JP4323631B2 - Dissolved oxygen reduction device - Google Patents

Dissolved oxygen reduction device Download PDF

Info

Publication number
JP4323631B2
JP4323631B2 JP23041799A JP23041799A JP4323631B2 JP 4323631 B2 JP4323631 B2 JP 4323631B2 JP 23041799 A JP23041799 A JP 23041799A JP 23041799 A JP23041799 A JP 23041799A JP 4323631 B2 JP4323631 B2 JP 4323631B2
Authority
JP
Japan
Prior art keywords
liquid
gas
inert gas
dissolved oxygen
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23041799A
Other languages
Japanese (ja)
Other versions
JP2001046809A (en
Inventor
章司 関原
直子 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP23041799A priority Critical patent/JP4323631B2/en
Publication of JP2001046809A publication Critical patent/JP2001046809A/en
Application granted granted Critical
Publication of JP4323631B2 publication Critical patent/JP4323631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶存酸素低減装置に関し、詳しくは、各種液体、例えば、食品加工用水、日本酒やワイン等のアルコール飲料、ジュース等の清涼飲料、醤油等の調味料、食用油等の液体状食品、写真現像液等の液体状薬品類、液体状の化粧品に含有されている溶存酸素を低減するための装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
液体中の溶存酸素によって成分が酸化したり、細菌が増殖したりすることを防止するため、液体中の溶存酸素を除去(低減)することが行われている。各種液体中の溶存酸素を低減する方法としては、液体中に不活性ガスをバブリングさせるガス脱気法、液体を加熱する加熱脱気法、亜硫酸塩やビタミンC等の脱酸素剤を液体中に注入する化学的脱気法、液体を貯留した容器内を減圧する真空脱気法、脱酸素膜を使用した膜式脱気法等が知られている。
【0003】
これらの方法の中で、ガス脱気法は、単純な不活性ガスのバブリングだけでは十分な酸素除去が困難であることから、溶存酸素の除去効率を向上させるため、例えば、複数のバブリング槽を直列に配置したり(特開平6−296959号公報)、窒素ガスの微細気泡を含む液体を超高速で流して激しい撹拌状態としたり(特開平5−184811号公報,特開平1−297105号公報,特開平1−317586号公報等)、真空脱気とガス脱気とを組合わせたり(特開昭62−294482号公報)、といった種々の提案が成されている。また、脱気操作に際して液体中に微細気泡を発生させるための方法も提案されている(特開平6−63371号公報、特開平6−205813号公報等)。
【0004】
しかしながら、これらの従来の方法では、溶存酸素の脱気効率が十分に高いとはいえず、脱気効率の向上、装置の小型化、コストの低減が求められている。
【0005】
そこで本発明は、簡単な装置構成で溶存酸素を効率よく低減することができ、装置の小型化やコストの低減が図れる溶存酸素低減装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の溶存酸素低減装置は、送液ポンプによって貯留タンクに送液される液体中に不活性ガスを導入する不活性ガス導入部と、該不活性ガス導入部の下流側配管内に気液混合用の充填物を充填した気液混合部と、該気液混合部の下流側かつ前記貯留タンクの上流側に設けられて、液体から放散された酸素分を含む不活性ガスを分離排出するガス分離器と、ガス分離で排出された放散酸素含有ガスを、前記送液ポンプから前記前記不活性ガス導入部に至る経路内を送液されている前記液体中に再導入するガス循環経路とを備えていることを特徴としている。
【0007】
さらに、本発明の溶存酸素低減装置は、前記気液混合部の長さが150mm以上であること、前記気液混合部の内径が23mm以上であることを特徴としている。また、前記不活性ガス導入部が、送液配管の中心部に設けられ、配管中心部から放射状に前記不活性ガスを噴出するスパージャーを備えていることを特徴とし、該スパージャーの不活性ガスの噴出部が焼結金属で形成されていることを特徴としている。
【0008】
さらに、前記貯留タンク内を不活性ガス雰囲気に置換するための不活性ガス置換手段を備えていることを特徴としている。
【0009】
【発明の実施の形態】
図1は溶存酸素低減装置の参考例を示す系統図である。この溶存酸素低減装置10は、送出側の貯留タンク1と受入側の貯留タンク2との間に設けられるものであって、送液ポンプ11と、該送液ポンプ11の下流側配管内を流れる液体中に不活性ガスを導入する不活性ガス導入部12と、該不活性ガス導入部12の下流側配管内に気液混合用の充填物13を充填した気液混合部14とを備えており、受液側の貯留タンク2がガス分離部を兼ねるようにしている。
【0010】
受液側の貯留タンク2には、液体から放散された酸素分を含む不活性ガスを分離排出するための排気経路3が設けられるとともに、タンク内の酸素分をパージするためのパージガスを導入するパージガス導入経路4が設けられている。両経路3,4には、タンク内圧力を所定範囲に保つための圧力調節弁(保圧弁)5,6がそれぞれ設けられており、また、貯留タンク2の底部には、貯留した液体中の溶存酸素量を測定するための溶存酸素濃度計7が設けられている。
