen does not easily occur, an open tank may be used instead of the inert gas replacement tank.
  • the beverage is supplied to the sterilizing means 10 at a predetermined flow rate by the liquid feed pump 9.
  • the beverage is kept at a predetermined temperature, for example, 80 ° C. to 130 ° C. for about 1 minute to 20 minutes, whereby the beverage is sterilized.
  • the inert gas replacement tank 8 described above can be used as a puffer tank, the beverage at the predetermined flow rate can be reliably supplied to the sterilizing means 10. Can be supplied.
  • dissolved oxygen in the beverage may oxidize specific components in the beverage, but in the present invention, the dissolved gas in the beverage, particularly the dissolved gas in the beverage in the degassing means 3 is used. Since the dissolved oxygen is reduced, the beverage can be prevented from being oxidized during heat sterilization. Finally, the beverage is supplied from the sterilizing means 10 to the filling unit 11 and filled into containers, such as cans, bottles, pet bottles, and paper packs.
  • the foam breaking means 5 of the present invention for example, the foam breaking pump 5 as shown in FIG. 2, the membrane forming the bubbles contained in the beverage is actively broken by the separating blades 42. Then, the gas trapped in the bubble film in the bubble breaking means 5 is separated from the liquid forming the film, and the liquid forming the bubble film is collected together with the beverage. .
  • the liquid that has formed a bubble film is collected as the beverage, so that the flavor of the beverage is not impaired.
  • foam breaking means 5 can be introduced into the beverage production line without lowering the operation efficiency of the line.
  • a foam breaker pump is shown as an example of the foam breaker 5, the foam breaker 5 is not limited to the above-described foam breaker pump, and actively breaks a film forming a bubble. It shall include all forms.
  • N 2 nitrogen
  • Table 2 shows the amount of dissolved oxygen before the foam breaker pump (before foam breaker 5) when ordinary water is used as the beverage.
  • an inert gas stripping part using nitrogen (N 2) as an inert gas was used as the degassing means 3.
  • the amount of dissolved oxygen before passing the beverage through the deaeration means 3 was 7.91 ppm.
  • Table mppm Table 3 shows the dissolved oxygen content after the bubble breaker pump (after 5 bubble breakers) under the same conditions as Table 2. Since the bubble breaking pump is connected to the vacuum line 23 from the vacuum pump 7, it can be seen that the amount of dissolved oxygen tends to slightly decrease as compared with the case of Table 2.
  • a green tea preparation liquid with a dissolved oxygen amount of about 8 ppm is supplied from the preparation tank 1 to the deaeration means 3 by the supply pump 2.
  • the flow rate of nitrogen in the deaeration means 3 is 10 LZ min, and the flow rate of the beverage is 20 LZ min.
  • 10 L of the beverage subjected to the foam breaking treatment in the foam breaking pump adopted as the foam breaking means 5 was collected in the 10 L female cylinder.
  • Table 4 shows the amount of dissolved oxygen and the ratio of foaming (bubble height in the female cylinder / height of the female cylinder).
  • the dissolved oxygen content in the beverage which was 8 ppm before being supplied to the deaeration means 3, decreased to 0.27 ppm after passing through the deaeration means 3 (before the foam breaker pump). However, even after the foam breaker pump, it slightly decreased and finally reached 0.23 ppm.
  • the foam height in the female cylinder is 22 cm and the female cylinder height is 45 cm, so the ratio of the foam height is about 0.49.
  • the ratio of the foam height is also 0. That is, it can be seen that air bubbles in the beverage could be almost completely eliminated by the treatment in the foam breaking pump, that is, the foam breaking means 5 in this case.
  • Table 5 shows the beverages before treatment in the deaeration means and after treatment in the foam breaking means, ie, epigallocatechin gallate (hereinafter referred to as “EGCG”) of the power fines and power techins in the green tea preparation.
  • the figure shows the results obtained by measuring the amount of liquid by high-speed liquid chromatography.
  • the power phase related to flavor and the amount of EGCG hardly changed.
  • very good sensory results were obtained. That is, in the foam breaking means 5 of the present invention, the film of the bubble is broken, Since the liquid that formed the film is recovered, the sensory results based on the ingredients and flavor of the beverage are not impaired, and the condition is extremely good. That is, the components and flavor of the beverage are not impaired by the foam breaking means 5 of the present invention.

Abstract

A method and an apparatus for manufacturing a beverage capable of eliminating air bubbles formed in the beverage without impairing the flavor of the beverage. The beverage manufacturing apparatus (20) comprises a beverage deaerating means (3) and a bubble breaking means (5), and these manufacturing method uses the beverage manufacturing apparatus. The apparatus may comprise a beverage sterilizing means (10). The deaerating means may comprise at least one of a deaerator, an inert gas stripping part, and a static mixer, and the bubble breaking means may be a pump capable of breaking the film of air bubbles. In addition, the amount of dissolved oxygen in the beverage after air bubbles are broken is desirably 0.5 ppm or below.