【0011】
前記不活性ガス導入部12には、例えば窒素ガス等の不活性ガスを供給するための不活性ガス供給源15と、不活性ガスの供給圧力を所定圧力に設定するための減圧弁16と、不活性ガスの流量を所定流量に設定するための流量計17及び調節弁18とを備えた不活性ガス供給経路19が接続されており、該不活性ガス供給経路19の先端には、送液配管中心部から放射状に不活性ガスを噴出するスパージャー20が設けられている。
【0012】
スパージャー20は、例えば、図2に示すように、円筒体21の周面に微細な通孔からなる多数の噴出口22を設けたものや、図3に示すように、ガス噴出部を円筒状の焼結金属23で形成したものを用いることができる。このようなスパージャー20により微細な気泡を形成し、配管内を流れる液体中に放射状に噴出させることにより、気液の接触混合を促進させることができ、液体と不活性ガスとを効率よく混合することができる。なお、液体の流量や溶存酸素の除去程度によっては、送液配管に不活性ガス供給経路を接続するだけで十分な場合もある。
【0013】
前記気液混合部14の充填物13は、金属製のたわしやリング、コイル等の金属片、プラスチック製又は金属製のラシヒリング等の気液混合を促進させる機能を有するものを使用することができる。このような充填物13は、液体透過性を有する容器、例えば、パンチングプレートや金網等で形成した容器に収納した状態で送液配管内に着脱可能に挿入しておくことが好ましい。これにより、配管内への充填物13の充填や取出しを容易に行うことができ、充填物13の交換も簡単であり、容器ごと超音波洗浄機等で洗浄することにより、充填物13の洗浄も容易に行うことができる。
【0014】
また、送液ポンプ11の吐出圧力は、受入側の貯留タンク2の構造や配置、充填物13の抵抗によっても異なるが、通常は、約0.2MPa程度で十分であり、不活性ガスの供給圧力は、液体中への噴出が可能な約0.3MPaで十分である。したがって、安価で一般的な揚程の送液ポンプを使用することが可能となる。なお、送液ポンプ11部分には、圧力計24やバイパス弁25等の通常の付帯機器を設けておくことができる。
【0015】
送出側の貯留タンク1から抜き出された溶存酸素を含有する液体は、送液ポンプ11によって受入側の貯留タンク2に向けて送液され、不活性ガス導入部12で前記スパージャー20から不活性ガスが導入された後、気液混合状態で気液混合部14に流入し、充填物13によって気液混合が促進され、液体中の溶存酸素を不活性ガス中に放散して受入側の貯留タンク2に流入する。
【0016】
不活性ガス導入部12における不活性ガスの導入量は、液体の種類、流量、溶存酸素量、所望の溶存酸素除去量により異なるが、一般に、不活性ガス量を多くすれば、すなわち、気液混合流における気液比を高くすることにより溶存酸素の除去量を多くすることができる。そして、気液混合部14の充填物13によって気液混合を促進し、不活性ガスの気泡をさらに微細化することにより、液体中からの溶存酸素の放散をより効果的に行うことができる。
【0017】
この気液混合部14では、充填物13の種類や形状を適宜に選択するとともに、長さや内径を適宜に設定することにより、溶存酸素除去量を調整することができる。気液混合部14の長さ及び内径は、液体の種類、流量、溶存酸素量、不活性ガス導入量、所望の溶存酸素除去量によって異なり、長さと内径との相互の関係もあるが、例えば、気液混合部14の長さは、150mm以上、通常は、300〜600mmの範囲が好ましく、内径は、23mm以上、通常は40mm以上が好ましい。長さが短すぎたり、内径が小さすぎたりすると、気液の混合を十分に促進することができなくなることがある。また、むやみに長くしても溶存酸素除去量はそれほど向上しない。一方、内径は、大きくすると流速が低下して気液混合の効果が失われてしまうので、流量により最大径が決まってくる。一般的に、気液混合部14を長くしすぎたり、内径を大きくしすぎたりすると、コストアップとなるだけでなく、充填物13の取扱いにも難点が発生し、さらに、装置及び送液ポンプ11の大型化を招くことになる。
【0018】
気液混合部14を通過すると、液体と混合している気泡、すなわち、液体中から放散された酸素を含む不活性ガスは、比重差によって配管内で徐々に気液分離されるとともに、貯留タンク2内で略完全に気液分離され、該貯留タンク2の上部に設けられた前記排気経路3から排気される。このとき、気液混合部14の下流側に溶存酸素濃度計26を設けておくことにより、溶存酸素の除去効果を連続的に確認することができる。
【0019】
また、溶存酸素が除去された液体を受け入れる貯留タンク2は、あらかじめタンク内の空気を不活性ガスでパージしておくことが望ましい。このパージ操作は、溶存酸素低減装置10の運転前に、パージガス導入経路4の減圧弁8で所定の圧力に設定した窒素ガス等の不活性ガスからなるパージガスを圧力調節弁6を介してタンク内に導入し、タンク内の空気を圧力調節弁5を介して排気経路3から排出することによって行うことができ、タンク内の酸素濃度が、溶存酸素除去処理後の液体の溶存酸素量以下になるまで行うことが望ましい。このように、パージガス導入経路4や排気経路3等からなる不活性ガス置換手段を設けてタンク内をあらかじめ不活性ガス雰囲気に置換しておくことにより、タンク内の空気中に含まれる酸素によって処理後の液体の溶存酸素濃度が増加することを防止できる。
【0020】
溶存酸素低減装置10の運転により、貯留タンク2に液体及び酸素含有不活性ガスが流入してタンク内の圧力が圧力調節弁5の設定圧力を超えると、該圧力調節弁5が開いてタンク内のガスが排気経路3から排出される。液体貯留中は、圧力調節弁6から少量のパージガスがシールガスとして継続導入され、タンク内が大気圧よりも僅かに高い圧力に保持されている。また、貯留タンク2内の液体の消費によってタンク内が圧力調節弁6の設定圧力を下回ると、該圧力調節弁6が所定量開いてパージガス導入経路4のパージガスをタンク内に補充する。
【0021】
貯留タンク2内の圧力は、このように圧力調節弁5,6によって所定の範囲内に保たれることになる。貯留タンク2の設定圧力は、タンク内への大気の侵入を防止できる範囲であって、貯留タンク2の常用圧力以下であればよく、例えば500mmAq程度が適当である。
【0022】
このように、送液ポンプ11で送液される液体中に不活性ガスを導入してから気液混合部14に導入し、不活性ガスの気泡をさらに微細化して気液の混合を促進することにより、液体中の溶存酸素濃度を1mg/L(ppm)以下、さらに、0.2mg/L(ppm)程度にまで除去することができ、気液混合部14や不活性ガス導入量等の条件を適当に設定することにより、処理後の液体中の溶存酸素量を所望の量に調節することができる。また、導入した不活性ガスの気泡径が大きくても十分な溶存酸素除去効果が得られ、しかも、高温に加温したり、脱酸素剤等の人体に有害な添加物を使用したりしないので、簡単な装置構成で実施することが可能であり、液体状食品の処理についても食品衛生上の問題は全くなく、人体に及ぼす影響も皆無である。
【0023】
図4は、本発明の溶存酸素低減装置の形態例を示す系統図であって、気液混合部14の下流側にガス分離部としての気液分離器31を設けた例を示すものである。このように、気液分離器31を設けることにより、液体中から放散された酸素分を取り込んだ不活性ガスは、この気液分離器31で速やかに分離して排ガス経路32から排気されるので、貯留タンク2に流入するガス量、即ち酸素量を大幅に低減することができる。これにより、貯留タンク2の気相中の酸素濃度の上昇が少なくなるので、パージガス導入経路4から導入する不活性ガス量を低減することができる。
【0024】
気液分離器31には、各種形式のものを用いることができ、例えば遠心分離式気液分離器を用いることができる。他の装置構成は、図1に示した参考例と同一に形成することができるので、前記参考例における構成要素と同一の構成要素には同一符号を付して詳細な説明は省略する。
【0025】
さらに、気液分離器31で液体から分離した不活性ガス(分離ガス)中には、液体から除去された酸素が含まれており、初期の不活性ガスよりも酸素濃度は上昇しているが、この酸素濃度の上昇は僅かなものであるから、この分離ガスを、その酸素濃度と液体中の溶存酸素量とに応じて、液体中に導入する溶存酸素除去用の不活性ガスとして再利用することができる。すなわち、排ガス経路32に排出された分離ガスを送液ポンプ11の下流側で、かつ、不活性ガス導入部12の上流側へ圧送するためのブロワー33を備えたガス循環経路34を設けておくことにより、不活性ガスの利用効率を高めて、その消費量を低減することができる。
【0026】
また、上述のような溶存酸素低減装置10を複数組並列又は直列に配置することも可能であり、貯留タンク2内の液体を送液ポンプ11の上流側に循環させて再処理することも可能である。
【0027】
なお、不活性ガスには、窒素ガス,アルゴンガス,二酸化炭素等、液体の種類や不活性ガスの供給環境に応じたものを選択することができる。
【0031】
【発明の効果】
以上説明したように、本発明によれば、簡単な装置構成で溶存酸素を効率よく除去することができる。また、従来のものに比べて装置コスト、ランニングコストの低減が図れ、装置の小型化も図れる。特に、処理後の液体に悪影響を与えることがないので、食品等も安全に処理することができる。
【図面の簡単な説明】
【図1】 溶存酸素低減装置の参考例を示す系統図である。
【図2】 スパージャーの一形態例を示す断面図である。
【図3】 スパージャーの他の形態例を示す断面図である。
【図4】 本発明の溶存酸素低減装置の形態例を示す系統図である。
【符号の説明】
1…送出側貯留タンク、2…受入側の貯留タンク、3…排気経路、4…パージガス導入経路、5,6…圧力調節弁、7…溶存酸素濃度計、10…溶存酸素低減装置、11…送液ポンプ、12…不活性ガス導入部、13…充填物、14…気液混合部、15…不活性ガス供給源、16…減圧弁、17…流量計、18…調節弁、19…不活性ガス供給経路、20…スパージャー、21…円筒体、22…噴出口、23…焼結金属、24…圧力計、25…バイパス弁、26…溶存酸素濃度計、31…気液分離器、32…排ガス経路、33…ブロワー、34…ガス循環経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for reducing dissolved oxygen, and in particular, various liquids, for example, water for food processing, alcoholic beverages such as sake and wine, soft drinks such as juice, seasonings such as soy sauce, liquid foods such as edible oil, The present invention relates to an apparatus for reducing dissolved oxygen contained in liquid chemicals such as photographic developers and liquid cosmetics.
[0002]
[Prior art and problems to be solved by the invention]
In order to prevent the components from being oxidized by the dissolved oxygen in the liquid and the growth of bacteria, the dissolved oxygen in the liquid is removed (reduced). As a method for reducing dissolved oxygen in various liquids, a gas degassing method for bubbling an inert gas in the liquid, a heat degassing method for heating the liquid, or a deoxygenating agent such as sulfite or vitamin C in the liquid. A chemical deaeration method for injection, a vacuum deaeration method for reducing the pressure in a container storing liquid, a membrane deaeration method using a deoxygenation film, and the like are known.