Description

飲料製造方法および飲料製造装置 Beverage manufacturing method and beverage manufacturing apparatus
発明の属する技術分野 Technical field to which the invention belongs
本発明は、 飲科を製造する飲料製造方法およびこの方法を実施す る飲料製造装置に関する。  The present invention relates to a beverage manufacturing method for manufacturing a beverage department and a beverage manufacturing apparatus for performing the method.
明 従来の技術  Akira Conventional technology
現在の市場においては様々な種類の書飲料、 例えば茶類飲料、 果汁 飲料、 乳性飲料などが販売されている。 これら飲料のうち、 例えば 茶類飲料については淹れ立ての状態、 そして果汁飲料、 乳性飲料な どについては絞り立ての状態が最も風味が高いといわれている。 と ころが、 飲料製造時または製造後において飲料内に混入した酸素、 特に溶存気体中の溶存酸素が飲料内のビタミン Cなどの特定の香味 成分を酸化し、 これによ り、 飲料の風味が次第に損なわれるよ うに なる。 従って、 飲料内の溶存気体、 特に溶存酸素を低減する方法が 従来よ り提案されており、 物理的な酸素除去方法と してはインジェ ク ト法および塔フラッシング法など、 ならびに化学的な方法と して は脱酸剤の混入などが既に公知となっている。  Various types of book drinks are sold in the market today, such as tea drinks, fruit drinks, and milk drinks. Of these beverages, for example, tea beverages are said to have the best flavor when freshly brewed, and fruit juices and dairy beverages when freshly squeezed out. However, oxygen mixed into the beverage during or after the production of the beverage, particularly dissolved oxygen in the dissolved gas, oxidizes certain flavor components such as vitamin C in the beverage, thereby increasing the flavor of the beverage. Gradually, it becomes impaired. Therefore, methods for reducing dissolved gas, especially dissolved oxygen, in beverages have been proposed in the past, and physical oxygen removal methods such as the injection method and the tower flushing method, as well as chemical methods, have been proposed. Thus, mixing of a deoxidizing agent is already known.
また、 果汁飲料や乳性飲料はもちろんのこと、 これら以外の飲料 、 例えば茶類飲料などであっても、 容器内で長時間保存する場合に は飲料中味を殺菌する必要がある。 このよ うな殺菌作用は、 高温、 例えば 8 0 °Cから 1 3 0 °Cの環境下で飲料を所定の時間だけ滞留さ せることによ り行われている。 しかしながら、 殺菌時には飲料が高 温下にさらされるので、 酸素、 特に飲料内の溶存酸素による酸化作 用が促進され、 これによ り、 特定の香味成分が同様に酸化されて、 飲料の風味が損なわれるよ うになる。 このよ うな加熱殺菌時に風味 が損なわれるのを避けるために、 例えば特許文献 1および特許文献 2においては、 牛乳や果汁等を含んだ飲料を不活性ガスで置換し、 飲料内の溶存気体、 特に溶存酸素を低下させた状態でこれら飲料を 殺菌している。 このような場合には、 加熱殺菌時における飲料内の 溶存酸素が少なくなっているので、 酸化によ り飲料の風味が損なわ れるのを最小限に抑えることが可能となる (例えば、 特開平 1 0— 2 9 5 3 4 1号公報 (第 1図) または特開 2 0 0 1 — 7 8 6 6 5号 公報 (第 1図) を参照) 。 In addition to fruit juice drinks and milk drinks, even drinks other than these, such as tea drinks, require that the contents of the drink be sterilized when stored in a container for a long time. Such a bactericidal action is performed by retaining the beverage for a predetermined time under an environment of a high temperature, for example, 80 ° C to 130 ° C. However, during sterilization, the beverage is exposed to high temperatures, which promotes the oxidative action of oxygen, especially dissolved oxygen in the beverage, which in turn oxidizes certain flavor components as well. The flavor of the beverage will be impaired. In order to avoid the loss of flavor during such heat sterilization, for example, in Patent Documents 1 and 2, beverages containing milk, fruit juice, etc. are replaced with an inert gas to dissolve dissolved gases in the beverages, especially These beverages are sterilized with reduced dissolved oxygen. In such a case, since the dissolved oxygen in the beverage during the heat sterilization is reduced, it is possible to minimize the loss of the flavor of the beverage due to oxidation (see, for example, Japanese Patent Application Laid-Open No. HEI 1-1990). 0-2955341 (Fig. 1) or JP-A-2001-76865 (Fig. 1)).
ところで、 飲料内の溶存気体、 特に溶存酸素を除去する場合、 例 えば前述したように飲料を不活性ガスによって置換する場合、 また は減圧室を備えたデァレータに飲料を通過させるなどの場合には多 数の気泡が飲料内または飲料の液面上に多量に発生する。 特に、 不 活性ガスによ り置換される飲料がタンパク質および または糖類を 含んでいる場合には、 これら成分によつて極めて多量の気泡が形成 されるようになる。 このよ うな場合には、 多量の気泡のために飲料 の一部が貯蔵タンクから溢れうると共に、 飲料を配管系に通すのが 物理的に困難となり、 所定量の飲料を後工程に供給できなく なる。 また、 気泡を含む飲料を後工程に供給できたと しても、 これら気泡 は後工程の装置、 例えば殺菌機などに付着し、 これら装置の機能お よび処理効率が著しく低下する可能性もある。 さ らに一度脱気した 気体、 特に酸素が飲料に再度溶解する恐れがある。 これに対して、 多量の気泡が飲料と一緒に後工程に供給されるのを避けるために、 例えば前述したデアレータ内の減圧室の圧力を通常の場合よ り も高 める力 、 または置換に用いられる不活性ガスの供給量を少なくする ことで気泡の発生を抑制することも考えられるが、 このよ うな場合 には飲料内の溶存気体の飲料からの脱気量が低下するので好ましく なレ、。 By the way, when removing dissolved gas, especially dissolved oxygen, in a beverage, for example, when replacing the beverage with an inert gas as described above, or when passing the beverage through a delator equipped with a decompression chamber, etc. A large number of air bubbles are generated in the beverage or on the surface of the beverage. In particular, if the beverage displaced by the inert gas contains proteins and / or sugars, these components result in the formation of very large amounts of air bubbles. In such a case, a large amount of air bubbles may cause a part of the beverage to overflow from the storage tank, and it may be physically difficult to pass the beverage through the piping system, so that a predetermined amount of the beverage cannot be supplied to a subsequent process. Become. Further, even if a beverage containing bubbles can be supplied to a subsequent process, these bubbles may adhere to a device in a later process, for example, a sterilizer, and the function and processing efficiency of these devices may be significantly reduced. In addition, once degassed gases, especially oxygen, may be redissolved in the beverage. On the other hand, in order to prevent a large amount of air bubbles from being supplied to the subsequent process together with the beverage, for example, the above-described force or pressure required to increase the pressure in the decompression chamber in the deaerator is higher than usual. It is conceivable to suppress the generation of air bubbles by reducing the supply amount of the inert gas used.However, in such a case, the amount of dissolved gas in the beverage to be degassed from the beverage is reduced, which is preferable. What?
また、 不活性ガスによる置換後の飲料を例えば別のパッファタン ク内に貯留した状態で気泡のみをパッファタンク上方に残しつつ、 パッファタンクの下面から飲料を取出して後工程に供給することも 想定される。 しかしながら、 気泡内の気体は飲料と して不要である ものの、 気泡を形成する膜自体は飲料の一部であるので、 このよ う な膜の液体部分は飲料と して後工程に供給する必要がある。 特に気 泡の膜を形成している飲料の成分が、 膜を形成していない液体部分 の飲料の成分とは異なる場合には、 最終的な製品と しての飲料の成 分および風味は当初に予定された成分および風味とは異なってく る 可能性がある。  It is also envisaged that the beverage after replacement with an inert gas is stored in another puffer tank, for example, while leaving only the air bubbles above the puffer tank, removing the beverage from the lower surface of the puffer tank and supplying it to the subsequent process. You. However, although the gas in the bubbles is unnecessary for the beverage, the film itself that forms the bubbles is part of the beverage, so the liquid part of such a film must be supplied to the subsequent process as a beverage. There is. In particular, if the components of the beverage that forms the foam film are different from those of the liquid portion of the beverage that does not form a film, the components and flavor of the final beverage will initially be Ingredients and flavors may be different from those expected.
さ らに、 飲科上の気泡が自然に消滅するのを待つこと、 および飲 料上の気泡に液体を噴霧してこれらを消滅させることも想定される が、 このよ うな場合には短時間のうちに十分な消泡効果を得ること はできず、 また、 一度脱気した気体、 特に酸素が飲料に再度溶解す る恐れもあるので、 通常の飲料製造ラインにおいて採用することは できない。  In addition, it is conceivable to wait for bubbles in the beverage department to disappear naturally, and to spray liquid on the bubbles in the beverage to destroy them. However, since it is not possible to obtain a sufficient defoaming effect during this process, and once degassed gas, especially oxygen, may be dissolved in the beverage again, it cannot be used in ordinary beverage production lines.
そこで本発明者は上記課題を克服すベく'鋭意研究を重ねた結果、 飲料内の溶存気体を脱気し、 脱気作用時に飲料に生じた気泡につい てその膜と内部の気体とを分離すればよいとの知見を得て、 飲料製 造方法および飲料製造装置を構築し、 本発明を完成するに至った。  Accordingly, the present inventors have conducted intensive studies to overcome the above problems, and as a result, degass the dissolved gas in the beverage and separate the film and the internal gas from the bubbles generated in the beverage during the degassing action. Having obtained the knowledge that this should be done, they constructed a beverage manufacturing method and a beverage manufacturing apparatus, and completed the present invention.