[0003]
Among these methods, the gas degassing method is difficult to achieve sufficient oxygen removal by simple bubbling of inert gas. For example, in order to improve the removal efficiency of dissolved oxygen, a plurality of bubbling tanks are used. They are arranged in series (JP-A-6-296959), or a liquid containing fine nitrogen gas bubbles is allowed to flow at an ultra-high speed to create a vigorous stirring state (JP-A-5-184811, JP-A-1-297105). Various proposals such as a combination of vacuum degassing and gas degassing (Japanese Patent Laid-Open No. 62-294482) have been made. In addition, methods for generating fine bubbles in a liquid during a deaeration operation have been proposed (Japanese Patent Laid-Open Nos. 6-63371, 6-205813, etc.).
[0004]
However, in these conventional methods, it cannot be said that the degassing efficiency of dissolved oxygen is sufficiently high, and improvement of the degassing efficiency, downsizing of the apparatus, and cost reduction are required.
[0005]
Accordingly, an object of the present invention is to provide a dissolved oxygen reducing device that can efficiently reduce dissolved oxygen with a simple device configuration, and can reduce the size and cost of the device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a dissolved oxygen reducing device of the present invention includes an inert gas introduction unit that introduces an inert gas into a liquid that is fed to a storage tank by a liquid feed pump, and an inert gas introduction unit. A gas-liquid mixing unit in which a gas-liquid mixing filler is filled in the downstream pipe; and an oxygen component that is provided on the downstream side of the gas-liquid mixing unit and on the upstream side of the storage tank and that is diffused from the liquid a gas separator for separating discharging inert gas, the dissipation of oxygen-containing gas discharged in the gas separator, said liquid from said liquid feed pump is fed to the path leading to said inert gas inlet part And a gas circulation path for re-introduction .
[0007]
Further, the dissolved oxygen reducing apparatus of the present invention is that the length of the gas-liquid mixing portion is 150mm or more, and wherein the inner diameter of said gas-liquid mixing portion is 23mm or more. Further, the inert gas introduction part is provided at a central part of the liquid supply pipe, and includes a sparger that ejects the inert gas radially from the central part of the pipe, and the inert gas of the sparger is characterized in that The gas ejection part is formed of a sintered metal.
[0008]
In addition, the pre-Symbol storage tank is characterized in that it comprises an inert gas substitution means for substituting an inert gas atmosphere.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 is a system diagram showing a reference example of Dissolved oxygen reducing apparatus. The dissolved oxygen reducing device 10 is provided between the storage tank 1 on the delivery side and the storage tank 2 on the reception side, and flows through the liquid feed pump 11 and the downstream pipe of the liquid feed pump 11. An inert gas introduction part 12 for introducing an inert gas into the liquid, and a gas-liquid mixing part 14 in which a gas-liquid mixing filler 13 is filled in a downstream pipe of the inert gas introduction part 12 are provided. In addition, the storage tank 2 on the liquid receiving side also serves as a gas separation unit.
[0010]
The storage tank 2 on the liquid receiving side is provided with an exhaust path 3 for separating and discharging an inert gas containing oxygen diffused from the liquid, and introduces a purge gas for purging the oxygen in the tank. A purge gas introduction path 4 is provided. Both the passages 3 and 4 are provided with pressure regulating valves (holding valves) 5 and 6 for keeping the pressure in the tank in a predetermined range, respectively. A dissolved oxygen concentration meter 7 for measuring the amount of dissolved oxygen is provided.
[0011]
In the inert gas introduction part 12, for example, an inert gas supply source 15 for supplying an inert gas such as nitrogen gas, a pressure reducing valve 16 for setting the supply pressure of the inert gas to a predetermined pressure, An inert gas supply path 19 including a flow meter 17 and a control valve 18 for setting the flow rate of the inert gas to a predetermined flow rate is connected, and a liquid feed is provided at the tip of the inert gas supply path 19. A sparger 20 that ejects an inert gas radially from the center of the pipe is provided.
[0012]
For example, as shown in FIG. 2, the sparger 20 is provided with a large number of jet ports 22 formed of fine through holes on the peripheral surface of the cylindrical body 21, or as shown in FIG. What was formed with the shaped sintered metal 23 can be used. By forming fine bubbles with such a sparger 20 and ejecting them radially into the liquid flowing in the pipe, the gas-liquid contact mixing can be promoted, and the liquid and the inert gas are efficiently mixed. can do. Depending on the liquid flow rate and the degree of removal of dissolved oxygen, it may be sufficient to connect an inert gas supply path to the liquid supply pipe.
[0013]
As the filler 13 of the gas-liquid mixing unit 14, a material having a function of promoting gas-liquid mixing such as a metal scourer, a ring, a metal piece such as a coil, a plastic or metal Raschig ring can be used. . Such a filler 13 is preferably detachably inserted into the liquid feeding pipe in a state of being housed in a liquid permeable container, for example, a container formed of a punching plate or a wire mesh. Thereby, filling and taking out of the filling material 13 into the pipe can be easily performed, and the replacement of the filling material 13 is easy. The washing of the filling material 13 can be performed by washing the container with an ultrasonic washing machine or the like. Can also be done easily.
[0014]
Moreover, although the discharge pressure of the liquid feed pump 11 varies depending on the structure and arrangement of the storage tank 2 on the receiving side and the resistance of the filling 13, about 0.2 MPa is usually sufficient, and the supply of inert gas A pressure of about 0.3 MPa that can be ejected into the liquid is sufficient. Therefore, it is possible to use a liquid pump having a low price and a general lift. In addition, normal accessory equipment such as a pressure gauge 24 and a bypass valve 25 can be provided in the liquid feed pump 11 portion.
[0015]
The liquid containing dissolved oxygen extracted from the delivery-side storage tank 1 is fed by the liquid feed pump 11 toward the reception-side storage tank 2, and is discharged from the sparger 20 by the inert gas introduction unit 12. After the active gas is introduced, it flows into the gas-liquid mixing unit 14 in a gas-liquid mixed state, gas-liquid mixing is promoted by the filler 13, and dissolved oxygen in the liquid is diffused into the inert gas, so that the receiving side It flows into the storage tank 2.
[0016]
The introduction amount of the inert gas in the inert gas introduction unit 12 varies depending on the type of liquid, the flow rate, the dissolved oxygen amount, and the desired dissolved oxygen removal amount. In general, if the inert gas amount is increased, that is, gas-liquid The amount of dissolved oxygen removed can be increased by increasing the gas-liquid ratio in the mixed flow. Then, gas-liquid mixing is promoted by the filler 13 in the gas-liquid mixing unit 14 and the bubbles of the inert gas are further refined, so that dissolved oxygen can be more effectively diffused from the liquid.