すなわち、 本発明は、 飲料の風味を損なう ことなしに、 飲料に形 成された気泡を排除し、 飲料内の溶存酸素を低減することができる 飲料製造方法およびこの方法を実施する飲料製造装置を提供するこ とを目的とする。 発明の概要 前述した目的を達成するために 1番目の態様によれば、 飲料の脱 気工程後に気泡の破泡工程を設けた、 飲料製造方法が提供される。 すなわち 1番目の態様によって、 飲料内の溶存気体を少なくでき ると共に、 脱気時に生じた気泡を形成する膜内の気体と気泡の膜を 形成していた液体とを分離できる。 そして、 気泡の膜を形成してい た液体を飲料と して回収することによ り、 飲料の風味を損なう こと なしに、 飲料に形成された気泡を排除し、 飲料内の溶存酸素を低減 させることができる。 また、 本発明においては気泡の膜を積極的に 破断しているので、 極めて短時間で消泡効果を得ることもできる。 That is, the present invention provides a beverage manufacturing method capable of eliminating bubbles formed in a beverage and reducing dissolved oxygen in the beverage without impairing the flavor of the beverage, and a beverage manufacturing apparatus implementing the method. It is intended to provide. Summary of the Invention According to a first aspect of the present invention, there is provided a method for producing a beverage, comprising a step of breaking air bubbles after the step of deaeration of the beverage. That is, according to the first embodiment, the dissolved gas in the beverage can be reduced, and the gas in the film that forms bubbles generated during degassing and the liquid that has formed the film of bubbles can be separated. By recovering the liquid that had formed the bubble film as a beverage, the bubbles formed in the beverage are eliminated and the dissolved oxygen in the beverage is reduced without impairing the flavor of the beverage. be able to. Further, in the present invention, since the bubble film is actively broken, the defoaming effect can be obtained in an extremely short time.
2番目の態様によれば、 1番目の態様において、 さらに、 前記破 泡工程後に、 気体の排出工程を設けた。  According to a second aspect, in the first aspect, a gas discharging step is further provided after the foaming step.
すなわち 2番目の態様によって、 飲料から生じた気体を確実に排 出することができる。 これによ り、 一度脱気した気体が飲料に再度 溶解するのを防止でき、 よ り確実に飲料内の溶存酸素を低減させる ことができる。  That is, according to the second aspect, gas generated from the beverage can be reliably discharged. Thus, once degassed gas can be prevented from being dissolved again in the beverage, the dissolved oxygen in the beverage can be more reliably reduced.
3番目の態様によれば、 1番目または 2番目の態様において、 さ らに、 前記飲料の殺菌工程を設けた。  According to a third aspect, in the first or second aspect, a beverage sterilization step is further provided.
すなわち 3番目の態様によって、 殺菌作用を加熱処理によ り行う 場合であっても、 加熱時に飲料内の溶存気体のうちの溶存酸素が飲 料内の成分を酸化させるのを少なくすることができる。 これにより 、 飲料の風味が損なわれるのがさらに妨げられる。  That is, according to the third aspect, even when the bactericidal action is performed by heat treatment, it is possible to reduce the oxidation of components in the beverage by dissolved oxygen in the dissolved gas in the beverage during heating. . This further impairs the flavor of the beverage.
4番目の態様によれば、 1番目から 3番目のいずれかの態様にお いて、 前記脱気工程後の飲料内の溶存酸素量が 0 . 5 p p m以下で あるよつにした。  According to a fourth aspect, in any one of the first to third aspects, the amount of dissolved oxygen in the beverage after the degassing step is 0.5 ppm or less.
すなわち 4番目の態様によって、 飲料内の溶存酸素量を前述した ようにすることによ り、 溶存酸素が飲料内の成分を酸化させるのを 最適に妨げることができる。 5番目の態様によれば、 1番目から 4番目の態様において、 前記 飲料が泡立ちする性質の飲料である。 That is, according to the fourth aspect, by setting the amount of dissolved oxygen in the beverage as described above, it is possible to optimally prevent dissolved oxygen from oxidizing components in the beverage. According to a fifth aspect, in the first to fourth aspects, the beverage is a beverage having a foaming property.
すなわち 5番目の態様によって、 飲料内の溶存気体を良好に飲料 から脱気させ、 気泡の膜を良好に破断することができる。  That is, according to the fifth aspect, the dissolved gas in the beverage can be satisfactorily degassed from the beverage, and the bubble film can be satisfactorily broken.
6番目の態様によれば、 飲料の脱気手段と、 気泡の破泡手段とを 具備する飲料製造装置が提供される。  According to a sixth aspect, there is provided a beverage manufacturing apparatus including a beverage degassing unit and a bubble breaking unit.
すなわち 6番目の態様によって、 飲料内の溶存気体を少なくでき ると共に、 脱気時に生じた気泡を形成する膜内の気体と気泡の膜を 形成していた液体とを分離できる。 そして、 気泡の膜を形成してい た液体を飲料と して回収することにより、 飲料の風味を損なう こと なしに、 飲料に形成された気泡を排除することができる。 また、 本 発明においては気泡の膜を積極的に破断しているので、 極めて短時 間で消泡効果を得ることもできる。  That is, according to the sixth aspect, the dissolved gas in the beverage can be reduced, and the gas in the film that forms bubbles generated during degassing and the liquid that has formed the film of bubbles can be separated. Then, by recovering the liquid that has formed the bubble film as a beverage, the bubbles formed in the beverage can be eliminated without impairing the flavor of the beverage. Further, in the present invention, since the bubble film is actively broken, the defoaming effect can be obtained in a very short time.
7番目の態様によれば、 6番目の態様において、 さ らに、 気体の 排出手段を具備する。  According to a seventh aspect, in the sixth aspect, a gas discharging means is further provided.
すなわち 7番目の態様によって、 飲料から生じた気体を確実に排 出することができる。 これによ り、 一度脱気した気体が飲料に再度 溶解するのを防止でき、 よ り確実に飲料内の溶存酸素を低減させる ことができる。  That is, according to the seventh aspect, the gas generated from the beverage can be reliably discharged. Thus, once degassed gas can be prevented from being dissolved again in the beverage, the dissolved oxygen in the beverage can be more reliably reduced.
8番目の態様によれば、 6番目または 7番目の態様において、 さ らに、 前記飲料の殺菌手段を具備する。  According to an eighth aspect, in the sixth or seventh aspect, the beverage further comprises means for sterilizing the beverage.
すなわち 8番目の態様によって、 殺菌作用を加熱処理によ り行う 場合であっても、 加熱時に飲料内の溶存気体のうちの溶存酸素が飲 料内の成分を酸化させるのを少なくすることができる。 これによ り 、 飲料の風味が損なわれるのがさ らに妨げられる。  That is, according to the eighth aspect, even when the bactericidal action is performed by heat treatment, it is possible to reduce the oxidation of components in the beverage by dissolved oxygen in the dissolved gas in the beverage during heating. . This further impairs the flavor of the beverage.
9番目の態様によれば、 6番目ないし 8番目の態様において、 前 記脱気手段が、 デアレータ、 不活性ガス ' ス ト リ ツビング部、 スタ ティ ックミキサのうちの少なく とも一つを含む。 According to a ninth aspect, in the sixth to eighth aspects, the deaeration means includes a deaerator, an inert gas' striping section, and a star. Includes at least one of the tick mixers.
すなわち 9番目の態様によって、 飲料内の溶存気体を良好に飲料 から脱気させられる。  That is, by the ninth aspect, the dissolved gas in the beverage can be satisfactorily degassed from the beverage.
1 0番.目の態様によれば、 6番目から 9番目のいずれかの態様に おいて、 前記破泡手段が、 気泡の膜を破断可能なポンプである。 すなわち 1 0番目の態様によって、 飲料内の気泡の膜を良好に破 断することができる。  According to a tenth aspect, in any one of the sixth to ninth aspects, the foam breaking means is a pump capable of breaking a bubble film. That is, according to the tenth aspect, the film of bubbles in the beverage can be satisfactorily broken.
各発明によれば、 飲料の風味を損なう ことなしに、 飲料に形成さ れた気泡を排除できるという共通の効果を奏しうる。  According to each invention, a common effect that air bubbles formed in a beverage can be eliminated without impairing the flavor of the beverage can be achieved.
さ らに 、 2番目の態様によれば、 飲料から生じた気体を確実に排 出できるとレ、う効果を奏しうる。  Furthermore, according to the second aspect, if the gas generated from the beverage can be reliably exhausted, an effect can be obtained.
さ らに 、 3番目の態様によれば、 殺菌作用を加熱処理により行う 場合であつても、 加熱時に飲料内の溶存気体のうちの溶存酸素が飲 料内の成分を酸化させるのを少なくすることができるという効果を 奏しう る  Furthermore, according to the third aspect, even when the sterilization action is performed by heat treatment, it is possible to reduce oxidation of components in the beverage by dissolved oxygen in the dissolved gas in the beverage during heating. Have the effect of being able to
さ らに 、 4番目の態様によれば、 溶存酸素が飲料内の成分を酸化 させる - のを最適に妨げる とができるという効果を奏しうる。  Further, according to the fourth aspect, it is possible to provide an effect that it is possible to optimally prevent dissolved oxygen from oxidizing components in the beverage.
さらに 、 5番目の態様によれば、 飲料内の溶存気体を良好に飲料 力 ら脱気させ 、 気泡の膜を良好に破断することができるという効果 を奏しうる  Further, according to the fifth aspect, it is possible to achieve an effect that the dissolved gas in the beverage can be satisfactorily degassed from the beverage power, and the bubble film can be broken well.
さ らにゝ 7番目の態様によれば、 飲料から生じた気体を確実に排 出できるとレ、う効果を奏しフ 。  Further, according to the seventh aspect, it is possible to ensure that the gas generated from the beverage can be exhausted, which is effective.