[0017]
In the gas-liquid mixing unit 14, the amount and amount of dissolved oxygen removed can be adjusted by appropriately selecting the type and shape of the filling 13 and appropriately setting the length and the inner diameter. The length and inner diameter of the gas-liquid mixing unit 14 vary depending on the type of liquid, flow rate, dissolved oxygen amount, inert gas introduction amount, desired dissolved oxygen removal amount, and there is a mutual relationship between the length and the inner diameter. The length of the gas-liquid mixing part 14 is preferably 150 mm or more, usually 300 to 600 mm, and the inner diameter is preferably 23 mm or more, usually 40 mm or more. If the length is too short or the inner diameter is too small, mixing of gas and liquid may not be promoted sufficiently. Moreover, even if it lengthens unnecessarily, the amount of dissolved oxygen removal does not improve so much. On the other hand, if the inner diameter is increased, the flow velocity is lowered and the effect of gas-liquid mixing is lost, so the maximum diameter is determined by the flow rate. In general, if the gas-liquid mixing unit 14 is made too long or the inner diameter is made too large, not only will the cost be increased, but also the handling of the filler 13 will be difficult. 11 will be increased in size.
[0018]
When passing through the gas-liquid mixing unit 14, bubbles mixed with the liquid, that is, the inert gas containing oxygen released from the liquid is gradually gas-liquid separated in the pipe due to the difference in specific gravity, and the storage tank Gas-liquid separation is performed almost completely in the interior of the storage tank 2 and exhausted from the exhaust path 3 provided in the upper part of the storage tank 2. At this time, by providing the dissolved oxygen concentration meter 26 on the downstream side of the gas-liquid mixing unit 14, the effect of removing dissolved oxygen can be continuously confirmed.
[0019]
In addition, it is desirable that the storage tank 2 that receives the liquid from which dissolved oxygen has been removed be purged with an inert gas in advance. This purge operation is performed before the operation of the dissolved oxygen reduction device 10 by passing a purge gas made of an inert gas such as nitrogen gas set to a predetermined pressure by the pressure reducing valve 8 of the purge gas introduction path 4 through the pressure control valve 6 into the tank. The oxygen concentration in the tank is equal to or less than the dissolved oxygen amount of the liquid after the dissolved oxygen removal process. It is desirable to carry out until. As described above, the inert gas replacement means including the purge gas introduction path 4 and the exhaust path 3 is provided to replace the inside of the tank with an inert gas atmosphere in advance, so that the treatment is performed by oxygen contained in the air in the tank. It is possible to prevent the dissolved oxygen concentration of the later liquid from increasing.
[0020]
When the dissolved oxygen reducing device 10 is operated and liquid and oxygen-containing inert gas flows into the storage tank 2 and the pressure in the tank exceeds the set pressure of the pressure regulating valve 5, the pressure regulating valve 5 is opened and the inside of the tank is opened. Are exhausted from the exhaust path 3. During liquid storage, a small amount of purge gas is continuously introduced from the pressure control valve 6 as a seal gas, and the inside of the tank is maintained at a pressure slightly higher than atmospheric pressure. Further, when the inside of the tank falls below the set pressure of the pressure control valve 6 due to the consumption of the liquid in the storage tank 2, the pressure control valve 6 is opened by a predetermined amount and the purge gas in the purge gas introduction path 4 is replenished into the tank.
[0021]
Thus, the pressure in the storage tank 2 is maintained within a predetermined range by the pressure control valves 5 and 6. The set pressure of the storage tank 2 is in a range in which the air can be prevented from entering the tank, and may be equal to or lower than the normal pressure of the storage tank 2, for example, about 500 mmAq is appropriate.
[0022]
As described above, the inert gas is introduced into the liquid fed by the liquid feed pump 11 and then introduced into the gas-liquid mixing unit 14 to further refine the bubbles of the inert gas to promote the gas-liquid mixing. Thus, the dissolved oxygen concentration in the liquid can be removed to 1 mg / L (ppm) or less, and further to about 0.2 mg / L (ppm), and the gas-liquid mixing unit 14 and the inert gas introduction amount, etc. By appropriately setting the conditions, the amount of dissolved oxygen in the liquid after the treatment can be adjusted to a desired amount. In addition, even if the bubble size of the introduced inert gas is large, sufficient dissolved oxygen removal effect is obtained, and it is not heated to a high temperature or an additive harmful to the human body such as an oxygen scavenger is used. It can be carried out with a simple apparatus configuration, and there is no food hygiene problem in the treatment of liquid food, and there is no influence on the human body.