さ らに 、 8番目の態様によれば、 殺菌作用を加熱処理によ り行う 場合であつても、 加熱時に飲料内の溶存気体のうちの溶存酸素が飲 料内の成分を酸化させるのを少なくすることができるという効果を 奏しう る  Further, according to the eighth aspect, even in the case where the sterilizing action is performed by a heat treatment, the dissolved oxygen in the dissolved gas in the beverage oxidizes the components in the beverage during heating. It has the effect of being able to reduce
さ らに 、 9番目の態様によれば、 飲料内の溶存気体を良好に飲料 から脱気させられるという効果を奏しう る。 Further, according to the ninth aspect, the dissolved gas in the beverage can be satisfactorily removed from the beverage. This has the effect of being degassed from the air.
さ らに、 1 0番目の態様によれば、 飲料内の気泡の膜を良好に破 断することができるという効果を奏しうる。 図面の簡単な説明  Further, according to the tenth aspect, it is possible to obtain an effect that the film of bubbles in the beverage can be satisfactorily broken. Brief Description of Drawings
図 1は、 本発明の一つの実施形態に基づく飲料製造装置の略図で ある。  FIG. 1 is a schematic diagram of a beverage production apparatus according to one embodiment of the present invention.
図 2は、 本発明の飲料製造装置における一例と しての破泡手段の 長手方向断面図である。 発明の実施の形態  FIG. 2 is a longitudinal sectional view of an example of the foam breaking means in the beverage production apparatus of the present invention. Embodiment of the Invention
以下、 添付図面を参照して本発明の実施形態を説明する。 以下の 図面において同一の部材には同一の参照符号が付けられている。 理 解を容易にするために、 これら図面は縮尺等を適宜変更している。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same members are denoted by the same reference numerals. In order to facilitate understanding, the scale of these drawings is appropriately changed.
図 1は本発明に基づく飲料製造装置の略図である。 図 1の飲料製 造装置 2 0においては内部で飲料を調合するための調合タンク 1が 図 1の左方に示されている。 本発明において調合タンク 1内で調合 される飲料は泡立ちする性質の飲料が望ましく、 例えば、 コーヒー 、 茶類飲料、 清涼飲料、 チューハイなどが挙げられるが、 これらに 限定されるものではない。 調合タンク 1は図 1において実線で示す 飲料用配管 2 4によ り送液ポンプ 2を介して脱気手段 3に接続され ている。 脱気手段 3は飲料内部に溶存している溶存気体、 例えば溶 存酸素を飲料内部から飲料外部まで脱出 (以下、 適宜 「脱気」 と称 する) させる役目を果たす。 図 1 に示される脱気手段 3は、 飲料内 部に不活性ガス、 例えば窒素ガスを供給することにより飲料の溶存 気体、 特に溶存酸素の量を低減させる不活性ガス · ス ト リ ッピング 部を想定している。 従って、 図 1 に示される脱気手段 3は不活性ガ スライン 2 1 によつて不活性ガス供給部 4に接続されている。 また 、 脱気手段 3 として、 内部に減圧室を備えたデア レータを採用して もよく、 この場合には飲料を減圧室に通過させる際に飲料内の溶存 気体が飲料外に脱出するよ うになる。 さらに、 脱気手段 3 としてス タティ ックミキサを採用できるのは当業者であれば明らかである。 すなわち、 飲料内部の溶存気体を飲料外部まで脱出させられる他の あらゆる機構を脱気手段 3 と して採用できる。 従って、 使用される 脱気手段 3の種類に応じて、 不活性ガス供給部 4および不活性ガス ライン 2 1 を排除できると共に、 後述するような真空ポンプ 7およ び真空ライン 2 3を脱気手段 3に接続するようにしてもよい。 FIG. 1 is a schematic diagram of a beverage production apparatus according to the present invention. In the beverage manufacturing apparatus 20 of FIG. 1, a brewing tank 1 for brewing a beverage therein is shown on the left side of FIG. In the present invention, the beverage prepared in the mixing tank 1 is preferably a beverage having a foaming property, and examples thereof include coffee, tea beverages, soft drinks, and chuhai, but are not limited thereto. The mixing tank 1 is connected to the deaeration means 3 via the liquid feed pump 2 by a beverage pipe 24 shown by a solid line in FIG. The degassing means 3 plays a role of evacuating dissolved gas, for example, dissolved oxygen, dissolved inside the beverage from inside the beverage to outside the beverage (hereinafter, appropriately referred to as “degassing”). The degassing means 3 shown in FIG. 1 is provided with an inert gas stripping section for reducing the amount of dissolved gas, particularly dissolved oxygen, in the beverage by supplying an inert gas, for example, nitrogen gas, to the inside of the beverage. I assume. Therefore, the degassing means 3 shown in Fig. It is connected to the inert gas supply unit 4 by a line 21. Further, a deaerator having a decompression chamber inside may be adopted as the deaeration means 3, and in this case, when the beverage is passed through the decompression chamber, the dissolved gas in the beverage escapes outside the beverage. Become. Further, it is obvious to those skilled in the art that a static mixer can be used as the deaeration means 3. That is, any other mechanism capable of allowing the dissolved gas inside the beverage to escape to the outside of the beverage can be employed as the degassing means 3. Therefore, the inert gas supply section 4 and the inert gas line 21 can be eliminated according to the type of the deaeration means 3 used, and the vacuum pump 7 and the vacuum line 23 described later are deaerated. You may make it connect to the means 3.
さ らに図 1 において脱気手段 3は配管 2 4によ り破泡手段 5に接 続されている。 破泡手段 5は後述するよ うに脱気手段 3において形 成された気泡の膜を破断する役目を果たす。 図 1 に示される破泡手 段 5は詳細に後述する破泡ポンプを想定しているので、 破泡手段 5 は点線によ り示される真空ライン 2 3によって ドレインセパレータ 6を介して真空ポンプ 7まで接続されている。 本形態において排出 手段はドレイ ンセパレータ 6 と真空ポンプ 7 とから構成されている 。 排出手段によって飲料から生じた気体を確実に排出することがで きる。 また、 圧力計 1 3、 1 4が脱気手段 3 と破泡手段 5 との間、 および破泡手段 5 と後述する不活性ガス置換タンク 8 との間に設け られており、 破泡手段 5の前後段における配管 2 4内の圧力を計測 できるようになつている。 さらに、 図示されるよ うに圧力計 1 8が 真空ライン 2 3に設けられている。 前述した脱気手段 3の場合と同 様に、 気泡の膜を破断可能な他のあらゆる機構を破泡手段 5 と して 採用でき、 破泡手段 5の種類に応じて、 ドレイ ンセパレータ 6、 真 空ポンプ 7、 不活性ガスライン 2 1および圧力計 1 3、 1 4、 1 8 のうちのいずれかを排除等することもできる。 図 1 に示されるよ うに破泡手段 5は配管 2 4によつて不活性ガス 置換タンク 8に接続されている。 不活性ガス置換タンク 8は別の不 活性ガスライン 2 2によつて不活性ガス供給部 4に接続されており 、 不活性ガス、 例えば窒素が不活性ガス置換タンク 8内に供給され るようになっている。 さらに、 不活性ガス置換タンク 8の下部は配 管 2 4によつて送液ポンプ 9を介して殺菌手段 1 0に接続されてい る。 殺菌手段 1 0においては飲料を所定の温度で所定の時間だけ滞 留させることができる。 次いで、 殺菌された飲料は充填部 1 1 まで 供給されて容器、 例えば缶、 ビン、 ペッ トボトル、 紙パックなどに 充填される。 Further, in FIG. 1, the degassing means 3 is connected to the foam breaking means 5 by a pipe 24. The bubble breaker 5 serves to break the film of the bubbles formed in the deaerator 3 as described later. Since the foam breaking means 5 shown in FIG. 1 assumes a foam breaking pump described later in detail, the foam breaking means 5 is connected to the vacuum pump 7 via the drain separator 6 by the vacuum line 23 shown by the dotted line. Connected to. In the present embodiment, the discharging means includes a drain separator 6 and a vacuum pump 7. The gas generated from the beverage can be reliably discharged by the discharging means. In addition, pressure gauges 13 and 14 are provided between the deaeration means 3 and the bubble breaking means 5 and between the bubble breaking means 5 and an inert gas replacement tank 8 described later. It is possible to measure the pressure in the pipe 24 before and after. Further, a pressure gauge 18 is provided in the vacuum line 23 as shown. As in the case of the degassing means 3 described above, any other mechanism capable of breaking the bubble film can be adopted as the foam breaking means 5, and depending on the type of the foam breaking means 5, the drain separator 6, One of the vacuum pump 7, the inert gas line 21 and the pressure gauges 13, 14 and 18 may be eliminated. As shown in FIG. 1, the foam breaking means 5 is connected to an inert gas replacement tank 8 by a pipe 24. The inert gas replacement tank 8 is connected to the inert gas supply unit 4 by another inert gas line 22 so that an inert gas, for example, nitrogen is supplied into the inert gas replacement tank 8. Has become. Further, the lower part of the inert gas replacement tank 8 is connected to the sterilizing means 10 via the liquid sending pump 9 by a pipe 24. In the sterilizing means 10, the beverage can be kept at a predetermined temperature for a predetermined time. Next, the sterilized beverage is supplied to the filling section 11 and filled in containers, such as cans, bottles, pet bottles, and paper packs.
図 1から分かるよ うに流量計 1 2、 1 5が送液ポンプ 2 と脱気手 段 3の間、 および送液ポンプ 9 と殺菌手段 1 0の間に設けられてお り、 配管 2 4内の飲料の流量を計測できるよ うになつている。 また 、 図示されるように流量計 1 6、 1 7が不活性ガスライン 2 1 、 2 2にそれぞれ設けられており、 これら不活性ガスライン 2 1、 2 2 内を流れる不活性ガス、 例えば窒素の流量を計測できるようになつ ている。  As can be seen from FIG. 1, the flow meters 12 and 15 are provided between the liquid feed pump 2 and the deaeration means 3 and between the liquid feed pump 9 and the sterilization means 10. It can measure the flow rate of beverages. Also, as shown in the figure, flow meters 16 and 17 are provided in the inert gas lines 21 and 22, respectively. The inert gas flowing through the inert gas lines 21 and 22 is, for example, nitrogen. It can measure the flow rate of water.
飲料製造装置 2 0の動作時には、 調合タンク 1内で調合された飲 料が送液ポンプ 2によって調合タンク 1から脱気手段 3まで供給さ れる。 次いで、 脱気手段 3においては飲料内の溶存気体、 例えば溶 存酸素が脱気される。 一例と して、 図 1に示されるよ うな不活性ガ ス · ス ト リ ツビング部を脱気手段 3 と して使用した場合を説明する 。 この場合には脱気手段 3はタンク状になっており、 飲料はこのタ ンク内に蓄積されるよ うになる。 次いで、 不活性ガス供給部 4内の 不活性ガス、 例えば窒素が不活性ガスライン 2 1 を通じて脱気手段 3の飲料内に供給される。 これにより、 飲料が不活性ガスによって 置換されるようになる。 このとき、 飲料内の溶存気体、 例えば溶存 酸素が不活性ガスの泡内に吸収される。 そして、 不活性ガスの泡は 溶存気体を取り込んだ状態で飲料の液面まで浮上するので、 飲料を 不活性ガスにより置換した後は飲料内の溶存気体量は大幅に低下す る。 During the operation of the beverage manufacturing apparatus 20, the beverage prepared in the preparation tank 1 is supplied from the preparation tank 1 to the deaeration means 3 by the liquid sending pump 2. Next, in the deaeration means 3, dissolved gas in the beverage, for example, dissolved oxygen, is deaerated. As an example, a case will be described in which an inert gas stripping section as shown in FIG. 1 is used as the deaeration means 3. In this case, the deaeration means 3 is in the form of a tank, and the beverage is accumulated in this tank. Next, an inert gas, for example, nitrogen, in the inert gas supply unit 4 is supplied into the beverage of the degassing means 3 through the inert gas line 21. This allows the beverage to be replaced by an inert gas. At this time, the dissolved gas in the beverage, for example, dissolved Oxygen is absorbed into the inert gas bubbles. The inert gas bubbles rise to the surface of the beverage with the dissolved gas taken in, so that after replacing the beverage with the inert gas, the amount of dissolved gas in the beverage drops significantly.
しかしながら、 不活性ガスによる置換を行う不活性ガス · ス ト リ ッビング部を脱気手段 3 と して採用した場合には溶存気体を取り込 んだ不活性ガスの泡は飲料の液面近く まで浮上した後に消滅せず、 気泡と して飲料の液面上または液面下に留まること となる。 そして 、 不活性ガスによる置換を連続的に行う と、 溶存気体を取り込んだ 不活性ガスの気泡の数も連続的に増え、 それによ り、 これら気泡は 飲料の主に液面上に比較的厚い層をなして堆積するよ うになる。 他 の方式、 例えばデァレータまたはスタティ ック ミキサを脱気手段 3 と して採用した場合であっても、 不活性ガスを用いるか否かに関わ らず、 気泡からなる層が同様に形成される。  However, if the inert gas stripping part, which replaces with an inert gas, is used as the deaeration means 3, the bubbles of the inert gas containing the dissolved gas will reach near the liquid level of the beverage. After floating, they do not disappear and remain as bubbles on or below the liquid level of the beverage. And, when the replacement with the inert gas is continuously performed, the number of the bubbles of the inert gas taking in the dissolved gas also increases continuously, so that these bubbles are relatively thick mainly on the liquid surface of the beverage. They become deposited in layers. Even if another method is used, for example, when a delator or a static mixer is used as the degassing means 3, a layer composed of bubbles is formed similarly regardless of whether an inert gas is used or not. .
ところで、 このような気泡からなる層が飲料の液面上に形成され ている場合には、 飲料を後工程に供給するのが困難となるだけでな く、 気泡が後工程装置、 例えば殺菌手段 1 0内部に付着してその装 置の機能を害する場合がある。 そして、 気泡内部の気体は飲料と し て必要ないものの、 気泡を形成する膜の部分は飲料と して必要であ り、 これら気泡を気泡の膜と一緒に除去した場合には最終的な飲料 の成分および風味が当初に予定していた成分および風味とは異なる 場合がある。 このため、 本発明においては脱気手段 3において形成 した気泡の膜を破断するための破泡手段 5を脱気手段 3の下流側に 設けている。 なお、 飲料を脱気手段 3から破泡手段 5まで適切に供 給するために、 脱気手段 3 と破泡手段 5 との間の配管 2 4の内径を 他の部分よ り も大きくするか、 または破泡手段 5を脱気手段 3に隣 接して配置するのが好ましい。 図 2は本発明の飲料製造装置における一例と しての破泡手段の長 手方向断面図である。 図 2に示される破泡手段 5は前述した気泡の 膜を破断、 すなわち破泡するための破泡ポンプ 5の形態をなしてい る。 図 2に示されるように破泡ポンプ 5 の略円筒形状ケーシング 3 1 には入口部 3 2 と出口部 3 3 とが設けられている。 入口部 3 2は 図 1 に示される配管 2 4によつて脱気手段 3に接続されており、 出 口部 3 3は配管 2 4によつて不活性ガス置換タンク 8に接続されて いる。 さらにケーシング 3 1には吸引口 3 5が形成されており、 こ の吸引口 3 5は図 1 に示される真空ライン 2 3によって排出手段を 構成する ドレイ ンセパレータ 6及び真空ポンプ 7まで接続されてい る。 図 2に示されるように、 破泡ポンプ 5はケーシング 3 1内に回 転軸部 4 1 を備えており、 回転軸部 4 1の先端 4 3は吸引口 3 5に 対面するよ うに配置されている。 ケーシング 3 1内部は仕切部材 3 6によって第一室 3 7 と第二室 3 8 とに仕切られている。 また、 回 転軸部 4 1 の基端は軸受 3 4を介してケーシング 3 1から突出する と共にモータ 4 9に接続されている。 図示されるよ うに回転軸部 4 1の先端 4 3側に位置する第一室 3 7内には分離羽根 4 2が設けら れており、 回転軸部 4 1の基端側に位置する第二室 3 8には主羽根 車 4 4が設けられている。 さらに、 第二室 3 8においては複数の略 L字形状のィンデューサ 4 5が分離羽根 4 2 と主羽根車 4 4 との間 に設けられている。 By the way, when such a layer composed of air bubbles is formed on the liquid surface of the beverage, it is not only difficult to supply the beverage to a post-process, but also the air bubbles are generated in a post-process device, for example, a sterilization means. It may adhere to the inside of the device and impair the function of the device. Although the gas inside the bubbles is not necessary for the beverage, the portion of the film that forms the bubbles is necessary for the beverage, and if these bubbles are removed together with the bubble film, the final beverage will be produced. Ingredients and flavors may differ from those originally planned. For this reason, in the present invention, a bubble breaker 5 for breaking the bubble film formed in the deaerator 3 is provided downstream of the deaerator 3. In order to supply the beverage properly from the degassing means 3 to the foam breaking means 5, is the inner diameter of the pipe 24 between the degassing means 3 and the foam breaking means 5 larger than other parts? Alternatively, it is preferable to arrange the bubble breaking means 5 adjacent to the degassing means 3. FIG. 2 is a longitudinal cross-sectional view of an example of a foam breaking means in the beverage production apparatus of the present invention. The foam breaking means 5 shown in FIG. 2 is in the form of a foam breaking pump 5 for breaking the above-mentioned bubble film, that is, breaking the foam. As shown in FIG. 2, the substantially cylindrical casing 31 of the foam breaking pump 5 is provided with an inlet 32 and an outlet 33. The inlet 32 is connected to the degassing means 3 by a pipe 24 shown in FIG. 1, and the outlet 33 is connected to the inert gas replacement tank 8 by a pipe 24. Further, a suction port 35 is formed in the casing 31, and the suction port 35 is connected to a drain separator 6 and a vacuum pump 7 which constitute a discharge means by a vacuum line 23 shown in FIG. You. As shown in FIG. 2, the foam breaking pump 5 has a rotating shaft 41 in a casing 31, and the tip 43 of the rotating shaft 41 is arranged so as to face the suction port 35. ing. The interior of the casing 31 is partitioned into a first chamber 37 and a second chamber 38 by a partition member 36. The base end of the rotating shaft portion 41 protrudes from the casing 31 via a bearing 34 and is connected to a motor 49. As shown in the figure, a separation blade 42 is provided in a first chamber 37 located on the distal end 43 side of the rotating shaft portion 41, and a first blade 37 located on the proximal end side of the rotating shaft portion 41 is provided. The second chamber 38 has a main impeller 44. Further, in the second chamber 38, a plurality of substantially L-shaped inducers 45 are provided between the separation blade 42 and the main impeller 44.
破泡ポンプ 5の動作時にはモータ 4 9によって回転軸部 4 1が回 転する。 そして多数の気泡を含んだ飲料が入口部 3 2から破泡ボン プ 5 の第二室 3 8内に供給される。 イ ンデューサ 4 5を備えた回転 軸部 4 1が回転しているので、 多量の気泡を含んでいる飲料の液体 部分は遠心力によって略円筒状ケーシング 3 1の内周面部分 4 8に 集積するよ うになる。 一方、 略円筒状ケーシング 3 1 の中心部分、 すなわち回転軸部 4 1周りは負圧になるので、 飲料のうちの気泡部 分は回転軸部 4 1周りに集中するようになる。 そして、 吸引口 3 5 が真空ライン 2 3に接続されているので、 回転軸部 4 1周りに集中 した気泡は仕切部 3 6 と回転軸部 4 1 との間の間隙 4 0を通って第 二室 3 8から第一室 3 7まで移動するよ うになる。 第一室 3 7にお いては分離羽根 4 2が回転軸部 4 1周りに回転しており、 これら分 離羽根 4 2には複数の孔 4 6が回転軸部 4 1 の基端から先端 4 3に 向かう方向に形成されている。 第一室 3 7内に移動した気泡が吸引 口 3 5に向かって吸引される際に、 気泡は分離羽根 4 2の孔 4 6を 通過する。 このとき、 気泡が孔 4 6の内壁に衝突することによって 、 気泡を形成する膜が破断される。 これによ り気泡は、 気泡の膜を 形成していた液体と気泡の膜内に閉じこめられていた気体とに分離 されるようになる。 次いで、 これら液体および気体の両方は孔 4 6 を通って第一室 3 7内の吸引口 3 5付近まで移動するが、 比較的質 量の小さい気体のみが吸引口 3 5を通って吸引され、 比較的質量の 大きい液体は第一室 3 7内に留まること となる。 次いで、 これら液 体は図 2の下方に示される第一室 3 7 と第二室 3 8 との間の隙間 3 9を通って再び第二室 3 8内に戻る。 最終的に、 第二室 3 8内にお ける飲料の液体部分は主羽根車 4 4によって出口部 3 3から流出し 、 図 1に示される不活性ガス置換タンク 8まで供給される。 排出手 段によって気体を完全に排出することによ り、 一度脱気した気体が 再度溶解するのを確実に防止することができる。 なお、 排出手段と しては、 真空ポンプが望ましいが、 飲料から生じた気体を排出でき るものであれば、 どのよ うな構成であっても構わない。 During operation of the foam breaking pump 5, the rotating shaft 41 is rotated by the motor 49. Then, a beverage containing a large number of bubbles is supplied from the inlet 32 into the second chamber 38 of the foam breaking pump 5. Since the rotating shaft 41 provided with the inducer 45 is rotating, the liquid portion of the beverage containing a large amount of air bubbles is accumulated on the inner peripheral surface portion 48 of the substantially cylindrical casing 31 by centrifugal force. It will be. On the other hand, the central portion of the substantially cylindrical casing 3 1, That is, since the pressure around the rotating shaft 41 is negative, the bubble portion of the beverage concentrates around the rotating shaft 41. Since the suction port 35 is connected to the vacuum line 23, the air bubbles concentrated around the rotary shaft 41 pass through the gap 40 between the partition 36 and the rotary shaft 41, and then pass through the gap 40. It moves from the second room 38 to the first room 37. In the first chamber 37, the separation blades 42 rotate around the rotation shaft 41, and a plurality of holes 46 are formed in the separation blades 42 from the base end of the rotation shaft 41. It is formed in the direction toward 43. When the air bubbles moved into the first chamber 37 are sucked toward the suction port 35, the air bubbles pass through the holes 46 of the separation blade 42. At this time, the film that forms the bubble is broken by the bubble colliding with the inner wall of the hole 46. As a result, the bubbles are separated into a liquid that has formed a bubble film and a gas that has been trapped in the bubble film. Next, both the liquid and the gas move through the hole 46 to the vicinity of the suction port 35 in the first chamber 37, but only a relatively small amount of gas is sucked through the suction port 35. However, the liquid having a relatively large mass remains in the first chamber 37. Then, these liquids return to the second chamber 38 again through the gap 39 between the first chamber 37 and the second chamber 38 shown in the lower part of FIG. Finally, the liquid portion of the beverage in the second chamber 38 flows out of the outlet 33 by the main impeller 44 and is supplied to the inert gas replacement tank 8 shown in FIG. By completely discharging the gas by the discharging means, the gas once degassed can be reliably prevented from being dissolved again. In addition, as a discharging means, a vacuum pump is preferable, but any structure may be used as long as it can discharge gas generated from the beverage.
再び図 1 を参照すると、 破泡手段 5を通過した飲料は気泡をほと んど含んでない状態で不活性ガス置換タンク 8に供給される。 図示 されるように不活性ガス供給部 4内の不活性ガス、 例えば窒素が不 活性ガスライン 2 2を通って不活性ガス置換タンク 8の上部に供給 されている。 不活性ガス置換タンク 8内に酸素を含んだ気体、 例え ば空気が存在する場合には飲料が酸化される可能性があるが、 不活 性ガス置換タンク 8内に不活性ガスを供給することにより、 飲料が 酸素と接触するのを避けることができ、 これにより、 飲料の酸化を 避けられる。 なお、 酸素の再溶解が起こ りにくい等の場合、 不活性 ガス置換タンクに代えて、 開放型タンクを使用しても構わない。 次いで飲料は送液ポンプ 9によって所定の流量で殺菌手段 1 0に 供給される。 殺菌手段 1 0においては飲料を所定の温度、 例えば 8 0 °Cから 1 3 0 °Cにおいて 1分から 2 0分程度滞留させ、 これによ り飲料が殺菌される。 殺菌手段 1 0における殺菌時には飲料を所定 の流量で供給する必要があるものの、 前述した不活性ガス置換タン ク 8をパッファタンク として使用できるので所定の流量の飲料を殺 菌手段 1 0に確実に供給するこ とができる。 加熱処理によ り飲料を 殺菌する場合には飲料内の溶存酸素が飲料内の特定の成分も酸化す る可能性があるが、 本発明においては脱気手段 3において飲料の溶 存気体、 特に溶存酸素を少なく しているので、 加熱殺菌時に飲料が 酸化するのを避けるこ とができる。 最終的に飲料は殺菌手段 1 0か ら充填部 1 1 まで供給され、 容器、 例えば缶、 ビン、 ペッ トボトル 、 紙パックなどに充填される。 Referring again to FIG. 1, the beverage that has passed through the foam breaking means 5 is supplied to the inert gas replacement tank 8 with almost no air bubbles. As shown in the figure, the inert gas, for example, nitrogen in the inert gas supply section 4 is inert. It is supplied to the upper part of the inert gas replacement tank 8 through the active gas line 22. Supply of inert gas into the inert gas replacement tank 8 may cause the beverage to oxidize if oxygen-containing gas, for example, air, is present in the inert gas replacement tank 8. This avoids contact of the beverage with oxygen, thereby avoiding oxidation of the beverage. In cases where re-dissolution of oxygen does not easily occur, an open tank may be used instead of the inert gas replacement tank. Next, the beverage is supplied to the sterilizing means 10 at a predetermined flow rate by the liquid feed pump 9. In the sterilizing means 10, the beverage is kept at a predetermined temperature, for example, 80 ° C. to 130 ° C. for about 1 minute to 20 minutes, whereby the beverage is sterilized. At the time of sterilization by the sterilizing means 10, it is necessary to supply the beverage at a predetermined flow rate, but since the inert gas replacement tank 8 described above can be used as a puffer tank, the beverage at the predetermined flow rate can be reliably supplied to the sterilizing means 10. Can be supplied. When the beverage is sterilized by the heat treatment, dissolved oxygen in the beverage may oxidize specific components in the beverage, but in the present invention, the dissolved gas in the beverage, particularly the dissolved gas in the beverage in the degassing means 3 is used. Since the dissolved oxygen is reduced, the beverage can be prevented from being oxidized during heat sterilization. Finally, the beverage is supplied from the sterilizing means 10 to the filling unit 11 and filled into containers, such as cans, bottles, pet bottles, and paper packs.
本発明の破泡手段 5、 例えば図 2に示されるような破泡ポンプ 5 においては、'飲料内に含まれる気泡を形成する膜を分離羽根 4 2に よ り積極的に破断している。 そして破泡手段 5において気泡の膜内 に閉じこめられていた気体と、 この膜を形成していた液体とを分離 すると共に、 気泡の膜を形成していた液体を飲料と一緒に回収して いる。 前述したよ うに気泡の膜を形成している飲料の成分が、 膜を 形成していない液体部分の飲料の成分とは異なる場合には最終的な 製品としての飲料の成分および風味に不具合が生ずる可能性がある が、 本発明においては気泡の膜を形成していた液体を飲料と して回 収しているので、 飲料の風味を損なうことなしに、 飲料に形成され た気泡を排除し、 飲料内の溶存気体を低減させることができる。 さ らに、 このような破泡手段 5においては気泡を形成する膜を積極的 に破断しているので、 極めて短時間のうちに消泡効果を得ることが でき、 これによ り、 飲料製造ラインの動作効率を低下させることな しに、 この破泡手段 5を飲料製造ラインに耝入れることができる。 なお、 破泡手段 5の一例として破泡ポンプを示しているが、 破泡手 段 5は前述した破泡ポンプに限定されるものではなく、 気泡を形成 している膜を積極的に破断するあらゆる形態のものを含むものとす る。 実施例 In the foam breaking means 5 of the present invention, for example, the foam breaking pump 5 as shown in FIG. 2, the membrane forming the bubbles contained in the beverage is actively broken by the separating blades 42. Then, the gas trapped in the bubble film in the bubble breaking means 5 is separated from the liquid forming the film, and the liquid forming the bubble film is collected together with the beverage. . As described above, if the components of the beverage that forms the bubble film are different from the components of the beverage in the liquid portion that does not form the film, the final Although there may be a problem with the components and flavor of the beverage as a product, in the present invention, the liquid that has formed a bubble film is collected as the beverage, so that the flavor of the beverage is not impaired. In addition, bubbles formed in the beverage can be eliminated, and the dissolved gas in the beverage can be reduced. Further, in such a foam breaking means 5, since the film forming the bubbles is actively broken, it is possible to obtain the defoaming effect in a very short time. The foam breaking means 5 can be introduced into the beverage production line without lowering the operation efficiency of the line. Although a foam breaker pump is shown as an example of the foam breaker 5, the foam breaker 5 is not limited to the above-described foam breaker pump, and actively breaks a film forming a bubble. It shall include all forms. Example
緑茶葉 3 0 gを 7 5 °Cの純水 1 0 5 0 gで 5分間抽出し、 抽出液 から茶葉を除き冷却後、 遠心分離し、 その後 Lーァスコルビン酸、 炭酸水素ナト リ ウム、 純水を加え 4 Lに調整した。 その後、 不活性 ガスとして窒素 (N 2 ) を用いた不活性ガス · ス ト リ ッピング部を 脱気手段 3 として使用し、 窒素ガスフロー下で充填密封し、 殺菌手 段 1 0において 1 2 0 ° (:、 1分の条件で殺菌を行い製品とした。 こ のときの溶存酸素量、 ビタ ミ ン Cの量、 官能評価を表 1に示す。 表 1
Figure imgf000016_0001
Extract 30 g of green tea leaves with 105 g of pure water at 75 ° C for 5 minutes, remove the tea leaves from the extract, cool, centrifuge, and then L-ascorbic acid, sodium hydrogen carbonate, pure water And adjusted to 4 L. Thereafter, an inert gas stripping section using nitrogen (N 2) as an inert gas was used as a degassing means 3, filled and sealed under a nitrogen gas flow, and sterilized in a sterilization step 10. ° (:, sterilized under the condition of 1 minute to obtain a product. The dissolved oxygen content, vitamin C content, and sensory evaluation are shown in Table 1. Table 1
Figure imgf000016_0001