[0023]
FIG. 4 is a system diagram showing an embodiment of the dissolved oxygen reduction device of the present invention, and shows an example in which a gas-liquid separator 31 as a gas separation unit is provided on the downstream side of the gas-liquid mixing unit 14. is there. Thus, by providing the gas-liquid separator 31, the inert gas that has taken in the oxygen diffused from the liquid is quickly separated by the gas-liquid separator 31 and exhausted from the exhaust gas path 32. The amount of gas flowing into the storage tank 2, that is, the amount of oxygen can be greatly reduced. Thereby, since the raise of the oxygen concentration in the gaseous phase of the storage tank 2 decreases, the amount of inert gas introduced from the purge gas introduction path 4 can be reduced.
[0024]
Various types of gas-liquid separators 31 can be used. For example, a centrifugal gas-liquid separator can be used. Since other apparatus configurations can be formed in the same manner as the reference example shown in FIG. 1, the same components as those in the reference example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0025]
Further, the inert gas (separated gas) separated from the liquid by the gas-liquid separator 31 contains oxygen removed from the liquid, and the oxygen concentration is higher than the initial inert gas. Since the increase in oxygen concentration is slight, the separation gas is reused as an inert gas for removing dissolved oxygen introduced into the liquid according to the oxygen concentration and the amount of dissolved oxygen in the liquid. can do. That is, a gas circulation path 34 including a blower 33 for pumping the separated gas discharged to the exhaust gas path 32 to the downstream side of the liquid feed pump 11 and to the upstream side of the inert gas introduction unit 12 is provided. As a result, the utilization efficiency of the inert gas can be increased and the consumption thereof can be reduced.
[0026]
It is also possible to arrange a plurality of sets of dissolved oxygen reducing devices 10 as described above in parallel or in series, and the liquid in the storage tank 2 can be circulated upstream of the liquid feed pump 11 for reprocessing. It is.
[0027]
The inert gas may be selected according to the type of liquid and the inert gas supply environment, such as nitrogen gas, argon gas, carbon dioxide, or the like.
[0031]
【The invention's effect】
As described above, according to the present invention, dissolved oxygen can be efficiently removed with a simple apparatus configuration. Further, the apparatus cost and running cost can be reduced as compared with the conventional apparatus, and the apparatus can be downsized. In particular, since the liquid after processing is not adversely affected, foods and the like can be processed safely.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a reference example of a dissolved oxygen reducing device.
FIG. 2 is a cross-sectional view showing an example of a sparger.
FIG. 3 is a cross-sectional view showing another example of a sparger.
It is a system diagram illustrating one embodiment of a dissolved oxygen reducing apparatus of the present invention; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sending side storage tank, 2 ... Receiving side storage tank, 3 ... Exhaust path, 4 ... Purge gas introduction path, 5, 6 ... Pressure control valve, 7 ... Dissolved oxygen concentration meter, 10 ... Dissolved oxygen reducing device, 11 ... Liquid feed pump, 12 ... inert gas introduction part, 13 ... filling, 14 ... gas-liquid mixing part, 15 ... inert gas supply source, 16 ... pressure reducing valve, 17 ... flow meter, 18 ... control valve, 19 ... non-use Active gas supply path, 20 ... sparger, 21 ... cylindrical body, 22 ... spout, 23 ... sintered metal, 24 ... pressure gauge, 25 ... bypass valve, 26 ... dissolved oxygen concentration meter, 31 ... gas-liquid separator, 32 ... exhaust gas path, 33 ... blower, 34 ... gas circulation path

Claims (6)