◎ : 大変良好、 〇 : 良好、 △ : 普通、 X : 不良 脱気手段 3による脱気を行わない 「水準 1」 の場合には最終的な 飲料の溶存酸素は約 8 p p mであった。 表 1内の 「水準 2」 に示さ れるように窒素によるス ト リ ッピングを 1 5分間行った場合の溶存 酸素は約 1 . 8 p p mであり、 「水準 3」 に示されるように窒素に よるス ト リ ツビングを 6 0分間行った場合の溶存酸素は約 0 . 4 p p mであった。 つまり、 脱気手段 3による脱気、 この場合には窒素 ガスによるス ト リ ッビングを長時間にわたって行うほど、 飲料内の 溶存酸素が低下することが分かる。 また、 ビタミ ン Cの量は脱気を 行わない 「水準 1」 の場合が最も低くなつており、 これは脱気後の 後工程、 特に殺菌工程においてビタミ ン Cが酸化分解によ り低減し たためであると推定できる。 これに対し、 溶存酸素を少なく した 「 水準 2」 、 「水準 3」 の場合にはビタ ミ ン Cの低下は抑えられ、 溶 存酸素の少ない 「水準 3」 の場合の方が 「水準 2」 の場合よ り もビ タミ ン Cの低下が小さく なつている。 さ らに、 官能評価についても ビタミン Cが多いほど、 よい結果が得られている。 この場合、 溶存 酸素が 0 . 4 p p m程度、 余裕代をとる場合には溶存酸素量が 0 . 5 p p m以下であれば、 官能的に優位な品質の飲料が得られること が分かる。 ◎: Very good, 〇: Good, △: Normal, X: Poor Degassing by degassing means 3 In case of “Level 1”, final The dissolved oxygen in the beverage was about 8 ppm. As shown in “Level 2” in Table 1, the dissolved oxygen after stripping with nitrogen for 15 minutes is about 1.8 ppm, and as shown in “Level 3”, The dissolved oxygen after about 60 minutes of stripping was about 0.4 ppm. In other words, it can be seen that the longer the deaeration by the deaeration means 3, in this case, the stripping with the nitrogen gas, the longer the dissolved oxygen in the beverage decreases. In addition, the amount of vitamin C is the lowest in the case of “Level 1” where degassing is not performed. This is because the amount of vitamin C is reduced by oxidative decomposition in the post-process after degassing, especially in the sterilization process. It can be estimated that On the other hand, in the case of “Level 2” and “Level 3” where the dissolved oxygen was reduced, the decrease in vitamin C was suppressed, and in the case of “Level 3” where the dissolved oxygen was small, the level was “Level 2”. The decrease of vitamin C is smaller than in the case of. In addition, in sensory evaluation, better results were obtained with more vitamin C. In this case, it can be understood that a drink having a sensory superior quality can be obtained if the dissolved oxygen is about 0.4 ppm and the amount of dissolved oxygen is 0.5 ppm or less when a margin is taken.
また、 表 2は飲料と して通常の水を採用した場合の破泡ポンプ前 (破泡手段 5前) における溶存酸素量を示している。 表 2において は不活性ガスと して窒素 (N 2 ) を用いた不活性ガス · ス ト リ ッピ ング部を脱気手段 3 と して使用した。 この脱気手段 3に飲料を通過 させる前の溶存酸素量は 7 . 9 1 p p mであった。  Table 2 shows the amount of dissolved oxygen before the foam breaker pump (before foam breaker 5) when ordinary water is used as the beverage. In Table 2, an inert gas stripping part using nitrogen (N 2) as an inert gas was used as the degassing means 3. The amount of dissolved oxygen before passing the beverage through the deaeration means 3 was 7.91 ppm.
表 2 破泡ポンプ前 Table 2 Before the foam breaker pump
Figure imgf000017_0001
Figure imgf000017_0001
/ [ ppm 脱気手段 3における飲料の流量および窒素の流量を表 2に示され るように種々に変更したところ、 飲料の流量が大きいほど、 溶存酸 素量も大きいことが分かる。 これは、 飲料流量が大きい場合には飲 料の脱気手段 3内での滞留時間が小さくなるので、 溶存酸素を十分 に置換できないためであると推定できる。 一方、 窒素の流量が大き い場合には置換が促進されるので、 飲料内の溶存酸素量は小さくな る。 Table / [ppm When the flow rate of the beverage and the flow rate of the nitrogen in the deaeration means 3 were variously changed as shown in Table 2, it was found that the larger the flow rate of the beverage, the larger the dissolved oxygen amount. This is presumed to be because when the flow rate of the beverage is large, the residence time of the beverage in the deaeration means 3 becomes short, and the dissolved oxygen cannot be sufficiently replaced. On the other hand, when the flow rate of nitrogen is large, the replacement is promoted, and the amount of dissolved oxygen in the beverage is reduced.
表 3 破泡ポンプ後 Table 3 After the foam breaker pump
Figure imgf000018_0001
Figure imgf000018_0001
卓 mppm 表 3は表 2 と同条件における飲料の破泡ポンプ後 (破泡手段 5後 ) における溶存酸素量を示している。 破泡ポンプは真空ポンプ 7か らの真空ライン 2 3に接続されているので、 表 2の場合と比較する と溶存酸素量はわずかながら低下する傾向があるのが分かる。  Table mppm Table 3 shows the dissolved oxygen content after the bubble breaker pump (after 5 bubble breakers) under the same conditions as Table 2. Since the bubble breaking pump is connected to the vacuum line 23 from the vacuum pump 7, it can be seen that the amount of dissolved oxygen tends to slightly decrease as compared with the case of Table 2.
また、 不活性ガスとして窒素 (N 2 ) を用いた不活性ガス . ス ト リ ッビング部を脱気手段 3 と して使用したときの別の実施例を説明 する。 溶存酸素量約 8 p p mの緑茶調合液を送液ポンプ 2によって 調合タンク 1から脱気手段 3まで供給する。 脱気手段 3における窒 素の流量は 1 0 L Z m i n、 飲料の流量は 2 0 L Z m i nである。 次いで破泡手段 5 として採用した破泡ポンプにおいて破泡処理を行 つた後の飲料を 1 0 Lだけ 1 0 L用メスシリ ンダに採取した。 表 4 はこのときの溶存酸素量と泡立ちの割合 (メスシリ ンダ内における 泡高さ/メスシリ ンダの高さ) とを示している。  Another embodiment in which an inert gas stripping section using nitrogen (N 2) as an inert gas is used as the deaeration means 3 will be described. A green tea preparation liquid with a dissolved oxygen amount of about 8 ppm is supplied from the preparation tank 1 to the deaeration means 3 by the supply pump 2. The flow rate of nitrogen in the deaeration means 3 is 10 LZ min, and the flow rate of the beverage is 20 LZ min. Next, 10 L of the beverage subjected to the foam breaking treatment in the foam breaking pump adopted as the foam breaking means 5 was collected in the 10 L female cylinder. Table 4 shows the amount of dissolved oxygen and the ratio of foaming (bubble height in the female cylinder / height of the female cylinder).
表 4 溶存酸素量(PPffl ) 泡立ち(泡高さ Zメスシリンタ"高さ) 破泡ポンプ前 0. 27 0. 49 Table 4 Dissolved oxygen content (PPffl) Foaming (bubble height Z female syringe "height") In front of bubble break pump 0.27 0.49
破泡ポンプ後 0. 23 0  0.23 0 after foam breaker pump
表 4に示されるよ うに脱気手段 3に供給する前は 8 p p mであつ た飲料内の溶存酸素量は、 脱気手段 3通過後 (破泡ポンプ前) に 0 . 2 7 p p mまで低下し、 さらに破泡ポンプ後においてもわずかな がら低下して最終的には 0 . 2 3 p p mになっている。 また破泡ポ ンプ前においてはメスシリ ンダ内の泡高さが 2 2 c mでメスシリ ン ダ高さが 4 5 c mであるので泡高さの割合は約 0 . 4 9である。 こ れに対し、 破泡ポンプ後においては泡高さは 0 c mであるので、 泡 高さの割合も 0 となっている。 すなわち、 この場合の破泡ポンプ、 すなわち破泡手段 5における処理によつて飲料内の気泡をほぼ完全 になくすことができたことが分かる。 As shown in Table 4, the dissolved oxygen content in the beverage, which was 8 ppm before being supplied to the deaeration means 3, decreased to 0.27 ppm after passing through the deaeration means 3 (before the foam breaker pump). However, even after the foam breaker pump, it slightly decreased and finally reached 0.23 ppm. Before the bubble break pump, the foam height in the female cylinder is 22 cm and the female cylinder height is 45 cm, so the ratio of the foam height is about 0.49. On the other hand, since the foam height is 0 cm after the foam breaker pump, the ratio of the foam height is also 0. That is, it can be seen that air bubbles in the beverage could be almost completely eliminated by the treatment in the foam breaking pump, that is, the foam breaking means 5 in this case.
表 5
Figure imgf000019_0001
Table 5
Figure imgf000019_0001
◎ : 大変良好、 〇 : 良好、 △ : 普通、 X : 不良  ◎: very good, 〇: good, △: normal, X: bad
また、 表 5は脱気手段における処理前と破泡手段における処理後 の飲料、 すなわち緑茶調合液内の力フヱイ ンおよび力テキン類のェ ピガロカテキンガレー ト (以下、 「E G C G」 と称する) の量を高 速液体ク口マ トグラフィ一によ り測定した結果を示している。 表 5 から分かるよ うに、 処理の前後において香味に関わる力フェイ ンお よび E G C Gの量はほとんど変化していない。 また官能結果におい て、 どちらの場合においても大変良好な官能結果が得られている。 つまり、 本発明の破泡手段 5においては気泡の膜を破断し、 気泡の 膜を形成していた液体を回収しているので、 飲料の成分および風味 に基づく官能結果が損なわれることはなく、 極めて良い状態となつ ている。 すなわち本発明の破泡手段 5によって飲料の成分および風 味が損なわれることはない。 Table 5 shows the beverages before treatment in the deaeration means and after treatment in the foam breaking means, ie, epigallocatechin gallate (hereinafter referred to as “EGCG”) of the power fines and power techins in the green tea preparation. The figure shows the results obtained by measuring the amount of liquid by high-speed liquid chromatography. As can be seen from Table 5, before and after the treatment, the power phase related to flavor and the amount of EGCG hardly changed. In both cases, very good sensory results were obtained. That is, in the foam breaking means 5 of the present invention, the film of the bubble is broken, Since the liquid that formed the film is recovered, the sensory results based on the ingredients and flavor of the beverage are not impaired, and the condition is extremely good. That is, the components and flavor of the beverage are not impaired by the foam breaking means 5 of the present invention.

Claims

1 . 飲料の脱気工程後に、 1. After the beverage degassing process,
気泡の破泡工程を設けた、 飲料製造方法。  A beverage manufacturing method provided with a bubble breaking step.
2 . さらに、 前記破泡工程後に、 気体の排出工程を設けた請求項 1に記載の飲料製造方法。  2. The method for producing a beverage according to claim 1, further comprising a gas discharging step after the foam breaking step.
3 . さらに、 前記飲料ミー卩の殺菌工程を設けた請求項 1または 2に記 載の飲料製造方法。  3. The beverage manufacturing method according to claim 1 or 2, further comprising a sterilizing step of the beverage miju.
4 . 前記脱気工程後の飲料内のの溶存酸素量が 0 . 5 p p m以下で あるようにした請求項 1ないし 3に記載の飲料製造方法。  4. The beverage production method according to any one of claims 1 to 3, wherein the amount of dissolved oxygen in the beverage after the deaeration step is 0.5 ppm or less.
5 . 前記飲料が、 泡立ちする性質の飲料である請求項 1ないし 4 囲  5. The beverage according to claim 1, wherein the beverage is a beverage having a foaming property.
に記載の飲料製造方法。 The method for producing a beverage according to the above.
6 . 飲料の脱気手段と、  6. Means of deaeration of beverage
気泡の破泡手段とを具備する飲料製造装置。  A beverage manufacturing apparatus comprising: a foam breaking means.
7 . さらに、 気体の排出手段を具備する請求項 6に記載の飲料製 造装置。  7. The beverage production apparatus according to claim 6, further comprising a gas discharging means.
8 . さらに、 前記飲料の殺菌手段を具備する請求項 6または 7に 記載の飲料製造装置。  8. The beverage manufacturing apparatus according to claim 6, further comprising a sterilizing means for the beverage.
9 . 前記脱気手段が、 デァレータ、 不活性ガス ' ス ト リ ツビング 部、 スタティ ック ミキサのうちの少なく とも一つを含む請求項 6な いし 8に記載の飲料製造装置。  9. The beverage production apparatus according to claim 6, wherein the degassing means includes at least one of a delator, an inert gas' stripping unit, and a static mixer.
1 0 . 前記破泡手段が、 気泡の膜を破断可能なポンプである請求 項 6から 9のいずれか一項に記載の飲料製造装置。  10. The beverage production apparatus according to any one of claims 6 to 9, wherein the foam breaking means is a pump capable of breaking a bubble film.
PCT/JP2004/014815 2003-10-03 2004-09-30 Method and apparatus for manufacturing beverage WO2005032280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003345981A JP2005110527A (en) 2003-10-03 2003-10-03 Drink-producing method and drink-producing apparatus
JP2003-345981 2003-10-03

Publications (1)

Publication Number Publication Date
WO2005032280A1 true WO2005032280A1 (en) 2005-04-14

Family

ID=34419484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014815 WO2005032280A1 (en) 2003-10-03 2004-09-30 Method and apparatus for manufacturing beverage

Country Status (5)

Country Link
JP (1) JP2005110527A (en)
KR (2) KR20060097113A (en)
CN (1) CN1863465A (en)
TW (1) TWI296940B (en)
WO (1) WO2005032280A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10413853B2 (en) 2014-12-02 2019-09-17 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator
US10675560B2 (en) 2015-01-26 2020-06-09 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491362B (en) 2006-12-01 2015-07-11 Meiji Co Ltd A method of manufacture fermented milk, and fermented milk
JP5546869B2 (en) 2008-01-21 2014-07-09 株式会社明治 Method for producing liquid food, method for producing powdered food using the same, and method for producing skim milk powder
DK2294926T3 (en) 2008-06-30 2015-02-02 Meiji Co Ltd Process for making sour milk
SG173789A1 (en) 2009-02-25 2011-09-29 Meiji Co Ltd Cultured milk with low lactose content and method for manufacturing the same
EP2606739A4 (en) 2010-08-21 2015-10-07 Meiji Co Ltd Fermented milk having little lactose and method for producing same
FR2964884B1 (en) * 2010-09-16 2017-04-28 Air Liquide METHOD AND SYSTEM FOR ONLINE DEOXYGENATION OF FOOD OR PHARMACEUTICAL FLUIDS
EP2682000A4 (en) 2011-03-04 2014-10-08 Meiji Co Ltd Fermented milk with improved flavor and method for producing same
KR101769928B1 (en) 2015-05-26 2017-08-23 농업회사법인 경북대학교포도마을주식회사 Juice processing tank with a multi-function
EP3420859A1 (en) * 2017-06-30 2019-01-02 Koninklijke Philips N.V. A juicing apparatus and juicing method
CN109864585B (en) * 2017-12-05 2021-04-20 广东美的生活电器制造有限公司 Milk maker
DE102018206313A1 (en) * 2018-04-24 2019-10-24 Krones Ag Degassing plant and method for carrying out a degassing process of a liquid and beverage treatment machine
JP7250083B2 (en) * 2021-09-03 2023-03-31 岩井機械工業株式会社 Sterilizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438107A (en) * 1987-07-31 1989-02-08 Kanzaki Paper Mfg Co Ltd Defoaming device
JPH0780205A (en) * 1993-06-30 1995-03-28 Miura Co Ltd Selective deaeration and its device
JP2003245503A (en) * 2002-02-25 2003-09-02 Takai Seisakusho:Kk Deaerator and method for liquefying bubble using the deaerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083798B2 (en) * 1997-02-27 2000-09-04 明治乳業株式会社 Method for producing savory milk and fruit juice beverages
JPH10290667A (en) * 1997-04-18 1998-11-04 Sapporo Breweries Ltd Production of clear green tea beverage
US6629821B1 (en) * 1999-07-05 2003-10-07 Kabushiki Kaisha Yokota Seisakusho Pump apparatus
JP3091752B1 (en) * 1999-09-09 2000-09-25 明治乳業株式会社 Method for dissolving dissolved oxygen such as milk with nitrogen gas for sterilization and nitrogen gas replacement device
JP4606672B2 (en) * 2001-09-28 2011-01-05 株式会社ポッカコーポレーション Anti-browning agent, antioxidant and vitamin C decrease rate inhibitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438107A (en) * 1987-07-31 1989-02-08 Kanzaki Paper Mfg Co Ltd Defoaming device
JPH0780205A (en) * 1993-06-30 1995-03-28 Miura Co Ltd Selective deaeration and its device
JP2003245503A (en) * 2002-02-25 2003-09-02 Takai Seisakusho:Kk Deaerator and method for liquefying bubble using the deaerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10413853B2 (en) 2014-12-02 2019-09-17 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator
US10675560B2 (en) 2015-01-26 2020-06-09 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator

Also Published As

Publication number Publication date
TWI296940B (en) 2008-05-21
KR20080050530A (en) 2008-06-05
CN1863465A (en) 2006-11-15
KR20060097113A (en) 2006-09-13
JP2005110527A (en) 2005-04-28
TW200523008A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
WO2005032280A1 (en) Method and apparatus for manufacturing beverage
JP3770776B2 (en) Method for producing a supersaturated oxygenated liquid
KR101198108B1 (en) Process for producing soymilk and apparatus for producing soymilk
US7537644B2 (en) Method for degassing a liquid
JP2009125654A (en) Method of producing hydrogen-containing drinking water
JP2010252756A (en) Method and apparatus for producing beverage
JP5449006B2 (en) Beverage production method and beverage production apparatus
JP5391751B2 (en) Container-packed beverage and method for producing the same
JPS6341547B2 (en)
JPH05208830A (en) Production of glass and device therefor
CN207877300U (en) A kind of ultra-pure water decarburization/device for deoxidizing system based on membrane contactor
JP5746411B1 (en) Method for producing gas dispersion
JP4838779B2 (en) Functional liquid production equipment
JP2006333835A (en) Method for treating liquid state fluid by utilizing high pressure carbon dioxide
JP4323631B2 (en) Dissolved oxygen reduction device
JP4988477B2 (en) Method for producing fruit juice beverage
JP4457050B2 (en) Production method of oolong tea extract
US6464758B1 (en) Apparatus and method for degassing a liquid or pasty medium in a machine for producing and/or upgrading a fiber material web
JP5420453B2 (en) Purification method of tea extract
JP6648766B2 (en) Beverage and method for producing the same
JP3774556B2 (en) Container-packed beverage manufacturing apparatus and activation method thereof
JPH07222553A (en) Method for degassing tea drink
JPWO2004045316A1 (en) Liquid food processing method and processing apparatus
JP2004330013A (en) Method and apparatus for preparing solution containing easily oxidizable substance
JP2003275745A (en) Deoxygenation method and deoxygenation device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028809.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067006180

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067006180

Country of ref document: KR

122 Ep: pct application non-entry in european phase