送液ポンプによって貯留タンクに送液される液体中に不活性ガスを導入する不活性ガス導入部と、該不活性ガス導入部の下流側配管内に気液混合用の充填物を充填した気液混合部と、該気液混合部の下流側でかつ前記貯留タンクの上流側に設けられて、液体から放散された酸素分を含む不活性ガスを分離排出するガス分離器と、該ガス分離器で排出された放散酸素含有ガスを、前記送液ポンプから前記前記不活性ガス導入部に至る経路内を送液されている前記液体中に再導入するガス循環経路とを備えていることを特徴とする溶存酸素低減装置。An inert gas introduction part that introduces an inert gas into the liquid that is sent to the storage tank by the liquid delivery pump, and a gas that is filled with a gas-liquid mixing filler in the downstream pipe of the inert gas introduction part A liquid mixing unit, a gas separator provided on the downstream side of the gas-liquid mixing unit and on the upstream side of the storage tank, for separating and discharging an inert gas containing an oxygen component released from the liquid , and the gas separation A gas circulation path for reintroducing the diffused oxygen-containing gas discharged by the vessel into the liquid being fed through the path from the liquid feed pump to the inert gas introduction part. Dissolved oxygen reduction device. 前記気液混合部は、長さが150mm以上であることを特徴とする請求項1記載の溶存酸素低減装置。  The dissolved oxygen reduction device according to claim 1, wherein the gas-liquid mixing part has a length of 150 mm or more. 前記気液混合部は、内径が23mm以上であることを特徴とする請求項1記載の溶存酸素低減装置。  The dissolved oxygen reducing device according to claim 1, wherein the gas-liquid mixing part has an inner diameter of 23 mm or more. 前記不活性ガス導入部は、送液配管の中心部に設けられ、配管中心部から放射状に前記不活性ガスを噴出するスパージャーを備えていることを特徴とする請求項1記載の溶存酸素低減装置。  2. The dissolved oxygen reduction according to claim 1, wherein the inert gas introduction portion includes a sparger that is provided at a central portion of the liquid feeding pipe and that radiates the inert gas radially from the central portion of the pipe. apparatus. 前記スパージャーは、不活性ガスの噴出部が焼結金属で形成されていることを特徴とする請求項4記載の溶存酸素低減装置。  The dissolved oxygen reducing device according to claim 4, wherein the sparger has an inert gas ejection portion formed of sintered metal. 前記貯留タンクは、該タンク内を不活性ガス雰囲気に置換するための不活性ガス置換手段を備えていることを特徴とする請求項1記載の溶存酸素低減装置。  2. The dissolved oxygen reducing device according to claim 1, wherein the storage tank includes an inert gas replacement means for replacing the inside of the tank with an inert gas atmosphere.
JP23041799A 1999-08-17 1999-08-17 Dissolved oxygen reduction device Expired - Fee Related JP4323631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23041799A JP4323631B2 (en) 1999-08-17 1999-08-17 Dissolved oxygen reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23041799A JP4323631B2 (en) 1999-08-17 1999-08-17 Dissolved oxygen reduction device

Publications (2)

Publication Number Publication Date
JP2001046809A JP2001046809A (en) 2001-02-20
JP4323631B2 true JP4323631B2 (en) 2009-09-02

Family

ID=16907570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23041799A Expired - Fee Related JP4323631B2 (en) 1999-08-17 1999-08-17 Dissolved oxygen reduction device

Country Status (1)

Country Link
JP (1) JP4323631B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022955A (en) * 2001-07-09 2003-01-24 Canon Inc Aligner
KR101225278B1 (en) 2010-08-30 2013-01-22 현대제철 주식회사 Apparatus for reducing dissolved oxygen
JP2016116492A (en) * 2014-12-22 2016-06-30 アサヒビール株式会社 Malt pulverizing equipment, method for pulverizing malt, method for producing beverage, and beverage
CA3166369A1 (en) * 2019-12-31 2021-07-08 Metso Outotec Finland Oy Method and system for treating fluid and flotation arrangement
JP7390332B2 (en) * 2021-05-31 2023-12-01 株式会社J-オイルミルズ Method for suppressing deterioration of flavor of flavored edible oil

Also Published As

Publication number Publication date
JP2001046809A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
EP0963784B1 (en) Swirling fine-bubble generator and method
JP3770776B2 (en) Method for producing a supersaturated oxygenated liquid
JPS6020052B2 (en) Reflux deaeration system
US7628924B2 (en) Mass transfer apparatus and method
US7771516B2 (en) Method of removing ozone remaining in water
CN102985524A (en) Fermentation apparatus
JP4323631B2 (en) Dissolved oxygen reduction device
US4265167A (en) Deoxygenating unit
JP4128890B2 (en) Gas-liquid mixing reaction method and gas-liquid mixing reaction apparatus
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
EP1670574B1 (en) Method and apparatus for mixing of two fluids
TWI296940B (en) Beverage manufacturing method and beverage manufacturing device
JP2601379B2 (en) Gas deodorization and oxidation treatment method, liquid ozone oxidation treatment method, and pretreatment method for aerobic biological treatment
JP2002001386A (en) Aerator
JPH0218153B2 (en)
CA2282326C (en) Swirling type micro-bubble generating system
WO2003022983A1 (en) Method and apparatus for oxygenating wine
JP2005007035A (en) Food processing machine
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
US20150296754A1 (en) Seafood shipping container
JP2000107512A (en) Method for reducing dissolved oxygen and device therefor
CN220449857U (en) Waste liquid degasser
CN219603239U (en) Liquid filling valve, pressure filling valve and filling production line
AU770174B2 (en) Swirling type micro-bubble generating system
JPH06218238A (en) Suction device for film separation unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees